
University of Tartu

Faculty of Science and Technology

Institute of Technology

Computer Engineering Curriculum

Lembit Valgma

3D reconstruction using Kinect v2 camera

Bachelor’s thesis (12 ECTP)

Supervisor: Assoc. Prof. Gholamreza Anbarjafari
Morteza Daneshmand, MSc

Tartu 2016



3D mudeli koostamine Kinect v2 kaamera abil

Lühikokkuvõte:

Kinect on kergesti kasutatav ning suhteliselt odav RGB-D kaamera, mis võimaldab lisaks
värvipildile salvestada ka infot, kui kaugel vaadeldav objekt kaamerast on. Tänu sel-
lisele funktsionaalsusele on Kinect huvipakkuvaks alternatiiviks tavalistele 3D skanner-
itele, mille hinnad on enamasti palju kõrgemad. Kinecti uus versioon, Kinect v2, lubab
nii värvi kui kauguse infot salvestada oluliselt parema kvaliteediga kui originaal.

Käesolevas bakalaureusetöös kirjeldatakse ning realiseeritakse meetod, mille abil on
võimalik Kinect v2 abil salvestatud videost rekonstrueerida eseme 3D mudel. Autor testis
meetodi rakendatavust kasutades erineva kuju ning pinnakattega esemeid. Enamikel juh-
tudel töötas rekonstruktsioon piisavalt hästi ning võib öelda, et Kinect v2 sobib lihtsa-
mate 3D mudelite loomiseks hästi. Kinecti kauguse mõõtmise tehnoloogia seab piirangud
rekonstrueeritava eseme pinnakattele, väga peegeldavate või läbipaistvate pindade korral
ei suuda Kinect v2 kaugusi korrektselt hinnata. Sümmeetriliste esemete korral ei suuda
kirjeldatud meetod leida korrektset teisendust kahe vaatepunkti vahel ning rekonstrukt-
sioon ei ole võimalik.

Võtmesõnad: 3D rekonstruktsioon, ICP, Kinect
CERCS: T111 Pilditehnika

3D reconstruction using Kinect v2 camera

Abstract:

Kinect is an easy to use and affordable RGB-D acquisition device that provides both
spatial and color information for captured pixels. That makes it an attractive alternative
to regular 3D scanning devices that usually cost significantly more and do not provide
color info. Second generation of Kinect (v2) provides even better quality depth and color
images to user.

This thesis describes and implements method for 3D reconstruction using Kinect v2.
Method suitability for various objects is tested and analyzed. In most circumstances
the method provided satisfactory reconstructions unless very high resolution is desired.
However some limitation were observed. Reflective and transparent surfaces cause fail-
ure due to depth capturing technology in Kinect v2, symmetric objects cause problems
for described frame registration algorithm. For better understanding, Kinect v2 depth
measuring process is described.

Keywords: 3D reconstruction, ICP, Kinect
CERCS: T111 Imaging, image processing

2



Contents

List if Figures 5

Acronyms 6

1 Introduction 7

2 Kinect 9

2.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Depth sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Sensor specifications . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Measuring distance . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Transformation from depth to 3D coordinates . . . . . . . . . . . . . . . 13

2.3.1 Distance to depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Radial distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Alignment of depth and color sensor . . . . . . . . . . . . . . . . . . . . 17

2.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Point cloud registration 20

3.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Point representation . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Rotation representation . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Rigid transformation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.5 Homogeneous coordinates and transformation matrix . . . . . . . 24

3



3.2 Iterative closest point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 ICP algorithm steps . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Corresponding point set registration . . . . . . . . . . . . . . . . 26

3.2.3 Distance to tangent plane . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 ICP variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Global alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Accumulation error . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Implementation 30

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Method implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Pre-processing and selection of points . . . . . . . . . . . . . . . . 31

4.2.2 Error metric and point matching . . . . . . . . . . . . . . . . . . 33

4.2.3 Global alignment and noise removal . . . . . . . . . . . . . . . . . 33

4.2.4 Color mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Experimental results and discussions 34

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Kinect sensor limitations . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Symmetrical objects . . . . . . . . . . . . . . . . . . . . . . . . . 37

Summary 38

Acknowledgements 39

Bibliography 39

License 42

4



List of Figures

2.1 Location of Kinect sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Depth sensor performance parameters [1]. . . . . . . . . . . . . . . . . . 10

2.3 Time-of-flight operation principle. . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Wrapped phases and distances for 80MHz, 16MHz and 120MHz modu-
lated waves used in Kinect distance calcuation [2]. Dashed line shows the
common wrap around at 18.75 meters. . . . . . . . . . . . . . . . . . . . 12

2.5 Calculation of depth from distance information . . . . . . . . . . . . . . 14

2.6 Pinhole camera model [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Common lens distortions: barrel (left), pincushion (right). . . . . . . . . 16

2.8 Depth and color camera ”blind spots”. . . . . . . . . . . . . . . . . . . . 18

3.1 Rotation around x-axis (α), y-axis (β) and z-axis (γ). . . . . . . . . . . . 21

3.2 Rotation representation using axis ~e and angle θ. . . . . . . . . . . . . . 23

3.3 Translation from P1 to P2. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Steps for constructing point cloud from Kinect image sequences. . . . . . 32

5.1 Reconstruction results displayed from four different orientations. . . . . . 35

5.2 Reconstruction results displayed from four different orientations. . . . . . 36

5.3 Depth info of cup viewed from above. Incorrect shape can be seen clearly
on the edges of the cup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Merged point clouds before (left) and after noise removal. . . . . . . . . . 37

5.5 Point clouds of various problematic surfaces and objects. . . . . . . . . . 37

5.6 Depth info of an object with very reflective surface viewed from above. . 37

5



Acronyms

ADC Analog to digital converter
CMOS Complementary metal–oxide–semiconductor
FOV Field of view
ICP Iterative closest point
IR Infrared
RGB-D camera Camera cabable of capturing color and depht information
SDK Software development kit
TOF Time of flight

6



1 Introduction

RGB-D cameras combine a regular color video camera with an active depth capturing
sensor. For each pixel, they provide both the color information and the measurement
of the distance from the camera to the object that is represented by the corresponding
pixel. Additionally, they commonly provide quite high frame rates, making it possible to
capture moving objects with negligible distortion.

In the recent years, RGB-D cameras have seen significant rise in popularity, mainly due
to the emergence of the Microsoft Kinect series [4], which has been a major accessory for
their Xbox game consoles. In 2010, Kinect v1 was released, which used the structured
light technology to capture the depth information. The second version of Kinect was
released in 2014 along with the new Xbox version. The new Kinect uses a modulated light
technology for depth measurements. It enables to obtain the depth info with much better
resolution and quality while also limiting the interference from outside sources [5, 6].

Compared to most 3D scanners, Kinect is very affordable, which makes it an attractive
tool for many researchers and companies interested in 3D modelling. However, Kinect
was originally designed for tracking human body movements [7]. Since the tracking has
to be done in real time, Kinect has been designed such that it could capture the depth
frames with high frequency, being maximum 30 Hz. However, the latter means that there
is very little time for accurate measuring to be done. As a result, the Kinect depth info
can be considerably noisy or even incomplete [8]. Nevertheless, still researchers have
obtained decent results using Kinect as a 3D modelling tool [9, 10, 11].

