
TARTU UNIVERSITY
FACULTY OF MATHEMATICS

Institute of Computer Science

Design and Applications of a Real-Time Shading System
Master’s Thesis

Mark Tehver

Supervisor: Eero Vainikko

Author: ”. . . ” May 2004
Supervisor: ”. . . ” May 2004
Head of Chair: ”. . . ” May 2004

Tartu 2004

Contents

1 Introduction 4
1.1 Prolog . 4
1.2 Overview of the Thesis . 4

2 OpenGL Pipeline and Shading Extensions 6
2.1 Overview of OpenGL . 6
2.2 OpenGL Pipeline . 6
2.3 Shading Extensions . 7

2.3.1 Standard transformation and lighting model 7
2.3.2 Issues with the standard lighting model 9

2.4 Vertex Programs . 9
2.4.1 Parallelism . 10

2.5 ARB Vertex Program Extension 11
2.5.1 Registers . 11
2.5.2 Texture coordinates . 12
2.5.3 Instructions . 13
2.5.4 Operand modifiers . 14
2.5.5 Resource limits . 14
2.5.6 Other vertex programming extensions 15

2.6 Fragment Programs . 15
2.7 ARB Fragment Program Extension 16

2.7.1 Registers . 17
2.7.2 Instructions . 17
2.7.3 Dependent texturing . 18
2.7.4 Operand modifiers, limits 18
2.7.5 Other fragment programming extensions 18

3 High-Level Shading Languages 20
3.1 Overview of Illumination Models 20

3.1.1 Bidirectional Reflectance Distribution Function 21
3.2 Shading Languages . 22

3.2.1 Shade trees . 23
3.2.2 Pixel Stream Editor . 24

3.3 RenderMan . 24
3.3.1 Types . 25
3.3.2 Built-in functions . 26
3.3.3 Execution environment . 26

3.4 Real-Time High-Level Shading Languages 27
3.4.1 Interactive Shading Language 28
3.4.2 SMASH and Sh . 29
3.4.3 HLSL and Cg . 30

1

3.4.4 The OpenGL Shading Language 31
3.4.5 Stanford Real-Time Shading Language 31
3.4.6 ASHLI . 33

4 Experimental Shading System 34
4.1 Overview . 34
4.2 System Description . 34
4.3 Shading Language Description . 36

4.3.1 Basic type system . 36
4.3.2 Computation frequency . 37
4.3.3 Contexts . 38
4.3.4 Language constructs . 39
4.3.5 Primitive functions . 40
4.3.6 Function lookup scheme 41
4.3.7 Built-in variables . 42
4.3.8 Swizzles . 43
4.3.9 Metaprogramming support 43
4.3.10 Shader output . 45

4.4 Compiler Pipeline . 46
4.4.1 Preprocessor . 46
4.4.2 Parsing, type checking and inlining 46
4.4.3 High-level optimizations 47
4.4.4 Multiple pass generation 48
4.4.5 Fragment-level code generation 49
4.4.6 Vertex-level code generation 50
4.4.7 Primitive group code generation 50

4.5 Runtime . 50
4.5.1 API . 51
4.5.2 Shader states . 51
4.5.3 Hardware limits, custom configuration 52
4.5.4 Shader caching . 52

4.6 Issues . 53
4.6.1 Multipass shaders . 53
4.6.2 Floating point model . 54
4.6.3 Extensions . 54

5 Performance and Applications of Shading System 56
5.1 Performance Compared to Fixed Function OpenGL Pipeline . . . 56

5.1.1 Implementation . 57
5.1.2 Surface shader . 57
5.1.3 Light shaders . 58
5.1.4 Testing procedure . 59
5.1.5 Performance . 60

2

5.1.6 Implementing lighting model in fragment level 61
5.2 Ray-Tracing a Simple Scene . 64

5.2.1 Ray and sphere intersection using high-level shading language 64
5.3 Implementing High-Quality Scene Preview Modes for 3D Author-

ing Packages . 70
5.3.1 XSI shader classes . 70
5.3.2 Shader connection points 71
5.3.3 Example . 72
5.3.4 Translating XSI shader nodes 74

5.4 Future Work . 76
5.4.1 Advancements in hardware 76
5.4.2 Extending the shading system 77

6 Conclusions 79

A Experimental Shading Language Syntax 81

B Shading Language Prelude File 86

C C Language API for Shading System 98

3

1 Introduction

1.1 Prolog

Computer graphics hardware with 3D rendering support was introduced to per-
sonal computers in the middle of 1990s. From since, the advances have been so
rapid that the current consumer level products already overshadow any special-
ized graphics hardware at any price point ever produced. The term Graphics
Processing Unit (GPU) was introduced in the late 90s and the analogy with Cen-
tral Processing Unit (CPU) can be justified – graphics processors have become
flexible and autonomous, and can perform complex computations that were com-
monly reserved for CPUs alone. The purpose of 3D graphics processors is to
accelerate commonly used graphics algorithms to provide real time frame rate.
There is a large class of applications in the field of simulation, visualization and
games for which real time frame rate is essential.

One of the goals for programmable graphics hardware is to provide different
shading models for 3D objects. Shading models are used to customize surface
color, texture and material properties. Conventional graphics pipeline (as defined
by OpenGL or DirectX APIs) provides only a fixed shading model. The shading
model implemented by conventional OpenGL is an empirical local illumination
model. There are many other empirical illumination models with different fea-
tures and they can be preferable in different cases. It is possible to bypass the
shading model completely but this requires the application to calculate shading
data for vertices which may require lots of computational resources.

1.2 Overview of the Thesis

The primary goal of this thesis is to discuss the design and implementation of a
high-level real-time shading system working on modern graphics hardware. This
includes an overview of the problems that are specific to graphics hardware inter-
faces and problems that exist in low-level shading interfaces. This goal is achieved
by describing a design of a specfic high-level shading system implemented by the
author. The secondary goal is to present possible applications of shading systems
and discuss the performance of the implemented high-level shading system.

This thesis is divided into five chapters. After the current introduction, the
second chapter gives a short overview of OpenGL graphics standard and dis-
cusses recently introduced vertex and fragment programming extensions. The
third chapter gives an overview of high-level shading languages, focusing on in-
teractive and real-time shading languages. The fourth chapter discusses design
and implementation of a high-level real-time shading language and it unifies con-
cepts introduced in previous chapters. This chapter is based on the original work
of the author and presents the problems that must be solved when designing
real-time shading systems.

4

An important part of that chapter is the discussion of the shading system
features and optimizations that allow users to write simple, yet efficient applica-
tions and build complex shaders from simple shader nodes at runtime. Several
of these features are currently unique to the described shading system but could
be added to other shading systems also.

The last chapter provides examples of possible applications of the imple-
mented shading system. It also gives information about performance of the
system. Like the fourth chapter, this chapter is based on the author’s work. Sev-
eral test cases were implemented using both the described system and standard
OpenGL. Thus, the chapter should provide insight about performance penalty
when moving from a fixed function transform and lighting model to a pro-
grammable shader model.

5

2 OpenGL Pipeline and Shading Extensions

2.1 Overview of OpenGL

The OpenGL API (Application Programming Interface) is the most wide-spread
standard for developing multi-platform, interactive 3D graphics applications. It
provides a low-level software interface and can be used in the broadest applica-
tion markets such as CAD, content creation, entertainment, game development
and manufacturing. OpenGL has been designed using the client-server paradigm.
This means the client applications and the graphics server can work on the same
or separate machines. Network communication, if required, is handled transpar-
ently.

As a low-level API, OpenGL routines work on simple graphic primitives like
points, lines and polygons. OpenGL provides also a middle-level interface for
creating more complex, lighted and texture mapped surfaces. This gives soft-
ware developers access to geometric and image primitives, display lists, modelling
transformations, lighting and texturing, anti-aliasing, blending and many other
features. OpenGL is mostly considered a procedural graphics interface as the
scenes are rendered through commands describing how to render the scene ob-
jects. Still, some declarative features like material description and light objects
are also provided for higher-level scene description.

Originally based on IRIS GL (a proprietary API from Silicon Graphics),
OpenGL 1.0 was introduced in 1992. At the time of writing, the latest OpenGL
version is 1.5 [19], which this thesis is based on. Although being a widely ac-
cepted standard, the OpenGL is still constantly evolving. Formal revisions are
made at periodic intervals, and extensions are being developed that allow appli-
cation developers to access the latest hardware features. The most important of
these extensions are approved by OpenGL Architecture Review Board (short for
ARB) and included in the core of new OpenGL versions.

2.2 OpenGL Pipeline

Figure 1 shows a schematic pipeline diagram of the OpenGL. The OpenGL archi-
tecture is structured as a state-based pipeline. Applications control the pipeline
by entering commands from the left, while final rendering is stored in the frame
buffer. Display lists are used to store a sequence of commands which can be later
reused and issued together.

This thesis focuses on per-vertex operations, rasterization and per-fragment
operations. These stages are discussed in the next sections. A detailed description
of all stages is given in the OpenGL manual [19].

The vertex stage operates on geometric primitives described by vertices:
points, line segments and polygons. In this stage vertices are transformed, lit
and clipped against a viewing volume.

6

�����������

	�
������
�

�������� ������������������

�
����

���������

��
���������� ����
��������

���������

�����
�������
����
��
����

�������
������

Figure 1: High-level view of the OpenGL pipeline.

The rasterization stage produces a series of fragments by sampling primitives
at pixel centers. Fragments consist of frame buffer address and sampled attribute
values (colors and texture coordinates).

Per-fragment operations use fragment data to calculate fragment color and
possibly other data like depth information. After fragment color has been cal-
culated, additional steps like depth buffering, blending, masking and other op-
erations are performed to calculate final fragment color that is stored in frame
buffer.

2.3 Shading Extensions

2.3.1 Standard transformation and lighting model

Conventional OpenGL provides fixed function transformation and lighting (T&L)
pipeline that is often implemented in hardware. Its function is shown in figure
2 (note that the presented diagram is simplified, multiple texture units, edge
attributes and vertex blending are missing).

The vertex and normal transformation stages apply a linear transformation
to homogenous vertex coordinates, providing little flexibility and no support for
more general transformations. Texture coordinate generation (texgen) units can
compute texture coordinates based on vertex coordinates and normal vector.
Only a few hardcoded functions are provided [19].

In fact, the standard transformation pipeline (with texgen) can be described
with the following equations:

Vo = v(Vi) (1)

No = n(Ni) (2)

Tk
o = tk(Vi,Ni,T

k
i) (3)

7

Normal

transform

Texgen

Lighting
Primitive

assembly

Texture

coordinates

Normal

MUX

MUX

Texture

transform
MUX

Vertex

transform

Vertex

coordinates

Clipping,

Perspective

divide,

Viewport

transformation

Figure 2: Standard OpenGL Transformation and Lighting pipeline.

where v, n are linear functions and tk (k denotes texture unit number) can be
chosen only from a small set of predefined functions (note: the functions also
depend on current modelview matrix and texture matrices, but this state does not
vary inside primitive groups). Vi, Ni denote input vertex coordinates and normal,
Tk

i texture unit k coordinates. Vo, No, T
k
o denote output values respectively, that

are sent to the next pipeline stage (rasterization).
OpenGL uses a slightly generalized form of the following lighting model (⊗

denotes componentwise multiplication):

itot = memi + aglob ⊗mamb +
n∑

k=1

ck
spotd

k(ikamb + ikdiff + ikspec) (4)

where
itot is the total calculated lighting intensity.
aglob is the ambient intensity of scene.
mamb and memi denote material ambient color and emissiveness, respectively.
dk denotes distance attenuation factor for light k.
ck
spot is used for spotlight k to limit the light application to a specified cone.

ikamb, ikdiff and ikspec specify light k ambient, diffuse and specular contributions.

8

The number of supported lights is limited, OpenGL specification requires
support for at least eight lights, although implementations may support more.

2.3.2 Issues with the standard lighting model

Perhaps the most important problem with the OpenGL lighting model arises from
the fact that all calculations are performed once per-vertex. With vertex level
lighting, undersampling effects are common unless objects are highly tessellated.
This is especially visible when specular lighting term is used (ispec in the lighting
formula) as the highlight may fall between vertices and may not be visible at
all. Also, when a highly tessellated object is viewed from a distance, vertex level
lighting calculations are still performed for each vertex. In this case, the object
will be oversampled with no visual benefit. Dynamic Level-of-Detail techniques
may help selecting the right number of vertices, but current hardware does not
directly support this.

Another problem is that the OpenGL lighting model produces adequate visu-
als only for a limited class of surfaces. Plastic surfaces may look realistic enough,
but good-looking metallic materials or human skin are not possible at all.

2.4 Vertex Programs

Vertex programs are powerful generalizations of the fixed function T&L func-
tionality. Conceptually, vertex programs can implement any transformation for
vertices, normals, texture coordinates and other per-vertex attributes. Vertex
programs can be used to implement the functions of a conventional T&L pipeline,
thus being a true superset of its capabilities.

Vertex programs implement the following model:

itot = i(Vi,Ni,T
1
i ,T

2
i , ...,T

m
i) (5)

Vo = v(Vi,Ni,T
1
i ,T

2
i , ...,T

m
i) (6)

No = n(Vi,Ni,T
1
i ,T

2
i , ...,T

m
i) (7)

Tk
o = tk(Vi,Ni,T

1
i ,T

2
i , ...,T

m
i) (8)

Here i, v, n, tk are not limited to linear functions. In case of vertex programs,
there is no need to differentiate between vertex position, normal, texture co-
ordinates. Thus, in general all parameters are referred to as vertex attributes.
Although not shown explicitly in the equations, vertex programs may also use a
set of environment parameters (called program parameters) that can be defined
per primitive group (outside OpenGL Begin and End scope). Sometimes vertex
parameters are referred to as vertex constants as their value never changes during
the execution of a vertex program.

9

ALU
(256 instructions)

Vertex attributes
(18 4D vectors)

Vertex output
(13 4D vectors,

2 scalars)

Program parameters
(256 4D vectors)

Temporary registers
(32 4D vectors)

Address
reg

Data

Address

Figure 3: ARB vertex program extension architecture. Presented limits apply to
Radeon 9500/9700 GPUs.

Note that vertex programs do not replace all stages of vertex processing. The
frustum clipping, perspective divide, viewport scaling are performed as in the
fixed-function pipeline.

2.4.1 Parallelism

Vertex programs process all vertices independently. Thus, information about the
primitive that the vertex is part of, is not provided to the program. This is a
fundamental limit of the approach, but improves parallelism and performance (as
vertices may be shared between several primitives). When such information is
required, it can still be passed to the vertex program using vertex attributes (all
vertices of a primitive have same values for such attributes).

The fundamental data type used in vertex transformations is a single precision
floating point type. Vertices and vertex attributes are usually encoded as 3- or
4-component vectors. Instructions on these components are typically performed
in parallel, thus parallelism also exists on instruction level.

The real benefit of vertex programs is present only if they are executed on
graphics hardware (Graphics Processing Units or GPUs), not on CPUs. Other-
wise all their functionality can be easily implemented by general purpose proces-
sors and some complexity is simply lifted from an application to the API. In such
case the CPU must transform each vertex and its attributes and then send the
transformed vertices and attributes to GPU. For large vertex sets, this becomes
computationally and bandwidth-wise very expensive.

10

Attribute number OpenGL vertex parameter
0 vertex position
1 vertex weights 0-3
2 normal
3 primary color
4 secondary color
5 fog coordinate

8+n texture coordinate set n

Table 1: Input registers (attribute registers) of vertex programs. User-supplied
vertex attributes (like normal vector) can be accessed through input registers.

2.5 ARB Vertex Program Extension

The scheme of ARB_vertex_program extension [31] architecture is presented in
figure 3. At first sight the architecture seems quite similar to a regular CPU
architecture, but there are several important differences. The most important
one is that this model is inherently more limited than general purpose CPU
models – vertex programs have no access to main or local (graphics) memory,
only a limited register file is available. Also general forms of branching are not
available (although conditional execution is possible). Unlike CPU architectures,
there is no native support for integer operations.

Other differences will be discussed in the following subsections. Note that
we do not provide formal overview of the extension – only the most important
concepts are discussed that are essential in understanding high-level shading lan-
guage implementations. Also, we do not discuss the extension at the OpenGL
API level at all. These details can be found in the extension specification [31].

2.5.1 Registers

There are several distinct register files: input file (contains vertex attributes),
output file, temporary and constant register files (program parameters). All reg-
isters (except address register) contain four-component vectors, each component
being a floating point number. Address register contains a single floating point
scalar value.

Temporary register file is only used to store temporary results and is both
readable and writable. The extension allows to define user-specified names for
temporary registers, but for clarity this thesis uses only names r0, r1, ...

Input registers are aliased to conventional per-vertex parameters like vertex
coordinates, normal vector and texture coordinates (shown in table 1). Input
register file is read-only, registers are specified as vertex.attrib[N] (for current
implementations, N is between 0 and 15).

Output register file contains the final, transformed vertex parameters and

11

Output register name Components Description
result.position (x, y, z, w) Clip-space coord. of vertex
result.color.front.primary (r, g, b, a) Front-facing primary color
result.color.front.secondary (r, g, b, a) Front-facing secondary color
result.color.back.primary (r, g, b, a) Back-facing primary color
result.color.back.secondary (r, g, b, a) Back-facing secondary color
result.fogcoord (f, ∗, ∗, ∗) Fog coordinate
result.pointsize (s, ∗, ∗, ∗) Point size
result.texcoord[n] (s, t, r, q) Texture coordinate for unit n

Table 2: Output registers of vertex programs. Note that fog coordinate and point
size registers are vector registers, although only a single component of them is
used.

is only writable. Transformed vertex parameters are sent to the rasterization
stage. Output registers are specified in table 2. Vertex program must write to
result.position register (otherwise rasterization would not be possible), while
writing to the other output registers is optional.

Constant register file is read-only inside vertex program, but can be changed
by application outside the Begin and End scope. Constant register file is in-
tended to store parameters that do not depend on vertices. Extension divides
constant register file into two classes, called program environment parameters
and program local parameters. Program environment parameters (specified as
program.env[N], where N is between zero and implementation-specific constant)
are associated with OpenGL context and are common to all programs of the same
context. Program local parameters are associated with vertex programs (specified
as program.local[N], N is between zero and implementation-specific value).

2.5.2 Texture coordinates

In case of triangle rasterization, fragment texture coordinates and colors are
interpolated using the following formula:

Vf =
(af/wa)Va + (bf/wb)Vb + (cf/wc)Vc

(af/wa) + (bf/wb) + (cf/wc)
(9)

Here wa, wb and wc denote w-coordinates of three vertices, Va, Vb, Vc denote
the interpolated quantities (usually four-component vectors) for three vertices
and af , bf and cf are barycentric coordinates for the fragment (by definition,
af + bf + cf = 1). OpenGL allows implementations to simplify this formula by
using an approximation:

Vf = afVa + bfVb + cfVc (10)

12

Instructions Output Inputs Description
MAD v v,v,v Multiply and add
ADD SUB MUL v v,v Componentwise add, subtract, multiply
MIN MAX v v,v Componentwise minimum, maximum
SGE SLT v v,v Componentwise >= and < relations
DST LIT XPD v v,v Distance vector, lighting terms, cross product
MOV ABS SWZ v v Componentwise move, absolute value, swizzle
FLR FRC v v Componentwise floor, fraction
DP3 DP4 DPH s v,v Dot products for 3D, 4D, 2D vectors
EX2 LG2 s s Exponential and logarithm base 2
EXP LOG s v Exponential and logarithm base 2 (approx.)
RCP RSQ s s Reciprocal and reciprocal square root
POW s s,s Exponentiate
ARL a v Address register load

Table 3: Vertex program instruction set. In the inputs column letter ‘s’ denotes
scalar operand, ‘v’ vector operand. In the output column ‘s’ denotes scalar output
(result is replicated across all components), ‘v’ denotes vector output and ‘a’
denotes address register.

For texture coordinates, this produces very noticeable artifacts [9], and in
practice this is only applicable to color interpolation. Fortunately, current im-
plementations perform interpolation with true perspective correction even for
colors.

2.5.3 Instructions

Vertex program instruction set is presented in table 3. The number of operations
is small and seems quite limited. Branch instructions are missing, although simple
conditional execution can be still achieved using a combination of SGE (or SLT),
MUL and MAD (although this has some limitations that are discussed in the fourth
chapter). Some instructions (MUL, SUB, MOV) resemble ordinary CPU instructions,
while other instructions like DP3, DP4 are not included in CPU instruction sets. In
computer graphics 3x3 and 4x4 matrix multiplications are quite common and dot
product instructions allow to perform these more efficiently. DST and LIT instruc-
tions are very specific to computer graphics – both encode common instruction
sequences for lighting models. DST instruction is used in an instruction sequence
for calculating vector (1, d, d2, 1/d) where d denotes vertex distance from a light
source. LIT instruction is used to accelerate the computation of ambient, diffuse
and specular lighting terms.

Few instructions like EX2, LG2, RCP, RSQ belong to the class of scalar instruc-
tions. These instructions are unary instructions and take a single scalar as an
argument. As all registers contains vectors, scalar operations must specify which

13

source component of a vector has to be used. The results of scalar operations are
replicated across all components. For example, the instruction

RCP r0,r1.x;

calculates (1/r1.x, 1/r1.x, 1/r1.x, 1/r1.x) and stores the result in r0.

