
Proceedings of the Third

Symposium on Programming 
Languages and Software Tools

Mati Tombak (Ed.)

Kääriku, Estonia 
August 23-24 1993

Univesity of Tartu 
Department of Computer Science 

August 1993



Proceedings of the Third

Symposium on Programming 
Languages and Software Tools

Mati Tombak (Ed.)

Kääriku, Estonia 
August 23-241993

Univesity of Tartu 
Department of Computer Science 

August 1993



CONTENTS

1. Helena Ahonen, Heikki Mannila, Erja Niknnen
Grammars for Structured Documents by Generalizing E xam ples....................... I

2. Akos Fõthi, Judit Ny6ky-Gaisler
On the Complexity of Object-oriented Programs.................................................. 14

3. Zoltan Horvath
The Weakest Precondition and the Specification of Parallel Programs . . .  24

4. Tainas Horvdth, Tibor Gyimõthy, ZoltÄn Alexin, Ferenc Kocsis 
Interactive Diagnosis and Testing of Logic P ro g ra m s.........................................34

5. Esa J urn vail, Kai Koskimics
An Overview of the TaLe Language E d ito r ........................................................... 47

6. Jjrrlri Katajanen, Erkki Makinen
On Using Type Information in Syntactical Data Compression........................... 59

7. Pertti Kellomäki
Psd -  a Portable Scheme Debugger.........................................................................

8. Mare K oit, Haldnr Õim
Modelling Conununicative S trateg ics.................................................................... 73

9. Antti Kosld
A Semantic-Syntactic Recognition System Based on Attributed Automata . . A3

10. Jukka Paakki, Kari Granõ, Ari Abtiainen, Santi Kesti
Aa Implementation of ASN.l (Abstract Syntax Notation O n e)........................... 95

11. Ё. R ica
Specifying a Transaction Manager Using Temporal l/o g ic .................................... 109

12. Erkki Sntinen, Jorma Tarbio
String Matching Animator SA L SA .........................................................................120

13. Kari S y sti
Specifying User Interfaces as Joint Action S y stem s..............................................130

14. M ati Tombak
One more Exponential Algorithm for Satisfiability of Proposition*) Formula . . 1 4 2



Grammars for structured documents
by generalizing examples *

Helena Ahonen Heikki Mannila
University of Helsinki University of Helsinki

Er ja Nikunen 
Research Centre for Domestic Languages

April 1993

Abstract

Examples of structured documents include dictionaries, user manuals, etc. Struc­
tured documents have an internal organization that can be used, for instance, to 
help in retrieving information from the documents and in transforming documents 
into another form. The document structure is typically represented by a context- 
free or regular grammar. Many structured documents, however, lack the grammar: 
the structures of individual documents are known but the general structure of the 
document class is not available.

In this paper we describe a technique for forming the grammar describing the 
structure of a structured document. The user describes the structure of some ex­
ample documents, and from these the system infers a small general description.
The technique is based on ideas from machine learning. It forms first finite-state 
automata describing the examples completely. These automata are modified by con­
sidering certain context conditions; the modifications correspond to generalizing the 
underlaying language. Finally, the automata are converted into regular expressions, 
which are then used to construct the grammar.

*This work was partially supported by TEKES and the Academy of Finland. Authors’ ad­
dresses: Helena Ahonen, Heikki Mannila, Department of Computer Science, University of Helsinki, 
P.O. Box 26 (Teollisuuskatu 23), SF-00014 University of Helsinki, Finland. Erja Nikunen, Re­
search Centre for Domestic Languages, Sörnäisten rantatie 25, SF-00500 Helsinki, Finland, e-mail: 
{hahonen,mannila}Ccs.Helsinki.FI, enikunenCdomlang.FI
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1 Introduction

Text with structure is quite common: dictionaries, reference manuals, and 
annual reports are typical examples. In recent years, research on systems 
for writing structured documents has been very intensive. One of the recent 
surveys of the field is [2]. The interest in the area has led to the creation of 
several document standards, of which the best known are ODA and SGML 
[5, 7]. The common way to describe the structure of a document is to  use 
context-free grammars [6, 13]. Thus, in database terminology, grammars 
correspond to schemas, and parse trees to instances.

It is typical to use regular expressions in the right-hand sides of the pro­
ductions of the grammar. For example, the following might describe the 
simplified structure of a dictionary entry:

Entry —► Headword Sense*.

The meaning of this production is that an entry consists of a  headword 
followed by zero or more senses. A more complicated example is

Entry —* Headword [Inflection]
(Sense_Number Description

[Parallel-form | PreferredJorm] Example*)*,

which states that an entry consists of a headword followed by an optional 
inflection part and zero or more groups, each group consisting of a sense 
number, a description, a further optional part which is either a parallel form 
or a preferred form, and a sequence of zero or more examples

The structure of a document can be used to facilitate transformations 
and queries which have structural conditions. The structure also provides 
general knowledge of the text. It can be fairly complicated, however, to 
find the grammar that describes the structure of a given large text. (See 
for example [4].) The user might, for example, be experimenting with a 
totally new text, or the text might be already available, and the user wants 
to transform it into a structured form. Typically, forming the structure of 
an existing large text seems to be difficult without any tools.

In this paper we describe a method that can be used to form a context- 
free grammar for a structured text semi-automatically. The method is based 
on the idea that the user marks and names some example components and 
regions of the text using a pointing device. The marking produces example 
productions. However, since these productions are based on some specific 
parts of the text, they are overly restrictive and hence, they cannot be used
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as the grammar describing the structure of the text. Thus, one should be 
able to generalize the productions in some meaningful way.

The generalization is done by assuming that a sufficiently long common 
part in two productions for the same nonterminal means tha t also the parts 
following the common part should be interchangeable.

For the generalization, we use techniques from machine learning [11, 12]. 
Learning context-free and regular grammars from examples has been studied 
in, e.g.,[3, 9 ,11 ,14 , 15]. However, these results are not directly applicable to 
our setting, either because they assume that positive and negative examples 
axe available or because they make other assumptions about the data that 
are not valid in our case. The method we have developed proceeds as follows.

1. The example productions are transformed to a set of finite autom ata, 
one for each nonterminal. These autom ata accept exactly the right-hand 
sides of the example productions for the corresponding nonterminal.

2. Each automaton is modified in isolation, so that it accepts a larger lan­
guage. This language is the smallest one that includes the original right- 
hand sides and has an additional property called (k ,h )-contextuaiity. 
This property states roughly that in the structure of the document 
what can follow a certain component is completely determined by the 
к preceding components at the same level. Steps 1 and 2 are based on 
the synthesis of finite autom ata presented in [3, 11], specifically (fc, h)- 
contextuality is a modification of A;-reversibility [3] and fc-contextuality
[11J-

3. The resulting autom ata are transformed to  regular expressions, which 
form the right-hand sides of the productions for the corresponding non­
terminals.

We have implemented our method in connection with the structured text 
database system HST [10]. Our preliminary empirical evidence indicates 
that the method is a  useful tool for transforming existing texts to  structured 
form.

The rest of this paper is organized as follows. As a running example 
we use entries from a Finnish dictionary [1]. Section 2 describes the con­
struction of the initial automaton. In Section 3 we describe the general 
method for generalizing the productions, and the particular inductive biases, 
fc-contextuality and (к , /i)-contextuality, we use in generalizing the examples. 
Section 4 describes the conversion into regular expressions. Empirical results 
are discussed in Section 5. Section 6 contains some concluding remarks.
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2 Prefix-tree autom aton

The right-hand sides of productions obtained from the user’s examples are 
represented by an automaton called a prefix-tree automaton. To construct a 
prefix-tree automaton we first take the set of sample productions which have 
the same left-hand side. The right-hand sides of these productions are added 
to  the prefix-tree automaton one by one.

For example, if the following productions are added into a prefix-tree 
automaton, the result is the automaton shown in Figure 1.

Entry —► Headword Inflection Sense Sense
Entry —► Headword Inflection ParalleLform Sense Sense Sense
Entry —► Headword Parallel_form Sense Sense
Entry —► Headword PreferredJorm Sense
Entry —► Headword Inflection PreferredJorm Sense Sense

Figure 1: Prefix-tree automaton containing all the examples.

3 (k,h)-contextual languages

A prefix tree automaton accepts only the right-hand sides of the examples. 
To obtain useful grammars, we need some way of generalizing the examples, 
and the automaton describing them, in a meaningful way.
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In machine learning terms, the examples of productions are all positive 
examples. That is, the user gives no examples of illegal structures. To learn 
from positive examples, one needs some restrictions on the allowed result of 
the generalization. Namely, a consistent generalization of a set of positive 
examples would be an automaton accepting all strings! Thus we have to 
define a class of autom ata that are allowed as results of the generalization.

By merging some of the states we get an automaton which accepts more 
strings, i.e., this automaton generalizes the examples. To merge states s, 
and Sj we first choose one of them to represent the new state, say s,-. All the 
incoming arcs of Sj are then added to the set of incoming arcs of $,■ , and all 
the outgoing arcs of Sj are added to the set of outgoing arcs of s,-. There are 
many possibilities of generalizing an automaton by merging states.

The generic algorithm is the following:

A lgor ith m  1 Generalizing a set of productions using some criterion for 
merging states.
Input: A criterion for merging states and a sample

I  = { A —> a \ A £ N ,  a  € ( N  \J T)*}

consisting of productions for some nonterminals.
Output: A set

О = {A —► a ’ I A  € N , a1 is a regular expression over the alphabet (N  ü T )}

of generalized productions such that for all A -*■ a  £ /  there is a production 
A  —► a! € О such that a  is an instance of a '.
Method:

1. for each nonterminal A
2. Construct a prefix-tree automaton M a from 

the productions of I with left-hand side A
3. rep eat
4. for each pair p, q of states of M a

i f  p  and q fulfill the generalization condition 
th en  modify M a by merging p and q

5. until no more states can be merged
6. Convert M a to an equivalent regular expression E a
7. Output the production A  —► E a
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How do we choose the generalization condition? Our assumption is that 
the grammars used in structured documents have only limited context in the 
following sense. If a sufficiently long sequence of nonterminals occurs in two 
places in the examples, the components that can follow this sequence are 
independent of the position of the sequence in the document structure.

A language satisfying this condition is called k-contextual [11]. The prop­
erty of fc-contextuality can be described simply in terms of automata.

L em m a 2 A regular language L is fc-contextual if and only if there is a finite 
automaton A  such that L = L(A), and for any two states pk and qk of A and 
all input symbols а\й2 .. .a* we have: if there are states po and qo of A  such 
that 6(po,aia2 . . . a k) = Pk and 6(q0,a ia 2 ..  .ak) = qk, then pk =  qk.

For a set of strings Я , a fc-contextual language L such that

1. H  C L  and
2. for all fc-contextual languages M  such that H  С M  we have L С M

is called a minirrtal к-contextual language including H.
It can be shown that there exists a unique minimal, i.e. the smallest, 

^-contextual language containing a given set of strings. If A  is an automaton 
such that L{A) is ^-contextual, we say that A is a к-contextual automaton. 
Lemma 2 and Algorithm 1 give a way of constructing a fc-contextual automa­
ton which accepts the smallest fc-contextual language containing L(C ) for an 
automaton С . States of С  satisfying the conditions in the implication of the 
lemma are merged until no such states remain.

Finally the 2-contextual automaton looks like the one in Figure 2. We 
can see that it generalizes the examples quite well. The automaton, how­
ever, accepts only entries which have two or more Sense nonterminals in the 
end. This is overly cautious, and therefore we need a looser generalization 
condition. In Figure 2, for example the states S4 and 55 could be merged.

The intuition in using fc-contextuality is that two occurrences of a se­
quence of components of length к implies that the subsequent components 
can be the same in both cases. We relax this condition and generalize the 
fc-contextual languages further to (к , /i)-contextual languages. In these lan­
guages two occurrences of a sequence of length к implies that the subsequent 
components are the same already after h characters. As for fc-contextuality, 
we obtain an easy characterization in terms of automata.
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Figure 2: 2-contextual automaton.

L em m a 3 A regular language L  is (jfc, /i)-contextual if anti only if there is 
a finite automaton A such that L — L (A ), and for any two states pk and 
qk of A, and all input symbols a\a2 .. .a k we have: if there are states p0 
and an such that £(po,ai) =  p i,6 (p i,a 2) =  p?,.. .,6 (pk- .i,a k) = pk and 
<4 <?o,ai) =  ^1 , 6(91, «2) =  92) • • • >ö(qk-i,<**)-= qk, then pi = q,, for every i, 
where 0 <  h < t <  k.

The algorithm for producing the automaton that accepts a (fc, h)-context­
ual automaton is similar to the previous algorithm: one looks for states 
satisfying the conditions of the above lemma, and then merges states. If 
similar paths of length к are found, not only the last states but also some 
of the respective states along the paths are merged. If h =  к only the last 
states are merged. If h < к the paths have a similar prefix of length h before 
they are joined, i.e., к -  h f  1 states are merged. In Figure 3 we can see the 
final (2 ,l)-contextuaJ automaton.

4 Conversion into a regular expression

After the generalization steps presented in the previous sections have been 
performed, we have a collection of (к , fe)-contextual autom ata. To obtain 
a useful description of the structure of the document, we still have to pro­
duce a grammar from these. An automaton can be converted into a regular

7



ENTRY:

Figure 3: (2,l)-contextual automaton.

expression by using standard dynamic programming methods [8].
One of our goals was to obtain a readable grammar. The regular ex­

pressions produced by the standard method are not always so short as they 
could be, and therefore they have to be simplified. The simplified regular ex­
pressions form the right-hand sides of the productions for the corresponding 
nonterminals.

Sample productions in Section 2 generate the production:

Entry -> Headword
(Inflection [PreferredJorm | ParallelJorm] |
ParallelJorm | PreferredJorm)
Sense*

5 Experim ental results
We have implemented the method described above in connection with the 
HST structured text database system [10]. We have experimented with sev­
eral different document types, and the results are encouraging.

In our first test situation a user looked at some bibliographical entries, and 
quite mechanically marked and named all the parts of them. The program 
built the productions shown in Figure 4, and then generalized them. The 
result is shown in Figure 5.

Some remarks can be made. First, the interaction between nonterminals 
should be taken into account. Then the author list Author (, Author)* would 
be replaced by Authors, and Bpage - Epage would be replaced by Pages in
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Entry —* Key Confpaper
Pages —*• Bpage - Epage
Journalpaper —*• Author , Author , Author , Author , Title .

Journal , Number ’( ’ Year ’)’ , Pages 
Editors —► Editor and Editor eds 
Confpaper —► Author , Author , Author , Author , Title .

Booktitle , Editors , Publisher , Year , Bpage - Epage 
Entry —► Key Confpaper
Entry —► Key Journalpaper
Journalpaper —► Author , Author , Author , Author , Title.

Journal , Number ’( ’ Year ’)’ , Pages 
Editors —► Editor and Editor eds.
Confpaper —► Author , Author , Author , Author , Title .

Booktitle , Editors , Publisher , Year , Bpage - Epage 
Authors —► Author , Author 
Entry —► Key Confpaper
Confpaper —► Author , Author , Author , Title . Confname 
Authors —► Author , Author , Author 
Journalpaper —► Authors , Title . Journal Volume 
Entry —► Key Journalpaper

Figure 4: Sample bibliographical productions

the productions for Confpaper and Journalpaper. Second, the user sometimes 
gives inconsistent names, or punctuation varies in similar situations. Most 
of these cases can be found easily: see for instance the alternatives eds and 
eds. in the production for Editors.

Another kind of test was made with a Finnish dictionary [1 ]. The marking 
with a pointing device is inappropriate when the text considered is large 
and has a complicated structure. If this kind of text has been prepared for 
printing it is usually typographically tagged, i.e., parts of the text are circled 
by begin and end marks (e.g. begin bold -  end bold). Since typographical 
means are used to make the structure clear to the reader, they can be used 
to make the structure explicit: tags can be changed to structural tags (e.g. 
begin headword -  end headword).

9
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Authors Author (, Author)*
Confpaper —> Author (, Author)* . Title .

(Confname | Booktitle, Editors , Publisher , Year , Bpage - Fpage) 
Editors —*■ Editor and Editor (eds j eds.)
Jo u rn a lp a p e r(A u th o r  (, Author)* j Authors) . Title .

Journal (Volume | , Number ’( ’ Year ’) ’ , Pages)
Pages —► Bpage - Epage
Entry —» Key (Confpaper | Journalpaper)

Figure 5: Generalized bibliographical productions 

f

We converted our data, which consist of 15970 dictionary entries, in the 
above way, removed the end tags and the text, and built the sample produc­
tions. The total number of different entry structures was about 1300 but only 
82 of them covered more than 10 entries. We chose 20 of the most common 
structures (Fig. 6), which together covered 13313 entries. In the following 
the tagt have been changed into whoie words to facilitate understanding.

As a rebult we got the following prod net ion:
Enl ry —» Headword 

[ Example |
Inflection [Example j Reference] |
[Inflection [Consonant..gradation]]

([TechnicaLfield] Sense j TechnicalJreld) [Example] J 
Reference i 
Preferred-form ]

This example shows that creating a grammar is not a trivial task: the 
structure of a dictionary entry is very flexible. The result production may 
look somewhat complicated itself but in any case it is a good basis for manual 
improvement.

If we go further with this material and take into account more entry 
structures, it is not feasible to produce only one production. Therefore we 
have studied possibilities of adding frequency information into our method 
(see Section 6). The goal is to separate the most common structures from 
the rare cases.
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Entry -* Headword Sense
Entry -* Headword Example
Ent.ry -+ Headword
Entry —v Headword Inflection Sense
Entry —> Headword Sense Example
Entry Headword Inflection Sense Example
Entry —> Headword TechnicaLficld Sense
Entry -+ Headword Inflection Consonant-gradation Sense Example
Entry —i Headword Inflection Technical ..field Sense
Entry -+ Headword Inflection Example
Entry Headword Inflection Con sonant-gradation Sense
Entry -* Headword Reference
Entry — Headword Inflection TechnicaLficld Sense.Example 
Entry —► Headword Technical-field Sense Example 
Entry —* Headword TechnicaLfield 
Entry — Headword Inflection Reference
Entry —*• Headword Inflection Consonant-gradation TechnicaLfield Sense
Entry —> Headword Inflection
Entry —> Headword Technical Jield Example
Entry —с Headword PreferredJorm

Figure 6: Sample dictionary productions

6 Conclusion and further work

In this paper we have presented a method for generating a. context-free gram­
mar from the user’s examples. The user gives names to the parts of existing 
texts. These names are used to  form simple productions, which are then 
generalized and combined to form a grammar.

In the generalization of the examples we have first applied the idea of 
^-contextual languages and further extended them to (fc, Л)-contextual lan­
guages. These conditions seem to describe quite natural constraints in text 
structures.

We have implemented this method and tested it with several document 
structures. The results are encouraging but also show some possibilities of 
improvement and extension. The method described here constructs only one 
production for every nonterminal. This is inadequate when the structure
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varies a lot or there are many rare or erroneous cases. It is desirable to get 
one or a few productions which cover most of the examples, and then several 
productions which correspond to the exceptions.

We have started to implement this idea in the following way. In our 
dictionary data each sample production has a weight which is the number of 
entries this production covers. When an example is added into a prefix tree 
automaton, all the weights of the arcs visited are increased by the weight of 
the new production. When the autom ata are generalized, the weight of a 
merged arc is the sum of the weights of the two arcs that are merged.

The user gives a bound b which means that the program constructs a 
production which covers at least all the structures that appear b times! in data. 
In addition to this production several exception productions are constructed 
as well.

It would be reasonable to increase the interactivity with the user. One 
possibility is to apply the method incrementally: the user adds examples one 
by one, and the program builds a grammar. The grammar could be shown 
simultaneously in a different window, which makes it easier for the user to 
use consistent names for different structures.

If the examples are properly punctuated, it is possible to add a parser 
to the system. Then the user could have a large collection of existing texts. 
He/she could choose some examples and analyze them for the learning pro­
gram and let the rest of the example texts be parsed by the program. If 
an example cannot be parsed, either the grammar is modified or the user 
changes the example. The latter gives the user a possibility to correct errors.

Generally, to be a useful tool, this method should be implemented in a 
flexible way. There should be a possibility of applying different kinds of 
document structures, both new and existing ones, easily. The user should be 
able to add new examples, remove old ones, and correct errors at any time. 
The program should also, at the user’s request, offer alternative solutions.
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A bstract: Object-oriented programs are constructed with the help of the same 
control structures as traditional ones. At first sight, therefore, their complexity 
can be measured the same way as the complexity of the traditional programs. 
In this case the complexity depends 011 the nesting level of the control struc­
tures, as it has been shown by Piwowarski, Harrison, Magel, Howatt, Baker 
etc.[HB89,HM181,HM281,PIW89]. Why do we still have the feeling that object- 
oriented programs are more simple than the traditional ones? To answer this, 
we have to introduce a new measure of complexity. The measures mentioned 
above have a common problem: each of them evaluates the complexity of a pro­
gram only from the point of view of its control structure. Our opinion discussed 
here is that the complexity of a program is a sum of three components:
( 1 ) the complexity of its control structure,
(2) the complexity of data types used,
(3) the complexity of the data handling (ie. the complexity of the connection 
between the control structure and the data types).

We give a suggestion for the measure of complexity of a program. This 
new measure of complexity is used to argue why good object-oriented programs 
could seem more simple.

l.In trod u ction
There are several methods of measuring program-complexity. The com­

plexity of programs depends on the number of operators and operands (the 
software science measure); on the number of predicates (cycloinatic complex­
ity); but these measures do not characterize sufficiently the nature of complexity, 
since n nested loops or « nested if statements are undoubtedly more complex 
than the sequence of n loops, or the sequence of n decisions. As far as we found 
in the literature [HB89,HM181,HM281,PIW89.McC76,Va92] the complexity of 
programs was so far measured only on the basis of its control structure.

Nowadays one of the most frequently read notion in the literature of pro­
gramming methodology is the ’object-oriented’ one. While constructing great 
systems the questions of reusability and extendibility became of key importance. 
The more simple a program is the easier it is to understand, later to modify or 
reuse some parts of it in the case of the construction of other, similar programs.
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Followers of object-oriented methodology state that professional software pro­
duction becomes notably simplified using this new technique, which results in 
enormous cost decrease.

Object-oriented programs contain the same control structures (sequence, 
if- and loop statements) as the traditional ones, thus there seems to be no 
difference in their complexity.

What is the greatest novelty of this design approach? It draws the atten­
tion to the importance of precise definition and consistent use of abstract data 
types. Actually if we inspect starting from this concept the program complexity 
measures so fax, it will immediately strike us, that none of them takes into ac­
count .neither the influence of the technique of hiding (e.g. use of procedures) 
on the complexity of programs nor the complexity of data used in the pro­
gram, respectively the complexity of references to objects of different types or 
the consequences of hiding the representation and implementation of abstract 
data types. We also have parallelly with the control structures to examine the 
structure of data with the help of an appropriate measure to their complexity.

Our main proposal is, that when counting the complexity of a program, we 
should take the complexity of the data used and the complexity of data handling 
into consideration, we should see the decreasing of complexity through hiding 
techniques.
2. Prelim inary definitions and notions

We shall define the new measure on the basis of the definitions given to the 
complexity of nested control structures. The definitons connected to this come 
from the excellently ’’rigorous” description of J.Howatt and A. Baker [НВ89].

D efin ition  2.1 . A direct graph G =  (N ,E ) consists of a set of nodes N 
and a set of edges E. An edge is an ordered pair of nodes (x,y). If (x,y) is an 
edge then node x is an immediate predecessor of node у and у is an immediate 
successor of node x. The set of all immediate predecessors of a node у is denoted 
IP (y ) and the set of all immediate successors of a node x is denoted IS(x). A 
node has indegree n if E contains exactly n edges of the form (w,z), similarly a 
node has outdegree m if E contains exactly m edges of the form (z,w).

D efin ition  2.2. A path P in a directed graph G = (N, E) is a sequence 
of edges (x i, x2), (x2,x 3) , . . .  (x*_2, x*_i), (xt _ i , x*), where Vi[l < » < * ; ] = »  
(xj,xj+i) € E. In this case P is a path from x\ to x*.

D efin ition  2.3. A flowgraph G = (N , E , s , t ) is a directed graph with a 
finite, nonempty set of nodes N, a finite, nonempty set of edges E, s € N  is the 
start node, t G N  is the terminal node. For any flowgraph G, the s start node 
is the unique node with indegree zero; the t terminal node is the unique node 
with outdegree zero, and each node x £ N  lies on some path in G from s to t. 
Let N ' denote the set N  — {.*,<}.

J.W. Howatt and A.L.Baker define the notion of the basic block for mod­
eling control flow as follows:

D efin ition  2.4. A basic block is a sequential block of code with maximal 
length, where a sequential block of code in a source program P is a sequence of

3
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tokens in P that is executed strating only with the first token in the sequence, all 
the tokens in the sequence axe always executed sequentially, and the sequence is 
always exited at the end. Namely, it doesn’t contain any loops or if statements.

D efin ition  2.5 . Every node n € N  of a flowgraph G =  (N , E ,s ,t)  which 
has outdegree greater than one is a predicate node. Let Q denote the set of 
predicate nodes in G.

The well-known measure of McCabe (cyclomatic complexity) is based only 
on the number of predicates in a program: V(Cr) = p + 1. The inadequacy of the 
measure becomes clear, if we realize that the complexity depends basically on 
the nesting level of the predicate nodes. The measures proposed by Harrison 
and Magel [HM181,HM281] and Piwowarski [Piw82] proven to be equivalent in 
principle by Howatt and Baker [HB89] take this lack into account.

D efin ition  2 .6 . Given a flowgraph G = (N ,E ,s , t ), and p,q G N, node 
p dominates node q in G if p lies on every path from s to q. Node p properly 
dominates node q in G if p dominates g and p ф q. Let r  G N , node p is 
the immediate dominator of node q if (i) p properly dominates q and (ii)if r 
properly dominates q then r dominates p.

The formal definition of the scope number is based on the work of Harrison 
and Magel.

D efin ition  2.7. Given a flowgraph G = (N ,E ,s ,t) ,  and p, q € N„ the set 
of first occurence paths from p to q, FOP(p,q) is the set of all paths from p to 
q such that node q occurs exactly once on each path.

D efin ition  2.8 . Given a flowgraph G =  (N ,E ,s , t), and nodes p,q  G N„ 
the set of nodes that are on any path in FOP(p,q) is denoted by MP(p,q):

M P(p,q) =  {v I 3P [ P  G FOP(p.q) A v G P ].}

Definition 2.9. In a flowgraph G = (N, E ,s ,t) , the set of lower bounds of 
a predicate node p G N  is

LB(p) = {v I VrVP [ r G IS(p) A P  G FO P(r,t) =» v G P  ]}

Definition 2 .10 . Given a flowgraph G = (N , E, s, t), and a predicate node 
p G N , the greatest lower bound of p in G is

GLB{p) = {9 I q G LB(p) A Vr [ r  G (LB(p) \  {g}) => г G LB(q)]}

D efin ition  2 . 1 1 . Given a flowgraph G = (N , E, s, t), and a predicate node 
p € N , the set of nodes predicated by node p is

Scope(p) =  {n I 3q [ q G IS (p ) A n G MP(q, GLB(p)) ] } \  { GLB(p) }

D efin ition  2 .12 . Given a flowgraph G = (N ,E ,s , t), the set of nodes that 
predicate a node x  G N , is

Pred(x) =  {p I x G Scope(p)}
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D efin ition  2.13. The nesting depth of a node x 6 N, in a flowgraph 
Gt— (N , E, s, t ) is

nd(x) =  I Pred(x) |

Thus, the total nesting depth of a flowgraph G was counted as 

1V D (G )=  £  nd(n)
n€N'

The measure of program complexity given by Harrison and Magel is the 
sum of the adjusted complexity values of the nodes. This value can be given - 
as proved by Howatt - as the scope number of a flowgraph:

D efin ition  2.14. The scope number•, SN(G) of a flowgraph G =  (N, E , s, t )
is

SN(G) = I N ' I +ND(G)

The main concept behind this definition is, that the complexity of under­
standing a node depends on its nesting depth, on the number of predicates 
dominating it.

This measure was proved by J.W. Howatt and A.L.Baker to be equivalent 
to the ones proposed by Piwowarski or Dunsmore and Gannon, that is why we 
shall refer to this in the following.

3. P roposal for a new  m easure
As we can see from the above, the software complexity measures did not so 

far take the role of procedures into consideration, while the complexity of data 
used was completely out of the question.

Our first suggestion is directed towards the introduction of the notion of 
procedure . The complexity of programs, decomposed to suitable procedures, 
is decreasing. We need a measure which expresses this observation.

Let us represent a program consisting of procedures not with a flowgraph, 
but with the help of a set o f  flowgraphs. Let us define the complexity of a 
program as the sum of the complexities of its component flowgraphs!

D efin ition  3 .1 . A programgraph V = {G | G = (N ,E ,s , t ) flowgraph} 
is a set of flowgraphs, in which each start node is labeled with the name of the 
flowgraph. These labels are unique. There is a marked flowgraph in the set, 
called the ’main’ flowgraph, and there is at least one flowgraph in the set which 
contains a reference to each label except the ’main’ one.

D efin ition  3.2 . The complexity of a programgraph will be measured by 
the stun of the scope numbers of its subgraphs

C ( V ) =  £  S N (G '> 

cev
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This definition shall reflect properly our experience that if we e.g. take 
a component out of the graph which does not contain a predicate node to 
form a procedure - i.e. a basic block, or a part of it (this means a single 
node ), then we increase the complexity of the whole program according to 
our definition. This is a direct consequence of the fact that in our measures 
so far we contracted the statement-sequences what is reasonable according to 
this view of complexity. If we create procedures from sequences the program 
becomes more difficult to follow, since we can not read the program linearly, 
we have to ’’jump” from the procedures back and forth. The reason for this is 
that a sequence of statements can always be wieved as a single transformation. 
This could of course be refined by counting the different transformations being 
of different weight, but this approach would transgress the competence of the 
model used. The model mirrors these considerations since if we form a procedure 
from a subgraph containing no predicate nodes, then the complexity increases 
according to the complexity of the new procedure subgraph, i.e. by 1 .

On the other hand, if the procedure does contain predicate node(s), then 
by the modularization we decrease the complexity of the whole program depend 
ing from the nesting level of the outlifted procedure. If we take a procedure 
out of the flowgraph, creating a new subgraph out of it, the measure of its 
complexity becomes independent from its nesting level. On the place of the call 
we may consider it as an elementary statement (as a basic block, or part of it).

Fig.1.



See Fig. 1. and Fig. 2. as ал example. It is visible, that even in such 
a simple case the complexity of the whole program decreases if we take an 
embedded part of the program out as a procedure. One can simply control 
that the complexity of the program shown on Fig.l. SN(G) =  19, while the 
complexity of the second version shown on Fig. 2. C(V) — YIg&v  ^N( G)  =  18.

This model reflects well the experience of programmers, that the complexity 
of a program can be decreased by the help of modularization not only when the 
procedure is called fron, several points of the program, but a well developped 
procedure alone, in the case of a single call can decrease the complexity of the 
whole program.

It is also trivial, that if we form a procedure from the whole program, than 
we also increase the complexity.

Now we are reaching the point where it is inevitable, not only from the 
point of wiev of handling procedure calls but also in connection with the whole 
program, to deal with the question of data. The complexity of a program 
depends not only on the complexity of the transformation but also on the subject 
of this transformation. What are the data to be processed.
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We extend the definitions that we have used so far: Let the set of nodes of 
our flowgraphs be widened by a new kind of node to denote the data! Let us 
denote by a small triangle (Д) the data nodes in the program! Let us draw to 
these nodes special edges, called data reference edge, which surely return to 
their origin from each node, where there is a reference to that data!

D efin ition  3.3 . Let N  and D  be two finite, nonempty sets of control 
structure and data nodes respectively. A data reference edge is a triple 
(xi,x2,xi) where x\ € N  and x2 € D.

Let us redefine the notion of a flowgraph as follows:
D efin ition  3.4. A data-flowgraph Q =  (Л/*, S, s, t) is a directed graph 

with a finite, nonempty set of nodes Af =  N  (J D, where N  represents the nodes 
belonging to the control structure of the program and D represents the nodes 
belonging to the data used in the program, (both of them are nonempty), with a 
finite, nonempty set of edges £ = E  |J  R, where E  represents the edges belonging 
to the control structure of the program, and R  represents the set of its data  
reference edges, s 6 N  is the start node, t € N  is the terminal node. The 
s start node is always the unique node with indegree zero for all the data- 
flowgraphs Q,; the t terminal node is the unique node with outdegree zero, and 
each node x € X  lies on some path in Q from s to t. Let Af' denote the set



The complexity of the program will be computed from the set of graphs 
obtained this way in accordance with the previous definitions - depending from 
the number of nodes and predicates dominating them. We call the attention to 
the fact, that if we take the role of data in the program into consideration, then 
the number of those nodes, which have outdegree greater than one, increases, 
and we have to determine the Scope also for those nodes, where there is a 
reference to a data.

As an example let us have a look at the program represented by the graph 
on Fig.3. The complexity counted this way can be obtained:
Scope(pi) =  {di, a, d2, p2, dA, c, d3, b}
Scope(p2) = {a, d2, p2, d4}
Scope(a) =  {^2}
Scope(b) = {cf3}
Scope(c) =  {<f3}
Prtd(p \ ) =  0 
Prtd(p2) =  {pi, P2 }
Pred(a) =  {рърг}
Pred(b) = {P l}
Pred(c) =  {pi}
Pred(d\ ) =  {pi}
Pred(d2) = {pi,p2, a}
Pred(d3) =  {pi, b, с}
Pred(d4) =  {рьрг}
Thus ND( 9)  =  15 and SN{g)  =  24.

This way the complexity will also be influenced by the data and this is just 
as well as at the transformations, since that to what extent a data makes a pro­
gram more complicated is determined by the decisions preceding the reference 
to it. This graph and its complexity measure defined this way express that the 
complexity of a program depends also on the data used, and on the references 
to these data.

As we have seen so far the complexity may be decreased the by the ap­
propriate modularization of the program. Similarly, if we take out a subgraph 
which contains one or more data with sill of the data reference edges leading to 
this data, we will decrease the complexity. E.g. if there is a single reference 
to a data at some transformation, and we take this transformation in order to 
create a procedure, where this data will be a local variable - the complexity of 
program decreases. The substantial moment in this activity is, that we hide a 
variable from the view of the whole program, we make it invisible (local), and 
thus essentially decrease the additive factor to the complexity at this point.

As an example see Fig. 4. constructed from the graph shown on Fig.3.. 
As one can easily control, the complexity of this program will be 18 opposed to 
the value 24 obtained for the program on Fig. 3.

The occurences are of course, in general, not so simple because there can 
be several references to the same data. How could we decrease the complexity 
of the program in addition to this? One fundamental tool is the decreasing of
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Fig. 4.

the number of small triangles, the number of data used. One possibility for this 
is that we draw certain data into one structure, creating data structures from 
our data. E.g. if we have to work with a complex number, then we decrease 
the complexity of the progrma if instead of storing its real and imaginary part 
separetely in the variables a and b , 'we draw these to a complex number x 
which has operations treating the real and imaginary part appropriately. The 
reduction(the decreasing of data nodes) occurs of course only when we hide 
th e com ponents in the following from the outerworld, since if we do not this, 
this would mean, on the level of the program graph, that we did not merge two 
data nodes into one, but created a third one to the previous two.

As a matter of fact we can decrease the complexity of program in connection 
with data if and only if we build abstract data types hiding the representa­
tion. Hi this case the references to data elements will always be references to 
data since a data can only be handled through its operations. While computing 
the complexity of the whole program we have to take into account not only the 
decreasing of the complexity, but also the increasing by the added complexity 
of determined by the implementation of the abstract data type. Nevertheless 
this will only be an additiv factor instead of the previous nested factor.

That is the most important complexity-decreasing consequence of the ob­
ject oriented view of programming: the object hides the typ e  from the 
predicates (decisions) supervising the use of the object.

The complexity measure studied here expresses the structural complexity 
of the program.
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The notion of inheritance allows actually to hide a class o f types, fur­
ther decreasing the sum of complexity, of course adding the complexity of the 
inheritance graph. To compute the complexity of an inheritance graph we have 
to use the graphrepresentation suggested by Meyer [Me88], namely using edges 
from the descendants to their ancestors, since the complexity of a class depends 
on their ancestor(s), not on their descendant(s). The complexity of an object- 
oriented program will thus be determined by the sum of the complexity of the 
inheritance graph and the complexity of objects used.

