
Proceedings of the Third

Symposium on Programming
Languages and Software Tools

Mati Tombak (Ed.)

Kääriku, Estonia
August 23-24 1993

Univesity of Tartu
Department of Computer Science

August 1993

Proceedings of the Third

Symposium on Programming
Languages and Software Tools

Mati Tombak (Ed.)

Kääriku, Estonia
August 23-241993

Univesity of Tartu
Department of Computer Science

August 1993

CONTENTS

1. Helena Ahonen, Heikki Mannila, Erja Niknnen
Grammars for Structured Documents by Generalizing E xam ples....................... I

2. Akos Fõthi, Judit Ny6ky-Gaisler
On the Complexity of Object-oriented Programs.. 14

3. Zoltan Horvath
The Weakest Precondition and the Specification of Parallel Programs . . . 24

4. Tainas Horvdth, Tibor Gyimõthy, ZoltÄn Alexin, Ferenc Kocsis
Interactive Diagnosis and Testing of Logic P ro g ra m s...34

5. Esa J urn vail, Kai Koskimics
An Overview of the TaLe Language E d ito r ... 47

6. Jjrrlri Katajanen, Erkki Makinen
On Using Type Information in Syntactical Data Compression........................... 59

7. Pertti Kellomäki
Psd - a Portable Scheme Debugger...

8. Mare K oit, Haldnr Õim
Modelling Conununicative S trateg ics.. 73

9. Antti Kosld
A Semantic-Syntactic Recognition System Based on Attributed Automata . . A3

10. Jukka Paakki, Kari Granõ, Ari Abtiainen, Santi Kesti
Aa Implementation of ASN.l (Abstract Syntax Notation O n e)........................... 95

11. Ё. R ica
Specifying a Transaction Manager Using Temporal l/o g ic 109

12. Erkki Sntinen, Jorma Tarbio
String Matching Animator SA L SA ...120

13. Kari S y sti
Specifying User Interfaces as Joint Action S y stem s..130

14. M ati Tombak
One more Exponential Algorithm for Satisfiability of Proposition*) Formula . . 1 4 2

Grammars for structured documents
by generalizing examples *

Helena Ahonen Heikki Mannila
University of Helsinki University of Helsinki

Er ja Nikunen
Research Centre for Domestic Languages

April 1993

Abstract

Examples of structured documents include dictionaries, user manuals, etc. Struc­
tured documents have an internal organization that can be used, for instance, to
help in retrieving information from the documents and in transforming documents
into another form. The document structure is typically represented by a context-
free or regular grammar. Many structured documents, however, lack the grammar:
the structures of individual documents are known but the general structure of the
document class is not available.

In this paper we describe a technique for forming the grammar describing the
structure of a structured document. The user describes the structure of some ex­
ample documents, and from these the system infers a small general description.
The technique is based on ideas from machine learning. It forms first finite-state
automata describing the examples completely. These automata are modified by con­
sidering certain context conditions; the modifications correspond to generalizing the
underlaying language. Finally, the automata are converted into regular expressions,
which are then used to construct the grammar.

*This work was partially supported by TEKES and the Academy of Finland. Authors’ ad­
dresses: Helena Ahonen, Heikki Mannila, Department of Computer Science, University of Helsinki,
P.O. Box 26 (Teollisuuskatu 23), SF-00014 University of Helsinki, Finland. Erja Nikunen, Re­
search Centre for Domestic Languages, Sörnäisten rantatie 25, SF-00500 Helsinki, Finland, e-mail:
{hahonen,mannila}Ccs.Helsinki.FI, enikunenCdomlang.FI

1

1 Introduction

Text with structure is quite common: dictionaries, reference manuals, and
annual reports are typical examples. In recent years, research on systems
for writing structured documents has been very intensive. One of the recent
surveys of the field is [2]. The interest in the area has led to the creation of
several document standards, of which the best known are ODA and SGML
[5, 7]. The common way to describe the structure of a document is to use
context-free grammars [6, 13]. Thus, in database terminology, grammars
correspond to schemas, and parse trees to instances.

It is typical to use regular expressions in the right-hand sides of the pro­
ductions of the grammar. For example, the following might describe the
simplified structure of a dictionary entry:

Entry —► Headword Sense*.

The meaning of this production is that an entry consists of a headword
followed by zero or more senses. A more complicated example is

Entry —* Headword [Inflection]
(Sense_Number Description

[Parallel-form | PreferredJorm] Example*)*,

which states that an entry consists of a headword followed by an optional
inflection part and zero or more groups, each group consisting of a sense
number, a description, a further optional part which is either a parallel form
or a preferred form, and a sequence of zero or more examples

The structure of a document can be used to facilitate transformations
and queries which have structural conditions. The structure also provides
general knowledge of the text. It can be fairly complicated, however, to
find the grammar that describes the structure of a given large text. (See
for example [4].) The user might, for example, be experimenting with a
totally new text, or the text might be already available, and the user wants
to transform it into a structured form. Typically, forming the structure of
an existing large text seems to be difficult without any tools.

In this paper we describe a method that can be used to form a context-
free grammar for a structured text semi-automatically. The method is based
on the idea that the user marks and names some example components and
regions of the text using a pointing device. The marking produces example
productions. However, since these productions are based on some specific
parts of the text, they are overly restrictive and hence, they cannot be used

2

as the grammar describing the structure of the text. Thus, one should be
able to generalize the productions in some meaningful way.

The generalization is done by assuming that a sufficiently long common
part in two productions for the same nonterminal means tha t also the parts
following the common part should be interchangeable.

For the generalization, we use techniques from machine learning [11, 12].
Learning context-free and regular grammars from examples has been studied
in, e.g.,[3, 9 ,11 ,14 , 15]. However, these results are not directly applicable to
our setting, either because they assume that positive and negative examples
axe available or because they make other assumptions about the data that
are not valid in our case. The method we have developed proceeds as follows.

1. The example productions are transformed to a set of finite autom ata,
one for each nonterminal. These autom ata accept exactly the right-hand
sides of the example productions for the corresponding nonterminal.

2. Each automaton is modified in isolation, so that it accepts a larger lan­
guage. This language is the smallest one that includes the original right-
hand sides and has an additional property called (k ,h)-contextuaiity.
This property states roughly that in the structure of the document
what can follow a certain component is completely determined by the
к preceding components at the same level. Steps 1 and 2 are based on
the synthesis of finite autom ata presented in [3, 11], specifically (fc, h)-
contextuality is a modification of A;-reversibility [3] and fc-contextuality
[11J-

3. The resulting autom ata are transformed to regular expressions, which
form the right-hand sides of the productions for the corresponding non­
terminals.

We have implemented our method in connection with the structured text
database system HST [10]. Our preliminary empirical evidence indicates
that the method is a useful tool for transforming existing texts to structured
form.

The rest of this paper is organized as follows. As a running example
we use entries from a Finnish dictionary [1]. Section 2 describes the con­
struction of the initial automaton. In Section 3 we describe the general
method for generalizing the productions, and the particular inductive biases,
fc-contextuality and (к , /i)-contextuality, we use in generalizing the examples.
Section 4 describes the conversion into regular expressions. Empirical results
are discussed in Section 5. Section 6 contains some concluding remarks.

3

2 Prefix-tree autom aton

The right-hand sides of productions obtained from the user’s examples are
represented by an automaton called a prefix-tree automaton. To construct a
prefix-tree automaton we first take the set of sample productions which have
the same left-hand side. The right-hand sides of these productions are added
to the prefix-tree automaton one by one.

For example, if the following productions are added into a prefix-tree
automaton, the result is the automaton shown in Figure 1.

Entry —► Headword Inflection Sense Sense
Entry —► Headword Inflection ParalleLform Sense Sense Sense
Entry —► Headword Parallel_form Sense Sense
Entry —► Headword PreferredJorm Sense
Entry —► Headword Inflection PreferredJorm Sense Sense

Figure 1: Prefix-tree automaton containing all the examples.

3 (k,h)-contextual languages

A prefix tree automaton accepts only the right-hand sides of the examples.
To obtain useful grammars, we need some way of generalizing the examples,
and the automaton describing them, in a meaningful way.

4

In machine learning terms, the examples of productions are all positive
examples. That is, the user gives no examples of illegal structures. To learn
from positive examples, one needs some restrictions on the allowed result of
the generalization. Namely, a consistent generalization of a set of positive
examples would be an automaton accepting all strings! Thus we have to
define a class of autom ata that are allowed as results of the generalization.

By merging some of the states we get an automaton which accepts more
strings, i.e., this automaton generalizes the examples. To merge states s,
and Sj we first choose one of them to represent the new state, say s,-. All the
incoming arcs of Sj are then added to the set of incoming arcs of $,■ , and all
the outgoing arcs of Sj are added to the set of outgoing arcs of s,-. There are
many possibilities of generalizing an automaton by merging states.

The generic algorithm is the following:

A lgor ith m 1 Generalizing a set of productions using some criterion for
merging states.
Input: A criterion for merging states and a sample

I = { A —> a \ A £ N , a € (N \J T)*}

consisting of productions for some nonterminals.
Output: A set

О = {A —► a ’ I A € N , a1 is a regular expression over the alphabet (N ü T)}

of generalized productions such that for all A -*■ a £ / there is a production
A —► a! € О such that a is an instance of a '.
Method:

1. for each nonterminal A
2. Construct a prefix-tree automaton M a from

the productions of I with left-hand side A
3. rep eat
4. for each pair p, q of states of M a

i f p and q fulfill the generalization condition
th en modify M a by merging p and q

5. until no more states can be merged
6. Convert M a to an equivalent regular expression E a
7. Output the production A —► E a

5

How do we choose the generalization condition? Our assumption is that
the grammars used in structured documents have only limited context in the
following sense. If a sufficiently long sequence of nonterminals occurs in two
places in the examples, the components that can follow this sequence are
independent of the position of the sequence in the document structure.

A language satisfying this condition is called k-contextual [11]. The prop­
erty of fc-contextuality can be described simply in terms of automata.

L em m a 2 A regular language L is fc-contextual if and only if there is a finite
automaton A such that L = L(A), and for any two states pk and qk of A and
all input symbols а\й2 .. .a* we have: if there are states po and qo of A such
that 6(po,aia2 . . . a k) = Pk and 6(q0,a ia 2 .. .ak) = qk, then pk = qk.

For a set of strings Я , a fc-contextual language L such that

1. H C L and
2. for all fc-contextual languages M such that H С M we have L С M

is called a minirrtal к-contextual language including H.
It can be shown that there exists a unique minimal, i.e. the smallest,

^-contextual language containing a given set of strings. If A is an automaton
such that L{A) is ^-contextual, we say that A is a к-contextual automaton.
Lemma 2 and Algorithm 1 give a way of constructing a fc-contextual automa­
ton which accepts the smallest fc-contextual language containing L(C) for an
automaton С . States of С satisfying the conditions in the implication of the
lemma are merged until no such states remain.

Finally the 2-contextual automaton looks like the one in Figure 2. We
can see that it generalizes the examples quite well. The automaton, how­
ever, accepts only entries which have two or more Sense nonterminals in the
end. This is overly cautious, and therefore we need a looser generalization
condition. In Figure 2, for example the states S4 and 55 could be merged.

The intuition in using fc-contextuality is that two occurrences of a se­
quence of components of length к implies that the subsequent components
can be the same in both cases. We relax this condition and generalize the
fc-contextual languages further to (к , /i)-contextual languages. In these lan­
guages two occurrences of a sequence of length к implies that the subsequent
components are the same already after h characters. As for fc-contextuality,
we obtain an easy characterization in terms of automata.

6

Figure 2: 2-contextual automaton.

L em m a 3 A regular language L is (jfc, /i)-contextual if anti only if there is
a finite automaton A such that L — L (A), and for any two states pk and
qk of A, and all input symbols a\a2 .. .a k we have: if there are states p0
and an such that £(po,ai) = p i,6 (p i,a 2) = p?,.. .,6 (pk- .i,a k) = pk and
<4 <?o,ai) = ^1 , 6(91, «2) = 92) • • • >ö(qk-i,<**)-= qk, then pi = q,, for every i,
where 0 < h < t < k.

The algorithm for producing the automaton that accepts a (fc, h)-context­
ual automaton is similar to the previous algorithm: one looks for states
satisfying the conditions of the above lemma, and then merges states. If
similar paths of length к are found, not only the last states but also some
of the respective states along the paths are merged. If h = к only the last
states are merged. If h < к the paths have a similar prefix of length h before
they are joined, i.e., к - h f 1 states are merged. In Figure 3 we can see the
final (2 ,l)-contextuaJ automaton.

4 Conversion into a regular expression

After the generalization steps presented in the previous sections have been
performed, we have a collection of (к , fe)-contextual autom ata. To obtain
a useful description of the structure of the document, we still have to pro­
duce a grammar from these. An automaton can be converted into a regular

7

ENTRY:

Figure 3: (2,l)-contextual automaton.

expression by using standard dynamic programming methods [8].
One of our goals was to obtain a readable grammar. The regular ex­

pressions produced by the standard method are not always so short as they
could be, and therefore they have to be simplified. The simplified regular ex­
pressions form the right-hand sides of the productions for the corresponding
nonterminals.

Sample productions in Section 2 generate the production:

Entry -> Headword
(Inflection [PreferredJorm | ParallelJorm] |
ParallelJorm | PreferredJorm)
Sense*

5 Experim ental results
We have implemented the method described above in connection with the
HST structured text database system [10]. We have experimented with sev­
eral different document types, and the results are encouraging.

In our first test situation a user looked at some bibliographical entries, and
quite mechanically marked and named all the parts of them. The program
built the productions shown in Figure 4, and then generalized them. The
result is shown in Figure 5.

Some remarks can be made. First, the interaction between nonterminals
should be taken into account. Then the author list Author (, Author)* would
be replaced by Authors, and Bpage - Epage would be replaced by Pages in

8

Entry —* Key Confpaper
Pages —*• Bpage - Epage
Journalpaper —*• Author , Author , Author , Author , Title .

Journal , Number ’(’ Year ’)’ , Pages
Editors —► Editor and Editor eds
Confpaper —► Author , Author , Author , Author , Title .

Booktitle , Editors , Publisher , Year , Bpage - Epage
Entry —► Key Confpaper
Entry —► Key Journalpaper
Journalpaper —► Author , Author , Author , Author , Title.

Journal , Number ’(’ Year ’)’ , Pages
Editors —► Editor and Editor eds.
Confpaper —► Author , Author , Author , Author , Title .

Booktitle , Editors , Publisher , Year , Bpage - Epage
Authors —► Author , Author
Entry —► Key Confpaper
Confpaper —► Author , Author , Author , Title . Confname
Authors —► Author , Author , Author
Journalpaper —► Authors , Title . Journal Volume
Entry —► Key Journalpaper

Figure 4: Sample bibliographical productions

the productions for Confpaper and Journalpaper. Second, the user sometimes
gives inconsistent names, or punctuation varies in similar situations. Most
of these cases can be found easily: see for instance the alternatives eds and
eds. in the production for Editors.

Another kind of test was made with a Finnish dictionary [1]. The marking
with a pointing device is inappropriate when the text considered is large
and has a complicated structure. If this kind of text has been prepared for
printing it is usually typographically tagged, i.e., parts of the text are circled
by begin and end marks (e.g. begin bold - end bold). Since typographical
means are used to make the structure clear to the reader, they can be used
to make the structure explicit: tags can be changed to structural tags (e.g.
begin headword - end headword).

9

2*

Authors Author (, Author)*
Confpaper —> Author (, Author)* . Title .

(Confname | Booktitle, Editors , Publisher , Year , Bpage - Fpage)
Editors —*■ Editor and Editor (eds j eds.)
Jo u rn a lp a p e r(A u th o r (, Author)* j Authors) . Title .

Journal (Volume | , Number ’(’ Year ’) ’ , Pages)
Pages —► Bpage - Epage
Entry —» Key (Confpaper | Journalpaper)

Figure 5: Generalized bibliographical productions

f

We converted our data, which consist of 15970 dictionary entries, in the
above way, removed the end tags and the text, and built the sample produc­
tions. The total number of different entry structures was about 1300 but only
82 of them covered more than 10 entries. We chose 20 of the most common
structures (Fig. 6), which together covered 13313 entries. In the following
the tagt have been changed into whoie words to facilitate understanding.

As a rebult we got the following prod net ion:
Enl ry —» Headword

[Example |
Inflection [Example j Reference] |
[Inflection [Consonant..gradation]]

([TechnicaLfield] Sense j TechnicalJreld) [Example] J
Reference i
Preferred-form]

This example shows that creating a grammar is not a trivial task: the
structure of a dictionary entry is very flexible. The result production may
look somewhat complicated itself but in any case it is a good basis for manual
improvement.

If we go further with this material and take into account more entry
structures, it is not feasible to produce only one production. Therefore we
have studied possibilities of adding frequency information into our method
(see Section 6). The goal is to separate the most common structures from
the rare cases.

10

Entry -* Headword Sense
Entry -* Headword Example
Ent.ry -+ Headword
Entry —v Headword Inflection Sense
Entry —> Headword Sense Example
Entry Headword Inflection Sense Example
Entry —> Headword TechnicaLficld Sense
Entry -+ Headword Inflection Consonant-gradation Sense Example
Entry —i Headword Inflection Technical ..field Sense
Entry -+ Headword Inflection Example
Entry Headword Inflection Con sonant-gradation Sense
Entry -* Headword Reference
Entry — Headword Inflection TechnicaLficld Sense.Example
Entry —► Headword Technical-field Sense Example
Entry —* Headword TechnicaLfield
Entry — Headword Inflection Reference
Entry —*• Headword Inflection Consonant-gradation TechnicaLfield Sense
Entry —> Headword Inflection
Entry —> Headword Technical Jield Example
Entry —с Headword PreferredJorm

Figure 6: Sample dictionary productions

6 Conclusion and further work

In this paper we have presented a method for generating a. context-free gram­
mar from the user’s examples. The user gives names to the parts of existing
texts. These names are used to form simple productions, which are then
generalized and combined to form a grammar.

In the generalization of the examples we have first applied the idea of
^-contextual languages and further extended them to (fc, Л)-contextual lan­
guages. These conditions seem to describe quite natural constraints in text
structures.

We have implemented this method and tested it with several document
structures. The results are encouraging but also show some possibilities of
improvement and extension. The method described here constructs only one
production for every nonterminal. This is inadequate when the structure

11

varies a lot or there are many rare or erroneous cases. It is desirable to get
one or a few productions which cover most of the examples, and then several
productions which correspond to the exceptions.

We have started to implement this idea in the following way. In our
dictionary data each sample production has a weight which is the number of
entries this production covers. When an example is added into a prefix tree
automaton, all the weights of the arcs visited are increased by the weight of
the new production. When the autom ata are generalized, the weight of a
merged arc is the sum of the weights of the two arcs that are merged.

The user gives a bound b which means that the program constructs a
production which covers at least all the structures that appear b times! in data.
In addition to this production several exception productions are constructed
as well.

It would be reasonable to increase the interactivity with the user. One
possibility is to apply the method incrementally: the user adds examples one
by one, and the program builds a grammar. The grammar could be shown
simultaneously in a different window, which makes it easier for the user to
use consistent names for different structures.

If the examples are properly punctuated, it is possible to add a parser
to the system. Then the user could have a large collection of existing texts.
He/she could choose some examples and analyze them for the learning pro­
gram and let the rest of the example texts be parsed by the program. If
an example cannot be parsed, either the grammar is modified or the user
changes the example. The latter gives the user a possibility to correct errors.

Generally, to be a useful tool, this method should be implemented in a
flexible way. There should be a possibility of applying different kinds of
document structures, both new and existing ones, easily. The user should be
able to add new examples, remove old ones, and correct errors at any time.
The program should also, at the user’s request, offer alternative solutions.

References
[1] Suomen kielen perussanakirja. Ensimmäinen osa (A -К). Valtion paina-

tuskeskus, Helsinki, 1990.
[2] J. Andre, R. Furuta, and V. Quint, editors. Structured Documents. The

Cambridge Series on Electronic Publishing. Cambridge University Press,
1989.

12

[3] Ь апа Angluin. Inference of reversible languages. Journal o f the ACM ,
29(3):741-765,1982.

[4] G. E. Blake, T. Bray, and F. Wm. Tompa. Shortening the OED: Expe­
rience with a grammar-defined database. ACM Transations on,Infor­
mation Systems, 10(3):213-232, July 1992.

[5] Heather Brown. Standards for structured documents. The Computer
Journal, 32(6):505-514, December 1989.

[6] R. Furuta, V. Quint, and J. Andre. Interactively editing structured
documents. Electronic Publishing, 1(1):19—44, 1988.

[7] C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.
[8] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages and Computation. Addison Wesley, Reading, MA,
1979.

[9] Oscar H. Ibarra and Tao Jiang. Learning regular languages from coun­
terexamples. Journal of Computer and System Sciences, 43(2):299-316,
1991.

[10] Pekka Kilpeläinen, Greger Linden, Heikki Mannila, and Erja Nikunen.
A structured document database system. In Richard Furuta, editor,
EP90 - Proceedings o f the International Conference on Electronic Pub­
lishing, Document Manipulation & Typography, The Cambridge Series
on Electronic Publishing, pages 139-151. Cambridge University Press,
1990.

[11] Stephen Muggleton. Inductive Acquisition o f Expert Knowledge. Addi­
son Wesley, Reading, MA, 1990.

[12] Balas K. Natarajan. Machine Learning: A Theoretical Approach. Mor­
gan Kaufmann Publishers, May 1991.

[13] V. Quint and I. Vatton. Grif: An interactive system for structured
document manipulation. In J. C. van Vliet, editor, Text Processing and
Document Manipulation, pages 200-213. Cambridge University Press,
1986.

[14] Yasubumi Sakakibara. Learning context-free grammars from structural
data in polynomial time. In D. Haussier and L. P itt, editors, Proceedings
of the 1988 Workshop on Computational Learning Theory, pages 330-
344, 1988.

[15] Kurt Vanlehn and William Ball. A version space approach to learning
context-free grammars. Machine Learning, 2(1):39—74, 1987.

13

ON THE COM PLEXITY
OF OBJECT-ORIENTED PROGRAMS*

ÄKOS FÖTHI, JUDIT NYEKY-GAIZLER

Dept, of General Comyuter Science.
Eötvös Lor and University, Budapest.
Н-11П Budapest. Bogddnfy u. 10/b.

E-mail: nyeky@comput.elte.hu
HUNGARY

A bstract: Object-oriented programs are constructed with the help of the same
control structures as traditional ones. At first sight, therefore, their complexity
can be measured the same way as the complexity of the traditional programs.
In this case the complexity depends 011 the nesting level of the control struc­
tures, as it has been shown by Piwowarski, Harrison, Magel, Howatt, Baker
etc.[HB89,HM181,HM281,PIW89]. Why do we still have the feeling that object-
oriented programs are more simple than the traditional ones? To answer this,
we have to introduce a new measure of complexity. The measures mentioned
above have a common problem: each of them evaluates the complexity of a pro­
gram only from the point of view of its control structure. Our opinion discussed
here is that the complexity of a program is a sum of three components:
(1) the complexity of its control structure,
(2) the complexity of data types used,
(3) the complexity of the data handling (ie. the complexity of the connection
between the control structure and the data types).

We give a suggestion for the measure of complexity of a program. This
new measure of complexity is used to argue why good object-oriented programs
could seem more simple.

l.In trod u ction
There are several methods of measuring program-complexity. The com­

plexity of programs depends on the number of operators and operands (the
software science measure); on the number of predicates (cycloinatic complex­
ity); but these measures do not characterize sufficiently the nature of complexity,
since n nested loops or « nested if statements are undoubtedly more complex
than the sequence of n loops, or the sequence of n decisions. As far as we found
in the literature [HB89,HM181,HM281,PIW89.McC76,Va92] the complexity of
programs was so far measured only on the basis of its control structure.

Nowadays one of the most frequently read notion in the literature of pro­
gramming methodology is the ’object-oriented’ one. While constructing great
systems the questions of reusability and extendibility became of key importance.
The more simple a program is the easier it is to understand, later to modify or
reuse some parts of it in the case of the construction of other, similar programs.

14

mailto:nyeky@comput.elte.hu

Followers of object-oriented methodology state that professional software pro­
duction becomes notably simplified using this new technique, which results in
enormous cost decrease.

Object-oriented programs contain the same control structures (sequence,
if- and loop statements) as the traditional ones, thus there seems to be no
difference in their complexity.

What is the greatest novelty of this design approach? It draws the atten­
tion to the importance of precise definition and consistent use of abstract data
types. Actually if we inspect starting from this concept the program complexity
measures so fax, it will immediately strike us, that none of them takes into ac­
count .neither the influence of the technique of hiding (e.g. use of procedures)
on the complexity of programs nor the complexity of data used in the pro­
gram, respectively the complexity of references to objects of different types or
the consequences of hiding the representation and implementation of abstract
data types. We also have parallelly with the control structures to examine the
structure of data with the help of an appropriate measure to their complexity.

Our main proposal is, that when counting the complexity of a program, we
should take the complexity of the data used and the complexity of data handling
into consideration, we should see the decreasing of complexity through hiding
techniques.
2. Prelim inary definitions and notions

We shall define the new measure on the basis of the definitions given to the
complexity of nested control structures. The definitons connected to this come
from the excellently ’’rigorous” description of J.Howatt and A. Baker [НВ89].

D efin ition 2.1 . A direct graph G = (N ,E) consists of a set of nodes N
and a set of edges E. An edge is an ordered pair of nodes (x,y). If (x,y) is an
edge then node x is an immediate predecessor of node у and у is an immediate
successor of node x. The set of all immediate predecessors of a node у is denoted
IP (y) and the set of all immediate successors of a node x is denoted IS(x). A
node has indegree n if E contains exactly n edges of the form (w,z), similarly a
node has outdegree m if E contains exactly m edges of the form (z,w).

D efin ition 2.2. A path P in a directed graph G = (N, E) is a sequence
of edges (x i, x2), (x2,x 3) , . . . (x*_2, x*_i), (xt _ i , x*), where Vi[l < » < * ;] = »
(xj,xj+i) € E. In this case P is a path from x\ to x*.

D efin ition 2.3. A flowgraph G = (N , E , s , t) is a directed graph with a
finite, nonempty set of nodes N, a finite, nonempty set of edges E, s € N is the
start node, t G N is the terminal node. For any flowgraph G, the s start node
is the unique node with indegree zero; the t terminal node is the unique node
with outdegree zero, and each node x £ N lies on some path in G from s to t.
Let N ' denote the set N — {.*,<}.

J.W. Howatt and A.L.Baker define the notion of the basic block for mod­
eling control flow as follows:

D efin ition 2.4. A basic block is a sequential block of code with maximal
length, where a sequential block of code in a source program P is a sequence of

3
15

tokens in P that is executed strating only with the first token in the sequence, all
the tokens in the sequence axe always executed sequentially, and the sequence is
always exited at the end. Namely, it doesn’t contain any loops or if statements.

D efin ition 2.5 . Every node n € N of a flowgraph G = (N , E ,s ,t) which
has outdegree greater than one is a predicate node. Let Q denote the set of
predicate nodes in G.

The well-known measure of McCabe (cyclomatic complexity) is based only
on the number of predicates in a program: V(Cr) = p + 1. The inadequacy of the
measure becomes clear, if we realize that the complexity depends basically on
the nesting level of the predicate nodes. The measures proposed by Harrison
and Magel [HM181,HM281] and Piwowarski [Piw82] proven to be equivalent in
principle by Howatt and Baker [HB89] take this lack into account.

D efin ition 2 .6 . Given a flowgraph G = (N ,E ,s , t), and p,q G N, node
p dominates node q in G if p lies on every path from s to q. Node p properly
dominates node q in G if p dominates g and p ф q. Let r G N , node p is
the immediate dominator of node q if (i) p properly dominates q and (ii)if r
properly dominates q then r dominates p.

The formal definition of the scope number is based on the work of Harrison
and Magel.

D efin ition 2.7. Given a flowgraph G = (N ,E ,s ,t) , and p, q € N„ the set
of first occurence paths from p to q, FOP(p,q) is the set of all paths from p to
q such that node q occurs exactly once on each path.

D efin ition 2.8 . Given a flowgraph G = (N ,E ,s , t), and nodes p,q G N„
the set of nodes that are on any path in FOP(p,q) is denoted by MP(p,q):

M P(p,q) = {v I 3P [P G FOP(p.q) A v G P].}

Definition 2.9. In a flowgraph G = (N, E ,s ,t) , the set of lower bounds of
a predicate node p G N is

LB(p) = {v I VrVP [r G IS(p) A P G FO P(r,t) =» v G P]}

Definition 2 .10 . Given a flowgraph G = (N , E, s, t), and a predicate node
p G N , the greatest lower bound of p in G is

GLB{p) = {9 I q G LB(p) A Vr [r G (LB(p) \ {g}) => г G LB(q)]}

D efin ition 2 . 1 1 . Given a flowgraph G = (N , E, s, t), and a predicate node
p € N , the set of nodes predicated by node p is

Scope(p) = {n I 3q [q G IS (p) A n G MP(q, GLB(p))] } \ { GLB(p) }

D efin ition 2 .12 . Given a flowgraph G = (N ,E ,s , t), the set of nodes that
predicate a node x G N , is

Pred(x) = {p I x G Scope(p)}

16

D efin ition 2.13. The nesting depth of a node x 6 N, in a flowgraph
Gt— (N , E, s, t) is

nd(x) = I Pred(x) |

Thus, the total nesting depth of a flowgraph G was counted as

1V D (G)= £ nd(n)
n€N'

The measure of program complexity given by Harrison and Magel is the
sum of the adjusted complexity values of the nodes. This value can be given -
as proved by Howatt - as the scope number of a flowgraph:

D efin ition 2.14. The scope number•, SN(G) of a flowgraph G = (N, E , s, t)
is

SN(G) = I N ' I +ND(G)

The main concept behind this definition is, that the complexity of under­
standing a node depends on its nesting depth, on the number of predicates
dominating it.

This measure was proved by J.W. Howatt and A.L.Baker to be equivalent
to the ones proposed by Piwowarski or Dunsmore and Gannon, that is why we
shall refer to this in the following.

3. P roposal for a new m easure
As we can see from the above, the software complexity measures did not so

far take the role of procedures into consideration, while the complexity of data
used was completely out of the question.

Our first suggestion is directed towards the introduction of the notion of
procedure . The complexity of programs, decomposed to suitable procedures,
is decreasing. We need a measure which expresses this observation.

Let us represent a program consisting of procedures not with a flowgraph,
but with the help of a set o f flowgraphs. Let us define the complexity of a
program as the sum of the complexities of its component flowgraphs!

D efin ition 3 .1 . A programgraph V = {G | G = (N ,E ,s , t) flowgraph}
is a set of flowgraphs, in which each start node is labeled with the name of the
flowgraph. These labels are unique. There is a marked flowgraph in the set,
called the ’main’ flowgraph, and there is at least one flowgraph in the set which
contains a reference to each label except the ’main’ one.

D efin ition 3.2 . The complexity of a programgraph will be measured by
the stun of the scope numbers of its subgraphs

C (V) = £ S N (G '>

cev

3*
17

This definition shall reflect properly our experience that if we e.g. take
a component out of the graph which does not contain a predicate node to
form a procedure - i.e. a basic block, or a part of it (this means a single
node), then we increase the complexity of the whole program according to
our definition. This is a direct consequence of the fact that in our measures
so far we contracted the statement-sequences what is reasonable according to
this view of complexity. If we create procedures from sequences the program
becomes more difficult to follow, since we can not read the program linearly,
we have to ’’jump” from the procedures back and forth. The reason for this is
that a sequence of statements can always be wieved as a single transformation.
This could of course be refined by counting the different transformations being
of different weight, but this approach would transgress the competence of the
model used. The model mirrors these considerations since if we form a procedure
from a subgraph containing no predicate nodes, then the complexity increases
according to the complexity of the new procedure subgraph, i.e. by 1 .

On the other hand, if the procedure does contain predicate node(s), then
by the modularization we decrease the complexity of the whole program depend
ing from the nesting level of the outlifted procedure. If we take a procedure
out of the flowgraph, creating a new subgraph out of it, the measure of its
complexity becomes independent from its nesting level. On the place of the call
we may consider it as an elementary statement (as a basic block, or part of it).

Fig.1.

See Fig. 1. and Fig. 2. as ал example. It is visible, that even in such
a simple case the complexity of the whole program decreases if we take an
embedded part of the program out as a procedure. One can simply control
that the complexity of the program shown on Fig.l. SN(G) = 19, while the
complexity of the second version shown on Fig. 2. C(V) — YIg&v ^N(G) = 18.

This model reflects well the experience of programmers, that the complexity
of a program can be decreased by the help of modularization not only when the
procedure is called fron, several points of the program, but a well developped
procedure alone, in the case of a single call can decrease the complexity of the
whole program.

It is also trivial, that if we form a procedure from the whole program, than
we also increase the complexity.

Now we are reaching the point where it is inevitable, not only from the
point of wiev of handling procedure calls but also in connection with the whole
program, to deal with the question of data. The complexity of a program
depends not only on the complexity of the transformation but also on the subject
of this transformation. What are the data to be processed.

19

We extend the definitions that we have used so far: Let the set of nodes of
our flowgraphs be widened by a new kind of node to denote the data! Let us
denote by a small triangle (Д) the data nodes in the program! Let us draw to
these nodes special edges, called data reference edge, which surely return to
their origin from each node, where there is a reference to that data!

D efin ition 3.3 . Let N and D be two finite, nonempty sets of control
structure and data nodes respectively. A data reference edge is a triple
(xi,x2,xi) where x\ € N and x2 € D.

Let us redefine the notion of a flowgraph as follows:
D efin ition 3.4. A data-flowgraph Q = (Л/*, S, s, t) is a directed graph

with a finite, nonempty set of nodes Af = N (J D, where N represents the nodes
belonging to the control structure of the program and D represents the nodes
belonging to the data used in the program, (both of them are nonempty), with a
finite, nonempty set of edges £ = E |J R, where E represents the edges belonging
to the control structure of the program, and R represents the set of its data
reference edges, s 6 N is the start node, t € N is the terminal node. The
s start node is always the unique node with indegree zero for all the data-
flowgraphs Q,; the t terminal node is the unique node with outdegree zero, and
each node x € X lies on some path in Q from s to t. Let Af' denote the set

The complexity of the program will be computed from the set of graphs
obtained this way in accordance with the previous definitions - depending from
the number of nodes and predicates dominating them. We call the attention to
the fact, that if we take the role of data in the program into consideration, then
the number of those nodes, which have outdegree greater than one, increases,
and we have to determine the Scope also for those nodes, where there is a
reference to a data.

As an example let us have a look at the program represented by the graph
on Fig.3. The complexity counted this way can be obtained:
Scope(pi) = {di, a, d2, p2, dA, c, d3, b}
Scope(p2) = {a, d2, p2, d4}
Scope(a) = {^2}
Scope(b) = {cf3}
Scope(c) = {<f3}
Prtd(p \) = 0
Prtd(p2) = {pi, P2 }
Pred(a) = {рърг}
Pred(b) = {P l}
Pred(c) = {pi}
Pred(d\) = {pi}
Pred(d2) = {pi,p2, a}
Pred(d3) = {pi, b, с}
Pred(d4) = {рьрг}
Thus ND(9) = 15 and SN{g) = 24.

This way the complexity will also be influenced by the data and this is just
as well as at the transformations, since that to what extent a data makes a pro­
gram more complicated is determined by the decisions preceding the reference
to it. This graph and its complexity measure defined this way express that the
complexity of a program depends also on the data used, and on the references
to these data.

As we have seen so far the complexity may be decreased the by the ap­
propriate modularization of the program. Similarly, if we take out a subgraph
which contains one or more data with sill of the data reference edges leading to
this data, we will decrease the complexity. E.g. if there is a single reference
to a data at some transformation, and we take this transformation in order to
create a procedure, where this data will be a local variable - the complexity of
program decreases. The substantial moment in this activity is, that we hide a
variable from the view of the whole program, we make it invisible (local), and
thus essentially decrease the additive factor to the complexity at this point.

As an example see Fig. 4. constructed from the graph shown on Fig.3..
As one can easily control, the complexity of this program will be 18 opposed to
the value 24 obtained for the program on Fig. 3.

The occurences are of course, in general, not so simple because there can
be several references to the same data. How could we decrease the complexity
of the program in addition to this? One fundamental tool is the decreasing of

21

Fig. 4.

the number of small triangles, the number of data used. One possibility for this
is that we draw certain data into one structure, creating data structures from
our data. E.g. if we have to work with a complex number, then we decrease
the complexity of the progrma if instead of storing its real and imaginary part
separetely in the variables a and b , 'we draw these to a complex number x
which has operations treating the real and imaginary part appropriately. The
reduction(the decreasing of data nodes) occurs of course only when we hide
th e com ponents in the following from the outerworld, since if we do not this,
this would mean, on the level of the program graph, that we did not merge two
data nodes into one, but created a third one to the previous two.

As a matter of fact we can decrease the complexity of program in connection
with data if and only if we build abstract data types hiding the representa­
tion. Hi this case the references to data elements will always be references to
data since a data can only be handled through its operations. While computing
the complexity of the whole program we have to take into account not only the
decreasing of the complexity, but also the increasing by the added complexity
of determined by the implementation of the abstract data type. Nevertheless
this will only be an additiv factor instead of the previous nested factor.

That is the most important complexity-decreasing consequence of the ob­
ject oriented view of programming: the object hides the typ e from the
predicates (decisions) supervising the use of the object.

The complexity measure studied here expresses the structural complexity
of the program.

Э 2

The notion of inheritance allows actually to hide a class o f types, fur­
ther decreasing the sum of complexity, of course adding the complexity of the
inheritance graph. To compute the complexity of an inheritance graph we have
to use the graphrepresentation suggested by Meyer [Me88], namely using edges
from the descendants to their ancestors, since the complexity of a class depends
on their ancestor(s), not on their descendant(s). The complexity of an object-
oriented program will thus be determined by the sum of the complexity of the
inheritance graph and the complexity of objects used.

C onclusions

We investigated the given complexity measures, and found them suffer­
ing from a common problem, that they, while computing the complexity of a
given program, did not take the role of neither the modularization nor the data
used into account. On the basis of the previous efforts of J.W.Howatt and
A.L.Baker we suggested a new measure of program complexity, which reflects
our psychological feeling that the main concepts of object-oriented programming
methodology help us to decrease the total complexity of a program.

References:

[Dij76] Dijkstra,E.W.: A Discipline of Programming, Prentice-Hall, Engele-
wood Cliffs, N.Y.,1976.

[FN91] Fothi,A. and Nyeky-Gaizler,J. : A Theoretical Approach of Objects
and Types, in: Kai Koskimies and Kari-Jouko Raiha (eds.): Pro­
ceedings of the Second Symposium on Programming Languages and
Software Tools, Pirkkala, Finland, August 21-23,1991, Report A-1991-
5,August,1991.

[HM181] Harrison,W.A. and Magel,K.I. : A Complexity Measure Based on
Nesting Level, ACM Sigplan Notices,16(3),63-74 (1981).

[HM281] Harrison,W.A. and Magel,K.I. : A Topological Analysis of the Com­
plexity of Computer Programs with Less Than Three Binary Branches,
ACM Sigplan Notices,16(4), 51-63 (3*981).

[HB89] Howatt,J.W. and Baker,A.L. : Rigorous Definition and Analysis of
Program Complexity Measures : An Example Using Nesting, The
Journal of Systems and Sofware 10,139-150 (1989).

[McC76] McCabe, T.J. A Complexity Measure, IEEE Trans. Software Engi­
neering, SE-2(4),308-320 (1976).

[Me88] Meyer,B. : Object-Oriented Software Construction, Prentice Hall,
New York, 1988

[Piw82] Piwowarski,P. : A Nesting Level Complexity Measure, ACM Sigplan
Notices ,17(9),44-50 (1982).