The aim of this thesis is to devise a practically efficient 3D reconstruction algorithm with
a built-in texturing module, which demands evaluating the capability of the Kinect v2
to perform the associated task, i.e. to provide sufficient and reliable depth and color
information, as well as understanding and overcoming its limitations. In order to do so,
acquiring the input data and combining it into an object representation, must be studied.

The thesis is divided into following topics:

• In Chapter 2, a literature review on the description of the Kinect depth sensor and
its working principles are provided, and the modulated wave time of flight and the
distance to depth conversion principles are discussed;

• In Chapter 3, the theoretical background to rigid transformation in the 3D space
is presented, and the ICP method for registering the frames is described;

• In Chapter 4, a description of all the steps needed for 3D reconstruction with the
Kinect is presented, where the output point cloud maintains the original texture of

7



the object without any computational or algorithmic cost, and the settings associ-
ated with the practical implementation are specified;

• In Chapter 5, the experimental 3D reconstruction results obtained using the process
described in the previous chapter are provided, and the limitations of the proposed
system are discussed;

• Finally, the thesis is concluded through summarizing the main topics covered by
the content.

8



2 Kinect

2.1 General overview

Kinect v2 is a RGB-D acquisition device designed by Microsoft as contact free controller
for Xbox One. In addition to color camera it also has depth camera which allows to find
out both color and spatial information about filmed scene. Kinect can be connected to
computer using USB 3 connection and used as input for 3D modelling task.

Detailed description about Kinect history, its applications and how to obtain usable
RGB-D data from Kinect is given in Sandra Demitševa bachelor thesesis [12]. The main
focus of current thesis is manipulation of 3D point clouds. Kinect depth sensor is used
to obtain the initial point cloud. Following is the description how it works.

2.2 Depth sensor

Kinect v2 has three infrared light sources each generating a modulated wave with different
amplitude. In order to capture reflected waves, Kinect also has infrared camera. Location
of lasers and sensors is shown in figure 2.1.

Figure 2.1: Location of Kinect sensors.

9



2.2.1 Sensor specifications

The infrared sensor in Kinect v2 is state of the art 512× 424 CMOS array of differential
pixels. Sensor performance parameters are listed in figure 2.2. Each pixel has two photo
diodes (A, B) being controlled by the same clock signal that controls wave modulation.
Photo diodes convert captured light into current which can be measured. The diodes are
driven by the clock signal such that if A = [ai] is turned on, B = [bi] is turned off, and
vice versa. Then, according to [7]

• ([ai]− [bi]) shows correlation between retrieved light and the clock signal and can
be used to obtain phase information (“depth image”);

• ([ai] + [bi]) gives regular grayscale image illuminated by normal ambient lighting
(“ambient image”);

•
√∑

i ([ai]− [bi])
2 gives grayscale image that is independent of ambient lighting

(“active image”).

Figure 2.2: Depth sensor performance parameters [1].

Narrowband-pass filter is used to block all light except in the 860 nm wavelength range
that corresponds to infrared illumination system wavelength.

Kinect uses also multi-shutter engine that merges data from multiple shutters and chooses
the best shutter value for each pixel. Longest shutter time that does not cause saturation
is used. Engine also normalizes all values relative to the longest shutter time.

10



Figure 2.3: Time-of-flight operation principle.

2.2.2 Measuring distance

Kinect v2 uses optical time-of-flight (TOF) technology for measuring distances [13], [7].
The operation principle in TOF device is based on measuring the time it takes for light
wave to travel from emitter to object and back to sensor. Let d be distance from the
sensor, then the simplest case can be expressed as

d =
tr − te

2
· c, (2.1)

where te and tr represent time for light pulse emitting and receiving, c is speed of light
in air. Measuring single light pulses is not very practical for scene capturing devices
like Kinect. Hence, the amplitude modulated infrared light is used with CMOS array
receiver. Distance is calculated based on the phase difference of emitted light wave and
the detected light wave reflected from the object. Let the transmitted wave

T (t) = sin(ωt) (2.2)

have modulation frequency ω = 2πf . Then, distance traversed by modulated wave is 2d
which produces phase shift ϕ. Received wave

R(t) = β sin(ωt− ϕ) (2.3)

also has modified amplitude which depends on many factors. However, amplitude is
not needed for measuring distance, so it can be discarded. Phase shift depends on time
difference

ϕ = ωtr − ωte = ω(tr − te). (2.4)

Subsidising 2.1 results in

ϕ =
2d

c
ω, (2.5)

which implies

d =
ϕc

2ω
. (2.6)

In order to obtain the phase shift, at least two measurements are needed (as there are two
unknowns in 2.3). For that, received signal β sin(ωt− ϕ) is mixed with a phase-delayed
version of the reference signal

Ro(t) = sin(ωt− ϕoffset). (2.7)

11



Figure 2.4: Wrapped phases and distances for 80MHz, 16MHz and 120MHz modulated
waves used in Kinect distance calcuation [2]. Dashed line shows the common wrap around
at 18.75 meters.

This results in

R(t) ·Ro(t) = β sin(ωt− ϕ) · sin(ωt− ϕoffset)
= 0.5β (cos(ωt− ϕ− ωt+ ϕoffset)− cos(ωt− ϕ+ ωt− ϕoffset))
= 0.5β cos(ϕ− ϕoffset)− 0.5β cos(2ωt− ϕ− ϕoffset).

(2.8)

The result is processed by low-pass filter, which removes the second addend, yielding

LP [R(t) ·Ro(t)] = 0.5β cos(ϕ− ϕoffset). (2.9)

Using different values for ϕoffset, the phase-shift ϕ can be estimated independent of signal
amplitude β. Kinect sensor uses three different phase-shifts of 0°, 120°and 240° [14].

Since measuring the distance is based on phase shift of the modulated wave, the maximum
uniquely measurable distance depends on the wavelength of the modulated wave. Phase
wraps around at 360°(2π). This would imply that using longer wavelengths would allow
for measuring longer distances. Using shorter wavelengths gives better resolution [13]. In
order to enable good resolution and also measuring longer distances, Kinect uses three
different frequencies of 120 MHz, 80 MHz and 16 MHz [7]. Common wrap around for these
frequencies occurs at 18.75 meters, which is the also the maximum distance where depth
can be uniquely identified. Figure 2.4 shows the relation between phase and distance for
used frequencies.