C onclusions

We investigated the given complexity measures, and found them suffer­
ing from a common problem, that they, while computing the complexity of a 
given program, did not take the role of neither the modularization nor the data 
used into account. On the basis of the previous efforts of J.W.Howatt and 
A.L.Baker we suggested a new measure of program complexity, which reflects 
our psychological feeling that the main concepts of object-oriented programming 
methodology help us to decrease the total complexity of a program.
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Abstract

We propose a method to express safety and progress properties of parallel programs 
based on the well-known concept of the weakest precondition [Dij76, FH91] and related 
predicate transformers.

We give new definitions for the operations of Unity [CHM88,Kna92], i.e. for unless, en­
sures and leads-to. Postulating fairness conditions [Mor90] we investigate the relationship 
of the old and new operations to the commonly used operations of linear and branching 
time temporal logics [ES88] and to the concept of the weakest and strongest invariant 
[Lam90].

Introduction

We take the specification as the starting point for program design. We are looking for 
a model of programlning which supports the top-down refinement of specifications [VarSl, 
FH91, СНМ88]. The proof of the correctness of the solution is developed parallel to the 
refinement of the specification of the problem. However we do not aspire to synthetise 
programs automatically [Lav78, ESS88/4.1.3] or to verify ready algorithms [ESS88/4.2]. 
In the present paper we are especially interested in building tools for specification of parallel 
programs.

The UNITY model [CHM88] of programing seeems to be an appropriate choice. We 
describe the main concepts of UNITY in section 2. We give a short overwiew of semantic 
models and temporal logics in section 3. Three basic operators are used for specification of 
parallel programs in UNITY, i.e.: unless, ensures and leads-to. We propose new definitions 
for the operators based on the well-known concept of the weakest precondition [Dij76, 
FH91) and related predicate transformes in section 4. We justify the correctness of the 
new definitions and investigate the relationship of the old and the new operations to the 
commonly used operations of linear and branding time temporal logics [ES88]. We show, 
that the new logic is more expressive than the old one.

A similiar approach to define progress properties is taken by Lukkien and Snepscheut 
in [LS92]. They give a new definition for leads-to for a language dealing with sequential 
composition but in absence of parallelism and fairness.

*  Supported by the Hun|»ri»n  National Science Reaetrch Grant (O T K A ),  Grant Nr. 304ft
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1. Preliminary notions and definitions

In the following we use the terminology used in [Par79, Fot83, Fot88, Hor90, FH91], 
(To avoid confusion, we use the word statement instead of program, and effect relation 
instead of program function.) Rn(A) denotes the set of n-ary relations on A, otherwise 
relation means binary relation in the following.

Def. 1.1. The relation R С A x В is a function, if V a € A : | Я(а) | = 1.
Def. 1.2. /  С A x С is a logical function, if it is a function, where С ::= {f, j}.
Remark: We use the words predicate and condition as synonyms for logical function. If 

P and Q are logical functions, then we use the Л, V, —» operations for function composition 
on the usual way.

Def. 1.3. T5[/] {a 6 A\f(a) = {f}} is called the truth-set of the logical function 
/ .  The operations U, П,С correspond to the function conmpositons A,V,-+.

Def. 1.4. I  С N . Vij € J : is a finite or numerable set. The set A ::= is
called state space, the sets Atj. are called type value sets .

Def. 1.5. The elements of the state space, the points а = (а<,,..., а,„ ) € A, are called 
states .

We can imagine a statement (a sequential program) as a relation, which associates a 
sequence of the points of the state space to the points of the state space.

Def. 1.6. The relation S is called a statement, if

i) S C  A x  A**,

it) Vs = A,
Hi) ( а € А А а  € 5(a) ) =► ai = a,
iv) (a € Us A*) => (Vi (1 < t < |« |) : а, ф <*;+i),
v) ( a  €  f t s  A a  €  A °°)  =>

(V* 6 N  (a, = a i+1 -♦ (V*(fc > 0): a< = a i+*))).

where A* is the set of the finite sequences of the points of the state space, and A°° the set 
of the infinite ones. Let A** = A* U A°°.

Def. 1.7. The effect relation of the statement 5 is the relation p(S) С A x A, if 

*) 'Dp(S) = { a £ A \  S(a) С A*}
ii) Va € Pp(s) : p(S)(a) = {6 G A | 3a € S(a): т(а) = 6},

where г : A* —* A is a function, which associates its last element to the sequence а  = 
(ai,....,a„), i.<?. r(ar) = a„.

Def. 1.8. The statement wp(S, R) is called the weakest precondition of the postcon­
dition R in respect of the statement S , if TS[wp(S, Д)] = {a € D,(s) | p(S)(a) С Т5[Д]} 

Def. 1.9. A statement over the state space A is called empty and denoted by SKI P , 
if Vo € A : SKIP(a)  = {(«)}•
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Def. 1.10. Let A = Aj x ... x A„, F = (Ft , ..., F„), where Fi С A x  Ai. The statement 
S  С A  x A** is a general assignment , if

5  =  {(a,red(a,b)) \ a, b G А A a G ig[i*lfl] A b e  F(a)} U 
{(a, (aaa....)) | a G А A a £

Remark: ZV = / £ р , ] ^ Л в) = ^i(a) x -̂ М0) * — x F„(a)
The assignment 5  is denoted by a := F(a) and called deterministic, if (Va € A : 
|p(5)(a)| = 1). If we use the notation (a := F(a), if jt), then ((Ps =  A) A (Va G 
TS[->7r] : p(S)(a) = {a})). This kind of assignment is called conditional.

Def. 1 .1 1 . A function F : R n(A) -» Rm(B) is monotone if X  С Y  => F{X) С F(F).
As is well known every monotone function has a minimal (least) and a maximal 

(greatest) fixpoint.
Lemma 1.12. Let function F  : Rn(A) —* R m(B) be monotone.

a) The minimal fixpoint of F: /iF = f){.Y|F(A) С Л'},
b) fixpoint induction for minimal fixpoint: if F(Z) С Z then fiF  С Z,
c) F(/<F) = fiF ,
d) the maximal fixpoint of: ijF = (J{.Y|.Y Q F(A')},
e) fixpoint induction for maximal fixpoint: if Z С F(Z) then Z С i)F.
f) F(./F) =  //F.

2 . The main concepts of UNITY
The first specification of the problem is short, only the most important aspects are 

formulated at the begining. The specification and its solution, the abstract program is in­
dependent of architectures, of scheduling and of programing language. The implementation 
of the abstract program is defined by the help of standard methods, so callecLtnappings.

The structure of the abstract program should not imply to encode unnecessary syn­
chronisation points between the processes. CSP [Hoa78] or Ada like programs are built up 
from sequential components which define explicit control flow over large subsets of state­
ments. Therefore the abstract program is regarded as a set of deterministic (simultaneous) 
conditional assignments (cf. Def. 1.10.). The condotions of the assignments encode the 
necesary synchronisation restrictions explicitly. In each step of executon of the abstract 
program some assignment is selected nondeterministically and executed. Every statement 
is executed infinitely often, i.e. an unconditionally fair scheduling is postulated. If the 
condition of an assignment is false, then the effect is equivalent to SKIP. If more than one 
processor selects statements for execution, then the executions of different processors are 
fairly interleaved.

The abstract program terminates never. A fixed point said to be reached in a state, 
if any statement in that state leaves the state unchanged.

3. Semantic models
If we want to reason about absence of undesirable side-effects, then we have to use 

rich mathematical model which is appropriate to reflect all the symptoms caused by the 
interaction of processes. We have to deal with synchronous and asynchronous, distributed 
and shared-memory architectures. Events an different processors take place simultane­
ously, processes on the same physical processor may interfer with each other. We would
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like to incorporate into our model the concept of true parallelism and true nondeterminism 
[BW91, MV91]. On the other hand we have to choose a model which complexity can be 
managed.

By the help of different semantics we formalize the meaning of our abstract programs. 
A semantics is said to be more abstract, if it regards more syntactically different abstract 
programs to be equivalent. The method used for the definition of equivalence may be 
denotational, operational or axiomatic, etc. In denotational semantics elements of domains,
i.e. a set of mathematical entities, are associated to abstract programs. The function from 
the set of abstract programs to the domain is compositional, i.e. the element of the domain 
associated to a compoud program is defined in terms of the elements associated to the 
component programs. Operational semantics is often based on labelled transition systems 
reflecting the behavior of processes. In the axiomatic semantics equivalence is expressed by 
a set of axioms and dervation rules. The same abstraction level can be achived using any of 
the three style of semantic definition [Hen88]. The advantage of denotational semantics is 
the ability to reason about the correctness of programs on a static way, i.e. by comparison 
of the elements of the semantic domain.

A semantics is true parallel, if it do not identifies a parallel program with set of the 
interleavings of its elementary components, i.e. (a || b ф ab + ba).

We Eire speaking about linear time semantics, if the nondeterministic behaviour of 
the programme restricted to the initial states of its execution. Branching time semantics 
reflects the true nondeterminism of programs, i.e. (a(b + с) ф ab + ас).

We give two examples for semantic models:
Model 3.1.1.: The semantic domain is a set of binary relations which associate a se­

quence of the points of the state space to the points of the state space [Fot88] A sequence 
denotes one possible execution of the statement (program). This is a linear time deno­
tational semantics. Operations over the domain are defined as compositions of relations 
[Fot83,Hor90].

Model З.1.2.: Sequences, built up from ordered pairs are associated to initial states 
in the semantic model of UNITY. The ordered pair consist of the state and the label of 
the program component (i.e. the label of the assignment), which is selected for execution 
at this state. Labels are important to identify the model and/or the process, which is 
responsible for the given state transition [Bes83, СНМ88]. This is an interleaved, linear 
time semantics, which is relatively easy to use from mathematical point of view. The 
linear time nature of the semantics is reflected in the definitions of operators used in 
specifications. The concept of unless, ensures and leads-to is based on the concepts of 
linear time temporal logics [ES88].

3.2. Temporal logics
3.2.1 Branching time temporal logic
Using branching time temporal logics for describing properties of nondeterministic 

programs we can associate to a program a directed tree. A node of the tree corresponds to 
a point of the state space, an edge represents a state transition. Labels associated to edges 
identify program components, which are responsible for the state transition. Assertions 
can be formulated to characterize the nodes and the paths [ES88]. We denote a node by
c, a path by t.
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AP(e), if for all path t leading from node e : P{t),
EP(e), if exists a path t leading from node e : P(t),
GP(t), if for every point e of path t : P(e),
FP(t), if exists a point e of path t : P(e).

We denote by an abstract program given in UNITY by 5. We are interested in the 
case, when the paths corresponding to nonfair execution sequences are excluded. In this 
case we use the operators А ф and Еф\

ф = Уз € S : CF exec(s), where exec(s) holds at a node e, if the edge leading to e is 
labelled by S.
АФР = А(ф P) 
ЕФР = Е(ф Л Р)
Several notion of fairness can'be formulated using branching time logic [ES88]. We 

may associate guards (boolean expressions) to atomic actions. An atomic action is enabled 
to be selected for execution, if its guard is true, enabl(s) holds at a node, if in the state 
corresponding to the node the guard associated to з is true.

- if (Уз G S  : GF exec(s)), then the scheduling is unconditionally fair.
- if (Уз € S : FG enabl(s) —» GF exec(s)), then the scheduling is weakly fair.
- if (Уз € S : GF enabl(s) —> GF exec(s)), then the scheduling is strongly fair.

We define some commonly used operators of branching time temporal logic:
OP ::= AG(P) (always)
ФР ::= = EF (not never, potentially)
~  P ::= AF(P) (eventually, ineviability) *

3.2.2 Linear time temporal logic

The nondeterministic behaviour of programs is restricted for the initial state of the 
execution in the case of Unear time temporal logics. The program is represented as we 
have seen in Model 3.1.1. or 3.1.2. We are not allowed to use operators like A or E. 
We can characterize one single execution sequence of the program by the help of the G, 
F and related operators. A specification given in linear time temporal logic satisfied by 
a nondeterministic program, if it is satisfied by every possible execution sequence of the 
program.

The linear time specification P can be translated to branching time logic as .4P. Since 
the operator A is not distributive [ES88], the whole specification has to be translated at 
once. The well-none example for the faliure of distribution of A is: A(FP V G~<P) ^ 
(AFP V AG^P).

The operators □, ф, are used in linear time temporal logic too. The first two 
operators are defined to correspond to their brandling time version (by the translation 
method).

□P ::= G(P) (always)
OP ::= -'□-'P =~ P ::= F(P) (eventually, ineviability)
Remark: Potentiality can not be expressed using linear time temporal logic.
An other way to define the semantics of a temporal logic is the use of Kripke structures 

[Krö87] or to refer the execution sequences explicitly:
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- (P atnext Q)(<,-) ::= ((Vj > i : -<?(«.)) V ( Q ( t / Л P(<*) Л Vj € (i, 4) : -<?(*,))).
- P Uw Q :\= Q atnext (P -* Q) ( weak until).

4. The original and the new definition of the operators: 
unless, ensures, leads-to

4.1. The original definitions
The operators used in [CHM88] for the specification of UNITY programs were based 

on the linear time semantics of the abstract programs. Hoare triples ({P}s{Q}) were used 
as short hand form: t denotes a sequence ^presenting a possible program execution (cf.
3.2.), p[<,] holds, if P holds at the appropriate state. Ror program 5 and a £ S  : {P}5{Q} 
holds, if for all sequences and for all i > 0 : (P[<,] A ti.label =  a) => g[tj+)].

Def.4.1.1. (unless)
p unless q = (Vs : а € S  :: {p Л -,9}s{p V 9})
Remark: P unless Q = ( 0 (P => (P|Ju,Q))) [Sin91].
Def. 4.1.2. P stabil ::= P unless J.
Remark: The weakest and strongest invariant of S [La90] is closely related to unless. 

win(S,R) is the weakest stabil (in respect of 5) condition, which implies R. sin(S, R) is 
the strongest stabil condition, which is implied by R.

Let denote FP  the condition which truth set is the set of fixed points of S. 
winp(S, R) ::= win(S,(FP -  R)) 
ainp(S,R) ::= ain(S,(FP —» R))
Progress properties:

Def. 4.1.3. (ensures)
p ensures q ::= (P unless q) Л 3s 6 5  :: {рЛ [CHM88]
Remark: the definition of ensures based on the unconditional scheduling.
Def. 4.1.4. (p leads-to q, inevitability)
A given program has the property p leads-to q if and only if this property can be 

derived by a finite number of applications of the following inference rules: 
p ensures q => p leads-to q,
(transitivity) p leads-to 9, q leads-to r =» p leads-to r,
(disjunction) For any set W,
[Vm : m G W  :: p(m) leads-to 9] => [3m : m € W  :: p(m)] leads-to q.

Remark: Since leads-to is defined by inference rules, the statement not (P  leads-to Q) 
has the meaning that P leads-to Q can not be derived. We are not able to express using 
leads-to, that Q is not inevitable from P.

Remark: If (P leads-to Q), then ( D(P — Q)) [Sin91].
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4.2. The redefinition of unless

We use in our definitions the concept of the weakest precondition, fixpont of functionsv 
least and greatest fixpoints of equations, and fixpont induction as we defined them in 
section 1 .

We generalize the concept of UNITY program on the following way. Let denote with 
I  a nonempty, finite subset of the natural numbers. Let be 5 a nonempty, finite set of 
conditional assignments, such that

S  =  {Si I * €  I  Л V p(3i) — A  A Va €  Л .: (|o>,(«)| <  w)}
From now on we use the branching time semantic model 3.2.1., which reflects the 

definition of the weakest precondition.
Def. 4.2.1. Let S be an abstract program. u>p(S, R) ::= Vs € 5 : wp(s,R).
Def. 4.2.2. Let S be an abstract program. wpa(S,R) ::= 3 s € S : wp($,R)

(the angelic weakest precondition [Mor90]).
Def. 4.2.3 (unless)
? > Q : : = ( P A - ' Q - t  wp(S, P V Q)).
Lemma 4.2.1. > is the brandling time version of UNITY unless. Proof left to the 

reader.
Remark: The presence of fairness does not affect the definition of t>.

4.3. The new definition of progress properties

The new definition of leads-to (4.3.5.) is based on Park’s paper [Par79]. Park recog­
nised, that the weakest precondition of iterative programs can not be expressed by the help 
of the minimal or by the help of the maximal fixpoint ill the case of presence of fairness. 
He used the combination of the least and greatest fixpoint operator to define a fixpoint 
different from both. By the help of this he determined the set of sequences given by the 
fair merge of sequence X and sequence Y.

The weakest precondition of recursive procedures are given by the help of predicate 
transformers and fixpoint oprators in case of presence of fairness in [Mor90]. We use the 
set-theoretic approach of [Park79] and investigate iterative program structures instead of 
recursive procedures.

Def.4.3.1. G(P, r, Ar) = PV ((ypa(S, Y ) A wp{S, X ))
Lemma 4.3.1. G is monotone in P,Y ,X .
Proof: Since wp and wpa are monotone, 4.3.1 can be proved by predicate calculus. □
Consequense: VP. У : tfX : G(P,Y, X )  exists.
Def.4.3.2. F(P ,Y) = qX  : G{P,Y,X)
Lemma 4.3.2. F(P, Y)  is monotone in P, Y.
P*oof: Let suppose Y* —> R  and P —♦ S.

F(P,Y*) = G (P,Y,F(P,Y)) { fixpoint (cf. 1.12/e) }.
G(P, r, F(P, Г )) -» G(S, i?, F(P, Y)) {G monotone }.
By fixpoint induction 1.12/f: F(P, Y) —* t]X : G(S, R, X),
,,X  : G (S,R ,X ) = F(S, Д), by definition. □
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Def.4.3.3. eventually P (inevitability)
-  P  = fiY  : F (P ,y )
Lemma 4.3.3: ~  P is monotone in P.
Proof: Suppose, that P -* Q. F(P, ~  Q) —» P(Q, ~  Q) {P is monotone }

P(Q, ~  Q) = ~  Q { fixpoint 1.12/c}.
By fixpoint induction: цУ : F(P, A) -» (~ Q) { by def. } [— P — Q\ □

Lemma 4.3.4.: P —► (~  P).
Proof: P V ( w p a (S , ~  P) Л u>p(S, ~  P)) = ~  P{ fixpoint }. By strenghtening the left 

hand side: P —»(~ P) □
Collorary 4.3.5.: By 4.3.4 and 4.3.12. (~  P) w (~  (~  P)) □
Def.4.3.5.: (ensures)
(Q ~  P) ::= ( g - » ( P V  ((wpa(S, P) Л «;p(S, Q))) 

i.e.(Q *-» P) ::= (Q -» G(P,P,Q))
Lemma: i—► is the branching time version of UNITY ensures.

Proof left to the reader.
Def.4.3.6.: (leads-to)
(Q -  P) ::= (Q -  (~  P))
Lemma 4.3.6.: If Q *-* P, then Q <-» P.
Proof: [Q i-> P] = [Q -+ G(P, P, Q)] { def }. By fixpoint induction 1.12./e:

(if [Q G(P, P, Q)j then [Q -» T]X : G(P, P, X))] i.e.
Q -» P(P,P). P(P,P) -  P (P ,~  P) {P - » (~ P) ( Lemma4. ), P  is monotone }.
P(P, ~  P) = (~  P) { fixpoint }. i.e. Q -  (~  P) { by def.} Q ^ P O  

Lemma 4.3.7.: If P Q and Q R, then P «-+ R.
Proof: [Q «-» R] =  [Q - » (~ P)]{ def }.

Since ~  is monotone, [(~ Q) —» (~  (~  iZ))]. By the application 
of Collorary 5. [(~ Q) —> (~  Й)]. On the other hand by definition:
[P —► (~  Q)]. By transitivity of implication: [P —»(~ P)] □

Lemma 4.3.8.: Let be /  an arbitrary set. If Vi € I  : (Pi ► Q)  then (3t : P ,)«—> Q. 
Proof: [Vt 6 /  : (Pi *-» Q)\ = { definition }

[Vt G /  : Pi —»(~ Q)] => [P, V ... V P, -  (~  Q)] =  [(3i : P.) -» (~  Q)] =► { def }
[(3* €  P i)  -  Q] □

Collorary: By Lemmas 6., 7., 8.:
If P leads-to Q, then P ► Q □.
Def.4.3.8.:

PP°(P) = |

{
P(P, P P , - 1 (P)), if t is not a limit ordinal 

\ /
,FF}(P), if t is a hmit ordinal.
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Lemma 4.3.10.:
a) ( i < j ) - ^ [ F F ( P y ^ F F ( P y ]
b) (fiY : F(P, Y)) = F F(Py  for some i i.e. (~  P) = FF(P)' for some i.
c) F F (P y  -  w pa(S,F F(Py-l )V  P
d) F F (P y  -» wp(S,F(Py) V P

Proof:
Since F  is monotone, the proof of a) and b) is a special case of Lemma 3. of [Mor90].
Proof of с) and d): FF(Py  =  { d«f } = F(P, FF(P)*-1) *  { def } = 

r,X : G (P ,F F (P y~ ',X )  =  { def } = t)X : (P V {{wpe(S,FF(Py-1) A wp(S,X))) =  
{fixpoint} = (P  V ((topa(S, F F (P y~')) A wp(S, FF(P)'))) = (P V ((tx.pa(5, FFCP)*-1)) Л 
(P V iup(S, FF(P)'))) i.e. by weakening by right hand side F F (P )‘ => P  V 
^Н ^РРС РУ "1)) and P(P)' => P Vw p(S,F F (P y)) 0

Theorem 4.3.11. If (~  P) holds for a 6 A, the scheduling is unconditionally fair 
and the UNITY program S  is in the state a, then 5  inevitable reach a state, for which P  
holds (i.e. A*F(P)).

Proof: The proof is similiar to the proof given in [Mor90]. Let choose a sequence 
t starting from the truth set of (~  P). We show, if P never holds along t, then the 
selection of the statements of t is not fair. Let associate an ordinal t > 0 to the point tj 
of t, such that F F(P)'(tj) and ->FP(P),_1 (ty). By Lemma 10/d and by the definition 
of ~  P such an i exists and it is not an limit ordinal. Since the sequence of associated 
ordinals is monotonically decreasing (Lemma 10/d), there exists a к and h, such that: 
Vj > h : F F(P)k(tj) A  -F F (P )*-1 (tj). By lemma 10/c the sequence is not fair, i.e. never 
selects the existing direction s for which wp(s,PP(P)fc-1). □

Collorary 4.3.12. (~  (~  P)) —> (~  P) О

Conclusion

By the help of the new definitions we increased the effectiveness of the specification 
language. The old properties of the operators remain valid. Finally we show an example 
for expressing potentiality:

x ::Z .
P =  (x > 5) Q = (x < 15) R = (x = 5)
R  _> ((-iQ ~  Q) V (P stabil))) Л (-(P  — Q) Л -(Д  — P))
INIT ::= (x = 5).

x := z +  1, ha x > 5 ; 
x x — 1, ha x < 5

Remark: The specification corresponds to E+GP Л E+FQ Л A^(GP V FQ) [ES88].
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Abstract: In this paper a method (called IDT) is presented which combines 
Shapiro's Interactive Diagnosis Algorithm with the Category Partition Testing 
Method. This method can be used both in the debugging and in the testing of 
Prolog programs. The basic idea of IDT is that the test database prepared by the 
Category Partition Testing can be used to reduce the amount of user interaction 
during the debugging. In the IDT method the diagnosis process effects the testing 
hence IDT can be considered as an integrated debugging and testing method.

Keywords: logic programs, category partition testing method, algorithmic debug- 
ging

1 Introduction

The automatic program debugging technique introduced by Shapiro [SHA83] can isolate an erroneous 
procedure, given a program and an input on which it behaves incorrectly. Shapiro's model has been 
applied to Prolog programs to diagnose the following three types of errors: termination with incorrect 
output, termination with missing output, and nonterminalion. A major drawback of this debugging 
method is the great number of queries to the user for the correctness of intermediate results of procedure 
calls. Thus, an important improvement would be to minimize the amount of information the user needs to 
supply for algorithm to diagnose the error.

An algorithmic debugging method GADT (Generalized Algorithmic Debugging and Testing) for 
imperative languages is discussed in [FRI91). A major improvement in bug-localization process is 
demonstrated in GADT by combining the Category Partition Testing Method (CPM) [OST88| with the 
algorithm introduced in |SHA83], The main concept of the improvement is the following: during the 
debugging of a program the user has to answer many "difficult" questions. If this program has been 
already tested by CPM. the test results for the procedures of the program can be used in the debugging 
process.

Of course, during the testing the programs cannot be tested with all possible properties and values of 
the input parameters. Hence, the first task of the tester in CPM is to define the critical properties of 
parameters (callcd categories) of the procedures. These categories can be divided into classes (called 
choices) presuming that the behavior of the elements of one choice is identical from the point of view of 
the test process. From the specification of choices test frames arc generated. A test frame contains exactly 
one choice from each category. The behavior of a lest frame from the point of view of the testing process 
can be represented by an arbitrary clement of it (called test case). Running the given procedures on the

• This work is supported by OTKA-SOl and ESPRIT BRA 6020.
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corresponding test cases a test database can be created. An item of this lest database contains the 
identifier of the test frame, the concrete input parameters (test case), the output values and the evaluation 
result of this test frame (yeslnolundefined)

In the debugging process the concrete values of the parameters of a procedure are given. By 
determining the corresponding test frame to a given input the test database can be checked with the 
selected frame. In the case of 'good' tests report the debugger skips to the next procedure without query.

In this paper we present a method (called IDT) which combines Shapiro's Interactive Diagnosis 
Algorithm with CPM. This method can be used both in the debugging and testing of Prolog programs. 
The basic idea of the IDT system is similar to GADT e.g., by using the test database prepared by the CPM 
the number of user interaction can be reduced during the debugging. Shapiro's diagnosis algorithm 
presented in [SHA83] traverses the refutation tree of a program and asks the user about the expected 
behavior of each clause (which can be considered as a procedure). The user has to give yes or no answer 
and the algorithm isolates an error inside a certain procedure body.

Shapiro suggests that the number of queries can be reduced by storing the answers to previous queries. 
However, the probability that the same query for a procedure is used several times during the debugging is 
very small. In the IDT method we also store the queries, but each query represents a (equivalence) class of 
the possible inputs. These classes are defined during the CPM testing process. A query can be represented 
by a triple <p, x, y>, where p is a procedure and x and у vectors over some domain D, such that p on x 
returns y. For a query <p, x, y> a test frame t is identified on the basis of the CPM test specification of 
procedure p. This identification can be done automatically by using predefined searching functions in the 
test specification for the inputs and classes. When these searching functions are not given new queries are 
generated to the user to determine the correct test frame. Usually it is much easier to answer these queries 
than to the original ones. After the test frame t is identified to a query <p, x, y> the system is looking for a 
stored query <p, x1, y’> which represents the test frame t. If the procedure p was previously tested by such 
query <p, x', y’> then the result of this query is used to answer the query <p, x, y>. Of course sometimes 
the assumption that queries <p, x\ y*>, <p, x, y> give the same result may be incorrect The 'visible' effect 
of such a false assumption may be that a bug could not be localized using IDT method. In this case we use 
Shapiro's original algorithm to identify the incorrect procedure. Assume that the query <p. x, y> was used 
to isolate the incorrect procedure p and this procedure was tested with the query <p, x', y’>. Suppose that 
<p, x, y> and <p. x', y*> belong to the same lest frame t and the result of the query <p, x \ y’> is ves but the 
result of the query <p, x, y> is no. In this case the partition specification for the procedure p during CPM 
testing was not correct. Therefore the IDT method prepares a new partition for the inputs of the procedure 
p. In this new partition the inputs x and x' represent different test frames. Hence, the IDT method can be 
considered as an improvement of CPM algorithm presented in [OST88)

The main differences between the GADT and the IDT methods are that the GADT has been applied to 
imperative languages while IDT to Prolog and in the IDT the diagnosis proccss effects testing. Hence IDT 
can be considered as an integrated debugger and testing method

In the rest of this paper we firsts give a brief overview of Shapiro's algorithm in Section 2. Section 3 
contains a formal description of the Category Partition Method. In Section 4 we describe the IDT method 
and an example for this method is presented in Section 5. Finally in Section 6 the conclusion and some 
remarks for future works are described.
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2 Shapiro's single-stepping diagnosis algorithm

In this section we giye a short overview of an algorithm presented in [SHA83] and recall definitions 
related to this algorithm. Shapiro's single-stepping algorithm can isolate an erroneous procedure (clause), 
given a program and an input on which it behaves incorrectly. This algorithm traverses the refutation tree 
of a program and asks the user about the expected behavior of each clause. The user has to give a yes or 
no answer and the bug inside a certain procedure is identified.

2.1 Definition: A logic program P is a finite set of definite clauses (the clause A «- B,f ... , BB is definite 
iff all B's are atoms, n ž  0).

2.2 Definition: Let С denote the clause A <- B ,, ... , Bn (n ž  0). Then head(C) denotes A and body(C) is 
the set {B ,,..., Bn}.

2.3 Definition: Let P be a logic program, M an interpretation of P, A' a ground atom and A <- B,.......B„
an arbitrary clause in P. We say that A <- B ,, ..., Bn covers A' in M ifif there is a substitution 0 such that 
A0 = A' and for all i (1 £ i й, n) B;0 e  M.

2.4 Definition: An arbitrary clause p e P is correct in M iff all ground atoms covered by p are in M. 
Otherwise we say that p is incorrect in M.

2.5 Definition: Let p be an arbitrary clause in P that terminates on some input x and returns у as output. 
Then the top level trace of the triple <p, x, y> is a finite (possibly empty) ordered set {<p,, x,, y,>, 
<Pj, Xj, y2>, ... , <pn, Хп, yB>}. Where p on input x calls first p, with input x,f that returns y, as output 
then pj with Xj,. , and so on. Finally p call pn on input х„ which returns y0 and p returns y.

2.6 Definition: A partial computation tree of P is an ordered tree. Every node in this tree is labeled with 
some triple <q, u, v>. The set of the direct descendants of an inner node is a legal top level trace of this 
node. A T tree is a complete computation tree of P if it is a partial computation tree and all leaves in T 
are empty sets.

In the following we suppose that the program P is free of side-efifects. Let p be an arbitrary clause in P 
that terminates on input x and returns у as output such that <p, x, y> g M. It means that P has at least 
one incorrect clause. Then for finding the incorrect clause that causes the error the computation tree 
rooted by <p, x, y> is traversed in a postorder manner. During the traversing of the tree at each <q, u, v> 
node a membership question is issued. Let us suppose that the first false answer is received at the node 
<q, u, v>. Let the direct descendants of <q, u, v> be <q,, u,, v(>, ... , <щт, u^, vm>. Since we used 
postorder strategy for all i (1 S i <. m) it holds that <q,, ujt v> 6 M. From this it follows that the clause 
q <- q , , ... , qm covers the triple <q, u, v> which is not in M. The algorithm stops at the node <<j, u, v> 
and returns the clause instance <q, u, v> <- <q,, u|t v ,> ,..., <<ц, u ^  vm>. By this method the erroneous 
clause can always be identified assuming that the answers to the membership questions are correct.

A query-optimal modified version of this method is called divide-and-query We demon i c  the 
behavior of the single-stepping method through a small example [SHA83].

2.7 Example: a simple Prolog program for sorting a lis t

insert(X,[Y|U],[Y|Vl> Y < X , in*ert(X,U,V). 

insert(X, [Y|U], [X,Y |U1) 8- * £  T. 
insert(X,П,[X]).

*ort<П,Ü )  .
sort(CX|Yl,Z) :- *or«T.U>,ineerttX.U.Z).
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The above Prolog program contains two procedures (insert and sorf). The procedure insert puts a new 
element into the list — given as the second argument — and returns the remit in the third argument. The 
procedure sort softs the tail of the input list and then inserts the head of the input list into this list.

This program works as follows:

?: sort([-2,-4,3,-6,2,-3],X).

X  -  [-6.-4,-3,-2,2,3].

For the purposes to demonstrate Shapiro's algorithm let us make a bug in the above program: change in 
the first line the caH in*ert(X,U,V) to insert(Y,U,V). It is a case of simple mistyping.

inMrt(X,[Y|U],(Y|V]) У < X , in»ert<Y,U,V).

Calling the sort with the argument (6,-2,4] it returns X = [-2,-2,4] as a result which is obviously wrong. 
Let us try to find the wrong procedure using the single-stepping algorithm:

This algorithm works as follows: recursively interprets the call structure of Prolog. It performs the Prolog 
evaluation from bottom up and each step it asks the user whether the newly determined goal is true or 
false. The call tree lodes as follows:

*ort([6,-2,4],t-2,-2,4])
sort([*2,4],[-2,4])

•ort( [4], [4])
•ort< [],[]> 
in**rt(4, [], [4]) 

insert<-2,[4],[-2,4])

• 2 S 4
insert(6,[-2,4],t-2,-2,4])

6 » -2
tn»«rt<-2,[4],[-2,4])

■2 S 4

The questions, the user should answer are the following:

Queiy: Is it ok? *ort(U,[J) yes
Query: Is it ok? insert(4,[],[4]) yes
Query: Is it ok? sort([4],[4]) yes
Queiy: Is it ok? insert(-2, [4], [-2,4J) yes
Query: Is it ok? strt(f-2,4], [-2,4J) yes
Query: Is it ok? inatrt(-2,[4],[-2.4]) yes
Query : Is it ok? insert(6, f-2,4], [-2, -2,4]) no

After seven questions the false procedure call has been identified. The wrong clause instance is: 
ia*ert(«,l-2v»J,[-2,-2^J) <- -2 < 6, insert(-2,l-2,4],(-2,-2,4]).

3. Category Partition Testing Method

An informal description of the Category Partition Testing Method can be found in [OST88], In this 
section we give a formalization of this fractional testing method. During the process of functional testing, 
the programs (procedures) само! be tested with all possible properties of the input parameters. Hence, the 
tester's first task is to define the critical properties of parameters. These critical properties - called 
categories - are investigated in the testing process.

37



The categories can be divided into classes - called choices - presuming that the behavior of the 
elements of one choice is identical from the point of view of the testing.

If the categories and choices for a program have been defined, then all the possible test frames can be 
generated. A test frame contains exactly one choice from each category.

In general, there are many superfluous frames among the generated test frames. These frames can be 
eliminated by associating selector expressions with the choices. A choice can be made in a test frame if 
the selector expression associated with the choice is true. The selector expressions contain property names. 
A property name is also associated with a choice and can be considered as a logical variable. The value of 
this variable is true if the given frame contains that choice. In example 3.1 we give simple CPM 
specification for the clause 'insert' and the generated test frames.

3.1 Example: The category-partition specification for 'insert':

Test specification: insert 
Category: maber_of_eleaents

Choice: d„: {(X.H) | X € 0} 
property zero

Choice: d,: {(X,[Y]> | X, T 6 0>

Choice: dj: <(X, CY|Z]) | X, Y € D, Z € 0*>

Category: first_elenent

Choice: e„: «Х.П> | X e 0>
If zero

Choice: e ^  «X,CY|Z]) | X, Г e 0. Z e D* and X й  T> 
if not zero

Choice: ej: <CX,[Y|Z]) | X, Y € D, Z 6 0* and X >  Y> 
if not zero

End of specification

The generated test frames are: { ( d ^ ,  (d,,e,), (d1,e2), (сЦ.е,), (сЦ.е̂ )}

In the following we give a short formal description of the Category Fartition Method in logic 
programming environment. Let P = {p,, ... , pn} denote a logic program, where p; (1 й  i £ n) is a clause 
(procedure) in the program. We assume, that the domain of the interpretation is the set D. Then every 
clause p in P can be considered as a mapping from D" into D™, where n and m are the input and the 
output arities of p, respectively.

3.1 Definition: Let p an element of P and n the input arity of p. An equivalence relation over D” is called 
a category of p.

3.2 Definition: Let p an element of P and с a category of p. An equivalence class of с is called choice o f  
c.

Every choice of a category determines a class of D". In the CPM the user can define a choice using an 
expression (searching function) that depends on a subset of the input variables. By these expressions the
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choice an arbitrary element of D" belongs to can be automatically determined. We assign to every 
procedure a finite set of categories and each category can be considered as a finite set of choices.

3.3 Definition: Let p be an arbitrary clause in P and let Sp = { a , , ..., a ^ }  denote the set of the categories 
of the clause p where a, = {c ,,..., cm} (c's are the choices). I p is a test specification o f  the clause p. A test 
specification o f  the program P is the set £p = { Ep | p e P}.