[Va92] Varga, L.: A new approach to defining software design complexity.
In: R.Mittermeier (ed.): Shifting Paradigms in Software Engineering.
Springer Verlag, Wien, New York, 198-204.(1992)

S u p p o r t « ! by th e H u n g a r ia n N a t io n a l S c i . n c e R e s e a r c h G r a n t f O T K A) , G ran t N r 2045

* 23

THE WEAKEST PRECONDITION AND THE
SPECIFICATION OF PARALLEL PROGRAMS*

ZOLTÄN HORVATH

Dept, of General Computer Science
Eõtvõs Lorini University, Buiapest
H-1117 Buiapest, Bogiinfy u. 10/b.

E-mail: hzQcomput.elte.hu
HUNGARY

Abstract

We propose a method to express safety and progress properties of parallel programs
based on the well-known concept of the weakest precondition [Dij76, FH91] and related
predicate transformers.

We give new definitions for the operations of Unity [CHM88,Kna92], i.e. for unless, en­
sures and leads-to. Postulating fairness conditions [Mor90] we investigate the relationship
of the old and new operations to the commonly used operations of linear and branching
time temporal logics [ES88] and to the concept of the weakest and strongest invariant
[Lam90].

Introduction

We take the specification as the starting point for program design. We are looking for
a model of programlning which supports the top-down refinement of specifications [VarSl,
FH91, СНМ88]. The proof of the correctness of the solution is developed parallel to the
refinement of the specification of the problem. However we do not aspire to synthetise
programs automatically [Lav78, ESS88/4.1.3] or to verify ready algorithms [ESS88/4.2].
In the present paper we are especially interested in building tools for specification of parallel
programs.

The UNITY model [CHM88] of programing seeems to be an appropriate choice. We
describe the main concepts of UNITY in section 2. We give a short overwiew of semantic
models and temporal logics in section 3. Three basic operators are used for specification of
parallel programs in UNITY, i.e.: unless, ensures and leads-to. We propose new definitions
for the operators based on the well-known concept of the weakest precondition [Dij76,
FH91) and related predicate transformes in section 4. We justify the correctness of the
new definitions and investigate the relationship of the old and the new operations to the
commonly used operations of linear and branding time temporal logics [ES88]. We show,
that the new logic is more expressive than the old one.

A similiar approach to define progress properties is taken by Lukkien and Snepscheut
in [LS92]. They give a new definition for leads-to for a language dealing with sequential
composition but in absence of parallelism and fairness.

* Supported by the Hun|»ri»n National Science Reaetrch Grant (O T K A), Grant Nr. 304ft

24

1. Preliminary notions and definitions

In the following we use the terminology used in [Par79, Fot83, Fot88, Hor90, FH91],
(To avoid confusion, we use the word statement instead of program, and effect relation
instead of program function.) Rn(A) denotes the set of n-ary relations on A, otherwise
relation means binary relation in the following.

Def. 1.1. The relation R С A x В is a function, if V a € A : | Я(а) | = 1.
Def. 1.2. / С A x С is a logical function, if it is a function, where С ::= {f, j}.
Remark: We use the words predicate and condition as synonyms for logical function. If

P and Q are logical functions, then we use the Л, V, —» operations for function composition
on the usual way.

Def. 1.3. T5[/] {a 6 A\f(a) = {f}} is called the truth-set of the logical function
/ . The operations U, П,С correspond to the function conmpositons A,V,-+.

Def. 1.4. I С N . Vij € J : is a finite or numerable set. The set A ::= is
called state space, the sets Atj. are called type value sets .

Def. 1.5. The elements of the state space, the points а = (а<,,..., а,„) € A, are called
states .

We can imagine a statement (a sequential program) as a relation, which associates a
sequence of the points of the state space to the points of the state space.

Def. 1.6. The relation S is called a statement, if

i) S C A x A**,

it) Vs = A,
Hi) (а € А А а € 5(a)) =► ai = a,
iv) (a € Us A*) => (Vi (1 < t < |« |) : а, ф <*;+i),
v) (a € f t s A a € A °°) =>

(V* 6 N (a, = a i+1 -♦ (V*(fc > 0): a< = a i+*))).

where A* is the set of the finite sequences of the points of the state space, and A°° the set
of the infinite ones. Let A** = A* U A°°.

Def. 1.7. The effect relation of the statement 5 is the relation p(S) С A x A, if

) 'Dp(S) = { a £ A \ S(a) С A}
ii) Va € Pp(s) : p(S)(a) = {6 G A | 3a € S(a): т(а) = 6},

where г : A* —* A is a function, which associates its last element to the sequence а =
(ai,....,a„), i.<?. r(ar) = a„.

Def. 1.8. The statement wp(S, R) is called the weakest precondition of the postcon­
dition R in respect of the statement S , if TS[wp(S, Д)] = {a € D,(s) | p(S)(a) С Т5[Д]}

Def. 1.9. A statement over the state space A is called empty and denoted by SKI P ,
if Vo € A : SKIP(a) = {(«)}•

25

Ц *

Def. 1.10. Let A = Aj x ... x A„, F = (Ft , ..., F„), where Fi С A x Ai. The statement
S С A x A** is a general assignment , if

5 = {(a,red(a,b)) \ a, b G А A a G ig[i*lfl] A b e F(a)} U
{(a, (aaa....)) | a G А A a £

Remark: ZV = / £ р ,] ^ Л в) = ^i(a) x -̂ М0) * — x F„(a)
The assignment 5 is denoted by a := F(a) and called deterministic, if (Va € A :
|p(5)(a)| = 1). If we use the notation (a := F(a), if jt), then ((Ps = A) A (Va G
TS[->7r] : p(S)(a) = {a})). This kind of assignment is called conditional.

Def. 1 .1 1 . A function F : R n(A) -» Rm(B) is monotone if X С Y => F{X) С F(F).
As is well known every monotone function has a minimal (least) and a maximal

(greatest) fixpoint.
Lemma 1.12. Let function F : Rn(A) —* R m(B) be monotone.

a) The minimal fixpoint of F: /iF = f){.Y|F(A) С Л'},
b) fixpoint induction for minimal fixpoint: if F(Z) С Z then fiF С Z,
c) F(/<F) = fiF ,
d) the maximal fixpoint of: ijF = (J{.Y|.Y Q F(A')},
e) fixpoint induction for maximal fixpoint: if Z С F(Z) then Z С i)F.
f) F(./F) = //F.

2 . The main concepts of UNITY
The first specification of the problem is short, only the most important aspects are

formulated at the begining. The specification and its solution, the abstract program is in­
dependent of architectures, of scheduling and of programing language. The implementation
of the abstract program is defined by the help of standard methods, so callecLtnappings.

The structure of the abstract program should not imply to encode unnecessary syn­
chronisation points between the processes. CSP [Hoa78] or Ada like programs are built up
from sequential components which define explicit control flow over large subsets of state­
ments. Therefore the abstract program is regarded as a set of deterministic (simultaneous)
conditional assignments (cf. Def. 1.10.). The condotions of the assignments encode the
necesary synchronisation restrictions explicitly. In each step of executon of the abstract
program some assignment is selected nondeterministically and executed. Every statement
is executed infinitely often, i.e. an unconditionally fair scheduling is postulated. If the
condition of an assignment is false, then the effect is equivalent to SKIP. If more than one
processor selects statements for execution, then the executions of different processors are
fairly interleaved.

The abstract program terminates never. A fixed point said to be reached in a state,
if any statement in that state leaves the state unchanged.

3. Semantic models
If we want to reason about absence of undesirable side-effects, then we have to use

rich mathematical model which is appropriate to reflect all the symptoms caused by the
interaction of processes. We have to deal with synchronous and asynchronous, distributed
and shared-memory architectures. Events an different processors take place simultane­
ously, processes on the same physical processor may interfer with each other. We would

26

like to incorporate into our model the concept of true parallelism and true nondeterminism
[BW91, MV91]. On the other hand we have to choose a model which complexity can be
managed.

By the help of different semantics we formalize the meaning of our abstract programs.
A semantics is said to be more abstract, if it regards more syntactically different abstract
programs to be equivalent. The method used for the definition of equivalence may be
denotational, operational or axiomatic, etc. In denotational semantics elements of domains,
i.e. a set of mathematical entities, are associated to abstract programs. The function from
the set of abstract programs to the domain is compositional, i.e. the element of the domain
associated to a compoud program is defined in terms of the elements associated to the
component programs. Operational semantics is often based on labelled transition systems
reflecting the behavior of processes. In the axiomatic semantics equivalence is expressed by
a set of axioms and dervation rules. The same abstraction level can be achived using any of
the three style of semantic definition [Hen88]. The advantage of denotational semantics is
the ability to reason about the correctness of programs on a static way, i.e. by comparison
of the elements of the semantic domain.

A semantics is true parallel, if it do not identifies a parallel program with set of the
interleavings of its elementary components, i.e. (a || b ф ab + ba).

We Eire speaking about linear time semantics, if the nondeterministic behaviour of
the programme restricted to the initial states of its execution. Branching time semantics
reflects the true nondeterminism of programs, i.e. (a(b + с) ф ab + ас).

We give two examples for semantic models:
Model 3.1.1.: The semantic domain is a set of binary relations which associate a se­

quence of the points of the state space to the points of the state space [Fot88] A sequence
denotes one possible execution of the statement (program). This is a linear time deno­
tational semantics. Operations over the domain are defined as compositions of relations
[Fot83,Hor90].

Model З.1.2.: Sequences, built up from ordered pairs are associated to initial states
in the semantic model of UNITY. The ordered pair consist of the state and the label of
the program component (i.e. the label of the assignment), which is selected for execution
at this state. Labels are important to identify the model and/or the process, which is
responsible for the given state transition [Bes83, СНМ88]. This is an interleaved, linear
time semantics, which is relatively easy to use from mathematical point of view. The
linear time nature of the semantics is reflected in the definitions of operators used in
specifications. The concept of unless, ensures and leads-to is based on the concepts of
linear time temporal logics [ES88].

3.2. Temporal logics
3.2.1 Branching time temporal logic
Using branching time temporal logics for describing properties of nondeterministic

programs we can associate to a program a directed tree. A node of the tree corresponds to
a point of the state space, an edge represents a state transition. Labels associated to edges
identify program components, which are responsible for the state transition. Assertions
can be formulated to characterize the nodes and the paths [ES88]. We denote a node by
c, a path by t.

27

AP(e), if for all path t leading from node e : P{t),
EP(e), if exists a path t leading from node e : P(t),
GP(t), if for every point e of path t : P(e),
FP(t), if exists a point e of path t : P(e).

We denote by an abstract program given in UNITY by 5. We are interested in the
case, when the paths corresponding to nonfair execution sequences are excluded. In this
case we use the operators А ф and Еф\

ф = Уз € S : CF exec(s), where exec(s) holds at a node e, if the edge leading to e is
labelled by S.
АФР = А(ф P)
ЕФР = Е(ф Л Р)
Several notion of fairness can'be formulated using branching time logic [ES88]. We

may associate guards (boolean expressions) to atomic actions. An atomic action is enabled
to be selected for execution, if its guard is true, enabl(s) holds at a node, if in the state
corresponding to the node the guard associated to з is true.

- if (Уз G S : GF exec(s)), then the scheduling is unconditionally fair.
- if (Уз € S : FG enabl(s) —» GF exec(s)), then the scheduling is weakly fair.
- if (Уз € S : GF enabl(s) —> GF exec(s)), then the scheduling is strongly fair.

We define some commonly used operators of branching time temporal logic:
OP ::= AG(P) (always)
ФР ::= = EF (not never, potentially)
~ P ::= AF(P) (eventually, ineviability) *

3.2.2 Linear time temporal logic

The nondeterministic behaviour of programs is restricted for the initial state of the
execution in the case of Unear time temporal logics. The program is represented as we
have seen in Model 3.1.1. or 3.1.2. We are not allowed to use operators like A or E.
We can characterize one single execution sequence of the program by the help of the G,
F and related operators. A specification given in linear time temporal logic satisfied by
a nondeterministic program, if it is satisfied by every possible execution sequence of the
program.

The linear time specification P can be translated to branching time logic as .4P. Since
the operator A is not distributive [ES88], the whole specification has to be translated at
once. The well-none example for the faliure of distribution of A is: A(FP V G~<P) ^
(AFP V AG^P).

The operators □, ф, are used in linear time temporal logic too. The first two
operators are defined to correspond to their brandling time version (by the translation
method).

□P ::= G(P) (always)
OP ::= -'□-'P =~ P ::= F(P) (eventually, ineviability)
Remark: Potentiality can not be expressed using linear time temporal logic.
An other way to define the semantics of a temporal logic is the use of Kripke structures

[Krö87] or to refer the execution sequences explicitly:

28

- (P atnext Q)(<,-) ::= ((Vj > i : -<?(«.)) V (Q (t / Л P(<*) Л Vj € (i, 4) : -<?(*,))).
- P Uw Q :\= Q atnext (P -* Q) (weak until).

4. The original and the new definition of the operators:
unless, ensures, leads-to

4.1. The original definitions
The operators used in [CHM88] for the specification of UNITY programs were based

on the linear time semantics of the abstract programs. Hoare triples ({P}s{Q}) were used
as short hand form: t denotes a sequence ^presenting a possible program execution (cf.
3.2.), p[<,] holds, if P holds at the appropriate state. Ror program 5 and a £ S : {P}5{Q}
holds, if for all sequences and for all i > 0 : (P[<,] A ti.label = a) => g[tj+)].

Def.4.1.1. (unless)
p unless q = (Vs : а € S :: {p Л -,9}s{p V 9})
Remark: P unless Q = (0 (P => (P|Ju,Q))) [Sin91].
Def. 4.1.2. P stabil ::= P unless J.
Remark: The weakest and strongest invariant of S [La90] is closely related to unless.

win(S,R) is the weakest stabil (in respect of 5) condition, which implies R. sin(S, R) is
the strongest stabil condition, which is implied by R.

Let denote FP the condition which truth set is the set of fixed points of S.
winp(S, R) ::= win(S,(FP - R))
ainp(S,R) ::= ain(S,(FP —» R))
Progress properties:

Def. 4.1.3. (ensures)
p ensures q ::= (P unless q) Л 3s 6 5 :: {рЛ [CHM88]
Remark: the definition of ensures based on the unconditional scheduling.
Def. 4.1.4. (p leads-to q, inevitability)
A given program has the property p leads-to q if and only if this property can be

derived by a finite number of applications of the following inference rules:
p ensures q => p leads-to q,
(transitivity) p leads-to 9, q leads-to r =» p leads-to r,
(disjunction) For any set W,
[Vm : m G W :: p(m) leads-to 9] => [3m : m € W :: p(m)] leads-to q.

Remark: Since leads-to is defined by inference rules, the statement not (P leads-to Q)
has the meaning that P leads-to Q can not be derived. We are not able to express using
leads-to, that Q is not inevitable from P.

Remark: If (P leads-to Q), then (D(P — Q)) [Sin91].

29

4.2. The redefinition of unless

We use in our definitions the concept of the weakest precondition, fixpont of functionsv
least and greatest fixpoints of equations, and fixpont induction as we defined them in
section 1 .

We generalize the concept of UNITY program on the following way. Let denote with
I a nonempty, finite subset of the natural numbers. Let be 5 a nonempty, finite set of
conditional assignments, such that

S = {Si I * € I Л V p(3i) — A A Va € Л .: (|o>,(«)| < w)}
From now on we use the branching time semantic model 3.2.1., which reflects the

definition of the weakest precondition.
Def. 4.2.1. Let S be an abstract program. u>p(S, R) ::= Vs € 5 : wp(s,R).
Def. 4.2.2. Let S be an abstract program. wpa(S,R) ::= 3 s € S : wp($,R)

(the angelic weakest precondition [Mor90]).
Def. 4.2.3 (unless)
? > Q : : = (P A - ' Q - t wp(S, P V Q)).
Lemma 4.2.1. > is the brandling time version of UNITY unless. Proof left to the

reader.
Remark: The presence of fairness does not affect the definition of t>.

4.3. The new definition of progress properties

The new definition of leads-to (4.3.5.) is based on Park’s paper [Par79]. Park recog­
nised, that the weakest precondition of iterative programs can not be expressed by the help
of the minimal or by the help of the maximal fixpoint ill the case of presence of fairness.
He used the combination of the least and greatest fixpoint operator to define a fixpoint
different from both. By the help of this he determined the set of sequences given by the
fair merge of sequence X and sequence Y.

The weakest precondition of recursive procedures are given by the help of predicate
transformers and fixpoint oprators in case of presence of fairness in [Mor90]. We use the
set-theoretic approach of [Park79] and investigate iterative program structures instead of
recursive procedures.

Def.4.3.1. G(P, r, Ar) = PV ((ypa(S, Y) A wp{S, X))
Lemma 4.3.1. G is monotone in P,Y ,X .
Proof: Since wp and wpa are monotone, 4.3.1 can be proved by predicate calculus. □
Consequense: VP. У : tfX : G(P,Y, X) exists.
Def.4.3.2. F(P ,Y) = qX : G{P,Y,X)
Lemma 4.3.2. F(P, Y) is monotone in P, Y.
P*oof: Let suppose Y* —> R and P —♦ S.

F(P,Y*) = G (P,Y,F(P,Y)) { fixpoint (cf. 1.12/e) }.
G(P, r, F(P, Г)) -» G(S, i?, F(P, Y)) {G monotone }.
By fixpoint induction 1.12/f: F(P, Y) —* t]X : G(S, R, X),
,,X : G (S,R ,X) = F(S, Д), by definition. □

30

Def.4.3.3. eventually P (inevitability)
- P = fiY : F (P ,y)
Lemma 4.3.3: ~ P is monotone in P.
Proof: Suppose, that P -* Q. F(P, ~ Q) —» P(Q, ~ Q) {P is monotone }

P(Q, ~ Q) = ~ Q { fixpoint 1.12/c}.
By fixpoint induction: цУ : F(P, A) -» (~ Q) { by def. } [— P — Q\ □

Lemma 4.3.4.: P —► (~ P).
Proof: P V (w p a (S , ~ P) Л u>p(S, ~ P)) = ~ P{ fixpoint }. By strenghtening the left

hand side: P —»(~ P) □
Collorary 4.3.5.: By 4.3.4 and 4.3.12. (~ P) w (~ (~ P)) □
Def.4.3.5.: (ensures)
(Q ~ P) ::= (g - » (P V ((wpa(S, P) Л «;p(S, Q)))

i.e.(Q *-» P) ::= (Q -» G(P,P,Q))
Lemma: i—► is the branching time version of UNITY ensures.

Proof left to the reader.
Def.4.3.6.: (leads-to)
(Q - P) ::= (Q - (~ P))
Lemma 4.3.6.: If Q *-* P, then Q <-» P.
Proof: [Q i-> P] = [Q -+ G(P, P, Q)] { def }. By fixpoint induction 1.12./e:

(if [Q G(P, P, Q)j then [Q -» T]X : G(P, P, X))] i.e.
Q -» P(P,P). P(P,P) - P (P ,~ P) {P - » (~ P) (Lemma4.), P is monotone }.
P(P, ~ P) = (~ P) { fixpoint }. i.e. Q - (~ P) { by def.} Q ^ P O

Lemma 4.3.7.: If P Q and Q R, then P «-+ R.
Proof: [Q «-» R] = [Q - » (~ P)]{ def }.

Since ~ is monotone, [(~ Q) —» (~ (~ iZ))]. By the application
of Collorary 5. [(~ Q) —> (~ Й)]. On the other hand by definition:
[P —► (~ Q)]. By transitivity of implication: [P —»(~ P)] □

Lemma 4.3.8.: Let be / an arbitrary set. If Vi € I : (Pi ► Q) then (3t : P ,)«—> Q.
Proof: [Vt 6 / : (Pi *-» Q)\ = { definition }

[Vt G / : Pi —»(~ Q)] => [P, V ... V P, - (~ Q)] = [(3i : P.) -» (~ Q)] =► { def }
[(3* € P i) - Q] □

Collorary: By Lemmas 6., 7., 8.:
If P leads-to Q, then P ► Q □.
Def.4.3.8.:

PP°(P) = |

{
P(P, P P , - 1 (P)), if t is not a limit ordinal

\ /
,FF}(P), if t is a hmit ordinal.

■31

5

Lemma 4.3.10.:
a) (i < j) - ^ [F F (P y ^ F F (P y]
b) (fiY : F(P, Y)) = F F(Py for some i i.e. (~ P) = FF(P)' for some i.
c) F F (P y - w pa(S,F F(Py-l)V P
d) F F (P y -» wp(S,F(Py) V P

Proof:
Since F is monotone, the proof of a) and b) is a special case of Lemma 3. of [Mor90].
Proof of с) and d): FF(Py = { d«f } = F(P, FF(P)*-1) * { def } =

r,X : G (P ,F F (P y~ ',X) = { def } = t)X : (P V {{wpe(S,FF(Py-1) A wp(S,X))) =
{fixpoint} = (P V ((topa(S, F F (P y~')) A wp(S, FF(P)'))) = (P V ((tx.pa(5, FFCP)*-1)) Л
(P V iup(S, FF(P)'))) i.e. by weakening by right hand side F F (P)‘ => P V
^Н ^РРС РУ "1)) and P(P)' => P Vw p(S,F F (P y)) 0

Theorem 4.3.11. If (~ P) holds for a 6 A, the scheduling is unconditionally fair
and the UNITY program S is in the state a, then 5 inevitable reach a state, for which P
holds (i.e. A*F(P)).

Proof: The proof is similiar to the proof given in [Mor90]. Let choose a sequence
t starting from the truth set of (~ P). We show, if P never holds along t, then the
selection of the statements of t is not fair. Let associate an ordinal t > 0 to the point tj
of t, such that F F(P)'(tj) and ->FP(P),_1 (ty). By Lemma 10/d and by the definition
of ~ P such an i exists and it is not an limit ordinal. Since the sequence of associated
ordinals is monotonically decreasing (Lemma 10/d), there exists a к and h, such that:
Vj > h : F F(P)k(tj) A -F F (P)*-1 (tj). By lemma 10/c the sequence is not fair, i.e. never
selects the existing direction s for which wp(s,PP(P)fc-1). □

Collorary 4.3.12. (~ (~ P)) —> (~ P) О

Conclusion

By the help of the new definitions we increased the effectiveness of the specification
language. The old properties of the operators remain valid. Finally we show an example
for expressing potentiality:

x ::Z .
P = (x > 5) Q = (x < 15) R = (x = 5)
R _> ((-iQ ~ Q) V (P stabil))) Л (-(P — Q) Л -(Д — P))
INIT ::= (x = 5).

x := z + 1, ha x > 5 ;
x x — 1, ha x < 5

Remark: The specification corresponds to E+GP Л E+FQ Л A^(GP V FQ) [ES88].

32

References

[Bes83] Best,E.: Relational Semantics of Concurrent Programs, in Formal Desc. of Pro­
gramming Concepts II., 1983.

[BW91] de Bakker,J.W.-Warmerdam,J.H.A.: Four domains for concurrency, Theoretical
Computer Science, Vol. 90 (1991), 127-149.

[CHM88] Chandy,K.M.-Misra,J.: Parallel program design: a foundation, Addison-Wesley,
1988, (1989).

[Dij76] Dijkstra,E.W.: A Discipline of Programming, Prentice-Hall, 1976.
[ES88] Emerson,E.A.-Srinivasan,J.: Branching Time Temporal Logic, in Linear Time,

Branching Time and Partial Order in Logics an Models for Concurrency, LNCS
S54- Springer-Verlag 1989. 123.-172

[Fot83] Fothi A.: Introduction into Programming (Bevezetes a programozashoz), ELTE
TTK egyetemi jegyzet, Budapest, 1983.

[Fot88] Fothi A.: A Mathematical Approach to Programming, Annales Uni. Sei. Bu­
dapest. de R. Eötvös Nom. Sectio Computatorica, Tom. IX. (1988), 105-114.

[FH91] Fothi A.- Horvath Z.: The Weakest Precondition and the Theorem of the Spec­
ification, in Proceedings of the Second Symposium on Programming Languages
and Software Tools, Pirkkala, Finland, August 21-23, 1991,ed.: Kai Koskimies
and Kari-Jouko Räihä, Uni. of Tampere, Dep. of Comp. Sei. Report A-1991-5,
August, 1991.

[Hen88] Hennessy,M.: Algebraic Theory of Processes, The MIT Press, 1988. •
[Hoa78] Hoare,C.A.R.: Communicating Sequential Processes, CACM 8/21. 1978.
[Hor90] Horvath Z.: Fundamental relation operations in the mathematical models of

programming, Annales Uni. Sei. Budapest, de R. Eötvös Nom. Sectio Compu­
tatorica, Tom. X. (1990), 277-298.

[Kna92] Knapp, E.: Derivation of concurrent programs: two examples, Sei. 'of Comp.
Progr. Vol. 19., 1-23., (Oct. 1992)

[Krö87] Kröger, F.: Temporal Logic of Programs, Spriger-Verlag, 1987.
[La90] Lamport,L. : win and sin Predicate Transformers for Concurrency, ATPL, Vol.12.

No.3. July 1990, 396-428
[Lav78] Laventhal,M.: Synthesis of Synchronization Code for Data Abstractions, Ph.D.

Thesis, MIT, 1978
[LS92] Lukkien, J., van de Snepscheut J.,L.,A.: Weakest Preconditions for Progress,

Formal Aspects of Computing (1992) 4: 195-236.
[Mor90] Morris,J.,M.: Temporal Predicate Transformers and Fair Termination Acta In-

formatica Vol. 26, 287-313, 1990.
[MV91] Mak,R.H.-Verhoeff,T.: Classification of Models, Lecture Notes on Process Mod­

els, TU Eindhoven, manuscript, 1991.
[Par79] Park, D.: On the semantics of fair parallelism In LNCS 86, pp 504-526. Springer

1980.
[Sin91] Singh, A.,K.: Specification of concurrent objects using auxiliary variables, Science

of Computer Programming 16, 49-88, 1991.
[Var81j Varga L.: Programok analizise es sziniezise, Akademiai Kiadö, Bp., 1981.

33

5*

Interactive Diagnosis and Testing of Logic Programs

Tamäs Horväth (e-mail: h158hor@ella.hu)
Tibor Gyimöthy (e-mail: h42gyi@ella.hu)
Zoltän Alexin (e-mail: h157ale@ella.hu)

Ferenc Kocsis (e-mail: h155koc@ella.hu)

Research Group on the Theory of Automata
Hungarian Academy of Sciences, H-6720 Szeged

Aradi vörtanuk tere 1., Hungary

Abstract: In this paper a method (called IDT) is presented which combines
Shapiro's Interactive Diagnosis Algorithm with the Category Partition Testing
Method. This method can be used both in the debugging and in the testing of
Prolog programs. The basic idea of IDT is that the test database prepared by the
Category Partition Testing can be used to reduce the amount of user interaction
during the debugging. In the IDT method the diagnosis process effects the testing
hence IDT can be considered as an integrated debugging and testing method.

Keywords: logic programs, category partition testing method, algorithmic debug-
ging

1 Introduction

The automatic program debugging technique introduced by Shapiro [SHA83] can isolate an erroneous
procedure, given a program and an input on which it behaves incorrectly. Shapiro's model has been
applied to Prolog programs to diagnose the following three types of errors: termination with incorrect
output, termination with missing output, and nonterminalion. A major drawback of this debugging
method is the great number of queries to the user for the correctness of intermediate results of procedure
calls. Thus, an important improvement would be to minimize the amount of information the user needs to
supply for algorithm to diagnose the error.

An algorithmic debugging method GADT (Generalized Algorithmic Debugging and Testing) for
imperative languages is discussed in [FRI91). A major improvement in bug-localization process is
demonstrated in GADT by combining the Category Partition Testing Method (CPM) [OST88| with the
algorithm introduced in |SHA83], The main concept of the improvement is the following: during the
debugging of a program the user has to answer many "difficult" questions. If this program has been
already tested by CPM. the test results for the procedures of the program can be used in the debugging
process.

Of course, during the testing the programs cannot be tested with all possible properties and values of
the input parameters. Hence, the first task of the tester in CPM is to define the critical properties of
parameters (callcd categories) of the procedures. These categories can be divided into classes (called
choices) presuming that the behavior of the elements of one choice is identical from the point of view of
the test process. From the specification of choices test frames arc generated. A test frame contains exactly
one choice from each category. The behavior of a lest frame from the point of view of the testing process
can be represented by an arbitrary clement of it (called test case). Running the given procedures on the

• This work is supported by OTKA-SOl and ESPRIT BRA 6020.

34

mailto:h158hor@ella.hu
mailto:h42gyi@ella.hu
mailto:h157ale@ella.hu
mailto:h155koc@ella.hu

corresponding test cases a test database can be created. An item of this lest database contains the
identifier of the test frame, the concrete input parameters (test case), the output values and the evaluation
result of this test frame (yeslnolundefined)

In the debugging process the concrete values of the parameters of a procedure are given. By
determining the corresponding test frame to a given input the test database can be checked with the
selected frame. In the case of 'good' tests report the debugger skips to the next procedure without query.

In this paper we present a method (called IDT) which combines Shapiro's Interactive Diagnosis
Algorithm with CPM. This method can be used both in the debugging and testing of Prolog programs.
The basic idea of the IDT system is similar to GADT e.g., by using the test database prepared by the CPM
the number of user interaction can be reduced during the debugging. Shapiro's diagnosis algorithm
presented in [SHA83] traverses the refutation tree of a program and asks the user about the expected
behavior of each clause (which can be considered as a procedure). The user has to give yes or no answer
and the algorithm isolates an error inside a certain procedure body.

Shapiro suggests that the number of queries can be reduced by storing the answers to previous queries.
However, the probability that the same query for a procedure is used several times during the debugging is
very small. In the IDT method we also store the queries, but each query represents a (equivalence) class of
the possible inputs. These classes are defined during the CPM testing process. A query can be represented
by a triple <p, x, y>, where p is a procedure and x and у vectors over some domain D, such that p on x
returns y. For a query <p, x, y> a test frame t is identified on the basis of the CPM test specification of
procedure p. This identification can be done automatically by using predefined searching functions in the
test specification for the inputs and classes. When these searching functions are not given new queries are
generated to the user to determine the correct test frame. Usually it is much easier to answer these queries
than to the original ones. After the test frame t is identified to a query <p, x, y> the system is looking for a
stored query <p, x1, y’> which represents the test frame t. If the procedure p was previously tested by such
query <p, x', y’> then the result of this query is used to answer the query <p, x, y>. Of course sometimes
the assumption that queries <p, x\ y*>, <p, x, y> give the same result may be incorrect The 'visible' effect
of such a false assumption may be that a bug could not be localized using IDT method. In this case we use
Shapiro's original algorithm to identify the incorrect procedure. Assume that the query <p. x, y> was used
to isolate the incorrect procedure p and this procedure was tested with the query <p, x', y’>. Suppose that
<p, x, y> and <p. x', y*> belong to the same lest frame t and the result of the query <p, x \ y’> is ves but the
result of the query <p, x, y> is no. In this case the partition specification for the procedure p during CPM
testing was not correct. Therefore the IDT method prepares a new partition for the inputs of the procedure
p. In this new partition the inputs x and x' represent different test frames. Hence, the IDT method can be
considered as an improvement of CPM algorithm presented in [OST88)

The main differences between the GADT and the IDT methods are that the GADT has been applied to
imperative languages while IDT to Prolog and in the IDT the diagnosis proccss effects testing. Hence IDT
can be considered as an integrated debugger and testing method

In the rest of this paper we firsts give a brief overview of Shapiro's algorithm in Section 2. Section 3
contains a formal description of the Category Partition Method. In Section 4 we describe the IDT method
and an example for this method is presented in Section 5. Finally in Section 6 the conclusion and some
remarks for future works are described.

35

2 Shapiro's single-stepping diagnosis algorithm

In this section we giye a short overview of an algorithm presented in [SHA83] and recall definitions
related to this algorithm. Shapiro's single-stepping algorithm can isolate an erroneous procedure (clause),
given a program and an input on which it behaves incorrectly. This algorithm traverses the refutation tree
of a program and asks the user about the expected behavior of each clause. The user has to give a yes or
no answer and the bug inside a certain procedure is identified.

2.1 Definition: A logic program P is a finite set of definite clauses (the clause A «- B,f ... , BB is definite
iff all B's are atoms, n ž 0).

2.2 Definition: Let С denote the clause A <- B ,, ... , Bn (n ž 0). Then head(C) denotes A and body(C) is
the set {B ,,..., Bn}.

2.3 Definition: Let P be a logic program, M an interpretation of P, A' a ground atom and A <- B,.......B„
an arbitrary clause in P. We say that A <- B ,, ..., Bn covers A' in M ifif there is a substitution 0 such that
A0 = A' and for all i (1 £ i й, n) B;0 e M.

2.4 Definition: An arbitrary clause p e P is correct in M iff all ground atoms covered by p are in M.
Otherwise we say that p is incorrect in M.

2.5 Definition: Let p be an arbitrary clause in P that terminates on some input x and returns у as output.
Then the top level trace of the triple <p, x, y> is a finite (possibly empty) ordered set {<p,, x,, y,>,
<Pj, Xj, y2>, ... , <pn, Хп, yB>}. Where p on input x calls first p, with input x,f that returns y, as output
then pj with Xj,. , and so on. Finally p call pn on input х„ which returns y0 and p returns y.

2.6 Definition: A partial computation tree of P is an ordered tree. Every node in this tree is labeled with
some triple <q, u, v>. The set of the direct descendants of an inner node is a legal top level trace of this
node. A T tree is a complete computation tree of P if it is a partial computation tree and all leaves in T
are empty sets.

In the following we suppose that the program P is free of side-efifects. Let p be an arbitrary clause in P
that terminates on input x and returns у as output such that <p, x, y> g M. It means that P has at least
one incorrect clause. Then for finding the incorrect clause that causes the error the computation tree
rooted by <p, x, y> is traversed in a postorder manner. During the traversing of the tree at each <q, u, v>
node a membership question is issued. Let us suppose that the first false answer is received at the node
<q, u, v>. Let the direct descendants of <q, u, v> be <q,, u,, v(>, ... , <щт, u^, vm>. Since we used
postorder strategy for all i (1 S i <. m) it holds that <q,, ujt v> 6 M. From this it follows that the clause
q <- q , , ... , qm covers the triple <q, u, v> which is not in M. The algorithm stops at the node <<j, u, v>
and returns the clause instance <q, u, v> <- <q,, u|t v ,> ,..., <<ц, u ^ vm>. By this method the erroneous
clause can always be identified assuming that the answers to the membership questions are correct.

A query-optimal modified version of this method is called divide-and-query We demon i c the
behavior of the single-stepping method through a small example [SHA83].

2.7 Example: a simple Prolog program for sorting a lis t

insert(X,[Y|U],[Y|Vl> Y < X , in*ert(X,U,V).

insert(X, [Y|U], [X,Y |U1) 8- * £ T.
insert(X,П,[X]).

*ort<П,Ü) .
sort(CX|Yl,Z) :- *or«T.U>,ineerttX.U.Z).

36

The above Prolog program contains two procedures (insert and sorf). The procedure insert puts a new
element into the list — given as the second argument — and returns the remit in the third argument. The
procedure sort softs the tail of the input list and then inserts the head of the input list into this list.

This program works as follows:

?: sort([-2,-4,3,-6,2,-3],X).

X - [-6.-4,-3,-2,2,3].

For the purposes to demonstrate Shapiro's algorithm let us make a bug in the above program: change in
the first line the caH in*ert(X,U,V) to insert(Y,U,V). It is a case of simple mistyping.

inMrt(X,[Y|U],(Y|V]) У < X , in»ert<Y,U,V).

Calling the sort with the argument (6,-2,4] it returns X = [-2,-2,4] as a result which is obviously wrong.
Let us try to find the wrong procedure using the single-stepping algorithm:

This algorithm works as follows: recursively interprets the call structure of Prolog. It performs the Prolog
evaluation from bottom up and each step it asks the user whether the newly determined goal is true or
false. The call tree lodes as follows:

*ort([6,-2,4],t-2,-2,4])
sort([*2,4],[-2,4])

•ort([4], [4])
•ort< [],[]>
in**rt(4, [], [4])

insert<-2,[4],[-2,4])

• 2 S 4
insert(6,[-2,4],t-2,-2,4])

6 » -2
tn»«rt<-2,[4],[-2,4])

■2 S 4

The questions, the user should answer are the following:

Queiy: Is it ok? *ort(U,[J) yes
Query: Is it ok? insert(4,[],[4]) yes
Query: Is it ok? sort([4],[4]) yes
Queiy: Is it ok? insert(-2, [4], [-2,4J) yes
Query: Is it ok? strt(f-2,4], [-2,4J) yes
Query: Is it ok? inatrt(-2,[4],[-2.4]) yes
Query : Is it ok? insert(6, f-2,4], [-2, -2,4]) no

After seven questions the false procedure call has been identified. The wrong clause instance is:
ia*ert(«,l-2v»J,[-2,-2^J) <- -2 < 6, insert(-2,l-2,4],(-2,-2,4]).

3. Category Partition Testing Method

An informal description of the Category Partition Testing Method can be found in [OST88], In this
section we give a formalization of this fractional testing method. During the process of functional testing,
the programs (procedures) само! be tested with all possible properties of the input parameters. Hence, the
tester's first task is to define the critical properties of parameters. These critical properties - called
categories - are investigated in the testing process.

37

The categories can be divided into classes - called choices - presuming that the behavior of the
elements of one choice is identical from the point of view of the testing.

If the categories and choices for a program have been defined, then all the possible test frames can be
generated. A test frame contains exactly one choice from each category.

In general, there are many superfluous frames among the generated test frames. These frames can be
eliminated by associating selector expressions with the choices. A choice can be made in a test frame if
the selector expression associated with the choice is true. The selector expressions contain property names.
A property name is also associated with a choice and can be considered as a logical variable. The value of
this variable is true if the given frame contains that choice. In example 3.1 we give simple CPM
specification for the clause 'insert' and the generated test frames.

3.1 Example: The category-partition specification for 'insert':

Test specification: insert
Category: maber_of_eleaents

Choice: d„: {(X.H) | X € 0}
property zero

Choice: d,: {(X,[Y]> | X, T 6 0>

Choice: dj: <(X, CY|Z]) | X, Y € D, Z € 0*>

Category: first_elenent

Choice: e„: «Х.П> | X e 0>
If zero

Choice: e ^ «X,CY|Z]) | X, Г e 0. Z e D* and X й T>
if not zero

Choice: ej: <CX,[Y|Z]) | X, Y € D, Z 6 0* and X > Y>
if not zero

End of specification

The generated test frames are: { (d ^ , (d,,e,), (d1,e2), (сЦ.е,), (сЦ.е̂)}

In the following we give a short formal description of the Category Fartition Method in logic
programming environment. Let P = {p,, ... , pn} denote a logic program, where p; (1 й i £ n) is a clause
(procedure) in the program. We assume, that the domain of the interpretation is the set D. Then every
clause p in P can be considered as a mapping from D" into D™, where n and m are the input and the
output arities of p, respectively.

3.1 Definition: Let p an element of P and n the input arity of p. An equivalence relation over D” is called
a category of p.

3.2 Definition: Let p an element of P and с a category of p. An equivalence class of с is called choice o f
c.

Every choice of a category determines a class of D". In the CPM the user can define a choice using an
expression (searching function) that depends on a subset of the input variables. By these expressions the

38

choice an arbitrary element of D" belongs to can be automatically determined. We assign to every
procedure a finite set of categories and each category can be considered as a finite set of choices.

3.3 Definition: Let p be an arbitrary clause in P and let Sp = { a , , ..., a ^ } denote the set of the categories
of the clause p where a, = {c ,,..., cm} (c's are the choices). I p is a test specification o f the clause p. A test
specification o f the program P is the set £p = { Ep | p e P}.