Given three frequencies f0 = 80MHz, f1 = 16MHz, f2 = 120MHz and respective phase

12



shifts ϕ0, ϕ1, ϕ2, according to 2.6, the distance d must satisfy

d =
c

4πf0
(ϕ0 + 2πn0) =

c

4πf1
(ϕ1 + 2πn1) =

c

4πf2
(ϕ2 + 2πn2), (2.10)

where 0 ≤ n0 ≤ 9, 0 ≤ n1 ≤ 1 and 0 ≤ n2 ≤ 14 are unknown wrapping coefficients.
Substituting frequencies gives

ϕ0 + 2πn0

4π · 10
=
ϕ1 + 2πn1

4π · 2
=
ϕ2 + 2πn2

4π · 15
⇔

3(ϕ0 + 2πn0)

2π
=

15(ϕ1 + 2πn1)

2π
=

2(ϕ2 + 2πn2)

2π
⇔

3ϕ0

2π
+ 3n0 =

15ϕ1

2π
+ 15n1 =

2ϕ2

2π
+ 2n2.

(2.11)

By denoting
t0 = 3ϕ0

2π
, t1 = 15ϕ1

2π
, t2 = 2ϕ2

2π
(2.12)

the following system of equations for finding n0, n1 and n2 can be obtained

3n0 − 15n1 = t1 − t0,
3n0 − 2n2 = t2 − t0,

15n1 − 2n2 = t2 − t1.
(2.13)

Kinect v2 sensor actually outputs the phase shift values, giving researchers the opportu-
nity to use various methods for actual depth map estimation. In current thesis, the default
implementation from Microsoft SDK [15] is used that produces depth in millimeters for
each pixel.

2.3 Transformation from depth to 3D coordinates

Time-of-flight sensor described in the previous section provides for each sensor pixel a
distance measure from the center of the camera. In order to model the real space and
objects, true 3D coordinates for the points are desired. This can be obtained using the
standard pinhole camera model [3] and doing the calculation in reverse order. First,
the depth map calculation from distance map is presented, then regular pinhole camera
model is presented.

2.3.1 Distance to depth

Given point P , its distance from the camera center d, focal length f and distance from
principal point to point P projection on image plane x, distance z from camera center
C to point Pc must be calculated. First distance from C to P projection on image plane
can be calculated

l =
√
f 2 + x2. (2.14)

Then, based on the similar triangles property

z

d
=
f

l
, (2.15)

13



Figure 2.5: Calculation of depth from distance information

from which it can be written that

z = d
f

l
= d

f√
f 2 + x2

. (2.16)

Kinect SDK outputs the depth values already in the depth map format. It means that,
instead of the distance from camera center to point, each pixel depth value represents the
distance to the plane that has the corresponding point and is perpendicular to camera
principal axis.

2.3.2 Pinhole camera model

Let the center of the coordinate system be at the center of camera, f is the distance
between center of projection and the image plane (focal length of camera), line starting
from center of projection and perpendicular to the image plane is called principal axis,
principal point is the intersection of principal axis and image plane. Let P (X, Y, Z) be
3D coordinates of a model point, p(x, y) corresponding coordinates on the camera image
plane (in same units as 3D coordinates). By the similar triangles property, image plane
coordinates can be written as

x = f
X

Z
, y = f

Y

Z
. (2.17)

Now x and y are described in real world coordinates, on the image the coordinates are
however in pixels. Transforming the coordinates requires knowing the column-wise and
row-wise density of the pixels (pixels per millimeter), let them be ku and kv respectively.
The principal point distance from the pixel coordinate origin is also required, let its
coordinates be (−x0,−y0). Then point p coordinates in pixel coordinate system can be

14



Figure 2.6: Pinhole camera model [3].

written as

u = ku(x+ x0) = kuf
X

Z
+ kux0,

v = kv(y + y0) = kvf
Y

Z
+ kvy0.

(2.18)

After normalising point P coordinates by dividing it with its Z coordinate

P ′ =
P

Z
=

X/ZY/Z
1

 =

X ′Y ′
1

 ,

formula 2.18 can be written in matrix formuv
1

 =

kuf 0 kux0
0 kvf kvy0
0 0 1

X ′Y ′
1

 = KP ′. (2.19)

The four values in the matrix are called camera intrinsic parameters and usu denoted as

αu = kuf, αv = kvf, u0 = kux0, v0 = kvy0. (2.20)

In pixels these represent focal length (αu, αv) and coordinates of the principal point
(u0, v0). Camera intrinsics matrix K can be represented asαu 0 u0

0 αv v0
0 0 1

 . (2.21)

In general, camera intrinsics for given camera are known or they can be found out by
calibration. For the Kinect, they can be obtained from the SDK [16]. Considering that

15



Figure 2.7: Common lens distortions: barrel (left), pincushion (right).

u, v, K and Z are known for point P , based on the previous discussion, the x- and
y−coordinates can be obtained

K−1

uv
1

 = P ′ =
P

Z
, (2.22)

from which

ZK−1

uv
1

 =

XY
Z

 . (2.23)

Since Z is known, X and Y can be calculated for all u and v. Kinect SDK provides a
convenient table of (γu, γv) values for each pixel (u, v), such that

X = γu · Z,
Y = γv · Z.

(2.24)

2.3.3 Radial distortion

The discussion in the previous section was about the perfect pinhole camera model. In
real life the lens of the camera causes some distortion of the points being modeled on
image plane (Figure 2.7).

There are many types of distortions but it has been found that the most common and
significant is radial distortion. Most of the distortion can be therefore be described by
relative simple model [17]. Let (x, y) be the ideal (distortion free) coordinates on image
plane, and (xd, yd) the corresponding real observed coordinates. The principal point,
(0, 0) is assumed to be distortion free under this model. Then

xd = x · (1 + k1r
2 + k2r

4 + k3r
6),

yd = y · (1 + k1r
2 + k2r

4 + k3r
6),

(2.25)

where
r =

√
x2 + y2 (2.26)

16



and k1, k2, k3 are radial distortion coefficients. The number of addends in the formula 2.25
is not limited in general model, however Zhang [17] claims that two is enough in most
cases Kinect SDK provides access to first three coefficients [16]. There seems to be little
evidence if SDK uses distortion correction or not.

2.4 Alignment of depth and color sensor

Since depth and color information is captured by different sensors, the mapping between
RGB and depth sensor is required. The RGB camera can be modelled as pinhole camera,
similarly to depth camera described previously. Let Kc be camera intrinsics matrix for
RGB camera, then similarly to 2.23, it can be written

ZcK
−1
c

ucvc
1

 =

Xc

Yc
Zc

 , (2.27)

where Xc, Yc and Zc are point P coordinates in RGB camera coordinate system. Since
cameras are fixed, there exists a rigid transformation T from depth coordinates to RGB
coordinates such that

T

XY
Z

 =

Xc

Yc
Zc

 . (2.28)

Substituting values from 2.23 and 2.27 this can be written as

TZK−1

uv
1

 = ZcK
−1
c

ucvc
1

 . (2.29)

Here, all parameters are known or can be obtained by calibration [18]. Formula 2.29
describes mapping between depth and color camera. Kinect SDK provides convenient
mapping functions in both directions. Important to note is that the mapping relation
relies on the fact that both sensors can see the point being represented by image. Due to
different locations of the sensors and also different field-of-view, there are regions where
the direct mapping is not possible, as can be seen from Figure 2.8.