2.5.4 Operand modifiers

In order to better support data rearranging in vectors, optional swizzle operations
are provided as argument modifiers for all instructions. For example, the following
instruction:

ADD r0, r1.xxzw, r2.yzxw;

calculates (r1.x + r2.y, r1.x + r2.z, r1.z + r2.x, r1.w + r2.w) and stores the
result in register r0. Additionally, all source operands can be negated:

ADD r0, r1, -r2;

Note that although instruction set is small, several instructions are redundant in
the sense that they can be expressed through other instructions. For example,
SUB instruction is actually not required as it can be expressed using an ADD with
the second operand negated. Likewise, XPD instruction can be emulated using a
MUL and an ADD instruction.

The extension also provides support for partial register updates, this func-
tionality is called masking. For example,

MOV r0.xy, r1;

only copies x- and y-components from register r1 to r0, z- and w-components
are left unchanged. When the mask is omitted, all components will be updated.

Although vertex programs do not support random memory access, limited
support is still provided for small ”lookup”tables. This is provided using a single
address register – instructions can offset constant register file access using this
register. ARL instruction is provided for setting this register.

2.5.5 Resource limits

The extension specifies queriable resource limits on register counts, parameter
counts and program length. There are strict minimum requirements for each
limit. Every implementation must accept programs which use 12 or less tem-
porary registers, 96 program parameters and 128 instructions. In case when a
program exceeds hardware resources, but can be emulated within software limits,
the extension provides means to detect this. Mixing software and hardware im-
plementations may produce different results. This is important as rasterization

14

Texture

Unit 0

Texture

Unit 1

Texture

Unit 2

Texture

Unit 3

TexCoord
0

TexCoord
1

TexCoord
2

TexCoord
3

Color
sec

Color

Sum

Depth
frag

Fog Color
frag

Color
pri

Figure 4: The OpenGL multitexturing pipeline. The number of texture units
(here four) may vary with the implementations.

may generate different fragments depending on whether the vertex program was
executed on CPU or GPU, which can produce artifacts in multipass renderings.
Even very subtle differences in calculations are magnified by point sampling at
polygon edges.

2.5.6 Other vertex programming extensions

Currently, there are two other extensions for OpenGL that define similar function-
ality to ARB_vertex_program: NV_vertex_program and EXT_vertex_shader.
NV_vertex_program was the first vertex programming extension and closely fol-
lows the vertex unit design of GeForce 3 GPU [16]. For example, the limited
number of constant register file ports are exposed to user; a single instruction
may not refer to more than one constant. EXT_vertex_shader is more suitable
for constructing shaders at runtime and provides larger set of instructions, some of
which are quite complex. In general, both extensions (plus ARB_vertex_program)
can be used to implement any other vertex programming extension and are all
designed after DirectX 8 Vertex Shader 1.1 model.

DirectX 9 defines several new vertex shader models. Vertex Shader 2.0 model
adds support for static looping – it provides branching instructions which may
depend only on program parameters. Vertex shader specification 3.0 is more
advanced, provides support for dynamic branching and instruction masking and
supports texture operations for vertices. There is currently one vendor-specific
OpenGL extension that provides support for dynamic branching and instruction
masking – NV_vertex_program2. Though, it does not support vertex texturing.

2.6 Fragment Programs

Although all discussed vertex programming extensions are relatively similar, there
is much more diversity in fragment programming models. The basic model that
is supported by most graphics processors is the OpenGL multitexturing pipeline
model with color sum and fog stages. It is presented in figure 4. Each multi-

15

ALU
(64 instructions)

Tex. coordinates,

position, colors
(11 4D vectors, 1 scalar)

Fragment output
(color vector, depth value)

Program parameters
(32 4D vectors)

Temporary registers
(32 4D vectors)

Data

Texture
processor
(32 instructions)

Texture

environment
(16 image units)

Coordinates

Data Address

Texture memory

 Data Address

Figure 5: ARB fragment program extension architecture. Presented limits apply
to Radeon 9500/9700 GPUs.

texturing stage of the pipeline (called texture unit) performs a simple arithmetic
operation (like ADD, MUL, DOT3) taking operands from previous stages (if available),
interpolated fragment color or texture color. The number of units is dependent
on implementation, typically it is two, four or eight. This is a rather limited
model and utilizes fixed point arithmetic using range [0..1], typically with 8-12
bit precision per color component.

Multitexturing stages are followed by color sum and fog stages. Color sum
stage adds secondary color to the calculated fragment color from the last multi-
texturing stage. Fog stage, if enabled, blends the fog color with the calculated
color depending on the fragment depth value.

Although the multitexturing model seems as limited as the fixed texture co-
ordinate generation modes, in reality it can be generalized by using multipass
techniques. Using multipass rendering, same primitive is rendered multiple times
and blended with previously rendered fragments. This allows a large variety
of effects [4] although it quickly becomes expensive as the number of passes
grows. This approach conflicts with general trends in hardware design where
storage/bandwidth improvements are considered expensive and computational
resources relatively inexpensive [12].

2.7 ARB Fragment Program Extension

The ARB fragment program model is similar to the ARB vertex program model
described earlier. The ARB vertex program allowed to define an algorithm for
each vertex specified via OpenGL to generate custom transformations, vertex
colors and texture coordinates, while ARB fragment program allows to use similar

16

model to generate custom fragment colors and overwrite fragment depth.
Like the ARB vertex program model, this model is inherently parallel – all

fragments can be processed in parallel.
ARB_fragment_program extension [31] replaces texturing, color sum and fog

stages in the OpenGL pipeline. The stages after fog, like pixel ownership test,
scissor test and following stages are identical in both modes.

Like vertex programs are superset of conventional transform and lighting,
fragment programs are true superset of conventional multitexturing. The most
significant change besides the register file model, is the usage of floating point
numbers as primary data types instead of fixed point types. Although fixed point
has advantage of requiring less resources on hardware side, low dynamic range
and need to track underflow and overflow conditions makes this hard to use in
practice.

2.7.1 Registers

ARB fragment program register files are similar to vertex program register files,
although vertex program output registers correspond directly to fragment pro-
gram input registers. Fragment programs have similar temporary and constant
register files, while output register file contains only two members: result.color
(which is four-component vector) and result.depth (which is a scalar register).
By writing into result.depth, fragment program can overwrite the default depth
value generated by rasterization stage.

2.7.2 Instructions

ARB_fragment_program keeps the basic architecture close to the ARB vertex
programming extension. All operations of vertex programs except ARL, LOG and
EXP are provided in fragment programs also. Several new instructions are also
included: SIN, COS, SCS (calculates SIN and COS in parallel), LRP (linear in-
terpolation between two vectors) and CMP instruction for conditional execution.
Additionally, the extension includes three texturing instructions and KIL instruc-
tion. Texturing operations take three input parameters: texture image object,
sampling coordinates and texture sampler type (for example, 1D, 2D, 3D, cube
map texture). For example, the following instruction

TEX r0, texture[1], fragment.texcoord[2], 2D;

reads texture unit 1 (which must be associated with a 2D texture) using texture
coordinate set 2. The result is stored in register r0.

KIL instruction can be used to remove current fragment from further pro-
cessing. It takes a single argument (four-component vector) and if any of its
components are less than zero, then the fragment is discarded from further pro-
cessing.

17

2.7.3 Dependent texturing

One feature available in fragment programs that is not available in multitexturing
pipeline, is dependent texturing. Unlike multitexturing pipeline, texture object
and texture coordinate sets are decoupled in ARB_fragment_program extension
and texture instructions can refer to samplers and coordinate sets independently.

The ARB fragment programming extension places a limit on dependent tex-
turing operations. When a texture instruction uses a result computed by earlier
instruction as texture coordinate (thus, depending on the earlier instruction),
texture indirection occurs. ARB fragment programming extension places a maxi-
mum limit on the number of possible texture indirections. Minimum requirement
for an implementations is to support chains of up to depth four. Thus, some im-
plementations may not support the following code sequence:

TEX r1, texture[0], fragment.texcoord[0], 2D;
TEX r2, texture[0], r1, 2D;
TEX r3, texture[0], r2, 2D;
TEX r4, texture[0], r3, 2D;
TEX r5, texture[0], r4, 2D;

as each instruction starting from second requires texture indirection – thus, the
number of nodes in instruction dependency chain is five.

2.7.4 Operand modifiers, limits

Same operand modifiers that are available in vertex programs, are also available
in the fragment programming extension. The ARB fragment program provides
one instruction modifier. When instruction mnemonic has _SAT suffix, then in-
struction result is saturated before writing to the output register. Saturation
simply clamps all result components to [0..1] range.

Similar to vertex programs, limits on maximum number of instructions, tem-
porary registers and constants can be queried during runtime. Fragment pro-
grams introduce new limits which are related to texture operations – the total
number of allowed texture instructions may be smaller than allowed ALU instruc-
tions and dependent texturing may be limited. Some limits for R300 graphics
processor are shown in figure 5.

2.7.5 Other fragment programming extensions

The ARB fragment programming extension is derived from DirectX 9 Pixel
Shader 2.0 specification [23]. The ARB extension provides more orthogonal
support in terms of operand and output modifiers (DirectX restricts usage of
swizzling and does not allow specifying output mask in texturing operations),
but lacks multiple render target support. Multiple render target support means
that pixel shader may write to additional color buffers in addition to the main

18

frame buffer. Support for this is provided by one vendor specific extension in
OpenGL.

There are several extensions that provide support for similar features avail-
able in DirectX 8 Pixel Shader versions 1.1-1.4. NV_register_combiners2 and
NV_texture_shader extensions provide similar features as Pixel Shader version
1.1 [31]. A more powerful Pixel Shader 1.4 like support is provided by a single
extension ATI_fragment_shader. All these extensions use fixed-point arithmetic
and are supported only on vendors specific hardware.

There is also a more powerful fragment programming extension:
NV_fragment_program. It has fixed instruction count limits and it provides sev-
eral new instructions.

19

3 High-Level Shading Languages

3.1 Overview of Illumination Models

In computer graphics surface appearance is controlled by illumination models.
For interactive computer graphics, various local illumination models can be used,
while global illumination models are computationally more demanding and are
better suited for offline rendering. The difference between these two classes lies
in the way how light sources are described and interact with surfaces. In case of
local illumination models, only a finite number of discrete light sources determine
the surface color, while in global illumination models the light that is reflected
and transmitted from other surfaces is also taken into account.

Illumination models can be divided into three components: reflection, trans-
mission and emission of light. In case of local illumination models, only reflection
and emission components are typically used. Thus, most of the illumination mod-
els discussed are really reflection models that can be combined with additional
models describing light transmission.

The simplest local illumination model is constant coloring of a surface - by
ignoring all light sources and other surfaces, we can use a predefined constant
color for all surface points:

iamb = samb (11)

This kind of illumination is rarely used alone (although commonly used as a
component in more complex models), as it provides very little visual information.
The simplest practical illumination is based on a Lambert’s law which describes
ideally diffuse surfaces (dot denotes a scalar product operation):

idiff = sdiff ·max(dot(n, l), 0) (12)

Here n (normal vector) and l (light vector) are assumed to be of unit length,
for illustration look at figure 6.

For shiny surfaces (like plastics or metals), Lambertian model itself does not
produce realistic results. Usually such surfaces should have a viewer-dependent
specular highlight. One of the simplest terms that can produce such effect is
Phong specular term:

ispec = sspec ·max(dot(r,v), 0)sshi (13)

A model that includes diffuse, specular and ambient (constant) terms, as
defined above, is usually called Phong model:

iPhong = samb + sdiff + sspec (14)

While this model can provide good approximation to matte and plastic sur-
face, it does not produce particularly good results for other surfaces. Thus, new

20

v

r
n

l

 αααα αααα

Figure 6: Vectors used in local illumination models. All are assumed to be of
unit length.

terms are required for such surfaces. Besides Phong model, there exist several
other widely used models like Blinn, Cook-Torrance [28].

3.1.1 Bidirectional Reflectance Distribution Function

The Phong illumination model is an example of an empirical model - the specular
component of the model is constructed by ad-hoc method and is not physically
plausible [15].

Physically plausible models require several additional variables like incom-
ing and outgoing wavelength, polarization, position (which might differ due to
subsurface scattering). For most applications, a model that takes all this into
account would be simply too complex and computationally expensive. When
subsurface scattering and polarization are not required, we can use a simplified
function called Bidirectional Reflectance Distribution Function (BRDF). BRDF
concept is central in Rendering Equation [13] which provides a good framework
for analyzing reflectance models. Although several formalizations exist, BRDF is
typically presented as a function of five scalar variables: ρ(θi, φi, θr, φr, λ). It is
defined to be the ratio of outgoing intensity to the incoming energy:

ρ(θi, φi, θr, φr, λ) =
Lr(θi, φi, θr, φr, λ)

Ei(θi, φi, λ)
(15)

Here θi, φi are spherical coordinates of incoming light (see figure 7). Likewise,
θr, φr are spherical coordinates of outgoing light. λ represents the wavelength of
light.

Lr is the reflected intensity (radiance) in the outgoing direction, Ei is the
incoming energy (irradiance). BRDF is measured in inverse steradians and can
be thought of as a ratio of light reflected per unit solid area. The properties and
definitions of formal quantities used in BRDF are presented in [30].

21

n

t

wi

w0

Φ0
 Φi

 Θ0 Θi

Figure 7: Spherical coordinates for incoming and outcoming light

An importance of BRDF relies on the fact that it can be measured from physi-
cal surfaces using a special device [33]. In case when BRDF has been constructed
(measured) for a surface, it can be utilized as follows for calculating reflected
intensity:

Lr(θr, φr) =
n∑

k=1

ρ(θk
i , φ

k
i , θr, φr)L

k
i cos(θk

i) (16)

Here n is the number of light sources, Lk
i denotes the incoming intensity

(radiance) of light source k at surface while θk
i and φk

i denote spherical coordinates
of the light source (light direction from surface).

Although the commonly used RGB color model needs only three wavelength
samples, the function still depends on four other variables. When represented as
a table (for example, produced by physical measurement), the storage cost can be
huge. Several techniques like using spherical harmonics [11], spherical wavelets
or spline patches can be used to compactly represent the BRDF of a surface.

An important class of BRDFs are isotropic BRDFs - the BRDF of such sur-
faces does not depend on both φi and φr but instead on φi− φr. An equation 15
can be simplified for such surfaces. BRDFs that can not be simplified are called
anisotropic BRDFs.

3.2 Shading Languages

The first shading languages arise from the recognition that as more features were
added to local illumination models, their usage became more complex and less
intuitive. By replacing fixed illumination model with multiple models for different
surface types, most irrelevant parameters can be hidden from the user and usage
of relevant parameters can be simplified. The general solution to this problem
was given first by Cook [2].

22

weight of

ambient

component

ambient

*

normal viewer surface

roughness

specular

*

weight of

specular

component

+ copper color

+

final color

Figure 8: An example of Copper shade tree (presented in [2]).

3.2.1 Shade trees

Cook eliminated fixed reflection equations like Phong illumination model and
replaced them with an expression tree that allowed the user to specify relevant
components of shading and operations on these components. The result was
called shade tree. An example shade tree is presented in figure 8.

Each operation was a node of the tree. The input parameters for a ’diffuse’
node were surface color C and surface normal vector N. The node performs an
operation C · dot(unit(N), unit(L)), where L is a vector from the surface point
to the light (unit denotes a vector normalization operation).

This tree is traversed in postorder. The output of the root node is the final
color. The surface normal, object location and various other parameters are
leaves of the tree.

Cook also introduced the concept of light trees and atmosphere trees. Shade
trees needed information like incoming light direction and color. Such informa-
tion was also presented using separate trees. This allowed to reuse same light
trees with several shade trees. Atmosphere trees were used to calculate the final
displayed intensity which could be different from the light leaving the surface due
to various atmospheric effects such as haze.

A high-level, interactive graphical implementation of Cook’s shade trees is
given by Abram and Whitted [7]. Their implementation has some differences
compared to Cook’s original concept. Unlike Cook’s shade trees where nodes
were evaluated from bottom to top, their implementation allowed the user to

23

surface
plastic (float Ka = 1; float Kd = .5; float Ks = .5;

float roughness = .1; color specularcolor = 1;)
{

normal Nf = faceforward (normalize(N),I);
Oi = Os;
Ci = Os * (Cs * (Ka*ambient() + Kd*diffuse(Nf))

+ specularcolor * Ks*specular(Nf,-normalize(I),roughness));
}

Figure 9: A plastic surface shader (taken from [32] library) implemented in Ren-
derMan sl.

define different evaluation order for child nodes (’before’, ’during’, ’after’).

3.2.2 Pixel Stream Editor

Cook’s idea was extended by Perlin [25] by allowing more general flow control than
was possible in original shade tree. Perlin’s language supported conditional and
looping constructs, function definitions and logical operations. The language was
constructed for an environment called Pixel Stream Editor (PSE). The shaders
were split into a series of passes through PSE. PSE acted as a powerful filter on
an array of pixels.

Perlin did not divide shaders into classes like Cook. All shader types had
to be combined into a single ’surface’ shader. Thus, this approach was con-
ceptually on lower level than Cook’s for shading calculations. This approach
had a serious problem – shaders were executed after visibility calculations
and all data that was provided to the shader programs consisted of a triple
(Point, Normal, SurfaceId) for each pixel. Global illumination techniques (like
radiosity simulations) or ray tracing require more information than surface visi-
bility and can not be incorporated in post processing stage.

3.3 RenderMan

The RenderMan shading language is part of the RenderMan Interface (RI), which
was developed by Pixar to standardize 3D scene descriptions and to set several
quality standards for photorealistic image rendering. The RenderMan Interface
has achieved the status of de facto industry standard. Besides shading language,
RI also defines The RenderMan Interface Bytestream archive format (RIB), C
API and requirements with optional capabilities for a RIB renderer.

The history of RI is tied with the development of REYES rendering system. RI
was built on experience that was gathered during experimentation with REYES.
The final version 3.1 of RenderMan Interface was presented in 1989 and currently
there exist several conforming implementations [32, 8].

24

RenderMan shading language (sl) resembles C language. The language pro-
vides mathematical functions, flow control and several high level features specific
to computer graphics. Like in Cook approach, RenderMan shaders are divided
into several classes:

• Light shaders calculate the incident light intensity and color for given sur-
face point and point of the light source.

• Surface shaders compute the reflected light intensity and color at given
direction. Typically this involves integrating (in practice, summing) over
all light sources.

• Volume shaders modulate the light intensity and color when light travels
through solid object volume. A special case of the volume shader is called
atmosphere shader - this encompasses all scene objects.

• Displacement shaders are used to modify the geometry of objects. Given a
surface point, they compute a displaced surface point.

• Imager shaders are used for postprocessing images.

RenderMan includes at least one built-in shader for each class. Figure 10
shows the dataflow between shader classes: surface shader has central part and
connects other shaders together.

3.3.1 Types

The sl has only four built-in types: floats, colors, points and strings. The number
of components in the color type can be larger than three (depending on imple-
mentation), thus larger spectra can be represented than possible using RGB color
space. Several color spaces like RGB, HSV, HSL can be used for defining colors.
Like colors, points can be defined in different coordinate systems (like ’camera’,
’world’, ’object’).

RenderMan introduces a concept that is not present in most programming
languages: variables are divided into uniform and varying storage classes. Uni-
form variables are used to specify values that are constant across surface. Unlike
uniform parameters (which are specified once per surface), varying parameters
are defined at surface vertices. The values for interior surface points are produced
using bilinear interpolation of vertex parameters. The shading language allows
to convert uniform values into varying values but the reverse operation is not
valid. Using uniform values whenever possible can provide faster shading. The
final result produced by shaders is almost always varying as uniform expressions
can only provide flat shading. Variables and shader parameters can be declared
using varying or uniform modifier.

25

Figure 10: RenderMan shader evaluation pipeline. Central to the pipeline is the
surface shader that can query and use results produced by other shaders.

3.3.2 Built-in functions

The set of built-in functions in RenderMan is quite rich. Besides common trigono-
metrical and algebraic functions, sl also provides noise functions, various geomet-
ric functions for normalizing vectors, calculating reflection and refraction vectors.
To simplify color calculations, functions are provided for calculating diffuse, spec-
ular and ambient color contributions, shadowing, texturing, etc.

3.3.3 Execution environment

RenderMan provides execution environment with various input and output vari-
ables. All input variables are set before the shader is called; shader result is also
stored in the environment variables. Table 4 lists some of the surface shader envi-
ronment variables. Light shaders and other shaders have a similar set of built-in
variables.

Surface shaders should overwrite Ci and Oi variables to provide custom color
for material. Variables that contain differential values like dPdu, dPdv, du and dv

are typically used for prefiltering procedural textures containing high frequencies.
RenderMan provides two normal vectors: N and Ng. Ng is always defined as a cross
product of dPdu and dPdv. Shading normal can be provided explicitly together
with vertices, otherwise geometric normal is also used as a shading normal.

26

Variable name Type and storage class Description
Cs color, varying/uniform Surface color
Os color, varying/uniform Surface opacity
P point, varying Surface position

dPdu,dPdv point, varying Derivative of surface pos. along u,v
N point, varying Surface shading normal
Ng point, varying/uniform Surface geometric normal

u,v float, varying Surface parameters
du,dv float, varying/uniform Change in surface parameters
s,t float, varying Surface texture coordinates
Ci color, varying Incident ray color
Oi color, varying Incident ray opacity

Table 4: Subset of RenderMan surface shader environment variables.

3.4 Real-Time High-Level Shading Languages

RenderMan-like features and quality is the goal for real-time shading languages.
Unfortunately, current hardware is not capable of executing general shaders with
real-time speed. Although this is the primary reason, there exist several other
reasons why specialized real-time languages are useful:

1. Some features of RenderMan are not useful or are too general. For example,
global illumination models can be represented in RenderMan, but with
lower efficiency compared to specialized systems.