3.4 Definition: Let p be a clause in P, and I p = {a, ,... , a^} a test specification of p. Let F(Xp) denote a 
subset of the Cartesian-product cr, x ... x F(Sp) is called the set o f test frames of p and we suppose that 
F(Ip) covers the total Dn. The set F ffp  is a classification of D" therefore F(Zp) can be considered as an 
equivalence relation over D". An element in F(£p is called a test frame of p. The set of test frames of the 
program P is the set F(£p) = { F f ip  | p e P }.

3.5 Definition: Let p be a clause in P, Xp = { o ,,..., a^} a test specification of p, and f  = (t,, ..., t^) a test 
frame of p. A test case of f  is an element ( d , , . . . ,  d^), where d, is in the class (choice) t( (1 <. i £ pk). (Of 
course if f  denotes an empty subset of D" then such a test case does not exist.)

A test frame can be considered as an element of the products of equivalence relations over D”. The 
Category Partition Method checks the behavior of p for a given test frame by investigating the result of p 
on a representative element (test case) of this frame. We assume that the set of test frames is partially 
evaluated i.e. there are test frames which are not evaluated yet (this is the usual situation in practice). 
Therefore we have to order an evaluation function to the set of the frames which maps the test frames into 
the set {true, false, undefined}. The T_GEN [SZU9I] system based on the category partition method 
works as follows: the user has to define for every procedure a set of categories. Every category has to be an 
equivalence relation. The user can mark the important test frames, which he wants to test. Then the 
system generates test cases automatically to these test frames, and calls the procedure with the test cases as 
input. The user as the ground oracle has to decide the truth of an output. The test frame, its test case, the 
output values and the evaluation is stored into a database. The evaluation of a test case is a function, see 
below. We assume, that every test frame has at most one test case.

3.6 Definition: Let p be a procedure of P, and Ep a test specification of p. Then a CPM-testing o f  p  by Ep 
is a mapping (pp: F(Sp) -+ {true, false, undefined). Let f  be an arbitrary test frame of p, and t a test case of 
f. Then q>p(f) is true/false iff we applied p to t and the output was true/false by the ground oracle. 
Otherwise q>p(f) is undefined, (if f  denotes an empty set then <pp(f) = true).

3.7 Definition: Let f  be an arbitrary test frame of p over I p. We say, that the CPM-testing of f  is 
consistent iff <pp(f) is independent of the choice of its test case.

3.8 Definition: Let p be an arbitrary procedure in P and Xp a test specification of p. The CPM-testing of p 
is consistent iff it is consistent for every test frame of p over I p. The CPM-testing of P is consistent iff 
every p in P is consistent.

3.9 Definition: Let p an arbitrary procedure (clause) in P and let Ep an arbitrary test specification of P 
Let Xp : D" -> F (Ip) mapping, such that Xp(x) = f  iff f  is the corresponding test frame of x. From the 
previous definitions it follows that Xp is a function, (i.e. Xp is the searching function.)
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ЗЛО Definition: A CPM test configuration of the program P over the set of test frames F(Ip) is a finite 
set of five-tuples T(F(£p)) = { (p, f, i, о, e) | p e P , f  e F (Ip), i is a test case of f, о is the output of clause 
p on input i and e e {true, false, undefined} is the evaluation of the test frame f  (e.g. e = <pp(f))} . A CPM 
test configuration can be considered as a test database. For a clause p ^ P the CPM test configuration of 
the clause p contains all elements of T(F(Ip)) such that the first component is p.

3.11. Definition: Let a  be an equivalence relation over Dn and let x be an aibitrary element of D". Then 
o fxj denotes the class of a  containing element x. Let a , and a 2 be two equivalence relations over D". We 
say that cr2 <> trt iff from o2[aJ = a 2[b] it follows that o,[a] = o,[bj for any a, b e D". Let F(Ip) and 
F(S'p) be two sets of test frames of an arbitrary clause p in P. We say that the CPM test configuration of 
clause p T(F(I'p) is a refinement ofT(F(Ip)) iff F (I'p) 2 F*!,,) (i.e. Vn e F ffp  3pe F(E'p) such that 
p 2 я). For a program P a CPM test configuration of P T(F(I'p)) is a refinement ofT(F(ZJ) iff T ^ S 'p )  
is a refinement of T(F(Xp)) for all p e  P.

If T, and T2 are two CPM test configurations of the same program P and T2 is a refinement of T, then the 
cardinality of the inconsistent test frames of T2 is less or equal than of T,.

4 The Interactive Diagnosis and Testing Algorithm

In Section 2 the single-stepping method for algorithmic debugging of logic programs has been briefly 
summarized. This algorithm can be applied only for those clauses that terminate on some input and result 
in an incorrect output. For these inputs the algorithm traverses the computation tree rooted by <p, x, y> in 
postorder manner. At each node it generates a membership question. It stops at the first node <q, u, v> 
which is not in the interpretation M. The number of the queries depends on the position of the incorrect 
clause instance inside the computation tree. In order to reduce the number of the queries an extended 
method called divide-and-queiy has been proposed. We present our algorithm as a modification of the 
single-stepping method but it can be used with the divide-and-query method as well.

We assume that there exists a CPM test configuration for the program P i.e. for all p e P a set of test 
frames is defined and each test frame may have an evaluation. In the process of algorithmic debugging we 
use the assumption that the given CPM test configuration is consistent. From this assumption it follows 
that if a test frame is already evaluated then this evaluation is independent of the test case chosen. This is 
only a hypothesis of the user which may be false. Therefore we should take into account that there are 
inconsistent test frames in the CPM test configuration of P. If a referred test frame is not evaluated (i.e. <p 
is undefined for this test frame) we automatically generate a membership question.

Let p e P be a clause and let us suppose that <p, x, y> e M for some x and у and the complete 
computation tree rooted by <p, x, y> is finite. Similarly to the single-stepping method our algorithm walks 
this tree in postorder maimer. Let us suppose that we have to answer the query <q, u, v> is in M or not, 
where <q, u, v> is a node in the tree. We examine whether the test frame belonging to q and u is already 
evaluated'(i.e. <pq(xq(u)) is not undefined). If this test frame has already been evaluated then the result of 
the evaluation is used to answer the membership query.

Since our hypothesis for the consistency of the test frames is not proved therefore the result given by 
our algorithm should be verified. On one hand it is possible that we will not find the false clause. On the 
other hand, if a false clause has been identified by the IDT algorithm it may occur that the test frame 
belonging to the head of the clause is inconsistent or in the body of the clause instance there is an atom 
whose test frame is inconsistent. This latter case means that the clause we found is not the deepest 
incorrect clause in the tree. For resolving this inconsistency the original single-stepping method is
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invoked. We store all questions and answers in a test database (CPM test configuration) therefore the 
number of queries the user has to answer is less or equal (in the worst case) than in the original single­
stepping method. In the case of consistent test frames the number of queries may be significantly 
decreased. If we find an inconsistent test frame during the debugging then the user has to modify the CPM 
test configuration. More exactly the user has to define a refinement for the CPM test configuration such 
that the new configuration will be consistent regarding the known test cases.

4.1 Algorithm for scanning the computation tree by ШТ:

Input: <p, x, y> not in M,
Output: q false clause instance and f  Boolean.

procedure IDT_Debug (<p,x,y»,q,f) ; 
begin

let T t  «Pf.Xf.yf». <Р2.х2.У2>. . . .  . <Рь.*п*Уп»  
be the top level trace of

f :»  f a l s e  ;
i :* 1 ;
Hhile (i £ |T |) and (not f) do 
begin

IDT Debug ( «p.-.x.-.y^.q.f ) ; 
fncCi) ; 

end ;
if not f then 
begin

if <pp(Xp(*» * undefined then ana :« iuery (<p,x,y>) ;
f s -  Фр(ХрСх ))  '■if not Hf then 
begin

f := true ;
q := <p.x,y> +- <Р1.*1.У1>.«Р2.*2*У2>....... <Pn.xn.Vn>;

end ;

Let us suppose that <p, x, y> e M for some p e  P, x e D” and y e D " .  The Algorithm 4.1 gets the 
triple <p, x, y> as an input and returns in f  a Boolean value which shows whether the procedure found the 
incorrect clause instance. If this value is true then q will contain this false clause instance. Let us suppose 
that {<p,, x,, y,> <p2, Xj, y2> <pn, x,, yB>} is the top level trace of <p, x, y>. The algorithm 
recursively calls itself on the elements of the top level trace until it finds a false clause (i.e. f =false). If for 
all i
(1 S i£ n) the evaluation of the test frame belonging to <р, x;, y> is true then let the test frame belonging 
to <p, x, y> be examined. If this test frame is not evaluated yet (i.e. q>p(Xp(x)) = undefined) then the 
ouery(<p,x,y>) is asked (see later). Otherwise (i.e. <pp(Xp(*)) * undefined) the membership question is not 
printed out but it is answered with the evaluation of the test frame. If q>p(Xp(x)) = false then the algorithm 
stops and returns the corresponding instaece of »he clause p in variable q.
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4.2 Algorithm for finding false procedure by ШТ:

Input: <p, x, y> not in M,
Output: r false clause instance.

procedure Main_IDT_Debug <<р,х.У>. 0  ;

begin
IDT_Debug (<p,x,y>,r,f) ;

if f then
begin

let r = <q,u,v> 4— <qi,u1,vi> .<42»u2»v2> «• • •»<‘W * W V  
ans := Query (<q,utv>) ; 

if ans = false then 

begin
ans :=■ Ouery Top_Level_Trace (r); 
if are * true then 

return (r) 
else 
begin

Nodified_Single_Step (<q,u,v>,r,f)'; 

return (r); 
end ; 

end ; 
end ;
Hodified_Single_Step (<p,x,y»,rff); 
return (r) ;

end ;

Let us suppose that the Algorithm 4.1 has found the clause instance <q, u ,v>  «- <q|f u,, v,>, 
<q2, Uj, v2> .... <qm, um, vm>. Then we should examine the following cases.

1. A membership question for <q, u, v> should be asked. If this concrete question has already 
occurred then the result is retrieved from the test database. For this purpose the function used_Test_case is 
invoked. If true was answered then the test frame belonging to p and x is inconsistent so a call of 
Nodified_Single_Step is necessary.

2. If in 1 there was no inconsistency then for all elements of the top level trace of <q, u, v> the 
Query(<qi, u,, v>) should be issued. If all elements in the top level trace are in the interpretation M then 
the false clause instance is <q, u, v> «- <q,t u,, v,> <qj, u ,̂ Vj> <qm, i^ , vm>. Otherwise if there 
is an element <qj, u,, v >  in the top level trace whose test frame is inconsistent then the 
Nodi f i ed_single_step should be called on the triple <q, u, v> since we know that the error is in the 
computation tree rooted by <q, u, v>.

If the algorithm did not find a false clause then there is at least one node (the root surely) in the 
computation tree of <p, x, y> whose test frame is inconsistent.

The above Algorithm 4.2 handles these cases.

4.3 Utilities for finding a false procedure by ШТ:

Input: clause instance <q, u, v> +- <qt, u,, v,>, <qj, Uj, v2> « q ^ ,  um, vm>,
Output: a Boolean value.

fmction Ouery_Top_Levet_Trace (c) : boolean ;
begin

Let с := <q,u,v> 4— 
f :* true ; 
l :» 1 ;
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while (i £  |body(c)|) and (f) do 
begin
f :« 0uery(<qjfuj,vj>) ; 
ine(i) ; 

end ;
return (f) ; 

end ;

Query_Top_Level_Trace gets a clause instance as input. It returns true if for all i (1 й  i S m) <qj( ui( v>  is in 
M.

Input: the triple <p, x, y>,
Output: a Boolean value.

function Query (<p,x,y>) : boolean ; 
begin

if Used Test_Case(p,x) then retum( фр(Хр(х)> > '•

* :* V V X>) ;
ana :* Is_1n_lnterpretation (<p,x,y>) ; 

if (f *  undefined) and (f *  ans) then 

divide test fraee Xp<x> int0 two parts consistently.
Store (<p,x,y>,ans) ; 

end ;

The function Query receives a triple <p, x, y> as input and returns a logical value. If there is a test 
case in the database which equals <p, x, y> then it returns the stored answer. Otherwise the question 
<p, x, y> € M is asked from the user. If the test frame belonging to p and x is not evaluated yet then the 
answer is stored into this frame. In the other case we compare the answer with the evaluation of the frame. 
If these values are different then the test frame is inconsistent therefore the user is requested to refine the 
CPM test configuration consistently with the known set of test cases. Naturally all questions and answers 
are stored.

4.4 The modified single-stepping algorithm:

Input: <p, x, y> not in M,
Output: false clause instance q and Boolean f.

procedure Hodified_Single_Step (<p,x,y»,q,f); 
begin

let T { ЧМ.х̂У,». <Рг.х?>У2>......«р^.у,,»)
be the top level trace of <p,x,y>. 

f := false ;
i 1 ;

while (i £  |T|) and (not f) do 
begin
Modified Single_Stap (<p<>Xj,y<>,q.O; 
inc(i) f  

end ;
if not f then 
begin
f :» not Query (<p.x,y>) ;

if f • true then q :» <p,x,y> «- ^.x^y^.s^.xj.yj».... •
end ; 

end ;

Algorithm 4.4 differs from the original single-stepping method [SHA83] in that it uses the procedure 
Query which loops back to the CPM test configuration.
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Let us suppose that <p, x, y> is not in the interpretation M. Let |N(<p, x, y>)| denote the cardinality of 
the nodes of the complete computation tree rooted at <p, x, y> (it is supposed to be finite). Then 0 s  n S 
|N(<p, x, y>)| where n is the number of queries the user should answer. The best case is the following: the 
Algorithm 4.1 found exactly the false clause. Let <q, u, v> «- <q,, u,, v,>, <q2> Uj, v2> <qm, um, vra> 
be this clause. In Algorithm 4.2 we have to call the function Queiy m+1 times. If all of these queries 
occurred in the database then it terminates without any questions. The worst cases are: either the 
Algorithm 4.1 did not find the false clause or it finds one and the test frame belonging to its head is 
inconsistent. Both cases are caused by inconsistent test frames. In these cases we should call the original 
single-stepping algorithm

In this section we propose a detailed example on testing a sorting program. Let the program P be the 
following[SHA83]:

insert(X,CY|U], [Y|V]) T < X , insert(Y,U,V>- 
insert(X,[Y|U],tX,Y|U]) X 5  Y. 
in»ert(X,Ц, [X]).

s o r t tn .H )  •
sort(CX|Y),Z) sort(Y,U),insert(X,U,Z).

*̂sort — <<***«}•
CT«on =  { C0> C I*

c0 = {the empty list}
c, = {all lists that contain exactly one element}
Cj = {all lists that contain more than one element}

^“insert —

a mml =  4 -  d L <Ц>
do = {(X.Q) I X e D}
d, = {(X,[Y|) IX, Y e D}
d2 = { (X IY |Z ]) |X ,Y e D ,Z e D +}

' W  = {e0, e l,e 2}.
e0 = {(X ,[])|X eD } ,
e, = {(X,[Y|Z]) I X, Y 6 D, Z e D* and X S Y} 
ej = {(X,[Y|Z]) I X, Y € D, Z e D* and X > Y}

It is obvious that the category is an equivalence relation over the domain D*, and similarly
Q:__are also equivalence relations on D x D*. The set of test frames F(ZP) = F ^ ,^ )  о  F(Siraat) are
defined as follows:

5 Example

TO««) -  {«=0, c„ Cj}
F f f J  “  {(do, eo), (dp e,), (d„ e,), (d,. e,), (d* e,)} 

For these frames the following test cases are generated:

°o
Cl
Cj

П
[6]
[5,4,71
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(do, Co) (6,m
(d„ с,) (4,(20])
(d„ e,) (10, [6])
(d^e ,) (7,[10,5,1])
«Ц, c j  (15,{9,8])

Here is the content of the test database:

T(F(ZP)) = 
{

}

(sort, Cq, (]. [], true),
(sort, с,, [6], [6], true),
(sort, c2, [1,4,7], [\A,1\,false),
(insert, (d,,, eo), (6,[]), [6], true),
(insert, (d„ e,), (4,[20]), [4,20], true),
(insert, (d,, e2), (10,[6]), [6,6], false)
(insert, (d* e,), (7,[10,5,1]), [7,10,5,1], true), 
(insert, (dj, ej), (15,[9,8]), [9,8,8], false)

The sort program terminates with an incorrect output on the list [6,-2,4]. We call the Algorithm 4.2 on
<sort,l6,-2,4J,[-2,-2,4J>. The first step is to call the JDTDebug (<sort,[6,-2,4],[-2,-2,4]>,rJ). 
IDTDebug works on this input as follows:

It calls the function Query with the following arguments but the answers are taken from the CPM test 
configuration

<sort, [], []>
<insert, (4, []), [4]> 
<sort, [4], [4]>
<in*ert, (-2, [4]), [-2, 4]> 
<sort, [-2, 4], [-2, 4]> 
<insert, (-2, [4]), [-2,4]>

X^(D) = c0 
X^((4,[])) = (do.eo) 
W H ] )  = c, 
XmMrt((-2 ,[4 ])) = (d ,,e1) 
Х^([-2,4]) = с2 
Х ^ ( ( - 2 ,  [4])) = (d„ e,)

answer = Ф5ОП(с0) = true 
answer = 9 lnjer,((d0, e„)) = true 
answer = tp ^ c ,)  = true 
answer = <Pu»ert((d i> ei)>= true 
answer = cp ^c j) = true 
answer = ФинсгМ- e,)) = true 
answer = ^ ^ „ ((d j, e2)) = false

-2 <6, insert(-2,f-2,4],[-2,-2,4J). First we

<insert,(6, [-2, 4]), [-2, -2, 4]> XiMert( (6, [-2, 4])) = (d,, e2)

The returned clause instance is insert(6,f-2,4J,f-2,-2,4J) 
should ask the membership question:

? insert(6,[-2,4],[-2,-2,4]) e M no.

Since the answer was no we inspect all atoms in the body:

7 insert(-2,[-2,4],[-2,-2,4]) e M true.

The Algorithm 4.2 terminates successfully and returns in r the clause instance insert(6,[-2,4],[-2,-2,4|). 
-2 < 6, insert(-2,[-2,4],[-2,-2,4]) which is exactly the false clause

s Summary

In this paper we have presented an overview of an Interactive Diagnosis and Testing method for logic 
programs. The basic idea of this approach is that we try to give an integration of the debugging and 
testing phases of the software development process. It means that the IDT algorithm introduced in this 
paper uses the test results of a program during the bug localization process to reduce the number of user
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interaction. In addition, if during the IDT algorithm an inconsistent test frame is identified then a 
refinement of the given test specification is prepared.

On the basis of the ЮТ method a prototype system (called 1DTS) is under development. A small 
prototype for CPM test generator in SB-Prolog environment is implemented. The Shapiro's algorithms for 
automatic program debugging are under implementation. After the complete implementation we will 
integrate the testing and debugging programs and we will prepare the system IDTS.

We believe that the IDT method can be applied in the process of Interactive Inductive Logic 
Programming. We tiy to investigate this topic in the future.
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A bstract

TaLE is a specialized editor for developing language implementations in an object-oriented (Eiffel) 
program ming environment. In contrast to conventional language implementation systems, there is no 
formal metalanguage for specifying a language; instead, the user edits the classes taking part in the 
im plem entation under the control of a specialized editor offering high-level, partly graphical 
view s of those classes. The system  supports  the reuse and refinem ent of the language 
im plem entation classes, incremental im plem entation development, integration of syntactic and 
nam e analysis, and special views for classes representing standard language features. The expected 
main advantages of ihe system are high usability (due to the metalanguageless approach) and fast 
developm ent cycle due to the high-level facilities and reusing capabilities). The basic features of 
the system are prevented using a small example task.

1 Introduction
TaLE (Tam pere Language Editor) is a new tool supporting  the developm ent of language 
im plem entation software in an object-oriented program m ing environment. The design of TaLE is 
unconventional in the sense that TaLE em phasizes softw are engineering qualities rather than 
contributions in formal language specification; this makes the system in many ways different from 
m ore traditional language im plem entation systems. In fact, we feel justified to say tha t TaLE 
employs a different paradigm: the user is not expected to write a language specification, but to edit 
the software units (classes) taking part in the im plementation under the control of a specialized 
editor. Currently the language of the produced software is Eiffel [Mey88], but in principle this 
language could be any class-based object-oriented language. The system is implemented in Eiffel 2.3 
under Sun3/UNIX.

TaLE is particularly intended for the rapid im plementation of application-oriented languages, i.e. 
for various nontrivial textual representations of data, specifications, algorithm s etc.; typically 
these are "little languages” as proposed by Bentley [Ben86], Since such a language is often only a 
sm all aspect in a large softw are project, we cannot expect tha t the user of a language 
im plem entation system  w ould  be w illing to learn a new  formal m etalanguage based on a 
theoretically oriented specification paradigm. The sim pler and the more self-explaining the user 
interface of a language im plem entation system is, the sm aller tasks will be included in the 
potential applications of the system. O ur intention is that an average program mer will decide to use 
our system for virtually all nontrivial processing of structured textual data, in the same w ay as GUI 
editors are currently used for implementing graphical user interfaces. This puts high dem ands on the 
uSer-friendliness and simplicity of the system. In TaLE, these requirements are hoped to be satisfied 
through the metalanguageless, editor-based approach, and through high-level, intuitive views of 
the classes taking part in the implementation.

Conventional language im plementation systems are typically closed: they provide a m apping from 
an abstract specification into an executable language processor written in a target language, and the 
user is not expected to understand the target language, far less modify the resulting processor. 
However, this idealistic view is rarely fully possible in practice because the abstract metalanguage 
is not general or efficient enough, or because the produced language im plementation is part of a 
larger system, and the resulting code m ust be patched to integrate it w ith the rest of the software 
T he editor-based approach of TaLE leads to an open system in which the use of the base language is 
natural and in  w hich the user essentially gets w hat s /h e  sees. A necessary requirem ent for this
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approach is the object-oriented program ming paradigm  which allows a close relationship 
concepts of the implemented language and the software units (classes) of the implementatio.

In the long run, the crucial factor of the productivity in  software development is reuse. In languab 
im plementation this aspect has been mostly ignored (at least in the usual sense of software reuse), 
because program m ing languages have been regarded as indivisible entities tha t give little 
opportunities for sharing common code. However, actually this is not true: there is a lot of almost 
identical features in different languages, and it seems reasonable to assum e that this could be 
reflected in the im plem entation as reusable units. For example, practically every language has a 
notion of an arithm etic expression, w ith minor variations. This implies that essentially the same 
concept is im plem ented over and over again, and that very similar code is repeated in num erous 
language processors. The same holds for concepts like standard constant denotations, control 
structures, subprogram  mechanisms, type systems etc. The possibility to reuse code is particularly 
obvious for special-purpose languages that are currently under design: in m any cases it w ould be 
sufficient to simply pick up a suitable standard form of, say, arithmetic expressions from a library of 
standard language features, in the same way one employs a standard data structure from a general 
library. Even if a direct adoption of a library feature is not appropriate, it should be possible to 
easily modify and extend a library unit according to the needs of a particular language.

In fact, certain kinds of reuse are fairly common, although perhaps not identified as such: special- 
purpose languages are often developed by extending a general-purpose language w ith application- 
specific features, or by em bedding a particular structure from a general-purpose base language 
within a special-purpose language. In both cases one actually reuses all or some of the structures of a 
general-purpose language, in the hope that they need not be reimplemented. H ere w e w ant to 
generalize this kind of language development, and regard languages as collections of relatively 
independent, replacable units.

TaLE supports the reuse of language concepts and structures in three ways: first, by em ploying a 
distributed  im plem entation m odel in which language structures are im plem ented by highly 
independent classes TaLE allows a language to adopt structures (and their implementations) from 
other languages; second, general language-independent concepts can be implemented on an abstract 
level and refined for individual languages (making use of the subclassing mechanism); third, 
standard  language concepts and their im plem entations are built into the system , so tha t the 
language im plem enter can adopt these concepts into h is /h e r language through special interfaces. 
Together w ith the high-level views provided by the metalanguageless user interface, the facilities 
supporting reuse are expected to speed up the language development process in most cases by an order 
of magnitude when com pared to traditional systems like LEX/YACC.

A lthough the overall character of TaLE is unique (as far as we know), there are similarities w ith 
existing systems. Object-oriented language im plem entation techniques have been applied in M uir 
[Win87], TOOLS [KoP87], Orm ([Hed89], [Mag90]), Ag [Gro90], OOAG [ShK90], SmallYacc [AMH90], 
and Smalltalk [Gra92]. Object-oriented context-free gram m ars have been introduced already in 
[LMN88], [Ten88] and [Kos88]. Incremental language implementation (especially parsing) has been 
investigated in [GHK88], [Hor89], [HKR89] and [Kos90]; the latter method has been used as a 
starting point in TaLE, too.

In the following we present the central features of TaLE using a small example. A lthough the 
example language is by no means a realistic one, we have tried to make it sufficiently interesting for 
dem onstrating purposes. The language does not represent a typical case for TaLE; for example, the 
language is processed entirely statically (i.e. the semantic processing is m erged w ith analysis) 
which is clearly a special case. O ur example language is a simple desk calculator language: we 
want to be able to  express sequences consisting of assignments to nam ed variables and output 
instructions, e.g.:

X:= 55; Y:= (X+24)*X; Z:= X*Y; OUT Z+220

Since we assume that a variable can be referenced only if its value has been defined before, each 
assignment and output instruction can be "executed" immediately after it has been analyzed.

2 Object-oriented context-free grammars
A nonterminal of a context-free gram mar is a structural specification of an object (an instance of the 
nonterminal) appearing during the analysis of a source. Hence there is a direct analogy between
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nonterm inals and classes in the object-oriented sense: a nonterm inal can be viewed as a class 
specifying the node objects in the internal representation tree of the source. O n the other hand, the 
natural object-oriented interpretation of syntactic alternation is subclassing: production rules A -> В 
С and A -> D E (or A -> В С I D E ) imply that an instance of A may take two different, alternative 
forms, that is, class A has tw o subclasses. The problem in this case is that the subclasses have no 
names, and unnam ed classes usually cannot be allowed. We could solve the problem by rewriting the 
rules in the form A -> A j I A2 , A j -> В E, A2  -> D E, introducing two new nonterminals as the names 
of the alternative forms of A. However, we should clearly understand that we are now using the 
production symbol ("->") for two essentially different purposes: A -> A \  I A2 means subclass relation 
while A j -> В E and A2  -> D E mean structural specifications. We make this distinction more 
explicit by using a different symbol for the former purpose: A > A \  I Аг-

In an object-oriented context-free gram m ar (OO-CFG) each nonterm inal symbol (or class) A has 
exactly one rule, either of the form A > Bj I B2  I ... I Bk or of the form A -> Bj B2  ... Bk (k > 0). In the 
former case A is called a conceptual class; in the latter case A is called a structural class. We assum e 
that ">" does not imply a cyclic class hierarchy for the conceptual classes. We allow, how ever, 
m ultiple inheritance, i.e. rules of the form A > В, С > B.

O ur example language can be presented as an OO-CFG as follows (we use extended syntactic notation 
w ith iterations):

Program -> Instruction (";" Instruction)*
Instruction > Variable I Output 
Variable -> id "=" My „expression 
O utput -> "OUT' My_expression 
My_expression -> Term (AddOp Term)*
Term -> Factor (MulOp Factor)*
Factor > Variable_access I Constant 
Variable_access -> id 
Constant -> number

Note that w ithout a different arrow  symbol the last two rules could be interpreted also as subclass 
relations: two different symbols are indeed necessary to make the interpretation unambiguous.

An OO-CFG implies an internal representation of the source program  as a collection of objects, 
deviating slightly from the conventional one. Note that the subclass relation ">" does not give rise 
to a separate node in the object representation; it merely indicates a class layer in a node object. 
Hence the object representation of the source program is more abstract than a conventional syntax 
tree: in conventional terminology, typical chain productions are eliminated from the representation.

3 Using the built-in high-level concepts
The first task of the language im plem enter is to consider the existing concepts in TaLE: is there 
something we could directly apply in our language? The TaLE class brow ser (Fig. 1) show s e.g. 
classes Std_Expression (standard arithmetic expressions) and Std_List (a standard  list structure) 
w hich seem to be useful to us. Further, Pascal_id and Pascal_int (subclasses of Identifer and  
S td jn teger) could be candidates for expressing identifiers and integer constants, and  Simple_output 
seems a promising class for implementing the output instruction. We can hope to be able to use these 
classes either directly or as superclasses in our language.

We use the following textual notation: if a class (say A) is defined as a subclass of another class (say 
B), we write A = B(...), where the parenthesized part contains the subclass param eters. W e do  not 
here give any actual form for the subclass parameters.

O ur "plan" to implement the example language could be now presented as follows:

Program  = Std_list(...)
Instruction > Variable I O utput 
Variable -> Pascal_id "=" My_expression 
O utput = Simple_output(...)
My_expre«eion = Std_expression(...)
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Let us first define a class for the expression structure we need in our example language. For this 
purpose we use the standard  facilities provided by predefined class Std_expression: we give a 
"create subclass" m enu com mand for class Std_expression, and the special view for expressions is 
displayed to allow the user to construct the subclass with the given nam e (here My_expression). 
This is an example where a standard language notion is reused through a special interface allowing 
the fine-tuning of the concept.

The expression view is shown in Fig. 2 after completion: the user has selected the operator symbols 
s /h e  w ants, their precedences and associativeness, the allowed type com binations (shown in a 
separate window), the representations for constants (as classes; here we need only integer constants 
given as class P ascal.in t), the nam e of the class giving the other prim itive constituents of 
expressions (here we give a new, so far undefined class Variable_access for this purpose), and the 
parenthesis convention. Further, the user can specify whether s /h e  wants static type cheking a n d /o r 
static evaluation of the expression; in our simple example language we can decide to use static 
evaluation. If only standard operations +, -, *, / ,  are needed, this is all that has to be done; in the 
case of non-standard operators the user must give the Eiffel-statements that im plement the operator 
in a separate text w indow.

Note that we applied here also another type of reuse; we adopted Pascal's integer representation 
(Pascal_int) directly as such in our language, w ith its full implementation. In this case the reused 
structure is a simple token, but in principle all structures (classes) are reusable in this way: due to our 
incremental approach a structure is not tied to a particular language but a more or less independent 
unit.

IjD g la L E C Ia s s B ro u js e r i i lf l

С Denoter* Щ
С Identifier*
S Pascal.id 1!
С KeyWord* 1;
С Simple.output §s
С Special* Ц
С Statement*
S Std.assignment* ®
S Std.block* fj;
S Std.conpound* ||i
S Std_if_stat* li
S Std.while.stat* M
S Std_list* Ы
С Undefined* Щ
С Valued* №
С Bool.expression* «[
С Char .expression* g;
С Std_character* &j:
С Int.expression* J|j
С Std_ integer*
S Pascal_int Щ\
С Real .expression* :Hj
С Std_real* Щ,
С Std.expression* S;
С Str i ng.express i on* Щ 
С Std.string* Щ

Fig.l. The class browser. "C" denotes "conceptual" and "S" denotes 
"structural" (see text).

The view of the subclasses of S td.expression show n in Fig. 2 is an example of a special view, 
tailored for the particu lar properties of the class. Currently there are other special views for 
instance for the standard  lexical structures (Identifier, S td .character, Std_integer, S td .rea l,
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Std_string) allowing certain structural properties to be individually selected. In principle special 
views can be designed for all sufficiently standard language features.

3 Graphical class view s
Let us next construct ä class for the variable assignment structure, called Variable. This class we will 
construct from scratch, rather than building on an existing reusable class. We ask the system to 
create a new structural subclass for the root class Notion; the system the displays a general 
structural class view for constructing the new class. This view is shown in Fig. 3 after some editing 
actions.

The upper section of the view contains the feature list, the check list, and buttons for giving the 
class certain special properties. The feature list contains all the (visible) attributes and operations 
of the class, including the inherited ones (the latter are associated w ith the defining class in 
brackets). The u*er may introduce new features; the Eiffel code of the features is given in a separate 
text w indow  appearing w hen a feature is added or edited. In this class we need no user-given 
features.

The check lis t contains the semantic checks carried out during analysis (e.g. type checking). Each 
check is denoted in the list by a string which serves as the message emitted w hen this check fails; 
the check itielf is given as a  Boolean expression over the attributes of the class and the attributes of 
the components in the pattern. Here we need no checks, either.

The property buttons are actually short-cuts for inheriting certain predefined classes, but they also 
cause sefne additional actions to be carried out automatically by the system. Button "SCOPE" makes 
the class a static visibility region, i.e. the language structure it represents will be associated w ith a 
set of nam ed  objects. Button "NAMED" associates the class with the properties of nam ed objects that 
can b*e stored in a built-in object base; each object with this property is automatically inserted into 
the object base as a member of the set associated w ith the smallest enclosing "SCOPE” structure. 
Button "VALUED" associates the class w ith a special value attribute of a predefined  class; 
currently  this class is capable of representing all the scalar values of Eiffel. Finally, button 
"TOKEN" turns the structure into a syntactic token in the sense that no spaces are allowed between 
4he different parts of the structure, and that the parser uses this structure as a whole for syntactic 
look-ahead. This is the way arbitrary user-defined token categories can be introduced in TaLE, in 
addition to the (fairly covering) standard ones provided by predefined classes and their special 
views.

Since each variable assignm ent can be seen as a declaration of the left-hand side variable in our 
example language, we tick the NAMED button; consequently, the class inherits a string-valued

= П ^ ^ =  Std-eHpresston : My_eHpression

Fig. 2. The view for expression class My_expression.

51



6

attribute key containing the identifying nam e of the object. Likewise, we tick the VALUED button 
since we w an t tha t each assignm ent is associated w ith a value; as a result, the general value 
attribute is inherited from  a system class.

Notion : Neu»
Class nawtjfteT О SCOPE 0  NAMED 0  VALUED D TOKEN

W  check*
process (Notion] 
ere [Notion] 
verify [Notion] 
key [Named] 
value [Vafaed] 
"new feature"

CHECKS

I 1 EDIT 1 REMOVE JOIN 1 I

Fig. 3. The editing window for the assignment structure.

In the lower section of the view the syntactic structure is given graphically as a "railyard” syntax; 
we call this the pattern of the class. The pattern is constructed and edited directly using mouse- 
driven commands and the mode buttons appearing in the upper part of the pattern section. The icons 
denoting components of a pattern are selected from a palette appearing when a component is added 
or edited. The view of Fig. 3 is shown in a situation where the user is constructing the pattern: the 
icons representing the left-hand side and the assignment symbol have been inserted, and the user 
has indicated s /h e  wants a new component (for the right-hand side expression) in the pattem ; as a 
result, the palette is show n allowing the user to select the kind of the component and the class it 
represents. The class can be selected from a hierarchical, dynamic menu showing all the existing 
classes; here the user has selected class My_expression. The icons in the palette represent a single 
keyword, a single substructure, a list structure, a list separator, a set of alternative keywords, a
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secondary structure (a nam ed substructure w ithout a class of its own), a secondary list, and a passing 
arc (for making a com ponent an optional one).

Each arrow head in the pattern represents a code location: the user may insert arbitrary Eiffel code 
into the pattern by clicking on an arrow  head. This results in  the opening of an Eiffel w indow  in 
which the user may type any sequence of Eiffel statements. These statements will be executed during 
the analysis phase at the corresponding point. The system assists the user in the w riting of the 
statements: the features of the com ponent structures need not be explicitly w ritten but they can be 
selected from a menu displayed when the corresponding pattern icon is pointed by the mouse. In this 
case we m ust define the values of the key and value attributes: we click on the last arrow  head 
(since we w ant that these actions are carried out after the analysis of the whole assignment), and 
write the following text in the opened text window:

key := Pascal_id_s.src;
value := My_expression_s.value;

That is, the key attribute gets its value from the source string (src) corresponding to the Pascal_id 
component, and the value is taken directly from the value of the My_expression component. Finally, 
we give this class nam e Variable, and exit the class window.

4 Reusing abstract general-purpose classes
Let us next create a class for output statements. For output structures TaLE offers no built-in facilities, 
but w hat a lucky coincidence: somebody has previously constructed class Simple_output which we 
can now reuse. Simple_output is obviously intended to be reused through subclassing; this class is 
conceptual. Part of the existing specification of Simple_output is shown in Fig. 4.

1
ADD NEU EDIT REMOVE JOIN

TaLE TeHt Edi

IDENTIFIER

print is 
do
outint(valued_s.value); 

er>d;|

Fig. 4. Part of the class window for Simple_output.