3.4 Definition: Let p be a clause in P, and I p = {a, ,... , a^} a test specification of p. Let F(Xp) denote a
subset of the Cartesian-product cr, x ... x F(Sp) is called the set o f test frames of p and we suppose that
F(Ip) covers the total Dn. The set F ffp is a classification of D" therefore F(Zp) can be considered as an
equivalence relation over D". An element in F(£p is called a test frame of p. The set of test frames of the
program P is the set F(£p) = { F f ip | p e P }.

3.5 Definition: Let p be a clause in P, Xp = { o ,,..., a^} a test specification of p, and f = (t,, ..., t^) a test
frame of p. A test case of f is an element (d , , . . . , d^), where d, is in the class (choice) t((1 <. i £ pk). (Of
course if f denotes an empty subset of D" then such a test case does not exist.)

A test frame can be considered as an element of the products of equivalence relations over D”. The
Category Partition Method checks the behavior of p for a given test frame by investigating the result of p
on a representative element (test case) of this frame. We assume that the set of test frames is partially
evaluated i.e. there are test frames which are not evaluated yet (this is the usual situation in practice).
Therefore we have to order an evaluation function to the set of the frames which maps the test frames into
the set {true, false, undefined}. The T_GEN [SZU9I] system based on the category partition method
works as follows: the user has to define for every procedure a set of categories. Every category has to be an
equivalence relation. The user can mark the important test frames, which he wants to test. Then the
system generates test cases automatically to these test frames, and calls the procedure with the test cases as
input. The user as the ground oracle has to decide the truth of an output. The test frame, its test case, the
output values and the evaluation is stored into a database. The evaluation of a test case is a function, see
below. We assume, that every test frame has at most one test case.

3.6 Definition: Let p be a procedure of P, and Ep a test specification of p. Then a CPM-testing o f p by Ep
is a mapping (pp: F(Sp) -+ {true, false, undefined). Let f be an arbitrary test frame of p, and t a test case of
f. Then q>p(f) is true/false iff we applied p to t and the output was true/false by the ground oracle.
Otherwise q>p(f) is undefined, (if f denotes an empty set then <pp(f) = true).

3.7 Definition: Let f be an arbitrary test frame of p over I p. We say, that the CPM-testing of f is
consistent iff <pp(f) is independent of the choice of its test case.

3.8 Definition: Let p be an arbitrary procedure in P and Xp a test specification of p. The CPM-testing of p
is consistent iff it is consistent for every test frame of p over I p. The CPM-testing of P is consistent iff
every p in P is consistent.

3.9 Definition: Let p an arbitrary procedure (clause) in P and let Ep an arbitrary test specification of P
Let Xp : D" -> F (Ip) mapping, such that Xp(x) = f iff f is the corresponding test frame of x. From the
previous definitions it follows that Xp is a function, (i.e. Xp is the searching function.)

59

6

ЗЛО Definition: A CPM test configuration of the program P over the set of test frames F(Ip) is a finite
set of five-tuples T(F(£p)) = { (p, f, i, о, e) | p e P , f e F (Ip), i is a test case of f, о is the output of clause
p on input i and e e {true, false, undefined} is the evaluation of the test frame f (e.g. e = <pp(f))} . A CPM
test configuration can be considered as a test database. For a clause p ^ P the CPM test configuration of
the clause p contains all elements of T(F(Ip)) such that the first component is p.

3.11. Definition: Let a be an equivalence relation over Dn and let x be an aibitrary element of D". Then
o fxj denotes the class of a containing element x. Let a , and a 2 be two equivalence relations over D". We
say that cr2 <> trt iff from o2[aJ = a 2[b] it follows that o,[a] = o,[bj for any a, b e D". Let F(Ip) and
F(S'p) be two sets of test frames of an arbitrary clause p in P. We say that the CPM test configuration of
clause p T(F(I'p) is a refinement ofT(F(Ip)) iff F (I'p) 2 F*!,,) (i.e. Vn e F ffp 3pe F(E'p) such that
p 2 я). For a program P a CPM test configuration of P T(F(I'p)) is a refinement ofT(F(ZJ) iff T ^ S 'p)
is a refinement of T(F(Xp)) for all p e P.

If T, and T2 are two CPM test configurations of the same program P and T2 is a refinement of T, then the
cardinality of the inconsistent test frames of T2 is less or equal than of T,.

4 The Interactive Diagnosis and Testing Algorithm

In Section 2 the single-stepping method for algorithmic debugging of logic programs has been briefly
summarized. This algorithm can be applied only for those clauses that terminate on some input and result
in an incorrect output. For these inputs the algorithm traverses the computation tree rooted by <p, x, y> in
postorder manner. At each node it generates a membership question. It stops at the first node <q, u, v>
which is not in the interpretation M. The number of the queries depends on the position of the incorrect
clause instance inside the computation tree. In order to reduce the number of the queries an extended
method called divide-and-queiy has been proposed. We present our algorithm as a modification of the
single-stepping method but it can be used with the divide-and-query method as well.

We assume that there exists a CPM test configuration for the program P i.e. for all p e P a set of test
frames is defined and each test frame may have an evaluation. In the process of algorithmic debugging we
use the assumption that the given CPM test configuration is consistent. From this assumption it follows
that if a test frame is already evaluated then this evaluation is independent of the test case chosen. This is
only a hypothesis of the user which may be false. Therefore we should take into account that there are
inconsistent test frames in the CPM test configuration of P. If a referred test frame is not evaluated (i.e. <p
is undefined for this test frame) we automatically generate a membership question.

Let p e P be a clause and let us suppose that <p, x, y> e M for some x and у and the complete
computation tree rooted by <p, x, y> is finite. Similarly to the single-stepping method our algorithm walks
this tree in postorder maimer. Let us suppose that we have to answer the query <q, u, v> is in M or not,
where <q, u, v> is a node in the tree. We examine whether the test frame belonging to q and u is already
evaluated'(i.e. <pq(xq(u)) is not undefined). If this test frame has already been evaluated then the result of
the evaluation is used to answer the membership query.

Since our hypothesis for the consistency of the test frames is not proved therefore the result given by
our algorithm should be verified. On one hand it is possible that we will not find the false clause. On the
other hand, if a false clause has been identified by the IDT algorithm it may occur that the test frame
belonging to the head of the clause is inconsistent or in the body of the clause instance there is an atom
whose test frame is inconsistent. This latter case means that the clause we found is not the deepest
incorrect clause in the tree. For resolving this inconsistency the original single-stepping method is

40

invoked. We store all questions and answers in a test database (CPM test configuration) therefore the
number of queries the user has to answer is less or equal (in the worst case) than in the original single­
stepping method. In the case of consistent test frames the number of queries may be significantly
decreased. If we find an inconsistent test frame during the debugging then the user has to modify the CPM
test configuration. More exactly the user has to define a refinement for the CPM test configuration such
that the new configuration will be consistent regarding the known test cases.

4.1 Algorithm for scanning the computation tree by ШТ:

Input: <p, x, y> not in M,
Output: q false clause instance and f Boolean.

procedure IDT_Debug (<p,x,y»,q,f) ;
begin

let T t «Pf.Xf.yf». <Р2.х2.У2>. <Рь.*п*Уп»
be the top level trace of

f :» f a l s e ;
i :* 1 ;
Hhile (i £ |T |) and (not f) do
begin

IDT Debug («p.-.x.-.y^.q.f) ;
fncCi) ;

end ;
if not f then
begin

if <pp(Xp(*» * undefined then ana :« iuery (<p,x,y>) ;
f s - Фр(ХрСх)) '■if not Hf then
begin

f := true ;
q := <p.x,y> +- <Р1.*1.У1>.«Р2.*2*У2>....... <Pn.xn.Vn>;

end ;

Let us suppose that <p, x, y> e M for some p e P, x e D” and y e D " . The Algorithm 4.1 gets the
triple <p, x, y> as an input and returns in f a Boolean value which shows whether the procedure found the
incorrect clause instance. If this value is true then q will contain this false clause instance. Let us suppose
that {<p,, x,, y,> <p2, Xj, y2> <pn, x,, yB>} is the top level trace of <p, x, y>. The algorithm
recursively calls itself on the elements of the top level trace until it finds a false clause (i.e. f =false). If for
all i
(1 S i£ n) the evaluation of the test frame belonging to <р, x;, y> is true then let the test frame belonging
to <p, x, y> be examined. If this test frame is not evaluated yet (i.e. q>p(Xp(x)) = undefined) then the
ouery(<p,x,y>) is asked (see later). Otherwise (i.e. <pp(Xp(*)) * undefined) the membership question is not
printed out but it is answered with the evaluation of the test frame. If q>p(Xp(x)) = false then the algorithm
stops and returns the corresponding instaece of »he clause p in variable q.

41

6 *

4.2 Algorithm for finding false procedure by ШТ:

Input: <p, x, y> not in M,
Output: r false clause instance.

procedure Main_IDT_Debug <<р,х.У>. 0 ;

begin
IDT_Debug (<p,x,y>,r,f) ;

if f then
begin

let r = <q,u,v> 4— <qi,u1,vi> .<42»u2»v2> «• • •»<‘W * W V
ans := Query (<q,utv>) ;

if ans = false then

begin
ans :=■ Ouery Top_Level_Trace (r);
if are * true then

return (r)
else
begin

Nodified_Single_Step (<q,u,v>,r,f)';

return (r);
end ;

end ;
end ;
Hodified_Single_Step (<p,x,y»,rff);
return (r) ;

end ;

Let us suppose that the Algorithm 4.1 has found the clause instance <q, u ,v> «- <q|f u,, v,>,
<q2, Uj, v2> <qm, um, vm>. Then we should examine the following cases.

1. A membership question for <q, u, v> should be asked. If this concrete question has already
occurred then the result is retrieved from the test database. For this purpose the function used_Test_case is
invoked. If true was answered then the test frame belonging to p and x is inconsistent so a call of
Nodified_Single_Step is necessary.

2. If in 1 there was no inconsistency then for all elements of the top level trace of <q, u, v> the
Query(<qi, u,, v>) should be issued. If all elements in the top level trace are in the interpretation M then
the false clause instance is <q, u, v> «- <q,t u,, v,> <qj, u ,̂ Vj> <qm, i^ , vm>. Otherwise if there
is an element <qj, u,, v > in the top level trace whose test frame is inconsistent then the
Nodi f i ed_single_step should be called on the triple <q, u, v> since we know that the error is in the
computation tree rooted by <q, u, v>.

If the algorithm did not find a false clause then there is at least one node (the root surely) in the
computation tree of <p, x, y> whose test frame is inconsistent.

The above Algorithm 4.2 handles these cases.

4.3 Utilities for finding a false procedure by ШТ:

Input: clause instance <q, u, v> +- <qt, u,, v,>, <qj, Uj, v2> « q ^ , um, vm>,
Output: a Boolean value.

fmction Ouery_Top_Levet_Trace (c) : boolean ;
begin

Let с := <q,u,v> 4—
f :* true ;
l :» 1 ;

42

while (i £ |body(c)|) and (f) do
begin
f :« 0uery(<qjfuj,vj>) ;
ine(i) ;

end ;
return (f) ;

end ;

Query_Top_Level_Trace gets a clause instance as input. It returns true if for all i (1 й i S m) <qj(ui(v> is in
M.

Input: the triple <p, x, y>,
Output: a Boolean value.

function Query (<p,x,y>) : boolean ;
begin

if Used Test_Case(p,x) then retum(фр(Хр(х)> > '•

* :* V V X>) ;
ana :* Is_1n_lnterpretation (<p,x,y>) ;

if (f * undefined) and (f * ans) then

divide test fraee Xp<x> int0 two parts consistently.
Store (<p,x,y>,ans) ;

end ;

The function Query receives a triple <p, x, y> as input and returns a logical value. If there is a test
case in the database which equals <p, x, y> then it returns the stored answer. Otherwise the question
<p, x, y> € M is asked from the user. If the test frame belonging to p and x is not evaluated yet then the
answer is stored into this frame. In the other case we compare the answer with the evaluation of the frame.
If these values are different then the test frame is inconsistent therefore the user is requested to refine the
CPM test configuration consistently with the known set of test cases. Naturally all questions and answers
are stored.

4.4 The modified single-stepping algorithm:

Input: <p, x, y> not in M,
Output: false clause instance q and Boolean f.

procedure Hodified_Single_Step (<p,x,y»,q,f);
begin

let T { ЧМ.х̂У,». <Рг.х?>У2>......«р^.у,,»)
be the top level trace of <p,x,y>.

f := false ;
i 1 ;

while (i £ |T|) and (not f) do
begin
Modified Single_Stap (<p<>Xj,y<>,q.O;
inc(i) f

end ;
if not f then
begin
f :» not Query (<p.x,y>) ;

if f • true then q :» <p,x,y> «- ^.x^y^.s^.xj.yj».... •
end ;

end ;

Algorithm 4.4 differs from the original single-stepping method [SHA83] in that it uses the procedure
Query which loops back to the CPM test configuration.

43

Let us suppose that <p, x, y> is not in the interpretation M. Let |N(<p, x, y>)| denote the cardinality of
the nodes of the complete computation tree rooted at <p, x, y> (it is supposed to be finite). Then 0 s n S
|N(<p, x, y>)| where n is the number of queries the user should answer. The best case is the following: the
Algorithm 4.1 found exactly the false clause. Let <q, u, v> «- <q,, u,, v,>, <q2> Uj, v2> <qm, um, vra>
be this clause. In Algorithm 4.2 we have to call the function Queiy m+1 times. If all of these queries
occurred in the database then it terminates without any questions. The worst cases are: either the
Algorithm 4.1 did not find the false clause or it finds one and the test frame belonging to its head is
inconsistent. Both cases are caused by inconsistent test frames. In these cases we should call the original
single-stepping algorithm

In this section we propose a detailed example on testing a sorting program. Let the program P be the
following[SHA83]:

insert(X,CY|U], [Y|V]) T < X , insert(Y,U,V>-
insert(X,[Y|U],tX,Y|U]) X 5 Y.
in»ert(X,Ц, [X]).

s o r t tn .H) •
sort(CX|Y),Z) sort(Y,U),insert(X,U,Z).

*̂sort — <<***«}•
CT«on = { C0> C I*

c0 = {the empty list}
c, = {all lists that contain exactly one element}
Cj = {all lists that contain more than one element}

^“insert —

a mml = 4 - d L <Ц>
do = {(X.Q) I X e D}
d, = {(X,[Y|) IX, Y e D}
d2 = { (X IY |Z]) |X ,Y e D ,Z e D +}

' W = {e0, e l,e 2}.
e0 = {(X ,[])|X eD } ,
e, = {(X,[Y|Z]) I X, Y 6 D, Z e D* and X S Y}
ej = {(X,[Y|Z]) I X, Y € D, Z e D* and X > Y}

It is obvious that the category is an equivalence relation over the domain D*, and similarly
Q:__are also equivalence relations on D x D*. The set of test frames F(ZP) = F ^ ,^) о F(Siraat) are
defined as follows:

5 Example

TO««) - {«=0, c„ Cj}
F f f J “ {(do, eo), (dp e,), (d„ e,), (d,. e,), (d* e,)}

For these frames the following test cases are generated:

°o
Cl
Cj

П
[6]
[5,4,71

44

(do, Co) (6,m
(d„ с,) (4,(20])
(d„ e,) (10, [6])
(d^e ,) (7,[10,5,1])
«Ц, c j (15,{9,8])

Here is the content of the test database:

T(F(ZP)) =
{

}

(sort, Cq, (]. [], true),
(sort, с,, [6], [6], true),
(sort, c2, [1,4,7], [\A,1\,false),
(insert, (d,,, eo), (6,[]), [6], true),
(insert, (d„ e,), (4,[20]), [4,20], true),
(insert, (d,, e2), (10,[6]), [6,6], false)
(insert, (d* e,), (7,[10,5,1]), [7,10,5,1], true),
(insert, (dj, ej), (15,[9,8]), [9,8,8], false)

The sort program terminates with an incorrect output on the list [6,-2,4]. We call the Algorithm 4.2 on
<sort,l6,-2,4J,[-2,-2,4J>. The first step is to call the JDTDebug (<sort,[6,-2,4],[-2,-2,4]>,rJ).
IDTDebug works on this input as follows:

It calls the function Query with the following arguments but the answers are taken from the CPM test
configuration

<sort, [], []>
<insert, (4, []), [4]>
<sort, [4], [4]>
<in*ert, (-2, [4]), [-2, 4]>
<sort, [-2, 4], [-2, 4]>
<insert, (-2, [4]), [-2,4]>

X^(D) = c0
X^((4,[])) = (do.eo)
W H]) = c,
XmMrt((-2 ,[4])) = (d ,,e1)
Х^([-2,4]) = с2
Х ^ ((- 2 , [4])) = (d„ e,)

answer = Ф5ОП(с0) = true
answer = 9 lnjer,((d0, e„)) = true
answer = tp ^ c ,) = true
answer = <Pu»ert((d i> ei)>= true
answer = cp ^c j) = true
answer = ФинсгМ- e,)) = true
answer = ^ ^ „ ((d j, e2)) = false

-2 <6, insert(-2,f-2,4],[-2,-2,4J). First we

<insert,(6, [-2, 4]), [-2, -2, 4]> XiMert((6, [-2, 4])) = (d,, e2)

The returned clause instance is insert(6,f-2,4J,f-2,-2,4J)
should ask the membership question:

? insert(6,[-2,4],[-2,-2,4]) e M no.

Since the answer was no we inspect all atoms in the body:

7 insert(-2,[-2,4],[-2,-2,4]) e M true.

The Algorithm 4.2 terminates successfully and returns in r the clause instance insert(6,[-2,4],[-2,-2,4|).
-2 < 6, insert(-2,[-2,4],[-2,-2,4]) which is exactly the false clause

s Summary

In this paper we have presented an overview of an Interactive Diagnosis and Testing method for logic
programs. The basic idea of this approach is that we try to give an integration of the debugging and
testing phases of the software development process. It means that the IDT algorithm introduced in this
paper uses the test results of a program during the bug localization process to reduce the number of user

45

interaction. In addition, if during the IDT algorithm an inconsistent test frame is identified then a
refinement of the given test specification is prepared.

On the basis of the ЮТ method a prototype system (called 1DTS) is under development. A small
prototype for CPM test generator in SB-Prolog environment is implemented. The Shapiro's algorithms for
automatic program debugging are under implementation. After the complete implementation we will
integrate the testing and debugging programs and we will prepare the system IDTS.

We believe that the IDT method can be applied in the process of Interactive Inductive Logic
Programming. We tiy to investigate this topic in the future.

/ -
7 References

[FRI91J Peter Fritzson, Tibor Gyimõthy, Mariam Kamkar, Nahid Shahmeri Generalized
Algorithmic Debugging and Testing. Proceedings of the ACM SIGPLAN '91
Conference on Programming Language Design and Implementation. Toronto, Ontario,
Canada June 26-28, 1991. pp. 317-326.

[OST88] Thomas J. Ostrand, Marc J. Balker: The Category-Partition Method for Specifying and
Generating Functional Tests. CACM 31:6, June 1988. pp. 676-686.

[SHA83] E. Y. Shapiro: Algorithmic Program Debugging МГГ Press 1983.

[SHA90] N. Shahmeri, M. Kamkar and P. Fritzson: Semi-automatic Bug Localization in
Software Maintenance. San Diego, Nov. 26-29,1990.

ISZU91] Röbert Szücs, Tibor Gyimõthy: T-GEN: An Extended Version of the Category
Partition Testing Method. Proceedings of the Second Symposium on Programming
Languages and Software Tools, Pirkkala Finland August 21-23, 1991. pp. 70-77.

46

1

An O verview of the TaLE Language Editor

Ess Jämvall and Kai Koskimies
Department of Computer Science, University of Tampere,

P.O. Box 607, SF 33101 Tampere, Finland

email: ejj@cs.uta.fi, koskimie@cs.uta.fi

A bstract

TaLE is a specialized editor for developing language implementations in an object-oriented (Eiffel)
program ming environment. In contrast to conventional language implementation systems, there is no
formal metalanguage for specifying a language; instead, the user edits the classes taking part in the
im plem entation under the control of a specialized editor offering high-level, partly graphical
view s of those classes. The system supports the reuse and refinem ent of the language
im plem entation classes, incremental im plem entation development, integration of syntactic and
nam e analysis, and special views for classes representing standard language features. The expected
main advantages of ihe system are high usability (due to the metalanguageless approach) and fast
developm ent cycle due to the high-level facilities and reusing capabilities). The basic features of
the system are prevented using a small example task.

1 Introduction
TaLE (Tam pere Language Editor) is a new tool supporting the developm ent of language
im plem entation software in an object-oriented program m ing environment. The design of TaLE is
unconventional in the sense that TaLE em phasizes softw are engineering qualities rather than
contributions in formal language specification; this makes the system in many ways different from
m ore traditional language im plem entation systems. In fact, we feel justified to say tha t TaLE
employs a different paradigm: the user is not expected to write a language specification, but to edit
the software units (classes) taking part in the im plementation under the control of a specialized
editor. Currently the language of the produced software is Eiffel [Mey88], but in principle this
language could be any class-based object-oriented language. The system is implemented in Eiffel 2.3
under Sun3/UNIX.

TaLE is particularly intended for the rapid im plementation of application-oriented languages, i.e.
for various nontrivial textual representations of data, specifications, algorithm s etc.; typically
these are "little languages” as proposed by Bentley [Ben86], Since such a language is often only a
sm all aspect in a large softw are project, we cannot expect tha t the user of a language
im plem entation system w ould be w illing to learn a new formal m etalanguage based on a
theoretically oriented specification paradigm. The sim pler and the more self-explaining the user
interface of a language im plem entation system is, the sm aller tasks will be included in the
potential applications of the system. O ur intention is that an average program mer will decide to use
our system for virtually all nontrivial processing of structured textual data, in the same w ay as GUI
editors are currently used for implementing graphical user interfaces. This puts high dem ands on the
uSer-friendliness and simplicity of the system. In TaLE, these requirements are hoped to be satisfied
through the metalanguageless, editor-based approach, and through high-level, intuitive views of
the classes taking part in the implementation.

Conventional language im plementation systems are typically closed: they provide a m apping from
an abstract specification into an executable language processor written in a target language, and the
user is not expected to understand the target language, far less modify the resulting processor.
However, this idealistic view is rarely fully possible in practice because the abstract metalanguage
is not general or efficient enough, or because the produced language im plementation is part of a
larger system, and the resulting code m ust be patched to integrate it w ith the rest of the software
T he editor-based approach of TaLE leads to an open system in which the use of the base language is
natural and in w hich the user essentially gets w hat s /h e sees. A necessary requirem ent for this

47

7

mailto:ejj@cs.uta.fi
mailto:koskimie@cs.uta.fi

2

approach is the object-oriented program ming paradigm which allows a close relationship
concepts of the implemented language and the software units (classes) of the implementatio.

In the long run, the crucial factor of the productivity in software development is reuse. In languab
im plementation this aspect has been mostly ignored (at least in the usual sense of software reuse),
because program m ing languages have been regarded as indivisible entities tha t give little
opportunities for sharing common code. However, actually this is not true: there is a lot of almost
identical features in different languages, and it seems reasonable to assum e that this could be
reflected in the im plem entation as reusable units. For example, practically every language has a
notion of an arithm etic expression, w ith minor variations. This implies that essentially the same
concept is im plem ented over and over again, and that very similar code is repeated in num erous
language processors. The same holds for concepts like standard constant denotations, control
structures, subprogram mechanisms, type systems etc. The possibility to reuse code is particularly
obvious for special-purpose languages that are currently under design: in m any cases it w ould be
sufficient to simply pick up a suitable standard form of, say, arithmetic expressions from a library of
standard language features, in the same way one employs a standard data structure from a general
library. Even if a direct adoption of a library feature is not appropriate, it should be possible to
easily modify and extend a library unit according to the needs of a particular language.

In fact, certain kinds of reuse are fairly common, although perhaps not identified as such: special-
purpose languages are often developed by extending a general-purpose language w ith application-
specific features, or by em bedding a particular structure from a general-purpose base language
within a special-purpose language. In both cases one actually reuses all or some of the structures of a
general-purpose language, in the hope that they need not be reimplemented. H ere w e w ant to
generalize this kind of language development, and regard languages as collections of relatively
independent, replacable units.

TaLE supports the reuse of language concepts and structures in three ways: first, by em ploying a
distributed im plem entation m odel in which language structures are im plem ented by highly
independent classes TaLE allows a language to adopt structures (and their implementations) from
other languages; second, general language-independent concepts can be implemented on an abstract
level and refined for individual languages (making use of the subclassing mechanism); third,
standard language concepts and their im plem entations are built into the system , so tha t the
language im plem enter can adopt these concepts into h is /h e r language through special interfaces.
Together w ith the high-level views provided by the metalanguageless user interface, the facilities
supporting reuse are expected to speed up the language development process in most cases by an order
of magnitude when com pared to traditional systems like LEX/YACC.

A lthough the overall character of TaLE is unique (as far as we know), there are similarities w ith
existing systems. Object-oriented language im plem entation techniques have been applied in M uir
[Win87], TOOLS [KoP87], Orm ([Hed89], [Mag90]), Ag [Gro90], OOAG [ShK90], SmallYacc [AMH90],
and Smalltalk [Gra92]. Object-oriented context-free gram m ars have been introduced already in
[LMN88], [Ten88] and [Kos88]. Incremental language implementation (especially parsing) has been
investigated in [GHK88], [Hor89], [HKR89] and [Kos90]; the latter method has been used as a
starting point in TaLE, too.

In the following we present the central features of TaLE using a small example. A lthough the
example language is by no means a realistic one, we have tried to make it sufficiently interesting for
dem onstrating purposes. The language does not represent a typical case for TaLE; for example, the
language is processed entirely statically (i.e. the semantic processing is m erged w ith analysis)
which is clearly a special case. O ur example language is a simple desk calculator language: we
want to be able to express sequences consisting of assignments to nam ed variables and output
instructions, e.g.:

X:= 55; Y:= (X+24)*X; Z:= X*Y; OUT Z+220

Since we assume that a variable can be referenced only if its value has been defined before, each
assignment and output instruction can be "executed" immediately after it has been analyzed.

2 Object-oriented context-free grammars
A nonterminal of a context-free gram mar is a structural specification of an object (an instance of the
nonterminal) appearing during the analysis of a source. Hence there is a direct analogy between

48

3

nonterm inals and classes in the object-oriented sense: a nonterm inal can be viewed as a class
specifying the node objects in the internal representation tree of the source. O n the other hand, the
natural object-oriented interpretation of syntactic alternation is subclassing: production rules A -> В
С and A -> D E (or A -> В С I D E) imply that an instance of A may take two different, alternative
forms, that is, class A has tw o subclasses. The problem in this case is that the subclasses have no
names, and unnam ed classes usually cannot be allowed. We could solve the problem by rewriting the
rules in the form A -> A j I A2 , A j -> В E, A2 -> D E, introducing two new nonterminals as the names
of the alternative forms of A. However, we should clearly understand that we are now using the
production symbol ("->") for two essentially different purposes: A -> A \ I A2 means subclass relation
while A j -> В E and A2 -> D E mean structural specifications. We make this distinction more
explicit by using a different symbol for the former purpose: A > A \ I Аг-

In an object-oriented context-free gram m ar (OO-CFG) each nonterm inal symbol (or class) A has
exactly one rule, either of the form A > Bj I B2 I ... I Bk or of the form A -> Bj B2 ... Bk (k > 0). In the
former case A is called a conceptual class; in the latter case A is called a structural class. We assum e
that ">" does not imply a cyclic class hierarchy for the conceptual classes. We allow, how ever,
m ultiple inheritance, i.e. rules of the form A > В, С > B.

O ur example language can be presented as an OO-CFG as follows (we use extended syntactic notation
w ith iterations):

Program -> Instruction (";" Instruction)*
Instruction > Variable I Output
Variable -> id "=" My „expression
O utput -> "OUT' My_expression
My_expression -> Term (AddOp Term)*
Term -> Factor (MulOp Factor)*
Factor > Variable_access I Constant
Variable_access -> id
Constant -> number

Note that w ithout a different arrow symbol the last two rules could be interpreted also as subclass
relations: two different symbols are indeed necessary to make the interpretation unambiguous.

An OO-CFG implies an internal representation of the source program as a collection of objects,
deviating slightly from the conventional one. Note that the subclass relation ">" does not give rise
to a separate node in the object representation; it merely indicates a class layer in a node object.
Hence the object representation of the source program is more abstract than a conventional syntax
tree: in conventional terminology, typical chain productions are eliminated from the representation.

3 Using the built-in high-level concepts
The first task of the language im plem enter is to consider the existing concepts in TaLE: is there
something we could directly apply in our language? The TaLE class brow ser (Fig. 1) show s e.g.
classes Std_Expression (standard arithmetic expressions) and Std_List (a standard list structure)
w hich seem to be useful to us. Further, Pascal_id and Pascal_int (subclasses of Identifer and
S td jn teger) could be candidates for expressing identifiers and integer constants, and Simple_output
seems a promising class for implementing the output instruction. We can hope to be able to use these
classes either directly or as superclasses in our language.

We use the following textual notation: if a class (say A) is defined as a subclass of another class (say
B), we write A = B(...), where the parenthesized part contains the subclass param eters. W e do not
here give any actual form for the subclass parameters.

O ur "plan" to implement the example language could be now presented as follows:

Program = Std_list(...)
Instruction > Variable I O utput
Variable -> Pascal_id "=" My_expression
O utput = Simple_output(...)
My_expre«eion = Std_expression(...)

49

7*

4

Let us first define a class for the expression structure we need in our example language. For this
purpose we use the standard facilities provided by predefined class Std_expression: we give a
"create subclass" m enu com mand for class Std_expression, and the special view for expressions is
displayed to allow the user to construct the subclass with the given nam e (here My_expression).
This is an example where a standard language notion is reused through a special interface allowing
the fine-tuning of the concept.

The expression view is shown in Fig. 2 after completion: the user has selected the operator symbols
s /h e w ants, their precedences and associativeness, the allowed type com binations (shown in a
separate window), the representations for constants (as classes; here we need only integer constants
given as class P ascal.in t), the nam e of the class giving the other prim itive constituents of
expressions (here we give a new, so far undefined class Variable_access for this purpose), and the
parenthesis convention. Further, the user can specify whether s /h e wants static type cheking a n d /o r
static evaluation of the expression; in our simple example language we can decide to use static
evaluation. If only standard operations +, -, *, / , are needed, this is all that has to be done; in the
case of non-standard operators the user must give the Eiffel-statements that im plement the operator
in a separate text w indow.

Note that we applied here also another type of reuse; we adopted Pascal's integer representation
(Pascal_int) directly as such in our language, w ith its full implementation. In this case the reused
structure is a simple token, but in principle all structures (classes) are reusable in this way: due to our
incremental approach a structure is not tied to a particular language but a more or less independent
unit.

IjD g la L E C Ia s s B ro u js e r i i lf l

С Denoter* Щ
С Identifier*
S Pascal.id 1!
С KeyWord* 1;
С Simple.output §s
С Special* Ц
С Statement*
S Std.assignment* ®
S Std.block* fj;
S Std.conpound* ||i
S Std_if_stat* li
S Std.while.stat* M
S Std_list* Ы
С Undefined* Щ
С Valued* №
С Bool.expression* «[
С Char .expression* g;
С Std_character* &j:
С Int.expression* J|j
С Std_ integer*
S Pascal_int Щ\
С Real .expression* :Hj
С Std_real* Щ,
С Std.expression* S;
С Str i ng.express i on* Щ
С Std.string* Щ

Fig.l. The class browser. "C" denotes "conceptual" and "S" denotes
"structural" (see text).

The view of the subclasses of S td.expression show n in Fig. 2 is an example of a special view,
tailored for the particu lar properties of the class. Currently there are other special views for
instance for the standard lexical structures (Identifier, S td .character, Std_integer, S td .rea l,

5

Std_string) allowing certain structural properties to be individually selected. In principle special
views can be designed for all sufficiently standard language features.

3 Graphical class view s
Let us next construct ä class for the variable assignment structure, called Variable. This class we will
construct from scratch, rather than building on an existing reusable class. We ask the system to
create a new structural subclass for the root class Notion; the system the displays a general
structural class view for constructing the new class. This view is shown in Fig. 3 after some editing
actions.

The upper section of the view contains the feature list, the check list, and buttons for giving the
class certain special properties. The feature list contains all the (visible) attributes and operations
of the class, including the inherited ones (the latter are associated w ith the defining class in
brackets). The u*er may introduce new features; the Eiffel code of the features is given in a separate
text w indow appearing w hen a feature is added or edited. In this class we need no user-given
features.

The check lis t contains the semantic checks carried out during analysis (e.g. type checking). Each
check is denoted in the list by a string which serves as the message emitted w hen this check fails;
the check itielf is given as a Boolean expression over the attributes of the class and the attributes of
the components in the pattern. Here we need no checks, either.

The property buttons are actually short-cuts for inheriting certain predefined classes, but they also
cause sefne additional actions to be carried out automatically by the system. Button "SCOPE" makes
the class a static visibility region, i.e. the language structure it represents will be associated w ith a
set of nam ed objects. Button "NAMED" associates the class with the properties of nam ed objects that
can b*e stored in a built-in object base; each object with this property is automatically inserted into
the object base as a member of the set associated w ith the smallest enclosing "SCOPE” structure.
Button "VALUED" associates the class w ith a special value attribute of a predefined class;
currently this class is capable of representing all the scalar values of Eiffel. Finally, button
"TOKEN" turns the structure into a syntactic token in the sense that no spaces are allowed between
4he different parts of the structure, and that the parser uses this structure as a whole for syntactic
look-ahead. This is the way arbitrary user-defined token categories can be introduced in TaLE, in
addition to the (fairly covering) standard ones provided by predefined classes and their special
views.

Since each variable assignm ent can be seen as a declaration of the left-hand side variable in our
example language, we tick the NAMED button; consequently, the class inherits a string-valued

= П ^ ^ = Std-eHpresston : My_eHpression

Fig. 2. The view for expression class My_expression.

51

6

attribute key containing the identifying nam e of the object. Likewise, we tick the VALUED button
since we w an t tha t each assignm ent is associated w ith a value; as a result, the general value
attribute is inherited from a system class.

Notion : Neu»
Class nawtjfteT О SCOPE 0 NAMED 0 VALUED D TOKEN

W check*
process (Notion]
ere [Notion]
verify [Notion]
key [Named]
value [Vafaed]
"new feature"

CHECKS

I 1 EDIT 1 REMOVE JOIN 1 I

Fig. 3. The editing window for the assignment structure.

In the lower section of the view the syntactic structure is given graphically as a "railyard” syntax;
we call this the pattern of the class. The pattern is constructed and edited directly using mouse-
driven commands and the mode buttons appearing in the upper part of the pattern section. The icons
denoting components of a pattern are selected from a palette appearing when a component is added
or edited. The view of Fig. 3 is shown in a situation where the user is constructing the pattern: the
icons representing the left-hand side and the assignment symbol have been inserted, and the user
has indicated s /h e wants a new component (for the right-hand side expression) in the pattem ; as a
result, the palette is show n allowing the user to select the kind of the component and the class it
represents. The class can be selected from a hierarchical, dynamic menu showing all the existing
classes; here the user has selected class My_expression. The icons in the palette represent a single
keyword, a single substructure, a list structure, a list separator, a set of alternative keywords, a

52

7

secondary structure (a nam ed substructure w ithout a class of its own), a secondary list, and a passing
arc (for making a com ponent an optional one).

Each arrow head in the pattern represents a code location: the user may insert arbitrary Eiffel code
into the pattern by clicking on an arrow head. This results in the opening of an Eiffel w indow in
which the user may type any sequence of Eiffel statements. These statements will be executed during
the analysis phase at the corresponding point. The system assists the user in the w riting of the
statements: the features of the com ponent structures need not be explicitly w ritten but they can be
selected from a menu displayed when the corresponding pattern icon is pointed by the mouse. In this
case we m ust define the values of the key and value attributes: we click on the last arrow head
(since we w ant that these actions are carried out after the analysis of the whole assignment), and
write the following text in the opened text window:

key := Pascal_id_s.src;
value := My_expression_s.value;

That is, the key attribute gets its value from the source string (src) corresponding to the Pascal_id
component, and the value is taken directly from the value of the My_expression component. Finally,
we give this class nam e Variable, and exit the class window.

4 Reusing abstract general-purpose classes
Let us next create a class for output statements. For output structures TaLE offers no built-in facilities,
but w hat a lucky coincidence: somebody has previously constructed class Simple_output which we
can now reuse. Simple_output is obviously intended to be reused through subclassing; this class is
conceptual. Part of the existing specification of Simple_output is shown in Fig. 4.

1
ADD NEU EDIT REMOVE JOIN

TaLE TeHt Edi

IDENTIFIER

print is
do
outint(valued_s.value);

er>d;|

Fig. 4. Part of the class window for Simple_output.

Since Sim ple_output is a conceptual class, it does not have a pattern. N evertheless, even a
conceptual class can have com ponents which exist independently of a pattern; we call them abstract
components. In this case there is a single abstract com ponent of class Valued. In addition, the class
defines an operation called prin t; this operation sim ply prin ts out the value a ttribute of the
abstract component. The code for the print operation is shown in a separate text window.

We can now construct the class O utput as a structural subclass of Simple_output. The view shown for
this subclass contains initially the inherited abstract com ponents, located in sequence after the
thick arrow symbol. The user m ust "consume" all the inherited abstract components in the pattern of
the structural subclass, by dragging them into their place in the pattern. In this w ay the user
associates each abstract com ponent w ith some concrete com ponent position in the pattern. When an
abstract com ponent has been inserted into a pattern, it can be further refined, i.e. its class can be
narrow ed from the original one. Fig. 5 is shown in a situation where the user has already inserted
the keyword icon into the pattern, and is next going to drag the abstract Valued-component into its

8

place. This com ponent m ust be further refined to class M y_expression. N ote tha t the inherited
components are displayed w ith thick border, indicating that they cannot be edited in this view.

Fig. 5. Constructing the O utput class.

The actual effect of an ou tput instruction can be easily realized using the inherited print-operation:
all we have to do is to insert the call of print into the last arrow head of the pattern of O utput.

TaLE is an incremental system: each constructed class is a full-fledged Eiffel class after j t s editing
has been com pleted. U sually a class need not even be recompiled w hen some other classes are
modified, although the class m akes use of the m odified classes; this is due to the d istributed
im plem entation strategy of TaLE (for details, see [JäK93]). Since each undefined class is given a
default im plem entation (an undefined class X is assum ed to have a pattern w ith a single keyw ord
item "X"), it is possible to test a class at any point, even if it makes use of undefined classes.

We can test class O utput by activating a special Test-command in the main manu. The opened tester
window asks for the class to be tested. We select the class O utput and write in the input pane:

OUT 2+3*4

We click on an activation button, and observe the result ''14" in the output pane.

At this point we could construct class Instruction as well. Since the only purpose of this class in our
language is to collect classes Variable and O utput under a common name, class Instruction needs no
features itself: everything will be specified in its subclasses. Recall that alternation is described in
OO-CFGs via subclassing; hence it is sufficient to specify that Variable and O utpu t are subclasses of
Instruction.

Since we have no particular requirements for class Instruction, we create it as a conceptual subclass of
the root class, Notion. Immediately after giving its name we exit the Instruction w indow , and return
to the class browser level. There we use a special m ultiple inheritance com mand, forcing Variable
and O utput to inherit Instruction. This command is used for making inheritance relations required for
syntactic reasons, and it affects only the system-dependent parts of the Eiffel classes. Nevertheless,
the affected classes have to be recompiled.

5 Automated name analysis
Let us concentrate on the so far undefined class Variable_access, representing the variable references
in an expression. This is a structural class: it has a particular syntactic form consisting of an
identifier. We define it as a subclass of Notion and tick the VALUED button in the appearing view.
We insert a single com ponent to the pattern, and select the class P asca ljd for the com ponent (Fig.
6). Since this com ponent m ust be associated w ith an existing variable, we qualify it w ith class
Variable: in this w ay we make sure that the identifier indeed is the nam e of an existing Variable
object. Using qualification, the association of nam ed entities and their references in the source is
carried out automatically by the system. An additional advantage of using qualification is that the
parsing process can make use of the qualification information, and avoid LL(1) look-ahead conflicts
that would otherwise arise (although in this case there is no fear of that).