2. RenderMan API is quite different from widespread immediate mode APIs.
It is not straightforward to port existing OpenGL or DirectX applications.
Thus, shading APIs closer to existing real-time APIs are desirable.

3. Current hardware must support all legacy programs that use fixed function
pipeline instead of shaders. Shading languages must interact with fixed
function pipeline in a well defined manner allowing applications to gradually
replace fixed function programming model with shading model.

From a general architectural viewpoint, OpenGL can be viewed as a complex
virtual machine. One of the most surprising results is that by utilizing two
additional extensions (plus a few already existing ones), OpenGL can be turned
into a general virtual machine capable of executing RenderMan shaders. This
approach is discussed by Peercy et al in [18]. Their approach is based on an
observation that a single rendering pass is basically a SIMD instruction, executing
on all fragments of a primitive. Instruction set is formed from OpenGL pipeline
states and can be represented by a N -component tuple. Blending mode, alpha

27

test mode, stencil function and other state parameters are components of this
tuple.

Basic arithmetic operations like addition or multiplication can be done
in two passes: in the first pass the geometry is rendered to frame buffer
without any blending, while in the second pass blending mode is set using
BlendFunc(ONE, ONE) (for add operation) or BlendFunc(DEST, ZERO) (for mul-
tiply operation). There are two complications for more general cases: RenderMan
assumes that all arithmetic is performed using floating point values, while stan-
dard OpenGL provides only values in range [0..1]. The color range extension
is used to overcome this limitation and provides full floating point range for all
operations. Second extension is required to support arbitrary arithmetic func-
tions (by utilizing blending, only a few operations can be provided). Although
OpenGL textures can be used as function look up tables, all texture coordinates
are associated with vertices and it is not possible to do dependent texturing by
reading texture coordinates from another texture. The second extension (pixel
texture) makes this possible.

Stenciling can be used to perform conditional execution. Stenciling opera-
tions mask pixels that do not satisfy given condition and should not be updated.
ARB imaging extension is used to implement while-loops by executing the body
of the loop multiple times and testing for the termination condition using min-
max function. Simple swizzle operations are done by setting the color matrix.
Color matrix extension allows to calculate any linear combination of RGBA color
components in the OpenGL pixel transfer pipeline.

3.4.1 Interactive Shading Language

Besides implementing a RenderMan compiler for OpenGL, Peercy and others
have also implemented a simplified shading language called Interactive SL [24].
Unlike general RenderMan compiler, this language does not require any OpenGL
extensions beyond color matrix transformation. Some restrictions were put on
language (language does not allow to use varying nested expressions) to make
worst-case temporary storage requirements explicit. Also, as dependent texturing
extension is not needed, language supports only texture coordinates that are
associated with vertices (or derived from vertices using texgen functionality).

Paper [18] discusses performance of both approaches: RenderMan shaders
and shaders implemented in Interactive SL. RenderMan shaders with moderate
complexity required at least 100 OpenGL passes. Even if both required extensions
were supported by hardware, the renderings would probably not be produced
in real time. Simple Interactive SL shaders required around 10 passes and were
rendered on Silicon Graphics hardware at interactive rate (around 10 frames/sec).

In general, although OpenGL with the two described extensions can be used
as a general virtual machine capable of executing general shading languages, the
resource requirements for real-time rendering are huge if shaders are complex and

28

require many passes. A lot of redundant processing is needed as all geometry
has to be transformed for each pass. As each pass uses blending operations,
bandwidth requirements are huge, likewise. The extensions required (like ARB
imaging subset) can be considered expensive and are more general than really
needed.

3.4.2 SMASH and Sh

SMASH (Simple Modelling And SHading) is a project to study codesign of next-
generation graphics accelerators and APIs [21]. SMASH API is loosely based on
OpenGL with large parts of fixed functionality replaced with programmable sub-
systems. The idea behind SMASH was not to create a replacement for OpenGL
but to guide its evolution. SMASH can be layered on top of OpenGL.

At the basic level, SMASH can be thought as another vertex and fragment
programming extension - SMASH provides unified shader model. This means
that both vertex and fragment shaders have identical capabilities. SMASH
also includes support for programmable geometric primitive assembly, which
is not present in OpenGL. SMASH divides shader parameters into five cate-
gories: generic, color, primal geometry (points, tangents), dual geometry (nor-
mals, planes) and texture coordinates. Each of these categories has different au-
tomatic transformations. For example, for a primal geometry vector, modelview
transformation is used, while for dual geometry a transpose inverse modelview
matrix is used instead. This classification simplifies handling of different enti-
ties and handles common operations automatically for user. Transformations are
always linear or affine (depending on the entity category).

SMASH uses stack-based shader programming model. There are no tempo-
rary registers visible to user. All operands are read from the stack and results
pushed to the stack. Vectors of arbitrary size are used as primary types (al-
though vector sizes are fixed at compile time). Support for conditional execution
is provided, but looping constructs are not supported.

Due to the stack based programming model, it is possible to use features of
standard C++ to define a high-level shading language directly in the API, with-
out once having to resort to string manipulation of embedded shader scripts or use
external files. The use of syntactic sugaring (like operator overloading) provided
by C++ allows automatic parsing of expressions during application program com-
pilation [22]. This embedded language can provide more direct interaction with
the specification of textures, attributes and parameters. This is the primary rea-
son why SMASH can be classified as a high level shading language. Authors call
the embedding technique shader metaprogramming. The term metaprogramming
means that one program is used to generate and manipulate another (shader in
this case).

Sh [20] is based on the same metaprogramming principles as SMASH - but it
can be layered directly on top of OpenGL shading extensions (like OpenGL ARB

29

ShShader vsh = SH_BEGIN_VERTEX_PROGRAM {
ShInputNormal3f normal; // input normal
ShInputPosition4f p; // input position
ShOutputPoint4f ov; // output viewer-vector
ShOutputNormal3f on; // output normal
ShOutputVector3f lvv; // output light-viewer vector
ShOutputPosition4f opd; // output transformed position

opd = Globals::mvp | p;
on = normalize(Globals::mv | normal);
ov = -normalize(Globals::mv | p);
lvv = normalize(Globals::lightPos - (Globals::mv | p)(0,1,2));

} SH_END_PROGRAM;

ShShader fsh = SH_BEGIN_FRAGMENT_PROGRAM {
ShInputVector4f v; // input viewer-vector
ShInputNormal3f n; // input normal
ShInputVector3f lvv; // input light-viewer vector
ShInputPosition4f p; // input transformed position
ShOutputColor3f out; // fragment output color

out(0,1,2) = Globals::color * dot(normalize(n), normalize(lvv));
} SH_END_PROGRAM;

Figure 11: Lambertian shader for a single light source. Written in C++ using
Sh metaprogramming library.

vertex and fragment programming extensions).
Note that SMASH nor Sh do not support shader types like light shaders

or deformation shaders. All shaders must be explicitly combined into a single
surface shader. Also, when Sh is layered on top of ARB vertex and fragment
programming extensions, application must provide separate vertex and fragment
programs. An example Sh shader is presented in figure 11. This example uses
global variables mv, mvp, lightPos. These denote modelview matrix, concatena-
tion of projection, modelview matrix and light position vector and are part of
OpenGL state. An important relation should be noted – vertex program output
declarations must match fragment program input declarations. This way, output
registers of the generated vertex program are allocated in the same order as input
registers of the generated fragment program.

3.4.3 HLSL and Cg

HLSL [23] (High-Level Shader Language) is a high level shading language de-
signed for Microsoft DirectX 9 API. Cg (”C for Graphics”) is its multiplatform
extension that works also on top of OpenGL. As both languages are syntactically

30

and semantically very close, only Cg is discussed here. Name Cg captures the
concept of the language more closely, due to strong resemblance to C and by
providing features beyond simple shading. Although languages themselves are
similar, shading APIs are quite different.

Cg does not divide shaders into classes like RenderMan, only combined surface
shaders are supported. In fact, surface shaders are typically presented using two
Cg shaders: vertex shaders and fragment shaders. Both correspond directly to
the vertex and fragment programming extensions described in chapter two.

Cg can be combined with CgFX extension, to declare multipass effects, sam-
plers with texture and filtering attributes and various graphics pipeline states
like polygon culling mode [19].

All this makes Cg closer to hardware level and less abstract than RenderMan.
The Cg compiler by NVIDIA supports different hardware profiles with differing
capabilities. There are minimum requirements that all profiles must follow while
some features are made optional for the profiles. For example, some profiles may
not support while-loops in vertex programs. The data types in Cg correspond
roughly to C data types. An interesting addition is the half data type. This
provides ’half’-precision (16-bit) floating point calculations, which are usually
sufficient for color calculations.

3.4.4 The OpenGL Shading Language

The OpenGL Shading Language (usually abbreviated as glslang) is part of the
OpenGL 2 specification [3]. At the time of writing, there are no known hardware
implementations supporting all required features of this language. In general, the
language is similar to HLSL and Cg and does not provide higher level features
of RenderMan shading language. One of the most noteworthy concepts of the
OpenGL 2 is the omission of lower level (assembly level) shading language. The
reason for this is not to constrain the graphics architectures and provide more
options, as low-level compatibility may hinder innovation in graphics hardware
implementations.

3.4.5 Stanford Real-Time Shading Language

Stanford Real-Time Shading Language (Stanford RTSL) was one of the first real-
time shading languages that was designed for consumer-level graphics hardware
[14]. The project started with a goal of creating an intermediate layer between
OpenGL hardware and applications, with an intent of supporting multiple hard-
ware targets through multipass techniques. The language has evolved through
several iterations, the first versions of the language were Lisp-like and provided
support for combined surface shaders only. The current version of the language
resembles more C and RenderMan sl and provides support for surface and light
shaders.

31

Figure 12: Constant, per-primitive group, per-vertex, per-fragment computation
frequencies

The most notable idea of the Stanford RTSL is the concept of computation
frequency. This is a generalization of the RenderMan varying and uniform pa-
rameters. Four different frequencies are supported in RTSL: constant, primitive
group, vertex and fragment. Figure 12 illustrates these frequencies. Note that
per-primitive frequency is missing. As OpenGL API and shading extensions do
not provide support for such frequency, it is omitted. RenderMan varying param-
eters correspond rougly to vertex frequency, while uniform parameters correspond
to primitive group frequency (ideally they should correspond to per-primitive fre-
quency). For operations, frequency specifies how often the computation is per-
formed. Expressions involving varying parameters may correspond to both frag-
ment and vertex frequency (in general, linear combinations of varying parameters
can be represented at vertex frequency, while other expressions of varying param-
eters should be expressed at fragment level). The language allows the trading of
some efficiency for correctness. If user wants to perform less computations per-
fragment; such computations can be approximated at vertex level. For example,
diffuse lighting calculations can be represented at vertex level with sufficient qual-
ity in many cases, while specular calculations at vertex level produce typically
poor results.

Language supports natively three- and four-component vectors, 3-by-3 and
4-by-4 matrices, float type, texture object references (texref type), clamped
values in range [0..1] (clampf type). Unlike RenderMan, there is no distinction
between geometrical points and colors, both can be encoded using either three-
or four-component vectors. Likewise, the user must explicitly transform points
and vectors if multiple coordinate systems are needed.

Not all operations are available at all frequencies. In general, at each higher
frequency level, the number of operations decreases. There are some exceptions,
for example, texturing is available only at fragment level, but not at lower fre-
quencies. Matrix calculations are not supported at fragment level, while limited
support is provided for such operations at vertex level.

Stanford RTSL system has modular design and supports several targets for

32

each computational frequencies. Primitive group and vertex expressions can be
compiled into C or Intel x86 machine code. Additionally, NV_vertex_program
extension is supported for vertex calculations. At fragment level, com-
piler supports standard OpenGL multitexturing (with limited functionality),
NV_register_combiners extension and NV_fragment_program. Targets at dif-
ferent frequencies can be combined with each other.

3.4.6 ASHLI

ASHLI (Advanced Shading Language Interface) is a real-time rendering system
supporting multiple shading languages including HLSL, glsl and RenderMan [1].
ASHLI supports only a subset of these languages and is really intended to work
as a bridge between digital content creation software (like Maya, 3D Studio Max
or Softimage) and hardware. Compared to other shading languages, ASHLI ar-
chitecture resembles Stanford RTSL – both languages are specialized for shading,
while glsl and HLSL are more like hardware model abstractions.

A unique feature of ASHLI, compared to glsl or HLSL, is the ability to gen-
erate multiple passes. This is essential considering the targets of the language –
as shaders created by artists inside content creation software can have arbitrary
complexity and only a very limited subset could run within a single rendering
pass.

ASHLI provides API for initializing, specifying and compiling shaders, but
not for directly rendering shaded primitives or objects. After the shader has
been compiled, application can query shader assembly code (ASHLI supports
DirectX 9 shader models and OpenGL ARB vertex and fragment programming
extensions) and formals. Formals describe how to bind textures and set program
constants. In the case when shader requires multiple passes, formals describe
how intermediate pass results should be stored.

Although ASHLI provides compiler front-end for RenderMan shaders, hard-
ware shader models do not support features like branching and subroutine calls.
Thus, support for for-loops is currently limited to loops with constant loop count
and general while-loop support is missing. Also, not all data types are fully sup-
ported (array support is limited) and several function primitives are not currently
implemented. This means that using existing RenderMan shaders can be prob-
lematic, but when such limitations are known at shader design time, most of the
issues could be resolved.

33

4 Experimental Shading System

4.1 Overview

This section gives an overview of an experimental shading system designed and
implemented by the author of this thesis and describes important issues that are
common to most real-time shading languages. The described shading system is
based on Stanford RTSL but includes several important extensions and changes.
At the same time, it provides support for only a single hardware target and
works at the time of writing only on DirectX 9 compatible consumer graphics
processors.

An example shader written for this system is presented in figure 13. It shows
a Blinn-Phong lighting model implementation. The shading language is based
on the concept of four computing frequencies like Stanford RTSL and supports
three classes of shaders: surface shaders (as shown in figure), light shaders and
deformation shaders.

The syntax diagrams of the shading language are presented in appendix A.
Like Stanford RTSL, the language has been revised and the presented syntax is
used for the second version of the language. The revision was made to support
newer hardware targets and to provide more functionality in the language core
and less in its external library. The syntax is similar to both C and RenderMan.
For example, the language supports similar syntax for comments and preprocessor
directives (with a few deprecated features and extensions). All identifiers are
case-sensitive.

The current version targets ARB-approved fragment and vertex program ex-
tensions. The first revision supported actually more targets like OpenGL 1.1 mul-
titexturing and ATI_fragment_shader fragment targets, but these were removed
later in development process. Although these targets had special optimizers, only
very limited fragment computations were possible. It was very easy to produce
some unintended artifacts due to the reason that all calculations were performed
in fixed-point arithmetic and it was very easy to loose precision in intermediate
calculations. Supporting multiple targets in quite rapidly evolving system re-
quired too much technical work and was not in line in creating an experimental
system.

4.2 System Description

The shading system (see figure 14) is divided into two main modules: compiler
and runtime. Both can work without another, the compiler module is completely
separated from the runtime and acts as a server in the client-server paradigm.
Compiler provides a relatively high-level interface for the runtime for loading
shader programs, binding light shaders to surfaces and compiling shaders. Nev-
ertheless, it is possible to use the runtime without the compiler part. In this case,

34

surface shader blinn(float Ks, float4 Cd, float4 Cs)
{

float4 Csurf = integrate(float4 Cl) {
float3 c = lit(dot(L, N), dot(H, N), Ks);
return (c[1] * Cd + c[2] * Cs) * Cl;

};
return Ca + Csurf;

}

Figure 13: A simplified Blinn-Phong surface shader implemented using shading
language.

����������	

������

���	�����������������	���	���������������	������	���	�

��	����
��������������

�������	�������	

�������!"

����� �����������

�������������������

���	����!"

�����

���	����!"

������

Figure 14: High-level view of shading system architecture.

it is the user’s responsibility to supply system compiled fragment and vertex pro-
grams via shader cache file (it is described in the following sections).

The runtime is exposed to the user as OpenGL like API, syntax and basic
immediate mode functions have same signatures as in Stanford RTSL API. The
runtime API is used for shader loading, shader compilation, shader parameter
setting, etc (C language bindings are given in appendix C). A typical applica-
tion performs the following steps for setting up a proper environment (actual
procedure names are shown in parenthesis, asterisk denotes a procedure from a
procedure group):

Initialize OpenGL
Initialize Shading System (Init)

Load secondary (light and deformation) shaders (LoadShader)
Query parameter handles for input variables (ParameterHandle)
Set constant frequency parameters (Parameter*)
Compile secondary shaders (CompileShader)

Load surface shaders (LoadShader)

35

Query parameter handles for input variables (ParameterHandle)
Set constant frequency parameters (Parameter*)
Bind light and deformation shaders as needed (UseLight, UseDeformation)
Compile surface shaders (CompileShader)

After these steps the application rendering loop is run, consisting of the fol-
lowing steps for each frame:

Application specific handling of shader input parameters
For each primitive group
Bind shader (BindShader)
Set primitive group frequency parameters (Parameter*)
For each primitive in group

Start primitive group (Begin)
For each vertex in primitive

Set per-vertex parameters (Parameter*)
Specify tangent-space vectors (Tangent*, Binormal*, Normal*)
Specify vertex position (Vertex*)

End
Finish primitive group (End)

End
End

The pseudocode shown here uses immediate-mode API. For higher perfor-
mance, shading system provides vertex object API that greatly reduces the num-
ber of API calls needed for rendering.

4.3 Shading Language Description

This section gives an overview of different aspects of the shading language design.
Most emphasis is put on concepts specific to shading languages and features that
differentiate our experimental shading language from other shading languages.

4.3.1 Basic type system

As the real-time shading system’s primary goal is efficiency and speed, the field
specific abstraction level of type system is lower than in RenderMan type system.
No distinction is made between color values, vectors, points. The user must select
appropriate types for these. If multiple coordinate systems are used, it is the
user’s responsibility to perform any coordinate system transformations needed.
This leaves more options for the user to optimize in special cases, but may require
more coding for common cases.

Basic types are formed using five fundamental and two compound types, listed
in table 5. All types have constructors, except texref. This omission is inten-
tional, as hardcoding texture handles in shader code is bad practice as this reduces
code modularity and creates implicit dependencies on texture handles. Texture
handles must be specified by the user, through the runtime API.

36

Keyword Description Example of usage
bool boolean type bool b = true
int integral value int x = 2

texref texture object reference texref t
clampf floating point value clampf f = 0.5

in range [0..1]
float full range floating float f = 1.2

point value
[] tuple, a list of basic types float[2] v = { 1.2, 1.3 }

struct compound structure type struct { float a; bool b; } s
= struct { a = 0.1, b = false }

Table 5: Shading language built-in basic types.

Tuple type and structure type provide projection operators. Note that tuple
type is different from array type present in most languages; tuple size can not be
changed once it is specified and projection operator requires constant index.

Note that there is no void type as in C. This is because language does not allow
any side effects like assigning global variables or writing to a memory location.

The following types are defined for shorthand: float2, float3, float4,
clampf2, clampf3, clampf4, matrix2, matrix3, matrix4, deformation_t,
fragment_t. The last two types are used for deformation shaders and extended
surface shaders.

The language provides two kinds of type conversions: implicit and explicit.
In case of implicit conversions, types are converted automatically when needed.
Precision is never lost in this case. Implicit conversions are provided from int to
float and clampf to float. Compound types can be implicitly converted if all
their components can be implicitly converted.

Explicit conversions are provided currently only from float to clampf. The
user must explicitly specify this conversion using the cast operator (casting syntax
is similar to C). Conversion from float to int is not available, mostly due to a
very limited support for integer types.

4.3.2 Computation frequency

Full, qualified types within the language include two components: basic type and
computation frequency (listed in table 6). Frequency can be specified together
with a basic type by prepending the basic type with a frequency specifier (e.g.
vertex float k). Computation frequency does not have to be explicitly spec-
ified, as it can be deduced from frequencies of variables and expressions. For
example, assuming expressions e1 and e2 have fragment frequency, we can de-
duce that e1 + e2 also has fragment frequency, assuming + operator is available
at fragment frequency for types of e1 and e2. In general, explicit computation

37

Keyword Description, typical usage
constant value can be specified before code generation and

does not change afterwards
primitive group value can be specified outside Begin/End and

does not depend on every primitive scope
vertex value varies per-vertex or per-primitive

fragment value has to be calculated per-fragment

Table 6: Shading language computation frequencies.

Keyword Description
surface surface-specific context
light light-specific context

deformation deformation-specific context

Table 7: Supported shader contexts.

frequency should be avoided if it is not necessary, as the compiler automatically
selects operations at the lowest possible frequency. When frequency is omitted
from shader parameter declarations, primitive group frequency is assumed by de-
fault. Shader parameters can have any frequency except fragment frequency – if
fragment frequency inputs are required, then texture operations can be used.

In most cases when operation can be done at a lower frequency, then it should
be done so – as performing the operation at a higher frequency provides same re-
sults. An exception to this are fragment level computations, for which results may
be very different if operations are performed at vertex level instead of fragment
level. For example, unit normal vectors are often used in shading calculations.
When normals are specified per-vertex, then by normalizing vectors at vertex
level and then using normals in fragment level calculations may produce unex-
pected results. The reason for this is that at fragment level, interpolated normals
are used – but when unit normal vectors of same primitive are not collinear, then
interpolated normal will be shorter than one unit. This problem can be simply
fixed by renormalizing vectors at fragment level instead.

4.3.3 Contexts

Language includes three contexts (see table 7) that correspond to the shader
classes supported by the language. Each shader object (instance) has its own
context state and can access only the variables of given context type (for example,
light shaders can not use variables declared with surface context and vice versa).