2.5 Challenges

Theory described above works in ideal conditions. In real operation there are several
factors that can cause errors in depth measurement. Sarbolandi et al. [14] analyzed
several error sources and compared effect on two generations of Kinects. Following are
sources that have larger effect on Kinect v2 that uses time of flight technology.

Temperature drift

Since time of flight technology requires quite high illumination power to cover the whole
scene, it produces quite a lot of heat and even require active cooling. Depth sensor output

17



Figure 2.8: Depth and color camera ”blind spots”.

change somewhat during the warming process for some time after it has been turned on.
Output stabilises in about 30 minutes.

Systematic distance error

Approximations in the sinusoidal signal shape lead to some systematic depth error mea-
surements in Kinect sensor. The magnitude of the systematic error has been show to be
relatively small, in the order of 1-2 mm [5].

Depth inhomogeneity

At object boundaries pixels can have inconsistent depth values. This is because some of
the light reflected is obtained from object but some from the background, mixing that
information together can produce so called flying pixels which show object boundaries at
incorrect coordinates.

Multi-path effects

Since time of flight measuring principle relies on capturing light reflected back from
the object surface, it can happen that light does not travel directly from illumination
unit to object and back to sensor but instead takes indirect path being reflected from
several surfaces. When such info is captured by sensor the depth measurement combines
several waves and gives incorrect results. For very reflective surfaces, if it is positioned

18



at relatively flat angle towards camera, no light might be reflected back and there is no
depth info about that surface.

Semitransparent and scattering media

When surface, such as glass, only reflects part of the light directly and some other part is
reflected from within the object, there is additional phase shift and the depth measure-
ment is incorrect.

Dynamic scenery

Important assumption in Kinect depth measuring system is that each pixel observes a
single object point during the whole acquisition process. When objects are moving, that
assumption is violated. Since Kinect v2 takes several measurements to produce depth
value for pixel, the movement can cause incorrect depth measurements, specially at the
object borders.

19



3 Point cloud registration

Kinect captures sequence on snapshots (set of points in three dimensional space, point
clouds) of area within the camera frame. Moving Kinect around the stationary object
or rotating the object on the turntable in front of Kinect, allows capturing the entire
surface of the object. In order to reconstruct the entire surface, individual views must
be combined. Each view of the object is slightly transformed compared to previous and
for combining the point clouds, relative transformation between two views needs to be
found. Once the transformation is found, point clouds can be aligned with each other.
The process of finding proper transformation is called point cloud registration.
Repeating this process for all the viewpoints allows to align all the point clouds and thus
recreate the entire object surface.

There are various algorithms for point cloud registration. They can differ in terms of
available input data, if rough estimation of the transformation is known or not, if color
information is given. Methods also vary by the kind of correspondences used, motion
calculation method, robustness and registration strategy. Salvi et al. describe more
common methods [19] and analyse the performance.

Since Kinect provides high frequency snapshots, the relative motion between frames is
very small, allowing to roughly estimate the transformation. In such situation, the most
commonly used algorithm is Iterative Closest Point (ICP), which finds the registration
by minimizing the the distance between point-correspondences, known as closest point.

There are also registration methods that use color information only or in addition to range
information. They usually use some key-points in the frame and various point descriptors,
most commonly SIFT [11] and FAST [10]. These key-points are highly distinctive and
provide good initial estimate for transformation. Because of that they are good for scene
reconstruction but not as needed for simpler object reconstruction described in the current
thesis. Since these methods are computationally more costly and don’t provide a lot of
benefit, color based methods are not used in this work.

In the following, point cloud and transformation representation is described. After that,
ICP process is described.

20



Figure 3.1: Rotation around x-axis (α), y-axis (β) and z-axis (γ).

3.1 Transformation

3.1.1 Point representation

Single point in three dimensional space is represented by its coordinates

pi =

xiyi
zi

 . (3.1)

Set of related points is called point cloud

P = {pi | i = 1, ..., N} , (3.2)

where N is the number of points.

3.1.2 Rotation representation

Rotation matrices and order

Rotation can be expressed by three independent rotations around fixed axis using rotation
matrices

21



Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 ,

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 ,

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .

(3.3)

In order to acquire full rotation matrix, individual rotations must be applied one at the
time. Since the angles depend on the order of applying the rotations, the order should
be fixed. In current thesis, the following notation is used

R = R(α, β, γ) = Rz(γ)Ry(β)Rx(α). (3.4)

R(α, β, γ) =

cos β cos γ sinα sin β cos γ − cosα sin γ cosα sin β cos γ + sinα sin γ
cos β sin γ sinα sin β sin γ + cosα cos γ cosα sin β sin γ − sinα cos γ
− sin β sinα cos β cosα cos β


(3.5)

For small angles, linearisation can be done using cos θ ≈ 1, sin2 θ ≈ 0 and sin θ ≈ θ. Then
rotation matrix can be approximated by

R(α, β, γ) =

 1 −γ β
γ 1 −α
−β α 1

 . (3.6)

Axis angle

Rotation can be expressed also by determining the rotation axis and the rotation amount
around that axis. The axis is usually defined by unit vector, ~e, and the rotation amount
by angle θ. Then rotation can be written as a pair

〈~e, θ〉 =
(

(ex, ey, ez)
T , θ

)
. (3.7)

Quaternions

Quaternion is defined as four dimensional complex number

q = q0 + q1i+ q2j + q3k, (3.8)

22



Figure 3.2: Rotation representation using axis ~e and angle θ.

where q0, q1, q2, q3 ∈ R and
i2 = j2 = k2 = ijk = −1. (3.9)

Quaternion conjugate is defined as

q∗ = q0 − q1i− q2j − q3k. (3.10)

Quaternion magnitude is defined as

||q|| =
√
qq∗ =

√
q20 + q21 + q22 + q23. (3.11)

Unit quaternion is a quaternion with magnitude 1

||q|| = 1. (3.12)

Reciprocal or inverse of quaternion is defined as

q−1 =
q∗

||q||2
, (3.13)

which for unit quaternions implies
q−1 = q∗. (3.14)

Unit quaternions can be used to represent rotation. Given axis angle representation(
(ex, ey, ez)

T , θ
)

, the corresponding unit quaternion is expressed as

q = cos
θ

2
+ ex sin

θ

2
i+ ey sin

θ

2
j + ez sin

θ

2
k. (3.15)

For point p = (x, y, z)T construct respective quaternion by

pq = 0 + xi+ yj + zk. (3.16)

Then rotation result p′ = (x′, y′, z′)T can be computed by

p′q = qpqq
−1, (3.17)

where p′q = 0 + x′i+ y′j + z′k.
Alternatively, the rotation represented by unit quaternion q = q0 + q1i+ q2j+ q3k can be
expressed as rotation matrix by

R(q) =

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 (3.18)

23



Figure 3.3: Translation from P1 to P2.