54

We m ust further specify that the value of a Variable_access object is obtained from the value of the
Variable object denoted by this object. We click on the arrow head at the end of the rail-yard syntax
and write the following text in the opened text window:

v ?= denoted
value:= v ..value

where d e n o te d is a predefined attribute that automatically refers to the Named (Variable) object
associated w ith this object. A ttribute v is a new feature that m ust be given to class Variable_access
due to the type rules of Eiffel: since the static class of d e n o te d is Named, it is not guaranteed that
the denoted object would inherit Valued; therefore we m ust introduce an additional attribute v of
type Valued, and apply so-called reverse assignment attem pt ("?=") which checks the dynam ic 1
class of the right-hand side object (in this case the check never fails).

9

1 F i f

1 ADD NEW 1 1 EDIT

PwcaUd >------->
Ф1 Variable 1

k

Fig. 6. The pattern for Variable_access, with a qualified component.

6 Reusing structures: refinement of components
Since the entire "program" in our example language is a list of something, we define it as a subclass
(named Program) of S td jis t . When the "create subclass" command is issued for Std_list, the view
in Fig. 7 is shown. This view is a so-called refinement view 1 in which the original, inherited
syntactic pattern is shown w ith thick border lines, indicating that it is not modifiable. W hat the
user can do is to refine the com ponents in the pattern, i.e. to narrow their classes. This is done by
specifying the classs in each refinement icon located under the actual com ponent icon. In the
inherited pattern of Std_list, the list element is specified to have class Notion, implying that any
class will do here. The concept of S td jis t also includes a separator, which is specified to be of class
Key_word; this is a special built-in class whose subclasses are implicitly all individual key strings
or sets of such strings (a key string is a class only in a technical sense, allowing conceptually unified
handling of keywords). It is also possible to give new arrow head actions and new features and
checks in the refinement view.

In our example language the list element class is Instruction, and the separator symbol is semicolon.
Fig. 7 is shown in a situation where the user has already selected Instruction as the refinemnent
class of the N otion com ponent, and is currently refining the separator component. H ere these
refinements are sufficient for the complete specification of class Program, and this concludes the
implementation of our example language. Note that in some other application it might be sensible
e.g. to add some semantic processing in the arrow head actions, and obtain thus specialized list
classes which could be further refined for individual languages.

S tric tly speaking this is a special view for lists: it contains a "backward" arc which is not allowed
in the usual patterns; hence this kind of pattern could not have been created by the user. However,
since the subclass view for S td jis t otherwise looks like a refinement view, we use it here as an
example of that.

55

8

10

Std_Nst: Program

Class name: Program О SCOPE О NAMED

FEATURES Cb
legal [Notion]
process [Notion]
src [Notion]
verify [Notion]
'new feature*

"new check*

I ADD NEU 1 I EDIT 1 | REMOV

Notion

Instruction

K«5MOrd

F ig .7. Part of the view shown for giving a subclass of S td jis t . The user has just typed in the
separator symbol

7 Conclusions
This example dem onstrates some of the advantages of TaLE, when compared to more conventional
language im plem entation systems. The user need not know any special language im plementation
paradigm or formalism: we only expect that s /h e understands object-oriented program m ing and the
underlying OO language (here Eiffel). Most of the work is done using generally understandable
graphical facilities in an interactive environment. The user has the feeling of editing rather than
that of w riting a formal specification.

If the language to be im plemented is reasonably compliant w ith the existing classes of TaLE, the
im plementation can be carried out w ith very little work. The system supports the im plementation
development on several levels. The strongest support is achieved if an existing class can be used as
such. In the TaLE implementation model, the classes implementing different language structures are
independent units, and they can be freely combined to form new languages (e.g. Pascal_int and
P asca ljd in the example). The second level of support is offered through the high-level built-in
facilities for standard language features: these allow the construction of new language specific
classes through a specialized interface (e.g. M y_expression in the example). The third level is

56

obtained through the general specialization mechanism of all classes, allowing the user to add
abstract com ponents (Simple_output in the example), to associate the abstract com ponents w ith
concrete ones (Output), to refine the classes of components (Program), and to add new features and
analysis-tim e actions (arrow -head actions). Finally, the fourth level com prises of the basic
m echanism s of TaLE like the graphical syntactic specification, suppo rt for w riting feature
references, autom ated nam e analysis, etc. All this has the effect that the need to write Eiffel code
is minimized.

The system is open. Except for the fact tha t the im plem entation classes are viewed th rough a
specialized editor, there is nothing special in those classes. The interfaces of the classes are visible
and understandable for the user, and s /h e may use them freely in other software. The internal
representation of the source is a normal collection of objects that can be associated w ith arbitrary
processing. There are no h idden interpreted system files.

The system is incremental. As long as the interface of a class is not changed (e.g. by rem oving or
adding a user-given operation), the editing of a class does not necessitate the reproduction a n d /o r
reprocessing of all the other classes, or even the client classes. For instance, syntactic changes can be
freely m ade in the patterns w ithout affecting the other classes. There is no global information about
a language that should be updated after each modification. Individual language structures can be
tested independently.

The success of the TaLE approach clearly depends on the extent predefined class libraries can be
used to support the im plementation of new languages. We expect that different TaLE class libraries
will be developed for different application domains, so that the language development can be done
(re)using concepts that are already near to the language. Trivially, each language im plem entation
carried out in TaLE is in fact a specialized class library that can be utilized e.g. in the developm ent
of the next generation of the language; hence this approach seems to be especially useful to m aintain
the im plem entation of a relatively non-stable language in a specialized environment.

Acknowledgements

This w ork has been financed by the Academy of Finland through grant 1061120, and by the
University of Tampere. We have received significant support from our fellow researchers Jukka
Paakki and Juha Vihavainen. We wish to thank the following students who have program m ed
parts of the system: M aarit N iittym äki, Annika K nuuttila, Janne Lahti, M arianne Set^la, Jari
Torkkola, H annu Vainio-Mattila, and Toivo Venäläinen.

References
[AMH90] A ksit M., M ostert R., H averkort B.: C om piler G eneration Based on G ram m ar

Inheritance. Mem Informatica 90-07, D epartm ent of Com puter Science, University of
Twente, February 1990.

[Ben86] Bentley J.: Little Languages. Programming Pearls, CACM 29,8 (August 1986), 711-721.

[Gra92] G raver J.O.: The Evolution of an O bject-Oriented Com piler Framework. Softw are
Practice & Experience 22, 7 (July 1992), 519-535.

[Gro90] Grosch J.: Object-Oriented A ttribute Grammars. In: Proc. 5th International Symposium
on Com puter and Information Sciences (ISCIS V), A.E. Harmanci, E. G elenbe (eds.),
Cappadocia, N evsehir, Turkey, 1990, 807-816.

[GHK88] Gyimöthy Т., H orvath Т., Kocsis F., Toczki J.: Incremental Algorithms in PROF-LP. In:
Proc. of W orkshop on Compiler-Compilers, Lecture Notes in Com puter Science 371,
Springer-Verlag 1989, 93-102.

[Hed89] H edin G.: An Object-Oriented N otation for A ttribute G ram m ars. In: Proc. of the
European Conference on Object-Oriented Programming (ECOOP '89), Nottingham, 1989.
The British Com puter Society Workshop Series, Cam bridge University Press 1989, 329-
345.

57

8*

[HKR89]

[Hoi90]

[JäK93]

[KoP87]

[Kos88]

[Kos90]

[LMN88]

[Mag90]

[Mey88]

[ShK90]

[Ten88]

[Win87]

H eering J., Klint P., Rekers J.: Increm ental Generation of Parsers. In: Proc. of ACM
Sigplan '89 Conference on Programming Language Design and Implementation, Portland,
Oregon. Sigplan Notices 24, 7 (1989), 179-191.

Horspool R.N.: Incremental Generation of LR Parsers. Journal of Com puter Languages,
15,4 (1990), 205-223.

Jämvall E., Koskimies K.: Language Implementation M odel in TaLE. Report A-1993-1,
Departm ent of Computer Science, University of Tampere, 1993.

Koskimies K., Paakki J.: TOOLS - A Unifying Approach to Object-Oriented Language
Im plem entation. In: Proc. of ACM Sigplan '87 Sym posium on In te rp re ters and
Interpretive Techniques, Sigplan Notices 22,7 (July 1987), 153-164.

Koskimies K.: Software Engineering Aspects in Language Implementation. In: Proc. of
W orkshop on Compiler Compilers and High-Speed Compilation, D. H am m er (ed.),
LNCS 371, Springer-Verlag 1988, 39-51.

Koskimies K.: Lazy Recursive Descent Parsing for M odular Language Implementation.
Software Practice & Experience 20, 8 (1990), 749-772.

Lehrmann M adsen O., N orgaard C.: An Object-Oriented M etaprogramming System. In:
Proc. 21st A nnual H aw aii International Conference on System Science (B.D. Shriver
ed.), 1988, 406-415.

M agnusson B., Bengtsson M., Dahlin L.-0., Fries G., Gustavsson A., H edin G., M inor S.,
Oscarsson D., Taube M.: An Overview of the M jelner/O rm Environment: Incremental
Language and Softw are D evelopm ent. Report LU-CS-TR:90:57, D epartm en t of
Computer Science, Lund University, 1990. Also in Proc. of TOOLS '90, Paris 1990.

M eyer B.: Object-Oriented Software Construction. Prentice-Hall 1988.

Shinoda Y., Katayama Т.: Object-Oriented Extension of A ttribute G ram m ars and its
Im plem entation. In: W orkshop on A ttribute G ram m ars and Their A pplications, P.
Deransart, M. Jourdan (eds.), Paris, LNCS 461, Springer-Verlag, 177-191.

Tenma Т., Tsubotani H., Tanaka M., Ichikawa Т.: A System for Generating Language-
Oriented Editors. IEEE Trans, on Software Engineering 14,8 (August 1988), 1098-1109.

W inograd T. A.: Muir: A Tool for Language Design. R eport STAN-CS-87-1159,
D epartm ent of Computer Science, Stanford University, May 1987.

12

58

ON USING TYPE INFORMATION IN SYNTACTICAL DATA

COMPRESSION

Jyrki Katajainen
University of Copenhagen

Department of Computer Science
Universitetsparken 1

DK-2100 Copenhagen East, Denmark
email: jyrki@diku.dk

Erkki Mäkinen
University of Tampere

Department of Computer Science
P.O. Box 607

SF-33101 Tampere, Finland
email: em@cs.uta.fi

Abstract. This note proposes a new method for compressing program files. In syntactical
compression of program files linearization of parse trees are used. A linearization of a parse tree
contains production labels and symbol table references to user terminals. By storing type
information concerning user terminals, it is possible to leave out some production labels from the
linearization and to decrease the number of bits needed for some labels.

Key Words and Phrases: syntax-directed compression, semantic compression.

1. Introduction

The effectiveness of text compression depends on how much information is available about the
structure of the text. When compressing program files, the syntax of a program constitutes a
basis for efficient compression methods; for a survey on syntactical compression see chapter 6 in
Г5]. The information we have about the structure of the input text, i.e. about the program, is
given in the form of a context-free grammar defining syntactically correct programs. Syntactic
approaches are known to give better compression results than conventional lexical approaches.

i

The compression process in syntactic methods can be described as follows. The input program
is first scanned and the tokens found are classified into syntactic terminals (keywords, operators.

55

mailto:jyrki@diku.dk
mailto:em@cs.uta.fi

punctuation symbols) and user terminals (identifiers, constants). The user terminals are gathered
to the symbol table. Then the parse tree is generated. Each internal node in the parse tree is
associated with the label of the production applied at the node. Each leaf contains a pointer to a
symbol table entry. Linearization of the parse tree is obtained by traversing the tree in preorder, it
contains both the labels stored in the internal nodes and the pointers stored in the leaves. The
original program can be reproduced from the linearization of the parse tree.

As noted by several authors [3,9,11], global production labels contain redundant information.
Namely, when reproducing the program from a label sequence, we always know the leftmost
nonterminal of the current sentential form. So, we do not need global production labels but
labels which distinguish between productions having the same left hand side. Arithmetic coding
can be used when coding the production labels.

#
The context-free grammar defining syntactically correct programs contains all possible syntactic
information about the programs to be compressed. To obtain better compression gains one can
try to extract other kind of information from the grammar. The purpose of the present paper is to
show that better compression results can be obtained if in addition to the syntactic properties also
some semantical aspects are taken into considerations as well. We consider the compression of
Pascal programs (see [4] for the grammar); similar results can be obtained by using other
programming languages, too.

We would like to stress that only correct programs are acceptable as input. It is normally
supposed in the literature that programs to be compressed are syntactically correct. This is not a
serious restriction, sinõe incorrect programs are rarely stored for a long time or transmitted via a
computer network. Moreover, if the input program is produced by a syntax-directed editor, it
cannot be incorrect. It is also normally supposed that all comments and formating features are
omitted. A pretty printer program is supposed to be available to achieve readable program from
the decoded output.

According to Peltola and Tarhio [9, Table I] the compressed version of a typical program file
occupies storage as follows: about one third of the bits are needed for the parse tree (excluding
the information concerning user terminals); symbol table references, i.e„ pointers indicating the
occurrences of user terminals, usually take a majority of the rest space needed. About 10-30 per
cent of the space is needed for storing the names of the user terminals. We concentrate our
compression efforts to parse trees and to symbol table references.

60

We organize the symbol table such that type information concerning user terminals can be
succinctly stored in it. The advantages gained are twofold. First, some labels of productions
become unnecessary in the parse tree, since we can deduce them from the types of associated
user terminals. Secondly, this information justifies some grammar transformations which
decrease the size of the parse tree. Katajainen et al. [6,7] changed the underlying Pascal grammar
in many ways. For example, precedence and associative rules of expressions are left out. This
reduces the number of internal nodes of the parse tree. However, as noted by Peltola and Tarhio
[9], it has the drawback that the number of production alternatives per a node increases. When
reproducing a Pascal program from the left parse and user terminals there are several situations
where the number of production alternative can be decreased if the type of user terminals is
known. We argue that the type information stored in the symbol table justifies the grammar
transformations made by Katajainen et al. [6,7], and in fact, gives us better compression results.

When changes are made to the context-free grammar defining the language, it may become
necessary to perform parsing using one grammar and to compress using another grammar.
Fortunately, there is a rich theory concerning mappings between context-free grammars.
Provided that a grammar transformation obeys same natural conditions, we say that there is a
cover relation between the grammars. Consult [8] for details concerning grammatical coverings
and related topics.

2. Symbol table organization

A compiler uses a symbol table to keep track of scope and binding information about names
encountered in the input text (see [1]). In a system for compressing program files a symbol table
makes it possible to replace the occurrences of user terminals by symbol table references. An
entry in compiler’s symbol table usually contains attributes that have no relevance in a
compression system In our system the only symbol table attribute is the type category of a user
terminal.

During compression and decompression the symbol table is organized into lists maintained by
the move-the-front heuristic. Peltola and Tarhio [9] use two lists. One list is for identifiers and
the other one is for numerical constants. A reference to a symbol table entry specifies the list in
question and the position inside the list. Also Cameron [3] mentions the possibility to slice the
symbol table, but without any attempt to make use of the semantic information. We do not know
any previous attempts to obtain better compression results by using semantic information.

6 1

We suggest the use of a separate move-to-front list for each type category. This means that more
bits are needed for specifying the list in question. However, as little as four bits, i.e., 16 type
categories, should be enough. On the other hand, more lists means fewer bits for the positions
inside lists. The use of the move-to-front heuristic can be motivated by the fact appearances of
words are clustered both in natural languages and in programs [2,10]. We argue that this
clustering phenomenon can be utilized in a more efficient manner when user terminals of
different types are stored in different lists.

In the compressed version the only attribute of symbol table entries is presented implicitly by
storing user terminals having the same type in consecutive positions. Hence, in the compressed
version the symbol table is divided into slices each of which contains only user terminals
belonging to the same type category. Our suggestion of using several type categories and thus,
having more slices, increases slightly the number of bit needed for the compressed symbol table.
Namely, we have to store information about the boundaries between the type categories. This
can be done e.g. by storing the sizes of the slices or by reserving a certain symbol to indicate the
boundaries.

The type categories to be considered depend on the programming language in question.
Moreover, the use of different grammar transformations may invoke the need of different type
categories to be stored in the symbol table. In the following chapter we give a Pascal related
example in which syntactic categories label, constant_name, type_name, variable_name, and
subprogram_name are used.

3. Eliminating labels from the parse tree

This chapter shows how to use the semantic information stored in the symbol table. We consider
the following simple declaration part:

program e?cample(input, output, filel);
label 23, 55;
const ace = 14;

header = ‘52 playing cards’;
type suit = (diamond, heart, spade, club);
var card: record x:[2..ace]; y; suit end;

62

Recall that we store information about the type of user terminals if they belong to the type
categories label, constant_name, type_name, variable_name, or subprogram_name. In this
example we suppose that user terminals not in the categories mentioned belong to the category
‘others’. In the transformed grammar we have the production

<program> —» program <identifier> *(’ <identifiers> *)’ <declarations> <subprograms>
begin <statements> end .

Since each derivation begins with this production, it is not necessary to store its label. The first
user terminal is the name of the program. The following user terminals belonging to the category
‘others’ are the parameters of the program. It is sufficient to store only pointers to the
corresponding symbol table entries. The type category ‘others’ tells us that the identifier indeed
are parameters of the program name. Next we encounter user terminals of type category label.
Again no information concerning the productions applied in the left parse are needed.
Declarations of constant are also easy to handle (although there are a few alternatives). When an
identifier of type category variable_name is encountered, we need syntactic information to handle
the various possibilities to define a type. The possibilities are the following: simple type, pointer
type, array, packed array, file, set, and record. For each type declaration we have to give a left
parse from the nonterminal <type> to a terminal string. Note that this is the first time when labels
of productions must be stored in order to be able to reproduce the program. Hence, no syntactic
information is needed to handle the nonterminals <identifier>, <identifiers>, and declaration s>
in the production above provided that there are no type declarations. If type declarations exist we
have to store left parses from nonterminal <type>. If a program has subprograms the above
activity can be repeated when handling their declaration parts. If the compression system uses
only the type categories mentioned then we have to have some kind of end marker which tells
when the parameters of the program name end and the statements begin.

4. Grammar transformations

This chapter discusses grammar transformation that helps us in compression. We consider
Pascal expressions as an example. In a normal Pascal grammar there is a large amount of
productions providing the proper precedence and associative rules related to these expressions
[4]. Katajainen et al.[6,7] replace these productions by the following simple productions

pi: <expression> —> <factor> <operand> <expression>
P2: <expression> -» <factor>
рз: <operand> -* = I Ф I < I й I ž I > I in I + 1 - 1 or I • I / 1 div I mod I and

P4: <facton> —► <variable> I not <factor> I nil I unsignedJnteger I unsigned_real I
string I (<expression>) I identifier (<actual_parameters>) I [<elements>] I [].

63

9

Some of the nonterminals used (e.g. <variable>) are not explained here, but the reader should
obtain a clear overall picture of the nature of changes done. As already mentioned, these changes
reduce the size of the parse tree but at the same, they increase the number of production
alternatives per a node: the original grammar (see [4]) has separate nonterminals for relational,
adding, and multiplying operators but above all operators are gathered to the right hand side of
one single production.

Suppose now that we are reproducing the program and we know that pi is the next production to
be applied. If we in addition know that the next user terminal is of type boolean, then we can
conclude that the operator must be one of the relational operators (=, + , <, Ž, >, in) or a
boolean operator (and, or). Hence, knowing the type of the next user terminal allows us to
continue as if the production were

<boolean_expression> —> <boolean_factor> <boolean_operand> <boolean_expression>
where only the operators mentioned can be generated from <boolean_operator> and the
nonterminals <boolean_factor> and <boolean_expression> are defined correspppdingly. Similar
case appears if we know that the user terminal is of type real. Then the operators mod and div
are not possible.

The above example shows that type information makes it possible to compress by using virtual
productions whose nonterminals have fewer production alternatives than the nonterminals in the
original production. This decreases the number of alternatives per a node in the parse tree. Since
we use local production labels the increase in the total number of productions has no effect to the
compression result; it only makes the compression process somewhat more complicated.

We have already mentioned that it is necessary to parse a program using one grammar and to
compress using another grammar. The connection between the two grammars is established by
defining a homomorphism from the set of productions of the original grammar to the set
productions of the transformed grammar. Type information is also transmitted via this
transformation.

64

References

1. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers. Principles, Techniques, and Tools.
Addison-Wesley, 1986.

2. J.L. Bentley, and C.C. McGeoch, Amortized analyses of self-organizing sequential search
heuristics. Comm. ACM 28, 4 (1985), 404-411.

3. R.D. Cameron, Source encoding using syntactic information source models. IEEE Trans. Inf.
Theor. IT-34, 4 (1988), 843-850.

4. K. Jensen, and N. Wirth, Pascal User Manual and Report. Springer, 1975.
5. J. Katajainen, and E. Mäkinen, Tree compression and optimization with applications. Intern. J.

Found. Comput. Sei. 1, 4 (1990), 425-447.
6. J. Katajainen, M. Penttonen, and J. Teuhola, Syntax-directed compression of program files.

Softw. Pract. Exper. 16, 3 (1986), 269-276.
7. J. Katajainen, M. Penttonen, and J. Teuhola, A Prolog prototype of a syntax-directed

compression system. University of Turku, Dept, of Mathematical Sciences, Report D31,
1988.

8. A. Nijholt, Context-Free Grammars: Covers, Normal Forms, and Parsing. Lecture Notes in
Computer Science 93, Springer, 1980.

9. H. Peltola, and J. Tarhio, On syntactical data compression. In: Proceedings of the Second
Symposium on Programming Languages and Software Tools. University of Tampere, Dept,
of Computer Science, Report A-1991-5, August 1991.

10. D.D. Sleator, and R.E. Taijan, Amortized efficiency of list update and paging rules. Comm.
ACM 28, 2 (1985), 202-208.

11. R.G. Stone, On the choice of grammar and parser for the compact analytical encoding of
programs. Comput. J. 29, 4 (1986), 307-314.

9 *

65

Psd - a Portable Scheme Debugger

Pertti Kellomäki
Software Systems Lab, Tampere University of Technology

P.O.Box 553, SF-33101 Tampere, Finland
email: pk@cs.tut.fi

April 16, 1993

Abstract

A portable debugger for the Scheme language was implemented. The debugger
does not rely on implementation specific features in order to provide debugging
capabilities. Instead, the source program is transformed into one that behaves as if
run under a conventional debugger.

1 Introduction
The Scheme language, a member of the Lisp family of languages, has been gaining popula­
rity within academia as a teaching vehicle. It is a very simple and compact language, and
consequently many free implementations have emerged. However, none of these provide
the kind of source level debugging commonly found for the С language, for example.

Psd is a portable source level debugger for the Scheme language, that adds debug­
ging capabilities to any implementation conforming to the de facto language standard
’’Revised4 Report on the Algorithmic Language Scheme” [1]. Psd provides most of the
features commonly found in debuggers. The user can set breakpoints, single step eva­
luation and examine and change the variables of the debugged program. Psd shows the
source line being executed in an editor window. Even programs that cause run time er­
rors can be debugged with Psd, as the debugger intercepts the execution of the debugged
program just before a run time error would occur.

Psd works by transforming the original source code into a form that provides the
desired debugging capabilities. There is at least one similarly implemented debugger,
namely the edebug package for GNU Emacs, written by Daniel LaLiberte.

The pragmatic reason for implementing Psd was to provide better debugging capabi­
lities for students using Scheme in courses taught by the Software Systems Lab.

2 The User Interface
Psd has been designed to be used when running a Scheme interpreter as a subprocess of
GNU Emacs (a popular free editor). Psd uses Emacs as a front-end for .displaying the
current location in source code, as well as for handling details such as temporary file name

66

mailto:pk@cs.tut.fi

*f
> Evaluation took 17233 -See <5000 In 9c) 710409 сот work
«unspecified
' 'loading Vtnp/ps<£a04695*
;dona loading Vtap/'ped2a04695‘
;Evaluation took 1216 «See (216 In 9c) 12009 cons work
•<i«jpecifled>
> {Evaluation took 0 aSec <0 In gc) 16 cons work
‘Breakpoint at rtme/kaarne-b/pk/ped/blntree.scn:41*
' <tast 10)
(if <
psd> I

(nod«-set-right I parant new nods)))»»

(define (lootus object)
(let search «node tree»

:> (if (not (null? node»
(If (equal? object <node- 1 tee nods))

(node-iten nods)
(if (lese? abject (node-iten nods))

(define (deletel abject)" " T ^ r r

Figure 1: A Psd Session

generation and issuing commands to the instrumentation code. The user interacts with
the debugger and debugged program partly by giving commands via Emacs, partly by
typing them directly to the debugger prompt. It is also possible to pick procedures to
be debugged directly from an editing window. An example session is shown in figure 1.
The debugger communicates with Emacs by printing specially formatted lines containing
information about the current source line. Emacs interprets these lines by showing the
appropriate file in an editing window, and maintaining an overlay arrow indicating the
current line.

GNU Emacs was chosen as a front-end mainly because it is widely used for writing
programs, and because a similar interface had already been developed. The Psd interface
to Emacs was modified from an existing Emacs interface for gdb (the GNU debugger). It
would not be difficult to modify Psd to use a different front-end, though.

3 Debugging by Instrumentation
Debuggers such as dbx on Unix machines usually run the debugged program as a separate
process. The debugged program is run just like it would be normally run, and the debugger
implements single stepping and breakpoints by using services provided by the operating
system. These techniques are somewhat hard to apply in an interactive environment, and
they are necessarily implementation dependent.

Many Lisp systems, including most Scheme implementations, implement d e b it in g by
stopping the execution of the debugged program, and starting a new read-eval-print loop.
The user can then type expressions that the system evaluates, walk up and down stack
frames etc. This provides a very powerful debugging environment, as the user can use all
the features provided by the underlying language. However, a debugger implemented this
way must be built into the implementation. It also seems that while being a powerful
tool for the experienced user, this kind of debugger can be very confusing for the novice
programmer.

67

Psd provides debugging capabilities by augmenting the original program with additio­
nal code. This is done entirely in source code level, so no special support is needed from
the underlying Scheme implementation.

A simple example of a source code transformation providing debugging capabilities is
adding code for printing a trace of every procedure invocation. For example, the procedure

(define (square x)

(* x X »

could be transformed into

(define (square x)

(display "square called with argument ")

(display x)

(newline)

(* X x))

and then loaded into the Scheme environment. If the instrumentation and loading is
handled by the programming environment, the user just sees a procedure being traced.

An important point is that the augmented procedure retains its interface and opera­
tion, as seen from the calling code. When another procedure calls square, it should not
matter, whether the original or the augmented definition was used. Procedures instru­
mented by Psd retain their interface, which allows Psd to be used as an additional tool
in the programming environment, rather than as a separate environment.

4 Transformations Performed by Psd
The transformations Psd performs are similar in spirit to the above example, although
more complicated. Extensive instrumentation of the original source code is needed for
providing breakpoints and access to variables in the debugged program.

An example of an instrumented procedure is given in figure 2. It is the result of
instrumenting the procedure

(define (foo x)

(+ x 42))

Psd makes heavy use of the first-classness of Scheme procedures. They are used for
accessing local variables, as well as for implementing single stepping and break points.

In order to provide access to the values of local variables from the debugger command
loop, two procedures are inserted at the start of each lexical scope in the original pro­
gram. They provide access to the variables visible within that scope. For example, the
procedure pisd-val in figure 2 returns the value of the variable x when it gets the symbol
x as an argument. The procedure is passed to psd-debug, the debugger runtime, as an
arguments When the user wants to see the value of the variable x, the debugger calls the
procedure psd-val with the symbol x, and gets the value of the variable in the debugged
program. Note that since Scheme uses lexical scoping, there is no other portable method
for accessing the value of a lexical variable from outside the scope. V

63

(d e f in e foo
(l e t ((p s d -c o n te x t (lambda () (cons (q u o te foo) (p s d -c o n te x t)))))

(lam bda (x)
(l e t ((p a d -v a l (lambda (psd-tem p)

(ca se psd-tem p
((x) x)
(e ls e (p s d -v a l p s d -te m p)))))

(p s d - s e t ! (lambda (psd-tem p psd-tem p2)
(ca se psd-tem p

((x) (s e t ! x psd-tem p2))
(e ls e (p s d -s e t ! psd-tem p p s d - te B p 2 »)) »

(psd-debug p s d -v a l p s d - s e t! p sd -c o n tex t
(q u o te (+ x 4 2 » 1 2 2
(lam bda ()

(p sd -ap p ly ((lam bda x x)
(psd-debug p s d -v a l p s d -s e t! p sd -c o n tex t

(quo te +) 1 2 2
(lambda () +))

(psd-debug p s d -v a l p s d -s e t! p sd -c o n tex t
(quo te x) 1 2 2
(lambda () x))

(psd-debug p s d -v a l p s d -s e t! p sd -c o n te x t
(quo te 42) 1 2 2
(lambda () 4 2) »

p s d -v a l p s d - s e t! p sd -c o n te x t
(quo te (♦ x 4 2 » 1 2 2 i f))) » »

Figure 2: An Instrumented Procedure

69

For implementing break points and single stepping, each expression is converted into
a thunk, a procedure of no arguments. When the value of the expression is needed, the
thunk is called, yielding the value of the original expression. This is effectively same as
delayed evaluation. Thus, if the expression

(+ x 42)

is converted to

(lambda () (+ x 42))

it is possible to evaluate its value at a later time. The thunk is passed to the debugger
runtime, which can then interact with the user both before and after evaluating the
expression.

The same conversion is applied recursively to each of the subexpressions. Instead of
using the native procedure calling mechanism, the subexpressions of a procedure call are
passed to the procedure psd-apply, which checks that it is safe to call the procedure with
the given arguments. This is done in order to catch run time errors. The final result of
the conversion is roughly equivalent to

(psd-debug (lambda ()
(psd-apply

(psd-debug (lambda () ♦))
(psd-debug (lambda () x))
(psd-debug (lambda () 4 2)))))

When the debugger decides to run one step of evaluation, it calls the procedure that
was passed to it. Calling the thunk invokes each of the calls to psd-debug, yielding
the addition procedure, the value of x, and the number 42. The debugger runtime gets
control both before and after each subexpression is evaluated. Finally, psd-apply calls
the addition procedure with the desired values.

Each time psd-debug is invoked, it checks whether it should continue evaluation im­
mediately, or stop and prompt the user for commands. Single stepping is implemented
simply by using a global variable whose value tells whether single stepping is on or not.
For break points, a list of source code lines containing the currently active break points
is maintained. Each time execution proceeds to >a line in the break point list, execution
is stopped and the debugger command loop is entered.

As seen in figure 2, the runtime is called with additional parameters besides the de­
bugged expressions. These parameters contain the location in source file, the expression
being evaluated and so forth.

5 Run Tim e Errors
Because Psd relies on correct execution of the instrumented program, it cannot let run
time errors occur. For the programmer, though, errors in the program often manifest
themselves by causing run time errors. A debugger is commonly used for running the
program until a run time error occurs, and examining the state of the program at that
point.

70

Psd catches most run time errors by examining the arguments passed to primitive
procedures from the debugged code. If Psd determines that a run time error would result
from calling the primitive procedure, the debugger command loop is called instead.

In Scheme, type is associated with a value, not a storage location. All variables,
including the formal parameters of a procedure, can hold values of any type. Thus,
calling a user defined procedure with arguments of wrong type does not cause run time
errors. Type errors can only occur when calling a primitive procedure. Psd detects
calling primitive procedures with wrong number or wrong type of arguments, and stops
the execution of the debugged program.

User defined procedures can thus be called with arguments of any type. However,
trying to call a user defined procedure with wrong (lumber of arguments results in a run
time error. In order to prevent that, Psd would have to know the arity of each user
defined procedure, which is not possible to determine portably. With some help from the
implementation, it would be easy, though.

It would be possible to do at least some static type and arity checking, but most small
implementations do not perform it. The flexibility of the language makes static checking
difficult, as procedures can be passed around and stored in data structures just as other
values.

Other types of run time errors, such as division by zero, are not handled by Psd.

6 Limitations and Further Development
Because the aim of developing Psd was to provide a portable debugger, it cannot use
features outside the language standard. Perhaps the most serious single limitation caused
by that is that no backtrace information is available in the debugger. It would be possible
to pass the backtrace around as an additional parameter, but this would require that all
procedures accept the extra parameter. However, backtrace information is very helpful
when figuring out what went wrong, so solving the problem is a main aim for further
development.

Another concern that becomes apparent when dealing with large applications is space
and time efficiency. The instrumented code is much larger than the original source code,
expansion factors from 14 to 39 have been observed. Small procedures expand more
than larger ones, because there is a fairly constant amount of code associated with each
procedure. Thus, the example of figure 2 is a rather extreme case. Instrumentation also
slows down the debugged program considerably, observed slowdown has been in the range
of 170-200. If an implementation has a compiler, the runtime support code could be
compiled. In practice, most of the debugged program is usually run normally, and only
a few procedures are being debugged at a time. In this case, the efficiency of a single
procedure does not necessarily slow down the whole program significantly.

7 Availability of Psd
Psd is available from the author. It is also placed under anonymous ftp in c s . t u t . f i in the
directory /pub/src/languages/schem es, and in the Scheme Repository nexus. yorku. ca
and its mirroring site f t p . i n r i a . f r . Psd is placed under the GNU General Public
License, so it can be freely used and distributed.

71

10

ftp://ftp.inria.fr

References
[1] Jonathan A. Rees and William Clinger, editors. The revised4 report on the algorithmic

language Scheme. LISP Pointers, IV(3):l-55, July-September 1992.

Modelling Communicative Strategies

Mare Koit
T u tu University, Department of Computer Science, J. Liivi 2, EE2400 Tartu, Estonia,

e-mail: koit@ced.ut .ее

Haldur Oim
Tartu University, Department of General Linguistics, Ulikooli 18, EE2400 Tartu,

Estonia

Abstract
The paper discusses the problem of how in a dialogue in natural language between two participant* one

of the participants, using so-called communicative strategies, can influence the other participant to make a
certain decision. The model of communicative strategy will be offered which unites the partner model and
the reasoning algorithm used in the process of working out a dedeion.

1. Introduction: a short survey

In order to develop Artificial Intelligence (AI) systems which could adequately understand
people and make themselves understood while interacting in natural'language it is necessary
to interpret human communication and to model it on computers. “ >

Communication is not a simple interaction of speech acts (for example, ask - reply, demand
- refuse, agree, etc.) but, as a rule, is an hierarchically organized process. First, certain
goals and subgoals will be pursued. Secondly, to achieve the goal certain methods called
communicative strategies are applied (e.g. blandishing, frightening, threatening, etc.).

Let us consider interaction between two subjects, Si and 52, where the goal of the initiator
of the interaction fs i) is to achieve a decision by the partner (52) to perform an action (.4).
51 cannot directly bring about” this decision, he can only release and influence the decision
making process in 52.

Therefore, 51 must have a general depiction of the partner’s reasoning model. The paper
presents a formal model which tries to represent the typical trains of thought by the human
reasoner. According to this model the reasoning process - whether to perform or not perform
an action A - will be released by three kinds of factors, the во-called determinants: 1)
wishes of the subject, 2) his considerations of the usefulness and 3) his considerations of the
obligatoriness of A. The reasoning process consists of a sequence of steps where the pleasant
and unpleasant, useful and harmful, etc. aspects of the action will be weighted. This process
is governed by reasoning postulates and principles characteristic of human motivational and
reasonig system in general.

On the other hand, we are interested in how the subject 51 ”can penetrate” the reasoning
algorithm of 52 so as to direct and influence ty. 51 can do it only via communication. First of

73

10*

mailto:koit@ced.ut

all SI h u io choose the starting determinant (wish, needed or most determ inan t which he
attempts to trigger in 52. When it has been triggered, 51 must see to it that 52 rsReasoning
proceeds through any of thoee routes which leads to the decision to perform tW action A.

Such an influencing process represents the communicative strategy of Sl^Vith the »im
to generate the decision to perform A by 52. The communicative strategy as well as the
reasoning process can be formalised. The paper presents a possible approach to this task.

2. Background and related research

The notion of communicative strategy (CS) is related to the notions of dialogue planning
and plan recognition (e.g. [8], [10]). Strategies in our sense represent higher level structures
though: a communicative strategy in dialogue is a general line of reasoning, a general basis
abo lor constructing concrete plans.

The notion of CS in discourse is used by such authors as T.A. van Dijk [3] and K.McKeown
[9]. T.A. van Djjk defines a strategy in terms of general attitudes which the speaker tries to
impose on the recipient.

K. McKeown is interested in so-called discursive strategies the aim of which is to organise
the texts in such a way as to make their understanding easier for the receivers.

In conversational analysis and related research the concept of strategy is relatively po­
pular. But as a rule it is related quite straightforwardly to the use of definite categories
of verbal expressions and/or to vanous social aspects ol the interaction (see e.g. [4,5] for
the illustration). The cognitive aspect, i.e. the attem pt to take into account the recipient’s
processes of reasoning and understanding in which ultimately a strategy should get realised
is almost lacking.

Our model of CS differs from these models in some crucial aspects.
First, the aim of introducing this notion is to tie together communicative goals of the

speaker, on the one hand, and the partner model structure, on the other. The partner model
here is understood as a relatively concrete personality type model.

Second, our model presupposes human reasoning model and takes into account different
aspects of personality structure in this respect.

The concept of strategy is abo used in the game theory: a strategy is a prescription which
determines the behavior of the participant in all situations which may appear during the
game. Communication as the interchange of speech acts can be considered as a game in
which moves are realised by speech acts of the participants [1]. To a speech act of one of the
participants the other participant can react in a finite (and often quite restricted) number of
different ways. For instance, an order may be answered by complying, by refusing, by asking
for additional information etc. The concept of CS used in the present paper in analogous to
the concept of strategy in a game of 2 persons. But the specific characteristics of the human
interaction we want to take into account determine the specificity of our concept of CS.

3. Modelling natural reasoning

Let us consider a special case of communication - a dialog between two subjects, 51 and
52. Let the goal of 51 be that 52 would agree to perform a certain action A. How can 51 in
the course of (verbal) interaction influence 52 to come to the given decision? Apparently, 51
must have a depiction of the mode) of reasoning with which people operate when they are
working out their decisions.

We will present here our view of the reasoning model (for the motivation see [7]).

74

According to oui model, the human reasoning concerning an action A may be induced and
directed by three kinds of factors, or determinants. These factors are divided into internal
and external ones with respect to the reasoning subject 5.

The internal determinants of S which may induce the reasoning about A are, first, S ’a
wishes, and second, S’s considerations of what needs to be done. We will call the first class
of determinants ’’WISH-determinants” and the second class - ” NEEDED-determinants”

The external determinants are the obligations, the norms tha t force 5 to perform A without
taking into account S’s own interests. Inese are "MUST-determinants” .

The WISH-determinants operate when 5 would find it pleasant to do A for its own sake
or for the sake of some of its consequences. This may be characterised as the primary and
the most natural motive to do some action: to get satisfaction from it.

The NEEDED-determinants get activated as subgoals of some already accepted goal: in
order to reach the goal G the action A as one of its subgoals has first to be realised.

Finally, as MUST-determinants function obligations, norms and also other subjects’ orders
which hold in the situation where the subject S finds himself.

We are interested in the process of reasoning th a t leads from these determinants to the
decision to perform or not to perform the action A. These processes can be described as
proceeding by specific decision steps, but at the same time they follow a certain overall sche­
me. Nevertheless, in the frames of this scheme the subprocessee are different and differently
organized depending on the input determinant type.