In most cases, users must deal with contexts only when declaring shaders –
then the shader class must be explicitly given (by prepending the shader output

38

type with surface, light or deformation). In some cases, users may need to
explicitly specify contexts when new variables or functions are declared. This
is needed when the variable or function refers to a context not available in the
current scope. This helps the user to avoid the propagation of unwanted contexts
far from the actual error.

4.3.4 Language constructs

The language supports a subset of C programming language expressions and
statements (diagrams of language syntax are given in appendix A).

The language supports similar loop and conditional execution statements as
does C language. Two minor differences should be noted here: first, statement
blocks in while and if clauses must always be inside braces. Second, return
statement must be always the last statement of a function or a shader - early exit
is not supported.

The language supports subset of operators available in C language. Most
C language binary operators are available, but only simple assignment opera-
tor is supported (complex assignment operators like += or -- are currently not
supported). All arithmetic and logical operators have same relative precedence
as in C. Assignment operator is treated differently compared to C language -
assignment is treated as a statement, not expression.

But due to limited capabilities of the ARB vertex and fragment extensions,
several limitations apply to usage of language constructs. First, while and for

loop support is limited - conditional expressions in these constructs must have
constant frequency. Simple conditional execution is provided using ?: operator
(condition can have any frequency), while if construct requires the condition to
have constant frequency.

For same reasons, recursion in function calls is not supported (neither direct
nor indirect). Such restrictions are necessary as intended targets for the language
do not support general function calls, which means all program code must be
inlined.

It is clear that language does not belong to the class of programming lan-
guages equivalent to Turing machines or partially recursive functions, when com-
putations need to be performed at vertex or fragment level. The simple execution
model guarantees that programs written in the language always terminate after
they have been compiled (although it is possible to create non-terminating pro-
gram at constant frequency). In fact, the number of executed instructions always
remains constant and does not depend on input data in vertex and fragment
programs.

Perhaps with such limitations one may assume that language is very limited.
Fortunately most local illumination models have the following form:

39

Primitive Supported frequency Description
rcp all frequencies Reciprocal (approximation) of scalar

invert prim. group Inverted 2x2, 3x3, 4x4 matrix
lit fragment/vertex Phong lighting model coefficients
dist fragment/vertex Distance attenuation factors

tex1D fragment 1D texture read
lerp fragment Linear interpolation

Table 8: Small subset of our shading language primitives.

s(x) = f(x) +
n∑

k=1

lk(x) (17)

Such construct is supported within the language by integrate operator with
a restriction that n and lk must be specified before compilation (thus, light sources
can be considered as constant frequency parameters for surface shaders). A typ-
ical usage of integrate operator is shown in figure 13. The operator requires
user to specify a variable that will be bound to light shader output. The output
values of operator code block are added together (by applying a + operator).

Note that integrate operator is the only way how surface shaders can query
information about lights. All other queries result in dependence on light context,
which can not be removed without applying integrate operator.

4.3.5 Primitive functions

All built-in primitive functions are shown in Prelude file (this file includes decla-
rations of primitive functions and definitions of built-in variables), which is listed
in appendix B. For reference, a subset of the primitives is listed in table 8. Primi-
tives for vertex and fragment frequency were selected to be as close to instruction
level as possible. Most primitives correspond to single instructions, while more
complex operations are defined using composition of such primitives in Prelude
file.

Most simple arithmetic operations like addition, componentwise multiplica-
tion are defined for scalars, tuples of size two, three and four. Although it is
technically fairly straightforward to implement support for finite tuples of arbi-
trary length, this has proven to be unimportant in practice.

Note that most operations are defined within single frequency, they take ar-
guments of certain frequency and produce output with same frequency. The
notable exceptions are texture instructions (instructions with tex-prefix). They
require the texture reference argument to be at constant or primitive group fre-
quency. This reflects the restriction in OpenGL that textures can be bound only

40

outside Begin-End scope. As the primary intention for texref type is to pass
texture handles to texture operations, no support is provided for texref type
above primitive group frequency. It is possible to create examples that seemingly
use texref variables at higher frequencies, but the results are never affected by
texref values in such cases.

In case of texture operations, two versions are provided for most operations:
non-projective and projective. For cube maps, only a single version is provided
(projective and non-projective versions are equivalent). Projective texturing is
not strictly required - it can be implemented with an ordinary texture instruction
and a multiplication/division, but direct support provides higher performance. In
addition, the language provides support for checking whether a texref expression
is valid using isnil primitive (texref handle must be non-zero). Texture border
color, filtering and other information comes from the texture object, referenced
via texref parameter. It is not possible to access or update this information
inside shaders directly - controlling this is application’s responsibility.

4.3.6 Function lookup scheme

The shading language supports function overloading in the same sense as C++
does. For example, it is possible to define two functions with the same name and
same number of arguments, but with different argument types and frequencies.
Overloading support is important for built-in arithmetic operators like +, * and
allows the user to write more generic code.

Compared to th C++ type system, our shading language also uses the com-
putation frequency concept. This complicates function resolving scheme. For
example, assuming the following two operators are available:

vertex float operator + (vertex float, vertex float);
fragment float operator + (fragment float, fragment float);

Which one should the compiler use? Intuitively, the answer is simple: if at
least one of the arguments has fragment frequency, the second function must be
used. While in case when arguments have vertex or lower frequency, it is better
to use the first one. Better in this context means that is likely more efficient
- as typically the number of fragments generated during rasterization is higher
than the number of vertices used. An issue that further complicates resolving is
that language allows user-defined functions with no explicitly specified parameter
frequencies:

float operator + (float x, float y) { ... }

The lookup scheme is a generalization of the example above with the goal of
trying to minimize frequency casts. Resolving consists of four consecutive steps,
assuming we have a function application f(A1, A2, ..., An):

41

1. Consider only the functions with the given name and arity n. If there are
no such functions, report an error. Otherwise proceed to the next step with
the selected functions.

2. Consider a possible matching function f(T1, ..., Tn) only when arguments A1,
..., An can be converted to T1, ..., Tn, respectively. This means that Tk must
have frequency that is higher or equal to the frequency of argument Ak, for
all 1 ≤ k ≤ n. Also, conversion from Ak to Tk must not reduce argument
precision, otherwise it is not considered valid. For example, conversion from
clampf to float is valid, while conversion from float to int is not. If none
of the functions pass this test, report an error. Otherwise proceed to the
next step with the functions that satisfy described conditions.

3. Order remaining functions by number of frequency conversions necessary.
Functions are associated with vectors of the form (C3, C2, C1, G), where
C3 counts frequency conversions from constant to fragment frequency, C2

counts conversions from constant to vertex frequency and from primitive
group to fragment frequency, C1 counts frequency casts from constant to
primitive group frequency and so on. G counts generic parameters in func-
tion signature (generic parameter is defined as parameter that has not been
given explicit frequency). Functions with minimum cost are only considered
in the next step (there can be multiple such functions).

4. If there are two or more candidates left, then if one of the remaining func-
tions has base types T1, ..., Tn that matches exactly base types of arguments
A1, ..., An, then this function is preferred and the other candidates are dis-
carded. If there are two or more candiates left at this point, an ambiguity
error is reported. Otherwise the remaining function will be used.

This function lookup scheme works well in practice - with primitive functions
and generic functions implemented in Prelude file, most efficient function is al-
most always selected. It is possible to construct cases, when ambiguity errors are
reported, but user can always add explicit type casts to promote arguments to
expected input types (at least when function declaration includes explicit param-
eter frequencies).

4.3.7 Built-in variables

Besides shader input parameters, it is possible to declare variables at program
scope. Such variables can be used in all shaders within the program. Such
variables are used to make a subset of OpenGL state available to shaders. For
example, Mproj variable is automatically set by the runtime when a new primitive
group is rendered. Runtime reads OpenGL projection matrix and sets Mproj

variable. The value can then be used in all shaders, as this variable is defined in
Prelude file.

42

Variable Context Frequency Description
P surface vertex Vertex position in eye-space
E surface vertex Unit length vector from eye to vertex

T, B, N surface vertex Vertex tangent-space vectors (eye-space)
Cprev surface fragment Frame buffer color at current fragment

Ca surface prim. group Global ambient color
L light vertex Surface-light vector

Mview, Mproj none prim. group Modelview and projection matrices

Table 9: Subset of shading language built-in variables.

Light state is passed to shaders in a similar way. As light state must be
associated with each light separately, light context is used for light variable
declarations.

The language also provides a special variable called Cprev. This variable
has surface context and can be used to create semi-transparent materials. This
variable can be read to get the color of previously rendered pixel at the fragment’s
position. A subset of built-in variables is given in table 9.

4.3.8 Swizzles

Special syntactic sugar is provided by the language to support permutations
and projections of tuple types. For example, pos.yxzw expression (assuming
pos is declared as a four-component tuple) returns a tuple where x- and y-
components are swapped. Similarly, pos.z extracts z-component (and is equiv-
alent to pos[2]) of the variable. Only x-, y-, z- and w-components can be
projected/swizzled, but this is not really a limitation considering the application
field of the language.

Language supports also component assignments. For example, pos[3] = 1

(or pos.w = 1) is a valid statement - other components are left unchanged.

4.3.9 Metaprogramming support

Shading system provides support for metaprogramming, although at a different
level compared to SMASH or Sh shading languages described in the previous
chapter. Two features are very helpful when shaders must be created dynamically
at runtime: UseShader API procedure and constant frequency parameters.

UseShader API procedure is useful when complex shaders can be built from
simple shaders. By using this procedure, the user can link one shader output to
another shader input. This way it is possible to create a small number of simple
shaders and combine these at runtime. Any custom directed acyclic graph can
be created where each node is a user-defined shader.

43

Constant frequency parameters, on the other hand, are useful for creating
more complex shaders which are automatically simplified at the compile time.
For example, consider the following shader:

surface shader float4 tex_surface(constant texref tex, constant float4 color)
{
float4 result = color;
if (!isnil(tex)) {

result = result * tex2D(tex, P.xy);
}
return result;

}

When a texture reference tex passed to the shader is valid, then the shader
returns surface color multiplied by texture color, as expected. When the texture
reference is not valid (handle is equal to 0), then surface color is simply returned
and no texturing occurs. Note that this is not an optimization made by the
compiler, but semantics of constant frequency evaluation. The compiler does
not generate code for the statement inside the if-clause when the condition is
false. This means that the user can be sure about which parts of the code are
left in/out, without having to wonder whether an optimization rule is applied or
not. Thus, the user can write more general versions of shaders without worrying
about performance.

Besides constant frequency parameters, preprocessor can be used to customize
shaders at program level (preprocessing is done once, when a shader program is
loaded). Preprocessor can be used to select between multiple code paths depend-
ing on which OpenGL extensions are supported. For example, if the OpenGL
implementation supports ARB_fragment_program_shadow extension, a prepro-
cessor token ARB_fragment_program_shadow is set. An application that utilizes
shadow maps [29] can be optimized for this extension while providing also a
fallback code path for non-supporting targets:

...
#ifdef GL_ARB_fragment_program_shadow
float visible = shadow2D(shadowmap, shadowcoord).w;

#else
float4 depth = tex2D(shadowmap, shadowcoord.xyw);
float visible = depth >= shadowcoord.z / shadowcoord.w ? 1 : 0;

#endif
...

Some preprocessor tokens are used to pass hints to the compiler to gener-
ate more optimal code in cases where generic solution is not necessary. For
example, if the application can guarantee that it always loads orthonormal ma-
trices for modelview transformations, the same transformation can be used for
normals also, instead of its transposed inverse. This reduces the amount of work

44

needed to be done by primitive group or vertex programs. At the time of writing,
three such preprocessor variables are exposed: __HINT_UNIT, __HINT_PROJECTED,
__HINT_RIGID. The first, if defined, assumes that normals, binormals and tan-
gents are always defined as unit vectors. The second variable assumes that ver-
tices in Vertex* calls are always projected to w = 1 plane and that modelview
transformation does not modify w-coordinate. The last variable assumes that
modelview matrix expresses a rigid transformation (matrix is orthonormal). The
application can pass information if the system is allowed to make such assump-
tions by calling Properties API call. The users can define their own tokens and
implement application-specific optimizations in a similar way.

4.3.10 Shader output

Language places different requirements to shader output types depending on
shader class. Light shaders can return any type, but surface shaders must be
customized for these output types (the type used in integrate operator must
be compatible with light shader output type). Typically float4 type is used to
pass the light color and intensity information reaching a surface point.

Deformation shaders must return an expression with deformation_t type -
this is defined as a structure:

typedef struct {
float4 position; float3 normal; float3 binormal; float3 tangent;

} deformation_t;

All fields in the output structure must be assigned; all values are expected to
be in object-space coordinate system. The default deformation shader (which is
applied automatically, but can be overridden by user) simply assigns the user-
specified vertex position, normal, binormal and tangent vectors to the structure
fields.

Two different return types are supported for surface shaders. First, float4
type is supported, which is used by most surface shaders. The return value
specifies the color of the fragment and its alpha channel. In rare cases, the
shader may need to overwrite the default fragment depth or discard the fragment
from further processing. For such cases, fragment_t type is also supported. This
type is defined as:

typedef struct {
float4 color; float depth; bool kill;

} fragment_t;

Surface shader does not have to assign all fragment_t fields - all fields are op-
tional. When depth field is updated, it is expected to contain a new z-coordinate
of fragment in window coordinates.

45

�����������	
�

�����	

����������	
�

�	��	�	

��
�������

�����������	�

������������	

���
��	������

�	������	

���
��	������

�����������	

�����������

�	������	

�����������

�����������	

������
���������

�	������	

������
����

�����������	

Figure 15: Shading compiler pipeline.

4.4 Compiler Pipeline

A high-level view of the compiler pipeline is presented in figure 15. In the follow-
ing subsections we describe these stages, most of which contain several substages.
The emphasis is put on issues that are specific to shading compilers.

4.4.1 Preprocessor

The preprocessor stage has two common uses: first, it is used in Prelude file for
expanding code blocks with simple substitutions and second, it allows the user
to specify hints about application behaviour and query supported extensions.
Preprocessor syntax is very similar to C preprocessor syntax, although support
for macros is not provided.

4.4.2 Parsing, type checking and inlining

Prelude file is used by the compiler front-end to define commonly needed func-
tions and to pass information to front-end about back-end capabilities. It is
automatically loaded before shader programs. Prelude file is exposed to the user,
like header files in C language.

The central part of the front-end is the type checking and transformation part,
which builds a single type checked directed acyclic graph (DAG) representation
from the parse tree. Constant frequency variables are also assigned at this stage
and all constant-frequency expressions/statements are evaluated. In case of non-
surface shaders, this process is straightforward. In case of surface shaders, the
system also needs a list of bound light shaders and a deformation shader. These
shaders must be compiled beforehand. Light shaders are substituted and their
results are added together during transformation. Deformation shader is substi-
tuted into code at the post transformation stage. The compiler uses a special
primitive __DEFORM() to decouple actual the deformation shader from light and
surface shaders. All references to __DEFORM() are substituted with the actual
deformation in the post transformation stage.

46

���

���

���

���

���

���

���

���

��	

���

�
�

���

�
�

���

�
�

���
�
�

���

�
�

���

�����

���

�

���

�

���

�
�

���
�����

���

�
�

���

�
�

���

Figure 16: Inlined shader DAG. Each node represents either primitive function
application, variable, constant or frequency conversion (not shown in figure).
Each node has specific frequency, shown in parenthesis (F - fragment, V - vertex,
Pg - primitive group, C - constant).

The generated DAG forms a core language for the later stages. Nodes in
this DAG have one of four forms: a primitive function application, a frequency
cast, a free variable reference or a constant. There are no updates, no temporary
variables, no loops, no support for recursion of any kind. As the generated graph
is always acyclic, it can be traversed without checking for loops. The rule that
is always forced by the type checker, is that subexpressions of an expression
always have same or lower frequency than the expression itself. All contexts are
resolved in the core, which means that context dependent variables are always
tagged with the information describing their source (for example, light shader
input parameters are tagged with light identificators).

Figure 16 shows a simplified example of the generated DAG. The DAG consists
of two subgraphs and two root nodes, one of these nodes is used for calculating
vertex positions (leftmost in the diagram), while the other is used for fragment
color. Note that type checking ensures that for each directed edge from node A
to node B, frequency of node A is always as high or higher than frequency of
node B. Also, as constants are evaluated during inlining, the nodes with constant
frequency are always the leaves of DAG. Frequency casts are not shown in this
figure.

4.4.3 High-level optimizations

The most important optimization done after the inlining phase is the common
subexpression elimination. This step reduces the number of nodes in the DAG
generated during inlining.

Other optimizations done at this stage include simple algebraic simplifications,
like replacing expression multiplications with units with expressions, etc.

47

4.4.4 Multiple pass generation

This pass is probably unique to shading compilers, thus the problem will be
given more emphasis compared to the other code generation passes. Multiple
pass generation is supported by only a few shading systems. For example, HLSL,
Cg, Sh or glsl do not support this.

ARB fragment program implementations may support only 64 instructions,
16 temporary registers and 24 constant registers. Thus, it is very easy to create
a high-level shader that exceeds those limits. Fortunately it is possible to vir-
tualize hardware in this regard - by storing intermediate calculations in floating
point frame buffers and textures when necessary. This problem resembles register
allocation/spilling problem, but it has some specific features.

Thus, very often the DAG that has to be translated into a fragment program
is too complex (contains too many nodes, requires too many constants or exceeds
some other resource). We can solve this problem by simplifying the graph – by
calculating some subgraphs separately and storing the results in textures, we can
replace these subgraphs with texture read instructions.

An interesting feature of this problem is that graph partitions do not have
to be disjoint – it is often reasonable to recalculate some subexpressions that
are used in different passes. The reason is that creating a separate pass requires
redrawing primitives to a separate frame buffer (p-buffer), which can be slower
than performing same calculations several times.

Unfortunately, deciding whether the recalculation is cheaper than using a
separate pass is not easy – it depends on hardware configuration, on the number
of primitives sent to the shading system, complexity of the vertex programs and
other factors. Thus, the only practical solution is to apply some kind of heuristic
in the decision. Our compiler uses a simple cost model where each instruction is
assigned a constant cost and a new pass generation is assigned larger cost. When
decision has to be made between recalculation and creating a new pass, then the
compiler chooses the solution with the smallest cost.

Our shading compiler uses Recursive Dominator Split (RDS) algorithm [6]
and lower quality, but faster version called RDSh for splitting fragment programs
into multiple passes. Neither algorithm is optimal (optimal solution is a NP-
optimization problem). RDSh algorithm, which is used by default, requires O(n ·
g(n)) steps where g(n) is the cost of testing a pass with n-nodes. Currently
g(n) evaluation requires fragment level code generation, optimization and register
allocation – as a result RDSh algorithm typically requires O(n2 · log(n)) steps.
RDSh algorithm can be also implemented as a post-optimization step (but before
register allocation), in that case the complexity could be reduced to O(n2).

48

4.4.5 Fragment-level code generation

Fragment-level code generation is straightforward – most primitives correspond
directly to hardware instructions. Code generation is a simple process – each
instruction has its own code template, templates are appended by following data
dependencies in the shader DAG.

Typically the output of code generation is highly non-optimal. A common
issue is that generated instruction sequence contains lots of MOV instructions and
scalar arithmetic instructions. Following low-level optimization steps are used to
improve code quality:

• Dead code removal. This step removes instructions that produce results not
consumed by other instructions (and that do not write to output registers
like result.color or result.depth). This stage is useful as other steps
may remove some instructions from the execution path.

• MOV instruction propagation forwards. This transformation tries to substi-
tute instructions following a MOV instruction and using the MOV output with
the MOV input. This transformation is not possible with all MOV instructions.
For example:

MOV r1.x,r0;
ADD r2,r1,r3;

In this case ADD instruction reads components of r1 that are not assigned
in the preceding MOV instruction, thus r1 can not be substituted with r0.

• MOV instruction propagation backwards. This is similar to the forward prop-
agation. Only the preceding instructions are considered – transformation
tries to reassign output registers.

• MUL and ADD to MAD collapsing. This transformation tries to combine MUL

and ADD instructions into a single MAD instruction.

• Instruction vectorizing. This optimization joins multiple instructions that
write to same output register and use same input register into single vector
instructions.

All steps are performed multiple times – process is stopped only when instruc-
tion count can not be reduced anymore. This is achieved typically within two
to four optimization passes. Results are good, especially when considering the
simplicity of the steps performed. Results are discussed in the next chapter.

The next step after the low-level optimization is the register allocation. Our
compiler currently uses simple linear scan register allocation algorithm [26] for

49

assigning temporary registers, which provides adequate allocation. Vertex pro-
grams with less than a hundred instructions usually require ten or less temporary
registers. Besides allocating temporary registers, this step also allocates constant
registers and texture coordinates (in case of fragment programs).

4.4.6 Vertex-level code generation

As ARB fragment and vertex programming models are similar, our compiler uti-
lizes same codepath for both. Some features are not available in vertex programs
– like texture instructions, instruction SAT modifiers. For example, in case of SAT
modifiers, instructions utilizing them are replaced with same instruction without
SAT modifier and a MIN and MAX sequence.

Compared to the fragment code generation, vertex-level programs have an-
other constraint – it is currently not possible to split them into multiple passes.
At the time of writing, it is not possible to direct vertex program output to vertex
arrays. If such functionality were available, vertex programs could be split into
multiple passes like fragment programs. This would allow user to create vertex
level expressions in the language with arbitrary complexity.