Since Sim ple_output is a conceptual class, it does not have a pattern. N evertheless, even a 
conceptual class can have com ponents which exist independently of a pattern; we call them  abstract 
components. In this case there is a single abstract com ponent of class Valued. In addition, the class 
defines an operation called prin t; this operation sim ply prin ts  out the value a ttribute of the 
abstract component. The code for the print operation is shown in a separate text window.

We can now construct the class O utput as a structural subclass of Simple_output. The view shown for 
this subclass contains initially the inherited abstract com ponents, located in sequence after the 
thick arrow  symbol. The user m ust "consume" all the inherited abstract components in the pattern of 
the structural subclass, by dragging them  into their place in the pattern. In this w ay the user 
associates each abstract com ponent w ith some concrete com ponent position in the pattern. When an 
abstract com ponent has been inserted into a pattern, it can be further refined, i.e. its class can be 
narrow ed from the original one. Fig. 5 is shown in a situation where the user has already inserted 
the keyword icon into the pattern, and is next going to drag  the abstract Valued-component into its
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place. This com ponent m ust be further refined to  class M y_expression. N ote tha t the inherited 
components are displayed w ith thick border, indicating that they cannot be edited in  this view.

Fig. 5. Constructing the O utput class.

The actual effect of an ou tput instruction can be easily realized using the inherited print-operation: 
all we have to do is to insert the call of print into the last arrow head of the pattern of O utput.

TaLE is an incremental system: each constructed class is a full-fledged Eiffel class after j t s  editing 
has been com pleted. U sually a class need not even be recompiled w hen some other classes are 
modified, although the class m akes use of the m odified classes; this is due to  the d istributed  
im plem entation strategy of TaLE (for details, see [JäK93]). Since each undefined class is given a 
default im plem entation (an undefined class X is assum ed to have a pattern w ith a  single keyw ord 
item "X"), it is possible to test a class at any point, even if it makes use of undefined classes.

We can test class O utput by activating a special Test-command in the main manu. The opened tester 
window asks for the class to be tested. We select the class O utput and write in the input pane:

OUT 2+3*4

We click on an activation button, and observe the result ''14" in the output pane.

At this point we could construct class Instruction as well. Since the only purpose of this class in our 
language is to collect classes Variable and O utput under a common name, class Instruction needs no 
features itself: everything will be specified in its subclasses. Recall that alternation is described in 
OO-CFGs via subclassing; hence it is sufficient to specify that Variable and O utpu t are subclasses of 
Instruction.

Since we have no particular requirements for class Instruction, we create it as a conceptual subclass of 
the root class, Notion. Immediately after giving its name we exit the Instruction w indow , and return 
to the class browser level. There we use a special m ultiple inheritance com mand, forcing Variable 
and O utput to inherit Instruction. This command is used for making inheritance relations required for 
syntactic reasons, and it affects only the system-dependent parts of the Eiffel classes. Nevertheless, 
the affected classes have to be recompiled.

5 Automated name analysis
Let us concentrate on the so far undefined class Variable_access, representing the variable references 
in an expression. This is a structural class: it has a particular syntactic form  consisting of an 
identifier. We define it as a subclass of Notion and tick the VALUED button in the appearing view. 
We insert a single com ponent to the pattern, and select the class P asca ljd  for the com ponent (Fig. 
6). Since this com ponent m ust be associated w ith an existing variable, we qualify it w ith class 
Variable: in this w ay we make sure that the identifier indeed is the nam e of an  existing Variable 
object. Using qualification, the association of nam ed entities and their references in the source is 
carried out automatically by the system. An additional advantage of using qualification is that the 
parsing process can make use of the qualification information, and avoid LL(1) look-ahead conflicts 
that would otherwise arise (although in this case there is no fear of that).
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We m ust further specify that the value of a Variable_access object is obtained from the value of the 
Variable object denoted by this object. We click on the arrow  head at the end of the rail-yard syntax 
and write the following text in the opened text window:

v ?= denoted 
value:= v ..value

where d e n o te d  is a predefined attribute that automatically refers to the Named (Variable) object 
associated w ith this object. A ttribute v  is a new feature that m ust be given to class Variable_access 
due to the type rules of Eiffel: since the static class of d e n o te d  is Named, it is not guaranteed that 
the denoted object would inherit Valued; therefore we m ust introduce an additional attribute v  of 
type Valued, and apply so-called reverse assignment attem pt ("?=") which checks the dynam ic 1 
class of the right-hand side object (in this case the check never fails).

9

1 ..... F i f

1 ADD NEW 1 1 EDIT

PwcaUd >------->
Ф1 Variable 1

k

Fig. 6. The pattern for Variable_access, with a qualified component.

6 Reusing structures: refinement of components
Since the entire "program" in our example language is a  list of something, we define it as a subclass 
(named Program) of S td jis t . When the "create subclass" command is issued for Std_list, the view 
in Fig. 7 is shown. This view is a so-called refinement view 1 in which the original, inherited 
syntactic pattern is shown w ith thick border lines, indicating that it is not modifiable. W hat the 
user can do is to refine the com ponents in the pattern, i.e. to narrow their classes. This is done by 
specifying the classs in each refinement icon located under the actual com ponent icon. In the 
inherited pattern of Std_list, the list element is specified to have class Notion, implying that any 
class will do here. The concept of S td jis t  also includes a separator, which is specified to be of class 
Key_word; this is a special built-in class whose subclasses are implicitly all individual key strings 
or sets of such strings (a key string is a  class only in a technical sense, allowing conceptually unified 
handling of keywords). It is also possible to give new arrow head actions and new features and 
checks in the refinement view.

In our example language the list element class is Instruction, and the separator symbol is semicolon. 
Fig. 7 is shown in a situation where the user has already selected Instruction as the refinemnent 
class of the N otion com ponent, and  is currently refining the separator component. H ere these 
refinements are sufficient for the complete specification of class Program, and this concludes the 
implementation of our example language. Note that in some other application it might be sensible 
e.g. to add  some semantic processing in the arrow head actions, and obtain thus specialized list 
classes which could be further refined for individual languages.

S tric tly  speaking this is a special view for lists: it contains a "backward" arc which is not allowed 
in the usual patterns; hence this kind of pattern could not have been created by the user. However, 
since the subclass view for S td jis t  otherwise looks like a refinement view, we use it here as an 
example of that.
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Std_Nst: Program

Class name: Program О  SCOPE О  NAMED

FEATURES Cb
legal [Notion] 
process [Notion] 
src [Notion] 
verify [Notion] 
'new feature*

"new check*

I ADD NEU 1 I EDIT 1 | REMOV

Notion

Instruction

K«5MOrd

F ig .7. Part of the view shown for giving a subclass of S td jis t .  The user has just typed in the 
separator symbol

7 Conclusions
This example dem onstrates some of the advantages of TaLE, when compared to more conventional 
language im plem entation systems. The user need not know any special language im plementation 
paradigm or formalism: we only expect that s /h e  understands object-oriented program m ing and the 
underlying OO language (here Eiffel). Most of the work is done using generally understandable 
graphical facilities in an interactive environment. The user has the feeling of editing rather than 
that of w riting a formal specification.

If the language to be im plemented is reasonably compliant w ith the existing classes of TaLE, the 
im plementation can be carried out w ith very little work. The system supports the im plementation 
development on several levels. The strongest support is achieved if an existing class can be used as 
such. In the TaLE implementation model, the classes implementing different language structures are 
independent units, and they can be freely combined to form new languages (e.g. Pascal_int and 
P asca ljd  in the example). The second level of support is offered through the high-level built-in 
facilities for standard  language features: these allow the construction of new language specific 
classes through a specialized interface (e.g. M y_expression in the example). The third level is

56



obtained through the general specialization mechanism of all classes, allowing the user to add 
abstract com ponents (Simple_output in the example), to associate the abstract com ponents w ith 
concrete ones (Output), to refine the classes of components (Program), and to add new features and 
analysis-tim e actions (arrow -head actions). Finally, the fourth  level com prises of the  basic 
m echanism s of TaLE like the graphical syntactic specification, suppo rt for w riting  feature 
references, autom ated nam e analysis, etc. All this has the effect that the need to write Eiffel code 
is minimized.

The system  is open. Except for the fact tha t the im plem entation classes are viewed th rough a 
specialized editor, there is nothing special in those classes. The interfaces of the classes are visible 
and understandable for the user, and s /h e  may use them  freely in other software. The internal 
representation of the source is a normal collection of objects that can be associated w ith arbitrary 
processing. There are no h idden interpreted system files.

The system is incremental. As long as the interface of a class is not changed (e.g. by rem oving or 
adding a user-given operation), the editing of a class does not necessitate the reproduction a n d /o r  
reprocessing of all the other classes, or even the client classes. For instance, syntactic changes can be 
freely m ade in the patterns w ithout affecting the other classes. There is no global information about 
a language that should be updated  after each modification. Individual language structures can be 
tested independently.

The success of the TaLE approach clearly depends on the extent predefined class libraries can be 
used to support the im plementation of new  languages. We expect that different TaLE class libraries 
will be developed for different application domains, so that the language development can be done 
(re)using concepts that are already near to the language. Trivially, each language im plem entation 
carried out in TaLE is in fact a  specialized class library that can be utilized e.g. in the developm ent 
of the next generation of the language; hence this approach seems to be especially useful to m aintain 
the im plem entation of a relatively non-stable language in  a specialized environment.
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Abstract. This note proposes a new method for compressing program files. In syntactical 
compression of program files linearization of parse trees are used. A linearization of a parse tree 
contains production labels and symbol table references to user terminals. By storing type 
information concerning user terminals, it is possible to leave out some production labels from the 
linearization and to decrease the number of bits needed for some labels.

Key Words and Phrases: syntax-directed compression, semantic compression.

1. Introduction

The effectiveness of text compression depends on how much information is available about the
structure of the text. When compressing program files, the syntax of a program constitutes a
basis for efficient compression methods; for a survey on syntactical compression see chapter 6 in
Г5]. The information we have about the structure of the input text, i.e. about the program, is
given in the form of a context-free grammar defining syntactically correct programs. Syntactic
approaches are known to give better compression results than conventional lexical approaches.

i

The compression process in syntactic methods can be described as follows. The input program 
is first scanned and the tokens found are classified into syntactic terminals (keywords, operators.
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punctuation symbols) and user terminals (identifiers, constants). The user terminals are gathered 
to the symbol table. Then the parse tree is generated. Each internal node in the parse tree is 
associated with the label of the production applied at the node. Each leaf contains a pointer to a 
symbol table entry. Linearization of the parse tree is obtained by traversing the tree in preorder, it 
contains both the labels stored in the internal nodes and the pointers stored in the leaves. The 
original program can be reproduced from the linearization of the parse tree.

As noted by several authors [3,9,11], global production labels contain redundant information. 
Namely, when reproducing the program from a label sequence, we always know the leftmost 
nonterminal of the current sentential form. So, we do not need global production labels but 
labels which distinguish between productions having the same left hand side. Arithmetic coding 
can be used when coding the production labels.

#
The context-free grammar defining syntactically correct programs contains all possible syntactic 
information about the programs to be compressed. To obtain better compression gains one can 
try to extract other kind of information from the grammar. The purpose of the present paper is to 
show that better compression results can be obtained if in addition to the syntactic properties also 
some semantical aspects are taken into considerations as well. We consider the compression of 
Pascal programs (see [4] for the grammar); similar results can be obtained by using other 
programming languages, too.

We would like to stress that only correct programs are acceptable as input. It is normally 
supposed in the literature that programs to be compressed are syntactically correct. This is not a 
serious restriction, sinõe incorrect programs are rarely stored for a long time or transmitted via a 
computer network. Moreover, if the input program is produced by a syntax-directed editor, it 
cannot be incorrect. It is also normally supposed that all comments and formating features are 
omitted. A pretty printer program is supposed to be available to achieve readable program from 
the decoded output.

According to Peltola and Tarhio [9, Table I] the compressed version of a typical program file 
occupies storage as follows: about one third of the bits are needed for the parse tree (excluding 
the information concerning user terminals); symbol table references, i.e„ pointers indicating the 
occurrences of user terminals, usually take a majority of the rest space needed. About 10-30 per 
cent of the space is needed for storing the names of the user terminals. We concentrate our 
compression efforts to parse trees and to symbol table references.
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We organize the symbol table such that type information concerning user terminals can be 
succinctly stored in it. The advantages gained are twofold. First, some labels of productions 
become unnecessary in the parse tree, since we can deduce them from the types of associated 
user terminals. Secondly, this information justifies some grammar transformations which 
decrease the size of the parse tree. Katajainen et al. [6,7] changed the underlying Pascal grammar 
in many ways. For example, precedence and associative rules of expressions are left out. This 
reduces the number of internal nodes of the parse tree. However, as noted by Peltola and Tarhio 
[9], it has the drawback that the number of production alternatives per a node increases. When 
reproducing a Pascal program from the left parse and user terminals there are several situations 
where the number of production alternative can be decreased if the type of user terminals is 
known. We argue that the type information stored in the symbol table justifies the grammar 
transformations made by Katajainen et al. [6,7], and in fact, gives us better compression results.

When changes are made to the context-free grammar defining the language, it may become 
necessary to perform parsing using one grammar and to compress using another grammar. 
Fortunately, there is a rich theory concerning mappings between context-free grammars. 
Provided that a grammar transformation obeys same natural conditions, we say that there is a 
cover relation between the grammars. Consult [8] for details concerning grammatical coverings 
and related topics.

2. Symbol table organization

A compiler uses a symbol table to keep track of scope and binding information about names 
encountered in the input text (see [1]). In a system for compressing program files a symbol table 
makes it possible to replace the occurrences of user terminals by symbol table references. An 
entry in compiler’s symbol table usually contains attributes that have no relevance in a 
compression system In our system the only symbol table attribute is the type category of a user 
terminal.

During compression and decompression the symbol table is organized into lists maintained by 
the move-the-front heuristic. Peltola and Tarhio [9] use two lists. One list is for identifiers and 
the other one is for numerical constants. A reference to a symbol table entry specifies the list in 
question and the position inside the list. Also Cameron [3] mentions the possibility to slice the 
symbol table, but without any attempt to make use of the semantic information. We do not know 
any previous attempts to obtain better compression results by using semantic information.
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We suggest the use of a separate move-to-front list for each type category. This means that more 
bits are needed for specifying the list in question. However, as little as four bits, i.e., 16 type 
categories, should be enough. On the other hand, more lists means fewer bits for the positions 
inside lists. The use of the move-to-front heuristic can be motivated by the fact appearances of 
words are clustered both in natural languages and in programs [2,10]. We argue that this 
clustering phenomenon can be utilized in a more efficient manner when user terminals of 
different types are stored in different lists.

In the compressed version the only attribute of symbol table entries is presented implicitly by 
storing user terminals having the same type in consecutive positions. Hence, in the compressed 
version the symbol table is divided into slices each of which contains only user terminals 
belonging to the same type category. Our suggestion of using several type categories and thus, 
having more slices, increases slightly the number of bit needed for the compressed symbol table. 
Namely, we have to store information about the boundaries between the type categories. This 
can be done e.g. by storing the sizes of the slices or by reserving a certain symbol to indicate the 
boundaries.

The type categories to be considered depend on the programming language in question. 
Moreover, the use of different grammar transformations may invoke the need of different type 
categories to be stored in the symbol table. In the following chapter we give a Pascal related 
example in which syntactic categories label, constant_name, type_name, variable_name, and 
subprogram_name are used.

3. Eliminating labels from the parse tree

This chapter shows how to use the semantic information stored in the symbol table. We consider 
the following simple declaration part:

program e?cample(input, output, filel); 
label 23, 55; 
const ace = 14;

header = ‘52 playing cards’; 
type suit = (diamond, heart, spade, club); 
var card: record x:[2..ace]; y; suit end;
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Recall that we store information about the type of user terminals if they belong to the type 
categories label, constant_name, type_name, variable_name, or subprogram_name. In this 
example we suppose that user terminals not in the categories mentioned belong to the category 
‘others’. In the transformed grammar we have the production

<program> —» program <identifier> *(’ <identifiers> *)’ <declarations> <subprograms> 
begin <statements> end .

Since each derivation begins with this production, it is not necessary to store its label. The first 
user terminal is the name of the program. The following user terminals belonging to the category 
‘others’ are the parameters of the program. It is sufficient to store only pointers to the 
corresponding symbol table entries. The type category ‘others’ tells us that the identifier indeed 
are parameters of the program name. Next we encounter user terminals of type category label. 
Again no information concerning the productions applied in the left parse are needed. 
Declarations of constant are also easy to handle (although there are a few alternatives). When an 
identifier of type category variable_name is encountered, we need syntactic information to handle 
the various possibilities to define a type. The possibilities are the following: simple type, pointer 
type, array, packed array, file, set, and record. For each type declaration we have to give a left 
parse from the nonterminal <type> to a terminal string. Note that this is the first time when labels 
of productions must be stored in order to be able to reproduce the program. Hence, no syntactic 
information is needed to handle the nonterminals <identifier>, <identifiers>, and declaration s> 
in the production above provided that there are no type declarations. If type declarations exist we 
have to store left parses from nonterminal <type>. If a program has subprograms the above 
activity can be repeated when handling their declaration parts. If the compression system uses 
only the type categories mentioned then we have to have some kind of end marker which tells 
when the parameters of the program name end and the statements begin.

4. Grammar transformations

This chapter discusses grammar transformation that helps us in compression. We consider 
Pascal expressions as an example. In a normal Pascal grammar there is a large amount of 
productions providing the proper precedence and associative rules related to these expressions
[4]. Katajainen et al.[6,7] replace these productions by the following simple productions 

pi: <expression> —> <factor> <operand> <expression>
P2: <expression> -» <factor>
рз: <operand> -* = I Ф I < I й  I ž  I > I in I + 1 - 1 or I •  I / 1 div I mod I and  

P4: <facton> —► <variable> I not <factor> I nil I unsignedJnteger I unsigned_real I
string I ( <expression> ) I identifier ( <actual_parameters> ) I [ <elements> ] I [ ].
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Some of the nonterminals used (e.g. <variable>) are not explained here, but the reader should 
obtain a clear overall picture of the nature of changes done. As already mentioned, these changes 
reduce the size of the parse tree but at the same, they increase the number of production 
alternatives per a node: the original grammar (see [4]) has separate nonterminals for relational, 
adding, and multiplying operators but above all operators are gathered to the right hand side of 
one single production.

Suppose now that we are reproducing the program and we know that pi is the next production to 
be applied. If we in addition know that the next user terminal is of type boolean, then we can 
conclude that the operator must be one of the relational operators (=, + , <, Ž, >, in) or a 
boolean operator (and, or). Hence, knowing the type of the next user terminal allows us to 
continue as if the production were

<boolean_expression> —> <boolean_factor> <boolean_operand> <boolean_expression> 
where only the operators mentioned can be generated from <boolean_operator> and the 
nonterminals <boolean_factor> and <boolean_expression> are defined correspppdingly. Similar 
case appears if we know that the user terminal is of type real. Then the operators mod and div 
are not possible.

The above example shows that type information makes it possible to compress by using virtual 
productions whose nonterminals have fewer production alternatives than the nonterminals in the 
original production. This decreases the number of alternatives per a node in the parse tree. Since 
we use local production labels the increase in the total number of productions has no effect to the 
compression result; it only makes the compression process somewhat more complicated.

We have already mentioned that it is necessary to parse a program using one grammar and to 
compress using another grammar. The connection between the two grammars is established by 
defining a homomorphism from the set of productions of the original grammar to the set 
productions of the transformed grammar. Type information is also transmitted via this 
transformation.
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Abstract

A portable debugger for the Scheme language was implemented. The debugger 
does not rely on implementation specific features in order to provide debugging 
capabilities. Instead, the source program is transformed into one that behaves as if 
run under a conventional debugger.

1 Introduction
The Scheme language, a member of the Lisp family of languages, has been gaining popula­
rity within academia as a teaching vehicle. It is a very simple and compact language, and 
consequently many free implementations have emerged. However, none of these provide 
the kind of source level debugging commonly found for the С language, for example.

Psd is a portable source level debugger for the Scheme language, that adds debug­
ging capabilities to any implementation conforming to the de facto language standard 
’’Revised4 Report on the Algorithmic Language Scheme” [1]. Psd provides most of the 
features commonly found in debuggers. The user can set breakpoints, single step eva­
luation and examine and change the variables of the debugged program. Psd shows the 
source line being executed in an editor window. Even programs that cause run time er­
rors can be debugged with Psd, as the debugger intercepts the execution of the debugged 
program just before a run time error would occur.

Psd works by transforming the original source code into a form that provides the 
desired debugging capabilities. There is at least one similarly implemented debugger, 
namely the edebug package for GNU Emacs, written by Daniel LaLiberte.

The pragmatic reason for implementing Psd was to provide better debugging capabi­
lities for students using Scheme in courses taught by the Software Systems Lab.

2 The User Interface
Psd has been designed to be used when running a Scheme interpreter as a subprocess of 
GNU Emacs (a popular free editor). Psd uses Emacs as a front-end for .displaying the 
current location in source code, as well as for handling details such as temporary file name
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*f
> Evaluation took 17233 -See <5000 In 9c) 710409 сот work 
«unspecified
' 'loading Vtnp/ps<£a04695*
;dona loading Vtap/'ped2a04695‘
;Evaluation took 1216 «See (216 In 9c) 12009 cons work 
•<i«jpecifled>
> {Evaluation took 0 aSec <0 In gc) 16 cons work 
‘Breakpoint at rtme/kaarne-b/pk/ped/blntree.scn:41*
' <tast 10)
(if < 
psd> I

(nod«-set-right I parant new nods)))»»

(define (lootus object)
(let search «node tree»

:> (if (not (null? node»
(If (equal? object <node- 1 tee nods))

(node-iten nods)
(if (lese? abject (node-iten nods))

(define (deletel abject)" " T ^ r r

Figure 1: A Psd Session

generation and issuing commands to the instrumentation code. The user interacts with 
the debugger and debugged program partly by giving commands via Emacs, partly by 
typing them directly to the debugger prompt. It is also possible to pick procedures to 
be debugged directly from an editing window. An example session is shown in figure 1. 
The debugger communicates with Emacs by printing specially formatted lines containing 
information about the current source line. Emacs interprets these lines by showing the 
appropriate file in an editing window, and maintaining an overlay arrow indicating the 
current line.

GNU Emacs was chosen as a front-end mainly because it is widely used for writing 
programs, and because a similar interface had already been developed. The Psd interface 
to Emacs was modified from an existing Emacs interface for gdb (the GNU debugger). It 
would not be difficult to modify Psd to use a different front-end, though.

3 Debugging by Instrumentation
Debuggers such as dbx on Unix machines usually run the debugged program as a separate 
process. The debugged program is run just like it would be normally run, and the debugger 
implements single stepping and breakpoints by using services provided by the operating 
system. These techniques are somewhat hard to apply in an interactive environment, and 
they are necessarily implementation dependent.

Many Lisp systems, including most Scheme implementations, implement d e b it in g  by 
stopping the execution of the debugged program, and starting a new read-eval-print loop. 
The user can then type expressions that the system evaluates, walk up and down stack 
frames etc. This provides a very powerful debugging environment, as the user can use all 
the features provided by the underlying language. However, a debugger implemented this 
way must be built into the implementation. It also seems that while being a powerful 
tool for the experienced user, this kind of debugger can be very confusing for the novice 
programmer.
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Psd provides debugging capabilities by augmenting the original program with additio­
nal code. This is done entirely in source code level, so no special support is needed from 
the underlying Scheme implementation.

A simple example of a source code transformation providing debugging capabilities is 
adding code for printing a trace of every procedure invocation. For example, the procedure

(define (square x)

(* x X »

could be transformed into

(define (square x)

(display "square called with argument ")

(display x)

(newline)

(* X x))

and then loaded into the Scheme environment. If the instrumentation and loading is 
handled by the programming environment, the user just sees a procedure being traced.

An important point is that the augmented procedure retains its interface and opera­
tion, as seen from the calling code. When another procedure calls square, it should not 
matter, whether the original or the augmented definition was used. Procedures instru­
mented by Psd retain their interface, which allows Psd to be used as an additional tool 
in the programming environment, rather than as a separate environment.

4 Transformations Performed by Psd
The transformations Psd performs are similar in spirit to the above example, although 
more complicated. Extensive instrumentation of the original source code is needed for 
providing breakpoints and access to variables in the debugged program.

An example of an instrumented procedure is given in figure 2. It is the result of 
instrumenting the procedure

(define (foo x)

(+ x 42))

Psd makes heavy use of the first-classness of Scheme procedures. They are used for 
accessing local variables, as well as for implementing single stepping and break points.

In order to provide access to the values of local variables from the debugger command 
loop, two procedures are inserted at the start of each lexical scope in the original pro­
gram. They provide access to the variables visible within that scope. For example, the 
procedure pisd-val in figure 2 returns the value of the variable x when it gets the symbol 
x as an argument. The procedure is passed to psd-debug, the debugger runtime, as an 
arguments When the user wants to see the value of the variable x, the debugger calls the 
procedure psd-val with the symbol x, and gets the value of the variable in the debugged 
program. Note that since Scheme uses lexical scoping, there is no other portable method 
for accessing the value of a lexical variable from outside the scope. V
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(d e f in e  foo
( l e t  ( (p s d -c o n te x t (lambda () (cons (q u o te  foo ) (p s d -c o n te x t) ) ) ) )  

(lam bda (x)
( l e t  ( (p a d -v a l (lambda (psd-tem p)

(ca se  psd-tem p
((x )  x)
( e ls e  (p s d -v a l p s d -te m p ))) ))

(p s d - s e t !  (lambda (psd-tem p psd-tem p2)
(ca se  psd-tem p

((x )  ( s e t !  x psd-tem p2))
( e ls e  (p s d -s e t !  psd-tem p p s d - te B p 2 » ) ) »  

(psd-debug p s d -v a l  p s d - s e t!  p sd -c o n tex t 
(q u o te  (+ x 4 2 »  1 2  2 
(lam bda ()

(p sd -ap p ly  ((lam bda x x)
(psd-debug p s d -v a l p s d -s e t!  p sd -c o n tex t 

(quo te  +) 1 2 2 
(lambda ()  + ))

(psd-debug p s d -v a l p s d -s e t!  p sd -c o n tex t 
(quo te  x) 1 2 2 
(lambda ()  x ))

(psd-debug p s d -v a l p s d -s e t!  p sd -c o n te x t 
(quo te  42) 1 2 2 
(lambda ()  4 2 ) »  

p s d -v a l p s d - s e t!  p sd -c o n te x t 
(quo te  (♦ x 4 2 »  1 2 2 i f ) ) ) » »

Figure 2: An Instrumented Procedure
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For implementing break points and single stepping, each expression is converted into 
a thunk, a procedure of no arguments. When the value of the expression is needed, the 
thunk is called, yielding the value of the original expression. This is effectively same as 
delayed evaluation. Thus, if the expression

(+ x 42)

is converted to

(lambda () (+ x 42))

it is possible to evaluate its value at a later time. The thunk is passed to the debugger 
runtime, which can then interact with the user both before and after evaluating the 
expression.

The same conversion is applied recursively to each of the subexpressions. Instead of 
using the native procedure calling mechanism, the subexpressions of a procedure call are 
passed to the procedure psd-apply, which checks that it is safe to call the procedure with 
the given arguments. This is done in order to catch run time errors. The final result of 
the conversion is roughly equivalent to

(psd-debug (lambda ()
(psd-apply 

(psd-debug (lambda () ♦))
(psd-debug (lambda () x))
(psd-debug (lambda () 4 2 )))) )

When the debugger decides to run one step of evaluation, it calls the procedure that 
was passed to it. Calling the thunk invokes each of the calls to psd-debug, yielding 
the addition procedure, the value of x, and the number 42. The debugger runtime gets 
control both before and after each subexpression is evaluated. Finally, psd-apply calls 
the addition procedure with the desired values.

Each time psd-debug is invoked, it checks whether it should continue evaluation im­
mediately, or stop and prompt the user for commands. Single stepping is implemented 
simply by using a global variable whose value tells whether single stepping is on or not. 
For break points, a list of source code lines containing the currently active break points 
is maintained. Each time execution proceeds to >a line in the break point list, execution 
is stopped and the debugger command loop is entered.

As seen in figure 2, the runtime is called with additional parameters besides the de­
bugged expressions. These parameters contain the location in source file, the expression 
being evaluated and so forth.

5 Run Tim e Errors
Because Psd relies on correct execution of the instrumented program, it cannot let run 
time errors occur. For the programmer, though, errors in the program often manifest 
themselves by causing run time errors. A debugger is commonly used for running the 
program until a run time error occurs, and examining the state of the program at that 
point.
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Psd catches most run time errors by examining the arguments passed to primitive 
procedures from the debugged code. If Psd determines that a run time error would result 
from calling the primitive procedure, the debugger command loop is called instead.

In Scheme, type is associated with a value, not a storage location. All variables, 
including the formal parameters of a procedure, can hold values of any type. Thus, 
calling a user defined procedure with arguments of wrong type does not cause run time 
errors. Type errors can only occur when calling a primitive procedure. Psd detects 
calling primitive procedures with wrong number or wrong type of arguments, and stops 
the execution of the debugged program.

User defined procedures can thus be called with arguments of any type. However, 
trying to call a user defined procedure with wrong (lumber of arguments results in a run 
time error. In order to prevent that, Psd would have to know the arity of each user 
defined procedure, which is not possible to determine portably. With some help from the 
implementation, it would be easy, though.

It would be possible to do at least some static type and arity checking, but most small 
implementations do not perform it. The flexibility of the language makes static checking 
difficult, as procedures can be passed around and stored in data structures just as other 
values.

Other types of run time errors, such as division by zero, are not handled by Psd.

6 Limitations and Further Development
Because the aim of developing Psd was to provide a portable debugger, it cannot use 
features outside the language standard. Perhaps the most serious single limitation caused 
by that is that no backtrace information is available in the debugger. It would be possible 
to pass the backtrace around as an additional parameter, but this would require that all 
procedures accept the extra parameter. However, backtrace information is very helpful 
when figuring out what went wrong, so solving the problem is a main aim for further 
development.

Another concern that becomes apparent when dealing with large applications is space 
and time efficiency. The instrumented code is much larger than the original source code, 
expansion factors from 14 to 39 have been observed. Small procedures expand more 
than larger ones, because there is a fairly constant amount of code associated with each 
procedure. Thus, the example of figure 2 is a rather extreme case. Instrumentation also 
slows down the debugged program considerably, observed slowdown has been in the range 
of 170-200. If an implementation has a compiler, the runtime support code could be 
compiled. In practice, most of the debugged program is usually run normally, and only 
a few procedures are being debugged at a time. In this case, the efficiency of a single 
procedure does not necessarily slow down the whole program significantly.

7 Availability of Psd
Psd is available from the author. It is also placed under anonymous ftp in c s . t u t . f  i  in the 
directory /pub/src/languages/schem es, and in the Scheme Repository nexus. yorku. ca 
and its mirroring site f t p . i n r i a . f r . Psd is placed under the GNU General Public 
License, so it can be freely used and distributed.
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Abstract
The paper discusses the problem of how in a dialogue in natural language between two participant* one 

of the participants, using so-called communicative strategies, can influence the other participant to  make a 
certain decision. The model of communicative strategy will be offered which unites the partner model and 
the reasoning algorithm used in the process of working out a  dedeion.

1. Introduction: a short survey

In order to develop Artificial Intelligence (AI) systems which could adequately understand 
people and make themselves understood while interacting in natural'language it is necessary 
to interpret human communication and to model it on computers. “ >

Communication is not a  simple interaction of speech acts (for example, ask - reply, demand
- refuse, agree, etc.) but, as a rule, is an hierarchically organized process. First, certain 
goals and subgoals will be pursued. Secondly, to achieve the goal certain methods called 
communicative strategies are applied (e.g. blandishing, frightening, threatening, etc.).

Let us consider interaction between two subjects, Si and 52, where the goal of the initiator 
of the interaction fs i)  is to achieve a decision by the partner (52) to perform an action (.4). 
51 cannot directly bring about” this decision, he can only release and influence the decision 
making process in 52.

Therefore, 51 must have a general depiction of the partner’s reasoning model. The paper 
presents a formal model which tries to represent the typical trains of thought by the human 
reasoner. According to this model the reasoning process - whether to perform or not perform 
an action A  - will be released by three kinds of factors, the во-called determinants: 1) 
wishes of the subject, 2) his considerations of the usefulness and 3) his considerations of the 
obligatoriness of A. The reasoning process consists of a  sequence of steps where the pleasant 
and unpleasant, useful and harmful, etc. aspects of the action will be weighted. This process 
is governed by reasoning postulates and principles characteristic of human motivational and 
reasonig system in general.

On the other hand, we are interested in how the subject 51 ”can penetrate” the reasoning 
algorithm of 52 so as to direct and influence ty. 51 can do it only via communication. First of
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all SI h u  io choose the starting determinant (wish, needed or most determ inan t which he 
attempts to trigger in 52. When it has been triggered, 51 must see to it that 52 rsReasoning 
proceeds through any of thoee routes which leads to  the decision to perform tW action  A.

Such an influencing process represents the communicative strategy of Sl^Vith the »im 
to  generate the decision to perform A by 52. The communicative strategy as well as the 
reasoning process can be formalised. The paper presents a possible approach to this task.

2. Background and related research

The notion of communicative strategy (CS) is related to the notions of dialogue planning 
and plan recognition (e.g. [8], [10]). Strategies in our sense represent higher level structures 
though: a communicative strategy in dialogue is a general line of reasoning, a  general basis 
abo lor constructing concrete plans.

The notion of CS in discourse is used by such authors as T.A. van Dijk [3] and K.McKeown 
[9]. T.A. van Djjk defines a  strategy in terms of general attitudes which the speaker tries to 
impose on the recipient.

K. McKeown is interested in so-called discursive strategies the aim of which is to organise 
the texts in such a way as to make their understanding easier for the receivers.

In conversational analysis and related research the concept of strategy is relatively po­
pular. But as a rule it is related quite straightforwardly to the use of definite categories 
of verbal expressions and/or to vanous social aspects ol the interaction (see e.g. [4,5] for 
the illustration). The cognitive aspect, i.e. the attem pt to take into account the recipient’s 
processes of reasoning and understanding in which ultimately a strategy should get realised 
is almost lacking.

Our model of CS differs from these models in some crucial aspects.
First, the aim of introducing this notion is to tie together communicative goals of the 

speaker, on the one hand, and the partner model structure, on the other. The partner model 
here is understood as a relatively concrete personality type model.

Second, our model presupposes human reasoning model and takes into account different 
aspects of personality structure in this respect.

The concept of strategy is abo used in the game theory: a  strategy is a  prescription which 
determines the behavior of the participant in all situations which may appear during the 
game. Communication as the interchange of speech acts can be considered as a  game in 
which moves are realised by speech acts of the participants [1]. To a speech act of one of the 
participants the other participant can react in a finite (and often quite restricted) number of 
different ways. For instance, an order may be answered by complying, by refusing, by asking 
for additional information etc. The concept of CS used in the present paper in analogous to 
the concept of strategy in a game of 2 persons. But the specific characteristics of the human 
interaction we want to take into account determine the specificity of our concept of CS.

3. Modelling natural reasoning

Let us consider a special case of communication - a  dialog between two subjects, 51 and 
52. Let the goal of 51 be that 52 would agree to perform a certain action A. How can 51 in 
the course of (verbal) interaction influence 52 to come to the given decision? Apparently, 51 
must have a depiction of the mode) of reasoning with which people operate when they are 
working out their decisions.

We will present here our view of the reasoning model (for the motivation see [7]).
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According to oui model, the human reasoning concerning an action A may be induced and 
directed by three kinds of factors, or determinants. These factors are divided into internal 
and external ones with respect to  the reasoning subject 5.

The internal determinants of S which may induce the reasoning about A are, first, S ’a 
wishes, and second, S’s considerations of what needs to be done. We will call the first class 
of determinants ’’WISH-determinants” and the second class - ” NEEDED-determinants”

The external determinants are the obligations, the norms tha t force 5 to perform A without 
taking into account S’s own interests. Inese are "MUST-determinants” .

The WISH-determinants operate when 5 would find it pleasant to do A  for its own sake 
or for the sake of some of its consequences. This may be characterised as the primary and 
the most natural motive to do some action: to get satisfaction from it.

The NEEDED-determinants get activated as subgoals of some already accepted goal: in 
order to reach the goal G the action A as one of its subgoals has first to be realised.

Finally, as MUST-determinants function obligations, norms and also other subjects’ orders 
which hold in the situation where the subject S finds himself.