Let us briefly discuss the categories that will be used in formulations of reasoning algorithm,
and the principles that govern their interactions.

1) PLEASANT/UNPLEASANT: these categories represent the primary (originally emo­
tional) evaluations which are anchored in the sensual system of the subject.

2) USEFUL/HARMFUL: these are prototypical rational evaluations, i.e. they are based
on certain beliefs or a certain knowledge of S and there are certain criteria for making the
corresponding judgements. These criteria are connected, first of all, with the goals of 5: an
aspect of A is useful for 5 if it helps S to reach some goal G\ and, correspondingly, an aspect
of A is harmful if it prevents S from reaching some goal G.

3) OBLIGATORY/PROHIBITED: these are also rational evaluations but they are based
either on the knowledge of certain (social) norms or on some directive communicative act
of a person who is in the position (has the power) to exercise his will upon S. Obligations
and prohibitions are connected witn the concept of punishment, which is an action taken
by some other subject as the reaction to S’s not following the corresponding obligations
or prohibitions. Thus, trhrough this concept, the dimension of obligatory/ prohibited is
connected with the previous dimensions: a punishment is (is intended to be) unpleasant or
harmful to S.

RESOURCES of S with respect to A constitute any kinds of circumstances which create
the possibility to perform A and which are under the control of S.

The values of the dimension obligatory/prohibited are in a sense absolute: something
is obligatory or not, prohibited or not. But the dimensions pleasant/unpleasant and use­
ful/harmful are, rather, scalar ones: something is pleasant or useful, unpleasant or harmful
to a certain degree. We should thus represent these dimensions by certain scales on which
the intervale should be differentiated when reasoning.

In the reasoning process their concrete values, or weights, are summed up in some way.
Before the final decision about A is made, its pleasant and unpleasant, useful and harmful
aspects should be weighed up and the general "balance” of the weightings of positive and ne­
gative aspects computed. This suggests that the corresponding scales would be represented
in some form which makes the cross-scale comparison possible (in the formal representation
e.g. in numeric form, where the use of the concrete numeric values should be empirically
grounded, of course).

There exists a natural correspondence between these three dimensions and the three input
determinants considered before, i.e. WISH-, NEEDED- and MUST-determinants:

75

1) a positive value concerning the aspects of A on the pleasant/unpleasant scale is presup­
posed by the WISH to do A\ 2) a positive value on the useful/harmful scale is presupposed
by the NEEDED-determinant; and 3) a positive value on the obligatory /prohibited scale is
presupposed by the MUST-determinant.

In the considered context the process of reasoning itself consists in the interaction of the
WISH-, NEEDED- and MUST-determinants and the judgements concerning the dimensions
pleasant/unpleasant, useful/harmful and obligatory/prohibited.

Beyond these, the reasoning model contains a number of general principles, or postulate,
which characterise the human motivational and reasoning system in general (e.g.: people
want pleasant states and do not want unpleasant ones; the more pleasant is the imagined
future state the more intensively a person strives it, etc.). And there are a number more
concrete preference rules, e.g.:

- if A has been found pleasant (and also the subject wishes to do it) then the subject
checks the NEEDED- and MUST-determinants first from the point of view of their possible
negative values (”what harmful consequences A would have?”);

- if the sum of the values of the inner (WISH- and NEEDED-) determinants and the value
of the external (MUST-) determinant appear equal in a situation (i.e. there arises a conflict)
then the decision suggested by the inner determinants is preferred.

Let us present now the reasoning algorithm corresponding to three kinds of input deter­
minants: 1)5 WlSHes to do A, 2) A NEEDs to be done by S and 3) 5 MUST do A. For
representing the concrete aspects of the reasoning process in the algorithm the following
abbreviations are used: И'(pleat) - the weighting of the pleasant aspects of A\ W(Karm) - the
weighting of the harmful aspects of A\ etc. All these weightings are given from the point of
view of S and constitute a model of the reasoning subject.

The reasoning algorithm is universal and does not depend on the concrete subject. We
represent the algorithm as a so-called schematic program [6].

---- reasoning
W {pleat) > W(unpleat)7
procedure W ISH

№ (w i) > W(harm)?
procedure N E E D E D

it A obligatory?
procedure M U ST

decide not to do A

Let us explicate here the contents of the procedure W ISH , i.e. the reasoning which is
triggered by a wish or want of the subject. For the details of other procedures - the reasoning
which departs from the considerations of usefulness and obligatoriness of A, see [7].

76

-----procedure W ISH
---- presumption : 5 wishes to do A , i.e.
-----W{pleas) > W(unpleas)
'are there enough resources fo r A l

W(pleas) > W(unpleas) + W(harm)!

is A prohibited1

W(pleas) > W(unpleas) + W (harm) + W(punish)!

W(pleas) + W(use) < W(unpleas) + W (harm) + W(punish)!

Wfpleas) + W(use) < W(unpleas) + W (harm)l

is A obligatory1

is A prohibited!

W (pleas) + IV (u je) < W(unpleas) + W(harm) + W(punish)!

decide : to do A

decide: not to do A

4. Com municative space

W hat we have talked about represents the model of decision making - of reasoning - of a
subject 5 without his/hei relatione to and communication with other subjects.

But we are interested in a situation where there is still another subject (i.e. there are 51
and 52) and the subject 51 is trying to bring about in the reasoner 52 one certain decision
concerning A, for instance, to do A.

How can 51 ’’penetrate” the reasoning algorithm used by 52 so as to direct it and influence
its outcome?

77

First, 51 must choose the starting determinant (WISH, NEEDED, MUST) which he/she
must then try to trigger. This input delimits also the set of possible further strategies.

Second, when the chosen input determinant has been triggered, 52 must guarantee tha t 51
in his reasoning process moves along one of the routes that brings him/her to the decision
”to do A” .

The scheme presented above shows the critical points in the reasoning process on which
the outcome of the process depends.

But to influence this process - the thinking of 52 - subject 51 can only by communication
with 52. And here - in the "communication space” between 51 and 52 - empirical regularities
of its own are at work. There are dimensions and factors that one has to take into account
when having in view certain result in a concrete situation of communication.

Let us present first an overview of the dimensions of communication space which are
relevant lor our discussion, and then to consider the problem of representing the model of
communicative strategy.

First we introduce two dimensions of general character which as if are placed ”on top o f
the other, more concrete dimensions. These are

(1) cooperative-confrontational character of communication and
(2) personality-impersonality of communication.
According to the first dimension the communicative encounters can be ordered into a

continuum where at the one end are absolutely confrontational encounters (quarrels) and at
the other end interactions without any element of disagreement (e.g. conversation between
lovers). The majority of interactions lie somewhere between these extremes, and as a rule
the participants themselves choose the concrete value of the dimension.

Personality-impersonality: according to this dimension the speaker chooses, how perso­
nally, i.e. departing from himself/herself he/she presents the material. There are types of
interaction in which the individuality of the speaker has no real meaning (e.g. some types
of official talk) and there are interactions which necessarily require the participation of the
speaker as an individual person. And again in the majority of cases the speaker can deci­
de how person ally-im person ally he/she acts in presenting his/her communicative acts (e.g.
question, offer, proposal, remark, criticism, etc.), and in this way manipulate the possible
reactions of the recipient.

The whole diversity of the remaining aspects of communication we will divide between
three dimensions:

(3) the distance between participants,
(4) the modal, attitudinal (evaluative) dimension, and
(5) the intensity of communication.
The distance between participants is one of the most widely discussed dimensions of com­

munication, especially in the literature on conversational analysis, e.g. Г2]. Distance should
be confused with the personal closeness of the participants. Even when communicating
with unfamiliar people one should fix a certain distance. It reflects the amount of "common
ground” , the amount of factors which unite the participants in a concrete encounter. As such,
it plays a central role in person-to-person communication. The ”shortening” or ’'widening”
of distance with respect of the neutral one by one of the part id pants is communicatively
meaningful. For instance, shortening the distance (by S i) can in certain circumstances be
considered as "doing a favor” to the partner 52 (as, for instance, in case of expressing inte-
restedness and/or positive apraisal towards the partner as a person) and 51 is in position to
expect the counterfavor (e.g. the fulfilment of a request) by S2.

The other two dimensions - modality and intensity of communication - are again of more
general nature and are not so relevant for the type of communication we are interested in
here. Let us look at them only briefly.

By modality of communication we mean the dimension as the values of which occur such
characteristics as friendly, deferential, respectful, attentive, distrustful, unfriendly, careless,
rough, irritated, etc. Most of concrete values of the dimension are such th a t they can be

78

correlated with certain strategies only. For instance, in the caee of blandishment or flattery
the values of the given dimension (on the part of Si) such as "rough” or "careless” are
excluded. On the other hand, one may think of strategies where just these values of the
dimension are used.

Lastly, by intensity of communication we mean the energy by which it is carried out. An
encounter can be peaceful or reserved, or it can be vehement. SI can behave, in presenting
his aims, modestly and discretly, or he can behave obtrusively. In the same way 52 can vary
his reactions.

In sum, the communication space as described above may be represented as a 5-dimensional
space where the coordinate axes are fuzzy scales [11].

In order to achieve the aimed decision (by S2) concerning the action A, SI should create
in S2 the right configuration of the evaluations of the pleasant and unpleasant, useful and
harmful, prohibited and obligatory aspects of A. but to guarantee that the information
about the relevant aspects of A which S i plans to give to 52 would have the right effect, SI
should choose, first, the right configuration of the values of communicative dimensions, to
move to the right point of the communication space, before (when) giving 52 the "objective”
information.

5. Communicative strategy

Let us treat a dialog between 51 and 52. The subject 51 has:
1) an understanding of the reasoning algorithm which would be used "by every normal

person” , that is also by 52 (and by 51 himself/herself);
2) a picture of the evaluative appraisals of 52 of the pleasant, unpleasant, useful, harmful

etc. aspects of the action A , i.e. a partner model. In general, this model does not necessarily
coincide with the model which 52 himself/herself operates when reasoning about A,

3) a communicative strategy - a method of influencing the reasoning process of 52.
For reaching one certain goal several different strategies can be used. For instance, enticing,

threatening, frightening, persuading - as a rule, these are not single speech acts but may
represent quite long-lasting endlavors of one participant of communication in the names of
his communicative goal.

On the other hand, a strategy is not a plan where it is precisely determined what to say
and in what order. In dialog it is hard to make detailled plans since one cannot foresee the
exact reactions of the partner.

CS in this sense is a structure of higher level than plans. It constitutes a possible basis for
concrete plans and for their variations in a session of communication.

CS-я can be classified - and represented - in several different ways; for instance, according
to communicative goals. As a goal may function "objective” knowledge of the partner about
something; his conviction (that something holds or does not hold); his evaluations (that
something is good or bad); his decision to do or not to do something.

The hierarchy of communicative goals determines also the hierarchy of CS-s. The CS-
s which are directed towards attainm ent of one and the same goal may be differentiated
according to the input determinant which the author of CS is trying to trigger.

Let us present here a general communicative strategy where the goal of its author (s i) is
to reach certain decision of 52 (to do A). The encounter begins with the determination by SI
of the concrete manner of influencing 52 (i.e. his concrete strategy: blandishing, persuading,
frightening etc.), and with the fixation of the co-ordinates of the starting point in the com­
munication space. 51 chooses the degree of cooperativity, of personahty-impersonality and
of intensity of the planned communication, and decides whether the default value of his dis­
tance to S2 should be changed or not. When SI founds tha t the distance should be widened

11

or shortened, then he/she should start the encounter with the corresponding introductory
remaxk(s), without necessarily referring to his/her real goal, but using the chosen values of
other dimensions.

The actualisation of the point in communication space ("communication point”) can be
represent by the following scheme.

---- actualization of the point in communication »pace
choose the degree of cooperativity
choose the degree of personality
choose modality
choose intensity

to change the communicative distance?

make rem arks) to widen! shorten distance

After choosing the communication poin t 51 ha« to inform 52 of his/her communicative goal
This turn - as well as the following ones - should be formulated by taking into account the
communication point, i.e. by using the chosen degree of cooperativity etc. If 52 agrees, the
communicative goal of 51 is reached and the c»mmunication may end. But if 52 refuses then
51 has to decide whether to continue the interaction or not. If he/she chooses to continue,
he/she should decide, first, whether to follow the chosen strategy or to change it, and look
whether to ’’move” to another point in cbipmunication space, for instance, by shortening the
communicative distance or by rising the! intensity of communication. Further performance
of 51 depends on the concrete strategy chosen by him/her.

CS can be represented by the following scheme.

— — communicative strategy (author 51)
choose a concrete strategy
actualise the (initial) point itt the communication space
inform 52 of the communicative goal

did S2 agree"!

>-f— -----the goal is reached

to give up!

■ — — the goal will not be reached

to change the concrete strategy?

choose a concrete strategy

to change the communication point?

actualise a point in communication space

apply the concrete strategy

90

The concrete strategies used to reach a fixed communicative goal differ from one another,
first of all - as pointed out above -, by induced input determinants. For instance, 51 can
entice, persuade or force 52 to decide to do A by inducing or rising in him/her, accordingly,
a wish, an understanding of usefulness or an understanding of necessity concerning A.

We will confine ourselves here to representing one communicative strategy - the strategy
of enticing. The goal of enticing is to induce in 52 a wish to do A, and by stressing the
pleasant (and other positive) aspects of A and, a t the same time, possibly, by downgrading
the negative aspects of A, to bring 52 to the decision to do A. We represent the enticing
strategy by a case scheme, where as the key functions the answeT of 52; the strategy gets
started when 52 has refused to do A.

— — strategy of enticing
answer o f 52 (re f tiling)!

- ("no* V *little benefit" V "not obligatory” V "little pleasant")
present a counterargument in order to stress pleasant aspects of A

- ("ло resources")
present a counterargument in order to point at the presence of possible resources or at the

possibility to gain them
- ("much harm”)
present a counterargument in order to downgrade

the value o f harm
- ("A is prohibited and the punishment is great")

present a counterargument in order to downgrade the weight of the punishment
- ("much unpleasant")
. present a counterargument in order to downgrade the value of the unpleasant aspects o f A

On the ground of the concrete reply of 52 51 is able to make the necessary changes in the
partner’s model and to understand what route 52 is traversing in his process of application of
the reasoning algorithm, and to choose the counterargument in order to turn the reasoning
process of 52 in the needed direction. The contents of the counterargument depend on the
concrete action, of course; we don’t consider here the question of the verbal formulation of
replies either.

We confined ourselves to considering the use of communicative strategies from the point
of view of 51 only. In reality, of course, 52 will use his strategies in the same way.

6. Concluding remarks

Intuitively, we interpret communicative strategies as general methods of pursuing one’s
goals in dialogical interaction. As examples may serve tempting, soothing, frightening, per­
suading etc. someone in order to get him to do an action, to believe something, to make a
certain value judgement etc.

For the present discussion, we have chosen strategies where the goal of the author of the
strategy, 51, is to get the partaer, 52, to do a certain actiou A (more concretely, to make the
decision to carry out the action).

M

II*

The aim of the paper was to demonstrate one possibility for the formalization of the
process of reasoning which brings the subject to a certain decision, and of the concept of
communicative strategies which can be used to direct the processes of reasoning.

The ideas axe implemented in a computer system where the values of the reasoning de­
terminants and of the communicative dimensions can be manipulated in different ways, and
the task of the system is to "compute” the decision concerning the suggested action.

The presented modele turn out to be useful, in addition to AI, also in linguistics providing
a conceptual framework for interpreting individual facts of linguistic communication.

Reference*

1. Auramäki E., Hirschheim R., Lyytinen K. 1992. Modelling office* through discourse analysis: The
SAMPO. - The Computer Journal, vol. 35, No. 4, pp. 342-352.

2. Brown P., Lewinson S. 1977. Univenala in language usage: politeness phenomena. • Goody, Bather
(ed.), Queitioru of PoUteneti. Cambridge: Cambridge University Press, pp. 56-289.

3. D'ljk T.A. van 1983. Cognitive and conversational strategies in the expression of prejudice. - Text, vol.
3-4, pp. 375-404.

4. Garcia C. 1989. Apologizing in English: politeness strategies used by native and non-native speakers.
- Multilingua, vol. 8, No. 1.

5. Garcia C. 1989. Disagreeing and requesting by Americans and Venezuelans. - Linguistic) and Education,
vol. 1, pp. 299-321.

6. Kiho J. 1984. Schematic programming (in Russian). - Transactions of the Tartu University Computing
Centre, Tartu, No. 50, pp. 52-68.

7. Koit M., Õim H. 1990. An approach to the modelling of natural reasoning. - AIMSA'90. Varna,
Bulgaria, Sept. 1990. Proceedings. Ed. by P.Jorrand and S.Sgurev.

8. Litman D.J., Allen J.F. 1987. A plan recognition model for subdialogues m conversations. - Cognitive
Sciences, vol. 11, No 2, pp. 163-200.

9. McKeown K.R. 1982. Generating natural language responses to questions about database structure.
Ph. D. Dissertation, University of Pennsylvania.

10. Pollack M.E. 1990. Plans as complex mental attitudes. • Intentions in Communication. Ed. by
Ph.RCohen, J.Morgan and M.E.Pollack. Cambridge к London, The MIT Prees, pp. 77-103.

11. Zadeh L. 1965. Fuzzy sets. - Information and Control, June, pp. 338-353.

82

A SEMANTIC-SYNTACTIC RECOGNITION SYSTEM
BASED ON ATTRIBUTED AUTOMATA

Antti Koski
Department of Computer Science

University of Turku
Lemminkäisenkatu 14 A, 20520 Turku

e-mail: akoski@cs.utu.fi
Finland

ABSTRACT

In this paper we present an idea of combining syntactic and semantic information in the form
of attributed automata. Our motivation comes from syntactic pattern recognition of ECG
signals. There we need to detect various syntactic structures and calculate also many
different numeric values. We have developed a system of attributed automata, which parses
an input string according to the system grammar. An attributed automaton is a finite state
machine, whose states are augmented with finite number of semantic variables, attributes.
Every automaton is designed to parse some specific substring of input and return
successfully if the desired structure is detected and the values of the attributes satisfy some
predetermined conditions. Parsing with these subgoals needs also a suitable searching
strategy, which we have chosen to be depth-first order. We have designed a language of our
own for writing system specifications. We have also implemented a pre-processor, which
reads the specification and generates necessary С-functions, which need to be compiled
together with the base interpreter and this finally gives an executable system parser. An
object-oriented view in our system reveals also simple class hierarchy among different
automata. Some automata are clearly like specialised versions of other more general types of
automata. Our primary goal is to increase the intelligence of the system so that it could
acquire more knowledge during parsing processes. This can be achieved through the
classification and clustering of detected substructures.

Keywords
Syntactic pattern recognition, Signal analysis, Attributed automaton

83

mailto:akoski@cs.utu.fi

1. INTRODUCTION

Pattem recognition methods are widely used in various tasks in computer science today. First
approaches were statistic methods, where we calculated quantities from the phenomenon and
tried to classify this phenomenon according to these numeric values. However, in many
occasions the most important feature of the object is its structure and the way how it is built.
This is the idea behind syntactic methods in pattem recognitionO). In syntactic methods we
first analyse an unknown pattem and try to extract primitives. Primitives are the most
elementary pieces of structure of the object. Primitive extraction has resemblance to the
feature extraction phase in statistical methods, but the way we use primitives is different
from the way we use numeric features. After this primitive extraction we examine the way
they are organised to form the object itself. We have a pattem grammar to show the structure
of the desired objects. This grammar has primitives as its nonterminals. Then we find out
whether the object is constructed according to the rules in the pattem grammar, i.e. we parse
the primitive string to find out if it belongs to the language generated by the given pattem
grammar. If this is the case then we classify the object to the class defined by this grammar.

This skeleton has worked well in purely structural classification problems, but in many
occasions we need to resort to the semantic meaning of the primitives. This is the case in the
recognition of the electrocardiograms (ECG) which are largely employed as a diagnostic tool
in clinical practice in order to assess the cardiac status of subjects. Several methods have
been used in the recognition and analysing of the ECG signals(2.3). in ECG diagnoses we
have to calculate several amplitude and duration values of the patterns in the signal. We
could use some kind of feature coding in the primitive extraction phase, but then our
primitive alphabet usually grows too large to be practical. If we do the primitive extraction
by к features and each feature i is divided to nj classes then the total number N of primitives
is

N = f l n ,
1=1

which soon becomes too large in any applications. A better way is to perform the primitive
extraction phase by few structural features and leave other features connected to the
primitive as they are. These represent the semantic interpretation of the structural primitive.
In addition to the coding problem, we need to express sometimes also complex semantic
dependencies in the structure of the pattem. If we leave this totally to the pattern grammar,
then the complexity of the grammar becomes soon unmanageable, for instance many
dependencies in signal processing are context-depending.

Semantic information can be combined with the syntactic information by the means of the
attribute grammars. Attribute grammars are context-free grammars, whose nonterminals and
terminals are augmented with semantic variables, attributes. If the context-free grammar is
right or left linear then we have a regular syntactic structure. This is usually the case in
attributed syntactic pattem recognition because the attributes can express the non-regular
information.

84

2. COMPUTATION OF PRIMITIVES

Selection of primitives is an essential point for the syntactic pattern recognition. There are
plenty of different ways to compute primitives of ECG, for example. We applied a typical
technique of line segments in which the signal is divided into consecutive, almost linear
segments of various length. The character of the ECG .signal is suitable for the varying
length, because there are long flat parts in the signal but also very steep peaks (Fig. 1).

ECG signal originates from the
action of human heart. It
describes various phases in
cardiac cycles. The most
important phase in heart action is
the QRS-complex which is the
electrical phenomenon of the
depolarisation of the ventricles
where heart pumps blood to the
arterial system. P- and T-waves
originate from pre- and post
operations to the depolarisation
of ventricles. ECG is a very
varying signal in nature and
continues numerous error
components that can distort the
signal.

The use of the varying length primitives is effective, since it compresses data and thus
decreases the number of primitives. If we applied the fixed length, the chosen length of
primitives should be rather small so that even steep QRS-complexes could be detected.
Segmentation starts with a fixed length segment which has к sample points. If all sample
points between the first and the last point are close enough to the line from the first sample to
the last sample then we can add к sample points more to the segment. We enlarge this
segment repeatedly by к samples until some sample point is further from the line than it is
allowed. Then we start shrinking our segment so that the new end sample point will be set to
the sample that lies most far away from the segment line. When finally all sample points lie
between allowed limits then we accept this segment and start the next segment from the end
of the current segment.

We approximate the slope of each segment by computing the slope of the line between the
first and the last sample of the segment. After having computed a segment and its slope we
transform the segment to a terminal symbol according to the slope of the segment (Fig. 2). In
principle, it is best to prefer as small a number as possible, since we can then construct
simpler automata and recognition systems. On the other hand, we can describe more
information with primitives when we use a greater number of different terminals. Thus, we
have searched for a reasonable trade-off between those two goals. We added also two
attributes to each terminal: the dx-duration and the dy-duration.

PT-duration

P-wove

PQ-segment

QRS-komplex

Fig. 1 An ideal model of the one cardiac cycle in an ECG
recording.

85

Selection of primitives is one of the most essential
parts in syntactic pattern recognition^-^). For some
problems the set of primitives can be determined
naturally, as in our application they follow the
structure of the signal. There are many applications,
for instance EGG processing, where we cannot easily
determine the most appropriate primitive set, because
there the most important feature is the energy of the
EGG in different frequencies. The general rule in
primitive selection is that the simpler primitives mean
more complex grammars. Augmenting attributes to
the primitives reduces the complexity. For instance, in
many applications we need to measure the
phenomenon itself. We could use fixed length
primitives and compare and calculate the number of
primitives to get measurement estimates but this leads
immediately to context-free grammars and very often
over that.

3. ATTRIBUTED AUTOMATA SYSTEM

An attributed automaton is a finite automaton to which attributes are added to contain
semantic information collected and used in p a r s in g ^). By employing attributes we make
pattem recognition more effective because we enhance the intelligence of the recognition
system by considering attributes as semantic information during the parsing p r o c e s s ^) . We
organised a set of attributed automata for the ECG recognition process. Each automaton has
a particular task in the recognition process. There is an initial automaton which starts the
whole parsing process and calls some other automata of the set in order to parse some
specific substructures. Every automaton can call any other automaton, also itself recursively.

When the call of an automaton is performed, this means that the called automaton
commences to process the string of terminals (or primitives in the signal) from the location at
which the former automaton called the latter. The called automaton tries to recognise the
subpattem. If it succeeds, the calling automaton accepts this result and continues from the
location where the called automaton stopped. Otherwise, it fails and calls the next alternative
automaton to start again from the same location as the previous automaton. If there is no
uncalled automaton left, the automaton moves to the next state if a transition is available. If
there is no transition available, the system returns from the automaton to the upper level in
the system. The initial automaton halts the process when all terminals of the signal have been
considered.

We consider an attributed automaton as a finite automaton with a finite memory for
attributes. At any move a new configuration of this memory is evaluated. We defined the
system of attributed automata as a tuple of (A, Q, £, ao, Qo. R, ATT, F, no) *n which

d

86

1) A is a finite non-empty set of automata.

2) Q is a finite non-empty set of states. Q(a) refers to the states of automaton a. Sets Q(a) are
disjoint between the automata.

3) £ is the terminal alphabet, i.e. collection of primitives that constitutes a pattern string. Our
alphabet I is common to every automaton in the system.

4) The initial automaton is denoted by ao> and Qo is the set of initial states of the automata.
Every automaton has exactly one initial state, Qo(a) for automaton a.

5) The transition relation R of the system comprises two relations Rj and R2 - The former is
a deterministic partial function from (A, Q, I) to Q, which maps transitions within
automaton a in A. R2 is a nondeterministic transition relation (A, Q, I , A, Q), which
describes actions of the system between automata. Tuple (a, p, c, q) of Rj is a transition in
automaton a from state p to q on input letter c. Tuple (a, p, c, b, q) of R2 is a call of
automaton b from state p of automaton a on input letter c. If automaton b succeeds in
parsing, the system returns to state q of automaton a.

6) ATT is a finite set of the attributes of the states.

7) F is a set of the computation rules of the attributes. At each transition which an automaton
makes, the attributes of the current state are used to compute the attributes of the state to
which the system moves. When the system returns from the subautomaton, the attributes
computed by the subautomaton are used to update the attributes of the state to which the
system returns.

8) no contains the initial values of the attributes of the initial state of the initial automaton at
the start moment of the system. Thus, attributes of automata represent the semantic
information collected from subpattems already analysed.

4. FUNCTION OF THE SYSTEM

Our basic idea was to construct attributed automata each of which is intended to recognise a
certain subpattern. An automaton can then call a certain subautomaton to recognise the
corresponding subpattem. The automaton at a higher level may have several alternatives to
choose from for some phase of the parsing. Order of calls of the subautomata is arranged
depending on the application so that more probable alternatives are used before those which
are less probable. The nature of our task in ECG processing is more like analysing signals
and not recognising them. Therefore we can first try more specific structures that follow the
structure of the ideal ECG signal, although they may not be the most common shapes in ECG
signals.

Processing of the automaton stops when there are no alternatives (transitions) to be chosen or
the automaton compels a return to the calling automaton which is tested with predicate
return. For the latter case there are two possibilities. First, the subpattem which was looked

87

12

for was already found, although there are still transitions unused. For example, such an event
is encountered when we have detected the left side of a peak and we are processing the
middle of the right side, and these sides are of equal height at that moment, but the right side
would still continue after the midpoint. However, the recognition of that peak is completed at
that sample, because we want both sides to be of approximately equal height. Second, the
automaton can discover, on the basis of values of the attributes, that the recognition of the
subpattem cannot be successful in this choice.

After having returned to the calling automaton the predicate success tests by means of
attributes whether the subautomaton called could parse the substring, i.e. recognise the
subpattem. We could set absolute bounds for such attributes which concern the time domain
of the signals. However, those attributes associated with the amplitude relative values are
necessary, since for the amplitude attributes we cannot fix any unequivocal values the
amplitude scale being so varying.

We define the action of the system with configurations which are tuples of (a, p, w, ц, P). In
the tuple a is the current automaton to be processed, p in Q(a) is the current state in a, w is
the input string not yet considered, ц is the set of attribute values of p, and P is the control
stack of the system. An initial configuration is (ao, Q (a), w, цо>£) where w is the whole
input string (signal) and e is the empty stack. There are the following cases for the changes
of states:

1. (a, p, cw, ц, P) -> (a, q, w, v, P) if (a, p, c, q) is in R and v is equal to F(u), i.e. obtained
from ц according to computation rules of the attributes. This is a deterministic move inside
an automaton a by the input letter c.

2. push action: (a, p, cw, ц, P) —»(b, Qo(b), cw, v, (a, p, cw, ц, q)IIP), where II is the
concatenation operation, if (a, p, c, b, q) is in R and v is obtained by initialising the attributes
of the initial state of b with ц. This is the nondeterministic call of a subautomaton, where
backtracking information is stored to the stack

3. pop action: (a, p, cw, Ц, (b, q, z, v, r)IIP) - » (b, r, cw, к, P) if success^a) is equal to true
and either there are no transitions unconsidered in automaton a or return^a) is equal to true.
We compute к from v, which is updated with ц. This case is the successful return where we
have detected the subpattem denoted by automaton a.

4. pop action: (a, p, cw, Ц, (b, q, z, V, r)IIP) -» (b, q, z, v, P) if success^a) is equal to false and
either there are no transitions unconsidered in automaton a or return(a) is equal to true. This
is the unsuccessful return where we could not parse the subpattem denoted by automaton a.
Note that the attributes v of the calling automata are not altered. This means that we take no
information of unsuccessful return, we only notify it. We could use the information
somehow to evaluate attributes v in order to find out what caused the failure. This would be
one place to insert automatic learning capabilities by allowing metaprocessing where
automaton rules are altered by another automaton rules.

88

While being in a state the system may have several alternatives to call automata. At the call
of a subautomaton information about the parsing situation is stored in the stack. This
includes the name of the current subautomaton, state, input string not yet processed, attribute
values, and the return state which is used after the successful return. After having pushed
them to the stack the system calls the subautomaton. If the parsing fails, the system returns to
the calling automaton and the next subautomaton is tried. So the action of the system is to
perform depth-first search in a set of possible parsing orders. As mentioned above, the order
of the tries is arranged appropriately in our application. In addition to subautomata calls, the
system can make a transition by input letter after trying every possible subautomaton, which
is deterministic, and then no return information is stored.

When the whole input string has been considered, the system has the final configuration (a,
p, e, |i, P) where e is the empty input string. If automaton a is not then ao, the lowest record
has to be fetched from the stack. This stack record is always a configuration of ao- Attribute
values of ao express semantics of the input string.

Our system can be viewed also as a specialised version of a recursive transition network
system where we have semantic attributes and conditional predicates and evaluation
functions augmented to the states (Fig. 3).

Here we can move from the state p to
the state q if we can detect the
structure Sym, and the structure Sym
and the attribute values of the state p
satisfy predicate p. Sym can be a
structural symbol in the case we start
a subautomaton and see if the result
satisfies predicate p. If Sym is a
terminal symbol in the parsing string
then the predicate is T, because the
detection of one specific terminal
symbol is sure. After a successful
move we update the attributes of the

state В with the evaluation function f. If the parsing of the structure Sym fails then we try
another alternative move from the state p. If there is none left then the work of this level
network is finished.

Attribute grammars contain very much so called сору-rules where we just copy attributes
from one state or nonterminal to another and do nothing else. This is especially the case in
attributed automata system where we have encapsulated one task in one automaton. That is
why we have taken the attributes out of the states and put them together with an automaton.
We can namely assume that all the states have the same attributes.

' q Sym, p(Sym,A) С\
B;=f(Sym,A) ^

A В

Fig. 3 A transition model in automata system.

89

\
12*

5. SYSTEM SPECIFICATION LANGUAGE

We have implemented our system with our own application language where we can
determine all the actions of the automata system. All the application specifications are
written in the following syntax.

[START <automaton>
ATTRIBUTES
definition of attributes>

[INITIALIZE [<automaton>]

«initialising of attributes>]+

[OUTPUT

coutput actions»]

[TRANSITION
<state> • [<terminal>]+ ■ ->

[call <automaton> <state>
<evaluation of attributes»]*

[MOVE <state>
<evaluation of attributes>]]+

STOP <automaton>]+
[FUNCTIONS
«definitions of functions>]

This definition is then pre-compiled with a pre-processor. The definition of the attributes,
initialisation and evaluation follow the syntax of the language C. In INITIALIZE-blocks we
define the actions which take place when some other automaton calls this automaton. There
we use the symbol @ when we refer to the attributes of the current automaton and symbol $
when we refer to the attributes of the calling automaton. OUTPUT-block is performed when
this automaton has finished its actions successfully. However, here we have the problem of
destructive operations. Although this automaton succeeds, the upper level automaton that has
called this automaton may fail and then the work done by this automaton is wasted and must
be forgotten and if we have done some changes in global data those changes must be undone.
We are trying to avoid this kind of backtracking allowing only operations to the local data of
the current automaton.

90

ln TRANSITION-blocks we define the actions of the current automaton. In CALL-
statements we define the order of subautomata tries. When a subautomaton returns
successfully then we can evaluate the attributes of the current state, to which we refer with a
symbol @, by the attributes of the called automaton, to which we refer with the symbol $. In
a MOVE-transition we can refer to the attributes of the current automaton with the symbol
@. In FUNCTIONS-block we can define various evaluations functions in the language C.
These functions can be used in transitions, initialisations and retumings of automata.

6. ECG APPLICATION

We have designed an automata system of fourteen automata to perform ECG analysis. We
have named automaton EKG to be the initial automaton which starts the process and collects
various average information out of the signal. Automaton BEAT parses one cardiac cycle at a
time (Fig. 4). It tries to find out how the cycle is constructed by using several other automata
who are specialised to certain substructures. Each state in BEAT corresponds to a certain
phase in cycle parsing where we try to parse appropriate structures. If a substructure was
detected then we copy important semantic substructure values to the attributes of BEAT. If
we could not detect any substructures then we move one input letter ahead (denoted by letter
x in Fig. 4) and try again to parse interesting substructures.

Automata STSEGMENT, TPSEGMENT and PQSEGMENT parse flat parts of the signal.
They use automaton SEGMENT to parse a flat structure. SEGMENT uses recursively itself to
detect the end point of the signal. Automaton TWAVE parses the T-wave and PWAVE parses
the P-wave (Fig. 5 and 6). They both have approximately the same syntactic structure, but
their semantic conditional predicates use different thresholds and formulas in the accepting
of the substructure. Their parsing is successful if the amplitude of the left and right arm are
close to each other and the amplitude is a certain part of the average primitive height and the
width of the wave is a certain part of the amplitude of the wave and the flat top area of the
wave is not wider than half of the total width. In addition, in the detection of the P-wave we
have to define the accepting of the P-wave so that no other P-wave structures lie between the
detected P-wave structure and the next QRS-complex. This means that we accept the last P-
wave structure as a real P-wave. Automaton QRS parses a QRS-complex. It is successful if

91

the maximum height of the QRS-complex is more than с times the average primitive height
where с is some predetermined constant (usually about five), and the start and the end point
are close in amplitude scale. Automaton QRS uses two other subautomata to detect steep
slopes of the QRS-complex. They accept also slight errors in these arms of the QRS-complex
where the edges of the arms can have small distorted noisy primitives.

We can strengthen or weaken these
conditions depending on the parsing result.
Usually constant threshold values are not
useful because ECG is so varying a
phenomenon. This is where we need
capabilities of metaprocessing where we
can adapt to input string in according to the
analysing goals. In ECG processing we
aim to detect conecdy as many subpattems
as possibly. Correctness can be achieved
through the context-dependent conditions

and the checking of our analysing result. This increases our time-complexity because we
have to do more searching in order to find the best analysing result.

The results of our system
were encouraging. The
system detected almost all
of the QRS-complexes and
most of the P- and T-
waves in the set of 42 test
signals. Our signals were
recorded with a heart
monitor and they
contained relatively large
amount of noise. We
examined also our
backtracking efficiency by
calculating a ratio of
primitives in input string
to the total numbers of
move-transitions made by
the sys»em. This ratio was between 0.5 and 0.9 and most often about 0.8. So we can state that
on the average 20% of our application work is wasted because of unsuccessful choices. If all
our test signals would be almost ideal then this efficiency ratio would be near one.

b, с ,.d a,e e, f,g,h

Fig. 6 The structure of the P-wave (Automaton Pwave2).

7. CLASS HIERARCHY OF AUTOMATA

We have detected a form of class hierarchy among our application for ECG signals. For
instance P- and T-wave automata are two subclasses from the more general wave-shape
automaton class. Similarly automaton QRS could be divided into more specific classes of
QRS-morphology. We can say that in the most general form an automaton can accept
anything, i.e.x* and calculates something about this universal signal string like average dx-
and dy-values and the number of primitives. Then we can specialise this model by adding
more transitions and evaluation rules and specialising our predicate from true to something
else more restricting predicate. To be more specific we can define the class hierarchy of
automata as follows.

An automaton class ACl is a set of automata that accept the language L. Class ACj^ is a
subclass of ACl KcL. This definition is based on the set of strings accepted by
automaton, but if we have an automaton A as an instance of class ACl and В as an instance
of class ACk then we can study the structural differences between A and В and the
subclasses generated by certain structural operations. Basically, there are infinitely many
ways to make structural changes to automata but we were interested only in two following.

1) Restricting our predicate p in certain transition in automata system, i.e. replacing predicate
P I (A,Sym) with p2(A,Sym) where pj(A,Sym) is a logical consequence of p2(A,Sym). This
kind of operations could be used in thresholding problem.

2) Changing the structure Symj to the Sym2 where Sym2 £ Symj. These operations are
useful in the QRS-complex classification and clustering.

These are found by examining the application structures of several signal analysis tasks.
They both restrict the set of recognised strings. They are used in automata definition to make
it more compact and easier to use. We can define a suitable class hierarchy where we collect
the common structure to the upper level automata and just specialise this definition to be
suitable for some particular substructure.

Those operations could be used also in automatic information acquisition. Especially
important is the thresholding problem. We can easily describe the absolute structure of a
subpattem but relative restrictions to the subpattem depends on the context. For example in
ECG processing we need to reject small waves in order to avoid noise waves to be
recognised as P-waves. But the next recording can be almost error free and P-waves are very
small maybe because the electrodes are settled so that the electrical fields diminish P-waves.
There we need to lower our threshold values and change our automaton to another automaton
class. We could adapt to the current signal type by calculating the distance of the current
signal from some template signal types. However, here we have the problem of finding only
the first solution in depth-first search. We namely have to find also other solutions, i.e.
subpattems and examine also them. We choose the most suitable one from the set of found
subpattems. This technique seems to lead to membership degree calculations and fuzzy
decision making. This area is currently under research.

93

8. SUMMARY

On the basis of our tests and experience, attributed automata appear to be very suitable for
the syntactic pattem recognition problems. Using attributes we can semantically control the
syntax analysis of input strings. A pure formal grammar or automaton cannot express all
kinds of dependencies effectively, because those may be context sensitive. With attributes
we have added semantic features to the recognition, and thus increased the general
recognition efficacy of the system.

REFERENCES

1. A. Cohen, Biomedical signal processing vol. II. CRC Press, Boca Raton, Florida (1986).

2. E. Skordalakis, Syntactic ECG processing: a review, Pattern Recognition 19,305-313
(1986).

3. P. Trahanias and E. Skordalakis, Syntactic pattem recognition of the ECG, EEEE Trans.
Pattem Anal. Machine Intell. 12,648-657 (1990).

4. M. Juhola, A syntactic method for analysis of saccadic eye movements, Pattem
Recognition 19,353-359(1986).

5. M. Juhola, A syntactic analysis method for sinusoidal tracking eye movements, Comput.
Biomed. Res. 24,222-233 (1991).

6. M. Juhola and M. Meriste, An attributed automaton for recognising of nystagmus eye
movements, IAPR Workshop on Structural and Syntactic Pattem Recognition, Bern,
Switzerland (1992). Also in Advances in Structural and Syntactic Pattem Recognition (ed.
H.Bunke), World Scientific, Singapore 1992, pp. 194-203.