4.4.7 Primitive group code generation

Primitive group expressions are translated into special virtual machine instruc-
tions. Virtual machine uses register-file model, although register file is not limited
– programs are free to use as many registers as needed. The number of instruc-
tions is also unlimited. Instruction set is designed with efficient matrix-matrix
and matrix-vector operations in mind. For example, matrix multiplication and
matrix inversion primitives are included in the instruction set.

Primitive group code generation is straightforward, and is based on instruc-
tion templates, like fragment and vertex code generation. But unlike fragment
and vertex programs, optimizations performed after the code generation are much
simpler – only simple copy propagation and dead code removal steps are used.
Register allocation after the optimization is based on linear scan register alloca-
tion.

4.5 Runtime

The runtime is layered on top of the OpenGL API. It gives the application access
to a higher-level API for handling shader objects, compiling shaders, binding
parameters and rendering primitives. As shown in figure 14, the runtime API
does not hide the OpenGL API, and, in fact, the user is expected to mix OpenGL
calls with shading system calls. It is not reasonable nor practical to hide OpenGL
completely from the user, as OpenGL is evolving and the user may need some
OpenGL extensions not provided by the shading system.

50

Unfortunately, this organization has its limitations too. If the set of ex-
tensions supported by implementation is explicitly stated, it is possible to de-
fine exact rules which OpenGL calls are available to the application and which
calls are reserved. The runtime does not restore the state of extensions (like
ARB_fragment_program) after API calls, this may generate unintended results if
the application uses this extension explicitly. Likewise, some future extensions
may have priority over ARB fragment and vertex programming extensions, thus
if such extensions are enabled, the runtime may not operate correctly at all.

4.5.1 API

The runtime API consists of around 20 constants and 60 procedures (see ap-
pendix C). API calls are used for setting compiler flags, loading shaders, compiling
shaders, setting shader parameters, binding lights to surfaces and few other tasks.
The runtime provides a simple immediate mode API where the user must feed
every single vertex manually (which is relatively slow) and a high-performance
vertex array object API. Unlike the Stanford API, which is modelled closely after
OpenGL vertex arrays, the discussed system provides a higher-level API hiding
more details from the user. This approach was taken because of two main rea-
sons: as experimental shading system provides more powerful type system, the
intention was to hide type encodings from user. Also, by providing higher-level
API, it is possible to utilize more modern extensions like vertex array object ex-
tensions to provide higher geometry throughput by allowing geometry data to be
held in the OpenGL server memory (uploaded into local graphics memory). The
drawback of this approach is that it is inefficient for dynamic geometry, when
geometry data sets are generated at runtime for each frame.

4.5.2 Shader states

The first user calls made to shader API after initialization are typically
LoadProgram and LoadShader calls. LoadProgram creates a new global pro-
gram object, while LoadShader call creates a new shader object under current
program object. After loading a program or a shader, all input parameters can
be set (via Parameter* calls), other shaders (which must be in (pre-)compiled)
can be attached to the parameters via UseShader calls. Shaders are in the un-
compiled state at this point. For surface shaders, deformation shader and light
shaders can be attached at this point (via UseDeformation and UseLight calls).

Shaders can be compiled by calling either CompileShader or
PrecompileShader API procedures. Both procedures are identical for
non-surface shaders. In case of surface shaders, CompileShader generates
fragment, vertex and primitive group programs and the shader can be used in
the subsequent drawing calls. PrecompileShader only performs type-checking
and inlining and leaves surface shader in precompiled state. Shaders in that

51

��������	
�����
��������
����

���������������������

���������������

�����������

�����

�����
���������������

�����������

���������������

�����������

Figure 17: Runtime shader caching.

state can not be used in the drawing calls, but can be attached to input
parameters of other shaders. After the shader has been compiled or precompiled,
constant frequency parameters can not be changed. All Parameter* calls to
such parameters result in a runtime error.

Another state is the drawing state, which shaders enter by issuing Begin calls.
Like in the OpenGL API, only a subset of API calls are available in this state.
Parameter* calls are available, but only for vertex frequency parameters. After
calling End, shader will be back in compiled state.

4.5.3 Hardware limits, custom configuration

The shader API provides Properties procedure for overriding default configura-
tion values and for providing custom parameters for code generation. When omit-
ted, queries about hardware limits are performed automatically by the runtime.
This way, the runtime tries to help the compiler to create the best performing
code for current target. By overriding hardware limits, the user can check how
the shader performs on a less capable target.

Properties call can be used to define preprocessor tokens, includ-
ing token described in the compiler section earlier. When the user can
assure that all modelview matrices do not change vertex w-coordinate
and that all vertices sent through API have w = 1, then by calling
sglProperties("PreludeDefs: \"__HINT_PROJECTED\"") (using C API), the
compiler can eliminate some instructions from the vertex program.

4.5.4 Shader caching

The runtime utilizes shader caching subsystem, shown in figure 17. This cache
is used to reduce traffic between the runtime and compiler parts, and to speed
up applications that create a large number of shader objects. The runtime API
provides two procedures for cache management: LoadCache and SaveCache. The
first procedure is used to load previously stored cache state from a file, while the
second is used to store the cache state to a file. When the application does
not create shaders dynamically, its shader cache can be stored in a file and the
compiler part is not needed afterwards. If the application must work on different
targets, then the cache file can be created for each such target. Using a single
target can be suboptimal in cases when shaders are split into multiple passes.

52

4.6 Issues

This section describes the issues that are specific to shading language imple-
mentations. Some of the issues are common to all shading languages (precision,
semantics-preserving optimizations). Multipass issues are only important to the
shading systems that try to virtualize hardware, by using multiple passes when
necessary.

4.6.1 Multipass shaders

Due to the relatively low ARB programming extension instruction and register
limits, hardware virtualization is essential for complex shaders. Splitting shaders
into multiple passes is relatively straightforward using RDS or RDSh algorithms,
unfortunately complications exist in the runtime part. First, in order for multi-
pass rendering to work, the runtime must be able to render same primitives in
each separate pass – which means the user-specified data must be cached so that
the runtime can redraw primitives as many times as needed.

Currently the only option to store the results of temporary calculations is
via offscreen p-buffers. Support for floating-point p-buffers is provided only via
vendor-specific extensions at the time of writing, and requires separate OpenGL
context. This means that OpenGL state that affects pipeline stages occuring
before per-fragment operations must be cloned for the new contexts. Currently,
the runtime clones common state variables for p-buffer rendering contexts: this
includes culling mode and automatic normal calculation [19].

ARB programming extensions provide two sets of limits – so-called native
limits and absolute limits. When the native limits are exceeded, the program
may be accepted, but it will not run in hardware. This may result in slightly
different results, which in case of vertex programs may lead to generation of dif-
ferent fragments compared to hardware implementation. This can be a potential
problem for multipass shaders if some passes exceed the limits and others do not
(some pixels may be touched by fewer passes). This can produce visual artifacts.

There is also one fundamental problem with multipass rendering, which can
not be solved without sacrificing performance. The problem occurs when prim-
itive batches (triangle strips, for example) contain overlapping primitives (tri-
angles). In this case some pixels are rendered twice and can be overwritten
depending on several conditions like depth test, stencil test or alpha test out-
come. In case of alpha test, the alpha component of shader result is used to
determine whether the final color of pixel will be overwritten or not. But for
multipass shaders, this alpha value has not yet been calculated – it will be avail-
able only after the last pass. Solution exists: such batches must be split into
non-overlapping subbatches and rendered separately. But this is not practical
for real-time system (batches can contain thousands of primitives, sorting them
requires at least O(n · log(n)) steps). For this reason, solving such pathological

53

cases is left for the user. Fortunately, if a shader does not use alpha testing and
does not generate custom depth value as a shader result, simple depth testing
works with multipass shaders. A similar problem also exists with Cprev vari-
able – when primitives overlap within a single rendering batch (and the shader
uses Cprev variable) then visual artifacts are very likely. A special data struc-
ture called F-buffer [17] has been proposed. It solves the overlapping primitive
problem by assigning a unique location to each rasterized fragment (not pixel,
as in p-buffer), while subsequent passes can the use F-buffer results as textures.
Hardware-based F-buffer support is not currently available via extensions.

4.6.2 Floating point model

One of the largest issues with ARB vertex programming extension is the omission
of CMP instruction (it is provided for fragment programs). The compiler uses a
sequence of ADD, MUL and MAD instructions to emulate this instruction: assuming
condition c is encoded as 0 or 1 and we must choose between expressions e1

and e2, then we can calculate this using c ∗ e1 + (1 − c) ∗ e2 (here ∗ denotes
floating-point multiplication). Unfortunately, when either e1 or e2 is +∞, −∞
or NaN, then at least by IEEE floating point model, the result should be NaN
[12]. Early hardware implementations forced 0 ∗ x = 0 for all x values [16], but
ARB_vertex_program extension does not require this if x is NaN or ±∞.

Another issue with the shader floating point model is that vertex and frag-
ment level computation precision is not guaranteed. For constant and primitive
group frequency computations float type corresponds to double-precision float-
ing point number, but vertex and fragment level float precision is hardware
dependent. Current hardware generation uses single precision, 32-bit floating
point model for all vertex-level operations. For fragment-level operations, ATI
Radeon hardware currently uses a 24-bit floating point model (floating point val-
ues are encoded with 7-bit exponent and 16-bit mantissa) while NVIDIA GeForce
FX series implements a full single precision floating point model.

As results of floating point calculations are not rigidly defined for ARB pro-
gramming models, more agressive optimizations (compared to strict compilers)
can be justified in shading compilers. For example, collapsing a MUL and a ADD

instructions into a MAD should be valid even when results are slightly different.

4.6.3 Extensions

At the time of writing, OpenGL core functionality does not present all the
features required for implementing the shading system discussed here. As a
result, implementation is dependent on multivendor OpenGL extensions (like
GL_ARB_vertex_program), vendor-specific extensions (like GL_NV_float_buffer
and GL_ATI_texture_float for floating point textures) and windowing-system
extensions like WGL_ARB_pbuffer. The runtime uses more than 15 different ex-

54

tensions, most of which are optional (if unavailable, the shading system can still
run without them, although with reduced performance).

Perhaps the largest problem with OpenGL is the lack of an extension that
would allow to send vertex program outputs into vertex array objects (it is pos-
sible to emulate this by transferring data through CPU, but this would be likely
even slower than a pure software implementation of the vertex programming
extension). Similar support is fortunately available for fragment programs via
textures and p-buffers and it allows to support shaders that do not fit into a sin-
gle hardware pass. Unfortunately, vertex programs can not be split into multiple
passes when resource limits are exceeded - this can result in a code generation
failure reported by the shading compiler.

There is also another problem with the first generation DirectX 9 hardware –
the ARB fragment programming extension is supported, but its specification is
not fully followed by all vendors. The problem exists with Radeon 9700 GPUs –
not all instructions take an equal number of instruction slots. For example, even
though hardware reports that 64 ALU instructions are supported, in reality the
number of instructions available can be a lot less when LIT instructions are used.
As a result, the compiler must know about internal architectures of GPUs and
be conservative when dividing shaders into passes, as it should never generate
fragment programs that fail to execute due to limited resources.

55

5 Performance and Applications of Shading

System

5.1 Performance Compared to Fixed Function OpenGL
Pipeline

In this section we implement a large subset of the OpenGL lighting model within
our shading language. We have two goals: first, to show that it is easy to imple-
ment a similar lighting model using the shading language. Our second goal is to
evaluate the performance of such implementation (and of the shading system in
general).

OpenGL provides a unified lighting model allowing to represent directional
lights, point lights and spotlights within a single framework. To give a compact
representation, we use ∗ operator to denote componentwise vector multiplication
and ¯ operator, which is defined as u¯ v = max{dot(u,v), 0}.

We use a lighting equation where all lighting components are combined into
the primary color cpri, while the secondary color csec is always zero:

cpri = ecm

+ acm ∗ acs

+
n−1∑

i=0

(atti)(spoti)[(ambi) + (diff i) + (fi)(speci)] (18)

csec = 0, (19)

where

ambi = acm ∗ acli

diff i = (n¯ li)dcm ∗ dcli

speci = (n¯ hi)
srmscm ∗ scli.

(20)

In these formulas ecm describes material emittance, while acm, dcm and scm de-
scribe material ambient, diffuse and specular reflectance (all are RGBA colors).
Similarly, acli, dcli and scli are light i ambient, diffuse and specular intensity
vectors (colors). acs is the global ambient intensity vector, which is applied to
all surfaces. srm is the specular exponent and corresponds to the sharpness of
the viewer-dependent highlight. Vector hi (half-angle vector) is defined as li+v

|li+v| .
Other vectors are shown in figure 6 – all geometric vectors are assumed to be
normalized (having unit length).

56

The attenuation coefficient atti, spotlight coefficient spoti and specular coef-
ficient fi (the term is used to cancel specular component when the angle between
light vector and normal is greater than 90 degrees) are defined as follows:

atti =

{
1

k0i+k1id+k2id2 , Ppli(w) 6= 0

1.0, Ppli(w) = 0

spoti =

(e¯ sdli)
srli , crli 6= 180, e¯ sdli ≥ cos(crli)

0.0, crli 6= 180, e¯ sdli < cos(crli)
1.0, crli = 180

fi = sign(n¯ li)

(21)

Here k0i, k1i, k2i are user-defined attenuation coefficients for each light, e (the
eye vector) is defined as e = −v. sdli is the spotlight direction vector, it is used
when crli (the spotlight cone angle) is not equal to 180 degrees.

5.1.1 Implementation

In the shading language implementation we declare all material color and light
intensity parameters as having primitive group frequency. Another option is to
use constant frequency for most parameters – this would provide more optimiza-
tion opportunities for the compiler in cases when some of the parameters are
zero. This could give shading system version a performance edge (assuming the
OpenGL implementation does not have such optimizations).

Lighting model parameters are generated randomly and we use same parame-
ter values for both the shading system and the OpenGL implementation. Visually,
the results of both implementations are indistinguishable.

We classify lights as directional lights, point lights, spotlights and use separate
shader for each light type. Although the OpenGL lighting equation is presented
as a single unified formula, in practice implementations classify lights in a similar
way – this can be seen from the performance results presented below. Following
graphic cards and drivers were used: ATI Radeon 9700 PRO (Catalyst 4.3),
NVIDIA GeForce FX 5200 (ForceWare 52.43). These graphics cards represent
the high-end and low-end of first generation DirectX 9 hardware. All tests were
run under Windows 2000 SP2, using 2GHz Athlon XP processor.

5.1.2 Surface shader

Before we can write a surface shader for OpenGL lighting model, we must define
a type that can capture output of all light classes and enables high performance
implementation. A straightforward approach is to define a compound structure
for all light-specific parameters that are common to all light classes:

57

typedef struct {
float4 a_cl;
float4 d_cl;
float4 s_cl;
float3 dir;
float att;
float spot;

} light_t;

Using this type we can translate our simplified OpenGL lighting model into shad-
ing language (for better readability, variable names correspond directly to the
parameters given in the lighting equation above):

surface shader float4 gl_surface(
float4 e_cm, float4 a_cm, float4 d_cm, float4 s_cm, float s_rm

)
{
float4 c_pri =

e_cm +
a_cm * Ca +
integrate(light_t l) {

float3 h = normalize(l.dir - E);
float3 v = lit(dot(N, l.dir), dot(N, h), s_rm);
float4 c =

a_cm * l.a_cl +
v[1] * (d_cm * l.d_cl) +
v[2] * (s_cm * l.s_cl);

return l.spot * l.att * c;
};

return c_pri;
}

Here, lit primitive is used to calculate both diffuse and specular terms. This
primitive takes three arguments: the dot product n¯ li, dot product n¯ hi and
srm. It returns a three-component vector v, where v[0] = 1, v[1] = n ¯ li and
v[2] = fi ∗ (n ¯ hi)

srm (here fi is defined as sign(n ¯ li)). This primitive maps
directly into ARB_vertex_program LIT instruction and is designed for efficient
implementation of OpenGL standard lighting model.

5.1.3 Light shaders

Directional lights are specified by the light direction and light intensity parame-
ters. In OpenGL such lights are given position (x, y, z, 0) in homogenous coordi-
nates – thus such lights are assumed to be infinitely far away. As a result, only
constant attenuation term is required, as distance related attenuation coefficients
are always zero. When only directional lights are used, the OpenGL lighting
equation presented above can be simplified:

58

cpri = ecm

+ acm ∗ acs

+
n−1∑

i=0

acm ∗ acli + (n¯ ldir)dcm ∗ dcli + (fi)(n¯ h)srmscm ∗ scli (22)

Implementation of directional light is very straightforward (light-specific variable
L_pos holds the light position in homogenous coordinates):

light shader light_t dir_light(
float4 a_cl, float4 d_cl, float4 s_cl

)
{
float3 dir = normalize(direction(L_pos));
return struct {

a_cl = a_cl, d_cl = d_cl, s_cl = s_cl, dir = dir, att = 1, spot = 1
};

}

We do not present point light shader, which has complexity between the
directional light shader and the spotlight shader. Spotlight is the most complex
of the given light classes and its implementation is given below:

light shader light_t spot_light(
float4 a_cl, float4 d_cl, float4 s_cl, float3 k, float c_rl, float s_rl

)
{
float3 dir = direction(L_pos - P);
float3 vec = -normalize(dir);
float att = rcp(dot(direction(dist(dir)), k));
bool cone = dot(vec, L_dir) < cos(c_rl);
float spot = cone ? 0 : pow((clampf) dot(vec, L_dir), s_rl);
return struct {

a_cl = a_cl, d_cl = d_cl, s_cl = s_cl,
dir = normalize(dir), att = att, spot = spot

};
}

Here L_dir holds the normalized spotlight direction vector (and is equal to the
sdli vector in the OpenGL lighting equation). dist primitive is used to calculate
the distance vector (1, |v|, |v|2) for a vector v.

5.1.4 Testing procedure

For performance measurement, we use a single sphere tessellated into 1,000,000
triangles. The triangles are rendered using a single triangle strip call in a 512x512

59

window. Although we do not measure ”pure”transformation and lighting perfor-
mance (as rendering involves other steps like triangle setup and rasterization),
transformation and lighting with setup stage are clearly limiting the throughput
of the GL pipeline as increasing the window resolution to 1024x1024 gives almost
no performance penalty.

Most OpenGL lighting parameters are chosen in a way that they can not be
optimized away. For example, light ambient, diffuse, specular intensities are set
to non-zero values so that they affect the final result. All attenuation factors are
set to random positive values for point lights and spotlights, while only constant
attenuation term (which is set to 1) is used for directional lights. This should
represent the common way how lights are used. The viewer is assumed to be
at (0, 0, 0) in eye coordinates (OpenGL also allows the viewer to be placed at
(0, 0,∞), which simplifies per-vertex calculations).

In order not to limit GPU by the CPU-GPU interface constraints (limited
bandwidth), all geometry data (vertices, normals) is uploaded to the graphics
processor local memory. Subsequent rendering calls utilize vertex buffer objects
(via ARB_vertex_buffer_object extension). This extension is used for both the
shading language implementation and the OpenGL implementation.

Note that the shading system tests performed are a measurement of generated
code quality. As the number of rendering commands sent to the GPU is small
in our tests, compared to the work that GPU itself has to perform, vertex and
fragment program quality is essential for achieving good results. When tests
with high number of simple rendering commands were performed, it is likely that
the shading system would perform much slower compared to OpenGL – as the
amount of work done by the shading system would be proportionally much larger.

5.1.5 Performance

We perform six tests for each light type – by varying the number of lights. Re-
sults are listed in table 10. For each test we give performance data (number of
vertices or triangles per second) when lighting model is implemented in the shad-
ing language. We also list the number of vertex instructions generated for each
test. Generated fragment program consists of a single instruction for all these
tests: MOV result.color,fragment.texcoord[0] – vertex-level shading result
(stored in texture coordinate set 0) is simply assigned to the final fragment color.

Results for pure vertex transformation performance are not given in table
10. In case of pure transformation, vertices are only transformed and no lighting
calculations are done. This requires four DP4 instructions in the vertex program.
Performance is almost identical in the OpenGL and shading language implemen-
tations – Radeon 9700 PRO GPU can transform 140 million vertices per second.

Looking at the results, we can see that the OpenGL implementation beats
the shading language in most cases on Radeon 9700 PRO. But the gap is quite
small – the largest difference is in the test with 8 directional lights – the fixed

60

function version works 19% faster. In point light tests, our shader version is faster
in half of the tests, while in spotlight tests, the shader version is faster in two
tests. Strangely, shader version is most competitive in cases of 1 and 8 lights.
Note that in the test with 8 spotlights, the shading compiler version is over two
times faster than the fixed function version! The OpenGL result for this test is
remarkably low compared to the OpenGL result with 6 spotlights. Thus, it is
possible that software solution is used by OpenGL drivers in this case.

It is hard to give full analysis of the performance – in case of simple shaders,
generated shader code seems optimal (a careful inspection did not reveal any
misoptimizations or possible improvements). The likely reasons for the perfor-
mance delta are following (OpenGL implementations are proprietary, thus the
following can be considered only speculation):

• Hardware may include additional instructions that are not exposed in the
ARB vertex programming extension. Likewise, some instruction modifiers
may be supported (like SAT modifier, which is present in the ARB fragment
programming extension).

• Our shading language compiler makes inaccurate assumptions about lower
level microarchitectural details. The current shading compiler makes a
rather simplistic assumption that all instructions have latency and through-
put of 1 instruction/cycle and that all instructions are atomic (not split into
multiple instructions). Also, the compiler does not optimize for superscalar
vertex processors where issuing multiple instructions per clock is possible
if certain conditions are met.

Note that the second point above is satisfied in case of Radeon 9700 PRO GPU –
it includes four symmatrical vertex processing units, each of which consists of a
vector ALU (capable of executing 4D vector operations) and a scalar unit. Both
units work in parallel.