We are interested in the process of reasoning th a t leads from these determinants to the 
decision to perform or not to perform the action A. These processes can be described as 
proceeding by specific decision steps, but at the same time they follow a  certain overall sche­
me. Nevertheless, in the frames of this scheme the subprocessee are different and differently 
organized depending on the input determinant type.

Let us briefly discuss the categories that will be used in formulations of reasoning algorithm, 
and the principles that govern their interactions.

1) PLEASANT/UNPLEASANT: these categories represent the primary (originally emo­
tional) evaluations which are anchored in the sensual system of the subject.

2) USEFUL/HARMFUL: these are prototypical rational evaluations, i.e. they are based 
on certain beliefs or a  certain knowledge of S and there are certain criteria for making the 
corresponding judgements. These criteria are connected, first of all, with the goals of 5: an 
aspect of A is useful for 5 if it helps S to  reach some goal G\ and, correspondingly, an aspect 
of A is harmful if it prevents S from reaching some goal G.

3) OBLIGATORY/PROHIBITED: these are also rational evaluations but they are based 
either on the knowledge of certain (social) norms or on some directive communicative act 
of a  person who is in the position (has the power) to exercise his will upon S. Obligations 
and prohibitions are connected witn the concept of punishment, which is an action taken 
by some other subject as the reaction to S’s not following the corresponding obligations 
or prohibitions. Thus, trhrough this concept, the dimension of obligatory/ prohibited is 
connected with the previous dimensions: a  punishment is (is intended to be) unpleasant or 
harmful to S.

RESOURCES of S  with respect to A  constitute any kinds of circumstances which create 
the possibility to perform A and which are under the control of S.

The values of the dimension obligatory/prohibited are in a sense absolute: something 
is obligatory or not, prohibited or not. But the dimensions pleasant/unpleasant and use­
ful/harmful are, rather, scalar ones: something is pleasant or useful, unpleasant or harmful 
to a certain degree. We should thus represent these dimensions by certain scales on which 
the intervale should be differentiated when reasoning.

In the reasoning process their concrete values, or weights, are summed up in some way. 
Before the final decision about A is made, its pleasant and unpleasant, useful and harmful 
aspects should be weighed up and the general "balance” of the weightings of positive and ne­
gative aspects computed. This suggests that the corresponding scales would be represented 
in some form which makes the cross-scale comparison possible (in the formal representation 
e.g. in numeric form, where the use of the concrete numeric values should be empirically 
grounded, of course).

There exists a natural correspondence between these three dimensions and the three input 
determinants considered before, i.e. WISH-, NEEDED- and MUST-determinants:
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1) a  positive value concerning the aspects of A on the pleasant/unpleasant scale is presup­
posed by the WISH to do A\ 2) a  positive value on the useful/harmful scale is presupposed 
by the NEEDED-determinant; and 3) a  positive value on the obligatory /prohibited scale is 
presupposed by the MUST-determinant.

In the considered context the process of reasoning itself consists in the interaction of the 
WISH-, NEEDED- and MUST-determinants and the judgements concerning the dimensions 
pleasant/unpleasant, useful/harmful and obligatory/prohibited.

Beyond these, the reasoning model contains a number of general principles, or postulate, 
which characterise the human motivational and reasoning system in general (e.g.: people 
want pleasant states and do not want unpleasant ones; the more pleasant is the imagined 
future state the more intensively a  person strives it, etc.). And there are a  number more 
concrete preference rules, e.g.:

- if A has been found pleasant (and also the subject wishes to do it) then the subject 
checks the NEEDED- and MUST-determinants first from the point of view of their possible 
negative values (”what harmful consequences A would have?”);

- if the sum of the values of the inner (WISH- and NEEDED-) determinants and the value 
of the external (MUST-) determinant appear equal in a situation (i.e. there arises a conflict) 
then the decision suggested by the inner determinants is preferred.

Let us present now the reasoning algorithm corresponding to three kinds of input deter­
minants: 1 )5  WlSHes to  do A, 2) A NEEDs to be done by S and 3) 5 MUST do A. For 
representing the concrete aspects of the reasoning process in the algorithm the following 
abbreviations are used: И'(pleat) -  the weighting of the pleasant aspects of A\ W(Karm) - the 
weighting of the harmful aspects of A\ etc. All these weightings are given from the point of 
view of S  and constitute a model of the reasoning subject.

The reasoning algorithm is universal and does not depend on the concrete subject. We 
represent the algorithm as a so-called schematic program [6].

----  reasoning
W {pleat) > W(unpleat)7 
procedure W ISH

№ (w i) > W(harm)? 
procedure N E E D E D

it  A obligatory? 
procedure M U ST

decide not to do A

Let us explicate here the contents of the procedure W ISH , i.e. the reasoning which is 
triggered by a  wish or want of the subject. For the details of other procedures - the reasoning 
which departs from the considerations of usefulness and obligatoriness of A, see [7].
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-----procedure W ISH
---- presumption : 5  wishes to do A , i.e.
-----W{pleas) > W(unpleas)
'are there enough resources fo r  A l 

W(pleas) > W(unpleas) +  W(harm)! 

is A prohibited1 

W(pleas) > W(unpleas) +  W (harm) +  W(punish)!

W(pleas) +  W(use) < W(unpleas) +  W (harm) +  W(punish)!

Wfpleas) +  W(use) < W(unpleas) +  W (harm )l 

is A obligatory1

is A prohibited!

W (pleas) +  IV (u je )  < W(unpleas) +  W(harm) +  W(punish)!

decide : to do A 

decide: not to do A

4. Com municative space

W hat we have talked about represents the model of decision making - of reasoning - of a 
subject 5  without his/hei relatione to and communication with other subjects.

But we are interested in a  situation where there is still another subject (i.e. there are 51 
and 52) and the subject 51 is trying to bring about in the reasoner 52 one certain decision 
concerning A, for instance, to do A.

How can 51 ’’penetrate” the reasoning algorithm used by 52 so as to direct it and influence 
its outcome?
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First, 51 must choose the starting determinant (WISH, NEEDED, MUST) which he/she 
must then try to trigger. This input delimits also the set of possible further strategies.

Second, when the chosen input determinant has been triggered, 52 must guarantee tha t 51 
in his reasoning process moves along one of the routes that brings him/her to the decision 
”to do A” .

The scheme presented above shows the critical points in the reasoning process on which 
the outcome of the process depends.

But to influence this process - the thinking of 52 - subject 51 can only by communication 
with 52. And here - in the "communication space” between 51 and 52 - empirical regularities 
of its own are at work. There are dimensions and factors that one has to take into account 
when having in view certain result in a concrete situation of communication.

Let us present first an overview of the dimensions of communication space which are 
relevant lor our discussion, and then to consider the problem of representing the model of 
communicative strategy.

First we introduce two dimensions of general character which as if are placed ”on top o f  
the other, more concrete dimensions. These are

(1) cooperative-confrontational character of communication and
(2) personality-impersonality of communication.
According to the first dimension the communicative encounters can be ordered into a 

continuum where at the one end are absolutely confrontational encounters (quarrels) and at 
the other end interactions without any element of disagreement (e.g. conversation between 
lovers). The majority of interactions lie somewhere between these extremes, and as a rule 
the participants themselves choose the concrete value of the dimension.

Personality-impersonality: according to this dimension the speaker chooses, how perso­
nally, i.e. departing from himself/herself he/she presents the material. There are types of 
interaction in which the individuality of the speaker has no real meaning (e.g. some types 
of official talk) and there are interactions which necessarily require the participation of the 
speaker as an individual person. And again in the majority of cases the speaker can deci­
de how person ally-im person ally he/she acts in presenting his/her communicative acts (e.g. 
question, offer, proposal, remark, criticism, etc.), and in this way manipulate the possible 
reactions of the recipient.

The whole diversity of the remaining aspects of communication we will divide between 
three dimensions:

(3) the distance between participants,
(4) the modal, attitudinal (evaluative) dimension, and
(5) the intensity of communication.
The distance between participants is one of the most widely discussed dimensions of com­

munication, especially in the literature on conversational analysis, e.g. Г2]. Distance should 
be confused with the personal closeness of the participants. Even when communicating 
with unfamiliar people one should fix a certain distance. It reflects the amount of "common 
ground” , the amount of factors which unite the participants in a  concrete encounter. As such, 
it plays a central role in person-to-person communication. The ”shortening” or ’'widening” 
of distance with respect of the neutral one by one of the part id  pants is communicatively 
meaningful. For instance, shortening the distance (by S i )  can in certain circumstances be 
considered as "doing a favor” to the partner 52 (as, for instance, in case of expressing inte- 
restedness and/or positive apraisal towards the partner as a person) and 51 is in position to 
expect the counterfavor (e.g. the fulfilment of a  request) by S2.

The other two dimensions - modality and intensity of communication - are again of more 
general nature and are not so relevant for the type of communication we are interested in 
here. Let us look at them only briefly.

By modality of communication we mean the dimension as the values of which occur such 
characteristics as friendly, deferential, respectful, attentive, distrustful, unfriendly, careless, 
rough, irritated, etc. Most of concrete values of the dimension are such th a t they can be
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correlated with certain strategies only. For instance, in the caee of blandishment or flattery 
the values of the given dimension (on the part of Si) such as "rough” or "careless” are 
excluded. On the other hand, one may think of strategies where just these values of the 
dimension are used.

Lastly, by intensity of communication we mean the energy by which it is carried out. An 
encounter can be peaceful or reserved, or it can be vehement. SI can behave, in presenting 
his aims, modestly and discretly, or he can behave obtrusively. In the same way 52 can vary 
his reactions.

In sum, the communication space as described above may be represented as a  5-dimensional 
space where the coordinate axes are fuzzy scales [11].

In order to achieve the aimed decision (by S2) concerning the action A, SI should create 
in S2 the right configuration of the evaluations of the pleasant and unpleasant, useful and 
harmful, prohibited and obligatory aspects of A. but to guarantee that the information 
about the relevant aspects of A which S i plans to give to 52 would have the right effect, SI 
should choose, first, the right configuration of the values of communicative dimensions, to 
move to the right point of the communication space, before (when) giving 52 the "objective” 
information.

5. Communicative strategy

Let us treat a dialog between 51 and 52. The subject 51 has:
1) an understanding of the reasoning algorithm which would be used "by every normal 

person” , that is also by 52 (and by 51 himself/herself);
2) a  picture of the evaluative appraisals of 52 of the pleasant, unpleasant, useful, harmful 

etc. aspects of the action A ,  i.e. a  partner model. In general, this model does not necessarily 
coincide with the model which 52 himself/herself operates when reasoning about A,

3) a communicative strategy - a  method of influencing the reasoning process of 52.
For reaching one certain goal several different strategies can be used. For instance, enticing, 

threatening, frightening, persuading - as a rule, these are not single speech acts but may 
represent quite long-lasting endlavors of one participant of communication in the names of 
his communicative goal.

On the other hand, a strategy is not a plan where it is precisely determined what to say 
and in what order. In dialog it is hard to make detailled plans since one cannot foresee the 
exact reactions of the partner.

CS in this sense is a  structure of higher level than plans. It constitutes a possible basis for 
concrete plans and for their variations in a session of communication.

CS-я can be classified - and represented - in several different ways; for instance, according 
to communicative goals. As a goal may function "objective” knowledge of the partner about 
something; his conviction (that something holds or does not hold); his evaluations (that 
something is good or bad); his decision to do or not to do something.

The hierarchy of communicative goals determines also the hierarchy of CS-s. The CS- 
s which are directed towards attainm ent of one and the same goal may be differentiated 
according to the input determinant which the author of CS is trying to trigger.

Let us present here a  general communicative strategy where the goal of its author ( s i)  is 
to reach certain decision of 52 (to do A ). The encounter begins with the determination by SI 
of the concrete manner of influencing 52 (i.e. his concrete strategy: blandishing, persuading, 
frightening etc.), and with the fixation of the co-ordinates of the starting point in the com­
munication space. 51 chooses the degree of cooperativity, of personahty-impersonality and 
of intensity of the planned communication, and decides whether the default value of his dis­
tance to S2 should be changed or not. When SI founds tha t the distance should be widened
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or shortened, then he/she should start the encounter with the corresponding introductory 
remaxk(s), without necessarily referring to his/her real goal, but using the chosen values of 
other dimensions.

The actualisation of the point in communication space ("communication point” ) can be 
represent by the following scheme.

---- actualization of the point in communication »pace
choose the degree of cooperativity 
choose the degree of personality 
choose modality 
choose intensity 

to change the communicative distance? 

make rem arks) to widen! shorten distance

After choosing the communication poin t 51 ha« to inform 52 of his/her communicative goal 
This turn - as well as the following ones - should be formulated by taking into account the 
communication point, i.e. by using the chosen degree of cooperativity etc. If 52 agrees, the 
communicative goal of 51 is reached and the c»mmunication may end. But if 52 refuses then 
51 has to decide whether to continue the interaction or not. If he/she chooses to  continue, 
he/she should decide, first, whether to  follow the chosen strategy or to change it, and look 
whether to ’’move” to another point in cbipmunication space, for instance, by shortening the 
communicative distance or by rising the! intensity of communication. Further performance 
of 51 depends on the concrete strategy chosen by him/her.

CS can be represented by the following scheme.

— — communicative strategy (author 51) 
choose a concrete strategy
actualise the ( initial) point itt the communication space 
inform  52 of the communicative goal 

did S2 agree"!

>-f— -----the goal is reached

to give up!

■ — — the goal will not be reached 

to change the concrete strategy?

choose a concrete strategy 

to change the communication point? 

actualise a point in communication space 

apply the concrete strategy
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The concrete strategies used to reach a fixed communicative goal differ from one another, 
first of all - as pointed out above -, by induced input determinants. For instance, 51 can 
entice, persuade or force 52 to decide to do A by inducing or rising in him/her, accordingly, 
a wish, an understanding of usefulness or an understanding of necessity concerning A.

We will confine ourselves here to  representing one communicative strategy - the strategy 
of enticing. The goal of enticing is to induce in 52 a  wish to  do A, and by stressing the 
pleasant (and other positive) aspects of A and, a t the same time, possibly, by downgrading 
the negative aspects of A, to bring 52 to  the decision to do A. We represent the enticing 
strategy by a case scheme, where as the key functions the answeT of 52; the strategy gets 
started when 52 has refused to  do A.

— — strategy of enticing
answer o f  52 (re f tiling)!

-  ("no* V *little benefit"  V "not obligatory” V "little pleasant")
present a counterargument in order to stress pleasant aspects of A

-  ("ло resources")
present a counterargument in order to point at the presence of possible resources or at the 

possibility to gain them
-  ("much harm”)
present a counterargument in order to downgrade 

the value o f harm
-  ("A is prohibited and the punishment is great")

present a counterargument in order to downgrade the weight of the punishment
-  ("much unpleasant")
. present a counterargument in order to downgrade the value of the unpleasant aspects o f A

On the ground of the concrete reply of 52 51 is able to make the necessary changes in the 
partner’s model and to understand what route 52 is traversing in his process of application of 
the reasoning algorithm, and to choose the counterargument in order to turn the reasoning 
process of 52 in the needed direction. The contents of the counterargument depend on the 
concrete action, of course; we don’t consider here the question of the verbal formulation of 
replies either.

We confined ourselves to  considering the use of communicative strategies from the point 
of view of 51 only. In reality, of course, 52 will use his strategies in the same way.

6. Concluding remarks

Intuitively, we interpret communicative strategies as general methods of pursuing one’s 
goals in dialogical interaction. As examples may serve tempting, soothing, frightening, per­
suading etc. someone in order to get him to do an action, to believe something, to make a 
certain value judgement etc.

For the present discussion, we have chosen strategies where the goal of the author of the 
strategy, 51, is to get the partaer, 52, to do a  certain actiou A  (more concretely, to make the 
decision to carry out the action).
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The aim of the paper was to demonstrate one possibility for the formalization of the 
process of reasoning which brings the subject to a  certain decision, and of the concept of 
communicative strategies which can be used to direct the processes of reasoning.

The ideas axe implemented in a computer system where the values of the reasoning de­
terminants and of the communicative dimensions can be manipulated in different ways, and 
the task of the system is to "compute” the decision concerning the suggested action.

The presented modele turn out to be useful, in addition to AI, also in linguistics providing 
a  conceptual framework for interpreting individual facts of linguistic communication.
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ABSTRACT

In this paper we present an idea of combining syntactic and semantic information in the form 
of attributed automata. Our motivation comes from syntactic pattern recognition of ECG 
signals. There we need to detect various syntactic structures and calculate also many 
different numeric values. We have developed a system of attributed automata, which parses 
an input string according to the system grammar. An attributed automaton is a finite state 
machine, whose states are augmented with finite number of semantic variables, attributes. 
Every automaton is designed to parse some specific substring of input and return 
successfully if the desired structure is detected and the values of the attributes satisfy some 
predetermined conditions. Parsing with these subgoals needs also a suitable searching 
strategy, which we have chosen to be depth-first order. We have designed a language of our 
own for writing system specifications. We have also implemented a pre-processor, which 
reads the specification and generates necessary С-functions, which need to be compiled 
together with the base interpreter and this finally gives an executable system parser. An 
object-oriented view in our system reveals also simple class hierarchy among different 
automata. Some automata are clearly like specialised versions of other more general types of 
automata. Our primary goal is to increase the intelligence of the system so that it could 
acquire more knowledge during parsing processes. This can be achieved through the 
classification and clustering of detected substructures.

Keywords
Syntactic pattern recognition, Signal analysis, Attributed automaton
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1. INTRODUCTION

Pattem recognition methods are widely used in various tasks in computer science today. First 
approaches were statistic methods, where we calculated quantities from the phenomenon and 
tried to classify this phenomenon according to these numeric values. However, in many 
occasions the most important feature of the object is its structure and the way how it is built. 
This is the idea behind syntactic methods in pattem recognitionO). In syntactic methods we 
first analyse an unknown pattem and try to extract primitives. Primitives are the most 
elementary pieces of structure of the object. Primitive extraction has resemblance to the 
feature extraction phase in statistical methods, but the way we use primitives is different 
from the way we use numeric features. After this primitive extraction we examine the way 
they are organised to form the object itself. We have a pattem grammar to show the structure 
of the desired objects. This grammar has primitives as its nonterminals. Then we find out 
whether the object is constructed according to the rules in the pattem grammar, i.e. we parse 
the primitive string to find out if it belongs to the language generated by the given pattem 
grammar. If this is the case then we classify the object to the class defined by this grammar.

This skeleton has worked well in purely structural classification problems, but in many 
occasions we need to resort to the semantic meaning of the primitives. This is the case in the 
recognition of the electrocardiograms (ECG) which are largely employed as a diagnostic tool 
in clinical practice in order to assess the cardiac status of subjects. Several methods have 
been used in the recognition and analysing of the ECG signals(2.3). in ECG diagnoses we 
have to calculate several amplitude and duration values of the patterns in the signal. We 
could use some kind of feature coding in the primitive extraction phase, but then our 
primitive alphabet usually grows too large to be practical. If we do the primitive extraction 
by к features and each feature i is divided to nj classes then the total number N of primitives 
is

N = f l n ,
1=1

which soon becomes too large in any applications. A better way is to perform the primitive 
extraction phase by few structural features and leave other features connected to the 
primitive as they are. These represent the semantic interpretation of the structural primitive. 
In addition to the coding problem, we need to express sometimes also complex semantic 
dependencies in the structure of the pattem. If we leave this totally to the pattern grammar, 
then the complexity of the grammar becomes soon unmanageable, for instance many 
dependencies in signal processing are context-depending.

Semantic information can be combined with the syntactic information by the means of the 
attribute grammars. Attribute grammars are context-free grammars, whose nonterminals and 
terminals are augmented with semantic variables, attributes. If the context-free grammar is 
right or left linear then we have a regular syntactic structure. This is usually the case in 
attributed syntactic pattem recognition because the attributes can express the non-regular 
information.
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2. COMPUTATION OF PRIMITIVES

Selection of primitives is an essential point for the syntactic pattern recognition. There are 
plenty of different ways to compute primitives of ECG, for example. We applied a typical 
technique of line segments in which the signal is divided into consecutive, almost linear 
segments of various length. The character of the ECG .signal is suitable for the varying 
length, because there are long flat parts in the signal but also very steep peaks (Fig. 1).

ECG signal originates from the 
action of human heart. It 
describes various phases in 
cardiac cycles. The most 
important phase in heart action is 
the QRS-complex which is the 
electrical phenomenon of the 
depolarisation of the ventricles 
where heart pumps blood to the 
arterial system. P- and T-waves 
originate from pre- and post 
operations to the depolarisation 
of ventricles. ECG is a very 
varying signal in nature and 
continues numerous error 
components that can distort the 
signal.

The use of the varying length primitives is effective, since it compresses data and thus 
decreases the number of primitives. If we applied the fixed length, the chosen length of 
primitives should be rather small so that even steep QRS-complexes could be detected. 
Segmentation starts with a fixed length segment which has к sample points. If all sample 
points between the first and the last point are close enough to the line from the first sample to 
the last sample then we can add к sample points more to the segment. We enlarge this 
segment repeatedly by к samples until some sample point is further from the line than it is 
allowed. Then we start shrinking our segment so that the new end sample point will be set to 
the sample that lies most far away from the segment line. When finally all sample points lie 
between allowed limits then we accept this segment and start the next segment from the end 
of the current segment.

We approximate the slope of each segment by computing the slope of the line between the 
first and the last sample of the segment. After having computed a segment and its slope we 
transform the segment to a terminal symbol according to the slope of the segment (Fig. 2). In 
principle, it is best to prefer as small a number as possible, since we can then construct 
simpler automata and recognition systems. On the other hand, we can describe more 
information with primitives when we use a greater number of different terminals. Thus, we 
have searched for a reasonable trade-off between those two goals. We added also two 
attributes to each terminal: the dx-duration and the dy-duration.

PT-duration

P-wove 

PQ-segment

QRS-komplex

Fig. 1 An ideal model of the one cardiac cycle in an ECG 
recording.
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Selection of primitives is one of the most essential 
parts in syntactic pattern recognition^-^). For some 
problems the set of primitives can be determined 
naturally, as in our application they follow the 
structure of the signal. There are many applications, 
for instance EGG processing, where we cannot easily 
determine the most appropriate primitive set, because 
there the most important feature is the energy of the 
EGG in different frequencies. The general rule in 
primitive selection is that the simpler primitives mean 
more complex grammars. Augmenting attributes to 
the primitives reduces the complexity. For instance, in 
many applications we need to measure the 
phenomenon itself. We could use fixed length 
primitives and compare and calculate the number of 
primitives to get measurement estimates but this leads 
immediately to context-free grammars and very often 
over that.

3. ATTRIBUTED AUTOMATA SYSTEM

An attributed automaton is a finite automaton to which attributes are added to contain 
semantic information collected and used in p a r s in g ^ ). By employing attributes we make 
pattem recognition more effective because we enhance the intelligence of the recognition 
system by considering attributes as semantic information during the parsing p r o c e s s ^ ) .  We 
organised a set of attributed automata for the ECG recognition process. Each automaton has 
a particular task in the recognition process. There is an initial automaton which starts the 
whole parsing process and calls some other automata of the set in order to parse some 
specific substructures. Every automaton can call any other automaton, also itself recursively.

When the call of an automaton is performed, this means that the called automaton 
commences to process the string of terminals (or primitives in the signal) from the location at 
which the former automaton called the latter. The called automaton tries to recognise the 
subpattem. If it succeeds, the calling automaton accepts this result and continues from the 
location where the called automaton stopped. Otherwise, it fails and calls the next alternative 
automaton to start again from the same location as the previous automaton. If there is no 
uncalled automaton left, the automaton moves to the next state if a transition is available. If 
there is no transition available, the system returns from the automaton to the upper level in 
the system. The initial automaton halts the process when all terminals of the signal have been 
considered.

We consider an attributed automaton as a finite automaton with a finite memory for 
attributes. At any move a new configuration of this memory is evaluated. We defined the 
system of attributed automata as a tuple of (A, Q, £, ao, Qo. R, ATT, F, no) *n which

d
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1) A is a finite non-empty set of automata.

2) Q is a finite non-empty set of states. Q(a) refers to the states of automaton a. Sets Q(a) are 
disjoint between the automata.

3) £  is the terminal alphabet, i.e. collection of primitives that constitutes a pattern string. Our 
alphabet I  is common to every automaton in the system.

4) The initial automaton is denoted by ao> and Qo is the set of initial states of the automata. 
Every automaton has exactly one initial state, Qo(a) for automaton a.

5) The transition relation R of the system comprises two relations Rj and R2 - The former is 
a deterministic partial function from (A, Q, I )  to Q, which maps transitions within 
automaton a in A. R2 is a nondeterministic transition relation (A, Q, I ,  A, Q), which 
describes actions of the system between automata. Tuple (a, p, c, q) of Rj is a transition in 
automaton a from state p to q on input letter c. Tuple (a, p, c, b, q) of R2  is a call of 
automaton b from state p of automaton a on input letter c. If automaton b succeeds in 
parsing, the system returns to state q of automaton a.

6) ATT is a finite set of the attributes of the states.

7) F is a set of the computation rules of the attributes. At each transition which an automaton 
makes, the attributes of the current state are used to compute the attributes of the state to 
which the system moves. When the system returns from the subautomaton, the attributes 
computed by the subautomaton are used to update the attributes of the state to which the 
system returns.

8) no contains the initial values of the attributes of the initial state of the initial automaton at 
the start moment of the system. Thus, attributes of automata represent the semantic 
information collected from subpattems already analysed.

4. FUNCTION OF THE SYSTEM

Our basic idea was to construct attributed automata each of which is intended to recognise a 
certain subpattern. An automaton can then call a certain subautomaton to recognise the 
corresponding subpattem. The automaton at a higher level may have several alternatives to 
choose from for some phase of the parsing. Order of calls of the subautomata is arranged 
depending on the application so that more probable alternatives are used before those which 
are less probable. The nature of our task in ECG processing is more like analysing signals 
and not recognising them. Therefore we can first try more specific structures that follow the 
structure of the ideal ECG signal, although they may not be the most common shapes in ECG 
signals.

Processing of the automaton stops when there are no alternatives (transitions) to be chosen or 
the automaton compels a return to the calling automaton which is tested with predicate 
return. For the latter case there are two possibilities. First, the subpattem which was looked
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for was already found, although there are still transitions unused. For example, such an event 
is encountered when we have detected the left side of a peak and we are processing the 
middle of the right side, and these sides are of equal height at that moment, but the right side 
would still continue after the midpoint. However, the recognition of that peak is completed at 
that sample, because we want both sides to be of approximately equal height. Second, the 
automaton can discover, on the basis of values of the attributes, that the recognition of the 
subpattem cannot be successful in this choice.

After having returned to the calling automaton the predicate success tests by means of 
attributes whether the subautomaton called could parse the substring, i.e. recognise the 
subpattem. We could set absolute bounds for such attributes which concern the time domain 
of the signals. However, those attributes associated with the amplitude relative values are 
necessary, since for the amplitude attributes we cannot fix any unequivocal values the 
amplitude scale being so varying.

We define the action of the system with configurations which are tuples of (a, p, w, ц, P). In 
the tuple a is the current automaton to be processed, p in Q(a) is the current state in a, w is 
the input string not yet considered, ц is the set of attribute values of p, and P is the control 
stack of the system. An initial configuration is (ao, Q ( a ), w, цо>£) where w is the whole 
input string (signal) and e is the empty stack. There are the following cases for the changes 
of states:

1. (a, p, cw, ц, P) -> (a, q, w, v, P) if (a, p, c, q) is in R and v is equal to F(u), i.e. obtained 
from ц according to computation rules of the attributes. This is a deterministic move inside 
an automaton a by the input letter c.

2. push action: (a, p, cw, ц, P) —»(b, Qo(b), cw, v, (a, p, cw, ц, q)IIP), where II is the 
concatenation operation, if (a, p, c, b, q) is in R and v is obtained by initialising the attributes 
of the initial state of b with ц. This is the nondeterministic call of a subautomaton, where 
backtracking information is stored to the stack

3. pop action: (a, p, cw, Ц, (b, q, z, v, r)IIP) - » (b, r, cw, к, P) if success^a) is equal to true 
and either there are no transitions unconsidered in automaton a or return^a) is equal to true. 
We compute к from v, which is updated with ц. This case is the successful return where we 
have detected the subpattem denoted by automaton a.

4. pop action: (a, p, cw, Ц, (b, q, z, V, r)IIP) -» (b, q, z, v, P) if success^a) is equal to false and 
either there are no transitions unconsidered in automaton a or return(a) is equal to true. This 
is the unsuccessful return where we could not parse the subpattem denoted by automaton a. 
Note that the attributes v of the calling automata are not altered. This means that we take no 
information of unsuccessful return, we only notify it. We could use the information 
somehow to evaluate attributes v in order to find out what caused the failure. This would be 
one place to insert automatic learning capabilities by allowing metaprocessing where 
automaton rules are altered by another automaton rules.
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While being in a state the system may have several alternatives to call automata. At the call 
of a subautomaton information about the parsing situation is stored in the stack. This 
includes the name of the current subautomaton, state, input string not yet processed, attribute 
values, and the return state which is used after the successful return. After having pushed 
them to the stack the system calls the subautomaton. If the parsing fails, the system returns to 
the calling automaton and the next subautomaton is tried. So the action of the system is to 
perform depth-first search in a set of possible parsing orders. As mentioned above, the order 
of the tries is arranged appropriately in our application. In addition to subautomata calls, the 
system can make a transition by input letter after trying every possible subautomaton, which 
is deterministic, and then no return information is stored.

When the whole input string has been considered, the system has the final configuration (a, 
p, e, |i, P) where e is the empty input string. If automaton a is not then ao, the lowest record 
has to be fetched from the stack. This stack record is always a configuration of ao- Attribute 
values of ao express semantics of the input string.

Our system can be viewed also as a specialised version of a recursive transition network 
system where we have semantic attributes and conditional predicates and evaluation 
functions augmented to the states (Fig. 3).

Here we can move from the state p to 
the state q if we can detect the 
structure Sym, and the structure Sym 
and the attribute values of the state p 
satisfy predicate p. Sym can be a 
structural symbol in the case we start 
a subautomaton and see if the result 
satisfies predicate p. If Sym is a 
terminal symbol in the parsing string 
then the predicate is T, because the 
detection of one specific terminal 
symbol is sure. After a successful 
move we update the attributes of the 

state В with the evaluation function f. If the parsing of the structure Sym fails then we try 
another alternative move from the state p. If there is none left then the work of this level 
network is finished.

Attribute grammars contain very much so called сору-rules where we just copy attributes 
from one state or nonterminal to another and do nothing else. This is especially the case in 
attributed automata system where we have encapsulated one task in one automaton. That is 
why we have taken the attributes out of the states and put them together with an automaton. 
We can namely assume that all the states have the same attributes.

' q  Sym, p(Sym,A) С\
B;=f(Sym,A) ^

A В

Fig. 3 A transition model in automata system.
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5. SYSTEM SPECIFICATION LANGUAGE

We have implemented our system with our own application language where we can 
determine all the actions of the automata system. All the application specifications are 
written in the following syntax.

[ START <automaton>
ATTRIBUTES
definition of attributes>

[ INITIALIZE [ <automaton> ]

«initialising of attributes> ]+

[ OUTPUT 

coutput actions» ]

[ TRANSITION 
<state> • [ <terminal> ]+ ■ ->

[ call <automaton> <state>
<evaluation of attributes» ]*

[ MOVE <state>
<evaluation of attributes> ] ]+

STOP <automaton> ]+
[ FUNCTIONS 
«definitions of functions> ]

This definition is then pre-compiled with a pre-processor. The definition of the attributes, 
initialisation and evaluation follow the syntax of the language C. In INITIALIZE-blocks we 
define the actions which take place when some other automaton calls this automaton. There 
we use the symbol @ when we refer to the attributes of the current automaton and symbol $ 
when we refer to the attributes of the calling automaton. OUTPUT-block is performed when 
this automaton has finished its actions successfully. However, here we have the problem of 
destructive operations. Although this automaton succeeds, the upper level automaton that has 
called this automaton may fail and then the work done by this automaton is wasted and must 
be forgotten and if we have done some changes in global data those changes must be undone. 
We are trying to avoid this kind of backtracking allowing only operations to the local data of 
the current automaton.
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ln TRANSITION-blocks we define the actions of the current automaton. In CALL- 
statements we define the order of subautomata tries. When a subautomaton returns 
successfully then we can evaluate the attributes of the current state, to which we refer with a 
symbol @, by the attributes of the called automaton, to which we refer with the symbol $. In 
a MOVE-transition we can refer to the attributes of the current automaton with the symbol 
@. In FUNCTIONS-block we can define various evaluations functions in the language C. 
These functions can be used in transitions, initialisations and retumings of automata.

6. ECG APPLICATION

We have designed an automata system of fourteen automata to perform ECG analysis. We 
have named automaton EKG to be the initial automaton which starts the process and collects 
various average information out of the signal. Automaton BEAT parses one cardiac cycle at a 
time (Fig. 4). It tries to find out how the cycle is constructed by using several other automata 
who are specialised to certain substructures. Each state in BEAT corresponds to a certain 
phase in cycle parsing where we try to parse appropriate structures. If a substructure was 
detected then we copy important semantic substructure values to the attributes of BEAT. If 
we could not detect any substructures then we move one input letter ahead (denoted by letter 
x in Fig. 4) and try again to parse interesting substructures.

Automata STSEGMENT, TPSEGMENT and PQSEGMENT parse flat parts of the signal.
They use automaton SEGMENT to parse a flat structure. SEGMENT uses recursively itself to 
detect the end point of the signal. Automaton TWAVE parses the T-wave and PWAVE parses 
the P-wave (Fig. 5 and 6). They both have approximately the same syntactic structure, but 
their semantic conditional predicates use different thresholds and formulas in the accepting 
of the substructure. Their parsing is successful if the amplitude of the left and right arm are 
close to each other and the amplitude is a certain part of the average primitive height and the 
width of the wave is a certain part of the amplitude of the wave and the flat top area of the 
wave is not wider than half of the total width. In addition, in the detection of the P-wave we 
have to define the accepting of the P-wave so that no other P-wave structures lie between the 
detected P-wave structure and the next QRS-complex. This means that we accept the last P- 
wave structure as a real P-wave. Automaton QRS parses a QRS-complex. It is successful if
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the maximum height of the QRS-complex is more than с times the average primitive height 
where с is some predetermined constant (usually about five), and the start and the end point 
are close in amplitude scale. Automaton QRS uses two other subautomata to detect steep 
slopes of the QRS-complex. They accept also slight errors in these arms of the QRS-complex 
where the edges of the arms can have small distorted noisy primitives.

We can strengthen or weaken these 
conditions depending on the parsing result. 
Usually constant threshold values are not 
useful because ECG is so varying a 
phenomenon. This is where we need 
capabilities of metaprocessing where we 
can adapt to input string in according to the 
analysing goals. In ECG processing we 
aim to detect conecdy as many subpattems 
as possibly. Correctness can be achieved 
through the context-dependent conditions 

and the checking of our analysing result. This increases our time-complexity because we 
have to do more searching in order to find the best analysing result.

The results of our system 
were encouraging. The 
system detected almost all 
of the QRS-complexes and 
most of the P- and T- 
waves in the set of 42 test 
signals. Our signals were 
recorded with a heart 
monitor and they 
contained relatively large 
amount of noise. We 
examined also our 
backtracking efficiency by 
calculating a ratio of 
primitives in input string 
to the total numbers of 
move-transitions made by 
the sys»em. This ratio was between 0.5 and 0.9 and most often about 0.8. So we can state that 
on the average 20% of our application work is wasted because of unsuccessful choices. If all 
our test signals would be almost ideal then this efficiency ratio would be near one.

b, с ,.d a,e e, f,g,h

Fig. 6 The structure of the P-wave (Automaton Pwave2).



7. CLASS HIERARCHY OF AUTOMATA

We have detected a form of class hierarchy among our application for ECG signals. For 
instance P- and T-wave automata are two subclasses from the more general wave-shape 
automaton class. Similarly automaton QRS could be divided into more specific classes of 
QRS-morphology. We can say that in the most general form an automaton can accept 
anything, i.e.x* and calculates something about this universal signal string like average dx- 
and dy-values and the number of primitives. Then we can specialise this model by adding 
more transitions and evaluation rules and specialising our predicate from true to something 
else more restricting predicate. To be more specific we can define the class hierarchy of 
automata as follows.

An automaton class ACl  is a set of automata that accept the language L. Class ACj^ is a 
subclass of ACl  KcL. This definition is based on the set of strings accepted by 
automaton, but if we have an automaton A as an instance of class ACl  and В as an instance 
of class ACk  then we can study the structural differences between A and В and the 
subclasses generated by certain structural operations. Basically, there are infinitely many 
ways to make structural changes to automata but we were interested only in two following.