7. M. Meriste and J. Penjam, Attributed finite automata. International Workshop on
Compiler Construction CC '92, Report 103, Univ. of Paderborn, 40-51,1992.

94

An Implementation of ASN.l
(Abstract Syntax Notation One)

Jukka Paakki, Karl Granö
Department of Computer Science. University of Jyväskylä

P.O.Box 35. SF - 40351 Jyväskylä. Finland.
email: (paakkl.grano}®cs.helslnki.fl

Ari Ahtlalnen, Sam i Kesti
Nokia Research Center

P.O.Box 156. SF- 02101 Espoo. Finland
email: {aanen. kesti}®rc.nokla.fi

Abstract
ASN.l (Abstract Syntax Notation One) Is a protocol engineering language used In
specifying on an abstract level the messages transmitted in computer network
communication. The language Is associated with encoding rules that specify in
which binary form the actual concrete data values are represented in a physical
medium during transmission. Both the language and Its encoding rules have been
standardized by ISO, and currently a revised standard is under development by a
joint committee of ISO and ССПТ. An implementation is presented that translates a
specification given in ASN. 1 Into a set of data structures and encoding/decoding
functions in C. Using these data structures and functions, network applications
can realize the exchange of their communication data. The central features of ASN. 1
are presented, and the problems in automatically processing the language are
discussed. The presentation covers both the ASN.l language defined In the
presently valid standard as well as the forthcoming extensions.

1. Introduction

In the last decades, one of the most important areas in computer science has been
the research on computer networks. A computer network Is a collection of
interconnected computers that communicate via some form of transmission lines.
In order to understand and synchronize the messages sent within a network, the
computers must follow a common set of rules, a communication protocol. The key
aspect in building a computer network is to specify and implement the protocol of
communication between the involved computers.

Modem advanced networks are rather complex and large systems. OST (Open
Systems Interconnection) is the most well-known reference model designed for
reducing this Inherent complexity by introducing a layered structure on the
network architecture. The OSI model has seven layers: (1) the physical layer, (2) the
data link layer, (3) the network layer. (4) the transport layer. (5) the session layer,
(6) the presentation layer, and (7) the application layer. Each of these layers has a
standardized abstract functionality, and the only form of communication is across a
narrow interface between neighboring layers. It is only the application layer that
provides services to the actual application, most notably a primitive for sending
data from the application to another application running in another machine. This
data (with some protocol control information) is transferred from layer (7) to layer
(6) after executing layer-specific operations, from layer (6) to layer (5). etc.. until the
lowest layer (1) in the hierarchy is reached. The physical layer finally transmits the
data to the target machine through a physical medium. The process is reversed in

95

13

the target machine where the data reaches the receiving application through layers
(1). (2)...... (7). For extensive introductions to OSI. see e.g. [22| or [24].

The research on computer networks has generated a rich set of methods and
tools to set up a network. On the communication software side the term often used
for the developed methodology is protocol engineering. The term characterizes the
view that in the current state-of-the-art even complex protocols can be really
engineered from specification right down to implementation. The foundation to the
discipline is laid by a number of formal protocol specification languages and their
implementation tools. The leading standardized OSI oriented specification
languages are SDL (21, Estelle |4). and LOTOS 131. The protocol engineering
discipline is discussed in full e.g. In (111 and in [17].

Layer (6) In the OSI model, the presentation layer, is responsible for the syntax
of the data transmitted In the network. The main task of the layer Is to encode
messages such that the physical (binary) representation sent can be correctly
interpreted by all parties of the communication. The key to the problem of
representing, encoding, transmitting, and decoding a message is to have a way to
describe the data structures composing the message. The method must be both
flexible enough to be useful in a wide variety of applications and standard enough
to be commonly understood. As part of the OSI development, one such language for
describing structured data has been developed. This language. ASN.l (Abstract
Syntax Notation One), has been adopted as the specification tool of data in virtually
all application and presentation layer standards of OSI.

ASN.l is a language specifying structured data types and their values on an
abstract level. With ASN.l, the protocol designer can describe the relevant data
without having to consider its physical representation. The bit stream actually
transmitted is defined for the protocol lmplementer by the set of basic encoding
rules (BER). ISO (the International Organization for Standardization) has
standardized the ASN.l language [12]. as well as the basic encoding rules (131. An
informative tutorial on ASN. 1 is given in (18] and in [23].

The fact that makes ASN. 1 a most valuable language In protocol engineering is
that It can be automatically implemented. A number of ASN. 1 based software tools
exišt that can assist in implementing and testing the data transmission part of
communication protocols. One such tool is CASN (Compiler for ASN. 1) [20| which
can translate a specification written in ASN.l into data structures and
encoding/decoding functions in C. Using the data structures and their associated
encoding functions the application can transmit abstract ASN.l values in a
concrete from to the receiver application which can catch them using the
corresponding data structures and decoding functions, also generated by CASN.

Besides CASN, a number of ASN.l implementations have been developed.
Including e.g. 15]. [7]. (19]. and [21]. All these translate ASN.l specifications into
data structures and encoding/decoding routines written in some programming
language. Because of the complex nature of ASN.l, all the translators work in a
multi-pass manner, i.e.. they process an input several times when producing the
target code. All the systems implement only a subset of ASN.l. Most notably the
controversial macro facility Is either totally left out or it is provided only in a limited
form as a number of built-in macros. All these ASN. 1 implementations have been
designed within a more general frame of protocol engineering, and therefore each of
them provides some form of an interface to other protocol production tools.

With respect to the related systems. CASN is quite advanced from a number of
viewpoints. CASN has been developed in close co-operation with both users and
developers of other protocol engineering tools, and it is therefore flexible in its
interactions with external systems. CASN has been applied in many industrial
computer communication projects that have Introduced into it a number of special
facilities tuning it for specific tasks and target environments. The most notable
design principle has been keeping CASN up-to-date with respect to revisions of the
ASN.l language. Virtually since the release of the first ASN.l standard [12, 13], a
group formed collaboratively by ISO and ССГГГ (Comite Consultatif de Telephonique

96

et TCiegraphlque) has been working on a revised version of the language. The CASN
development team has played an active role In this standardization committee by
constantly verifying the practicality of the proposed new ASN. 1 features by at least
sketching their Implementation with CASN. This effort has not only contributed to
having the extensions realistic from an implementation point of view, but also to
keeping CASN consistent with the forthcoming standard.

In this paper we present ASN. 1 and CASN. not from the protocol engineering
perspective, but rather from a language and Implementation perspective. That Is. we
consider ASN. 1 as an application oriented special-purpose language and discuss
implementation problems caused by some of Its peculiar features. We proceed as
follows: In Section 2 ASN. 1 is briefly Introduced. In Section 3 we describe the basic
functionalities of CASN. The problematic features of ASN.l with respect to
implementation are discussed In Section 4. We conclude in Section 5 by discussing
the current and future development of both ASN. 1 and CASN

2. ASN. 1 - An Overview

Consider the typical computer communication scheme sketched In Figure 1. An
application (or a user) on machine A wants to send data to another application
(user) on machine B. In order to do this, (1) the data must be stored In the local
representation form of machine A. (2) the local А-representation must be encoded
into an external form used during transmission, and finally (3) the receiver on
machine В must decode the incoming data and transform it into the local
representation of machine B.

local fetor external local
representation representation W 1representation

A encoding decoding В

F ig u re 1. M essage communication.

The communication process may get laborous since the data may be complex, since
its representation on machine A can be quite different from that on machine B. and
since the software realizing the communication must ensure that the data Is not
lost and that the meaning of the data is not changed during transmission.
Furthermore, the concrete implementation of the communication process is
different for each different pair <A.B>, even though the protocol pattern may be
quite similar In many cases. Thus, when changing one of the machines A and B. the
communication scheme would have to be completely relmplemented.

To overcome these problems, the International consultative committee ССГГТ
defined the ASN.l (Abstract Syntax Notation One) data description language in
connection with the X.409 mall standardization activity |6). Using ASN.l, the data
conveyed from machine A to machine В can be defined on an abstract level, without
having to consider the particular machine specific representations. The language
was accompanied by a set of rules that specified how the abstract ASN.l values
shall be represented in concrete binary form during physical transmission. Thus,
the encoding rules relieve the protocol designers of defining the external form of
messages. The language soon gained popularity within the protocol community to
the extent that both ASN. 1 and Its encoding rules have been standardized by ISO In
1987 Ц2, 13). Example protocols standardized using ASN.l Include the electronic
mail handling system X.400, the X.500 directory, and the OSI presentation
protocol.

13*

97

ASN.l provides facilities to define primitive and structured data types and
values. In the same principal style as ordinary programming languages. The main
differences to type mechanisms of programming languages are due to the
application area of ASN.l: a field within a structured value may for instance be
missing, or it can have a default value. The most striking difference to programming
languages Is that ASN. 1 Includes no control statements: the sole purpose of the
language is to provide notations for specifying the structure of network
communication messages. The only actual functionality associated with the
messages, encoding / decoding. Is Implicitly defined by the basic encoding rules of
ASN.l.

ASN. 1 includes a set of bullt-ln simple types, and a number of structured types
composed of other types. The simple types are the following:

INTEGER NumericStrlng
REAL PrintableString
B OOLEAN TeletexString (synonym: T61String)
E N U M E R A T E D VideotexString
NULL VislbleString (synonym: IS0646String)
BIT STRING IA5String
OCTET STRING GraphlcStrlng
OBJECT IDENTIFIER GeneralStrlng

The types INTEGER (for Integer numbers). REAL (for real numbers), B O O LEAN (for
truth values), and E N U M E R A T E D (for named enumeration values) are conventional.
The NULL type (with one single value, also called NULL) represents missing
information. BIT STRING stands for binary sequences. OCTET STRING for octet (8-
blt byte) sequences, and OBJECT IDENTIFIER for "information objects" each of
which has a unique value of the type. The "information objects" are frequently
referenced entitles (such as protocol standards, companies, or even persons) that in
this way can be globally Identified. The types NumericStrlng....... GeneralStrlng
represent different kind of character strings: VislbleString for instance accepts only
visible ASCII characters in its values, while IA5String accepts all the ASCII
characters.

The structured types of ASN.l are defined in terms of other types, their
component types. The structured types are the following:

SET
SET OF
SEQUENCE
SEQUENCE OF
CHOICE
ANY

SET represents unordered sequences ("sets") of values, each having a type of its
own. SET OF also represents unordered sequences, but now the values are of the
same type. SEQUENCE and SEQUENCE OF are similar to SET and SET OF
respectively, but the values in the sequence must be in a specific order. CHOICE is
a collection of alternative types any of which can serve as the type of a CHOICE
value (as the union type in e.g. C). A NY is a "universal" ASN.l type, representing
any value of any type. A component of a SET or SEQUENCE type can be denoted as
optional, or it can be associated with a default value. Being optional, the component
can be totally omitted in the corresponding structured value. A component with a
default value can also be omitted in the value notation, but then the default value Is
implicitly Included in the conveyed message.

In addition. ASN. 1 includes some "useful types" that could be defined in terms
of ordinary ASN.l, but that are given predefined names because they are frequently
used. The useful types are "GeneralizedTime" and "LTTCTime" representing time and

98

date. "EXTERNAL" representing references to other ASN.l specifications, and
"ObjectDescrlptor" giving a textual representation for OBJECT IDENTIFIER values.

ASN.l is a modular language, a module being a collection of type and value
definitions. Each value has a type-specific notation. A simple example of an ASN. 1
module Is given below:

Library DEFINITIONS ::=
BEGIN

MyLlbrary
Booklnformatlon

author
title
code
}

PersonalName
surName
glvenName
}

ISBN-code
emle PersonalName

END

Module Library defines four types (MyLibrary. Booklnformatlon PersonalName.
ISBN-code), and one value (emie) of type PersonalName. When transmitting a
MyLlbrary value, a sequence of book descriptions of type Booklnformation is sent (In
any order). Each book description is composed of the book's author indication (field
author1, the book's title (field title), and the book's ISBN code (field code) which can
be lell out {OPTIONAL). The fields can be defined and transmitted in any order. The
author is indicated by the family name (field surName) and an optional first name
(field givenName). If the sender does not explicitly supply an author indication, the
protocol assumes the author to be emie with first name "Ernest" and with family
name "Hemingway". A type T can be subtyped: that is. a new type can be derived
from T by restricting its value set. In this example, a value of type ISBN-code may
contain at most 10 numeric characters.

Tagging is a special property of ASN.l types. Each type (whether built-in or
user-defined) has an associated tag (an integer value) which is Included in the
external binary representation of the transmitted values. The purpose of the tag is
to notify the receiver about the type of the value, especially in those cases where the
type is not unambiguously specified by the value itself. In the example above, the
title field of a book description is defined to have tag 1 and field code to have tag 2;
otherwise the receiver would not know whether the incoming string "123" is a
book's title or an ISBN code.

The basic encoding rules (BER) of ASN.l define how the values specified in
ASN.l must be coded during transmission. The encoding of a value consists of (1)
the type tag. (2) the value's length indication, and (3) the actual value. If the value is
structured, each of Its components is recursively such a triplet. Each element of the
encoding is an integral number of octets. For instance, given the definition

v INTEGER ::= 51

the BER-encodlng of value v is Q20I3316 where Q2 Is the INTEGER tag. 01 is the
length of the value (in octets), and 33 is the value in hexadecimal.

The most controversial feature in ASN.l are the macros. Using macros, a
protocol designer can extend the base ASN. 1 language by introducing new type and
value notations that suit better for the particular application domain than the
standard ASN. 1 notations. Macros can also be used e.g. for grouping a set of related

SET OF Booklnformatlon
::= SET {
PersonalName DEFAULT emle.
(1] PrintableString.
[2] ISBN-code OPTIONAL

::= SEQUENCE (
PrintableString,
PrintableString OPTIONAL

::= NumericString (SIZE(1.. 10))
::= { surName "Hemingway ". glvenName "Ernest")

abstract types and values, and for semi-formally specifying dependencies between
components of structured values.

The widespread use of ASN. 1 In protocol engineering has revealed a number of
notable shortcomings in the current standard [12, 13]:

(1) The standard is erroneus or ambiguous in many respects. For instance, the
scope and type compatibility rules of ASN. 1 are not clearly stated. This has resulted
in differences both in use and In Implementations of the language.

(2) The language Is hard to analyze automatically.
(3) The macro facility is hard to understand and implement. An analysis of

existing standards employing the macro facility has shown that they have used the
facility in a rather diversified manner, and even erroneously.

(4) The standard Introduces too many (eight) character string types, some of
them being too limited and some too general. Moreover, the compatibility between
different string types is unclear.

(5) The basic encoding rules are too primitive In some cases, and they produce
too long encodings with a large number of redundant bits.

Because of these problems, a joint activity by ISO and ССПТ is currently under
way on revising ASN. 1 and its encoding rules. The standardization group tackles all
the troublespots mentioned above (1) by rewriting the standard, (2) by improving
the parsability of ASN.l. (3) by replacing macros with more restricted information
object classes, (4) by introducing a universal character string type that is a
supertype of the current character string types, and (5) by defining alternative
encoding rules e.g. for supporting packed encodings. The new standard, currently
in a DIS (Draft International Standard) phase, is expected to be released In 1993.

3. CASN - A Compiler for ASN.l

CASN (20] is an implementation of ASN. 1. As an ordinary compiler, CASN translates
its source language (ASN.l) into a target language (C). The application area of CASN
is taken into account by providing for the user a standard run time package (1) for
embedding the generated encoding/decoding utilities into a complete protocol
implementation, and (2) for integrating the protocol with the application. The overall
scheme is illustrated in Figure 2.

Fig u re 2. T h e C A S N compiler.

1 0 0

Figure 2 sketches protocol implementation using the stand-alone version of CASN.
The compiler has also been integrated with a general protocol engineering
environment |1] that most notably includes, in addition to CASN, a system for
defining a protocol as an extended finite state machine, and a protocol test system.
CASN has been applied for example in Implementing the X.400 electronic mall
protocol, the X.500 directory, the CMISE network management protocol, and the
FTAM file processing protocol.

Bach type T defined in an ASN.l program is compiled by CASN into the
corresponding С type, called the home type of T. Encoding and decoding of ASN. 1
values is achieved by generating for each home type an entry function in C. Each
entry function is complemented by an Interface function for integrating the
encoding/decoding routines with the application and with the protocol driver. In
the following list we give the home type for each built-in ASN. 1 type:

ASN. 1 type Home type

INTEGER short (range -32767..+32767)
long (otherwise; default)

REAL double
BOOLEAN char (0: FALSE, otherwise: TRUE)
E N U M E R A T E D short (range -32767..+32767)

Song (otherwise)
NULL char (value never assigned)
BIT STRING struct (long length; b its;) (*)
OCTET STRING struct (long length; octets: } (*)
String types struct { long length; characters;} (*)
OBJECT IDENTIFIER struct {lnt length; int elem (MAXJD):)
SET struct
SEQUENCE struct
SET OF struct I long length; elem ents;) (+)
SEQUENCE OF struct {long length; elements: I (+)
CHOICE struct (union)
ANY pointer to value of some home type

depending on the used compiler options and on the defined size constraints, the
ASN.l string types (marked (*) aDove) can give rise to different concrete data
structures, in short: if the values of a string type are of moderate length, a static
array is used: if the values are of moderate length which, however, may significantly
vary, a dynamic list Is used; if the strings may get very long, a segmented dynamic
list Is employed. The same principle holds for the list types as well (marked (+)
above).

The latest release (1.42) of CASN implements most of the 1987 ASN.l standard.
The most significant features not supported are the general macro facility (however,
a number of frequently applied macros are provided as built-in), and some
subtyping mechanisms. These shortages are going to be removed in the next release
of the compiler currently under development. That version is based on the
forthcoming 1993 standard where macros are replaced with a more advanced
mechanism (see Section 4); the replacement makes macros useless to the future
and therefore they will be excluded even from the subsequent releases of CASN.

The compiler is organized Into three passes: (1) lexical analysis, parsing, and
construction of an intermediate tree, (2) semantic analysis, and (3) code generation.
This multi-pass solution is mostly due to the obscure nature of ASN.l as a
language (see Section 4). Another reason is that the first pass has been produced
with the parser generator MIRA (91 which does not provide any advanced support
for multi-pass compilation. The new macro-replacing mechanism introduces yet
another pass into the next release (see Section 4). making CASN eventually a four-

101

pass compiler. CASN Is written (partly generated) ln C. and the compiler runs both
under UNIX and under MS-DOS.

4. Implementing ASN. 1

ASN.l Is not the easiest language to Implement. The deepest reason to this
originates from the design process of the language. An ancestor of ASN. 1, known as
X.409, was developed by a committee In connection with standardizing electronic
mall systems. Implementation matters have had a low priority in the design of both
X.409 and Its successor ASN.l and that is why these languages can hardly be
considered as masterpieces in the ranking of programming and specification
languages.

During the development of the CASN compiler, several troublespots have been
encountered. One of the sources is the current standard (121 which is in many
respects Insufficient for an ASN. 1 implementer. The main reasons, however, lie In
the language Itself which contains a number of bizarre features that cannot be
Implemented with conventional techniques. Our decision to base the first pass of
the compiler on the LUD parser generator MIRA has also turned out to be short­
sighted with respect to later developments.

In the following subsections we present more closely the major troublespots In
Implementing ASN. 1 and the way we have solved them in CASN. The discussion
concentrates on the new standard of ASN. 1 (which includes the same basic features
as the original ASN.l) and on its Implementation (CASN version 2.0), except where
otherwise stated. When applicable, we also discuss alternative, conceptually cleaner
Implementation possibilities. Some of the problems have been reported also in (151.

Defects in the standard

The current standard of ASN.l (12) Is Imperfect with respect to the quality
requirements on programming language definitions. The most serious defect Is the
omission of exact visibility and type rules of ASN.l. For example, the standard does
not touch the following (perfectly legal) situation where idA is overloaded:

TypeA ::= INTEGER (ldA(0)} - IdA Is a named number with value 0
idA TypeA ::= 1 — idA is a defined value with value 1
idBTypeA ::= idA — 0 or 1?

In CASN. such ambiguity of visibility is resolved In favor of named numbers, and
thus in the example IdB stands for the value 0. This solution is going to be adopted
in the forthcoming ASN.l standard where also other precise visibility rules are
going to be given.

Compatibility rules are given In the standard imprecisely. In essence, it remains
open whether structural equivalence or name equivalence is applied In the type
system of ASN.l. The effect of tagging and subtyping on type compatibility Is also
not explicitly defined. Thus, the standard does not tell whether or not TypeA and
TypeB are compatible In the following example, and whether or not the value
definition for valB is legal:

TypeA ::= |0| INTEGER (0.. 100) - an Integer subrange with tag 0
TypeB ::= (1) INTEGER (0..50) -- an Integer subrange with tag 1

valATypeA ::= 0
valB TypeB ::= valA

Our solution in CASN is to apply a modified form of name equivalence where
tagging, subtyping, and referencing (i.e.. renaming) have no effect on type

1 0 2

compatibility. Therefore, the value definition above is legal. This solution has been
included in the draft proposal of the forthcoming ASN. 1 standard as the framework
on compatibility issues 1141.

Free definition order

In ASN.l the definitions can be given In any order. As in the case of ordinary
programming languages, this Is nice for a protocol designer but It makes things
harder both for an tmplementer and for a reader of a lengthy specification. The
problem is exceptionally severe in ASN.l where new syntactic notations (defined by
macros and their prospective replacement) can be used before introducing them.
The CASN compiler is In part produced with the parser generator MIRA with a
conceptually underlying one-pass (L-attrlbuted) grammar model, and therefore no
support for multi-pass compilation is provided by the system. The problem has
been solved with an explicit pass-wise organization of the compiler. A multi-pass
compiler generator would provide some assistance in processing ASN.l. but even
such a semantically powerful system would fall short in coping with the extensible
syntax. Some concrete problems discussed In the sequel are connected to the free
definition order principle of ASN. 1.

Syntactic ambiguity

The context-free grammar of ASN.l is ambiguous for several constructs. For
instance, the following piece of code can be parMd in two ways:

a В ::= с d E ::= F g H ::» ...

If В stands for a CHOICE type and с d for a CHOICE value, we get the following
interpretation (each definition on a line of Its own):

a В
E
g H

= с d
= F

On the other hand, if с Is a value reference. E an ANY type, and F g an ANY value,
we get the following interpretation:

a В
d E
H

с
F g

This particular case, as well as other similar ambiguities, is caused by the lack of
delimiters in ASN.l. For Instance, no delimiter (such as a semicolon) is used
between definitions. The solution in CASN has been to Introduce explicit delimiters
Into ASN.l. where necessary. Thus, the first alternative above has to be expressed
In the form

a В ::= I с d 1 E ::= F g H ...

and the second alternative in the form

a В с d E 1 F g 1 H ...

Note that the symbol table cannot be consulted to aid parsing because of the free
definition order In ASN. 1.

14

103

The syntactic ambiguities are going to be resolved in the forthcoming ASN.l
standard by the same principle as in CASN: by Introducing explicit delimiters Into
the problematic constructs.

Identifier representation

It is customary to apply the "longest match" principle in scanning of programming
languages; that is. the scanner tries to maximize the length of the current token by
reading characters from the input as long as they form a valid prefix of some token.
This principle cannot be universally applied on ASN.l where (1) Identifiers may
contain hyphens (only one In succession and not as the last character), and (2)
comments begin with two hyphens. Thus, in the following a-b-c is an Identifier and
-d Is a comment:

a-b-c—d

The scanner of CASN (generated by MIRA) makes use of a buffer of 2 characters
which is employed when recognizing identifiers; in the example above, the buffer
(containing ”) is consulted after processing a-b-c to check whether or not the
identifier continues. A methodological solution would be use a "trailing context"
facility (in the style of e.g. Lex (161) when defining the lexical structure of ASN.l but
unfortunately this feature is not available in MIRA

Extensible syntax
II

Macros can extend the core syntax of ASN.l by defining new syntactic notations for
type and value definitions. This is one of the reasons why CASN currently does not
implement the general macro facility. In the forthcoming standard macros are going
to be removed from the language but the extensible syntax principle will remain.

In the new version of ASN.l. application elements can be described with
information object classes. A class definition may give, besides the structure of the
associated objects, also a class-specific syntax for defining them. For Instance, the
following class definition can be given:

С ::= CLASS (
&T1 OPTIONAL.
&T2 OPTIONAL.
&T3)
WITH SYNTAX I
I T1 IS &T1 1
I &T2 I
T3 IS &T3 I

Here &T1. &T2. and &T3 are type fields ("open types') that represent arbitrary
Information to be filled during transmission. The WITH SYNTAX clause gives the
syntax for defining objects of class C. for example:

с С ::= I T l IS INTEGER T3 IS SET OK INTEGER)

In an object definition, the type fields of the class can be associated with an
arbitrary ASN.l type (e.g., INTEGER for &TI, and SET OF INTEGER for &T3
above). Each case within a WITH SYNTAX clause conceptually corresponds to a
context-free production that extends the core ASN.l syntax, | ... 1 denoting
optlonality. Thus, the example above gives rise to the following additional
productions to the ASN. 1 grammar:

104

Object definition -> T Р1 Р2 ТЗ’ 'IS' Type ')'
PI -> Т1’ 'IS' Type I Empty
Р2 -> Type I Empty

Type represents an arbitrary ASN. 1 type notation and Empty represents the empty
string. The additional productions are distinguished during parsing from their first
terminal symbol (TI or T3 above). The syntactic extensions must follow the LL(1)
convention, and this is checked by CASN.

Recently methods have been suggested to parse extensible languages (e.g., 18J,
(101). In these approaches the parser is dynamically adjusted during parsing to
accept new syntactic notations when recognizing their grammatical definitions.
These methods, while being conceptually elegant, cannot be applied on ASN.l
where new notations can be used before they have been defined. Therefore our
solution has been to to divide the parsing process into two phases. In the first
phase the parser processes Its input only partially, collecting the syntactic
definitions into a tree and simply skipping the object definitions (and other
syntactically similar constructs) and storing them in an Intermediate form. In the
second phase the object definitions are finally parsed, taking into account the
additional productions collected during the first phase.

Currently. CASN provides scanning, parsing, and semantic analysis of the new
features, and the code generation phase is under implementation. Since an object
set Is conceptually analogous to an associated table, CASN will generate С arrays
for object sets (one row for each object).

Infinite lookahead

Recognizing some constructs may require an infinite lookahead in top-down
parsing. Consider, for instance, the following notation in extended ASN. 1:

obj (p i . p2......pn).&fl.&f2.........&fm.&f

Here obj is a parameterized object, p ipn are actual parameters, and the & fl.......
&Jm fields are object references. This construct may denote e.g. a type or a value,
depending on the last field &f. Our solution Is to parse such a construct in a very
general manner, to build an intermediate descriptor for it during parsing, and to
make an additional traversal over the descriptor after parsing the whole construct.
In a case like this, a bottom-up parsing technique would be more powerful than the
top-down method because then the recognition of the syntactic structure could be
deferred until having scanned the last symbol. (Note, however, that even a
conventional bottom-up parser would have problems since the syntax of ASN. 1 is
not of type LR(1).)

While CASN is based on Ш 1) parsing, it occasionally makes use of a lookahead
longer than 1 symbol for recognizing some ASN.l constructs. For Instance. "(Г can
be the beginning of a number of value notations. In such cases the scanner of CASN
provides the parser with an extended lookahead that contains the distinguishing
token. In maximum. 2 tokens are needed in the first parsing phase and 7 tokens in
the second phase: thus CASN locally employs Щ 2) and 1Ц7) parsing.

Parameterization

There are many situations in protocol engineering where it is useful to design
simultaneously a set of related types or values that are similar in structure but that
differ in details. The new version of ASN. 1 supports this by allowing parameterized
definitions. Each entity of ASN. 1 (type, value, value set. class, object, object set) can

105

14*

be genetically defined by associating with It a list of formal parameters. Such a
generic entity can then be instantiated by fixing the structure with actual
parameters. This facilitates reusability of ASN. 1 definitions.

The orthogonality of parameterization and the free definition order make it hard
to parse entitles with actual parameters. That Is why detailed syntactic analysis
(and semantic analysis) of such constructs Is moved In CASN from the parsing
phase into subsequent phases. The analysis of some constructs may require several
partial passes even when making use of the symbol table, because actual
parameters may Involve semantic right-to-left dependencies:

T { v: U...... U } ::= SET (f U DEFAULT у)
— и arid U formal parameters:
— 17 a type or a class,
— u a value or an object

S T { {1.2)...... SET OF INTEGER)

Now. there Is a semantic linkage between the formal parameters U and v of T. When
analyzing the definition of S. the actual parameter list has to be traversed from right
to left (or several times from left to right which Is actually the method applied since
parsing Is also Involved).

Context-sensitive name environments

Some keywords of ASN.l (e.g. EXTERNAL) are not reserved, and some have a
special meaning only in a context. For instance, iso stands for value 1 In the first
position of an object identifier value, while It Is undefined elsewhere. Such
anomalies complicate the analysis of ASN. 1. and that is why all the keywords are
universally reserved In the CASN release 1.42. Version 2.0 allows the redefinition of
keywords (excluding the reserved words) by considering them as ordinary
predefined entitles that are always implicitly imported from a standard module.

Module interfaces

An ASN. 1 module can provide entities to other modules and use entities defined in
other modules with exporting and Importing clauses. The default actions, however,
are rather surprising: (1) if no export clause is given, all the symbols defined in the
module are externally available, and (2) If no Import clause is given, an entity e
defined in any module M can be referenced with M.e. These (and other strange
conventions) cause difficulties in the implementation since the module
dependencies may be spread all over an ASN. 1 program. Modules can be circularly
dependent: that is. a module Ml can Import an entity from module М2 that (directly
or indirectly) imports an entity from module Ml.

The separate compilation method in the CASN release 1.42 does not accept
mutual dependencies between two modules, but the dependencies must have a
linear order. This practical Inconvenience has been removed in version 2.0 that
during parsing of a module M collects a list of modules that M has applied (either
via an explicit import clause or via external references). After compilation of M, the
modules in the list are compiled, the list is iteratively updated with modules that
are applied in these modules and that have not yet been compiled, etc. The syntax
trees for compiled modules are stored on disk with a timestamp to be directly
loaded without reparsing. The external references are solved using module specific
symbol tables that are produced during the semantic analysis phase on the basis of
the syntax trees. During reference resolving, circular dependencies between two
ASN. 1 entities are checked (note that two modules may be mutually dependent, but
their components cannot be circularly defined).

106

5. Discussion

Computer communication will have a still increasing significance In the future
because of distribution and globalization of working environments. Thus,
application oriented methods and tools will be necessary in building complex
computer networks and especially their software.

We have presented CASN. an application oriented tool designed for
implementing the encoding and decoding routines of communication protocols.
CASN is a compiler for ASN. 1 which has a stable and evolving role within the area.
CASN can be used both as a self-standing tool and as part of a general protocol
engineering environment. Currently the compiler is already In extensive industrial
use. and It has become a standard tool in a number of companies.

In the near future, the current version of ASN. 1 is going to be replaced with a
new standardized one. The main motive for language revision is to remove the
serious shortcomings from it. From an implementer's point of view the revision is
most valuable since many unclear features will be more accurately specified or
replaced with their more "friendly" counterparts. The development of CASN follows
closely the standardization efforts. The analysis phase of the forthcoming features
has already been implemented in CASN, and the synthesis phase is currently under
Implementation. This up-to-date nature has been made possible by the active role
of the CASN development team in the Joint standardization group of ISO and ССГГТ.

References

|1| Ahtialnen A.P., Keskinen J., Slmolin J.. Tarpila K., Turunen J.: Protocol Software
Engineering Tools for Implementation of a General Purpose OSI Stack. In: Proc. of
the IFIP TC6 Conf. on Computer Networking (COMNET9Ö) (L.Csaba. T.Szentivanyi,
K.Tamay, eds.). Budapest. 1990. Elsevier Science Publishers (North-Holland),
1990. 337-351.

[2| Bellna F.. Hogrefe D.: The ССПТ Specification and Description Language SDL.
Computer Networks and ISDN Systems 16, 4. 1989. 311-341.

[31 Bolognesl Т.. Brinksma E.: Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems 14. 1. 1987. 25-59.

[41 Budkowskl S.. Dembinski P.: An Introduction to Estelle: A Specification
Language for Distributed Systems. Computer Networks and ISDN Systems 14, 1,
1987, 3-23.

[51 Caneschi F.. Merelll E.: An Architecture for an ASN.l Encoder/Decoder.
Computer Networks and ISDN Systems 14. 2-5. 1987. 297-303.

[61 ССПТ Red Book: Recommendation for X.409, Message Handling Systems:
Presentation Transfer Syntax and Notation. International Telecommunication
Union. 1984. 62-93.

[71 Cleghom C.. Ural H.: ASNST: an Abstract Syntax Notation-One Support Tool.
Computer Communications 12. 5, 1989. 259-265.

[81 Christiansen H.: The Syntax and Semantics of Extensible Languages. Report No.
14, Department of Computer Science, Roskilde University. 1988.

[91 Expert Software Systems n.v. (E2S): AURA. User's McmuaL 1984.
[101 Heering J.. Klint P., Rekers J.: Incremental Generation of Parsers. IEEE

Transactions on Software Engineering 16. 12. 1990. 1344-1351.
[111 IEEE Software 9. 1. 1992. Theme Issue on Network Protocols.
[12] Information Processing - Open Systems Interconnection - Specification of

Abstract Syntax Notation One (ASN.l). ISO International Standard 8824. 1987.
|131 Information Processing - Open Systems Interconnection - Specification of Basic

Encoding Rules for Abstract Syntax Notation One (ASN.l). ISO International
Standard 8825. 1987.

107

|141 Kestl S.. Paakki J.: Revised ASN.l: Type Compatibility, Assignment
Compatibility. Subtype Compatibility. New Syntactic Notation. COMPET Report
#11, Nokia Research Center. 1991. (Also published by: ССПТ SG VII DAF
Working Group . 1990.)

[151 Kestl S.O.. RõnkS K.T.: Use and Applicability of ASN.l. In: Proc. ofthelFIP TC6
Second Int Workshop on Protocol Test Systems (J. de Meer. L.Mackert
W.Effelsberg, eds.). Berlin. 1990. Elsevier Science Publishers (North-Holland).
1990. 39-50.

1161 Lesk M.E.: Lex - A Lexical Analyzer Generator. Computing Science Technical
Report 39. AT&T Bell Laboratories. Murray Hill. N.J., 1975.

[171 Liu M.T.: Protocol Engineering. In: Advances in Computers, vol. 29 (M.C.Yovits.
ed.). Academic Press. 1989. 79-195.

(181 Neufeld G., Vuong S.: An Overview of ASN.l Computer Networks and ISDN
Systems 23. 5. 1992. 393-415.

[191 Neufeld G.W.. Yang Y.: The Design and Implementation of an ASN.l-C
Compiler. IEEE Transactions on Software Engineering 16, 10, 1990, 1209-1220.

[201 Nokia Research Center. CASN Compiler for ASN.l: User's Reference Manual
1991.

[211 Ohara Y.. Suganuma Т., Senda S.: ASN.l Tools for Semi-Automatic
Implementation of OSI Application Layer Protocols. In: Proc. of the Second Int
Symposium on Interoperable Information Systems (1SIIS88) (H.Tanaka. A.T0J0.
eds.). IOS & OHMSHA. 1988. 63-70.

|22| Rose M.T.: The Open Book: A Practical Perspective on OSI. Prentice-Hall, 1990.
[231 Steedman D.: ASN. 1 Tutorial & Reference. Technology Appraisals Ltd.. 1990.
[241 Tanenbaum A.: Computer Networks. 2nded. Prentice-Hall, 1988.

108

SPECIFYING A TRANSACTION MANAGER USING TEMPORAL LOGIC

Ё . R & C Z

L. Eötvös U n iv ers ity , Budapest

There are a lo t o f papers d ea lin g w ith s p e c i f ic a t io n o f concurrent
system s [1 J, [4] , [6] , [7] , but few o f th e se are ap p lied fo r s p e c i f ic a t io n
o f database management system s. In t h is paper a tra n sa c tio n management
system i s d escrib ed as a network o f p ro cesses which are connected by
named synchronous communication channels.

1. THE STRUCTURE OF THE SYSTEM TO BE SPECIFIED

The tr a n sa c tio n management system c o n s is t s o f the fo llo w in g parts:
- the user tr a n sa c tio n s USER1, USER2......... USERm;
- the item s ITEM1.ITEM2......... ITEMn, i . e . the u n its o f data to which

the a c c e ss i s co n tro lled ;
- the tr a n sa c t io n manager TM i t s e l f .

A tr a n sa c t io n i s a sequence o f elem entary step s .L o ck in g , read ing,
unlocking and w r it in g item s are the elem entary s te p s in te r e s t in g us.

The tr a n sa c t io n manager a f f e c t s i t s o u ts id e world / t h e tr a n sa c t io n s
and the ite m s / on ly by communications. The named communication channels
are u n id ir e c tio n a l and owned by two p ro cesses ,o n e at each end

[ITEM I I'ITEM! I . . . ITT'E'Mnl

lÜSEftll . . . [USERkI . . . fOŠERm]

109

The user USERk sends h is various req u ests along the channel USk, and
w a its fo r the answers o f the tra n sa ctio n manager at the channel URk.The
item ITEMi w a its fo r the req u ests o f the tra n sa c tio n manager a long the
channel IR i, and sends i t s answers along the channel IS i.

The tr a n sa c t io n manager TM i s resp o n s ib le fo r sch ed u lin g the
c o n f l ic t in g req u ests . Messages r e la t in g to reading and read lock in g o f
item s are se n t to /from READER, messages r e la t in g to w r itin g and w rite
lock in g o f item s are se n t to /from WRITER along the appropriate channels.

Chaochen’ s s p e c i f ic a t io n technique [5] has been chosen to d esc r ib e the
behaviour o f the tr a n sa c tio n manager. We assume that on ly the channels
o f the system are ob servab le , a t each moment o f the d is c r e te tim e. We
can e i th e r observe p ass in g o f messages along the ch an n els, or the
c a p a b il i ty o f the p ro cesses to communicate.

Let с denote a channel, m a message and Me the message type o f channel
c . Let us use the fo llo w in g b a sic p red ica tes:

PASS(c,m)- means the occurrence o f an event o f p ass in g message meMc
alon g channel c;

P A S S (c) - = 3 m e M c P A S S (c , m) ;

To record the s t a t e o f the channel с we a s s o c ia te two b a sic v a r ia b le s
to c , one fo r the input end - Ic, and one fo r the output end - Oc.
These v a r ia b le s may take the fo llo w in g values:

meMc - the p rocess i s r e c e iv in g or sending a message a long c;
req - the p rocess i s req u estin g a communication;
r e j - the p rqeess i s r e je c t in g the communication;
c lo - the p rocess c lo se d the channel end.

Using th e se v a r ia b le s we can w rite:
PASS(c.m) = Ic=m л Oc=m

For d esc r ib in g the behaviour o f the system we use a lin e a r time
temporal lo g ic [8 1 , [1 0] , [1 1] . The temporal operators used are as fo llo w s:

□A ----- A i s true now and in the future;
<>A ----- A i s tru e now or sometime in the future;
oA ----- A i s tru e a t the next moment;
A u n t i l В ---- A i s tru e u n ti l В becomes tru e (i f ev er);

110

•x --- denotes the value of x at the next time point.

In order to shorten our specification we can introduce the following

predicates :

ISREQ(c) ■ Ic-req until PASS(c)

OSREQ(c) ■ Oc-req until PASS(c.a)

IWREQ(c) m(o<>Ic*req) until PASS(c)

OWREQ(c) »(ooOc-req) until PASS(c .b)

UWANT(URk) * □ [OSREQCURk,m) •» <>PASS(URk,■)]

IW A N T (I R l) > □ [O S R E Q (I R 1 , ■) •» < > P A S S (I R 1 , m)]

Let P denote the following operator: A P В * n (iA until B).