5.1.6 Implementing lighting model in fragment level

It is very straightforward to implement the described lighting model using per-
fragment calculations. This can improve visual quality in areas where lighting
function changes very rapidly – such as spotlight border areas where spoti (see
above) is discontinous.

There are very few necessary changes to be made to the previously described
surface and light shaders: per-vertex variables like P, N and E must be replaced
with their per-fragment counterparts. For example, N could be replaced with
normalize((fragment float3) N). Resulting shaders could be further opti-
mized, for example, spoti calculation could be replaced with a texture lookup,
but for sake of simplicity, such optimizations are omitted.

61

1 light
Characteristic Dir. light Point light Spotlight
Vertices/sec (GL) 42.0M 32.3M 30.2M
Vertices/sec (SH) 41.9M 32.6M 31.3M
VP instructions 26 37 43
2 lights
Characteristic Dir. light Point light Spotlight
Vertices/sec (GL) 33.9M 22.3M 19.5M
Vertices/sec (SH) 32.6M 24.5M 19.3M
VP instructions 38 57 69
3 lights
Characteristic Dir. light Point light Spotlight
Vertices/sec (GL) 28.2M 18.4M 14.6M
Vertices/sec (SH) 25.0M 17.0M 13.7M
VP instructions 49 76 94
4 lights
Characteristic Dir. light Point light Spotlight
Vertices/sec (GL) 23.2M 14.4M 11.6M
Vertices/sec (SH) 21.1M 13.6M 10.5M
VP instructions 60 95 119
6 lights
Characteristic Dir. light Point light Spotlight
Vertices/sec (GL) 17.7M 10.5M 8.2M
Vertices/sec (SH) 15.3M 10.1M 7.7M
VP instructions 82 133 169
8 lights
Characteristic Dir. light Point light Spotlight
Vertices/sec (GL) 14.8M 6.9M 2.9M
Vertices/sec (SH) 12.0M 7.3M 6.5M
VP instructions 104 171 194

Table 10: Performance of the OpenGL lighting model implementations (Radeon
9700 PRO GPU). GL denotes the OpenGL implementation, SH denotes the shad-
ing language implementation. We also list the number of vertex program instruc-
tions generated by the shading compiler for each test.

62

All tests are performed using same hardware and software configuration as the
vertex-level tests. The sphere model is simplified – it consists of 10,000 polygons
(instead of 1,000,000 as in case of vertex level tests). This should move the
bottleneck from vertex programs to fragment programs. Backface culling is also
used, thus only visible fragments are rendered (polygons and fragment not facing
towards the viewer are ignored). Viewport size of 1024x1024 is used for testing.
Despite these differences, the output of fragment-level lighting model is visually
very close to the vertex-level lighting model (despite the fragment-level test case
containing 100 times less polygons).

Results are shown in table 11. Besides performance data, this table also lists
the number of generated fragment and vertex program instructions. In cases
when multiple point or spotlights are used, shaders must be split into several
passes as instruction counts in fragment programs exceed the fragment program
limits on Radeon 9700 GPU. In such cases, instruction counts are given for each
pass separately.

Few conclusions can be made by looking at the results. First, performance
drops considerably when a shader must be split into multiple passes. For example,
the test with 3 directional lights has rougly two times higher performance than
the test with 4 directional lights – the latter requires two passes instead of one.
In case of multiple passes, the number of passes largely determines the shader
throughput. The complexity of individual fragment or vertex programs of these
passes has secondary effect.

By looking how the shaders are split into multiple passes, two interesting
details are revealed. First, the shaders in spotlight tests are almost perfectly
split into multiple passes – instruction counts in individual passes are almost
equal and each light source requires a single additional pass. But point lights are
split in relatively strange way – in test cases with 2, 4, 6 and 8 lights, first passes
consist of only six instructions. At the same time, instruction sequences in final
passes contain over 40 instructions.

Another point to notice is that point light tests with 6 and 8 light sources are
actually slower than the tests with same number of spotlights. The reason is that
these point light tests require 5 and 8 textures for temporary storage. Tests were
performed with a viewport of size 1024x1024, each such texture requires 16MB of
space. When we include the size of the offscreen p-buffer and additional onscreen
and depth buffers, then all these buffers require more than 128MB, which is
the amount of local memory on our Radeon 9700 testing board. The shading
system allows the user to manually reduce the precision of temporary textures
(by default, textures with 32-bit floating point precision are used). When we force
16-bit floating point precision, then tests with 6 and 8 point lights can produce 8.9
and 6.6 million fragments per second, respectively. This is the expected result
and is higher than the results of spotlight tests (even when 16-bit precision is
forced for these tests).

For comparison, we have listed results for GeForce FX 5200 GPU in table

63

11. Compared to Radeon 9700 GPU, GeForce FX 5200 has much weaker imple-
mentation of fragment and vertex programs, but it supports fragment programs
with up to 1024 instructions. Thus all fragment programs generated in our tests
fit into a single pass. Performance results are much lower, even in cases when
Radeon 9700 GPU requires multiple passes.

In case of single pass shaders, Radeon 9700 GPU is roughly 8-10 times faster.
This is reasonable, when we take into account GPU clock frequencies (325MHz in
case of Radeon 9700 PRO GPU versus 250MHz in case of GeForceFX 5200) and
the number of parallel rendering pipelines (8 in case of Radeon 9700 PRO and
1 in case of GeForceFX 5200) for both GPUs. Even when shaders are split into
multiple passes, Radeon 9700 GPU is still approximately 5 times faster. Two
results are unexpected – in tests with 6 and 8 lights, the results of point light
tests are lower compared to the spotlight tests (although instruction counts are
lower for point light tests). It is likely that the code generated for point light
tests is not optimally scheduled for the GeForce FX hardware and the hardware
fails to operate with its full potential.

5.2 Ray-Tracing a Simple Scene

OpenGL rendering model uses polygons as primitives. Higher-order surfaces like
NURBS patches or quadrics must be decomposed into triangles (polygons) before
rendering. Nevertheless, the power of programmable shading units of todays’
GPUs make it possible to emulate other rendering techniques like ray-tracing
[27] or radiosity calculations. In this section we show that ray-tracing a simple
scene can be practical and very efficient while using a high-level shading language.

5.2.1 Ray and sphere intersection using high-level shading language

As an example, let’s use a simple scene containing a single sphere with radius R
and origin at (0, 0, 0). Our goal is to calculate the intersection point x of a ray
originating from a point p, intersecting with the screen grid at a given fragment.
We can formulate this using two equations:

x = p + dt

R2 = dot(x,x)

Here d is direction vector from the ray origin to the current fragment in the
screen grid and t is the distance from the origin to the intersection point (also
unknown). We can find t by solving the following quadratic equation:

at2 + 2bt + c = 0

64

1 light
Characteristic Dir. light Point light Spotlight
Fragments/sec 88.7M 66.0M 52.6M
FP instructions 16 24 30
VP instructions 10 16 16
2 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 57.2M 24.0M 20.0M
FP instructions 28 6,41 30,32
VP instructions 10 10,21 16,21
3 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 42.3M 14.7M 12.5M
FP instructions 39 6,40,26 30,31,32
VP instructions 10 10,21,21 16,21,21
4 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 21.4M 10.7M 9.1M
FP instructions 15,41 6,6,40,42 30,31,31,32
VP instructions 10,15 10,10,21,21 16,21,21,21
6 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 11.0M 4.4M 5.9M
FP instructions 15,15,15,45 6,6,40,6,41,42 30,31,31,31,31,32
VP instructions 10,10,10,15 10,10,21,10,21,21 16,21,21,21,21,21
8 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 7.4M 2.7M 4.3M
FP instructions 15,15,15,15,46,18 6,6,40,6,41,6,41,42 30,31,31,31,31,31,31,32
VP instructions 10,10,10,10,15,15 10,10,21,10,21,10,21,21 16,21,21,21,21,21,21,21

Table 11: Performance of the OpenGL lighting model implemented at fragment
level (Radeon 9700 PRO GPU). Tests are performed using a scene consisting of
10,000 triangles. Besides performance, we list also the number of fragment and
vertex program instructions generated for each test (when shaders are split into
multiple passes then instruction counts are given for pass separately).

65

1 light
Characteristic Dir. light Point light Spotlight
Fragments/sec 9.4M 7.8M 6.7M
FP instructions 16 24 30
VP instructions 10 16 16
2 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 6.7M 4.3M 3.5M
FP instructions 28 44 56
VP instructions 10 16 16
3 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 4.7M 3.1M 2.5M
FP instructions 39 63 81
VP instructions 10 16 16
4 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 3.7M 2.3M 1.9M
FP instructions 50 82 106
VP instructions 10 16 16
6 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 2.7M 1.3M 1.3M
FP instructions 72 120 156
VP instructions 10 16 16
8 lights
Characteristic Dir. light Point light Spotlight
Fragments/sec 2.1M 0.68M 0.81M
FP instructions 94 158 206
VP instructions 10 16 16

Table 12: Performance of OpenGL lighting model implemented at fragment level
(GeForce FX 5200 GPU). Tests are performed using a scene consisting of 10,000
triangles. Besides performance, we list also number of fragment and vertex pro-
gram instructions generated for each test.

66

where a = dot(d,d), b = dot(d,p) and c = dot(p,p)−R2.
Note that with this formulation, x can be also used as a normal vector. In

general, there can be zero, one or two solutions to the equation – in case when
the ray misses the sphere, there is no solution, while when the ray hits the sphere,
there can be one or two intersection points. We must select intersection point
with smaller t value – which is nearest to the viewer. At the same time, we must
ignore negative t values – such points are not visible.

The ray direction vector d used above can be calculated from the fragment
coordinates by applying inverse viewport and modelview transformations.

Listing at figure 18 shows a function written in our shading language that
calculates the nearest intersection point of a ray for the current fragment and a
sphere. Two things should be noted here: __SCREENPOS() is an internal func-
tion that returns the current fragment position in window coordinates (it returns
a triple (x, y, w), the z-coordinate can be derived in case of perspective trans-
formation from the w-coordinate as shown in the code). The conversion from
vertex frequency to fragment frequency when calculating ray_odir is necessary,
as interpolation of normalized vertex vectors does not yield normalized vectors in
fragment frequency – thus vectors must be (re)normalized in fragment program.

Using the intersection routine, we can quickly combine the sphere with any
shading model. The shader is executed by drawing a single quad covering whole
viewport (by issuing four Vertex* calls). Figure 19 shows how the intersection
code can be combined with a diffuse lighting model, bump mapping and simple
texture mapping.

Output of the resulting shader is shown in figure 20. Table 13 lists character-
istics of the compiled shader code and its performance (note that the performance
of the shader does not depend on the size of the sphere – it depends rather on
the size of the viewport). As can be seen from this table, most of the work is
done within the fragment program – the fragment program consists of 31 instruc-
tions, 3 of which are texture instructions. Also, by multiplying the fragment
program instruction count with the number of fragments processed per second,
we get roughly 2.8 billions instructions per second. This number is higher than
the product of Radeon 9700 PRO GPU frequency (325MHz) and the number of
parallel rendering pipelines (8) – which means that each GPU fragment pipeline
is capable of executing multiple instructions per clock.

As a side note, ray-traced spheres can be combined seamlessly with traditional
polygon objects when we assign depth member in addition to color and kill

members in the shader return statement. By providing a custom depth value for
each sphere fragment, we can render polygonal objects and spheres in arbitrary
order and get correct results where the objects are overlapping.

67

typedef struct {
bool hit;
float3 opos;

} intersection_t;

intersection_t intersect(float r)
{
// World-space ray direction and position
matrix4 inv_proj = invert(Mvport * Mproj);
float4 ray_sdir = __SCREENPOS().xyzz * { 1, 1, -Mproj[2][2], 1 };
float4 ray_wdir = inv_proj * ray_sdir;
float4 ray_wpos = { 0, 0, 0, 1 };

// Object-space ray direction and position
matrix4 inv_view = invert(Mview);
float3 ray_odir = normalize((fragment float3) direction(inv_view * ray_wdir));
float3 ray_opos = direction(inv_view * ray_wpos);

// Quadratic equation coefficients (note that a==1 as ray_odir is normalized)
float b = dot(ray_odir, ray_opos);
float c = dot(ray_opos, ray_opos);

// Solve intersection equation. If d < 0, then ray misses sphere.
float d = b * b - (c - r * r);
float t1 = -b + sqrt(d);
float t2 = -b - sqrt(d);
float tt = min(t1 > 0 ? t1 : t2, t2 > 0 ? t2 : t1);

return struct {
hit = d > 0 && tt > 0,
opos = ray_opos + ray_odir * tt

};
}

Figure 18: Ray and sphere intersection calculation code.

Characteristic Value
Fragments per second 90.5M
Frame rate (1024x768 window) 115 fps
Fragment program instruction count 31
Vertex program instruction count 27
Total prim. group instruction count 29

Table 13: Performance and characteristics of the sphere shader (on Radeon 9700
PRO).

68

typedef struct {
float4 color;
float3 direction;

} light_t;

surface shader fragment_t sphere(texref texmap, texref normalmap)
{
// Calculate intersection info
intersection_t is = intersect(5);

// Simple Lambertian reflectance model
float4 illum =

integrate(light_t lt) {
float3 n_o = direction(texCUBE(normalmap, is.opos)) * 2 - { 1, 1, 1 };
float3 n_w = transpose(invert(affine(Mview))) * n_o;
return (clampf) dot(lt.direction, n_w) * lt.color;

} + Ca;

// Find final color
float4 color = illum * texCUBE(texmap, is.opos);
return struct { color = color, kill = !is.hit };

}

light shader light_t directional(float4 color)
{
return struct { color = color, direction = L };

}

Figure 19: Shaders for ray-traced sphere.

Figure 20: Screenshot of a ray-traced sphere.

69

5.3 Implementing High-Quality Scene Preview Modes for
3D Authoring Packages

In this section we discuss how the shading system features can be used to a
render a large class of custom materials defined in the Softimage|XSI authoring
package. Softimage|XSI is built around a flexible shading system of the mental
ray rendering software [5]. Complex materials can be built from a set of simpler
shading nodes which are connected together. This is similar to shade tree ap-
proach discussed in chapter three, but in mental ray the concept is generalized –
shaders are divided into more classes.

The possibility to combine simple shaders to create complex effects
gives artists very powerful control over object appearance. Unfortunately,
Softimage|XSI 3.5 and other modelling packages let an artist preview their work
only in a special preview window. Rendering in this preview window may take
from several to tens of seconds when complex materials are used. At the same
time, the default viewing mode based on OpenGL works in real time, but sup-
ports only a few simple nodes and basic texturing.

Mostly, due to the flexibility of fragment programs in modern GPUs, it is pos-
sible to provide higher quality real-time renderings of customized materials than
in standard OpenGL. The shading system described in this thesis provides quite
straightforward way to map materials with any complexity into graphics hard-
ware. In the following subsections we will give a sketch of a general framework
of the implementation. We will first give an overview of Softimage|XSI shad-
ing capabilities and then focus on shading system API and the compiler. Thus,
this section provides a real-world application example of the shading system and
brings out its benefits.

As the Softimage|XSI approach to materials and shading is more complex
than provided by other packages like Lightwave or 3D Studio MAX, the dis-
cussed methods for implementing real-time preview modes are applicable to these
packages also.

5.3.1 XSI shader classes

Figure 21 shows an example material shader graph in Softimage|XSI 3.5. This
material is used to provide a ”rough metallic”look of the head object in figures
22, 23.

The example consists of seven shading nodes that are connected together and
form a single material. Two leftmost nodes are used for two textures: the upper
texture is used to modulate surface colors, while the lower provides custom nor-
mal vectors for the head surface. These nodes connect to two image nodes, which
associate textures with texture spaces (custom texture coordinate sets that are as-
sociated with the head object vertices). ’Phong’ node is the central shading node
in this graph – this node provides real shading calculations and uses light sources

70

associated with the head model. ’mul color’ node modulates the calculated Phong
shading results with a custom lightmap. Last node, ’ospace normalmap’ trans-
forms the normal vectors provided by ’NormalMap image’ into a format that is
usable by shading nodes like ’Phong’.

Softimage|XSI materials provide several connection points – two of which
(’Surface’ and ’Bump map’) are shown in the figure. But this is only a small
subset of shader classes that can be used to customize material. The following
list includes all available shader classes:

• Surface shader determines the basic color of an object as well as reflection,
refraction and transparency.

• Volume shader modifies rays as they pass through an object or scene.

• Environment shader is used instead of a surface shader when light rays
”escape”scene (do not hit any object).

• Contour shader is used to customize appearance of object edges.

• Displacement shader can move surface points geometrically and can be used
to add roughness to objects.

• Shadow shader determines how the light is altered when the object ob-
structs light.

• Photon and photon volume shaders are used for global illumination effects.

• Bump map shaders are used to provide roughness illusion by perturbing
the surface normal.

All these shaders can be combined into materials. Besides customizing ma-
terials, shaders can be used to customize lights and image postprocessing. Light
shaders and postprocessing shaders are not discussed here, as they are not directly
associated with material graphs.

Shader classes that can be efficiently implemented using our shading system
include surface, environment and bump map shaders. Displacement shaders could
be implemented efficiently on future hardware, when texturing support becomes
available in vertex programs also. Volume shader support is also possible, but
the shading system does not provide straightforward support for this.

5.3.2 Shader connection points

Note that directed edges of the shader graph in figure 21 have different colors.
Edge colors are used to denote data types. Red color denotes RGBA color type,
yellow denotes geometric 3D vector and blue denotes texture object. In addition,
scalars, integers and booleans are also supported. Each shader connection point

71

Figure 21: An example shader graph in Softimage|XSI environment

has specific type, likewise shader outputs a value of specific type. Only shaders
with compatible types can be connected together.

Besides other shaders, constants and cubic splines can be connected to most
shader connection points (such connection points are not shown in figure 21).
For example, Phong shading node supports around 20 different parameters that
describe diffuse, specular components of illumination model, reflection, refrac-
tion and transparency. In case of the head model, ambient, diffuse and specular
parameters are used, while reflection, refraction and transparency effects are dis-
abled.

5.3.3 Example

Figures 22, 23 and 24 give example of a simple scene, rendered using mental
ray renderer, our shading language scene viewer and Softimage internal OpenGL
renderer, respectively. First two images have very similar visual attributes and
look much better than the third one. The greatest difference between the first
two images is the omission of shadow behind the statue, while head material and
spotlight area are visually very close. The third image has very poor quality at
the spotlight area and head material looks drastically different.

Note that the first image takes roughly ten seconds to render at 1280x900
resolution, while the second image is renderered in real-time, 35 frames per second
at same resolution on a Radeon 9700 PRO GPU. The missing shadow could be
included in the real-time version (although with lower quality).

The scene consists of three objects (head, statue and floor), each with its
own material, and three light sources (spotlights). The floor is affected only by
one light source, while both the head and the statue are affected by all three
spotlights. Table 14 gives details about compiled shaders. Performance is mostly

72

Figure 22: Test scene rendered using mental ray renderer.

Figure 23: Test scene rendered using real-time shading system.

Figure 24: Softimage|XSI OpenGL preview mode of the scene.

73

Characteristic Head Statue Floor
Passes 4 1 1
FP instructions 12,46,33,51 49 20
VP instructions 11,17,17,18 18 18

Table 14: Instruction counts in compiled shaders of example scene. FP denotes
fragment program and VP vertex program.

limited by head shader which requires four rendering passes. Statue material, al-
though affected by three spotlights, does not have any specular term contribution,
thus its compiled shader is much simpler.

5.3.4 Translating XSI shader nodes

As an example, we describe how to automatically translate XSI surface shader
graphs into our shading system. First, we must have the following shaders im-
plemented in the shading language:

1. We must have basic pass-through shader with constant and primitive group
input frequency for each type used in the XSI shader graphs. For example,
we need the following shaders for RGBA color type:

surface shader float4 const_color(constant float4 input)
{

return input;
}

surface shader float4 uniform_color(primitive group float4 input)
{

return input;
}

2. Shader nodes should be implemented in the shading language. Mental ray
supports dozens of shader nodes, but most scenes require a small subset
only. As an example, ’mul color’ shader used in the example above can be
implemented as follows:

surface shader float4 mul_color(float4 color1, float4 color2)
{

return color1 * color2;
}

Translation scheme is straightforward. The following pseudo-C listing shows
how this can be done (note that shader API calls are prefixed with ’sgl’ string):

74

RealtimeShader translateShader(XSIShader xsi_shader)
{
RealtimeShader shader = sglLoadShader(xsi_shader.name);
foreach (XSIParam xsi_param in xsi_shaders)
{

RealtimeShader param_shader;
switch (xsi_param.connection_type)
{
case Constant: param_shader = translateConst(xsi_param.constant); break;
case FCurve: param_shader = translateFCurve(xsi_param.fcurve); break;
case Shader: param_shader = translateShader(xsi_param.shader); break;
}
sglBindShader(shader);
sglUseShader(sglParameterHandle(xsi_param.name), param_shader);

}
sglBindShader(shader);
// ... call sglUseLight procedure to attach required light shaders
sglPrecompileShader();
return shader;

}

In this listing, we first the load real-time shader using LoadShader API pro-
cedure, then scan all parameters of the original shader. When a parameter has
constant value or is connected to a cubic curve (the term f-curve is used in
the code), then another translation procedure is called (look below). When the
parameter is connected to another shader, then translateShader is called recur-
sively. Parameter translation creates a new shader that is attached to the current
shader using UseShader API procedure.