3.1.3 Translation

Translation in three dimensional space can be expressed as vector

~t = (tx, ty, tz), (3.19)

where tx, ty, tz show the movement along x-, y- and z-axis respectively. Then coordinates
after translation can be written as

p2 = p1 + ~t. (3.20)

3.1.4 Rigid transformation

If all the points in the object have the same distance between each other before and
after the transformation then the transformation is called rigid. In this thesis only rigid
transformations consisting of rotation and translation are considered. Let R be rotation
and ~t translation applied to point pi, then the resulting point mi can be expressed as

mi = Rpi + ~t. (3.21)

3.1.5 Homogeneous coordinates and transformation matrix

Homogeneous coordinates can be used to express point coordinates

pi =


xi
yi
zi
1

 (3.22)

24



and augmented transformation matrix

T =


R1,1 R1,2 R1,3 tx
R2,1 R2,2 R2,3 ty
R3,1 R3,2 R3,3 tz

0 0 0 1

 . (3.23)

Using the above notation, formula 3.21 can be written as

mi = Tpi. (3.24)

3.2 Iterative closest point

The task of the registration algorithm is to find transformation T that would be applied
to one of the point clouds in order to bring two point clouds as close to each other as
possible. Usually the points that transformation is applied to, are called data points, and
the other point cloud is called model points. In the following, let data points be denoted
by P = {pi | i = 1, ..., N} and model points M = {mi | i = 1, ..., N}. The goal can then
be mathematically described as minimizing some metric e, where

e = f(M, TP ). (3.25)

The most common metric to be used is sum of squares. Given point correspondence
between pi and mi, e can be defined as

e =
1

N

N∑
i=1

‖mi − Tpi‖2 . (3.26)

Since in the current setup, the shape of the object does not change, only rotation and
translation must be considered. This allows to express the minimization metric by rota-
tion and translation

e =
1

N

N∑
i=1

∥∥mi −Rpi − ~t
∥∥2 . (3.27)

Rotation has three parameters and translation has another three, in total there are six
parameters to be estimated. Given at least three corresponding points, the parameters
can be estimated. Horn [20] has shown a closed form solution for the minimization
problem in 3.27.

Approach described above is usable if there is known correspondence between points,
i.e. for each i = 1, ..., N it is known which pi is transformed to which mi. Point clouds
acquired by Kinect do not give such correspondence.

Iterative closest point (ICP) algorithm proposed by Besl and McKay [21] solves this
problem by using closest points before the transformation as initial approximation, finding
transformation and applying found transformation on data points. Process is iterated
until convergence, using transformed data points at each step as input for calculating
closest points.

25



3.2.1 ICP algorithm steps

1. Data points P and model points M are given.

2. Initialize iteration by setting P0 = P , R = I, ~t = (0, 0, 0) and k = 0. If there is some
initial estimation for rotation and translation from some other source, use those for
initialization. Steps 3-7 are repeated until convergence within some tolerance τ .

3. Compute closest points Yk for Pk in M .

4. Find optimal transformation Tk between P0 and Yk.

5. Apply the transformation Pk+1 = TkP0.

6. Find error ek between Yk and M . Terminate iteration if change in error falls below
threshold, i.e. if ek − ek+1 < τ .

Besl and McKay proved that ICP algorithm always converges monotonically to a local
minimum with respect to the mean-square distance objective function. If the transfor-
mation is small, local minimum is very likely also global minimum.

3.2.2 Corresponding point set registration

Given corresponding point clouds P = pi and M = mi the goal is to find rotation R and
translation ~t such that metric 3.27 would be minimized.
Denote center of mass µp for data points P and µm for model points M, which can be
calculated as

µp =
1

N

N∑
i=1

pi, µm =
1

N

N∑
i=1

mi. (3.28)

The cross-covariance matrix for P and M is defined as

Σpm =
1

N

N∑
i=1

[
(pi − µp) (mi − µm)T

]
=

1

N

N∑
i=1

[
pim

T
i

]
− µpµTm. (3.29)

Symmetric 4 x 4 matrix is formed

Q(Σpm) =

(
trace(Σpm) ∆T

∆ Σpm + ΣT
pm − trace(Σpm)I3

)
, (3.30)

where

∆ =

A2,3

A3,1

A1,2

 , A = Σpm − ΣT
pm. (3.31)

Unit eigenvector q = (q0, q1, q2, q3)
T corresponding to the maximum eigenvalue in matrix

Q(Σpm) is selected as quaternion representation of the optimal rotation. The rotation
matrix R(q) can be constructed using 3.18. Optimal translation vector can be found
using rotation matrix and mass centers

~t = µm −R(q)µp. (3.32)

26



3.2.3 Distance to tangent plane

Although ICP algorithm described above is shown to converge, its result is sensitive to
noise present in point measurements and also to non-overlapping regions in point clouds.
At the same time as Besl and McKay presented their algorithm, Chen and Medioni
introduced their own variant of ICP [22]. They used distance from point to tangent
plane in other point cloud for point matching and minimization target. In general the
process is same as described in 3.2.1 with metric e being minimized defined as

e =
N∑
i=1

[(
mi −Rpi − ~t

)
· ~ni
]2
, (3.33)

where ni is the estimated tangent normal for the i-th model point. In order to find
matching points at each iteration, distance to tangent planes in model point cloud must
be minimized.
In general, there is no closed form solution for finding the optimal transformation that
would lead to convergence. Hence a least squares method must be used in order to solve
it. Analytical solution exists if rotation matrix is linearized as described in 3.6. This can
be done for small rotation angles. Closed form solution is described by Low [23].

3.2.4 ICP variants

Due to its usefulness and popularity there has been a lot of research regarding ICP and
its suitability in different scenarios. Many improvements and modifications to the various
steps of the algorithm have been proposed. Rusinkiewicz and Levoy [24] classified ICP
modifications as affecting six stages of the algorithm.

1. Selection of points from input data

Instead of using all the data and model points, some sub-section of points might be used.
It might be useful to remove some outliers and noise from point clouds to improve correct
registration. In order to speed up calculations a random or uniform sampling might be
used. Point selection might also be restricted to points that are more distinctive, either
using higher intensity gradient and some color information, if available.

2. Matching these points to samples in the other point cloud

Various metrics can be used to find matching points. Square distance and distance
to tangent plane were already described. Other possible variants include projection of
data points onto model point surface and then searching within smaller range. Finding
matching points is the most computationally costly step in ICP, however it can be speeded
up by using efficient algorithms, like kD trees.

27



3. Weighting the corresponding pairs appropriately

Different weights could be given to point pairs depending on some metric. Lower weight
could be applied to points with higher point-to-point distances. Normals compatibility
could be used or metric based on the uncertainty of imaging device.

4. Rejecting certain pairs based on looking at each pair individually or con-
sidering the entire set of pairs

This step allows to effectively remove outliers, where matching hasn’t worked or couldn’t
work. Some percentage of worst pairs could be rejected based on some metric, 10 % is
suggested. Other methods include rejection of point pairs including point that lies on
point cloud boundary. However, that requires creating mesh from the point cloud. Also,
preserving the distance between points within point clouds could be used as criteria, i.e.
if distance between two points in data points differs significantly from matching points
in model points, these points are discarded.