2.EXTERNAL BEHAVIOUR OF THE TRANSACTION NANAGER

In the course of the specification the free variables of each formula

are assumed to be implicitly universally quantified over the following

(fixed, finite) domains:

USERk ranges over the set of users;

ITEMi ranges over the set of items;

m ranges over the set of messages corresponding the channel;

URk ranges over the set of channels leading from TM to users;

USk ranges over the set of channels leading from users to TM;

IRl ranges over the set of channels leading from TM to items;

IS1 ranges over the set of channels leading from items to TM.

The different message types are as follows:

Musk={ (rlock,ITEMI), (wlock,ITEM1),

.. (read,ITEMi). (write, value, ITEM!),

(runlock,ITEMi). (wunlock,ITEMi))

MuRk={ (rlock granted,ITEMi), (wlock granted,ITEMi),

(rlock denied,ITEMi), (wlock denied, ITEMi),

(not read,ITEMI), (got, value,ITEMi),

(written,ITEMI), (not written, ITEMi),

(runlocked,ITEMi), (wunlocked,ITEMi) >

Miri={ (value, (JSERk), (read.USERk) >

15

Misi={ (value, USERk), (written,USERk) >

We req u ire the m essages to be un iquely id e n t if ie d . T his requirem ent
can be exp ressed in th e fo llo w in g form:

□ [PASS(c.m) * od-iPASS(c , m)] fo r every message m and channel c .

2.1.External safety properties

The tr a n sa c t io n manager must not grant any lock req u est fo r an item
w r ite locked by an o th er user and must not grant a w rite lock req u est
f o r an item read locked by am other user:

A req u est shou ld be sen t before i t could be f u l f i l l e d or denied:
□ [PASS(USk,(rlock,ITEMi)) P PASS(URk, (rlock granted,ITEMi))]

□ [PASS(USk,(rlock,ITEMi)) P PASS(URk,(rlock denied,ITEMi))]

□ [PASS(USk,(wlock,ITEMi)) P PASS(URk,(wlock granted,ITEMi))]

□ [PASS(USk, (wlock,ITEM i)) P PASS(URk,(wlock denied,ITEM i))]
D [PASS(USk, (runlock,ITEMi)) P PASS(URk, (runlocked, ITEMi))]

□ [PASS(USk, (wunlock,ITEMi)) P PASS(URk,(wunlocked, ITEMi))]

D [PASS(USk,(read,ITEMi)) P PASS(URk,(got,value, ITEMi))]

□ [PASS (USk, (read, ITEMi*)) P PASS (URk, (not read, ITEMi))]

□ [PASS(USk,(write, v a lu e ,ITEMi)) P PASS(URk, (written, ITEMi))]

□ [PASS(USk,(write,v a lu e ,ITEMi)) P PASS(URk,(not written, ITEMi))]
D (PASS(USk,(read,ITEMi)) P PASS(ISi.((v a lu e ,USERk))]
□ [PASS(ISi,(written,USERk)) P PASS(URk,(written, ITEMi))]

□ j PASS(URk,(wlock granted,ITEMi)) =»

-I [PASS(URj , (wlock granted,ITEMi)) v
PASS(URJ,(rlock granted,ITEMi))]

until OSREQ(URk,(wunlocked,ITEMi))) J*k

a •! PASS (URk, (rlock granted, ITEMi)) -»

1 PASS(URJ, (wlock granted,ITEMi))

until OSREQ(URk,(runlocked, ITEMi)) } J*k

1 1 2

a [PASS(USk, (w r i t e ,valuel, ITEM!))
P PASS(IRi, ((value2, USERk)) a valuel=value2]

Before send ing an item to the user the manager must have got i t :
□ [P A SS (IS i,(valuel,USERk))

P PASS(URk, (.got,value2, ITEMi)) л valuel=value2)
The user should have a read lock granted before g e t t in g an item:

□ [PASS(URk,(rlock granted,ITEM i)) P PASS(URk,(got,value,ITEMi))]
□ t PASS(URk,(runlocked,ITEMi)) =»

о -iPASS(URk, (g o t, value, ITEMi))
u n t i l PASS(URk,(rlock granted,ITEM i))]

S im ila r ly fo r w rite requests:
□ [PASS(URk,(wlock granted,ITEM i)) P PASS(URk, (written,ITEM i))]
□ [PASS(URk,(wunlocked, ITEMi)) ■»

о -.PASS(URk, (w r itten , ITEMi))
u n t i l PASS(URk,(wlock granted,ITE M i))]

2 . 2 . E xternal l iv e n e s s p ro p erties

To have a u se fu l system we must req u ire tha t the system a ccep ts the
r eq u ests o f i t s environment supposing that the environment i s a ccep tin g
the m essages too . Moreover the item managers must f u l f i l l the req u ests
o f the tr a n sa c t io n manager:

UWANT(URk) =» nolWREQ(USk)
IWANT(IRi) •» DOlWREQ(ISi)
О [PASS(IRi,(read,USERk)) <>PASS(ISi, (value,USERk))]
D [PASS(IRi,(value,USERk)) * <>PASS(ISi,(written,USERk))]

The tr a n sa c tio n manager should answer the user req u ests:
□ { PASS(USk,(rlock.ITEM i)) •*

<> lOSREQ(URk, (r lo ck granted, ITEMi)) V
OSREQ(URk,(rlock denied , ITEMi))] >

□ < PASS(USk,(wlock,ITEMi)) *
<> [OSREQ(URk,(wlock granted,ITEM i)) v

OSREQ(URk,(wlock denied,ITEM i))] >

113

15*

a { P A S S (U S k ,(read,ITEMi)) +

<> [OSREQ(URk, (got,value, ITEMi)) V
OSREQ(URk,(not read,ITEMi))] >

□ { PASS(USk,(write.v a lu e ,ITEMi)) ■»
<> [OSREQ(URk,(written, ITEMi)) v

OSREQ(URk,(not written, ITEMi))] >

□ [PASS(USk,(runlock.ITEMi)) + <>OSREQ(URk, (runlocked,ITEMi))]

□ [PASS(USk,(wunlock,ITEMi)) •* <>OSREQ(URk,(wunlocked, ITEMi))]

□ { PASS URk,(rlock granted, ITEMi)) +

o[PASS(USk,(read,ITEMi)) ■* <>PASS(URk, (got, v a lu e ,ITEMi)))
until OSREQ(URk,(runlocked, ITEMi)) >

О { PASS URk, (wlock granted,ITEMi)) *

o[PASS(USk,(write,ITEMi)) * <>PASS(URk,(written,ITEMi))]

until OSREQ(URk,(wunlocked, ITEM!)) >

3 . IN T E R N A L B E H A V IO U R O F T H E T R A N S A C T IO N MANAGER

The message c la s s e s o f the in tern a l channels are as fo llo w s:

MuNWSk = { (wlock, ITEMi), MuKURk= { (wlock granted, ITEMi),
(write,vaJue, ITEMi)
(wunlock,ITEMi) >

(written,ITEMi),

(wunlocked, ITEMi),

(wlock denied, ITEMi),

(not written, ITEMi) >

MuMHSk = { (rlock,ITEMi),

(read,ITEMi),

(runlock,ITEMi) >

MuMRRk = { (rlock granted, ITEMi)

(got.va lu e , ITEMi),
(runlocked, ITEMi),

(rlock denied, ITEMi)

(not read,ITEMi) >

Mwisi = { (wlock,USERk),

(write, v a lu e ,USERk),
(wunlock,USERk) >

Mhiri * { (wlock granted,USERk),

(written, USERk),

(wunlocked,USERk),

(wlock denied,USERk),

(not written,USERk) >

114

Mrisi - { (rlock,USERk), Mriri * { (rlock granted,USERk),

(read, USERk), (got,value, USERk),

(runlock,USERk) > (runlocked,USERk),

(rlock denied,USERk),

(not read,USERk) >

In order to specify the internal safety properties we define m

auxiliary variables [9] for each ITMANi process. The variable

LockTableik describes the rights of USERk regarding ITEMi.

LockTableik * 0 a

□ (PASS(RIRi, (rlock granted,USERk)) a oLockTablei^ R

v PASS(RIRi,(runlocked,USERk)) a oLockTableik= 0

V PASS(WIRi,(wlock granted,USERk)) л oLockTableik= W

v PASS(WIRi, (wunlocked,USERk)) a oLockT^bleJ = 0

v unchanged)

Let us introduce the following predicates:

RLOCKABLE(ITEMI,USERk) = (Vk)(LockTableik * W)

READABLE(ITEMi,USERk) = (LockTableik = R v LockTableik = W)

WLOCKABLE(ITEMi,USERk) = (Vk)(LockTableik = 0)

WRITEABLE(ITEMi,USERk) - (LockTableik = W)

3.1.Internal safety properties

The USMANk process passes only messages sent by USERk

a (PASS(USk.m) P PASS(UMRSk.m)) mcUMRSEND

□ (PASS(USk.m) P PASS(UMWSk.m)) meUMWSEND

or to USERk :

D (PASS(UMRRk.m) P PASS(URk,m)) meUMRREQ

□ (PASS(UMWRk,m) P PASS(URk.m)) meUMWREQ

The READER and WRITER processes send their messages to the adequate

items/users:

□ (PASS(UMRSk.m) P PASS(RISi,m’) л m=(...,ITEMi) л m’-(..., USERk))

meUMRSEMD, m’eRIMSEND

115

□ (PASS(UMWSk.m) P PASS(WISi, m’) л m=(....ITEMi) a m’=(..., USERk))

meUMWSEMD, m’ eWIMSEND

□ (PASS(RIRi,m) P PASS(UMRRk, m’) a m=(...,USERk) л m’=(..., ITEMi))

meRIMREQ, m’ cUMRREQ

□ (PASS(WIRi,m) P PASS(UMWRk,ю’) л m=(....USERk) л m’=(___ ITEMi))

mcWIMREQ, m’ eUMWREQ

Before reading/writing an item it must be readable/writeable by the

user :

□ [PASS(RISi,(read,USERk)) P PASSCIRi,(read,USERk))]

□ [PASS(RISi,(read,USERk)) ■*

nPASS(IRi,(read,USERk)) until READABLE(ITEMi. USERk)]

□ (PASS(WISi, (v a lu e l ,USERk)) P PASS(IRi,(vaiue2, USERk))

л valuel=value2)
□ (PASS(WISi, (v a lu e l, USERk)) =►

nPASS(IRi,(value, USERk)) until WRITEABLE(ITEMi, USERk))

A request must be accepted by processes READER and WRITER before

answering it correctly:

□ [PASS(RISi,(rlock,USERk)) P PASS(RIRi, (rlock granted,USERk))]

□ [PASS(RISi,(rlock,USERk)) *

-.PASS(RIRi, (rlock granted,USERk)) until RLOCKABLECITEMi,USERk))]

D [PASS(WISi,(wlock,USERk)) P PASS(WIRi, (wlock granted,USERk))]

П [PASS(WISi,(wlock,USERk)) * -.PASS(WIRi,(wlock granted,USERk))

until WLOCKABLE(ITEMi,USERk))]

□ [PASS(RIS1,(rlock.USERk)) P PASS(RIRi, (rlock denied, USERk))]

□ [PASS(RISi, (rlock,USERk)) ■*

-iPASS(RIRi,(rlock denied,USERk)) until iRLOCKABLE(ITEMi, USERk))]

□ [PASS(WISi,(wlock,USERk)) P PASS(WIRi,(wlock denied,USERk))]

□ [PASS(WISi,(wlock,USERk)) *

nPASS(WIRi,(wlock denied.USERk)) until -i WLOCKABLE(ITEMi.USERk))]

□ [PASS(ISi,)valuel,USERk)) P PASS(RIRi,(got,value2, USERk))

a valuel=value2]

□ [PASS(RISi,(read,USERk)) P PASS(RIRi.(not read,USERk))]

116

□ [PASS(RlSi,(read,USERk)) +

-.PASS(RIRi, (not read, USERk)) until -.READABLE(ITEMi , USERk)) J

О [PASS(RISi,(runlock,USERk)) P PASS(RIRi, (runlocked, USERk))]

ü [PASS(WISi,(wunlock,USERk)) P PASS(WIRi, (wunlocked,USERk))]

□ [PASS(ISi,(written,USERk)) P PASS(WIRi,(written,USERk))]

□ [PASS(WISi,(write,value,USERk)) P PASS(WIRi,(not written,USERk))]

□ [PASS(WISi,(write,value,USERk)) *

-.PASS (WIRi, (not written. USERk)) until ->WRITEABLE(ITEMi, USERk)]

3.2.Internal liveness properties

The processes USMANk, READER and WRITER send further the accepted

messages to the addressed processes:

□ t P A S S (U S k .m) * < > P A S S (U M R S k ,m)] meUMRSEND

□ [PASS(USk.m) •» <>PASS(UMWSk,m)1 hkeUMWSEND

□ [PASS(UMRRk.m) =» <>PASS(URk, m)] meUMRREQ

□ [PASS(UMWRk.m) * <>PASS(URk,m)] meUMWREQ

□ [PASS(UMRSk.m) =» <>PASS(RISi,m’)

a m = (. I T E M i) л m’=(....USERk)]

□ [P A S S (U M W S k .m) =» < > P A S S (W I S i , m*)

a m = (. . . , I T E M i) a m’ = (. . . , U S E R k)]

□ [PASS(RIRi.m) =» <>PASS(UMRRk, m')

л m=(--- USERk) a m’=(...,ITEMi)]

□ [PASS(WIRi.m) =* <>PASS(UMWRk, m’)
л m=(----- USERk) a m’= (. . . , ITEMi)]

The processes ITMANi lock the items correctly:

□ [PASS(RISi,(rlock,USERk)) л RLOCKABLE(ITEMi,USERk) *

<>PASS(RIRi, (rlock granted,USERk))]

□ [PASS(WISi,(wlock,USERk)) л WLOCKABLE(ITEMi,USERk) =>
<>PASS(WIRi,(wlock granted,USERk))]

Q [P A S S (R I S i , (r l o c k , U S E R k)) л n R L O C K A B L E (I T E M i , U S E R k) =»

m eUM RSEND, m’ e R IM S E N D

meUMWSEND, m’ e W IM S E N D

m eR IM R E Q , m’ eUM R R EQ

m eW IM R E Q ,m ’ eUMWREQ

117

<>PASS(RIRi, (rlock denied,USERk))]

□ [PASS(WISi, (wlock,USERk)) л nWLOCKABLE(ITEMI.USERk) *

<>PASS(WIRi,(wlock denied,USERk))]

The process ITMANi reads/writes the item if the user sending the

message has rights to read/write it:

□ [PASS(RISi,(read,USERk)) a READABLE(ITEMi,USERk) *

<>PASS(IRi.(read,USERk))]

□ {PASS(ISi, Ivaluel,USERk)) •»

<>[PASS(RIRi, (got,value2,USERk)) a valuel~value2)>

□ [PASS(WISi, (write,valuel,USERk)) a WRITEABLE(ITEMi,USERk) ■>

<>PASS(IRi,lvalue2,USERk)) a valuel*value2)

a IPASSdSi, (written, USERk)) * <>PASS(WIRi, (written.USERk))]

Unlocking can be executed unconditionally:

□ (PASS(RISi,(runlock,USERk)) * <>PASS(RIRi,(runlocked,USERk))]

□ [PASS(UIS1, (wunlock,USERk)) * <>PASS(WIR1. («unlocked,USERk)))

4 . C O N C L U D IN G REM ARKS

The method presented here seems to be a useful tool for specifying

transaction management systems.

In [2] it is given a short external temporal specification of a

transaction management system, including serializability, two-phase

protocols.

In [3] it is proved by means of tableau method [12],(13) that there

exist models satisfying this specification.

У Ш * Ш

II] Räcz, £., Specifying a Transaction Manager as Communicating

System, Proceeding of the Conference on Computer Science and

Software Technology, Visegrad, Hungary (1990)

(2] R A c z , £ Kozma.L.. A Temporal Logic Specification of a

Transact ion Management System, Publications on Pure and

118

о

Applied Mathematics, Ser.A. Vol.l (1990) 369-374.

[3] Räcz, Ё., Temporal Specification of a Transaction Manager,

PhD.Th.1992. (in Hungarian)

[4] Ed.by Banieqbal, B., Barringer, H., Pnueli.A., Temporal Logic

in Specification, LNCS 398 (1987)

[5] Chaochen,Z., Specifying Communicating Systems with Temporal

Logic, LNCS 398 (1987) 304-323.

[6] Clarke. E.M.. Emerson, E. A., Slstla.A.P., Automatic

Verification of Finite-state Concurrent systems Using

Temporal Logic Specifications ACM TOPLAS 8 (1986) 244-263.

[7] Davids. U. G., Lovengreen, H. H., Rigorous Development of a

Distributed Calendar System, LNCS 259 (1987) 188-205.

[8] Emerson, E. A ., Temporal and Modal Logic, in: J.van Leeuven,

ed., Handbook of Theoretical Computer Science, Vol.В

(North-Holland, Amsterdam, 1990) 995-1072.

[9] Koymans.R., Specifying Message Passing Systems Requires

Extending Temporal Logic,LNCS 398 (1987) 213-223.

[10] Kröger, F., Temporal Logic of Programs, Springer-Verlag,

Berlin Heidelberg (1987)

[111 Hänna.Z., Pniell.A., Verification of Concurrent Programs:

The Temporal Framework, In: The Correctness Problem in

Computer Science Academic Press London (1982) 215-273.

[12] Hanna,Z., Uolper,P..Synthesis of Communicating Processes from

Temporal Logic Specifications. ACM TOPLAS 6 (1984) 68-93.

[13) Uolper,P.,The Tableau Method for Temporal Loglc:an Overview,

Logique et Anal. 28 (1985) 119-136.

Eva Racz

1117 Budapest,Bogdanfу 10/b

Hungary

119

e-mai1: eszk0078ursus.bke.hu

Tel:(36-1) 1669-023

Fax:(36-1) 1811-976

1 6

String Matching Animator SALSA

Erkki Sutinen and Jorma Tarhio
Department of Computer Science

P.O. Box 26
SF-00014 University of Helsinki, Finland

A bstrac t

Animation is a way to illustrate the behavior of complex algorithms and
systems. We introduce the SALSA package, an animating and experiment­
ing tool for string algorithms. SALSA was implemented using the XTango
animation environment. SALSA contains animations for seven string algo­
rithms including Boyer-Moore, Rabin-Karp, and Aho-Corasick algorithms.
We also discuss the usefulness of animation for Computer Science education
and research.

1 Introduction
Animation is a useful approach for Computer Science education and research. For
example, the idea of an algorithm is easier to grasp by following an animation:
the user may observe how the algorithm behaves with various inputs. Because
animation can lead to more efficient algorithms, it is therefore to be considered a
helpful interactive tool for algorithm research.

String algorithms form an important area of algorithm research. A typical
problem is string matching, where approximate or exact occurrences of a pattern
is searched in a text. String algorithms are applied in various areas including
speech recognition, data compression, text processing, data communications, im­
age processing, and computational biology.

Up till now, there are practically no visualizations made for string algorithms.
We collected experiences in a project constructing an animation package, called
SALSA, for string algorithms (the name is an acronym for String ALgorithmS
Animator). The project was organized as a software engineering assignment for a
team of four students of the fifth year [1].

The SALSA package is running in the Xwindows environment on Sun work­
stations. The implementation of SALSA was based on an animation environment
XTango [4, 10, 11]: the algorithms to be animated were supplied with calls to
XTango routines for creating and moving visual objects on the screen.

The rest of the paper is organized as follows. In Section 2, we will discuss the
principles of the XTango environment and give an overview of different approaches
to algorithm visualization. Section 3 lists the goals of the project and outlines the
architecture of SALSA- In Section 4, we will discuss our experiments, concentrating
on the usefulness of animation in learning and research. The final section will
introduce our future plans.

120

2 Different approaches to visualization in Com­
puter Science

In Computer Science, visualization is used in many ways, like in drawing flowcharts,
designing systems, developing user interfaces, simulating phenomena, visual pro­
gramming, and teaching data structures.

In this section, we will first define the concept of algorithm visualization, ac­
cording to Myers’ taxonomies [5]. After that we will present the algorithm ani­
mation framework and the path-transition paradigm of the XTango environment
[9, 10, 11]. Starting from this conceptual background, we will itemize the phases
to produce an animation. And finally, we will consider future opportunities for
perceptional exploration of algorithms.

2.1 Myers’ classification of program visualization system s
Myers defines program visualization as illustrating "some aspects of the program
after it is written” [5]. Visualization is code, data, or algorithm visualization
according to the visualized aspect, and visualization is static or dynamic depending
on the produced display.

To exemplify the taxonomy, the traditional flowchart falls into the category
of static code visualization, while a graphical debugger showing the line under
execution would represent dynamic code visualization. Moreover, a static data
visualization system would illustrate a program’s tree structure, while its dynamic
counterpart would display also the changing values of the nodes.

Another example of code animation is a teaching tool ASSEM with which a
user can simulate the CPU of a simple computer [7]. The user specifies the memory
location of the first instruction, and ASSEM will step instruction by instruction
and show the contents of the main memory and the registers.

For instance by setting the necessary parameters, it is possible to automate
both the code and data visualization, without touching the code. Algorithm vi­
sualization systems, on the contrary, necessitate the programmer to explicitly add
information to the code of the animated algorithm, to create an animation.

In fact, there are animation systems which can visualize the program without
any additional information in the code. For instance, PASTIS animates Fortran,
C, and C ++ programs by making use of the debugger [6]. According to Myers’
taxonomy, this kind of systems would not belong to the category of algorithm
visualization. However, this is the only natural choice for PASTIS; it should not
make any difference whether the animations are produced by additional code in the
algorithm or, like in PASTIS, the animation modules are separated from the source
code from which they get data through the debugger. The essence of (dynamic)
algorithm visualization might, therefore, be defined by producing a (event-driven)
visual abstraction of an algorithm.

2.2 The XTango algorithm animation environment
XTango (for XWindows Transition-based ANimation GeneratOr) is a public do­
main software package, delivered and maintained at the Georgia Institute of Tech­
nology.

1 6 *

The XTango algorithm animation environment is based on two principles: (1)
the framework to map the interesting events of an algorithm to their visual coun­
terparts, supported by (2) the path-transition paradigm, guiding the design of the
animations [9, 10, 11].

T he a lgo rithm an im atio n fram ew ork The framework consists of three com­
ponents: (1) the algorithm, (2) the animation, and (3) the mapping component. In
the algorithm component, the designer defines the algorithm’s interesting events,
or in the XTango terminology, algorithm operations. These operations correspond
to the important elements of the algorithm’s semantics. For instance in the string
matching algorithms, the algorithm operations include at least character com­
parison and moving along a string. The algorithm operations are added to the
algorithm as function calls.

The animation part includes the graphical objects for visualizing the algorithm,
and the routines for changing their size, color, place etc. For example, to illustrate
character comparison, one might specify the characters as rectangles, flash the
characters under comparison, and move one on the other to show the difference.
The routines for changes in the screen are called animation scenes. Although
implemented at higher level by the designer, they call XTango routines to take
care of the low level graphics.

The mapping component has two parts. First, XTango uses a kind of symbol
table to connect a visual object with a set of parameters from the algorithm. This
mechanism is called association. In our string matching algorithm example, the
places of the rectangles visualizing the characters T[l], T[2],... might be stored as
Assoc(ID,T,l), Assoc(ID,T,2), ...

The second part of the mapping component includes the relation between the
algorithm operations and the animation scenes. In our example, the algorithm
operation Character Comparison maps to a group of animation scenes: flashing
and moving.

T h e p a th - tran s itio n parad igm The idea behind the path-transition paradigm
is to separate the design work of the animations from the implementation phase.
The paradigm supplies the designer with four abstract data types with the oper­
ations. If the designer specifies the animation scenes with these operations, the
implementation should be straightforward, using the XTango routines correspond­
ing to the abstract data type operations.

The four data types of the paradigm include (1) location, (2) image, (3) path,
and (4) transition. They relate to each other as follows: An image has a location
in the infinite coordinate system of the XTango window. A path is an ordered
sequence of coordinate pairs, which defines relative changes in X- and Y-axis. A
transition changes an image according to a path.

Let us illustrate the paradigm with an example. To design the animation scene
for moving a rectangle on another, the images concerned are these rectangles. The
path along which Xtango will perform the transition is defined by the locations of
the rectangles.

The path-transition paradigm, in addition to the algorithm animation frame­
work of XTango, gives the guidelines for the different phases in the design and im­
plementation of an animation. The designer starts with identifying the algorithm
operations of interest. Then, he/she will decide the animation scenes necessary

to visualize the operations; the scenes must be designed using the path-transition
paradigm. The crucial phase is to define the relation between the algorithm op­
erations and the animation scenes. Last, the implementor turns animation scenes
into С functions, calling the appropriate XTango routines.

2.3 Future trends in algorithm experimentation
Among the possibilities to study an algorithm using technology, visualizing is only
a beginning. However, even visualization can be of greater advantage. In the
design of animation, much more attention must be paid on psychological factors.
For instance, the designer should use colors in a way which helps following the
animation. Brown and Hershberger list the following use of colors [2]: encoding
the state of data structures, highlighting activity, tying views together (in the case
of multiple windows for different aspects of an algorithm), emphasizing patterns,
and making the history of an algorithm visible.

Besides the visualization, one could also make use of auralization (interpreting
interesting events as sound effects) [2, 8]. As colors, they can present fundamental
information on an algorithm when used for reinforcing visuals, conveying patterns
(e.g. by using multiple instruments), replacing visuals (to reduce the visual infor­
mation), and signaling exceptional conditions.

This is just the beginning. Maybe computer-assisted algorithm exploration
only starts with seeing and hearing, leading us to smell, taste, and touch the
algorithms! Virtual reality is coming inside the researcher’s chamber.

3 An overview of SALSA
In this section, we will explain our objectives in the SALSA project and go through
the main components of the SALSA package [1]. We will first outline the archi­
tecture of the package with comments on the choice of the algorithms.

As stated in the introduction, the SALSA package is running in the Xwindows
environment. When started, SALSA opens its main window, which controls other
components. The respective program module calls for the animated algorithms.
These algorithms, implemented in C, include calls to the animation routines, pro­
grammed by our team; however, to control the graphics, the animation routines
use the XTango functions. One of these functions opens the XTango animation
window; as a result, the animations run in this window, and the user can control
the animation by pushing the icons provided by XTango.

In the beginning of our project, we had no prior expertise in principles and
techniques of algorithm visualization. However, we aimed at a working animation
tool suitable for introductory purposes in teaching string algorithms. For these
reasons, we decided to start with the very basics. Therefore, our choice comprised
seven algorithms for one- and two-dimensional pattern matching, and calculating
the edit distance [3].

3.1 The aims of SALSA
The overall goal of the SALSA project was to develop a computer-assisted in­
struction package. We intended this package to serve as an introduction to string

123

algorithms either in a classroom or as a self-education material. To make our aim
clear, we divided it into smaller subgoals:

First of all, the package should help one to understand string algorithms of
different types. For this purpose, we decided to use animation. When animating
an algorithm, the student should be able to follow its behavior with various inputs
and so he/she can gain insight into the essence of the algorithm.

To make SALSA as pedagogical as possible, we followed the principles of
computer-assisted instruction (CAI) in the implementation [13]. This required
special attention to the user interface design.

Besides the educational perspective, SALSA should also be useful for research.
This means that the package should support implementation of other string al­
gorithms. It has usually taken too much time for the Researcher to design and
implement an animation of an algorithm; if this phase were considerably reduced,
however, the animation itself would give new ideas in analyzing the algorithm and
developing it further.

In addition to animations, SALSA should also include a kind of workbench
for testing the algorithms’ efficiency. This is important in learning as well as in
research. While animation helps in understanding the algorithm’s idea, only the
hard facts about the CPU time usage tell the conditions in which to apply the
algorithm.

In our project, we also wanted to evaluate the usefulness of the XTango envi­
ronment, although this was not particularly the aim of SALSA. We were interested
especially in how efficient the path-transition paradigm would be in the animating
process.

3.2 The components of SALSA
The SALSA package consists of four main components: the graphical user in­
terface, the animations for selected basic string matching and edit distance algo­
rithms, the CPU time measurement, and the test data generator [1].

T he graphical u se r in terface To let the user of SALSA to concentrate on
the algorithms, not the package itself, it was important to make SALSA as easy
to use as possible. Therefore, we decided to make the user interface graphical,
implementing it with Devguide, a development tool operating in the Open Windows
environment. In the design, we followed the OpenLook standard.

Beyond the technical implementation of the user interface, it was essential to
identify the suitable learning strategies supported by SALSA. It seemed quite nat­
ural to make use of processive learning. SALSA could easily take the student all
the way through the different phases of the learning process: motivating, orientat­
ing, deepening, exemplifying, practicing, evaluating.

However, we can regard an algorithm also as a system which the user can
simulate by perceiving the animation with varying inputs. In addition to processive
learning, SALSA would support, thus, learning by simulation.

These principles in mind, we designed the main window (Fig. 1), where the
user first selects the algorithm and its input, possibly setting some parameters,
and then pushes the button indicating the desired function. With the function
completed, the control returns to the main window, and the user may define a
new procedure.

124

Avallabia Л I f r M i t s

Aho_Cortskk.ac
| Boyer. Moore. I d
OiagonaltD.ed
NormalED.ed
Rabin. Karp, id
Tarhi<x2d
Trivial. 2d

SALSA - String ALgorithm Super-Anim ator

Available Tast Data

jb m fs tl '

(Help on using SAlSA-T^

Animation complexity:

I Basic I Advancad I

(Generate test data)

(Information on chosen algorithm.-) (information on chosen tast data.)

(Speed f i t . .)

Figure 1 : The SALSA main window. The user first chooses an algorithm and
test data. Pushing the Animate button starts the respective animation, while the
Speed test button outputs an efficiency report.

Note that it is also possible to study the algorithms only at a theoretical level,
by pushing the Information button.

T h e an im ations The user can start the desired animation from the main win­
dow, pushing the Animate button. For instance, after choosing Boyer-Moore from
the algorithm list and bmtestl from the test data list, the XTango window will
open and show the initial scene of the respective animation (Fig. 2).

Let us exemplify the animation procedure by looking closer at the animation
of the Boyer-Moore algorithm (Fig. 3). We decided to visualize the characters
by rectangles of equal width, with the height indicating the character’s position
in the alphabet. Second, the pattern would travel above the text. Moreover, we
illustrated the comparison of two characters by moving them on one another. We
displayed a match by coloring the respective rectangles black, while a zigzag arrow
indicated a mismatch. A matched suffix was visualized by a line below the equal
substring in the pattern.

With this design specified, we implemented the animation routines. These
routines defined the locations, images, paths, and transitions, using the XTango
functions.

At present, SALSA consists of the animations of basic algorithms for one­
dimensional pattern matching (Boyer-Moore, Rabin-Karp, and Aho-Corasick). In
addition, we implemented also the animations of calculating the edit distance with
normal and diagonal methods [3]. To get insight into how a researcher may benefit
from animation, we also prepared a visualization of a two-dimensional algorithm
under development.

T h e C PU tim e m easu rem en t The user who is interested in the practiced effi­
ciency of an algorithm may forget the animations and run the speed test. SALSA
will store the results in a log file specified by the user.

Figure 2: The initial scene of the Boyer-Moore animation. The implementor de­
fines the visual objects inside the window by using XTango routines, while XTango
provides the window with the basic operations: With the left-hand buttons, the
user can pan and zoom the animation window. Moving the right-hand scrollbar
downwards slows down the animation. By pushing the pause button, the user can
pause the animation.

G en era tin g an d s to rin g th e te s t d a ta To help the user to experiment the
algorithms with various inputs, we included a test data generator SWING (for
String WeavING). The user may create different inputs consisting of the desired
text and patterns by connecting together two files: one containing the text, the
other the patterns.

Because SALSA creates a file for each new test data generated, it is easy for
the user to repeat the same run of an algorithm or to test several algorithms with
the same data.

4 D iscussion
Our experiences with the SALSA project produced four conclusions: First, in
teaching string algorithms, animation serves as an activating teaching method
which inspires students to experiment. Though rather short in code, the essence
of a string algorithm is often quite hard to uncover.

A group of students of our department tested the SALSA package. The results
were promising: by using the animation, it was easier to learn the idea behind the
algorithm. When we made a video on SALSA, even the cameramen were interested
how the algorithms worked, with no prior knowledge in Computer Science!

Second, designing an animation is a learning process which leads to a profound
understanding of the algorithm. When transforming the detailed algorithm to the
higher level of abstraction, the designer little by little gets closer to the essence
of the algorithm. Actually, the designing process is interaction between learning,
teaching, and research.

The students of our team had no prior knowledge of string algorithms. How­
ever, all of them got interested in the problem area and studied themselves the area

IqJ illi|

Figure 3: Two phases in the Boyer-Moore animation. In the left-hand figure,
the animation illustrates the comparison of two characters, with the respective
rectangles approaching each other. In the right-hand phase, the algorithm has
found a matched suffix in the pattern, visualized by an underline; the zigzag arrow
indicates the character responsible for the unmatch.

beyond the algorithms to be animated. What happened with the Aho-Corasick
algorithm, describes well the learning process. The designer of this animation,
having seen how the Boyer-Moore algorithm works, noticed that it would be effi­
cient to combine these two methods. It was a pity that this approach is already
known as the Commentz-Walter algorithm.

Third, animation is useful also for research. Experimenting with animations
can indicate weaknesses in specific cases in the behavior of an algorithm under
study and thus help in developing the algorithm further. Animation may also help
in analyzing the complexity of the algorithm.

We got a nice example of this when animating a new algorithm for two-
dimensional pattern matching. The co-operation between the animator and the
researcher led to a more efficient algorithm.

In fact, it is possible to infer the aims of SALSA partly from the functions of
the university: how to create a natural interaction between learning, teaching, and
research. At the same time, there has been discussion about the communicative
role of the university. The projects like SALSA teach the participating students
to pay attention on how to present ’’the professional issues” for laymen.

Fourth, the path-transition paradigm of XTango proved to be an approach
practicable enough for use in animating at least string algorithms. An overall
evaluation of the tool was carried out during the project.

The team regarded especially the conceptual design (the path-transition para­
digm) behind the XTango environment as easy to learn. For a beginner, it took
about four days to implement an animation of the Rabin-Karp algorithm. The
animation scenes took about 800 lines of code.

The main problem with XTango was its poor performance in the Open Windows
environment. According to John T. Stasko, the designer of XTango, the bottleneck
lies in the performance of the X graphics implementation of the workstation [12].

17

127

As a consequence, the number of the images in the animation must not exceed the
order of tens.

Despite other minor shortcomings, like the lack of multiple windows (to com­
pare algorithms with one another, or to display different aspects of an algorithm),
we are looking forward to the future. A new, C + + based animation environment,
called Polka, is already available on the ftp.

5 Future work
Our experiences in construction of SALSA and in using animations encourage us to
develop new animations. Next year we will produce an enhanced version of SALSA
by incorporating animations of a new set of string algorithms. The possibility of
using parallel animations and sound output will be considered.

We have also plans to make animations for other areas. There are many subject
areas with hardly any animation packages, since most implementations visualize
sorting, graph algorithms,.computational geometry, or simulation of computer sys­
tems. One neglected area is compiling of programming languages. Many compiling
techniques including parsing, attribute evaluation, and code generation are based
on a parse tree. Such schemes are conceptionally easy to animate using a graphical
representation of a tree.

Our promising experiences of using XTango for construction of SALSA show
that production of animation packages in not any more tedious prototyping it used
to be. We believe that the use of animation will rapidly increase in Computer
Science education and research in the near future.

Acknow ledgem ents
We wish to thank Prof. Esko Ukkonen for his continuous support and Prof. Kari-
Jouko Räihä for introducing us the animation technology. We are grateful to
Juhana Britschgi, Timo Joutsenvirta, Kai Järvenranta, and Antti-Pekka Tuovinen
for implementation and fruitful co-operation.

R eferences
[1] Britschgi, J., Joutsenvirta, Т., Järvenranta, K., Tuovinen, A.-P., The SALSA

animator: An animating and experimenting tool for string algorithms (in
Finnish). Report C-1993-14, Department of Computer Science, University of
Helsinki, 1993.

[2] Brown, M., Hershberger, J., Color and sound in algorithm animation. Com­
puter 25, 12 (1992), 52-63.

[3] Gonnet, G., Baeza-Yates, R., Handbook of Algorithms and Data Structures
in Pascal and C. 2nd edition. Addison-Wesley, Wokingham 1991.

[4] Hayes, D., The XTANGO environment and differences from TANGO. Elec­
tronic document included in the XTango package, November 3, 1990.

[5] Myers, B., Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing 1990, 97-123.

[6] Müller, H., et al., The program animation system PASTIS. The Journal of
Visualization and Computer Animation 2, 1 (1991), 26-33.

[7] Nasri, A., Computer graphics in simulating the functioning of a simple com­
puter. Computer Science Education 2, 2 (1991), 161-170.

[8] Negroponte, N., Beyond the desktop metaphor. In: Meyer, A., et al., editors,
Research Directions in Computer Science: An M IT Perspective, The MIT
Press. Cambridge, Massachusetts, 1991, 183-190.

[9] Stasko, J., The path-transition paradigm: A practical methodology for adding
animation to program interfaces. Electronic document included in the XTango
package, College of Computing, Georgia Insitute of Technology, June 10, 1991.

[10] Stasko, J., TANGO: A Framework and System for Algorithm Animation.
Ph.D. Dissertation, Technical Report No. CS-89-30, Department of Computer
Science, Brown University, 1989.

[11] Stasko, J., Tango: A framework and system for algorithm animation. Com­
puter 23, 9 (1990), 27-39.

[12] Stasko, J., Personal communication, 1993.

[13] Steinberg, E., Computer-Assisted Instruction: A Synthesis of Theory, Prac­
tice, and Technology. Lawrence Erlbaum Associates, Publishers, Hillsdale,
New Jersey, 1991.

17*

129

Specifying User Interfaces as Joint Action Systems
Kari Systa

Tampere University o f Technology
BOX 553, SF -33101 Tampere, Finland

ks@cs.tut.fi

Abstract
Formal methods can be used in the specification of behavioral aspects of user interfaces.
Most previously used formal methods cannot, however, describe properties that are conse­
quences of concurrency in modern user interfaces. If parallelism can be described, the level
of abstraction is often too low, and includes unnecessary implementation details.
In this paper we introduce a new approach that allows concurrency to be described at a high
level of abstraction without implementation details. More specifically we use an executable
specification language DisCo, for which we have developed support tools including an exe­
cution environment with graphical animations. In addition to validation by execution we can
also use formal proofs for critical properties of the specifications. Another important aspect
of DisCo is its support for stepwise refinement of specifications. This allows the addition of
new properties in such a way that safety properties of previous stages are preserved.
The approach and the language are exemplified by a stepwise specification of an electronic
mail system.
Keywords: formal specifications, user interfaces.

1. Introduction
User interface contains two parts: representation and behavior. The representation defines the symbols
that are used in the display and input devices. The behavior determines the relation between user input
and system responses. Often the representation alone is considered to be the user interface, but the
understandability of the behavior is also an important criterion for a good user interface. In [S] user
interface is defined to be all user and machine behavior that is observable by an external observer. We
share this view.

A complete specification of the behavior specifies both the user interface and application semantics of
the system. When the emphasis is on the user interface, we concentrate on the observable behavior, and
we may even allow more nondeterminism than is acceptable in semantically correct system behaviors.
In particular, we do not concentrate on internal issues or on interfaces to other software components.
According to [10,15] there are three types of concurrency in user interfaces: 1) concurrent output, 2)
concurrent input, and 3) concurrent dialogue. An example of concurrent output is simultaneous updat­
ing of several windows or views. Concurrent input is possible, for instance, when a mouse and a key­
board are used together. Concurrent dialogues are used when the user may supply input to several
windows simultaneously.
Even if we do not have explicit concurrency in the user interface, there is always a need for concur­
rency in the model, because both the user and the computer system are active agents. For example, the
user can press the interrupt key at any time during the execution of the program. This means that pro­
gram execution and keyboard monitoring are parallel operations.