After all parameters have been translated, we can attach light sources to
the surface using UseLight API procedure. After that, the surface shader can
be precompiled. Note that the final surface shader, that is connected to the
material directly, must be compiled using CompileShader procedure instead of
PrecompileShader. This is not shown in this listing.

Translation of constants and cubic curves is simpler, we load shader corre-
sponding to the given constant or cubic curve type and then set its only param-
eter:

RealtimeShader translateConst(XSIConst xsi_const)
{
RealtimeShader shader;
switch (xsi_const.type)
{
case Scalar:

param_shader = sglLoadShader("const_scalar");
sglParameter1f(sglParameterHandle("input"), xsi_const.value.scalar);
break;

// ... similar cases for other types: booleans, integers, vectors, colors
}

75

return shader;
}

RealtimeShader translateFCurve(XSIFCurve xsi_fcurve)
{
// ... similar to translateConst, but uniform shaders must be used instead
// ... uniform variables can be later updated for each frame as needed

}

Although this translation is straightforward, the generated shaders are very ef-
ficient, even when shader nodes themselves are complicated. For example, Phong
node may have around 20 connection points – but usually only a few of them are
used and the others are left to default state. In default state such parameters
are usually zero and have no influence upon final shading result. The translation
scheme uses constant frequency pass-through shaders (const_color, for exam-
ple) for such parameters. As the values of these parameters are known to the
compiler, our shading compiler can often remove such terms, thus creating special
optimized versions of the shaders.

New shader nodes can be added to this system without changing the described
translation code. This translation scheme can be applied to light shaders and
deformation shaders also.

5.4 Future Work

Advancements in real-time shading systems are driven mostly by advancements
of graphics hardware. So, to conclude this chapter, we give a short overview
how GPUs have advanced during the last three years and discuss how these
developments can be utilized in the presented shading system.

5.4.1 Advancements in hardware

When the work with the experimental shading system started, floating point
model was not yet available for fragment programs. Table 15 gives a short
overview how hardware support for shading has advanced in terms of perfor-
mance and features. Note that besides higher performance and larger instruction
count limits, new hardware provides dynamic branching and full floating point
model that allows implementing shading models that were not even possible be-
fore.

Capabilities of vertex and fragment units are converging – floating point model
is used in both, while limited texture support is starting to appear in vertex
pipeline also. Unified model for vertex and fragment program could theoretically
provide better load-balancing – central scheduler could use unified pool of ver-
tex and fragment processors and allocate these to perform vertex and fragment
calculations as needed.

76

Characteristic GeForce 3 GeForce 6800U
Operating frequency 200MHz 400MHz
Pixel throughput (billions pixels/sec) 0.8 6.4
Max. fragment instructions 12 65536
Primary datatype used in fragment pipeline 9-bit FX 32-bit FP
Vertex throughput (millions vertices/sec) 50 600
Max. vertex instructions 128 65536
Primary datatype used in vertex pipeline 32-bit FP 32-bit FP
Introduction date February 2001 April 2004

Table 15: Comparison of hardware advancements during the development of the
experimental real-time shading system (FP means floating-point, while FX means
fixed-point).

Up to this point, the goal of graphics hardware has been to provide movie-
quality graphics in real-time. Although this is a moving target (quality of offline
rendering is advancing constantly), the gap between offline rendering and real-
time rendering is becoming smaller. So it is likely that graphics hardware will be
utilized for offline rendering in the future to provide shorter rendering times.

5.4.2 Extending the shading system

Due to advancements of graphics hardware, several new features could be imple-
mented in our shading system. First, general support for control-flow constructs
has become possible. This includes simple if, for and while statements, but
support for subroutines and recursion is still very limited – return address stack
depth is limited. Another feature that could be implemented, is support for
vertex textures. Vertex textures could be utilized as large look-up tables – this
can speed up calculations of complex trigonometric functions. Besides, vertex
textures can be used to displace geometry in deformation shaders.

Shading compiler could use glsl as a target language instead of the ARB
fragment and vertex programming extensions. Similar approach is used by many
high-level compilers, where C language is used as a portable target language (so
existing C compilers could be utilized). This approach provides real benefits
as the discussed shading language is higher-level than glsl – it divides shaders
into three classes, provides specialized integrate construct (enabling the user to
decouple surface and light descriptions) and allows the user to write shaders that
are automatically translated into vertex and fragment programs. By utilizing
glsl language as a target language, better code quality and performance could be
achieved.

Another possible development would be integration of shading API with a
scene-graph interface. With the scene-graph approach (where full description of

77

scene is available), shading system could be more efficient and provide support
for other shader classes like atmosphere shaders. Unlike standardized lower-level
graphics APIs like OpenGL and DirectX, there exist tens of scene-graph APIs
with different features [10, 34]. Thus, scene graph approach is also more risky –
it is difficult to create a scene-graph level API that is compatible with multiple
existing scene graph implementations.

As a final note, by looking at the relatively high instruction count limits in
table 15, one may assume that splitting shaders into multiple passes is not neces-
sary with latest hardware. Unfortunately, this is not true. Although instruction
count limits have become large, the number of supported temporary registers is
relatively low – 32. Even worse, the number of texture coordinate sets is still
eight. Thus, it is quite easy to create high-level shader exceeding these resources
and high-level shading systems must still split complex shaders into multiple
passes.

78

6 Conclusions

This thesis has given an overview of existing real-time shading systems and dis-
cussed the design of an experimental shading system. The discussed system is
based on concepts introduced by Stanford RTSL, most notably it uses similar
computation-frequency concept. This allows the user to write a single high-level
shader that is divided by the compiler into primitive group, vertex and fragment
programs in a well-defined manner. This is different from the approach of other
high-level shading languages like HLSL, Cg or glsl – in these languages, the user
must specify separate shaders for each programmable unit of graphics processor
– and must connect these shaders together manually. Unlike Stanford RTSL, the
discussed shading system provides extended metaprogramming support. This
allows the user to create complex shaders by combining together simple shaders.

In addition, we compare the performance of the discussed shading system to
the fixed-function OpenGL pipeline. Although our system is little bit slower in
most tests (the largest difference is less than 20%), we believe that this penalty
is justified as it is very easy to extend the implemented lighting model or convert
the per-vertex lighting model to per-fragment model.

We provide examples of two possible applications of real-time shading systems.
First, we implement a simple ray-tracer using the shading language. Then, we
demonstrate a possbility to reduce the gap between offline rendering systems and
real-time systems by implementing an important subset of Softimage|XSI shader
graphs using our shading system. The discussed implementation is efficient and
simple, largely due to the metaprogramming features present within our shading
system.

79

Reaalaja varjutussüsteemi disain ja rakendused

Mark Tehver

Kokkuvõte

Viimaste aastate jooksul on graafikaprotsessorite puhul asendatud paljud
piiratud funktsionaalsusega osad programmeeritavate osade vastu. Peamiseks
põhjuseks on vajadus võimaldada graafikaprotsessoritel kasutada erinevaid var-
jutusmeetodeid, mis määravad kolmemõõtmeliste objektide visuaalsed omadused.
Klassikalised meetodid nagu Phongi varjutusmudel annavad häid tulemusi vaid
väheste materjalide puhul. Samas pole võimalik luua ühtset praktilist mudelit,
mis sobiks kõikide materjalide jaoks ja mis oleks samas ka efektiivselt reali-
seeritav. Seetõttu on antud võimalus kirjeldada erinevaid varjutusprotseduure,
mis täidetakse graafikaprotsessorite poolt. Varjutusprotseduuride kirjeldamine
graafikaprotsessori jaoks toimub aga masinkäskude tasemel ja nõuab kasutajalt
detailseid teadmisi graafikaprotsessorite arhitektuuri kohta. Seetõttu on viimase
paari aasta jooksul loodud mitmed varjutussüsteemid, mis peidavad madalama
taseme detailid kasutaja eest ja lubavad keskenduda paremini varjutusmudelite
realiseerimisele.

Käesolev töö kirjeldab ühe varjutussüsteemi loomist, annab ülevaate spetsiaal-
sest varjutuskeelest ja probleemidest, mis tuleb lahendada sarnaste süsteemide
disainimisel. Lisaks annab töö ka ülevaate loodud süsteemi efektiivsusest,
töös võrreldakse OpenGL graafikaliidese standardvarjutusmudeli kiirust varju-
tussüsteemi abil loodud mudeliga. Lisaks näitab töö, kuidas on võimalik kasutada
varjutussüsteemi ka graafikaprotsessorite jaoks mittestandardsete joonistusmee-
todite realiseerimiseks, nagu näiteks piiratud ray-tracing meetodi jaoks. Lõpuks
tuuakse näide ka varjutussüsteemi peamise rakendusvaldkonna kohta – kirjel-
datakse, kuidas lähendada reaalaja graafikat ja nn. offline graafikat. Näitena on
realiseeritud Softimage|XSI varjutusgraafide automaatne transleerimine varju-
tussüsteemi abil.

80

A Experimental Shading Language Syntax

Decl

Prog

;

VarDecl ;

VarDecl = Expr ;

FuncDecl StmtBlock

__internal VarDecl ;

__internal FuncDecl ;

typedef BasicType identifier

Decl

DeclCtxt
FreqType identifier

VarDecl

DeclCtxt
FreqType

identifier

operator Op

operator ()

(ParamList)

FuncDecl

deformation

surface

light

shader

DeclCtxt

Freq
BasicType

FreqType

81

constant

vertex

primitive group

fragment

Freq

PrimType

BasicType [integer_const]

struct {
BasicTypeidentifier;

}

BasicType

bool

int

clampf

float

texref

type_synonym

PrimType

FreqType
identifier

,

ParamList

{ Stmt }

StmtBlock

82

VarStmt
;

FuncDecl StmtBlock

if (Expr) StmtBlock

if (Expr) StmtBlock else StmtBlock

while (Expr) StmtBlock

for (
VarStmt

; Expr ;
VarStmt

) StmtBlock

return Expr ;

Stmt

Var = Expr

VarDecl

VarDecl = Expr

VarStmt

identifier

Var [Expr]

Var . identifier

Var

Expr ? Expr : Expr

Binary

Expr

Binary BinaryOp Binary

Unary

Binary

83

– Unary

! Unary

(FreqType) Unary

Primary

Unary

(Expr)

{
Expr

,

}

struct {
identifier = Expr

,

}

Primary [Expr]

Primary . identifier

identifier (
Expr

,

)

integrate (FreqType identifier) StmtBlock

identifier

integer_const

float_const

clampf_const

bool_const

Primary

BinaryOp

!

? :

Op

84

&&

||

==

!=

>

<

>=

<=

+

–

*

/

BinaryOp

85

B Shading Language Prelude File

/*
* Shading language built-in types, constants, operators and functions
*
* (c) 2001 Mark Tehver
*/

typedef float[2] float2;
typedef float[3] float3;
typedef float[4] float4;
typedef clampf[2] clampf2;
typedef clampf[3] clampf3;
typedef clampf[4] clampf4;
typedef float[2][2] matrix2;
typedef float[3][3] matrix3;
typedef float[4][4] matrix4;

// Expected output type of deformation shaders
typedef struct {
float4 position; float3 normal; float3 binormal; float3 tangent;

} deformation_t;

// Return type for advanced surface shaders
// (provides support for overwriting default depth value and killing fragment)
typedef struct {
float4 color; float depth; bool kill;

} fragment_t;

/*
* All common operations generated through macro expansion
*/

#foreach Freq (constant, primitive group, vertex, fragment)
__internal Freq float operator () (Freq int);
__internal Freq float operator () (Freq clampf);
__internal Freq clampf operator () (Freq float);

__internal Freq bool operator >= (Freq float, Freq float);
__internal Freq bool operator < (Freq float, Freq float);
__internal Freq bool operator ! (Freq bool);
__internal Freq bool operator && (Freq bool, Freq bool);
__internal Freq bool operator || (Freq bool, Freq bool);

#foreach Type (float, float2, float3, float4)
__internal Freq Type operator - (Freq Type);
__internal Freq Type operator + (Freq Type, Freq Type);
__internal Freq Type operator - (Freq Type, Freq Type);
__internal Freq Type operator * (Freq Type, Freq Type);

__internal Freq Type abs(Freq Type);

86

__internal Freq Type floor(Freq Type);
__internal Freq Type frac(Freq Type);
__internal Freq Type min(Freq Type, Freq Type);
__internal Freq Type max(Freq Type, Freq Type);
__internal Freq float dot(Freq Type, Freq Type);

#endfor

__internal Freq float rcp(Freq float); // rcp(x)=1/x
__internal Freq float rsqrt(Freq float); // rsqrt(x)=1/sqrt(x)
__internal Freq float exp2(Freq float); // exp2(x)=pow(2, x)
__internal Freq float log2(Freq float); // log2(x)=log(2, x)
__internal Freq float pow(Freq float, Freq float);

#endfor

/*
* Texref operations
*/

#foreach Freq (constant, primitive group)
__internal Freq bool isnil(Freq texref); // return true if texref is 0

#endfor

/*
* Trigonometrical, approximation functions
*/

#foreach Freq (constant, primitive group, fragment)
__internal Freq float sin(Freq float);
__internal Freq float cos(Freq float);

#endfor

#foreach Freq (primitive group, vertex, fragment)
__internal Freq float3 cross(Freq float3, Freq float3);

#endfor

__internal constant int operator () (constant float);
__internal constant int operator - (constant int);
__internal constant int operator + (constant int, constant int);
__internal constant int operator - (constant int, constant int);
__internal constant int operator * (constant int, constant int);
__internal constant float operator / (constant float, constant float);

__internal constant int abs(constant int);
__internal constant int min(constant int, constant int);
__internal constant int max(constant int, constant int);
__internal constant float sqrt(constant float);

/*
* Lighting operations
*/

87

// See ARB vertex and fragment program spec. for definitions
#foreach Freq (vertex, fragment)
__internal Freq float3 lit(Freq float, Freq float, Freq float);
__internal Freq float4 dist(Freq float, Freq float);

#endfor

/*
* Fragment level operations
*/

__internal fragment float4 tex1D(primitive group texref, fragment float);
__internal fragment float4 tex1D(primitive group texref, fragment float2);
__internal fragment float4 tex2D(primitive group texref, fragment float2);
__internal fragment float4 tex2D(primitive group texref, fragment float3);
__internal fragment float4 tex3D(primitive group texref, fragment float3);
__internal fragment float4 tex3D(primitive group texref, fragment float4);
__internal fragment float4 texRECT(primitive group texref, fragment float2);
__internal fragment float4 texRECT(primitive group texref, fragment float3);
__internal fragment float4 texCUBE(primitive group texref, fragment float3);

// Shadow functions work as GL_ARB_shadow extension specifies
#ifdef GL_ARB_fragment_program_shadow
__internal fragment float4 shadow1D(primitive group texref, fragment float2);
__internal fragment float4 shadow1D(primitive group texref, fragment float3);
__internal fragment float4 shadow2D(primitive group texref, fragment float3);
__internal fragment float4 shadow2D(primitive group texref, fragment float4);
__internal fragment float4 shadowRECT(

primitive group texref, fragment float3
);
__internal fragment float4 shadowRECT(

primitive group texref, fragment float4
);

#endif

// Linear interpolation: lerp(x,y,c)=(1-c)*x + c*y
#foreach Type (float, float2, float3, float4)
__internal fragment Type lerp(fragment Type, fragment Type, fragment Type);

#endfor

#foreach Type (float2, float3, float4)
__internal fragment Type lerp(fragment Type, fragment Type, fragment float);

#endfor

/*
* Matrix operations
*/

#foreach Type (matrix2, matrix3, matrix4)
__internal primitive group Type operator - (primitive group Type);
__internal primitive group Type

operator + (primitive group Type, primitive group Type);

88

__internal primitive group Type
operator - (primitive group Type, primitive group Type);

__internal primitive group Type
operator * (primitive group Type, primitive group Type);

__internal primitive group Type invert(primitive group Type);
__internal primitive group Type transpose(primitive group Type);

#endfor

__internal primitive group matrix3 affine(primitive group matrix4);

/*
* Derived arithmetic operations
*/

float2 operator * (float2 v, float s) { return v * { s, s }; }
float2 operator * (float s, float2 v) { return { s, s } * v; }
float3 operator * (float3 v, float s) { return v * { s, s, s }; }
float3 operator * (float s, float3 v) { return { s, s, s } * v; }
float4 operator * (float4 v, float s) { return v * { s, s, s, s }; }
float4 operator * (float s, float4 v) { return { s, s, s, s } * v; }

float operator / (float x, float y)
{
return x * rcp(y);

}

bool operator <= (float x, float y)
{
return y >= x;

}

bool operator > (float x, float y)
{
return y < x;

}

bool operator == (float x, float y)
{
return x >= y && y >= x;

}

bool operator != (float x, float y)
{
return x < y || y < x;

}

float sqrt(float x)
{
return rsqrt(x) * x;

}

89

float ceil(float x)
{
return -floor(-x);

}

float2 sincos(float x)
{
// First 4 members of Taylor series
float pi = 3.14159265358979;
float x1 = frac(x * (0.5 / pi) + 0.5) * (2 * pi) - pi;
float x2 = x1 * x1;
float x4 = x2 * x2;
float x6 = x4 * x2;
float x8 = x4 * x4;
float4 u = { x2, x4, x6, x8 };
float s = x1 * (1 + dot(u, { -1.0/6.0, 1.0/120.0, -1/5040.0, 1/362880.0 }));
float c = 1 + dot(u, { -1.0/2.0, 1.0/24.0, -1/720.0, 1/40320.0 });
return { s, c };

}

float sin(float x)
{
return sincos(x)[0];

}

float cos(float x)
{
return sincos(x)[1];

}

float sign(float x)
{
return x < 0 ? -1 : (x > 0 ? 1 : 0);

}

float clamp(float x, float x0, float x1)
{
return min(max(x, x0), x1);

}

float step(float x0, float x)
{
return x < x0 ? 0 : 1;

}

float smoothstep(float x0, float x1, float x)
{
clampf sx = (clampf) ((x - x0) / (x1 - x0));
return (-2 * sx + 3) * sx * sx;

}

90

float mod(float x, float y)
{
return frac(x / y) * y;

}

/*
* Derived vector operations
*/

float length(float2 v) { return sqrt(dot(v, v)); }
float length(float3 v) { return sqrt(dot(v, v)); }
float length(float4 v) { return sqrt(dot(v, v)); }

float3 rgb(float4 v)
{
return { v[0], v[1], v[2] };

}

float alpha(float4 v)
{
return v[3];

}

float3 direction(float4 v)
{
return rgb(v);

}

float3 normalize(float3 v)
{
float s = rsqrt(dot(v, v));
return v * s;

}

float4 project(float4 v)
{
float s = rcp(v[3]);
return v * s;

}

float3 cross(float3 v1, float3 v2)
{
float x = v1[1] * v2[2] - v1[2] * v2[1];
float y = v1[2] * v2[0] - v1[0] * v2[2];
float z = v1[0] * v2[1] - v1[1] * v2[0];
return { x, y, z };

}

float3 faceforward(float3 n, float3 i)
{
return dot(n, i) < 0 ? -n : n;

91

}

float3 reflect(float3 v, float3 n)
{
float3 n_unit = normalize(n);
return (2 * dot(n_unit, v)) * n_unit - v;

}

#foreach Type (float, float2, float3, float4)
Type lerp(Type a, Type b, float t)
{

return a * t + b * (1 - t);
}

#endfor

float2 lerp(float2 a, float2 b, float2 t)
{
return a * t + b * ({ 1, 1 } - t);

}

float3 lerp(float3 a, float3 b, float3 t)
{
return a * t + b * ({ 1, 1, 1 } - t);

}

float4 lerp(float4 a, float4 b, float4 t)
{
return a * t + b * ({ 1, 1, 1, 1 } - t);

}

/*
* Matrix operations
*/

matrix2 identity2()
{
return { { 1, 0 }, { 0, 1 } };

}

matrix3 identity3()
{
return { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };

}

matrix4 identity4()
{
return { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } };

}

matrix3 affine(matrix4 m)
{

92

return {
{ m[0][0], m[0][1], m[0][2] },
{ m[1][0], m[1][1], m[1][2] },
{ m[2][0], m[2][1], m[2][2] }

};
}

matrix2 transpose(matrix2 m)
{
return
{

{ m[0][0], m[1][0] },
{ m[0][1], m[1][1] }

};
}

matrix3 transpose(matrix3 m)
{
return {

{ m[0][0], m[1][0], m[2][0] },
{ m[0][1], m[1][1], m[2][1] },
{ m[0][2], m[1][2], m[2][2] }

};
}

matrix4 transpose(matrix4 m)
{
return {

{ m[0][0], m[1][0], m[2][0], m[3][0] },
{ m[0][1], m[1][1], m[2][1], m[3][1] },
{ m[0][2], m[1][2], m[2][2], m[3][2] },
{ m[0][3], m[1][3], m[2][3], m[3][3] }

};
}

float2 operator * (matrix2 m, float2 v)
{
return { dot(m[0], v), dot(m[1], v) };

}

float2 operator * (float2 v, matrix2 m)
{
matrix2 mt = transpose(m);
return { dot(mt[0], { v[0] }.xx), dot(mt[1], { v[1] }.xx) };

}

float3 operator * (matrix3 m, float3 v)
{
return { dot(m[0], v), dot(m[1], v), dot(m[2], v) };

}

93

float3 operator * (float3 v, matrix3 m)
{
matrix3 mt = transpose(m);
return { dot(mt[0], { v[0] }.xxx),

dot(mt[1], { v[1] }.xxx),
dot(mt[2], { v[2] }.xxx) };

}

float4 operator * (matrix4 m, float4 v)
{
return { dot(m[0], v), dot(m[1], v), dot(m[2], v), dot(m[3], v) };