1) Restricting our predicate p in certain transition in automata system, i.e. replacing predicate 
P I  (A,Sym) with p2(A,Sym) where pj(A,Sym) is a logical consequence of p2(A,Sym). This 
kind of operations could be used in thresholding problem.

2) Changing the structure Symj to the Sym2 where Sym2 £  Symj. These operations are 
useful in the QRS-complex classification and clustering.

These are found by examining the application structures of several signal analysis tasks.
They both restrict the set of recognised strings. They are used in automata definition to make 
it more compact and easier to use. We can define a suitable class hierarchy where we collect 
the common structure to the upper level automata and just specialise this definition to be 
suitable for some particular substructure.

Those operations could be used also in automatic information acquisition. Especially 
important is the thresholding problem. We can easily describe the absolute structure of a 
subpattem but relative restrictions to the subpattem depends on the context. For example in 
ECG processing we need to reject small waves in order to avoid noise waves to be 
recognised as P-waves. But the next recording can be almost error free and P-waves are very 
small maybe because the electrodes are settled so that the electrical fields diminish P-waves. 
There we need to lower our threshold values and change our automaton to another automaton 
class. We could adapt to the current signal type by calculating the distance of the current 
signal from some template signal types. However, here we have the problem of finding only 
the first solution in depth-first search. We namely have to find also other solutions, i.e. 
subpattems and examine also them. We choose the most suitable one from the set of found 
subpattems. This technique seems to lead to membership degree calculations and fuzzy 
decision making. This area is currently under research.
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8. SUMMARY

On the basis of our tests and experience, attributed automata appear to be very suitable for 
the syntactic pattem recognition problems. Using attributes we can semantically control the 
syntax analysis of input strings. A pure formal grammar or automaton cannot express all 
kinds of dependencies effectively, because those may be context sensitive. With attributes 
we have added semantic features to the recognition, and thus increased the general 
recognition efficacy of the system.
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Abstract
ASN.l (Abstract Syntax Notation One) Is a protocol engineering language used In 
specifying on an abstract level the messages transmitted in computer network 
communication. The language Is associated with encoding rules that specify in 
which binary form the actual concrete data values are represented in a physical 
medium during transmission. Both the language and Its encoding rules have been 
standardized by ISO, and currently a revised standard is under development by a 
joint committee of ISO and ССПТ. An implementation is presented that translates a 
specification given in ASN. 1 Into a set of data structures and encoding/decoding 
functions in C. Using these data structures and functions, network applications 
can realize the exchange of their communication data. The central features of ASN. 1 
are presented, and the problems in automatically processing the language are 
discussed. The presentation covers both the ASN.l language defined In the 
presently valid standard as well as the forthcoming extensions.

1. Introduction

In the last decades, one of the most important areas in computer science has been 
the research on computer networks. A computer network Is a collection of 
interconnected computers that communicate via some form of transmission lines. 
In order to understand and synchronize the messages sent within a network, the 
computers must follow a common set of rules, a communication protocol. The key 
aspect in building a computer network is to specify and implement the protocol of 
communication between the involved computers.

Modem advanced networks are rather complex and large systems. OST (Open 
Systems Interconnection) is the most well-known reference model designed for 
reducing this Inherent complexity by introducing a layered structure on the 
network architecture. The OSI model has seven layers: (1) the physical layer, (2) the 
data link layer, (3) the network layer. (4) the transport layer. (5) the session layer, 
(6) the presentation layer, and (7) the application layer. Each of these layers has a 
standardized abstract functionality, and the only form of communication is across a 
narrow interface between neighboring layers. It is only the application layer that 
provides services to the actual application, most notably a primitive for sending 
data from the application to another application running in another machine. This 
data (with some protocol control information) is transferred from layer (7) to layer
(6) after executing layer-specific operations, from layer (6) to layer (5). etc.. until the 
lowest layer (1) in the hierarchy is reached. The physical layer finally transmits the 
data to the target machine through a physical medium. The process is reversed in
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the target machine where the data reaches the receiving application through layers
(1). (2)...... (7). For extensive introductions to OSI. see e.g. [22| or [24].

The research on computer networks has generated a rich set of methods and 
tools to set up a network. On the communication software side the term often used 
for the developed methodology is protocol engineering. The term characterizes the 
view that in the current state-of-the-art even complex protocols can be really 
engineered from specification right down to implementation. The foundation to the 
discipline is laid by a number of formal protocol specification languages and their 
implementation tools. The leading standardized OSI oriented specification 
languages are SDL (21, Estelle |4). and LOTOS 131. The protocol engineering 
discipline is discussed in full e.g. In (111 and in [17].

Layer (6) In the OSI model, the presentation layer, is responsible for the syntax 
of the data transmitted In the network. The main task of the layer Is to encode 
messages such that the physical (binary) representation sent can be correctly 
interpreted by all parties of the communication. The key to the problem of 
representing, encoding, transmitting, and decoding a message is to have a way to 
describe the data structures composing the message. The method must be both 
flexible enough to be useful in a wide variety of applications and standard enough 
to be commonly understood. As part of the OSI development, one such language for 
describing structured data has been developed. This language. ASN.l (Abstract 
Syntax Notation One), has been adopted as the specification tool of data in virtually 
all application and presentation layer standards of OSI.

ASN.l is a language specifying structured data types and their values on an 
abstract level. With ASN.l, the protocol designer can describe the relevant data 
without having to consider its physical representation. The bit stream actually 
transmitted is defined for the protocol lmplementer by the set of basic encoding 
rules (BER). ISO (the International Organization for Standardization) has 
standardized the ASN.l language [12]. as well as the basic encoding rules (131. An 
informative tutorial on ASN. 1 is given in (18] and in [23].

The fact that makes ASN. 1 a most valuable language In protocol engineering is 
that It can be automatically implemented. A number of ASN. 1 based software tools 
exišt that can assist in implementing and testing the data transmission part of 
communication protocols. One such tool is CASN (Compiler for ASN. 1) [20| which 
can translate a specification written in ASN.l into data structures and 
encoding/decoding functions in C. Using the data structures and their associated 
encoding functions the application can transmit abstract ASN.l values in a 
concrete from to the receiver application which can catch them using the 
corresponding data structures and decoding functions, also generated by CASN.

Besides CASN, a number of ASN.l implementations have been developed. 
Including e.g. 15]. [7]. (19]. and [21]. All these translate ASN.l specifications into 
data structures and encoding/decoding routines written in some programming 
language. Because of the complex nature of ASN.l, all the translators work in a 
multi-pass manner, i.e.. they process an input several times when producing the 
target code. All the systems implement only a subset of ASN.l. Most notably the 
controversial macro facility Is either totally left out or it is provided only in a limited 
form as a number of built-in macros. All these ASN. 1 implementations have been 
designed within a more general frame of protocol engineering, and therefore each of 
them provides some form of an interface to other protocol production tools.

With respect to the related systems. CASN is quite advanced from a number of 
viewpoints. CASN has been developed in close co-operation with both users and 
developers of other protocol engineering tools, and it is therefore flexible in its 
interactions with external systems. CASN has been applied in many industrial 
computer communication projects that have Introduced into it a number of special 
facilities tuning it for specific tasks and target environments. The most notable 
design principle has been keeping CASN up-to-date with respect to revisions of the 
ASN.l language. Virtually since the release of the first ASN.l standard [12, 13], a 
group formed collaboratively by ISO and ССГГГ (Comite Consultatif de Telephonique
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et TCiegraphlque) has been working on a revised version of the language. The CASN 
development team has played an active role In this standardization committee by 
constantly verifying the practicality of the proposed new ASN. 1 features by at least 
sketching their Implementation with CASN. This effort has not only contributed to 
having the extensions realistic from an implementation point of view, but also to 
keeping CASN consistent with the forthcoming standard.

In this paper we present ASN. 1 and CASN. not from the protocol engineering 
perspective, but rather from a language and Implementation perspective. That Is. we 
consider ASN. 1 as an application oriented special-purpose language and discuss 
implementation problems caused by some of Its peculiar features. We proceed as 
follows: In Section 2 ASN. 1 is briefly Introduced. In Section 3 we describe the basic 
functionalities of CASN. The problematic features of ASN.l with respect to 
implementation are discussed In Section 4. We conclude in Section 5 by discussing 
the current and future development of both ASN. 1 and CASN

2. ASN. 1 - An Overview

Consider the typical computer communication scheme sketched In Figure 1. An 
application (or a user) on machine A wants to send data to another application 
(user) on machine B. In order to do this, (1) the data must be stored In the local 
representation form of machine A. (2) the local А-representation must be encoded 
into an external form used during transmission, and finally (3) the receiver on 
machine В must decode the incoming data and transform it into the local 
representation of machine B.

local fetor external local
representation representation W 1representation

A encoding decoding В

F ig u re  1. M essage communication.

The communication process may get laborous since the data may be complex, since 
its representation on machine A can be quite different from that on machine B. and 
since the software realizing the communication must ensure that the data Is not 
lost and that the meaning of the data is not changed during transmission. 
Furthermore, the concrete implementation of the communication process is 
different for each different pair <A.B>, even though the protocol pattern may be 
quite similar In many cases. Thus, when changing one of the machines A and B. the 
communication scheme would have to be completely relmplemented.

To overcome these problems, the International consultative committee ССГГТ 
defined the ASN.l (Abstract Syntax Notation One) data description language in 
connection with the X.409 mall standardization activity |6). Using ASN.l, the data 
conveyed from machine A to machine В can be defined on an abstract level, without 
having to consider the particular machine specific representations. The language 
was accompanied by a set of rules that specified how the abstract ASN.l values 
shall be represented in concrete binary form during physical transmission. Thus, 
the encoding rules relieve the protocol designers of defining the external form of 
messages. The language soon gained popularity within the protocol community to 
the extent that both ASN. 1 and Its encoding rules have been standardized by ISO In 
1987 Ц2, 13). Example protocols standardized using ASN.l Include the electronic 
mail handling system X.400, the X.500 directory, and the OSI presentation 
protocol.

13*
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ASN.l provides facilities to define primitive and structured data types and 
values. In the same principal style as ordinary programming languages. The main 
differences to type mechanisms of programming languages are due to the 
application area of ASN.l: a field within a structured value may for instance be 
missing, or it can have a default value. The most striking difference to programming 
languages Is that ASN. 1 Includes no control statements: the sole purpose of the 
language is to provide notations for specifying the structure of network 
communication messages. The only actual functionality associated with the 
messages, encoding /  decoding. Is Implicitly defined by the basic encoding rules of 
ASN.l.

ASN. 1 includes a set of bullt-ln simple types, and a number of structured types 
composed of other types. The simple types are the following:

INTEGER NumericStrlng
REAL PrintableString
B OOLEAN TeletexString (synonym: T61String)
E N U M E R A T E D  VideotexString
NULL VislbleString (synonym: IS0646String)
BIT STRING IA5String
OCTET STRING GraphlcStrlng
OBJECT IDENTIFIER GeneralStrlng

The types INTEGER (for Integer numbers). REAL (for real numbers), B O O LEAN (for 
truth values), and E N U M E R A T E D  (for named enumeration values) are conventional. 
The NULL type (with one single value, also called NULL) represents missing 
information. BIT STRING stands for binary sequences. OCTET STRING for octet (8- 
blt byte) sequences, and OBJECT IDENTIFIER for "information objects" each of 
which has a unique value of the type. The "information objects" are frequently 
referenced entitles (such as protocol standards, companies, or even persons) that in
this way can be globally Identified. The types NumericStrlng.......  GeneralStrlng
represent different kind of character strings: VislbleString for instance accepts only 
visible ASCII characters in its values, while IA5String accepts all the ASCII 
characters.

The structured types of ASN.l are defined in terms of other types, their 
component types. The structured types are the following:

SET
SET OF
SEQUENCE
SEQUENCE OF
CHOICE
ANY

SET represents unordered sequences ("sets") of values, each having a type of its 
own. SET OF also represents unordered sequences, but now the values are of the 
same type. SEQUENCE and SEQUENCE OF are similar to SET and SET OF 
respectively, but the values in the sequence must be in a specific order. CHOICE is 
a collection of alternative types any of which can serve as the type of a CHOICE 
value (as the union type in e.g. C). A NY is a "universal" ASN.l type, representing 
any value of any type. A component of a SET or SEQUENCE type can be denoted as 
optional, or it can be associated with a default value. Being optional, the component 
can be totally omitted in the corresponding structured value. A component with a 
default value can also be omitted in the value notation, but then the default value Is 
implicitly Included in the conveyed message.

In addition. ASN. 1 includes some "useful types" that could be defined in terms 
of ordinary ASN.l, but that are given predefined names because they are frequently 
used. The useful types are "GeneralizedTime" and "LTTCTime" representing time and
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date. "EXTERNAL" representing references to other ASN.l specifications, and 
"ObjectDescrlptor" giving a textual representation for OBJECT IDENTIFIER values.

ASN.l is a modular language, a module being a collection of type and value 
definitions. Each value has a type-specific notation. A simple example of an ASN. 1 
module Is given below:

Library DEFINITIONS ::=
BEGIN

MyLlbrary
Booklnformatlon 

author 
title 
code 
}

PersonalName 
surName 
glvenName
}

ISBN-code
emle PersonalName

END

Module Library defines four types (MyLibrary. Booklnformatlon PersonalName. 
ISBN-code), and one value (emie) of type PersonalName. When transmitting a 
MyLlbrary value, a sequence of book descriptions of type Booklnformation is sent (In 
any order). Each book description is composed of the book's author indication (field 
author1, the book's title (field title), and the book's ISBN code (field code) which can 
be lell out {OPTIONAL). The fields can be defined and transmitted in any order. The 
author is indicated by the family name (field surName) and an optional first name 
(field givenName). If the sender does not explicitly supply an author indication, the 
protocol assumes the author to be emie with first name "Ernest" and with family 
name "Hemingway". A type T can be subtyped: that is. a new type can be derived 
from T by restricting its value set. In this example, a value of type ISBN-code may 
contain at most 10 numeric characters.

Tagging is a special property of ASN.l types. Each type (whether built-in or 
user-defined) has an associated tag (an integer value) which is Included in the 
external binary representation of the transmitted values. The purpose of the tag is 
to notify the receiver about the type of the value, especially in those cases where the 
type is not unambiguously specified by the value itself. In the example above, the 
title field of a book description is defined to have tag 1 and field code to have tag 2; 
otherwise the receiver would not know whether the incoming string "123" is a 
book's title or an ISBN code.

The basic encoding rules (BER) of ASN.l define how the values specified in 
ASN.l must be coded during transmission. The encoding of a value consists of (1) 
the type tag. (2) the value's length indication, and (3) the actual value. If the value is 
structured, each of Its components is recursively such a triplet. Each element of the 
encoding is an integral number of octets. For instance, given the definition

v INTEGER ::= 51

the BER-encodlng of value v is Q20I3316 where Q2 Is the INTEGER tag. 01 is the 
length of the value (in octets), and 33 is the value in hexadecimal.

The most controversial feature in ASN.l are the macros. Using macros, a 
protocol designer can extend the base ASN. 1 language by introducing new type and 
value notations that suit better for the particular application domain than the 
standard ASN. 1 notations. Macros can also be used e.g. for grouping a set of related

SET OF Booklnformatlon
::= SET {
PersonalName DEFAULT emle.
(1] PrintableString.
[2] ISBN-code OPTIONAL

::= SEQUENCE (
PrintableString,
PrintableString OPTIONAL

::= NumericString (SIZE( 1.. 10))
::= { surName "Hemingway ". glvenName "Ernest" )



abstract types and values, and for semi-formally specifying dependencies between 
components of structured values.

The widespread use of ASN. 1 In protocol engineering has revealed a number of 
notable shortcomings in the current standard [12, 13]:

(1) The standard is erroneus or ambiguous in many respects. For instance, the 
scope and type compatibility rules of ASN. 1 are not clearly stated. This has resulted 
in differences both in use and In Implementations of the language.

(2) The language Is hard to analyze automatically.
(3) The macro facility is hard to understand and implement. An analysis of 

existing standards employing the macro facility has shown that they have used the 
facility in a rather diversified manner, and even erroneously.

(4) The standard Introduces too many (eight) character string types, some of 
them being too limited and some too general. Moreover, the compatibility between 
different string types is unclear.

(5) The basic encoding rules are too primitive In some cases, and they produce 
too long encodings with a large number of redundant bits.

Because of these problems, a joint activity by ISO and ССПТ is currently under 
way on revising ASN. 1 and its encoding rules. The standardization group tackles all 
the troublespots mentioned above (1) by rewriting the standard, (2) by improving 
the parsability of ASN.l. (3) by replacing macros with more restricted information 
object classes, (4) by introducing a universal character string type that is a 
supertype of the current character string types, and (5) by defining alternative 
encoding rules e.g. for supporting packed encodings. The new standard, currently 
in a DIS (Draft International Standard) phase, is expected to be released In 1993.

3. CASN - A Compiler for ASN.l

CASN (20] is an implementation of ASN. 1. As an ordinary compiler, CASN translates 
its source language (ASN.l) into a target language (C). The application area of CASN 
is taken into account by providing for the user a standard run time package (1) for 
embedding the generated encoding/decoding utilities into a complete protocol 
implementation, and (2) for integrating the protocol with the application. The overall 
scheme is illustrated in Figure 2.

Fig u re  2. T h e  C A S N  compiler.
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Figure 2 sketches protocol implementation using the stand-alone version of CASN. 
The compiler has also been integrated with a general protocol engineering 
environment |1] that most notably includes, in addition to CASN, a system for 
defining a protocol as an extended finite state machine, and a protocol test system. 
CASN has been applied for example in Implementing the X.400 electronic mall 
protocol, the X.500 directory, the CMISE network management protocol, and the 
FTAM file processing protocol.

Bach type T defined in an ASN.l program is compiled by CASN into the 
corresponding С type, called the home type of T. Encoding and decoding of ASN. 1 
values is achieved by generating for each home type an entry function in C. Each 
entry function is complemented by an Interface function for integrating the 
encoding/decoding routines with the application and with the protocol driver. In 
the following list we give the home type for each built-in ASN. 1 type:

ASN. 1 type Home type

INTEGER short (range -32767..+32767) 
long (otherwise; default)

REAL double
BOOLEAN char (0: FALSE, otherwise: TRUE)
E N U M E R A T E D  short (range -32767..+32767)

Song (otherwise)
NULL char (value never assigned)
BIT STRING struct ( long length; b its;) (*)
OCTET STRING struct ( long length; octets: } (*)
String types struct { long length; characters;} (*)
OBJECT IDENTIFIER struct {lnt length; int elem (MAXJD): )
SET struct
SEQUENCE struct
SET OF struct I long length; elem ents;) (+)
SEQUENCE OF struct {long length; elements: I (+)
CHOICE struct (union)
ANY pointer to value of some home type

depending on the used compiler options and on the defined size constraints, the 
ASN.l string types (marked (*) aDove) can give rise to different concrete data 
structures, in short: if the values of a string type are of moderate length, a static 
array is used: if the values are of moderate length which, however, may significantly 
vary, a dynamic list Is used; if the strings may get very long, a segmented dynamic 
list Is employed. The same principle holds for the list types as well (marked (+) 
above).

The latest release (1.42) of CASN implements most of the 1987 ASN.l standard. 
The most significant features not supported are the general macro facility (however, 
a number of frequently applied macros are provided as built-in), and some 
subtyping mechanisms. These shortages are going to be removed in the next release 
of the compiler currently under development. That version is based on the 
forthcoming 1993 standard where macros are replaced with a more advanced 
mechanism (see Section 4); the replacement makes macros useless to the future 
and therefore they will be excluded even from the subsequent releases of CASN.

The compiler is organized Into three passes: (1) lexical analysis, parsing, and 
construction of an intermediate tree, (2) semantic analysis, and (3) code generation. 
This multi-pass solution is mostly due to the obscure nature of ASN.l as a 
language (see Section 4). Another reason is that the first pass has been produced 
with the parser generator MIRA (91 which does not provide any advanced support 
for multi-pass compilation. The new macro-replacing mechanism introduces yet 
another pass into the next release (see Section 4). making CASN eventually a four-
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pass compiler. CASN Is written (partly generated) ln C. and the compiler runs both 
under UNIX and under MS-DOS.

4. Implementing ASN. 1

ASN.l Is not the easiest language to Implement. The deepest reason to this 
originates from the design process of the language. An ancestor of ASN. 1, known as 
X.409, was developed by a committee In connection with standardizing electronic 
mall systems. Implementation matters have had a low priority in the design of both 
X.409 and Its successor ASN.l and that is why these languages can hardly be 
considered as masterpieces in the ranking of programming and specification 
languages.

During the development of the CASN compiler, several troublespots have been 
encountered. One of the sources is the current standard (121 which is in many 
respects Insufficient for an ASN. 1 implementer. The main reasons, however, lie In 
the language Itself which contains a number of bizarre features that cannot be 
Implemented with conventional techniques. Our decision to base the first pass of 
the compiler on the LUD parser generator MIRA has also turned out to be short­
sighted with respect to later developments.

In the following subsections we present more closely the major troublespots In 
Implementing ASN. 1 and the way we have solved them in CASN. The discussion 
concentrates on the new standard of ASN. 1 (which includes the same basic features 
as the original ASN.l) and on its Implementation (CASN version 2.0), except where 
otherwise stated. When applicable, we also discuss alternative, conceptually cleaner 
Implementation possibilities. Some of the problems have been reported also in (151.

Defects in the standard

The current standard of ASN.l (12) Is Imperfect with respect to the quality 
requirements on programming language definitions. The most serious defect Is the 
omission of exact visibility and type rules of ASN.l. For example, the standard does 
not touch the following (perfectly legal) situation where idA is overloaded:

TypeA ::= INTEGER ( ldA(0)} -  IdA Is a named number with value 0
idA TypeA ::= 1 — idA is a defined value with value 1
idBTypeA ::= idA — 0  or 1?

In CASN. such ambiguity of visibility is resolved In favor of named numbers, and 
thus in the example IdB stands for the value 0. This solution is going to be adopted 
in the forthcoming ASN.l standard where also other precise visibility rules are 
going to be given.

Compatibility rules are given In the standard imprecisely. In essence, it remains 
open whether structural equivalence or name equivalence is applied In the type 
system of ASN.l. The effect of tagging and subtyping on type compatibility Is also 
not explicitly defined. Thus, the standard does not tell whether or not TypeA and 
TypeB are compatible In the following example, and whether or not the value 
definition for valB is legal:

TypeA ::= |0| INTEGER (0.. 100) -  an Integer subrange with tag 0
TypeB ::= (1) INTEGER (0..50) -- an Integer subrange with tag 1

valATypeA ::= 0
valB TypeB ::= valA

Our solution in CASN is to apply a modified form of name equivalence where 
tagging, subtyping, and referencing (i.e.. renaming) have no effect on type
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compatibility. Therefore, the value definition above is legal. This solution has been 
included in the draft proposal of the forthcoming ASN. 1 standard as the framework 
on compatibility issues 1141.

Free definition order

In ASN.l the definitions can be given In any order. As in the case of ordinary 
programming languages, this Is nice for a protocol designer but It makes things 
harder both for an tmplementer and for a reader of a lengthy specification. The 
problem is exceptionally severe in ASN.l where new syntactic notations (defined by 
macros and their prospective replacement) can be used before introducing them. 
The CASN compiler is In part produced with the parser generator MIRA with a 
conceptually underlying one-pass (L-attrlbuted) grammar model, and therefore no 
support for multi-pass compilation is provided by the system. The problem has 
been solved with an explicit pass-wise organization of the compiler. A multi-pass 
compiler generator would provide some assistance in processing ASN.l. but even 
such a semantically powerful system would fall short in coping with the extensible 
syntax. Some concrete problems discussed In the sequel are connected to the free 
definition order principle of ASN. 1.

Syntactic ambiguity

The context-free grammar of ASN.l is ambiguous for several constructs. For 
instance, the following piece of code can be parMd in two ways:

a В ::= с d E ::= F g H ::» ...

If В stands for a CHOICE type and с d for a CHOICE value, we get the following 
interpretation (each definition on a line of Its own):

a В 
E
g H

= с d 
= F

On the other hand, if с Is a value reference. E an ANY type, and F g an ANY value, 
we get the following interpretation:

a В 
d E 
H

с
F g

This particular case, as well as other similar ambiguities, is caused by the lack of 
delimiters in ASN.l. For Instance, no delimiter (such as a semicolon) is used 
between definitions. The solution in CASN has been to Introduce explicit delimiters 
Into ASN.l. where necessary. Thus, the first alternative above has to be expressed 
In the form

a В ::= I с d 1 E ::= F g H ...

and the second alternative in the form

a В с d E 1 F g 1 H ...

Note that the symbol table cannot be consulted to aid parsing because of the free 
definition order In ASN. 1.

14
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The syntactic ambiguities are going to be resolved in the forthcoming ASN.l 
standard by the same principle as in CASN: by Introducing explicit delimiters Into 
the problematic constructs.

Identifier representation

It is customary to apply the "longest match" principle in scanning of programming 
languages; that is. the scanner tries to maximize the length of the current token by 
reading characters from the input as long as they form a valid prefix of some token. 
This principle cannot be universally applied on ASN.l where (1) Identifiers may 
contain hyphens (only one In succession and not as the last character), and (2) 
comments begin with two hyphens. Thus, in the following a-b-c is an Identifier and 
-d  Is a comment:

a-b-c—d

The scanner of CASN (generated by MIRA) makes use of a buffer of 2 characters 
which is employed when recognizing identifiers; in the example above, the buffer 
(containing ”) is consulted after processing a-b-c to check whether or not the 
identifier continues. A methodological solution would be use a "trailing context" 
facility (in the style of e.g. Lex (161) when defining the lexical structure of ASN.l but 
unfortunately this feature is not available in MIRA

Extensible syntax
II

Macros can extend the core syntax of ASN.l by defining new syntactic notations for 
type and value definitions. This is one of the reasons why CASN currently does not 
implement the general macro facility. In the forthcoming standard macros are going 
to be removed from the language but the extensible syntax principle will remain.

In the new version of ASN.l. application elements can be described with 
information object classes. A class definition may give, besides the structure of the 
associated objects, also a class-specific syntax for defining them. For Instance, the 
following class definition can be given:

С ::= CLASS (
&T1 OPTIONAL.
&T2 OPTIONAL.
&T3 )
WITH SYNTAX I
I T1 IS &T1 1 
I &T2 I 
T3 IS &T3 I

Here &T1. &T2. and &T3 are type fields ("open types' ) that represent arbitrary 
Information to be filled during transmission. The WITH SYNTAX clause gives the 
syntax for defining objects of class C. for example:

с С ::= I T l IS INTEGER T3 IS SET OK INTEGER )

In an object definition, the type fields of the class can be associated with an 
arbitrary ASN.l type (e.g., INTEGER for &TI, and SET OF INTEGER for &T3 
above). Each case within a WITH SYNTAX clause conceptually corresponds to a 
context-free production that extends the core ASN.l syntax, | ... 1 denoting 
optlonality. Thus, the example above gives rise to the following additional 
productions to the ASN. 1 grammar:
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Object definition -> T Р1 Р2 ТЗ’ 'IS' Type ')' 
PI -> Т1’ 'IS' Type I Empty
Р2 -> Type I Empty

Type represents an arbitrary ASN. 1 type notation and Empty represents the empty 
string. The additional productions are distinguished during parsing from their first 
terminal symbol (TI or T3 above). The syntactic extensions must follow the LL(1) 
convention, and this is checked by CASN.

Recently methods have been suggested to parse extensible languages (e.g., 18J, 
(101). In these approaches the parser is dynamically adjusted during parsing to 
accept new syntactic notations when recognizing their grammatical definitions. 
These methods, while being conceptually elegant, cannot be applied on ASN.l 
where new notations can be used before they have been defined. Therefore our 
solution has been to to divide the parsing process into two phases. In the first 
phase the parser processes Its input only partially, collecting the syntactic 
definitions into a tree and simply skipping the object definitions (and other 
syntactically similar constructs) and storing them in an Intermediate form. In the 
second phase the object definitions are finally parsed, taking into account the 
additional productions collected during the first phase.

Currently. CASN provides scanning, parsing, and semantic analysis of the new 
features, and the code generation phase is under implementation. Since an object 
set Is conceptually analogous to an associated table, CASN will generate С arrays 
for object sets (one row for each object).

Infinite lookahead

Recognizing some constructs may require an infinite lookahead in top-down 
parsing. Consider, for instance, the following notation in extended ASN. 1:

obj (p i .  p2......pn).&fl.&f2.........&fm.&f

Here obj is a parameterized object, p i ......pn  are actual parameters, and the & fl.......
&Jm fields are object references. This construct may denote e.g. a type or a value, 
depending on the last field &f. Our solution Is to parse such a construct in a very 
general manner, to build an intermediate descriptor for it during parsing, and to 
make an additional traversal over the descriptor after parsing the whole construct. 
In a case like this, a bottom-up parsing technique would be more powerful than the 
top-down method because then the recognition of the syntactic structure could be 
deferred until having scanned the last symbol. (Note, however, that even a 
conventional bottom-up parser would have problems since the syntax of ASN. 1 is 
not of type LR(1).)

While CASN is based on Ш 1) parsing, it occasionally makes use of a lookahead 
longer than 1 symbol for recognizing some ASN.l constructs. For Instance. "( Г can 
be the beginning of a number of value notations. In such cases the scanner of CASN 
provides the parser with an extended lookahead that contains the distinguishing 
token. In maximum. 2 tokens are needed in the first parsing phase and 7 tokens in 
the second phase: thus CASN locally employs Щ 2) and 1Ц7) parsing.

Parameterization

There are many situations in protocol engineering where it is useful to design 
simultaneously a set of related types or values that are similar in structure but that 
differ in details. The new version of ASN. 1 supports this by allowing parameterized 
definitions. Each entity of ASN. 1 (type, value, value set. class, object, object set) can
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be genetically defined by associating with It a list of formal parameters. Such a 
generic entity can then be instantiated by fixing the structure with actual 
parameters. This facilitates reusability of ASN. 1 definitions.

The orthogonality of parameterization and the free definition order make it hard 
to parse entitles with actual parameters. That Is why detailed syntactic analysis 
(and semantic analysis) of such constructs Is moved In CASN from the parsing 
phase into subsequent phases. The analysis of some constructs may require several 
partial passes even when making use of the symbol table, because actual 
parameters may Involve semantic right-to-left dependencies:

T { v: U...... U } ::= SET ( f  U DEFAULT у )
— и arid U formal parameters:
— 17 a type or a class,
— u a value or an object 

S T { {1.2)...... SET OF INTEGER )

Now. there Is a semantic linkage between the formal parameters U and v of T. When 
analyzing the definition of S. the actual parameter list has to be traversed from right 
to left (or several times from left to right which Is actually the method applied since 
parsing Is also Involved).

Context-sensitive name environments

Some keywords of ASN.l (e.g. EXTERNAL) are not reserved, and some have a 
special meaning only in a context. For instance, iso stands for value 1 In the first 
position of an object identifier value, while It Is undefined elsewhere. Such 
anomalies complicate the analysis of ASN. 1. and that is why all the keywords are 
universally reserved In the CASN release 1.42. Version 2.0 allows the redefinition of 
keywords (excluding the reserved words) by considering them as ordinary 
predefined entitles that are always implicitly imported from a standard module.

Module interfaces

An ASN. 1 module can provide entities to other modules and use entities defined in 
other modules with exporting and Importing clauses. The default actions, however, 
are rather surprising: (1) if no export clause is given, all the symbols defined in the 
module are externally available, and (2) If no Import clause is given, an entity e 
defined in any module M can be referenced with M.e. These (and other strange 
conventions) cause difficulties in the implementation since the module 
dependencies may be spread all over an ASN. 1 program. Modules can be circularly 
dependent: that is. a module Ml can Import an entity from module М2 that (directly 
or indirectly) imports an entity from module Ml.

The separate compilation method in the CASN release 1.42 does not accept 
mutual dependencies between two modules, but the dependencies must have a 
linear order. This practical Inconvenience has been removed in version 2.0 that 
during parsing of a module M collects a list of modules that M has applied (either 
via an explicit import clause or via external references). After compilation of M, the 
modules in the list are compiled, the list is iteratively updated with modules that 
are applied in these modules and that have not yet been compiled, etc. The syntax 
trees for compiled modules are stored on disk with a timestamp to be directly 
loaded without reparsing. The external references are solved using module specific 
symbol tables that are produced during the semantic analysis phase on the basis of 
the syntax trees. During reference resolving, circular dependencies between two 
ASN. 1 entities are checked (note that two modules may be mutually dependent, but 
their components cannot be circularly defined).
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5. Discussion

Computer communication will have a still increasing significance In the future 
because of distribution and globalization of working environments. Thus, 
application oriented methods and tools will be necessary in building complex 
computer networks and especially their software.

We have presented CASN. an application oriented tool designed for 
implementing the encoding and decoding routines of communication protocols. 
CASN is a compiler for ASN. 1 which has a stable and evolving role within the area. 
CASN can be used both as a self-standing tool and as part of a general protocol 
engineering environment. Currently the compiler is already In extensive industrial 
use. and It has become a standard tool in a number of companies.

In the near future, the current version of ASN. 1 is going to be replaced with a 
new standardized one. The main motive for language revision is to remove the 
serious shortcomings from it. From an implementer's point of view the revision is 
most valuable since many unclear features will be more accurately specified or 
replaced with their more "friendly" counterparts. The development of CASN follows 
closely the standardization efforts. The analysis phase of the forthcoming features 
has already been implemented in CASN, and the synthesis phase is currently under 
Implementation. This up-to-date nature has been made possible by the active role 
of the CASN development team in the Joint standardization group of ISO and ССГГТ.
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SPECIFYING A TRANSACTION MANAGER USING TEMPORAL LOGIC

Ё .  R & C Z

L. Eötvös U n iv ers ity , Budapest

There are a lo t  o f  papers d ea lin g  w ith  s p e c i f ic a t io n  o f  concurrent 
system s [ 1 J, [ 4 ] , [ 6 ] , [ 7 ] ,  but few o f  th e se  are ap p lied  fo r  s p e c i f ic a t io n  
o f  database management system s. In t h is  paper a tra n sa c tio n  management 
system  i s  d escrib ed  as a network o f  p ro cesses which are connected  by 
named synchronous communication channels.

1. THE STRUCTURE OF THE SYSTEM TO BE SPECIFIED

The tr a n sa c tio n  management system  c o n s is t s  o f  the fo llo w in g  parts:
-  the user tr a n sa c tio n s  USER1, USER2......... USERm;
-  the item s ITEM1.ITEM2......... ITEMn, i . e .  the u n its  o f  data  to  which

the a c c e ss  i s  co n tro lled ;
-  the tr a n sa c t io n  manager TM i t s e l f .

A tr a n sa c t io n  i s  a sequence o f  elem entary step s .L o ck in g , read ing, 
unlocking and w r it in g  item s are the elem entary s te p s  in te r e s t in g  us.

The tr a n sa c t io n  manager a f f e c t s  i t s  o u ts id e  world / t h e  tr a n sa c t io n s  
and the  ite m s / on ly  by communications. The named communication channels  
are u n id ir e c tio n a l and owned by two p ro cesses ,o n e  at each end

[ ITEM I I'ITEM! I . . .  ITT'E'Mnl

lÜSEftll . . .  [USERkI . . .  fOŠERm]
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The user  USERk sends h is  various req u ests along the channel USk, and 
w a its  fo r  the  answers o f  the tra n sa ctio n  manager at the channel URk.The 
item  ITEMi w a its fo r  the req u ests  o f  the tra n sa c tio n  manager a long the  
channel IR i, and sends i t s  answers along the channel IS i.

The tr a n sa c t io n  manager TM i s  resp o n s ib le  fo r  sch ed u lin g  the  
c o n f l ic t in g  req u ests . Messages r e la t in g  to  reading and read lock in g  o f  
item s are se n t to /from  READER, messages r e la t in g  to  w r itin g  and w rite  
lock in g  o f  item s are se n t to /from  WRITER along the appropriate channels.

Chaochen’ s  s p e c i f ic a t io n  technique [5] has been chosen to  d esc r ib e  the  
behaviour o f  the tr a n sa c tio n  manager. We assume that on ly  the  channels  
o f  the system  are ob servab le , a t each moment o f  the d is c r e te  tim e. We 
can e i th e r  observe p ass in g  o f  messages along the ch an n els, or the  
c a p a b il i ty  o f  the p ro cesses to  communicate.