1.1. Motivation for formal methods
In the design phase, a formal description of system behavior can expose inconsistencies and errors in
the design. A formal description also gives a rigorous basis for its implementation.
When an existing user interface is described, formal specification is also helpful as a reverse engineer­
ing or documentation aid. The specification of an existing interface can be used as a supplement to the
user manual and design documentation. Especially, a formal specification can complement the user
manual by giving exact answers to questions that are typically missing in informal descriptions. If the

130

mailto:ks@cs.tut.fi

specification is given in a formal notation, it is possible to recognize inconsistencies and design flaws
in the current version of the user interface, and the quality of the next version can be improved.

1.2. Methods used in formal description of user interfaces
Based on literature, Booth [3] gives two different uses for the term formal methods in human-computer
interface engineering. One type of methods attempt to cognitively model the user. An example of such
methods is Task-Action Grammar (TAG) [16]. The purpose of these methods is to show how complex
tasks are in cognitive terms. In the other type of formal methods the behavior of a computer system is
described in a formal notation. In this case general purpose specification methods are used instead of
special user interface methods. When used for interface specification, their purpose is to expose logical
inconsistencies within a system and its user interface. Our aim also falls in this category. Compared to
most other specification methods, our notation of joint actions looks like a programming language
instead of mathematical formulas, but the purpose is the same: to express logical properties and to
expose logical inconsistencies.
Z [9] is one method that is used for specification of user interfaces [4]. Z is based on sets, which
describe the internal state and variables of the program. In a Z specification all operations are described
as operations on sets. When Z is used for specification of user interfaces, the representation compo­
nents like window locations are also described by using these sets.
One way of specifying user interfaces is to use context free grammars to specify languages that are
used in man-machine communication. The behavior of the system can be added to the productions as
actions [7].

Different kinds of state automata or transition networks (TN) are also used for specification of reactive
systems. For imposing structure on transition networks the concept of subdiagrams is introduced. If a
subdiagram can call itself, the notation is called recursive transition networks (RTN). A common way
to extend the expressive power of transition networks is to add actions to states or transitions. Such
notations are called augmented transition networks (ATN). They can be improved further by adding
conditional branches to transitions [20], where the conditions depend on the return values of the
actions.

The use of algebra is one possible formal specification method, and in [5] algebraic specification is one
of the example notations. In the algebraic approach a specification consists of classes of objects and a
set of functions that operate on these classes. The semantics is defined by a set of algebraic axioms.

In order to support concurrency, different kinds of event approaches are used. In [S] the notation is
called event algebra. In [10] an event-response language (ERL) and local event broadcast method
(LEBM) are introduced. LEBM is basically a structuring method that supports communication and syn­
chronization between modules. A third event-based notation is used in [7]. A common denominator in
these approaches is that event handlers are used to react to events sent by the external world or by other
event managers. Many researchers prefer event-based models over the other methods mentioned
above, mainly because event-based approaches support concurrency [5 ,7 ,10 , 14].

A novel approach described in this paper is to use joint actions. With them we can describe the syn­
chronization without implementation details like communication mechanisms. With event-based meth­
ods our approach shares the ability of describing concurrency. The advantages of our method include
its abstraction in the description of actions and support for stepwise refinement.

The rest of the paper is organized as follows. Section 2 gives an introduction to joint actions and to the
DisCo language. The purpose is to provide the details and principles that are needed in understanding
the rest of this paper. In Section 3 the usage of DisCo in the specification of user interfaces is discussed
in the light of an example. In Section 4 conclusions and some directions for future work are given.

2. Introduction to specification in DisCo
Joint actions [1 ,2] can be used to specify reactive systems. Reactive systems are ones that are in con­
tinuous interaction with their environment This distinguishes them from traditional input/output com­
putations. Reactive systems typically contain parallelism and they are often embedded systems. This

131

concurrency may be included in the system, or at least the system and its environment may both exe­
cute simultaneously. The aim of the DisCo approach is to specify reactive systems with potential or
real concurrency at a high level of abstraction.

A joint action specification consists of multiparty actions and objects that participate in them. A differ­
ence between joint actions and most other operational specification methods is that the notion of pro­
cesses is not inherent in joint actions. The objects in joint action systems can be implemented either as
processes or as passive data structures. An important aspect in DisCo is that the effects of actions are
expressed as special syntactic entities instead of distributing to the descriptions of the effects to the par­
ticipating objects.

In this paper only a brief overview is given on the DisCo specification language. A more detailed
description can be found in [11,12]. DisCo supports object-oriented modelling; DisCo objects always
belong to a class that defines the data and state structures of objects within that class. A comparison of
DisCo and the object-oriented paradigm can be found in [12]. The finite-state structure of a DisCo
object is similar to the hierarchical structure used in statecharts [8]. An object can be understood to
consist of two interrelated parts: a finite state part that is a state automaton, and a data part that contains
variables and constants. Figure 1 gives an example of a class definition and the corresponding state-
chart. In DisCo state transitions correspond to actions, and they have been omitted from Figure 1.

class Proc (Next:Proc) Is -- N ext is a parameter, which is a reference to another Proc-object
state ‘ Prepare, Compute: - - two states, default state is marked with '*’
state ‘ Important,Unimportant; - two independent states
extend Important by

state ‘ Q u ite J, V e ry J; - - substates of Important
end Important;
D a ta : integer; - a variable

end Proc; ______________[Proc |_________ ____

‘ Preparing
^ - J

f ‘ Important ^

if (зим r a

Computing

v j* -------------
Unimportant

Figure 1. An example class and the corresponding statecbart The state transitions are not shown.

The other basic components in DisCo are actions, in which the objects may participate. An action def­
inition has a name, zero or more parameters, one or more participants, a body, and an enabling guard.
Each participant is specified by its class, and it is given a formal name called role. Whenever an action
is executed with some objects as participants, the action body may change the participating objects. An
action cannot modify objects that are not participants of the action. The guard is a boolean expression
which has to be true for the action to be executed. The guard can therefore be used to restrict the possi­
ble participant combinations. The following is an example of an action:

action Exchange (X : integer) by L,R:Proc Is
w hen X > 0 and LD ata > R.Data+X d o -- guard

R.Data :■ LD ata || LD a ta :■ R.Data; - body of the action
end Exchange;

This action has two participants named L and R, which are both instances of class Proc. The identifier
X denotes a parameter, whose value is determined whenever the execution of the action begins. The
guard of this action restricts the participating objects and the possible values of the parameter X. The
action is enabled only for those objects of class Proc that satisfy the condition given in the guard. If
there is freedom in selecting the possible participants or parameter values, they are determined by a
nondeterministic choice. An execution of a DisCo specification consists of successive actions; at any
moment the next action can be any of the enabled actions.

132

In addition, assertions can be included in specifications. An example of an assertion is:
assert V P:Proc:: Proc.Data > 0;

which states that the D ata variables of all Proc-objects must be positive. Assertions can be used to
specify invariants for the whole execution, and to restrict the initial state of the system. In the language
the assertions are for documentation of the expected properties, and the tool checks their validity dur­
ing execution.

Reasoning about DisCo specifications is based on an execution model in which actions are executed
sequentially - not in parallel. However, the next action to be executed is selected by a nondeterministic
choice from the enabled actions. This means that an interleaving model of parallelism is used. The
relation between nondeterministic serial execution and parallel execution has been addressed in [2].

DisCo has two mechanisms for stepwise derivation and reuse of specifications: inheritance that is sim­
ilar to the corresponding concept in object-oriented programming languages, and an extension mecha­
nism that is suited for superposition.
To support the specification process, a tool has been implemented [17]. The user interface of the tool
can be used for browsing, execution, and visual animation. The graphical displays are always gener­
ated from a textual specification by the tool. The graphical animation of the tool makes its possible to
extend the group that works with the specification. In addition to execution (simulation), formal proofs
can be carried out to reason about critical properties in the specification. So far the tool assists in verifi­
cation of formal properties only by an automatic execution-time checking of assertions.

Executability gives the possibility to validate specifications by testing. It is clear that critical properties
cannot be verified by testing, because the execution may never reach all possible states of the system.
On the other hand, formal reasoning is expensive and time consuming, and therefore applicable only to
the most critical properties. Another problem with formal reasoning is the recognition of the properties
to be proved. Our goal is to combine testing and experimentation with formal reasoning.

3. Application of DisCo in the specification of user interfaces
The DisCo language and the joint action methodology have been designed for specification of reactive
systems. The originally intended application area is embedded systems like lift controls or telephone
exchanges. The same model can be used also for specifying the interaction between a computer system
and its user. The user interfaces of modern workstation environments are, in fact, reactive systems
because the user can continuously control the programs. Programs are no longer batch programs which
first read the input data, then perform the computation, and finally output the results. Also, modem
workstations allow several interactions with one or several applications to exist simultaneously.

As discussed above, event-based approaches can be used in the specification of concurrent user inter­
faces. One problem with event-based approaches is their low level of abstraction in the sense that syn­
chronous operations are distributed to several event handlers. Event handlers also provide an
implementation-oriented structure for the control, which we consider harmful at the specification level.

In DisCo we have an action-oriented view instead of a process-oriented view. This means that the
abstraction level is raised to independence of process structure and communication mechanisms. We
only describe what is done and which participants are needed, not who is responsible for initiating
actions and which communications mechanisms are used in them.

The rest of this section gives an example of user interface specification in DisCo. The purpose of this
section is to give an example of how DisCo can be used inn specification of user interfaces. In order to
show structuring capabilities, the specification is written in several refinement steps.

3.1. An example specification
^ n this section we describe a specification of an electronic mail system. In this example we show how
the behavior of the system can be described in DisCo specification language. The theorems describing
the critical properties o f the design are expressed as assertions. A proof of one of these theorems is also
shown.

133

This specification has been tested by using our execution and animation tool. Because the theorems
have been included as assertions, the tool has ensured that the theorems hold at least in all states
reached by the execution. Because we have not included any theorem prover in our tool, formal proofs
for all theorems have not been carried out.

The specification proceeds in four superposition steps:
(1) simple sending and reading;
(2) spooling and mail boxes;
(3) user interface with windows;

3.1.1. Sending and reading
First we introduce a class for mail messages. The message can be in three possible states: Idle (nonex­
isting) Incomplete (under preparation) and Ready (ready to be read). The variable Recipient contains
the user to whom the message is sent. The integer variable Body represents the content o f the message.
The value of variable Body is nonnegative, and value 0 represents an empty body. We assume that the
number of available messages is unlimited,

class Message Is
state ‘ Idle, Incomplete, Ready;
Recipient: User; Initially Recipient - null;
Body : Integer; Initially Body - 0;

end;

The users have two sets of messages: Sending (messages under preparation) and Reading. The number
o f messages being concurrently prepared and read by an individual user is unlimited. This means that
we can have concurrent interactions (dialogs) with several messages,

class User Is
Sending; set Message; Initially Sending - 0;
Reading; set Message; Initially Reading - 0;

end;

The action that starts preparing a message is the following:
action Start_Send b y M:Messsge; U:User Is
w hen M.ldle do

— » M. Incomplete;
assert M.Body - 0 л M.Redpient - nuN л (M £ U.Sending);
U.Sending O.Sending U {M};

end;

This action inserts an idle message to the set of messages under preparation. The assertions in the
action bodies describe our assumptions, and they can be proven in later phases of the specification.
The next action adds an instance of class recipient to a message:

action Add_Redpient (R:User) by M:Message; U:User la
w hen M.lncomplete л M € U.Sending л M.Recipient - null do

M.Recipient:« R;
end;

The guard of this action requires that the recipient is not already given. This means that, once given,
the recipient cannot be changed, and a formal analysis could expose that this is an irreversible opera­
tion. This is an example of an user interface property that can be examined by using formal methods.

The next action adds a body to a message:
action Add_Body (hinteger) by M:Messsge; U;User Is
w hen M.lncomplete л М £ U.Sending л 0 < I л M.Body - 0 do

M.Body: - 1;
end;

A completed message is sent by action Send:
action Send by MiMessage; U:User Is
w hen M € U.Sending a M.lncomplete л M.Body > 0 a M.Redpient * null do

— » M.Ready;
U.Sending U.Sending - {M };

end;

134

The guard requires that both the body and recipient of the message are given prior to sending.

We have also an action for canceling the sending:
action Cancel b y M:Message; U:User Is
w hen M € U .Sending л M. Incomplete do

U.Sending U.Sending - (M);
- * M.ldle;
M B o d y : - 0;
• M .Recipientnull;

end;
Action Read inserts a ready message to the list o f messages under reading:

action Read by U:User; M Message Is
w hen M.Ready л U - M.Recipient л M € U.Reading do

U.Reading := U.Reading u {M};
end;

The guard ensures that messages are read only by the recipient and that the message is not already
being read.

If the user reads the message but saves the message for further reading, action Keep is executed:
action Keep by U:User; M M essage Is
w hen M € U.Reading do

U.Reading :» U.Reading - {M};
end;

If the user discards the message after reading, action Dispose is executed:
action Dispose b y U:User; M Message Is
w hen M € U.Reading do

U.Reading U.Reading - {M };
- > M.ldle;
M.Body > 0 ;
M.Recipient := null;

end;

This completes the simplest specification of the electronic mail.

3.1.2. Theorems and proofs for simple sending and reading

Theorem 1. Only ready messages are in LserReading:
assert Only_Ready_ln_R eading is

V U 1 :U s e r (V M1 Message | M l £ U1.Reading :: M l.Ready);

In assertions and proofs we have used the following naming conventions: indexed names (M l, U l , ...)
are used for quantified variables. The unindexed names (M, U ,...) are used for action participants.

This can be proven as an invariant by showing that the statement is true in the initial state, and no
action breaks the invariant. This is done in the following reasoning so that actions are treated one by
one:

• The assertion is initially true because U.Reading is initially empty for all U.
• Actions Add_Recipient and Add_Body are actions that do not change the state of any message or

change the content of any U.Reading. Thus they can not break the assertion.
• Action Start_Send changes the state of a message to incomplete but only if the original state is idle

(i.e. not ready). Thus, if the assertion holds before the execution of Start_Send, its execution can­
not break i t

• Action Send changes the state of a message but only if the original state is incomplete. Thus, if the
assertion holds before, the execution of Start_Send cannot break i t

• Action Cancel changes the state of a message but only if the original state is incomplete. Thus, if
the assertion holds before, the execution of Start_Send cannot break i t

• Action Read inserts a message to U.Reading, but the guard of Read requires that the state must be
ready.

• Action Keep removes a message from U.Reading, which cannot violate the assertion.

135

1 8

• Action Dispose changes the state of a message from ready to idle, but it also removes the message
from U. Reading. So, provided that the message is never in two U. Reading, theorem 1 holds.
A message can never be in two U. Reading because th;y are added to U. Reading only in action
Read, and the guard of Read requires that U. Recipient is equal to U, and U. Recipient is changed
only when U is not in any U .Reading (i.e. in state incomplete).

The theorem 1 can also be proven using temporal logic of actions [13]. In the following we use a nota­
tions where an unprimed predicate P refers to variable values before an action and primed P' refers to
variable values after execution.

Now, in order to proof invariant P we must prove that P is true in the initial state and for all actions:
Action л P => P

For the initial state we know that
V U1:User::U1.Reading - 0

which directly implies theorems 1 and lb.

For action Start_Send we can write (U and M refer to participating objects and a pseudo variable Val­
ues refers to all variables - including state):

$tart_Send <=>
V U1:User IU 1 + U :: U1. Values' - U1. Values a
V M l -.Message / M1 * M :: M1. Values' « M l. Values л
M.State ш Idle л M.State' - Incomplete л U.Sending'• U.Sending и (M) л
M. Recipient' = M. Recipient л M. Body' - M. Body л
U. Reading' « U. Reading

where the first two conjuncts guarantee that all nonparticipating objects are unchanged.

Now we can prove that Start_Send does not break theorem 1. First we express action Start_Send and
theorem 1 in temporal logic of actions:

Start_Send a Only_Ready_ln_Reading

<=> V U1:User / U 1 + U :: U1. Values' - U1. Values л (1)
V M1-.Message / M l * M :: M1. Values' - M1. Values л (2)
M. State = Idle л M.State' = Incomplete л U.Sending' - U.Sending и {M } л (3)
M. Recipient' » M Recipient л M Body' - M. Body л (4)
U. Reading' * U. Reading л (5)
V U 1 :U s e r:: (V M1 Message / M1 e U1. Reading:: M1.State - Ready) л (6)

Based on these numbered conjuncts we can make the following reasoning:
(2)=>

V M l : Message /М 1 + М :: M l.State ' - M1.State (7)

(5) л (1) =>
V U l.U s e r :: U1.Reading' - U1. Reading (8)

(3) A (6) => (because M.State - Idle)
V U l.U s e r :: M € U1.Reading (9)

(7) л (9)= *
V U l.U s e r ::(V M1-.Message IM 1 € U1.Reading :: M 1.State '-M 1.State) (10)

(6) л (10) =>
V UV.User :;(V M1 .Message / M l € U1 .Reading:: M l State' - Ready) (11)

(1 1)л (8)= >
V U l.U s e r :: (V M1 Message / M1 € U1.Reading:: M1.State' - Ready) (12)

<=> O nly_Ready_ln_Reading'

This means that we have proved:
Start_Send л Only_Ready_ln_Reading => Only_ReadyJn_Reading'

The above proof concerned only one action for one theorem, and a proof for all actions would take sev­
eral pages. It is clear that this kind of formal proofs are difficult and time consuming to carry out man­
ually. Without computer assistance this can be done to the most critical properties only.

136

Theorem 2. Messages to be sent are incomplete and all incomplete messages are in some U.Sending:
assert Sending_Means_lncomplete is

{M 1 Message | M 1 .ln c o m p le te }«{3 M1 Message | (3 U 1 :U se r:: M l 6 U1.Sending)};

Theorem 3. An idle message is not read or prepared by anybody:
assert Id leJs Idle Is

V Ml:M essage | M l .ldle :: —• (3 U 1 :U s e r M l 6 (U1.Reading и U1.Sending));

Theorem 4. The same message is not in more that one U.Reading or U.Sending:
assert Message_Not_ln_Two_Sets Is

VM1:Message :: (V U1:User | M1 € U.Reading и U1.Sending
:: —I (3 U2;User | U2 * U1 :: M1 € U2.Reading u U2.Sending) л

—I (M l 6 U1.Reading n U 1.S en d in g));

3.1.3. Spooling mail boxes
A mail system has usually a mailbox for each user. The incoming mail is collected to that mailbox. In
our specification, action Send cannot add messages directly to these mailboxes because the recipient
user1 may me committed to another action, or the receiving mailbox is not available. We do not want to
delay the sender unnecessarily. This is one of the reasons why spooling is used also in real electronic
mail systems. Thus, we specify a spooling queue for messages to be added to the mailbox.

We add these properties by using superposition, which is the main method for specification refinement
in DisCo. In superposition we can add new properties so that all safety properties are maintained. This
means that the new specification cannot do anything that was not possible in the old system. We can,
however, add new variables and new operations for these variables because these operations are not
visible in the old specification.

We add a new class for the spooling queue, and we extend the existing class User with a mailbox:
class Spool Is

Queue: set Message;
end;

extend User by
Mailbox: set Message; Initially Mailbox > 0 ;

end;

It is assumed that we have only one instance of spool, which can be expressed as an initial condition:
Initially Only_One_Spool Is (+/ S:Spool:: 1) ■ 1;

Action Send is refined to have a new participant Q, and the body of the action is extended by a state­
ment to add the message to the queue:

refined Send b y ... Q:Spool Is
w h e n ... do

assert — i(M € Q.Queue);
Q.Queue > Q.Queue и { M };

end;

This refinement as well as all other refinements and new actions change only newly added variables of
the specification.

A totally new action is needed to move a message from the spool to a mailbox. Notice that the sending
user is not involved here.

action From_Spool by S:Spool; U:User; MrMessage Is
w hen U - M.Redpient л M € S.Queue do

a s s e rt- i (M £ U.Mailbox);

Wc have also the following theorems, but the proofs have been omitted from this paper.

1. Actually we have not talked about what we mean by a user. At this level of specification a user can be
understood as a set of resources (e.g. home directory, mail box, workstation) reserved for a user.

137

U.Mailbox := U.Mailbox и { M };
S.Queue :» S.Queue - {M };

end;

For action Read we add a new conjunct which requires that the message must be in a mailbox, i.e. the
message cannot be taken directly from the spool,

refined Read Is
w hen ... M € U.Mailbox do

end;

The body of action Dispose is extended by a statement to remove the message from a mailbox:
refined Dispose is
w h e n ... do

assert M € U.Mailbox;
U.Mailbox :> U.Mailbox - {M };

end;

3.1.4. Theorems for spooling

Theorem 5. Only ready messages in spool и mailbox and messages in spool и mailbox are ready:
assert Only_Ready_ln_Spool_And_Mail!;-JX Is

{ M1 Message | M l.R e a d y} * { M1 :Message | (3 S1 :Spod :: M1 £ S1 Queue)} U
{ M1 :Message | (3 U1 :U se r:: M1 £ U I.M ailbo x));

Theorem 6. A message cannot be in both spool and mailbox:
assert Not_Both_Mailbox_And .Spool Is

{M1 Message | (3 S1 :Spool:: M l € S1 .Queue)} n (M1 Message | (3 U1 : U s e r M l € UI.M ailbox)} - 0;

Theorem 7. A message is at most in one mailbox:
assert Unique_Messages Is

V U 1 :U s e r:: (VM 1 Message | M l £ UI.Mailbox 43 U2:User| M1 £ U2.Mailbox ::U 2 / - U1));

Theorem 8. A message body is not seen by anybody else but the sender and recipient.
assert Read_Only_Mine Is

(V U1 :User :: (V M 1: Message | M1 £ U1 .Reading :: M1 .Recipient « U 1)) л
(V U1 :User :: (V M 1: Message | M1 £ U1 .Sending

:: - 1 (U2:User | U2 * U :: M £ U2.Sending и U2.Reading) л
(V M 1 : Message | M1 .Idle : : M1 .Body = 0лМ1 .Recipient« null);

We assume that a user can see the body only when the message is in U.Reading и U.Sending. This is
ensured by allowing reading only to users that are indicated by the variable Recipient. When a message
is disposed, i.e. state is changed to idle, the old contents of the body is wiped off.

Theorem 9. A sent message has both recipient and body:
assert Send_Complete_Only Is

(V M1 Message | M1 .Ready :: M1 .Body > 0 л M1.Recipient * null) л
(V M 1 Message I (3 U 1 :U e e r:;M 1 £ U1 .R eading):: M1.Ready);

Theorem 10. Messages can only be read from mail box (UReading is a subset of U Mailbox.):
assert Read_From_Mailbox Is

V U 1 :U s e r::{M 1 Message I M1 £ UI.Reading} с: (M1 Message | M1 £ UI.Mailbox};

Theorem 11. A message cannot be both in mailbox and in preparation (stronger than theorem 4.):
assert Mailbox_Sending_Distinct Is

V U1 :U s e r:: U1.Sending n UI.Mailbox - 0;

138

3.1.5. A window interface to the mail system
Next we will specify a windowing user interface to our electronic mail system.

A new class for windows is needed. A window can be either mapped (visible) от unmapped (^ v i s i ­
ble). While mapped, the window is displaying some message,

c h m « Window Is /
state *Unmapped/Mapped(M:Message);

end;

The user has a set of visible windows that can be used either for sending or reading of messages. The
maximum number of windows - i.e. the number of "open" messages for a single user is not limited,

extend User by
Windows ; set Window; initially Windows - 0 ;

end;

Actions Start_Send and Read must be refined to have a participating window. This window has to
become mapped and the window must be added to the set of user's active windows,

refined Start_Send b y ... W:Window Is
w h e n ... W.Unmapped do

- » W .M apped(M);
assert (W € U.Windows);
U.Windows U.Windows U {W };

end;

refined Read b y ... W.Window Is
w h e n ... W.Unmapped do

— » W .M apped(M);
assert - i (W 6 U.Windows);
U.Windows U.Windows U (W);

end;

In actions Send, Cancel, Keep and Dispose the window must be unmapped and removed from the set
of active windows:

refined Send b y ... W:Window Is
w h e n ... M - W.Mapped.M do

— ►W.Unmapped;
assert W € U.Windows;
U.Windows : - U.Windows - (W);

end;

refined Cancel b y ... W:Window Is
w hen ... M - W.Mapped.M do

-►W.Unmapped;
assert W £ ».W indow s;
U.Windows : - U.Windows - (W);

end;

refined Keep b y ... W Window Is
w hen ... M - W.Mapped.M do

assert W € U.Windows;
U.Windows : - U.Windows - (W);
— » W.Unmapped;

end;

refined Dispose b y ... W:Window Is
w h e n ... M - W.Mapped.M do

U.Windows U.Windows - (W);
-> W.Unmapped;

end;

139

19

A window is added to actions Add_Recipient and Add_Body to describe the fact that the user will give
the recipient and body by typing at the window:

refined Add_Recipient b y ... W:Window Is
w hen ... M - W.Mapped.M do

end;

refined Add Body b y ... W :Window I«
w h e n ... M - W.M apped.M do

end;

3.1.6. Theorems for windows

Theorem 12 All mapped windows belong to a user and no unmapped windows belong to a user:
assert Mapped_Owned_By_User Is

(V W 1 :Window | W1.Mapped :: (3 U 1 :U s e r:: W1 6 U1.Windows)) л
(V W1 :Window I W1 .Unmapped :: - » (3 U1 :U s e r:: W1 € U1 .Windows));

Theorem 13 A window can be owned at most by one user:
assert Window_Not_Owned_Two_Users Is

V M:Window :: (V U:User | M € U.Windows :: - i (3 U l :User | U 1 * U :: M 6 U l.W indow s));

Theorem 14 Windows contain only messages that a user is sending or reading (Notice that theorem 4
ensures that messages are at most in one UReading or USending.):

assert My_Messages_ln_Window Is
V W1 Window :: V U1 :User | W1 € U1 .Windows

(W1.Mapped.M € U1.Reading v WI.M apped.M £ U1.Sending);

4. Conclusions and directions for future work
The DisCo language and tool can describe the behavior of user interfaces in a formal manner. The tool
can be used for experimentation, and temporal logic of actions can be used for formal proofs.

The main advantages of our approach over previous methods are the description of concurrent user
interfaces in an abstract and implementation independent way, and the support for stepwise refinement
by the structuring capabilities of the DisCo language.

In future we plan to experiment with specifications of more complicated user interfaces. Especially the
suitability of temporal logic of actions for complex user interface specifications needs further experi­
ments. The examples should also be refined by the constraints caused by the implementation architec­
ture. It would be valuable to know how the implementation structure limits concurrency, and how we
can recognize those limitations from the specification.
We should also test our approach for verification of user interface properties like consistency and
reversibility.
Currently, the tool and method have no support for user interface implementation and prototyping, the
current DisCo tool can only specify the behavior of the user interface, and no representation issues can
be handled. In future, the animation capabilities of DisCo tool could be extended by typical user inter­
face input and output components.

5. Acknowledgements
The idea of using joint actions as a specification tool was originally presented by Ralph Back and
Reino Kurki-Suonio. The DisCo language was designed by Hannu-Matti Järvinen. Olavi Eerola and
Tatu Männistö have worked with me in the implementation of the tool. Reino Kurki-Suonio gave also
many valuable suggestions to previous versions of this paper. Email discussions with Matti Pettersson
have also helped me in clarifying the ideas.

140

6. References
[1] Back, R. J. R., Kurki-Suonio, R., Decentralization or process nets with a centralized control Dis­

tributed Computing 3 ,3, May 1989,73-87.
[2] Back, R. J. R„ Kurki-Suonio, R., Distributed cooperation with action systems. ACM Transactions

on Programming Languages and Systems 10,4, October 1988,513-554.
[3] Booth, P., An Introduction to Human-Computer Interaction. Lawrence Erlbaum Associates, 1989

(Reprinted 1990).
[4] Bowen, J., Formal specification o f window systems. Technical Monograph PRG-74, Oxford Uni­

versity Computing Laboratory, Programming Research Group, June 1989.
[5] Chi, U. L., Formal specification of user interfaces: a comparison and evaluation of Four Axio­

matic Approaches. IEEE Transaction on Software Engineering 11, 8, August 1985,671 - 685.
[6] Cohen, B„ Harwood, W. Т., Jackson, M. L, The Specification of Complex Systems. Addison-Wes­

ley Publishing Company, 1986.
[7] Green, M„ A survey of three dialogue models. ACM Transactions on Graphics 5, 3, July 1986,

245-275.
[8] Harel, D., Statecharts: a visual formalism for complex systems. Science of Computer Program­

ming 8 , 1987,231-274.
[9] Hayes, I. (ed.), Specification case studies. Prentice-Hall International (UK) Ltd, 1987.
[10] Hill, R. D., Supporting concurrency, communication and synchronization in human-computer

interaction - the Sassafras UIMS. ACM Transactions on Graphics 5, 3, July 1986,179-210.
[11] Jirvinen, H-М., Kurlri-Suonio, R., The DisCo Language, Tampere University of Technology,

Software Systems Laboratory, Report 8, March 1990.
[12] Järvinen, H-M., Kuriri-Suonio, R., Sakkinen, M., Systä, K., Object-oriented specification of reac­

tive systems. Proc. 12th International Conference on Software Engineering, Nice, France, 1990,
IEEE Computer-Society Press, 1990,63-71.

[13] Lamport L , A Temporal Logic o f Actions. Research Report 57, Digital Systems Research Centre,
1990. (A revised and extended version in preparation).

[14] Pettersson, M., Specifying the User Interface, Licentiate Thesis, University of Tampere (Manu­
script).

[15] Pfaff, D. (Ed.), User Interface Management Systems. Springer-Verlag, New York, 1985,67-79.
[16] Schiele, P., Green, Т., HCI formalisms and cognitive psychology: the case of Task-Action Gram­

mar. In Formal Methods in Human-Computer Interaction, Edited by Harrison, M. and Thimbleby
H., Cambridge University Press, 1990.

[17] Systä, K., A graphical tool for specification of reactive systems. Proc. Euromicro'91 Workshop on
Real-Time Systems. Paris, France, June 1991, IEEE Computer Society Press, 1991,12-19.

[18] Turner, P. P., Buxton W. A. S., Some issues in future user interface management system (UIMS)
development. In User Interface Management Systems. G. Pfaff, Ed. Springer-Verlag, New York,
1985,67-79.

[19] Waasennan, A., L, Extending state transition diagrams for the specification of human-computer
interaction. IEEE Transaction on Software Engineering 11,8, August 1985,699 - 713.

141

19*

ONE MORE EXPONENTIAL ALGORITHM FOR ESTABLISHING
SATISFIABILITY OF PROPOSITIONAL FORMULA

Mali Tombak

Department of Computer Science
University of Tartu

ЕЕЦ00 Tartu J.Liivi t
E-mail: maiiOctd.ui.ee

ESTONIA

Let a i , . . . , On be prepositional variables (n > 0). Prepositional formula in con­
junctive normal form (CNF) ia

(l < p < 3 ") , (1)

where

are clauses and

*<
A = V *У (X ̂ ki ^ n) (2)

i - 1

*i,-€{«!,»! :1 < / < » } (3)

are literals. Proportional variable щ in (3) is a variable of literal (oj = p rop(*y)).
We assume that all clauses in (1) are different and that all prepositional variables in
every clause are different. If hi = n in (2), then A, is m axe la use. If every clause in
(1) is max с lause, then A is complete CNF. For complete CNF 1 < p < 2“ . It is a
well-known fact, that every clause A; in complete CNF determines one evaluation, for
which A is false: neg(A,) = (an . .. O i „) , (an . . . ain) € {0,1}", where a;j = neg(zy)

and
/ l.if »«=•</,

neg(*o) = <
I 0, if * i j = * i j .

Hence, complete CNF A = A?*i Ai is satisfiable iff p < 2n, and 2n — p is the

number of true evaluations of A.

1 4 2

Let A be a CNF. If we transform A into complete CNF, then every clause A\ in
A generates a certain set of max clauses, gen(A,). Let

Pi = { « ,, a«} \ {ргор(ам),. . . . p rop (* i]ki)},

i.e. Pi is the set of all prepositional variables, which do not appear in clause A{. So

*<
g e n (^) * { (V « < j) V (V ^ € { 0, 1 } ,1 < / < | Р 4|}

;'= i au f Pi

and complete CNF for A is

genM) = (J gen(A<).
i—1

Clauses A{ and Aj are separated if gen(j4;) П gen(A j) = 0. Let w eight (A) =

|gen(A)|. It is easy to see that w e i g h t^) = 2n~ki. It is obvious therefore that
the number of maxclauses in complete CNF g en (.4) is equal to w e i g h t^) =
J2fml 2n_*‘ iff, for every i ф j , clauses Aj and Aj are separated.

Iwama’s algorithm for establishing satisfiability (see [2]) calculates the number of
maxclauses in gen(.4) using the inclusion-exclusion principle. We will try to transform

CNF A to equivalent CNF A ' with separated clauses.

T heorem 1 . Clauses Ai and Aj are separated if and only if there exists literal x so

that x £ Ai and x £ A j.

Proof. 1) Suppose there does not exist literal x so that x £ Ai and x £ A j. We can
write Ai and Aj in form

Ai = *i V . . . V Xk V yi V .. V yi,

A = *! V .. Л/ ** V *, V . . . V *m,

where %
{pro p (v i),.. ,ргор(у,)} П { p r o p (^) , . .. ,p ro p (im)} = 0,

Let {fci,. . . , b,} be the set of all prepositional variables from { a i , . . . , a«}, which do
not occure in Ai U A j , (r > 0). Then

143

gen(j4;) = {*i V ... V ** V yi. V ... V |» V z“1 V ... V z£m V bf1 V ... V bf' :

(a i >. . . , a m) € {0,l}m, (ßu . . . ß r) G {0,1}"},

gen(A;) = {*! V ... V ** V »71 V ... V у/' V xi V ... V zm V bf1 V ... V bfr :

(7i,.. .,7 l)6 {0 ,l} ,l (ß i , . . . ß r) 6 {0,l}r}

and

gen(Ai) П gen(Aj) = {*t V ... V z* V yx V .. V yj V zi V ... V zm V bf1 V ... V t>?r :

(ßu . . . ß r) £ { 0 , l }'},

i.e. gen(Ai) П gen (Ay) consists of 2r maxclauses and is not empty for every r > 0.
2) Suppose there exists propoeitional variable a so that a € Ai and ä € A j . In this

caee every clause from gen(A,) contains a and every clause from gen(Ay) contains ä.
Therefore gen(A,) П gen (Ay) = 0.

Algorithm 1: separate(A&5)
Let A and В be two nonseparated clauses, i.e.

A = x v V ... V хк V уг V ... V yl(

B = i 1 V . . . V * t V z 1 V . . . V : m)

where

{prop(yt),. . . , prop(yi)} П {prop(zi),. . . , prop(zm)} = 0.
Suppose m > I.

I f l = 0, then separate(A tcB) = A

ehe se p a ra te(AScB) = A i iB ib . . . k B i, where

B i = 5 V y i ,

= J? V yi V У2

B» = B V y 1V y 2 V y 8

Bi = B v yi Vy2 V . . . Vy{.

144

Theorem 2. separate(.A&i?) is CNF, equivalent to A L B witk pairwue separated

clauses.

Proof. 1) A is separated from B, (1 < i < I), because A contains y, and Bi contains ft.

В; is separated from Bj (1 < i < j < /), because B; contains j/i, and for every j > i,

Bj contains y,

2) If I = 0, then A subsumes В (see [1]), and therefore separate(i4& l?) = A is
equivalent to A k B .

Suppose I > 0, and let о € {0, l}n be an arbitrary evaluation for which A iiB is
true. By construction of B{, one can see that В subsumes B j (1 < » < I). Hence B, is
true for each evaluation for which В is trne. Therefore A k B i k . . . k Bi , is true for
evaluation o.

Let о € {0, l}n be an arbitrary evaluation for which A k B is false. If A is false
for о , then A k B i k . . . kBi , is false for o. Suppose, that A is t ru e for o. Then В

is false for a, i.e all literals * i , . . . , * *, . . . , . . . , zm are Ш ве for o. At least one of
literals у,- has to be tru e (remember that A is true for a). Let io be the minimal i such
that yi is tru e . Then Bi0 = V ... V ** V zi V ... V zTO V у! V y»0_i V y,-0 is false, and
hence A ic B \ i t . . . k B i is false for evaluation o.

If we transform CNF A into CNF A \ using Algorithm 1 , some new clauses may

be nonseparated. Consequently, if the number of clauses in A is p and the number of
clauses in A ' is p \ then we have to check (p')2 pairs of clauses. To be sure, that this
method for establishing satisfiability does not violate the hypothesis P=N P, we have
to find an example of CNF A for which number of clauses grows exponentially.

Example 1. A = {о, V 6, V eg,а,- V Ь, V c .,0; V 6, V c,-,õ, V 5, V с, : » = 1,. The
number of clauses in A is 4lb. After applying Algorithm 1 we get A ' with number of
clauses p ' = J *̂=1 4*.

Exam ple 2. Let G = (V, E) be a graph, where V = {сц,. . . , on} is the set of nodes
and E is the set of edges. We build CNF A q with prepositional variables « i , . . . , On,
which consists of all clauses äi V äj such that (a ;, a;-) £ E. It is easy to see, that
every satisfying evaluation for A g represents one clique of G (including trivial ones).
If we transform CNF A g into separated CNF, we can compute the number of true

145

evaluations of A a , which is the number of all cliques of G. If we consider the graph
Q = (N , E), where N = {e1(bV). . . , a*, bk) and E = {N x N) \ {(a,, k) : 1 < « < *},

then CNF A a will be v 6.) and A lgorithm 1 gives the separated formula A g ’,

which consists of 2* - 1 clauses.

References:
[1] Davis М., Putnam H. A computing procedure for quantification theory. - J. Assoc.
Comput. Mach., I960, 7. pp. 201-215.
[2] Iwama K. CNF satisfiability test by counting and polynomial average time. - SIAM

J. Comput., 1989, vol. 18 No.2, pp. 385-391.

TÜ 9 3 .2 9 4 .2 0 0 .9 ,4 4 .9 ,2 5 .

	Helena Ahonen, Heikki Mannila, Erja Niknnen. Grammars for Structured Documents by Generalizing Examples
	Ákos Fóthi, Judit Nyéky-Gaisler. On the Complexity of Object-oriented Programs
	Zoltán Horváth. The Weakest Precondition and the Specification of Parallel Programs
	Tamás Horváth, Tibor Gyimóthy, Zoltán Alexin, Ferenc Kocsis. Interactive Diagnosis and Testing of Logic Program
	Esa Järnvall, Kai Koskimies. An Overview of the TaLe Language Editor
	Jyrki Katajanen, Erkki Mäkinen. On Using Type Information in Syntactical Data Compression
	Pertti Kellomäki. Psd - a Portable Scheme Debugger
	Mare Koit, Haldnr Õim. Modelling Conununicative Strategies
	Antti Koski. A Semantic-Syntactic Recognition System Based on Attributed Automata
	Jukka Paakki, Kari Granö, Ari Ahtiainen, Sami Kesti. An Implementation of ASN.1(Abstract Syntax Notation One)
	Èndre Ràcz. Specifying a Transaction Manager Using Temporal logic
	Erkki Sntinen, Jorma Tarbio. String Matching Animator SALSA
	Kari Systä. Specifying User Interfaces as Joint Action System
	Mati Tombak. One more Exponential Algorithm for Satisfiability of Propositional Formula