}

float4 operator * (float4 v, matrix4 m)
{
matrix4 mt = transpose(m);
return { dot(mt[0], { v[0] }.xxxx), dot(mt[1], { v[1] }.xxxx),

dot(mt[2], { v[2] }.xxxx), dot(mt[3], { v[3] }.xxxx) };
}

matrix2 operator + (matrix2 m1, matrix2 m2)
{
return { m1[0] + m2[0], m1[1] + m2[1] };

}

matrix3 operator + (matrix3 m1, matrix2 m2)
{
return { m1[0] + m2[0], m1[1] + m2[1], m1[2] + m2[2] };

}

matrix4 operator + (matrix4 m1, matrix4 m2)
{
return { m1[0] + m2[0], m1[1] + m2[1], m1[2] + m2[2], m1[3] + m2[3] };

}

matrix2 operator * (matrix2 m1, matrix2 m2)
{
matrix2 m2t = transpose(m2);
return { m2t * m1[0], m2t * m1[1] };

}

matrix3 operator * (matrix3 m1, matrix3 m2)
{
matrix3 m2t = transpose(m2);
return { m2t * m1[0], m2t * m1[1], m2t * m1[2] };

}

matrix4 operator * (matrix4 m1, matrix4 m2)
{
matrix4 m2t = transpose(m2);
return { m2t * m1[0], m2t * m1[1], m2t * m1[2], m2t * m1[3] };

94

}

/*
* Built-in variables
*/

__internal primitive group float4 __viewportscale;
__internal primitive group matrix4 __modelview;
__internal primitive group matrix4 __projection;
__internal primitive group float4 __ambient;

__internal light primitive group float4 __lightpos;
__internal light primitive group float3 __lightdir;
__internal light primitive group float3 __lightup;

/*
* Special built-in internal functions
*/

// User-specified object-space vertex position and tangent-space
__internal vertex float4 __POSITION();
__internal vertex float3 __NORMAL();
__internal vertex float3 __TANGENT();
__internal vertex float3 __BINORMAL();

// Texture coordinates for mapping texture 1-1 to viewport
__internal vertex float3 __SCREENPOS();

// Compiler replaces this with deformation shader output
__internal vertex deformation_t __DEFORM();

// Framebuffer color of current fragment
__internal fragment float4 __SCREENCOLOR();

/*
* Context-dependent variables for shaders
*/

#ifdef __HINT_UNIT
float3 __normalize(float3 v) { return v; }

#else
float3 __normalize(float3 v) { return normalize(v); }

#endif

#ifdef __HINT_PROJECTED
float4 __project(float4 v) { return v; }

#else
float4 __project(float4 v) { return project(v); }

#endif

#ifdef __HINT_RIGID

95

vertex float3 __eyenormal =
__normalize(affine(__modelview) * __DEFORM().normal);

#else
vertex float3 __eyenormal =

__normalize(transpose(invert(affine(__modelview))) * __DEFORM().normal);
#endif

vertex float4 __eyeposition =
__project(__modelview * __DEFORM().position);

vertex float3 __eyebinormal =
__normalize(affine(__modelview) * __DEFORM().binormal);

vertex float3 __eyetangent =
__normalize(affine(__modelview) * __DEFORM().tangent);

// NOTE: ARB vp does not have a "proper" ?: operator
// (it is emulated using multiplication),
// thus, we must be careful not to introduce infinities inside
// conditional expression
// (NV3x does not seem to enforce 0*inf=0, while R300 does)
light vertex float3 __eyelight =
__lightpos[3] == 0

? -direction(__lightpos)
: direction(__eyeposition - (

__lightpos[3] == 0 ? { 0, 0, 0, 0 } : project(__lightpos))
);

/*
* Public matrix variables
*/

// Modelview, projection and viewport transformation matrices
primitive group matrix4 Mview = __modelview;
primitive group matrix4 Mproj = __projection;
primitive group matrix4 Mvport = {

{ __viewportscale[0], 0, 0, __viewportscale[0] },
{ 0, __viewportscale[1], 0, __viewportscale[1] },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 }

};

/*
* Public vertex-level variables
*/

// Surface positions, tangent-space vectors, eye vector, object-space position
surface vertex float4 P = __eyeposition;
surface vertex float3 N = __eyenormal;
surface vertex float3 T = __eyetangent;
surface vertex float3 B = __eyebinormal;
surface vertex float3 E =
normalize(direction(__modelview * __DEFORM().position));

96

surface vertex float4 Pobj = __project(__DEFORM().position);

// Eye-space light vector, half-angle vector
light vertex float3 L = normalize(-__eyelight);
light surface vertex float3 H = normalize(L - E);

// Light-space surface vector, surface distance
light vertex float3 S =
{ cross(__lightdir, __lightup), __lightup, __lightdir } * __eyelight;

light vertex float Sdist = length(__eyelight);

/*
* Deformation shader input variables
*/

// Object-space position, tangnent-space vectors
deformation vertex float4 PP = __POSITION();
deformation vertex float3 NN = __NORMAL();
deformation vertex float3 TT = __TANGENT();
deformation vertex float3 BB = __BINORMAL();

/*
* Predefined colors
*/

// Ambient color, previous fragment color
surface primitive group float4 Ca = __ambient;
surface fragment float4 Cprev = __SCREENCOLOR();

/*
* Default deformation shader (used when user does not specify any)
*/

float4 __position_transform(float4 pos)
{
return (__projection * __modelview) * pos;

}

deformation shader deformation_t __default_deformation()
{
return struct { position = PP, normal = NN, binormal = BB, tangent = TT };

}

97

C C Language API for Shading System

/*
* This file is part of shading system runtime
*
* (c) 2001 Mark Tehver
* Permission to copy, use, modify, sell and distribute this software
* is granted provided this copyright notice appears in all copies.
* This software is provided "as is" without express or implied
* warranty, and with no claim as to its suitability for any purpose.
*/

#ifndef sgl_API_h

#define sgl_API_h

#ifdef _WIN32
#include <windows.h>
#endif
#include <GL/gl.h>

#ifdef _WIN32
#ifdef SGL_DLL_EXPORTS
#define SGL_API __declspec(dllexport)
#else
#define SGL_API __declspec(dllimport)
#endif
#define SGL_APIENTRY APIENTRY
#else
#define SGL_API
#define SGL_APIENTRY
#endif

#ifdef __cplusplus
extern "C" {
#endif

/*
* Constants
*/

/* Vertex array usage types */

#define SGL_DYNAMIC_USAGE 0x1000
#define SGL_STATIC_USAGE 0x1001
#define SGL_STREAM_USAGE 0x1002

/* Vertex array types */

#define SGL_VERTEX_ARRAY 0x1100
#define SGL_NORMAL_ARRAY 0x1101

98

#define SGL_TANGENT_ARRAY 0x1102
#define SGL_BINORMAL_ARRAY 0x1103

/* Parameter frequencies */

#define SGL_CONSTANT_FREQ 0x2000
#define SGL_PRIMGROUP_FREQ 0x2001
#define SGL_VERTEX_FREQ 0x2002

/* Parameter types */

#define SGL_BOOL_TYPE 0x3000
#define SGL_INT_TYPE 0x3001
#define SGL_TEXREF_TYPE 0x3002
#define SGL_CLAMPF_TYPE 0x3003
#define SGL_FLOAT_TYPE 0x3004
#define SGL_TUPLE_TYPE 0x3005
#define SGL_STRUCT_TYPE 0x3006

/* Error reporting */

#define SGL_MSG_NONE 0x4000
#define SGL_MSG_WARN_ONCE 0x4001
#define SGL_MSG_WARN 0x4002
#define SGL_MSG_ABORT 0x4003

/* Light parameters */

#define SGL_LIGHT_POSITION 0x5000
#define SGL_LIGHT_DIRECTION 0x5001
#define SGL_LIGHT_UPAXIS 0x5002

/*
* Routines
*/

/* Initialization, error checking, misc. */

SGL_API void SGL_APIENTRY sglProperties(const char * propstr);
SGL_API void SGL_APIENTRY sglInit(void);
SGL_API void SGL_APIENTRY sglStop(void);
SGL_API void SGL_APIENTRY sglClear(GLbitfield mask);
SGL_API void SGL_APIENTRY sglViewport(

GLint x, GLint y, GLsizei width, GLsizei height
);
SGL_API void SGL_APIENTRY sglDebugLevel(GLenum minor, GLenum major);
SGL_API GLenum SGL_APIENTRY sglGetError(void);
SGL_API const GLubyte * SGL_APIENTRY sglErrorString(GLenum errcode);
SGL_API void SGL_APIENTRY sglLoadCache(const char * fname);
SGL_API void SGL_APIENTRY sglSaveCache(const char * fname);

99

/* Program loading and binding */

SGL_API GLuint SGL_APIENTRY sglCreateProgram(const char * progstr);
SGL_API GLuint SGL_APIENTRY sglLoadProgram(const char * fname);
SGL_API void SGL_APIENTRY sglFreeProgram(GLuint progid);
SGL_API void SGL_APIENTRY sglBindProgram(GLuint progid);

/* Shader loading, binding and compiling */

SGL_API GLuint SGL_APIENTRY sglLoadShader(const char * sname);
SGL_API void SGL_APIENTRY sglFreeShader(GLuint shaderid);
SGL_API void SGL_APIENTRY sglBindShader(GLuint shaderid);
SGL_API void SGL_APIENTRY sglPrecompileShader(void);
SGL_API void SGL_APIENTRY sglCompileShader(void);

/* Shader parameter information */

SGL_API GLuint SGL_APIENTRY sglParameterHandle(const char * pname);
SGL_API const char * SGL_APIENTRY sglGetParameterName(GLuint phandle);
SGL_API GLenum SGL_APIENTRY sglGetParameterType(GLuint phandle);
SGL_API GLenum SGL_APIENTRY sglGetParameterFrequency(GLuint phandle);
SGL_API GLuint SGL_APIENTRY sglGetParameterSize(GLuint phandle);
SGL_API GLuint SGL_APIENTRY sglGetParameterHandle(GLuint phandle, GLuint idx);
SGL_API GLuint SGL_APIENTRY sglGetParameterOffset(GLuint phandle);

/* Light control and shader connection */

SGL_API void SGL_APIENTRY sglAmbient4fv(const GLfloat * p);
SGL_API void SGL_APIENTRY sglLightPosefv(

GLuint lightid, GLenum pname, const GLfloat * p
);
SGL_API void SGL_APIENTRY sglUseLight(GLuint lightid);
SGL_API void SGL_APIENTRY sglUseDeformation(GLuint deformationid);
SGL_API void SGL_APIENTRY sglUseShader(GLuint phandle, GLuint shaderid);

/* Shader parameter setting */

SGL_API void SGL_APIENTRY sglShaderParameter1i(
GLuint shaderid, GLuint handle, GLint p

);
SGL_API void SGL_APIENTRY sglShaderParameter1ui(

GLuint shaderid, GLuint handle, GLuint p
);
SGL_API void SGL_APIENTRY sglShaderParameter1f(

GLuint shaderid, GLuint handle, GLfloat p
);
SGL_API void SGL_APIENTRY sglShaderParameter2f(

GLuint shaderid, GLuint handle, GLfloat p1, GLfloat p2
);
SGL_API void SGL_APIENTRY sglShaderParameter2fv(

GLuint shaderid, GLuint handle, const GLfloat * p

100

);
SGL_API void SGL_APIENTRY sglShaderParameter3f(

GLuint shaderid, GLuint handle, GLfloat p1, GLfloat p2, GLfloat p3
);
SGL_API void SGL_APIENTRY sglShaderParameter3fv(

GLuint shaderid, GLuint handle, const GLfloat * p
);
SGL_API void SGL_APIENTRY sglShaderParameter4f(

GLuint shaderid, GLuint handle,
GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4

);
SGL_API void SGL_APIENTRY sglShaderParameter4fv(

GLuint shaderid, GLuint handle, const GLfloat * p
);
SGL_API void SGL_APIENTRY sglShaderParameter9fv(

GLuint shaderid, GLuint handle, const GLfloat * p
);
SGL_API void SGL_APIENTRY sglShaderParameter16fv(

GLuint shaderid, GLuint handle, const GLfloat * p
);

/* Bound shader parameter setting */

SGL_API void SGL_APIENTRY sglParameter1i(GLuint handle, GLint p);
SGL_API void SGL_APIENTRY sglParameter1ui(GLuint handle, GLuint p);
SGL_API void SGL_APIENTRY sglParameter1f(GLuint handle, GLfloat p);
SGL_API void SGL_APIENTRY sglParameter2f(
GLuint handle, GLfloat p1, GLfloat p2

);
SGL_API void SGL_APIENTRY sglParameter2fv(GLuint handle, const GLfloat * p);
SGL_API void SGL_APIENTRY sglParameter3f(

GLuint handle, GLfloat p1, GLfloat p2, GLfloat p3
);
SGL_API void SGL_APIENTRY sglParameter3fv(GLuint handle, const GLfloat * p);
SGL_API void SGL_APIENTRY sglParameter4f(

GLuint handle, GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4
);
SGL_API void SGL_APIENTRY sglParameter4fv(GLuint handle, const GLfloat * p);
SGL_API void SGL_APIENTRY sglParameter9fv(GLuint handle, const GLfloat * p);
SGL_API void SGL_APIENTRY sglParameter16fv(GLuint handle, const GLfloat * p);

/* Vertex and tangent-space setting */

SGL_API void SGL_APIENTRY sglVertex3f(GLfloat p1, GLfloat p2, GLfloat p3);
SGL_API void SGL_APIENTRY sglVertex3fv(const GLfloat * p);
SGL_API void SGL_APIENTRY sglVertex4f(
GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4

);
SGL_API void SGL_APIENTRY sglVertex4fv(const GLfloat * p);
SGL_API void SGL_APIENTRY sglNormal3f(GLfloat p1, GLfloat p2, GLfloat p3);
SGL_API void SGL_APIENTRY sglNormal3fv(const GLfloat * p);

101

SGL_API void SGL_APIENTRY sglTangent3f(GLfloat p1, GLfloat p2, GLfloat p3);
SGL_API void SGL_APIENTRY sglTangent3fv(const GLfloat * p);
SGL_API void SGL_APIENTRY sglBinormal3f(GLfloat p1, GLfloat p2, GLfloat p3);
SGL_API void SGL_APIENTRY sglBinormal3fv(const GLfloat * p);

/* Scope and flushing */

SGL_API void SGL_APIENTRY sglBegin(GLenum mode);
SGL_API void SGL_APIENTRY sglEnd(void);
SGL_API void SGL_APIENTRY sglFlush(void);
SGL_API void SGL_APIENTRY sglFinish(void);

/* Vertex array object API */

SGL_API GLuint SGL_APIENTRY sglNewArray(
GLenum type, GLuint size, GLenum usage

);
SGL_API GLuint SGL_APIENTRY sglNewParamArray(
GLuint phandle, GLuint size, GLenum usage

);
SGL_API void SGL_APIENTRY sglResizeArray(GLuint array, GLuint size);
SGL_API void SGL_APIENTRY sglUpdateArray(
GLuint array, GLuint eloffset, GLuint elcount,
GLenum type, GLsizei stride, GLuint size, GLuint offset, const void * data

);
SGL_API void SGL_APIENTRY sglBindArray(GLuint array, GLuint offset);
SGL_API void SGL_APIENTRY sglUnbindArray(GLuint array);
SGL_API void SGL_APIENTRY sglDrawArrays(
GLenum mode, GLuint first, GLuint count

);
SGL_API void SGL_APIENTRY sglDrawElements(
GLenum mode, GLuint count, GLenum type, const GLvoid * indices

);
SGL_API void SGL_APIENTRY sglFreeArray(GLuint array);

#ifdef __cplusplus
}
#endif

#endif

102

References

[1] Arcot Preetham Avi Bleiweiss. Ashli - advanced shading lan-
guage interface. In Siggraph 2003 Notes, 2003. Available from
http://www.ati.com/developer/SIGGRAPH03/AshliNotes.pdf

(30.04.2004).

[2] R. L. Cook. Shade trees. In Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, number Vol.18, pages 223–
231, January 1984.

[3] John Kessenich Dave Baldwin, Randi Rost. The OpenGL
Shading Language. Version 1.0., June 12, 2002. Available
from http://www.3dlabs.com/support/developer/ogl2/specs/

glslangspecv1.0.pdf (30.04.2004).

[4] Paul J. Diefenbach. Pipeline Rendering: Interactive and Realism Through
Hardware-based Multi-pass Rendering. PhD thesis, University of Pennsylva-
nia, 1996.

[5] Thomas Driemeyer. Rendering with mental ray, volume 1. Springer-Verlag
New York, 2000.

[6] Pradeep Sen Kekoa Proudfoot Eric Chan, Ren Ng and Pat Hanra-
han. Efficient partitioning of fragment shaders for multipass render-
ing on programmable graphics hardware. In Proceedings of the SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 1–11, 2002.

[7] T. Whitted G.D. Abram. Building block shaders. In Proceedings of the 17th
annual conference on Computer graphics and interactive techniques, pages
283–288, 1990.

[8] Larry Gritz and James K. Hahn. Bmrt: a global illumination implementation
of the renderman standard. J. Graph. Tools, 1(3):29–48, 1996.

[9] Paul Heckebert. Fundamentals of texture mapping and image warping. Mas-
ter’s thesis, UCB/CSD 89/516, CS Division, U.C. Berkeley, June 1989.

[10] K.Hinrichs J. Dollner. A generic rendering system. IEEE Transactions on
Visualization and Computer Graphics, 8(2):99–118, April–June 2002.

[11] Peter-Pike Sloan Jan Kautz and John Snyder. Fast, arbitrary brdf shad-
ing for low-frequency lighting using spherical harmonics. In Proceedings of
the 13th Eurographics workshop on Rendering, pages 291–296. Eurographics
Association, 2002.

103

[12] David A. Patterson John L. Hennessy. Computer Architecture: A Quantita-
tive Approach; second edition. Morgan Kaufmann, 1996.

[13] James T. Kajiya. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, pages 143–150.
ACM Press, 1986.

[14] Svetoslav Tzvetkov Pat Hanrahan Kekoa Proudfoot, William R. Mark. A
real-time procedural shading system for programmable graphics hardware. In
28th Annual Conference on Computer Graphics and Interactive Techniques,
pages 159–170. ACM Press, 2001.

[15] Robert R. Lewis. Making Shaders More Physically Plausible. In Fourth
Eurographics Workshop on Rendering, number Series EG 93 RW, pages 47–
62, Paris, France, 1993.

[16] Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-programmable
vertex engine. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 149–158. ACM Press, 2001.

[17] William R. Mark and Kekoa Proudfoot. The f-buffer: a rasterization-
order fifo buffer for multi-pass rendering. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 57–64.
ACM Press, 2001.

[18] John Airey P. Jeffrey Ungar Mark S. Peercy, Mark Olano. Interactive multi-
pass programmable shading. In Proceedings of SIGGRAPH 2000 (New Or-
leans, Louisiana, July 23-28, 2000). In Computer Graphics, Annual Confer-
ence Series. ACM SIGGRAPH, 2000.

[19] Kurt Akeley Mark Segal. The OpenGL Graphics System: A Specification
(Version 1.5).

[20] Michael D. McCool. Sh - Embedded Metaprogramming Language. Available
from http://libsh.sourceforge.net/ (30.04.2004).

[21] Michael D. McCool. Smash: A next-generation api for programmable graph-
ics accelerators. In SIGGRAPH 2000 Course on Real-Time Programmable
Shading, New Orleans, 2000.

[22] T.S. Popa Michael D. McCool, Z. Qin. Shader metaprogramming graphics
hardware. In Conference on Graphics hardware, pages 1–12, 2002.

[23] Microsoft. DirectX Graphics Programmers Guide. Microsoft Developers Net-
work Library, DirectX 9 edition, 2002.

104

[24] Mark Olano. Interactive Shading Language (ISL) Language
Description Version 2.4 March 26, 2002. Available from
http://lust.u-strasbg.fr/Documentations/Visualisation/Shader/

islspec.html (30.04.2004).

[25] K. Perlin. An image synthesizer. In Proceedings of the 12th annual conference
on Computer graphics and interactive techniques, pages 287–296, 1985.

[26] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Transactions on Programming Languages and Systems, 21(5):895–913, 1999.

[27] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray
tracing on programmable graphics hardware. ACM Transactions on Graph-
ics, 21(3):703–712, July 2002. ISSN 0730-0301 (Proceedings of ACM SIG-
GRAPH 2002).

[28] K. E. Torrance R. L. Cook. A reflectance model for computer graphics.
In Computer Graphics (SIGGRAPH ’81 Proceedings), number Vol.15, No.3,
pages 301–316, July 1981.

[29] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering an-
tialiased shadows with depth maps. In Proceedings of the 14th annual confer-
ence on Computer graphics and interactive techniques, pages 283–291. ACM
Press, 1987.

[30] Christophe Schlick. A survey of shading and reflectance models for computer
graphics. In Computer Graphics Forum, v13, n2, pages 121–132, June 1994.

[31] SGI. OpenGL Extension Registry. Extension specifications available from
http://oss.sgi.com/projects/ogl-sample/registry/ (30.04.2004).

[32] The Aqsis Team. Aqsis Renderer. Homepage http://www.aqsis.com

(30.04.2004).

[33] G. J. Ward. Measuring and modeling anisotropic reflection. In Computer
Graphics (SIGGRAPH’92 Proceedings), number Vol. 26, No.3, pages 265–
272, July 1992.

[34] Josie Wernecke. The Inventor Mentor : Programming Object-Oriented 3D
Graphics with Open Inventor, Release 2. Addison Wesley, 1994.

105