5. Assigning an error metric based on the point pairs

Most commonly used are the two metrics described earlier. Sum of squared distances
between corresponding points is also known as point-to-point metric. Sum of squared
distance from point to corresponding tangent plane is known as point-to-plane distance.
Generally, point-to-plane requires more computation for one iteration but converges in
less iterations and is less sensitive to noise and non-overlapping regions.

6. Minimizing the error metric

Point-to-point metric has closed form solution, as has linearized point-to-plane. In general
case some non-linear method (e.g. Levenberg–Marquardt) must be used for solving the
problem.

3.3 Global alignment

ICP allows to find pairwise registration of captured point clouds. The goal however
is to align all the point clouds in the sequence. This can be done using cumulative
transformations. First, a reference point cloud must be chosen, let it be P0. Then, given
sequence of point clouds Pi, ICP finds transformations Ti such that

Pi−1 ≈ TiPi, i = 1, ..., N. (3.34)

Applying transformations iteratively, the cumulative transformations TCi can be found

TCi = Ti · TCi−1, i = 1, ..., N, (3.35)

28



where TC0 = I. Cumulative transformation matrices can be used to bring all point
clouds into the same coordinate reference

Qi = TCi · Pi, i = 0, ..., N. (3.36)

Finally reconstructed point cloud Q is a union of all aligned point clouds

Q =
N⋃
i=0

Qi. (3.37)

3.3.1 Accumulation error

Since registration is done pairwise and transformations calculated cumulatively, small er-
rors in the individual transformations can cause significant errors in the global alignment.
The problem of adjusting global reconstruction to produce jointly optimal structure and
parameter adjustment, is known as bundle adjustment problem. Thorough and compre-
hensive treatment was given by Triggs et al. [25].
The setup in current thesis generally consists of too short sequences for global adjust-
ment to be necessary. However, if required, simple error distribution is done based on
assumption that full rotation of the object should result in identity transformation.

29



4 Implementation

This chapter describes the setup and implementation steps for 3D reconstruction with
Kinect v2.

4.1 Setup

Kinect can capture info about the object from one direction at once and in order to
reconstruct the full object, different views around the object need to be captured. It can
be achieved by moving the camera around the object or rotation the object in front of
a fixed camera. The former method is somewhat inconvenient due to Kinect requiring
connection to outlet. Also, moving the camera causes it to shake and that can create
some artifacts when capturing depth information. Because of these reasons, fixed camera
setup was chosen.

Kinect v2 camera was fixed on a tripod with approximate distance from the centre of
turntable of 0.8 meters. Turntable itself was white and its diameter was 0.6 meters. Ob-
ject was rotated for full rotation while Kinect captured frames with frequency from 10 Hz
to 30 Hz. Turntable made full rotation in about 30 seconds, which means that maximum
rotation between consecutive images was less than two degrees. That frequency proved
to be more than enough for reconstruction and for avoiding incorrect local minimums.
During testing, it seemed that using one frame after every 10 degree rotation did not
cause any problems for reconstruction while providing good speed-up for the process.

Objects chosen were of small to medium size, not exceeding 1 meter in any dimension.
Camera was placed on the optimal distance from turntable in order to obtain good depth
information. Since Kinect depth measuring range starts from 0.5 meters, camera distance
from closest point of the object had to be at least 0.5 meters. Since Kinect has a relatively
wide field of view, such distance meant that smaller objects represented a relatively low
percentage of capture frame, causing number of object points acquired to be too small
for reconstruction. Objects with dimensions less than 0.05 meters were discarded.

Final aspect to consider was camera orientation towards object. It was important that,
after rotation, most of the object surface would be captured. Secondly, the possibility of
segmenting out the object from background was required. Based on these criteria, camera
was placed perpendicular to rotation axis while trying to align the center of object and
camera. For obvious reasons, object surface resting against the turntable could not be
captured.

30



4.2 Method implementation

After filming the object the task is to combine consecutive views into single point cloud.
For that, first frame is fixed as reference which coordinate system is used. All the other
frames are transformed to that coordinate system. Transformation can be calculated
iteratively using ICP and alignment process described in 3.3. Initially, first frame is
loaded and global transformation matrix Taccum created. In the beginning Taccum = I,
where I is identity matrix.
For each consecutive frame the following steps are performed

1. Read in depth and color frame and apply Kinect transformation to obtain point
cloud of the entire frame. Using Kinect SDK, it is simple to map both color and
depth information.

2. Apply pre-processing to extract object point cloud Pcurrent and point cloud repre-
senting data points Pdata for ICP.

3. For point cloud representing model points Pmodel use data points from previous
frame.

4. Use ICP algorithm to obtain approximated transformation matrix T that describes
how Pdata is transformed to Pmodel.

5. Obtain absolute transformation matrix for current point cloud Pcurrent by multiply-
ing transformation matrix T from previous point with all other previously obtained
transformation matrices Taccum = TTaccum.

6. Apply cumulative transformation matrix Taccum to current point cloud Pcurrent in
order to align it to reference coordinate system Palign = TaccumPcurrent

7. Merge the new aligned point cloud with already aligned points.

Finally, some post-processing is applied on the obtained point cloud. Steps are sum-
marised in flow chart displayed in Fig. 4.1.

In the following, some of the steps and choices made are discussed in detail.

4.2.1 Pre-processing and selection of points

Object segmentation

The first step is to segment out points representing the object from the background. It
is relatively simple to do using depth information. 3D bounding box was fitted around
the object and all points located outside were removed. Since camera was perpendicular
to rotation axis, it was usually possible to remove turntable also that way. In some cases
where needed, a plane was fitted on points and everything beneath it was discarded. For
bounding box, choosing the height and width (Y - and X-axis) was relatively straightfor-
ward. Choosing the depth (Z-axis) required some experiments since depth information

31



Figure 4.1: Steps for constructing point cloud from Kinect image sequences.

from Kinect can be distorted on the edges of the object. Since frames were available with
high frequency, even setting a very conservative threshold for depth, didn’t cause consec-
utive frames to have small number of overlapping points, and allowed ICP to converge
quite well.

Removing outliers

Depending on the object surface, Kinect depth data can be relatively noisy, specially on
the edges of the object. In order to reduce the errors in registration process, obvious
outliers are removed by using a low-pass filter. All points whose average distance from
neighboring points is higher than expected threshold (one standard deviation is used)
are thrown away. Removing of outliers must be done carefully at this point in order
to not throw away too many points as the density of points in one frame is not very
high. Removing geometrically important points might cause ICP to converge to wrong
transformation.

32



Downsampling

Depending on the number of points representing the object, point clouds can be reduced
to increase the speed of registration calculations. Since most of the objects used were
relatively small and reconstruction time was not critical, downsampling was not used in
experiments performed for current thesis.

4.2.2 Error metric and point matching

Both point-to-point and point-to-plane metrics were tested. Probably due to the relative
noisiness of Kinect depth data, point-to-plane minimization gave much better results and
was used for all reconstructions. Since the rotation from frame to frame was small, identity
transformation was provided as initial guess for ICP. Theoretically a better assumption
could be provided as input but it seemed to have very little effect on speed of convergence
in real experiments.