Let с denote a channel, m a message and Me the message type o f  channel 
c . Let us use the fo llo w in g  b a sic  p red ica tes:

PASS(c,m)- means the occurrence o f  an event o f  p ass in g  message meMc 
alon g  channel c;

P A S S ( c )  -  = 3 m e M c P A S S (c , m ) ;

To record the s t a t e  o f  the channel с we a s s o c ia te  two b a sic  v a r ia b le s  
to  c ,  one fo r  the input end -  Ic, and one fo r  the output end -  Oc. 
These v a r ia b le s  may take the fo llo w in g  values:

meMc -  the p rocess i s  r e c e iv in g  or sending a message a long c; 
req -  the p rocess i s  req u estin g  a communication; 
r e j  -  the p rqeess i s  r e je c t in g  the communication; 
c lo  -  the p rocess c lo se d  the channel end.

Using th e se  v a r ia b le s  we can w rite:
PASS(c.m) = Ic=m л Oc=m 

For d esc r ib in g  the behaviour o f  the system  we use a lin e a r  time 
temporal lo g ic  [ 8 1 , [ 1 0 ] , [ 1 1 ] .  The temporal operators used are as fo llo w s:

□A ----- A i s  true now and in  the future;
<>A ----- A i s  tru e now or sometime in  the future;
oA ----- A i s  tru e a t the next moment;
A u n t i l  В ----  A i s  tru e u n ti l  В becomes tru e ( i f  ev er);
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•x --- denotes the value of x at the next time point.

In order to shorten our specification we can introduce the following 

predicates :

ISREQ(c) ■ Ic-req until PASS(c)

OSREQ(c) ■ Oc-req until PASS(c.a)

IWREQ(c) m(o<>Ic*req) until PASS(c)

OWREQ(c) »(ooOc-req) until PASS(c .b )

UWANT(URk) * □ [OSREQCURk,m) •» <>PASS(URk,■)]

IW A N T ( I R l ) >  □  [ O S R E Q ( I R 1 , ■ )  •» < > P A S S ( I R 1 , m ) ]

Let P denote the following operator: A P В * n (iA until B).

2.EXTERNAL BEHAVIOUR OF THE TRANSACTION NANAGER

In the course of the specification the free variables of each formula 

are assumed to be implicitly universally quantified over the following 

(fixed, finite) domains:

USERk ranges over the set of users;

ITEMi ranges over the set of items;

m ranges over the set of messages corresponding the channel;

URk ranges over the set of channels leading from TM to users;

USk ranges over the set of channels leading from users to TM;

IRl ranges over the set of channels leading from TM to items;

IS1 ranges over the set of channels leading from items to TM.

The different message types are as follows:

Musk={ (rlock,ITEMI), (wlock,ITEM1),

.. (read,ITEMi). (write, value, ITEM!),

(runlock,ITEMi). (wunlock,ITEMi) )

MuRk={ (rlock granted,ITEMi), (wlock granted,ITEMi), 

(rlock denied,ITEMi), (wlock denied, ITEMi), 

(not read,ITEMI), (got, value,ITEMi), 

(written,ITEMI), (not written, ITEMi), 

(runlocked,ITEMi), (wunlocked,ITEMi) >

Miri={ (value, (JSERk), (read.USERk) >
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Misi={ (value, USERk), (written,USERk) >

We req u ire  the  m essages to  be un iquely  id e n t if ie d . T his requirem ent 
can be exp ressed  in  th e  fo llo w in g  form:

□ [PASS(c.m) *  od-iPASS(c , m)] fo r  every  message m and channel c .

2.1.External safety properties

The tr a n sa c t io n  manager must not grant any lock  req u est fo r  an item  
w r ite  locked  by an o th er  user and must not grant a w rite  lock  req u est 
f o r  an item  read locked  by am other user:

A req u est shou ld  be sen t before i t  could  be f u l f i l l e d  or denied:
□ [ PASS(USk,(rlock,ITEMi)) P PASS(URk, (rlock granted,ITEMi)) ]

□ [ PASS(USk,(rlock,ITEMi)) P PASS(URk,(rlock denied,ITEMi)) ]

□ [ PASS(USk,(wlock,ITEMi)) P PASS(URk,(wlock granted,ITEMi)) ]

□ [ PASS(USk, (wlock,ITEM i)) P PASS(URk,(wlock denied,ITEM i))  ]
D [ PASS(USk, (runlock,ITEMi)) P PASS(URk, (runlocked, ITEMi)) ]

□ [ PASS(USk, (wunlock,ITEMi)) P PASS(URk,(wunlocked, ITEMi)) ]

D [ PASS(USk,(read,ITEMi)) P PASS(URk,(got,value, ITEMi)) ]

□ [ PASS (USk, (read, ITEMi*)) P PASS (URk, (not read, ITEMi)) ]

□ [ PASS(USk,(write, v a lu e ,ITEMi)) P PASS(URk, (written, ITEMi)) ]

□ [ PASS(USk,(write,v a lu e ,ITEMi)) P PASS(URk,(not written, ITEMi)) ] 
D ( PASS(USk,(read,ITEMi)) P PASS(ISi.(( v a lu e ,USERk))]
□ [ PASS(ISi,(written,USERk)) P PASS(URk,(written, ITEMi)) ]

□ j PASS(URk,(wlock granted,ITEMi)) =»

-I [ PASS(URj , (wlock granted,ITEMi)) v 
PASS(URJ,(rlock granted,ITEMi)) ]

until OSREQ(URk,(wunlocked,ITEMi)) ) J*k

a •! PASS (URk, (rlock granted, ITEMi))  -»

1  PASS(URJ, ( wlock granted,ITEMi))

until OSREQ(URk,(runlocked, ITEMi)) }  J*k
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a [ PASS(USk, ( w r i t e ,valuel, ITEM!))
P PASS(IRi, ( (value2, USERk)) a valuel=value2] 

Before send ing an item  to  the user the manager must have got i t :
□ [ P A SS (IS i,(valuel,USERk))

P PASS(URk, (.got,value2, ITEMi)) л valuel=value2) 
The user  should  have a read lock  granted before g e t t in g  an item:

□ [ PASS(URk,(rlock granted,ITEM i)) P PASS(URk,(got,value,ITEMi ))  ]
□ t PASS(URk,(runlocked,ITEMi)) =»

о -iPASS(URk, (g o t, value, ITEMi)) 
u n t i l  PASS(URk,(rlock granted,ITEM i)) ]

S im ila r ly  fo r  w rite  requests:
□ [ PASS(URk,(wlock granted,ITEM i)) P PASS(URk, (written,ITEM i )) ]
□ [ PASS(URk,(wunlocked, ITEMi)) ■»

о -.PASS(URk, (w r itten , ITEMi)) 
u n t i l  PASS(URk,(wlock granted,ITE M i)) ]

2 . 2 . E xternal l iv e n e s s  p ro p erties

To have a  u se fu l system  we must req u ire tha t the system  a ccep ts  the  
r eq u ests  o f  i t s  environment supposing that the environment i s  a ccep tin g  
the m essages too . Moreover the item managers must f u l f i l l  the  req u ests  
o f  the  tr a n sa c t io n  manager:

UWANT(URk) =» nolWREQ(USk)
IWANT(IRi) •» DOlWREQ(ISi)
О [ PASS(IRi,(read,USERk)) <>PASS(ISi, (value,USERk)) ]
D [ PASS(IRi,(value,USERk)) * <>PASS(ISi,(written,USERk)) ]

The tr a n sa c tio n  manager should answer the user req u ests:
□ { PASS(USk,(rlock.ITEM i)) •*

<> lOSREQ(URk, (r lo ck  granted, ITEMi))  V 
OSREQ(URk,(rlock denied , ITEMi)) ] >

□ < PASS(USk,(wlock,ITEMi)) *
<> [OSREQ(URk,(wlock granted,ITEM i)) v 

OSREQ(URk,(wlock denied,ITEM i)) ] >
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a  { P A S S ( U S k ,(read,ITEMi)) +

<> [OSREQ(URk, (got,value, ITEMi)) V 
OSREQ(URk,(not read,ITEMi)) ] >

□ { PASS(USk,(write.v a lu e ,ITEMi)) ■»
<> [OSREQ(URk,(written, ITEMi)) v

OSREQ(URk,(not written, ITEMi)) ] >

□ [ PASS(USk,(runlock.ITEMi)) + <>OSREQ(URk, (runlocked,ITEMi)) ]

□ [ PASS(USk,(wunlock,ITEMi)) •* <>OSREQ(URk,(wunlocked, ITEMi)) ]

□ { PASS URk,(rlock granted, ITEMi)) +

o[ PASS(USk,(read,ITEMi)) ■* <>PASS(URk, (got, v a lu e ,ITEMi ) )  ) 
until OSREQ(URk,(runlocked, ITEMi)) >

О { PASS URk, (wlock granted,ITEMi)) *

o[ PASS(USk,(write,ITEMi)) * <>PASS(URk,(written,ITEMi )) ] 

until OSREQ(URk,(wunlocked, ITEM!)) >

3 .  IN T E R N A L  B E H A V IO U R  O F  T H E  T R A N S A C T IO N  MANAGER

The message c la s s e s  o f  the in tern a l channels are as fo llo w s:

MuNWSk = { (wlock, ITEMi), MuKURk= { (wlock granted, ITEMi),
(write,vaJue, ITEMi) 
(wunlock,ITEMi) >

(written,ITEMi), 

(wunlocked, ITEMi), 

(wlock denied, ITEMi), 

(not written, ITEMi) >

MuMHSk = { (rlock,ITEMi),

(read,ITEMi), 

(runlock,ITEMi) >

MuMRRk = { (rlock granted, ITEMi)

(got.va lu e , ITEMi), 
(runlocked, ITEMi),

(rlock denied, ITEMi) 

(not read,ITEMi) >

Mwisi = { (wlock,USERk),

(write, v a lu e ,USERk), 
(wunlock,USERk) >

Mhiri * { (wlock granted,USERk), 

(written, USERk), 

(wunlocked,USERk),

(wlock denied,USERk), 

(not written,USERk) >
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Mrisi - { (rlock,USERk), Mriri * { (rlock granted,USERk),

(read, USERk), (got,value, USERk),

(runlock,USERk) > (runlocked,USERk),

(rlock denied,USERk),

(not read,USERk) >

In order to specify the internal safety properties we define m 

auxiliary variables [9] for each ITMANi process. The variable 

LockTableik describes the rights of USERk regarding ITEMi.

LockTableik * 0 a

□ ( PASS(RIRi, (rlock granted,USERk)) a  oLockTablei^ R 

v PASS(RIRi,(runlocked,USERk)) a  oLockTableik= 0

V PASS(WIRi,(wlock granted,USERk)) л oLockTableik= W 

v PASS(WIRi, (wunlocked,USERk)) a  oLockT^bleJ = 0

v unchanged )

Let us introduce the following predicates:

RLOCKABLE(ITEMI,USERk) = (Vk)(LockTableik * W)

READABLE(ITEMi,USERk) = (LockTableik = R v LockTableik = W ) 

WLOCKABLE(ITEMi,USERk) = (Vk)(LockTableik = 0)

WRITEABLE(ITEMi,USERk) - (LockTableik = W)

3.1.Internal safety properties

The USMANk process passes only messages sent by USERk

a (PASS(USk.m) P PASS(UMRSk.m)) mcUMRSEND

□ (PASS(USk.m) P PASS(UMWSk.m)) meUMWSEND 

or to USERk :

D (PASS(UMRRk.m) P PASS(URk,m)) meUMRREQ

□ (PASS(UMWRk,m) P PASS(URk.m)) meUMWREQ

The READER and WRITER processes send their messages to the adequate 

items/users:

□ (PASS(UMRSk.m) P PASS(RISi,m’ ) л m=(...,ITEMi) л m’-(..., USERk))

meUMRSEMD, m’eRIMSEND
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□ (PASS(UMWSk.m) P PASS(WISi, m’) л m=(....ITEMi) a  m’=(..., USERk))

meUMWSEMD, m’ eWIMSEND

□ (PASS(RIRi,m) P PASS(UMRRk, m’) a  m=(...,USERk) л m’=(..., ITEMi))

meRIMREQ, m’ cUMRREQ

□ (PASS(WIRi,m) P PASS(UMWRk,ю’) л m=(....USERk) л  m’=(___  ITEMi))

mcWIMREQ, m’ eUMWREQ

Before reading/writing an item it must be readable/writeable by the 

user :

□ [PASS(RISi,(read,USERk)) P PASSCIRi,(read,USERk))]

□ [ PASS(RISi,(read,USERk)) ■*

nPASS(IRi,(read,USERk)) until READABLE(ITEMi. USERk)]

□ (PASS(WISi, ( v a lu e l ,USERk)) P PASS(IRi,(vaiue2, USERk))

л valuel=value2 )
□ ( PASS(WISi, ( v a lu e l, USERk)) =►

nPASS(IRi,(value, USERk)) until WRITEABLE(ITEMi, USERk))

A request must be accepted by processes READER and WRITER before 

answering it correctly:

□ [PASS(RISi,(rlock,USERk)) P PASS(RIRi, (rlock granted,USERk))]

□ [PASS(RISi,(rlock,USERk)) *

-.PASS(RIRi, (rlock granted,USERk)) until RLOCKABLECITEMi,USERk))]

D [PASS(WISi,(wlock,USERk)) P PASS(WIRi, (wlock granted,USERk))]

П [PASS(WISi,(wlock,USERk)) * -.PASS(WIRi,(wlock granted,USERk)) 

until WLOCKABLE(ITEMi,USERk))]

□ [PASS(RIS1,(rlock.USERk)) P PASS(RIRi, (rlock denied, USERk))]

□ [PASS(RISi, (rlock,USERk)) ■*

-iPASS(RIRi,(rlock denied,USERk)) until iRLOCKABLE(ITEMi, USERk))]

□ [PASS(WISi,(wlock,USERk)) P PASS(WIRi,(wlock denied,USERk))]

□ [ PASS(WISi,(wlock,USERk)) *

nPASS(WIRi,(wlock denied.USERk)) until -i WLOCKABLE(ITEMi.USERk)) ]

□ [PASS(ISi,)valuel,USERk)) P PASS(RIRi,(got,value2, USERk)) 

a valuel=value2 ]

□ [PASS(RISi,(read,USERk)) P PASS(RIRi.(not read,USERk))]
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□ [ PASS(RlSi,(read,USERk)) +

-.PASS(RIRi, (not read, USERk)) until -.READABLE(ITEMi , USERk)) J 

О [PASS(RISi,(runlock,USERk)) P PASS(RIRi, (runlocked, USERk))] 

ü [PASS(WISi,(wunlock,USERk)) P PASS(WIRi, (wunlocked,USERk))]

□ [PASS(ISi,(written,USERk)) P PASS(WIRi,(written,USERk))]

□ [PASS(WISi,(write,value,USERk)) P PASS(WIRi,(not written,USERk))]

□ [PASS(WISi,(write,value,USERk)) *

-.PASS (WIRi, (not written. USERk)) until ->WRITEABLE( ITEMi, USERk) ]

3.2.Internal liveness properties

The processes USMANk, READER and WRITER send further the accepted 

messages to the addressed processes:

□  t P A S S ( U S k .m )  *  < > P A S S (U M R S k ,m ) ]  meUMRSEND

□ [PASS(USk.m) •» <>PASS(UMWSk,m)1 hkeUMWSEND

□ [PASS(UMRRk.m) =» <>PASS(URk, m)] meUMRREQ

□ [PASS(UMWRk.m) * <>PASS(URk,m)] meUMWREQ

□ [PASS(UMRSk.m) =» <>PASS(RISi,m’) 

a  m = ( . I T E M i )  л  m’=(....USERk)]

□  [P A S S (U M W S k .m ) =» < > P A S S ( W I S i , m* ) 

a m = ( .  . . , I T E M i )  a m’ = ( . . . , U S E R k )]

□ [PASS(RIRi.m) =» <>PASS(UMRRk, m') 

л m=(--- USERk) a m’=(...,ITEMi)]

□ [PASS(WIRi.m) =* <>PASS(UMWRk, m’ ) 
л  m=(----- USERk) a m’= ( . . . , ITEMi)]

The processes ITMANi lock the items correctly:

□ [PASS(RISi,(rlock,USERk)) л  RLOCKABLE(ITEMi,USERk) *

<>PASS(RIRi, (rlock granted,USERk))]

□ [PASS(WISi,(wlock,USERk)) л WLOCKABLE(ITEMi,USERk) =>
<>PASS(WIRi,(wlock granted,USERk))]

Q  [ P A S S ( R I S i , ( r l o c k , U S E R k ) )  л  n R L O C K A B L E ( I T E M i , U S E R k ) =»

m eUM RSEND, m’ e R IM S E N D  

meUMWSEND, m’ e W IM S E N D  

m eR IM R E Q , m’ eUM R R EQ  

m eW IM R E Q ,m ’ eUMWREQ
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<>PASS(RIRi, (rlock denied,USERk))]

□ [PASS(WISi, (wlock,USERk)) л nWLOCKABLE(ITEMI.USERk) *

<>PASS(WIRi,(wlock denied,USERk))]

The process ITMANi reads/writes the item if the user sending the 

message has rights to read/write it:

□ [PASS(RISi,(read,USERk)) a  READABLE(ITEMi,USERk) *

<>PASS(IRi.(read,USERk))]

□ {PASS(ISi, Ivaluel,USERk)) •»

<>[PASS(RIRi, (got,value2,USERk)) a  valuel~value2)>

□ [PASS(WISi, (write,valuel,USERk)) a  WRITEABLE(ITEMi,USERk) ■> 

<>PASS(IRi,lvalue2,USERk)) a  valuel*value2 )

a IPASSdSi, (written, USERk)) * <>PASS(WIRi, (written.USERk)) ]

Unlocking can be executed unconditionally:

□ (PASS(RISi,(runlock,USERk)) * <>PASS(RIRi,(runlocked,USERk))]

□ [PASS(UIS1, (wunlock,USERk)) * <>PASS(WIR1. («unlocked,USERk)))

4 .  C O N C L U D IN G  REM ARKS

The method presented here seems to be a useful tool for specifying 

transaction management systems.

In [2] it is given a short external temporal specification of a 

transaction management system, including serializability, two-phase

protocols.

In [3] it is proved by means of tableau method [12],(13) that there 

exist models satisfying this specification.
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A bstrac t

Animation is a way to illustrate the behavior of complex algorithms and 
systems. We introduce the SALSA package, an animating and experiment­
ing tool for string algorithms. SALSA was implemented using the XTango 
animation environment. SALSA contains animations for seven string algo­
rithms including Boyer-Moore, Rabin-Karp, and Aho-Corasick algorithms.
We also discuss the usefulness of animation for Computer Science education 
and research.

1 Introduction
Animation is a useful approach for Computer Science education and research. For 
example, the idea of an algorithm is easier to grasp by following an animation: 
the user may observe how the algorithm behaves with various inputs. Because 
animation can lead to more efficient algorithms, it is therefore to be considered a 
helpful interactive tool for algorithm research.

String algorithms form an important area of algorithm research. A typical 
problem is string matching, where approximate or exact occurrences of a pattern 
is searched in a text. String algorithms are applied in various areas including 
speech recognition, data compression, text processing, data communications, im­
age processing, and computational biology.

Up till now, there are practically no visualizations made for string algorithms. 
We collected experiences in a project constructing an animation package, called 
SALSA, for string algorithms (the name is an acronym for String ALgorithmS 
Animator). The project was organized as a software engineering assignment for a 
team of four students of the fifth year [1].

The SALSA package is running in the Xwindows environment on Sun work­
stations. The implementation of SALSA was based on an animation environment 
XTango [4, 10, 11]: the algorithms to be animated were supplied with calls to 
XTango routines for creating and moving visual objects on the screen.

The rest of the paper is organized as follows. In Section 2, we will discuss the 
principles of the XTango environment and give an overview of different approaches 
to algorithm visualization. Section 3 lists the goals of the project and outlines the 
architecture of SALSA- In Section 4, we will discuss our experiments, concentrating 
on the usefulness of animation in learning and research. The final section will 
introduce our future plans.
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2 Different approaches to visualization in Com­
puter Science

In Computer Science, visualization is used in many ways, like in drawing flowcharts, 
designing systems, developing user interfaces, simulating phenomena, visual pro­
gramming, and teaching data structures.

In this section, we will first define the concept of algorithm visualization, ac­
cording to Myers’ taxonomies [5]. After that we will present the algorithm ani­
mation framework and the path-transition paradigm of the XTango environment 
[9, 10, 11]. Starting from this conceptual background, we will itemize the phases 
to produce an animation. And finally, we will consider future opportunities for 
perceptional exploration of algorithms.

2.1 Myers’ classification of program visualization system s
Myers defines program visualization as illustrating "some aspects of the program 
after it is written” [5]. Visualization is code, data, or algorithm visualization 
according to the visualized aspect, and visualization is static or dynamic depending 
on the produced display.

To exemplify the taxonomy, the traditional flowchart falls into the category 
of static code visualization, while a graphical debugger showing the line under 
execution would represent dynamic code visualization. Moreover, a static data 
visualization system would illustrate a program’s tree structure, while its dynamic 
counterpart would display also the changing values of the nodes.

Another example of code animation is a teaching tool ASSEM with which a 
user can simulate the CPU of a simple computer [7]. The user specifies the memory 
location of the first instruction, and ASSEM will step instruction by instruction 
and show the contents of the main memory and the registers.

For instance by setting the necessary parameters, it is possible to automate 
both the code and data visualization, without touching the code. Algorithm vi­
sualization systems, on the contrary, necessitate the programmer to explicitly add 
information to the code of the animated algorithm, to create an animation.

In fact, there are animation systems which can visualize the program without 
any additional information in the code. For instance, PASTIS animates Fortran, 
C, and C ++  programs by making use of the debugger [6]. According to Myers’ 
taxonomy, this kind of systems would not belong to the category of algorithm 
visualization. However, this is the only natural choice for PASTIS; it should not 
make any difference whether the animations are produced by additional code in the 
algorithm or, like in PASTIS, the animation modules are separated from the source 
code from which they get data through the debugger. The essence of (dynamic) 
algorithm visualization might, therefore, be defined by producing a (event-driven) 
visual abstraction of an algorithm.

2.2 The XTango algorithm animation environment
XTango (for XWindows Transition-based ANimation GeneratOr) is a public do­
main software package, delivered and maintained at the Georgia Institute of Tech­
nology.
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The XTango algorithm animation environment is based on two principles: (1) 
the framework to map the interesting events of an algorithm to their visual coun­
terparts, supported by (2) the path-transition paradigm, guiding the design of the 
animations [9, 10, 11].

T he  a lgo rithm  an im atio n  fram ew ork The framework consists of three com­
ponents: (1) the algorithm, (2) the animation, and (3) the mapping component. In 
the algorithm component, the designer defines the algorithm’s interesting events, 
or in the XTango terminology, algorithm operations. These operations correspond 
to the important elements of the algorithm’s semantics. For instance in the string 
matching algorithms, the algorithm operations include at least character com­
parison and moving along a string. The algorithm operations are added to the 
algorithm as function calls.

The animation part includes the graphical objects for visualizing the algorithm, 
and the routines for changing their size, color, place etc. For example, to illustrate 
character comparison, one might specify the characters as rectangles, flash the 
characters under comparison, and move one on the other to show the difference. 
The routines for changes in the screen are called animation scenes. Although 
implemented at higher level by the designer, they call XTango routines to take 
care of the low level graphics.

The mapping component has two parts. First, XTango uses a kind of symbol 
table to connect a visual object with a set of parameters from the algorithm. This 
mechanism is called association. In our string matching algorithm example, the 
places of the rectangles visualizing the characters T[l], T[2],... might be stored as 
Assoc(ID,T,l), Assoc(ID,T,2), ...

The second part of the mapping component includes the relation between the 
algorithm operations and the animation scenes. In our example, the algorithm 
operation Character Comparison maps to a group of animation scenes: flashing 
and moving.

T h e  p a th - tran s itio n  parad igm  The idea behind the path-transition paradigm 
is to separate the design work of the animations from the implementation phase. 
The paradigm supplies the designer with four abstract data types with the oper­
ations. If the designer specifies the animation scenes with these operations, the 
implementation should be straightforward, using the XTango routines correspond­
ing to the abstract data type operations.

The four data types of the paradigm include (1) location, (2) image, (3) path, 
and (4) transition. They relate to each other as follows: An image has a location 
in the infinite coordinate system of the XTango window. A path is an ordered 
sequence of coordinate pairs, which defines relative changes in X- and Y-axis. A 
transition changes an image according to a path.

Let us illustrate the paradigm with an example. To design the animation scene 
for moving a rectangle on another, the images concerned are these rectangles. The 
path along which Xtango will perform the transition is defined by the locations of 
the rectangles.

The path-transition paradigm, in addition to the algorithm animation frame­
work of XTango, gives the guidelines for the different phases in the design and im­
plementation of an animation. The designer starts with identifying the algorithm 
operations of interest. Then, he/she will decide the animation scenes necessary



to visualize the operations; the scenes must be designed using the path-transition 
paradigm. The crucial phase is to define the relation between the algorithm op­
erations and the animation scenes. Last, the implementor turns animation scenes 
into С functions, calling the appropriate XTango routines.

2.3 Future trends in algorithm experimentation
Among the possibilities to study an algorithm using technology, visualizing is only 
a beginning. However, even visualization can be of greater advantage. In the 
design of animation, much more attention must be paid on psychological factors. 
For instance, the designer should use colors in a way which helps following the 
animation. Brown and Hershberger list the following use of colors [2]: encoding 
the state of data structures, highlighting activity, tying views together (in the case 
of multiple windows for different aspects of an algorithm), emphasizing patterns, 
and making the history of an algorithm visible.

Besides the visualization, one could also make use of auralization (interpreting 
interesting events as sound effects) [2, 8]. As colors, they can present fundamental 
information on an algorithm when used for reinforcing visuals, conveying patterns 
(e.g. by using multiple instruments), replacing visuals (to reduce the visual infor­
mation), and signaling exceptional conditions.

This is just the beginning. Maybe computer-assisted algorithm exploration 
only starts with seeing and hearing, leading us to smell, taste, and touch the 
algorithms! Virtual reality is coming inside the researcher’s chamber.

3 An overview of SALSA
In this section, we will explain our objectives in the SALSA project and go through 
the main components of the SALSA package [1]. We will first outline the archi­
tecture of the package with comments on the choice of the algorithms.

As stated in the introduction, the SALSA package is running in the Xwindows 
environment. When started, SALSA opens its main window, which controls other 
components. The respective program module calls for the animated algorithms. 
These algorithms, implemented in C, include calls to the animation routines, pro­
grammed by our team; however, to control the graphics, the animation routines 
use the XTango functions. One of these functions opens the XTango animation 
window; as a result, the animations run in this window, and the user can control 
the animation by pushing the icons provided by XTango.

In the beginning of our project, we had no prior expertise in principles and 
techniques of algorithm visualization. However, we aimed at a working animation 
tool suitable for introductory purposes in teaching string algorithms. For these 
reasons, we decided to start with the very basics. Therefore, our choice comprised 
seven algorithms for one- and two-dimensional pattern matching, and calculating 
the edit distance [3].

3.1 The aims of SALSA
The overall goal of the SALSA project was to develop a computer-assisted in­
struction package. We intended this package to serve as an introduction to string
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algorithms either in a classroom or as a self-education material. To make our aim 
clear, we divided it into smaller subgoals:

First of all, the package should help one to understand string algorithms of 
different types. For this purpose, we decided to use animation. When animating 
an algorithm, the student should be able to follow its behavior with various inputs 
and so he/she can gain insight into the essence of the algorithm.

To make SALSA as pedagogical as possible, we followed the principles of 
computer-assisted instruction (CAI) in the implementation [13]. This required 
special attention to the user interface design.

Besides the educational perspective, SALSA should also be useful for research. 
This means that the package should support implementation of other string al­
gorithms. It has usually taken too much time for the Researcher to design and 
implement an animation of an algorithm; if this phase were considerably reduced, 
however, the animation itself would give new ideas in analyzing the algorithm and 
developing it further.

In addition to animations, SALSA should also include a kind of workbench 
for testing the algorithms’ efficiency. This is important in learning as well as in 
research. While animation helps in understanding the algorithm’s idea, only the 
hard facts about the CPU time usage tell the conditions in which to apply the 
algorithm.

In our project, we also wanted to evaluate the usefulness of the XTango envi­
ronment, although this was not particularly the aim of SALSA. We were interested 
especially in how efficient the path-transition paradigm would be in the animating 
process.

3.2 The components of SALSA
The SALSA package consists of four main components: the graphical user in­
terface, the animations for selected basic string matching and edit distance algo­
rithms, the CPU time measurement, and the test data generator [1].

T he  graphical u se r in terface  To let the user of SALSA to concentrate on 
the algorithms, not the package itself, it was important to make SALSA as easy 
to use as possible. Therefore, we decided to make the user interface graphical, 
implementing it with Devguide, a development tool operating in the Open Windows 
environment. In the design, we followed the OpenLook standard.

Beyond the technical implementation of the user interface, it was essential to 
identify the suitable learning strategies supported by SALSA. It seemed quite nat­
ural to make use of processive learning. SALSA could easily take the student all 
the way through the different phases of the learning process: motivating, orientat­
ing, deepening, exemplifying, practicing, evaluating.

However, we can regard an algorithm also as a system which the user can 
simulate by perceiving the animation with varying inputs. In addition to processive 
learning, SALSA would support, thus, learning by simulation.

These principles in mind, we designed the main window (Fig. 1), where the 
user first selects the algorithm and its input, possibly setting some parameters, 
and then pushes the button indicating the desired function. With the function 
completed, the control returns to the main window, and the user may define a 
new procedure.
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Figure 1 : The SALSA main window. The user first chooses an algorithm and 
test data. Pushing the Animate button starts the respective animation, while the 
Speed test button outputs an efficiency report.

Note that it is also possible to study the algorithms only at a theoretical level, 
by pushing the Information button.

T h e  an im ations The user can start the desired animation from the main win­
dow, pushing the Animate button. For instance, after choosing Boyer-Moore from 
the algorithm list and bmtestl from the test data list, the XTango window will 
open and show the initial scene of the respective animation (Fig. 2).

Let us exemplify the animation procedure by looking closer at the animation 
of the Boyer-Moore algorithm (Fig. 3). We decided to visualize the characters 
by rectangles of equal width, with the height indicating the character’s position 
in the alphabet. Second, the pattern would travel above the text. Moreover, we 
illustrated the comparison of two characters by moving them on one another. We 
displayed a match by coloring the respective rectangles black, while a zigzag arrow 
indicated a mismatch. A matched suffix was visualized by a line below the equal 
substring in the pattern.

With this design specified, we implemented the animation routines. These 
routines defined the locations, images, paths, and transitions, using the XTango 
functions.

At present, SALSA consists of the animations of basic algorithms for one­
dimensional pattern matching (Boyer-Moore, Rabin-Karp, and Aho-Corasick). In 
addition, we implemented also the animations of calculating the edit distance with 
normal and diagonal methods [3]. To get insight into how a researcher may benefit 
from animation, we also prepared a visualization of a two-dimensional algorithm 
under development.

T h e  C PU  tim e  m easu rem en t The user who is interested in the practiced effi­
ciency of an algorithm may forget the animations and run the speed test. SALSA 
will store the results in a log file specified by the user.



Figure 2: The initial scene of the Boyer-Moore animation. The implementor de­
fines the visual objects inside the window by using XTango routines, while XTango 
provides the window with the basic operations: With the left-hand buttons, the 
user can pan and zoom the animation window. Moving the right-hand scrollbar 
downwards slows down the animation. By pushing the pause button, the user can 
pause the animation.

G en era tin g  an d  s to rin g  th e  te s t d a ta  To help the user to experiment the 
algorithms with various inputs, we included a test data generator SWING (for 
String WeavING). The user may create different inputs consisting of the desired 
text and patterns by connecting together two files: one containing the text, the 
other the patterns.

Because SALSA creates a file for each new test data generated, it is easy for 
the user to repeat the same run of an algorithm or to test several algorithms with 
the same data.

4 D iscussion
Our experiences with the SALSA project produced four conclusions: First, in 
teaching string algorithms, animation serves as an activating teaching method 
which inspires students to experiment. Though rather short in code, the essence 
of a string algorithm is often quite hard to uncover.

A group of students of our department tested the SALSA package. The results 
were promising: by using the animation, it was easier to learn the idea behind the 
algorithm. When we made a video on SALSA, even the cameramen were interested 
how the algorithms worked, with no prior knowledge in Computer Science!

Second, designing an animation is a learning process which leads to a profound 
understanding of the algorithm. When transforming the detailed algorithm to the 
higher level of abstraction, the designer little by little gets closer to the essence 
of the algorithm. Actually, the designing process is interaction between learning, 
teaching, and research.

The students of our team had no prior knowledge of string algorithms. How­
ever, all of them got interested in the problem area and studied themselves the area
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Figure 3: Two phases in the Boyer-Moore animation. In the left-hand figure, 
the animation illustrates the comparison of two characters, with the respective 
rectangles approaching each other. In the right-hand phase, the algorithm has 
found a matched suffix in the pattern, visualized by an underline; the zigzag arrow 
indicates the character responsible for the unmatch.

beyond the algorithms to be animated. What happened with the Aho-Corasick 
algorithm, describes well the learning process. The designer of this animation, 
having seen how the Boyer-Moore algorithm works, noticed that it would be effi­
cient to combine these two methods. It was a pity that this approach is already 
known as the Commentz-Walter algorithm.

Third, animation is useful also for research. Experimenting with animations 
can indicate weaknesses in specific cases in the behavior of an algorithm under 
study and thus help in developing the algorithm further. Animation may also help 
in analyzing the complexity of the algorithm.

We got a nice example of this when animating a new algorithm for two- 
dimensional pattern matching. The co-operation between the animator and the 
researcher led to a more efficient algorithm.

In fact, it is possible to infer the aims of SALSA partly from the functions of 
the university: how to create a natural interaction between learning, teaching, and 
research. At the same time, there has been discussion about the communicative 
role of the university. The projects like SALSA teach the participating students 
to pay attention on how to present ’’the professional issues” for laymen.

Fourth, the path-transition paradigm of XTango proved to be an approach 
practicable enough for use in animating at least string algorithms. An overall 
evaluation of the tool was carried out during the project.

The team regarded especially the conceptual design (the path-transition para­
digm) behind the XTango environment as easy to learn. For a beginner, it took 
about four days to implement an animation of the Rabin-Karp algorithm. The 
animation scenes took about 800 lines of code.

The main problem with XTango was its poor performance in the Open Windows 
environment. According to John T. Stasko, the designer of XTango, the bottleneck 
lies in the performance of the X graphics implementation of the workstation [12].
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As a consequence, the number of the images in the animation must not exceed the 
order of tens.

Despite other minor shortcomings, like the lack of multiple windows (to com­
pare algorithms with one another, or to display different aspects of an algorithm), 
we are looking forward to the future. A new, C + +  based animation environment, 
called Polka, is already available on the ftp.

5 Future work
Our experiences in construction of SALSA and in using animations encourage us to 
develop new animations. Next year we will produce an enhanced version of SALSA 
by incorporating animations of a new set of string algorithms. The possibility of 
using parallel animations and sound output will be considered.

We have also plans to make animations for other areas. There are many subject 
areas with hardly any animation packages, since most implementations visualize 
sorting, graph algorithms,.computational geometry, or simulation of computer sys­
tems. One neglected area is compiling of programming languages. Many compiling 
techniques including parsing, attribute evaluation, and code generation are based 
on a parse tree. Such schemes are conceptionally easy to animate using a graphical 
representation of a tree.

Our promising experiences of using XTango for construction of SALSA show 
that production of animation packages in not any more tedious prototyping it used 
to be. We believe that the use of animation will rapidly increase in Computer 
Science education and research in the near future.
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Abstract
Formal methods can be used in the specification of behavioral aspects of user interfaces. 
Most previously used formal methods cannot, however, describe properties that are conse­
quences of concurrency in modern user interfaces. If parallelism can be described, the level 
of abstraction is often too low, and includes unnecessary implementation details.
In this paper we introduce a new approach that allows concurrency to be described at a high 
level of abstraction without implementation details. More specifically we use an executable 
specification language DisCo, for which we have developed support tools including an exe­
cution environment with graphical animations. In addition to validation by execution we can 
also use formal proofs for critical properties of the specifications. Another important aspect 
of DisCo is its support for stepwise refinement of specifications. This allows the addition of 
new properties in such a way that safety properties of previous stages are preserved.
The approach and the language are exemplified by a stepwise specification of an electronic 
mail system.
Keywords: formal specifications, user interfaces.