4.2.3 Global alignment and noise removal

After registering individual frames and merging them, there can be two types of prob-
lems. Firstly, the individual registrations might contain some errors which appears in
the final point cloud as misalignment (f.e. ”double nose problem”). It didn’t appear
often with experimental objects but when needed, it was fixed using error distribution
method, which is not described in current work. The other problem is accumulated noise
from individual frames. Removing outliers from initial frames only helped against sin-
gle outliers. However, often bigger areas had distorted coordinates from some particular
view. That could not be removed from single frame but can be removed from the merged
point cloud. The filtering method was chosen similar to single frame outlier removal but
number of neighbours used for distance calculation and distance threshold were chosen
much stronger. Heavy noise removal also caused some problems since more horizontal
surfaces can have lower point densities and using strong filtering parameters, could be
removed from final result.

4.2.4 Color mapping

Registration and merging steps have been performed using only spatial information. Since
Kinect can provide one-to-one mapping between spatial and color information, the color
information can be simply carried along when performing transformations and merged
into final point cloud. If two points are very close together, the spatial and color informa-
tion from different points can be combined to obtain smaller data set. In current thesis,
1 mm x 1 mm x 1 mm box grid was used and points within one cube were averaged (both
spatial coordinates and color values). Result is a colorized point cloud representing the
entire object.

33



5 Experimental results and discus-
sions

Objects with various shapes, sizes and surfaces were tested to evaluate the viability
and quality of 3D reconstruction with Kinect. Sequences were captured with Kinect v2
using Kinect SDK 2.0. Reconstruction code was written in Matlab using native ICP
implementation. Processing time for the reconstruction varies a lot depending on the
number of points representing the object in frame. Using Intel i7 3.3 GHz processor
and 60 input frames, it took between 30 (approximately 1000 points per frame) to 90
seconds (approximately 15 000 points per frame) to reconstruct the object. Final runtime
depends also a lot of the noise removal parameters used for the last step, calculating
average distances from neighbours is computationally very expensive.

5.1 Results

Point clouds obtained from reconstructions are presented in figures 5.1 and 5.2. Since
high frequency input data was available, ICP had to register relative small rotations.
Unless objects had very specific features, the correct registration could be achieved. Most
important factor affecting the quality of the reconstruction was noise and distortions in
the input frames. Since Kinect calculates depth based on reflecting light, the reflective
properties of object surface severely affect the result. As can be seen from reconstructions,
best results are achieved from objects covered by fabric, best represented by green pouf
and pillow. Fabric surfaces of various color give good results, as can be observed from
red hat and white and black panda. Even almost completely black objects, such as black
bag, provide relatively good reconstructions. For fabric surfaces, object shape plays very
little role in the result since the depth measurements are precise. Detail size still must
be considered, as Kinect cannot accurately capture very thin details, such as shoelaces
on the shoe image.

Objects with more reflective surfaces start to have some problems. The depth information
is still good on surfaces facing Kinect but surfaces at larger angle develop distortions. It
can be clearly seen on depth data captured from cylindrical object such as a cup in
figure 5.3 or surface at big angle such as black box in figure 5.5. Depending on the
magnitude of the problem, it might still be possible to reconstruct the object. Such
examples can be seen from bust and teapot in figure 5.1, the point clouds contain more
noise but can still be aligned. Green toy shows the limitation of Kinect, it is relatively
small (approximately 10 cm diameter) with many round surfaces.

34



(a) Human head (b) Bust model

(c) Green happy toy (d) Hat

(e) Cup (f) Panda

(g) Teapot (h) Bowl

(i) Shoe

Figure 5.1: Reconstruction results displayed from four different orientations.

In addition to creating more noise, object shape can also play role in the result if ICP con-
vergence. Some surface detail is required from symmetrical objects for ICP to give correct
results. Even relatively small detail is enough as can be seen from bowl reconstruction
in figure 5.1.

Noise removal

As mentioned earlier, once distortions from individual frames get merged into final point
cloud, they can be removed by filtering. Effect of noise removal can be seen from figure 5.4.
Noise removal is a great tool for producing better results but its use can be limited if
object has fine details. In that case important object information can also be removed.

35



(a) Green pouf (b) Pillow

(c) Backpack (d) Chair

(e) Black bag

Figure 5.2: Reconstruction results displayed from four different orientations.

Figure 5.3: Depth info of cup viewed from above. Incorrect shape can be seen clearly on
the edges of the cup.

5.2 Limitations

There are some scenarios where reconstruction method described in the current thesis
does not work.

5.2.1 Kinect sensor limitations

Due to the technology Kinect uses to calculate depth, it cannot handle reflections well.
If object is transparent and the same wave gets partially reflected from object surface
and partially reflected from background, the resulting depth image does not correspond
to the true situation. It can be observed from figure 5.5 where drinking glass is almost
not captured and the main effect is distortion of background depth information.

36



(a) Panda (b) Boot

Figure 5.4: Merged point clouds before (left) and after noise removal.

(a) Transparent glass (b) Black box (c) Symmetrical object

Figure 5.5: Point clouds of various problematic surfaces and objects.

Second problem related with reflections are surfaces that are very reflection, like mirrors
and similar objects. Since light has to reflect back to sensor for Kinect to register it these
objects might not appear in depth image at all or have very distorted measurements.
Even stainless steel utensils have severe problems which can be observed from figure 5.6.

5.2.2 Symmetrical objects

Additionally, the method doesn’t work with fully symmetrical objects. If the depth info is
identical in two frames then ICP algorithm converges already with initial transformation
guess (identity transformation) and the frames are not aligned correctly. Situation can
be seem in figure 5.5 where applying the method didn’t give point cloud of the full
object. The symmetrical scenario can be fixed with using additional colour information
(f.e. placing markers on round table) to calculate the rotation parameters.

Figure 5.6: Depth info of an object with very reflective surface viewed from above.

37



Summary

This thesis proposed, implemented and verified the applicability of a system for fast and
efficient 3D reconstruction of objects using the Microsoft Kinect v2, and investigated its
suitability, as well as its strengths and weaknesses, in terms of achieving the foregoing goal.
First, the depth measuring technology utilized by the Kinect v2 sensor was described,
and its theoretical limitations were analyzed. Next, the proposed method was introduced
through a step-by-step analysis of all the modules involved in the system, consisting of
the stages starting from image acquisition and proceeding towards formation and post-
processing of a global point cloud representing the object. One of the advantages of the
proposed system is, that the created point cloud already represents the object with its
original color texture. The algorithm was applied to various objects, where in the most
cases, the results were satisfactory. Quality of the reproduction depends significantly on
the surface properties of the object. The more reflective the object is, the lower is the
quality of its reconstruction. In the case of failure, which mostly happens when dealing
with very reflective or transparent surfaces, the reason was the inability of the Kinect
sensor to provide the correct depth information. Examples included stainless steel and
mirrors, were the reconstruction could not be completed. Since the frame registration
method described in this thesis used only the range data, the proposed method also
failed to reconstruct the object if it did not have enough distinctive geometric features.
If the surface range data stays the same in a pair of consecutive images, as is the case
for symmetric objects, the current method cannot be used. For most of the objects,
these limitations do not affect the result significantly, which makes the described system,
along with the Kinect camera, suitable approach for 3D modelling in settings were high
resolution is not demanded. Future works shall concentrate on improving the quality of
the created point clouds, especially in the sense of global alignment.

38



Acknowledgements

I would like to thank my supervisors Gholamreza Anbarjafari and Morteza Daneshmand
for guiding and supporting me throughout the thesis process.

I would also like to thank other members of ICV for lending a helping hand when asked.

39



Bibliography

[1] A. Payne, A. Daniel, A. Mehta, B. Thompson, C. S. Bamji, D. Snow, H. Oshima,
L. Prather, M. Fenton, L. Kordus, et al., “7.6 A 512× 424 CMOS 3D Time-of-Flight
image sensor with multi-frequency photo-demodulation up to 130MHz and 2GS/s
ADC,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014
IEEE International, pp. 134–135, IEEE, 2014.

[2] F. Järemo Lawin, “Depth data processing and 3D reconstruction using the Kinect
v2,” Master’s thesis, Linköping University, 2015.

[3] P. Sturm, “Pinhole camera model,” in Computer Vision, pp. 610–613, Springer,
2014.

[4] Microsoft, “Microsoft kinect.” http://www.xbox.com/en-US/xbox-one/

accessories/kinect-for-xbox-one [Accessed: 2016-01-06].

[5] D. Pagliari and L. Pinto, “Calibration of Kinect for Xbox One and Comparison be-
tween the Two Generations of Microsoft Sensors,” Sensors, vol. 15, no. 11, pp. 27569–
27589, 2015.

[6] E. Lachat, H. Macher, T. Landes, and P. Grussenmeyer, “Assessment and Calibra-
tion of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range
3D Modeling,” Remote Sensing, vol. 7, no. 10, pp. 13070–13097, 2015.

[7] J. Sell and P. O’Connor, “The Xbox One system on a chip and Kinect sensor,” IEEE
Micro, no. 2, pp. 44–53, 2014.

[8] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. El Saddik, “Evaluating and improv-
ing the depth accuracy of Kinect for Windows v2,” Sensors Journal, IEEE, vol. 15,
no. 8, pp. 4275–4285, 2015.

[9] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, et al., “KinectFusion: real-time 3D recon-
struction and interaction using a moving depth camera,” in Proceedings of the 24th
annual ACM symposium on User interface software and technology, pp. 559–568,
ACM, 2011.

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: Using
Kinect-style depth cameras for dense 3D modeling of indoor environments,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 647–663, 2012.

40

http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one
http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one


[11] J. Xiao, A. Owens, and A. Torralba, “SUN3D: A database of big spaces reconstructed
using SfM and object labels,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 1625–1632, 2013.

[12] S. Demitševa, “Gesture based computer controlling using Kinect camera.” Bachelor
thesis, Tartu Ülikool, 2015.

[13] C. S. Bamji, P. O’Connor, T. Elkhatib, S. Mehta, B. Thompson, L. A. Prather,
D. Snow, O. C. Akkaya, A. Daniel, A. D. Payne, et al., “A 0.13 µm CMOS system-
on-chip for a 512× 424 time-of-flight image sensor with multi-frequency photo-
demodulation up to 130 MHz and 2 GS/s ADC,” Solid-State Circuits, IEEE Journal
of, vol. 50, no. 1, pp. 303–319, 2015.

[14] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: Structured-light
versus Time-of-Flight Kinect,” Computer Vision and Image Understanding, vol. 139,
pp. 1–20, 2015.

[15] Microsoft, “Kinect sdk.” https://developer.microsoft.com/en-us/windows/

kinect [Accessed: 2016-04-09].

[16] Microsoft, “Camera intrinsics structure.” https://github.com/Kinect/Docs/

blob/master/Kinect4Windows2.0/k4w2/Reference/Kinect_for_Windows_v2/

Kinect/CameraIntrinsics_Structure.md [Accessed: 2016-04-15].

[17] Z. Zhang, “A flexible new technique for camera calibration,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1330–1334, 2000.

[18] C. Zhang and Z. Zhang, “Calibration between depth and color sensors for commodity
depth cameras,” in Computer Vision and Machine Learning with RGB-D Sensors,
pp. 47–64, Springer, 2014.

[19] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent range image reg-
istration methods with accuracy evaluation,” Image and Vision computing, vol. 25,
no. 5, pp. 578–596, 2007.

[20] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,”
JOSA A, vol. 4, no. 4, pp. 629–642, 1987.

[21] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” in Robotics-DL
tentative, pp. 586–606, International Society for Optics and Photonics, 1992.

[22] Y. Chen and G. Medioni, “Object modelling by registration of multiple range im-
ages,” Image and vision computing, vol. 10, no. 3, pp. 145–155, 1992.

[23] K.-L. Low, “Linear least-squares optimization for point-to-plane ICP surface regis-
tration,” Chapel Hill, University of North Carolina, vol. 4, 2004.

[24] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” in 3-D
Digital Imaging and Modeling, 2001. Proceedings. Third International Conference
on, pp. 145–152, IEEE, 2001.

[25] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjust-
ment—a modern synthesis,” in Vision algorithms: theory and practice, pp. 298–372,
Springer, 1999.

41

https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://github.com/Kinect/Docs/blob/master/Kinect4Windows2.0/k4w2/Reference/Kinect_for_Windows_v2/Kinect/CameraIntrinsics_Structure.md
https://github.com/Kinect/Docs/blob/master/Kinect4Windows2.0/k4w2/Reference/Kinect_for_Windows_v2/Kinect/CameraIntrinsics_Structure.md
https://github.com/Kinect/Docs/blob/master/Kinect4Windows2.0/k4w2/Reference/Kinect_for_Windows_v2/Kinect/CameraIntrinsics_Structure.md


License

Non-exclusive license to reproduce thesis and make

thesis public

I, Lembit Valgma,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2. make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

“3D reconstruction using Kinect v2 camera”, supervised by Assoc. Prof. Gholam-
reza Anbarjafari and Morteza Daneshmand,

2. am aware of the fact that the author retains these rights.

3. certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2016


	List if Figures
	Acronyms
	Introduction
	Kinect
	General overview
	Depth sensor
	Sensor specifications
	Measuring distance

	Transformation from depth to 3D coordinates
	Distance to depth
	Pinhole camera model
	Radial distortion

	Alignment of depth and color sensor
	Challenges

	Point cloud registration
	Transformation
	Point representation
	Rotation representation
	Translation
	Rigid transformation
	Homogeneous coordinates and transformation matrix

	Iterative closest point
	ICP algorithm steps
	Corresponding point set registration
	Distance to tangent plane
	ICP variants

	Global alignment
	Accumulation error


	Implementation
	Setup
	Method implementation
	Pre-processing and selection of points
	Error metric and point matching
	Global alignment and noise removal
	Color mapping


	Experimental results and discussions
	Results
	Limitations
	Kinect sensor limitations
	Symmetrical objects


	Summary
	Acknowledgements
	Bibliography
	License