1. Introduction
User interface contains two parts: representation and behavior. The representation defines the symbols 
that are used in the display and input devices. The behavior determines the relation between user input 
and system responses. Often the representation alone is considered to be the user interface, but the 
understandability of the behavior is also an important criterion for a good user interface. In [S] user 
interface is defined to be all user and machine behavior that is observable by an external observer. We 
share this view.

A complete specification of the behavior specifies both the user interface and application semantics of 
the system. When the emphasis is on the user interface, we concentrate on the observable behavior, and 
we may even allow more nondeterminism than is acceptable in semantically correct system behaviors. 
In particular, we do not concentrate on internal issues or on interfaces to other software components. 
According to [10,15] there are three types of concurrency in user interfaces: 1) concurrent output, 2) 
concurrent input, and 3) concurrent dialogue. An example of concurrent output is simultaneous updat­
ing of several windows or views. Concurrent input is possible, for instance, when a mouse and a key­
board are used together. Concurrent dialogues are used when the user may supply input to several 
windows simultaneously.
Even if we do not have explicit concurrency in the user interface, there is always a need for concur­
rency in the model, because both the user and the computer system are active agents. For example, the 
user can press the interrupt key at any time during the execution of the program. This means that pro­
gram execution and keyboard monitoring are parallel operations.

1.1. Motivation for formal methods
In the design phase, a formal description of system behavior can expose inconsistencies and errors in 
the design. A formal description also gives a rigorous basis for its implementation.
When an existing user interface is described, formal specification is also helpful as a reverse engineer­
ing or documentation aid. The specification of an existing interface can be used as a supplement to the 
user manual and design documentation. Especially, a formal specification can complement the user 
manual by giving exact answers to questions that are typically missing in informal descriptions. If  the
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specification is given in a formal notation, it is possible to recognize inconsistencies and design flaws 
in the current version of the user interface, and the quality of the next version can be improved.

1.2. Methods used in formal description of user interfaces
Based on literature, Booth [3] gives two different uses for the term formal methods in human-computer 
interface engineering. One type of methods attempt to cognitively model the user. An example of such 
methods is Task-Action Grammar (TAG) [16]. The purpose of these methods is to show how complex 
tasks are in cognitive terms. In the other type of formal methods the behavior of a computer system is 
described in a formal notation. In this case general purpose specification methods are used instead of 
special user interface methods. When used for interface specification, their purpose is to expose logical 
inconsistencies within a system and its user interface. Our aim also falls in this category. Compared to 
most other specification methods, our notation of joint actions looks like a programming language 
instead of mathematical formulas, but the purpose is the same: to express logical properties and to 
expose logical inconsistencies.
Z [9] is one method that is used for specification of user interfaces [4]. Z  is based on sets, which 
describe the internal state and variables of the program. In a Z specification all operations are described 
as operations on sets. When Z is used for specification of user interfaces, the representation compo­
nents like window locations are also described by using these sets.
One way of specifying user interfaces is to use context free grammars to specify languages that are 
used in man-machine communication. The behavior of the system can be added to the productions as 
actions [7].

Different kinds of state automata or transition networks (TN) are also used for specification of reactive 
systems. For imposing structure on transition networks the concept of subdiagrams is introduced. If a 
subdiagram can call itself, the notation is called recursive transition networks (RTN). A common way 
to extend the expressive power of transition networks is to add actions to states or transitions. Such 
notations are called augmented transition networks (ATN). They can be improved further by adding 
conditional branches to transitions [20], where the conditions depend on the return values of the 
actions.

The use of algebra is one possible formal specification method, and in [5] algebraic specification is one 
of the example notations. In the algebraic approach a specification consists of classes of objects and a 
set of functions that operate on these classes. The semantics is defined by a set of algebraic axioms.

In order to support concurrency, different kinds of event approaches are used. In [S] the notation is 
called event algebra. In [10] an event-response language (ERL) and local event broadcast method 
(LEBM) are introduced. LEBM is basically a structuring method that supports communication and syn­
chronization between modules. A third event-based notation is used in [7]. A common denominator in 
these approaches is that event handlers are used to react to events sent by the external world or by other 
event managers. Many researchers prefer event-based models over the other methods mentioned 
above, mainly because event-based approaches support concurrency [5 ,7 ,10 , 14].

A novel approach described in this paper is to use joint actions. With them we can describe the syn­
chronization without implementation details like communication mechanisms. With event-based meth­
ods our approach shares the ability of describing concurrency. The advantages of our method include 
its abstraction in the description of actions and support for stepwise refinement.

The rest of the paper is organized as follows. Section 2 gives an introduction to joint actions and to the 
DisCo language. The purpose is to provide the details and principles that are needed in understanding 
the rest of this paper. In Section 3 the usage of DisCo in the specification of user interfaces is discussed 
in the light of an example. In Section 4 conclusions and some directions for future work are given.

2. Introduction to specification in DisCo
Joint actions [1 ,2] can be used to specify reactive systems. Reactive systems are ones that are in con­
tinuous interaction with their environment This distinguishes them from traditional input/output com­
putations. Reactive systems typically contain parallelism and they are often embedded systems. This
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concurrency may be included in the system, or at least the system and its environment may both exe­
cute simultaneously. The aim of the DisCo approach is to specify reactive systems with potential or 
real concurrency at a high level of abstraction.

A joint action specification consists of multiparty actions and objects that participate in them. A differ­
ence between joint actions and most other operational specification methods is that the notion of pro­
cesses is not inherent in joint actions. The objects in joint action systems can be implemented either as 
processes or as passive data structures. An important aspect in DisCo is that the effects of actions are 
expressed as special syntactic entities instead of distributing to the descriptions of the effects to the par­
ticipating objects.

In this paper only a brief overview is given on the DisCo specification language. A more detailed 
description can be found in [11,12]. DisCo supports object-oriented modelling; DisCo objects always 
belong to a class that defines the data and state structures of objects within that class. A comparison of 
DisCo and the object-oriented paradigm can be found in [12]. The finite-state structure of a DisCo 
object is similar to the hierarchical structure used in statecharts [8]. An object can be understood to 
consist of two interrelated parts: a finite state part that is a state automaton, and a data part that contains 
variables and constants. Figure 1 gives an example of a class definition and the corresponding state- 
chart. In DisCo state transitions correspond to actions, and they have been omitted from Figure 1.

class Proc (Next:Proc) Is --  N ext is a parameter, which is a reference to another Proc-object
state ‘ Prepare, Compute: - -  two states, default state is marked with '*’
state ‘ Important,Unimportant; -  two independent states 
extend Important by

state ‘ Q u ite J, V e ry J; - -  substates of Important 
end Important;
D a ta : integer; -  a variable

end Proc; ______________[  Proc |_________ ____

‘ Preparing
^  - J

f  ‘ Important ^

if (зим r a

Computing

v j* -------------
Unimportant

Figure 1. An example class and the corresponding statecbart The state transitions are not shown.

The other basic components in DisCo are actions, in which the objects may participate. An action def­
inition has a name, zero or more parameters, one or more participants, a body, and an enabling guard. 
Each participant is specified by its class, and it is given a formal name called role. Whenever an action 
is executed with some objects as participants, the action body may change the participating objects. An 
action cannot modify objects that are not participants of the action. The guard is a boolean expression 
which has to be true for the action to be executed. The guard can therefore be used to restrict the possi­
ble participant combinations. The following is an example of an action: 

action Exchange (X : integer) by L,R:Proc Is 
w hen X > 0 and LD ata  > R.Data+X d o -- guard

R.Data :■ LD ata  || LD a ta  :■ R.Data; -  body of the action 
end Exchange;

This action has two participants named L and R, which are both instances of class Proc. The identifier 
X denotes a parameter, whose value is determined whenever the execution of the action begins. The 
guard of this action restricts the participating objects and the possible values of the parameter X. The 
action is enabled only for those objects of class Proc that satisfy the condition given in the guard. If 
there is freedom in selecting the possible participants or parameter values, they are determined by a 
nondeterministic choice. An execution of a DisCo specification consists of successive actions; at any 
moment the next action can be any of the enabled actions.
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In addition, assertions can be included in specifications. An example of an assertion is: 
assert V  P:Proc:: Proc.Data > 0; 

which states that the D ata variables of all Proc-objects must be positive. Assertions can be used to 
specify invariants for the whole execution, and to restrict the initial state of the system. In the language 
the assertions are for documentation of the expected properties, and the tool checks their validity dur­
ing execution.

Reasoning about DisCo specifications is based on an execution model in which actions are executed 
sequentially - not in parallel. However, the next action to be executed is selected by a nondeterministic 
choice from the enabled actions. This means that an interleaving model of parallelism is used. The 
relation between nondeterministic serial execution and parallel execution has been addressed in [2]. 

DisCo has two mechanisms for stepwise derivation and reuse of specifications: inheritance that is sim­
ilar to the corresponding concept in object-oriented programming languages, and an extension mecha­
nism that is suited for superposition.
To support the specification process, a tool has been implemented [17]. The user interface of the tool 
can be used for browsing, execution, and visual animation. The graphical displays are always gener­
ated from a textual specification by the tool. The graphical animation of the tool makes its possible to 
extend the group that works with the specification. In addition to execution (simulation), formal proofs 
can be carried out to reason about critical properties in the specification. So far the tool assists in verifi­
cation of formal properties only by an automatic execution-time checking of assertions.

Executability gives the possibility to validate specifications by testing. It is clear that critical properties 
cannot be verified by testing, because the execution may never reach all possible states of the system. 
On the other hand, formal reasoning is expensive and time consuming, and therefore applicable only to 
the most critical properties. Another problem with formal reasoning is the recognition of the properties 
to be proved. Our goal is to combine testing and experimentation with formal reasoning.

3. Application of DisCo in the specification of user interfaces
The DisCo language and the joint action methodology have been designed for specification of reactive 
systems. The originally intended application area is embedded systems like lift controls or telephone 
exchanges. The same model can be used also for specifying the interaction between a computer system 
and its user. The user interfaces of modern workstation environments are, in fact, reactive systems 
because the user can continuously control the programs. Programs are no longer batch programs which 
first read the input data, then perform the computation, and finally output the results. Also, modem 
workstations allow several interactions with one or several applications to exist simultaneously.

As discussed above, event-based approaches can be used in the specification of concurrent user inter­
faces. One problem with event-based approaches is their low level of abstraction in the sense that syn­
chronous operations are distributed to several event handlers. Event handlers also provide an 
implementation-oriented structure for the control, which we consider harmful at the specification level.

In DisCo we have an action-oriented view instead of a process-oriented view. This means that the 
abstraction level is raised to independence of process structure and communication mechanisms. We 
only describe what is done and which participants are needed, not who is responsible for initiating 
actions and which communications mechanisms are used in them.

The rest of this section gives an example of user interface specification in DisCo. The purpose of this 
section is to give an example of how DisCo can be used inn specification of user interfaces. In order to 
show structuring capabilities, the specification is written in several refinement steps.

3.1. An example specification
^ n  this section we describe a specification of an electronic mail system. In this example we show how 
the behavior of the system can be described in DisCo specification language. The theorems describing 
the critical properties o f the design are expressed as assertions. A proof of one of these theorems is also 
shown.
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This specification has been tested by using our execution and animation tool. Because the theorems 
have been included as assertions, the tool has ensured that the theorems hold at least in all states 
reached by the execution. Because we have not included any theorem prover in our tool, formal proofs 
for all theorems have not been carried out.

The specification proceeds in four superposition steps:
(1) simple sending and reading;
(2) spooling and mail boxes;
(3) user interface with windows;

3.1.1. Sending and reading
First we introduce a class for mail messages. The message can be in three possible states: Idle (nonex­
isting) Incomplete (under preparation) and Ready (ready to be read). The variable Recipient contains 
the user to whom the message is sent. The integer variable Body represents the content o f the message. 
The value of variable Body is nonnegative, and value 0 represents an empty body. We assume that the 
number of available messages is unlimited, 

class Message Is
state ‘ Idle, Incomplete, Ready;
Recipient: User; Initially Recipient -  null;
Body : Integer; Initially Body -  0; 

end;

The users have two sets of messages: Sending (messages under preparation) and Reading. The number 
o f messages being concurrently prepared and read by an individual user is unlimited. This means that 
we can have concurrent interactions (dialogs) with several messages, 

class User Is
Sending; set Message; Initially Sending -  0;
Reading; set Message; Initially Reading -  0;

end;

The action that starts preparing a message is the following: 
action Start_Send b y  M:Messsge; U:User Is 
w hen M.ldle do

— »  M. Incomplete;
assert M.Body -  0 л  M.Redpient -  nuN л  (M £  U.Sending);
U.Sending O.Sending U  {M};

end;

This action inserts an idle message to the set of messages under preparation. The assertions in the 
action bodies describe our assumptions, and they can be proven in later phases of the specification. 
The next action adds an instance of class recipient to a message: 

action Add_Redpient (R:User) by M:Message; U:User la 
w hen M.lncomplete л  M €  U.Sending л  M.Recipient -  null do 

M.Recipient:«  R;
end;

The guard of this action requires that the recipient is not already given. This means that, once given, 
the recipient cannot be changed, and a formal analysis could expose that this is an irreversible opera­
tion. This is an example of an user interface property that can be examined by using formal methods.

The next action adds a body to a message:
action Add_Body (hinteger) by M:Messsge; U;User Is 
w hen M.lncomplete л М £  U.Sending л  0 < I л  M.Body -  0 do 

M.Body: - 1;
end;

A completed message is sent by action Send: 
action Send by MiMessage; U:User Is
w hen M €  U.Sending a  M.lncomplete л  M.Body > 0 a  M.Redpient *  null do 

— »  M.Ready;
U.Sending U.Sending -  {M }; 

end;
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The guard requires that both the body and recipient of the message are given prior to sending.

We have also an action for canceling the sending: 
action Cancel b y  M:Message; U:User Is 
w hen M €  U .Sending л  M. Incomplete do 

U.Sending U.Sending - (M );
- *  M.ldle;
M B o d y : -  0;
• M .Recipientnull; 

end;
Action Read inserts a ready message to the list o f messages under reading: 

action Read by U:User; M Message Is 
w hen M.Ready л  U -  M.Recipient л  M €  U.Reading do 

U.Reading := U.Reading u  {M};
end;

The guard ensures that messages are read only by the recipient and that the message is not already 
being read.

If the user reads the message but saves the message for further reading, action Keep is executed: 
action Keep by U:User; M M essage Is 
w hen M €  U.Reading do

U.Reading :»  U.Reading - {M};
end;

If the user discards the message after reading, action Dispose is executed: 
action Dispose b y  U:User; M Message Is 
w hen M €  U.Reading do

U.Reading U.Reading - {M };
- >  M.ldle;
M.Body > 0 ;
M.Recipient := null;

end;

This completes the simplest specification of the electronic mail.

3.1.2. Theorems and proofs for simple sending and reading

Theorem 1. Only ready messages are in LserReading: 
assert Only_Ready_ln_R eading is

V U 1 :U s e r (V M1 Message | M l £  U1.Reading :: M l.Ready);

In assertions and proofs we have used the following naming conventions: indexed names (M l, U l , ...) 
are used for quantified variables. The unindexed names (M, U ,...) are used for action participants.

This can be proven as an invariant by showing that the statement is true in the initial state, and no 
action breaks the invariant. This is done in the following reasoning so that actions are treated one by 
one:

• The assertion is initially true because U.Reading is initially empty for all U.
• Actions Add_Recipient and Add_Body are actions that do not change the state of any message or 

change the content of any U.Reading. Thus they can not break the assertion.
• Action Start_Send changes the state of a message to incomplete but only if the original state is idle 

(i.e. not ready). Thus, if  the assertion holds before the execution of Start_Send, its execution can­
not break i t

• Action Send changes the state of a message but only if the original state is incomplete. Thus, if the 
assertion holds before, the execution of Start_Send cannot break i t

• Action Cancel changes the state of a message but only if the original state is incomplete. Thus, if 
the assertion holds before, the execution of Start_Send cannot break i t

• Action Read inserts a message to U.Reading, but the guard of Read requires that the state must be 
ready.

• Action Keep removes a message from U.Reading, which cannot violate the assertion.
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• Action Dispose changes the state of a message from ready to idle, but it also removes the message 
from U. Reading. So, provided that the message is never in two U. Reading, theorem 1 holds.
A message can never be in two U. Reading because th;y are added to U. Reading only in action 
Read, and the guard of Read requires that U. Recipient is equal to U, and U. Recipient is changed 
only when U is not in any U .Reading (i.e. in state incomplete).

The theorem 1 can also be proven using temporal logic of actions [13]. In the following we use a nota­
tions where an unprimed predicate P refers to variable values before an action and primed P' refers to 
variable values after execution.

Now, in order to proof invariant P we must prove that P is true in the initial state and for all actions: 
Action л  P => P  

For the initial state we know that 
V U1:User::U1.Reading -  0  

which directly implies theorems 1 and lb.

For action Start_Send we can write (U and M refer to participating objects and a pseudo variable Val­
ues refers to all variables -  including state):

$tart_Send <=>
V  U1:User IU 1  +  U :: U1. Values' -  U1. Values a
V M l -.Message / M1 *  M :: M1. Values' «  M l. Values л
M.State ш Idle л  M.State' -  Incomplete л  U.Sending'•  U.Sending и  (M ) л  
M. Recipient' = M. Recipient л  M. Body' -  M. Body л  
U. Reading' «  U. Reading 

where the first two conjuncts guarantee that all nonparticipating objects are unchanged.

Now we can prove that Start_Send does not break theorem 1. First we express action Start_Send and 
theorem 1 in temporal logic of actions:

Start_Send a  Only_Ready_ln_Reading

<=> V U1:User / U 1 + U ::  U1. Values' -  U1. Values л  (1)
V  M1-.Message / M l *  M :: M1. Values' -  M1. Values л  (2) 
M. State = Idle л  M.State' = Incomplete л  U.Sending' -  U.Sending и  {M } л  (3) 
M. Recipient' »  M  Recipient л  M  Body' -  M. Body л  (4) 
U. Reading' * U. Reading л  (5)
V U 1 :U s e r:: (V M1 Message / M1 e U1. Reading:: M1.State -  Ready) л  (6)

Based on these numbered conjuncts we can make the following reasoning:
(2)=>

V  M l : Message /М 1 +  М ::  M l.State ' -  M1.State (7)

(5) л (1) =>
V  U l.U s e r :: U1.Reading' -  U1. Reading (8)

(3) A (6) => (because M.State -  Idle)
V U l.U s e r :: M €  U1.Reading (9)

( 7 ) л  (9 )= *
V U l.U s e r ::(V  M1-.Message IM 1  € U1.Reading :: M 1.State '-M 1.State) (10)

(6) л  (10) =>
V  UV.User :;(V  M1 .Message / M l €  U1 .Reading:: M l State' -  Ready) (11)

(1 1 )л (8 )= >
V  U l.U s e r :: (V  M1 Message / M1 € U1.Reading:: M1.State' -  Ready) (12) 

<=> O nly_Ready_ln_Reading'

This means that we have proved:
Start_Send л  Only_Ready_ln_Reading => Only_ReadyJn_Reading'

The above proof concerned only one action for one theorem, and a proof for all actions would take sev­
eral pages. It is clear that this kind of formal proofs are difficult and time consuming to carry out man­
ually. Without computer assistance this can be done to the most critical properties only.
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Theorem 2. Messages to be sent are incomplete and all incomplete messages are in some U.Sending:
assert Sending_Means_lncomplete is

{M 1  Message | M 1 .ln c o m p le te }«{3  M1 Message | (3  U 1 :U se r:: M l 6  U1.Sending)};

Theorem 3. An idle message is not read or prepared by anybody: 
assert Id leJs Idle Is

V Ml:M essage | M l .ldle :: —• (3 U 1 :U s e r M l  6 (U1.Reading и  U1.Sending));

Theorem 4. The same message is not in more that one U.Reading or U.Sending: 
assert Message_Not_ln_Two_Sets Is

VM1:Message :: (V U1:User | M1 €  U.Reading и  U1.Sending
:: —I (3 U2;User | U2 *  U1 :: M1 € U2.Reading u  U2.Sending) л 

—I (M l 6  U1.Reading n U 1.S en d in g ));

3.1.3. Spooling mail boxes
A mail system has usually a mailbox for each user. The incoming mail is collected to that mailbox. In 
our specification, action Send cannot add messages directly to these mailboxes because the recipient 
user1 may me committed to another action, or the receiving mailbox is not available. We do not want to 
delay the sender unnecessarily. This is one of the reasons why spooling is used also in real electronic 
mail systems. Thus, we specify a spooling queue for messages to be added to the mailbox.

We add these properties by using superposition, which is the main method for specification refinement 
in DisCo. In superposition we can add new properties so that all safety properties are maintained. This 
means that the new specification cannot do anything that was not possible in the old system. We can, 
however, add new variables and new operations for these variables because these operations are not 
visible in the old specification.

We add a new class for the spooling queue, and we extend the existing class User with a mailbox: 
class Spool Is

Queue: set Message;
end;

extend User by
Mailbox: set Message; Initially Mailbox > 0 ;  

end;

It is assumed that we have only one instance of spool, which can be expressed as an initial condition: 
Initially Only_One_Spool Is (+/ S:Spool:: 1) ■ 1;

Action Send is refined to have a new participant Q, and the body of the action is extended by a state­
ment to add the message to the queue: 

refined Send b y  ... Q:Spool Is 
w h e n ... do

assert — i(M €  Q.Queue);
Q.Queue >  Q.Queue и  { M };

end;

This refinement as well as all other refinements and new actions change only newly added variables of 
the specification.

A totally new action is needed to move a message from the spool to a mailbox. Notice that the sending 
user is not involved here.

action From_Spool by S:Spool; U:User; MrMessage Is 
w hen U -  M.Redpient л  M €  S.Queue do 

a s s e rt- i ( M £  U.Mailbox);

Wc have also the following theorems, but the proofs have been omitted from this paper.

1. Actually we have not talked about what we mean by a user. At this level of specification a user can be 
understood as a set of resources (e.g. home directory, mail box, workstation) reserved for a user.
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U.Mailbox := U.Mailbox и  { M };
S.Queue :»  S.Queue -  {M };

end;

For action Read we add a new conjunct which requires that the message must be in a mailbox, i.e. the 
message cannot be taken directly from the spool, 

refined Read Is 
w hen ... M €  U.Mailbox do

end;

The body of action Dispose is extended by a statement to remove the message from a mailbox: 
refined Dispose is 
w h e n ... do

assert M €  U.Mailbox;
U.Mailbox :> U.Mailbox -  {M };

end;

3.1.4. Theorems for spooling

Theorem 5. Only ready messages in spool и  mailbox and messages in spool и  mailbox are ready: 
assert Only_Ready_ln_Spool_And_Mail!;-JX Is

{ M1 Message | M l.R e a d y} * { M1 :Message | (3  S1 :Spod :: M1 £  S1 Queue)} U  
{ M1 :Message | (3 U1 :U se r:: M1 £  U I.M ailbo x));

Theorem 6. A message cannot be in both spool and mailbox: 
assert Not_Both_Mailbox_And .Spool Is

{M1 Message | (3 S1 :Spool:: M l €  S1 .Queue)} n  (M1 Message | (3 U1 : U s e r M l  €  UI.M ailbox)} - 0;

Theorem 7. A message is at most in one mailbox: 
assert Unique_Messages Is

V U 1 :U s e r:: (VM 1 Message | M l £  UI.Mailbox 43 U2:User| M1 £  U2.Mailbox ::U 2 / - U1));

Theorem 8. A message body is not seen by anybody else but the sender and recipient. 
assert Read_Only_Mine Is

( V  U1 :User :: ( V  M 1: Message | M1 £  U1 .Reading :: M1 .Recipient «  U 1 )) л  
( V  U1 :User :: ( V  M 1: Message | M1 £  U1 .Sending

:: - 1  (U2:User | U2 *  U :: M £  U2.Sending и  U2.Reading) л  
(V M 1 : Message | M1 .Idle : : M1 .Body = 0лМ1 .Recipient« null);

We assume that a user can see the body only when the message is in U.Reading и  U.Sending. This is 
ensured by allowing reading only to users that are indicated by the variable Recipient. When a message 
is disposed, i.e. state is changed to idle, the old contents of the body is wiped off.

Theorem 9. A sent message has both recipient and body:
assert Send_Complete_Only Is

( V  M1 Message | M1 .Ready :: M1 .Body > 0 л  M1.Recipient *  null) л  
(V M 1  Message I (3 U 1 :U e e r:;M 1  £  U1 .R eading):: M1.Ready);

Theorem 10. Messages can only be read from mail box (UReading is a subset of U Mailbox.):
assert Read_From_Mailbox Is

V U 1 :U s e r::{M 1  Message I M1 £  UI.Reading} с: (M1 Message | M1 £  UI.Mailbox};

Theorem 11. A message cannot be both in mailbox and in preparation (stronger than theorem 4.):
assert Mailbox_Sending_Distinct Is

V U1 :U s e r:: U1.Sending n  UI.Mailbox -  0;
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3.1.5. A window interface to the mail system
Next we will specify a windowing user interface to our electronic mail system.

A new class for windows is needed. A window can be either mapped (visible) от unmapped ( ^ v i s i ­
ble). While mapped, the window is displaying some message, 

c h m « Window Is /
state *Unmapped/Mapped(M:Message);

end;

The user has a set of visible windows that can be used either for sending or reading of messages. The 
maximum number of windows - i.e. the number of "open" messages for a single user is not limited, 

extend User by
Windows ; set Window; initially Windows -  0 ;  

end;

Actions Start_Send and Read must be refined to have a  participating window. This window has to 
become mapped and the window must be added to the set of user's active windows, 

refined Start_Send b y  ... W:Window Is 
w h e n ... W.Unmapped do

- »  W .M apped(M); 
assert (W  €  U.Windows);
U.Windows U.Windows U  {W };

end;

refined Read b y ... W.Window Is 
w h e n ... W.Unmapped do

— »  W .M apped(M); 
assert - i ( W  6  U.Windows);
U.Windows U.Windows U  (W );

end;

In actions Send, Cancel, Keep and Dispose the window must be unmapped and removed from the set 
of active windows:

refined Send b y ... W:Window Is 
w h e n ... M -  W.Mapped.M do

— ►W.Unmapped; 
assert W €  U.Windows;
U.Windows : -  U.Windows -  (W );

end;

refined Cancel b y ... W:Window Is 
w hen ... M -  W.Mapped.M do

-►W.Unmapped; 
assert W  £  ».W indow s;
U.Windows : -  U.Windows -  (W );

end;

refined Keep b y  ... W  Window Is 
w hen ... M -  W.Mapped.M do

assert W  €  U.Windows;
U.Windows : -  U.Windows -  (W );
— »  W.Unmapped;

end;

refined Dispose b y ... W:Window Is 
w h e n ... M -  W.Mapped.M do

U.Windows U.Windows -  (W );
->  W.Unmapped;

end;
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A window is added to actions Add_Recipient and Add_Body to describe the fact that the user will give 
the recipient and body by typing at the window: 

refined Add_Recipient b y ... W:Window Is 
w hen ... M -  W.Mapped.M do

end;

refined Add Body b y ... W :Window I«  
w h e n ... M -  W.M apped.M do

end;

3.1.6. Theorems for windows

Theorem 12 All mapped windows belong to a user and no unmapped windows belong to a user:
assert Mapped_Owned_By_User Is

( V  W 1 :Window | W1.Mapped :: (3  U 1 :U s e r:: W1 6  U1.Windows)) л  
( V  W1 :Window I W1 .Unmapped :: - » (3  U1 :U s e r:: W1 €  U1 .Windows));

Theorem 13 A window can be owned at most by one user:
assert Window_Not_Owned_Two_Users Is

V  M:Window :: ( V  U:User | M €  U.Windows :: - i  (3  U l :User | U 1 *  U  :: M 6  U l.W indow s));

Theorem 14 Windows contain only messages that a user is sending or reading (Notice that theorem 4 
ensures that messages are at most in one UReading or USending.): 

assert My_Messages_ln_Window Is
V  W1 Window :: V U1 :User | W1 €  U1 .Windows

(W1.Mapped.M €  U1.Reading v  WI.M apped.M  £ U1.Sending);

4. Conclusions and directions for future work
The DisCo language and tool can describe the behavior of user interfaces in a formal manner. The tool 
can be used for experimentation, and temporal logic of actions can be used for formal proofs.

The main advantages of our approach over previous methods are the description of concurrent user 
interfaces in an abstract and implementation independent way, and the support for stepwise refinement 
by the structuring capabilities of the DisCo language.

In future we plan to experiment with specifications of more complicated user interfaces. Especially the 
suitability of temporal logic of actions for complex user interface specifications needs further experi­
ments. The examples should also be refined by the constraints caused by the implementation architec­
ture. It would be valuable to know how the implementation structure limits concurrency, and how we 
can recognize those limitations from the specification.
We should also test our approach for verification of user interface properties like consistency and 
reversibility.
Currently, the tool and method have no support for user interface implementation and prototyping, the 
current DisCo tool can only specify the behavior of the user interface, and no representation issues can 
be handled. In future, the animation capabilities of DisCo tool could be extended by typical user inter­
face input and output components.
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ESTONIA

Let a i , . . . ,  On be prepositional variables (n >  0). Prepositional formula in con­
junctive normal form (CNF) ia

( l < p < 3 " ) ,  (1)

where

are clauses and

*<
A  =  V  *У (X ̂  ki ^  n) (2)

i - 1

*i,-€{«!,»! :1  < / < » }  (3)

are literals. Proportional variable щ in (3) is a variable of literal (oj =  p rop(*y  )). 
We assume that all clauses in (1 ) are different and that all prepositional variables in 
every clause are different. If hi =  n in (2), then A, is m axe la use. If every clause in
(1) is max с lause, then A  is complete CNF. For complete CNF 1 <  p  <  2“ . It is a 
well-known fact, that every clause A; in complete CNF determines one evaluation, for 
which A  is false: neg(A,) =  (an . .. O i „ ) ,  (an . . .  ain) €  {0,1}", where a;j =  neg(zy) 

and
/ l.if »«=•</, 

neg(*o) = <
I  0, if * i j  =  * i j .

Hence, complete CNF A  =  A?*i Ai is satisfiable iff p < 2n, and 2n — p is the 

number of true evaluations of A.
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Let A  be a CNF. If we transform A  into complete CNF, then every clause A\ in 
A  generates a certain set of max clauses, gen(A,). Let

Pi =  { « ,, . . . .  a«} \  {ргор(ам ),. . . .  p rop (* i]ki)}, 

i.e. Pi is the set of all prepositional variables, which do not appear in clause A{. So 

*<
g e n ( ^ ) * { ( V « < j ) V (  V  ^ € { 0, 1 } ,1 < / < | Р 4|}

;'= i au f  Pi

and complete CNF for A  is

genM ) =  ( J  gen(A<).
i—1

Clauses A{ and Aj are separated if gen(j4;) П gen( A j) =  0. Let w eight (A ) =  

|gen(A )|. It is easy to see that w e i g h t^ )  =  2n~ki. It is obvious therefore that 
the number of maxclauses in complete CNF g en (.4) is equal to w e i g h t^ )  =  
J2fml 2n_*‘ iff, for every i ф j ,  clauses Aj and Aj are separated.

Iwama’s algorithm for establishing satisfiability (see [2]) calculates the number of 
maxclauses in gen(.4) using the inclusion-exclusion principle. We will try to transform 

CNF A  to equivalent CNF A ' with separated clauses.

T heorem  1 . Clauses Ai and Aj are separated if  and only if there exists literal x so 

that x £  Ai and x £  A j.

Proof. 1 ) Suppose there does not exist literal x so that x £ Ai and x £  A j. We can 
write Ai and Aj in form

Ai =  *i V . . .  V Xk V yi V .. V yi,

A  =  *! V .. Л/ ** V *, V . . .  V *m,

where %
{pro p (v i),.. ,ргор(у,)} П { p r o p ( ^ ) , . .. ,p ro p ( im)} =  0,

Let {fci,. . . ,  b,} be the set of all prepositional variables from { a i , . . . ,  a«}, which do 
not occure in Ai U A j , (r >  0). Then
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gen(j4;) =  {*i V ... V ** V yi. V ... V |» V z“1 V ... V z£m V  bf1 V  ... V  bf' : 

( a i >. . . , a m) €  {0,l}m, (ßu . . . ß r ) G {0,1}"}, 

gen(A;) =  {*! V ... V ** V »71 V ... V у/' V xi V ... V zm  V bf1 V ... V bfr :

(7i,.. .,7 l)6 {0 ,l} ,l ( ß i , . . . ß r) 6 {0,l}r}

and

gen(Ai) П gen(Aj) =  {*t V ... V z* V yx V .. V yj V zi V ... V zm  V  bf1 V  ... V t>?r :

(ßu . . . ß r ) £ { 0 , l }'},

i.e. gen(Ai) П gen (Ay) consists of 2r maxclauses and is not empty for every r >  0.
2) Suppose there exists propoeitional variable a so that a €  Ai and ä €  A j . In this 

caee every clause from gen(A,) contains a and every clause from gen(Ay) contains ä. 
Therefore gen(A,) П gen (Ay) =  0.

Algorithm 1: separate(A&5)
Let A  and В  be two nonseparated clauses, i.e.

A =  x v V ... V хк V уг V ... V yl(

B =  i 1 V . . . V * t V z 1 V . . . V : m)

where

{prop(yt),. . . ,  prop(yi)} П {prop(zi),. . . ,  prop(zm)} = 0.
Suppose m > I.

I f l  =  0, then separate(A tcB ) =  A

ehe se p a ra te(AScB) =  A i iB ib  . . .  k B i, where

B i = 5 V y i ,

=  J? V yi V У2 

B» =  B V y 1V y 2 V y 8

Bi =  B v yi Vy2 V . . .  Vy{.
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Theorem 2. separate(.A&i?) is CNF, equivalent to A L B  witk pairwue separated 

clauses.

Proof. 1) A is separated from B, (1 <  i < I), because A  contains y, and Bi contains ft. 

В; is separated from Bj (1 <  i <  j  <  /), because B; contains j/i, and for every j  >  i, 

Bj contains y,

2) If I =  0, then A subsumes В  (see [1]), and therefore separate(i4& l?) =  A  is 
equivalent to A k B .

Suppose I >  0, and let о € {0, l}n be an arbitrary evaluation for which A iiB  is 
true. By construction of B{, one can see that В subsumes B j (1 <  » <  I). Hence B, is 
true for each evaluation for which В  is trne. Therefore A k B i k . . .  k Bi ,  is true for 
evaluation o.

Let о  €  {0, l}n be an arbitrary evaluation for which A k B  is false. If A  is false 
for о , then A k B i k . . . kBi ,  is false for o. Suppose, that A  is t ru e  for o. Then В  

is false for a, i.e all literals * i , . . . ,  * *, . . . ,  . . . ,  zm are Ш ве for o. At least one of 
literals у,- has to be tru e  (remember that A is true for a).  Let io be the minimal i such 
that yi is tru e . Then Bi0 =  V ... V ** V zi V ... V zTO V у! V y»0_i V y,-0 is false, and 
hence A ic B \ i t . . .  k B i  is false for evaluation o.

If we transform CNF A  into CNF A \  using Algorithm 1 , some new clauses may 

be nonseparated. Consequently, if the number of clauses in A  is p  and the number of 
clauses in A ' is p \  then we have to check (p')2 pairs of clauses. To be sure, that this 
method for establishing satisfiability does not violate the hypothesis P=N P, we have 
to find an example of CNF A  for which number of clauses grows exponentially.

Example 1. A  =  {о, V 6, V eg,а,- V Ь, V c .,0; V 6, V c,-,õ, V 5, V с, : » =  1,. The
number of clauses in A  is 4lb. After applying Algorithm 1  we get A ' with number of
clauses p ' =  J *̂=1 4*.

Exam ple 2. Let G =  (V, E) be a graph, where V =  {сц,. . . ,  on} is the set of nodes 
and E  is the set of edges. We build CNF A q with prepositional variables « i , . . . ,  On, 
which consists of all clauses äi V äj such that (a ;, a;-) £  E. It is easy to see, that 
every satisfying evaluation for A g represents one clique of G  (including trivial ones). 
If we transform CNF A g into separated CNF, we can compute the number of true
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evaluations of A a , which is the number of all cliques of G. If we consider the graph 
Q  =  (N , E), where N =  {e1( bV). . . ,  a*, bk) and E  =  {N x N ) \  {(a,, k) : 1 <  « <  *}, 

then CNF A a  will be v 6.) and A lgorithm  1  gives the separated formula A g ’,

which consists of 2* -  1 clauses.
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