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INTRODUCTION 

In all three domains of life (Archaea, Bacteria and Eukarya), proteins are syn-
thesized by large ribonucleoprotein particles called ribosomes. These ancient 
ribozymes are originated in the RNA world as self-replicating pre-cellular 
complexes and gradually took their modern form by the time of LUCA (last 
universal common ancestor) (Fox 2010; Noller 2012). All ribosomes consist of 
two ribosomal subunits: a small and a large one. Structural studies demonstrate 
that the shape of both subunits is defined by the tertiary structure of ribosomal 
RNA (rRNA), which is assisted by ribosomal proteins (r-proteins). Yet despite 
the structural similarity of modern ribosomes, the long evolutionary road has 
led to the appearance of domain-specific structural elements of ribosomes as 
well as principles of ribosome assembly and protein synthesis.  

Eukaryotic ribosome, the main subject of this thesis, is larger than bacterial 
or archaeal ribosomes due to the presence of eukaryote-specific expansions of 
rRNAs, eukaryote-specific r-proteins and protein extensions. These eukaryote-
specific moieties form a vast network of intra- and intersubunit interactions that 
support structure of eukaryotic ribosome and coordinate its function. Integrity 
of such network contributes to the efficiency of protein synthesis and, therefore, 
to the normal cellular physiology. The important but largely obscure role in this 
network is assigned to r-proteins. The globular domains of r-proteins stabilize 
tertiary structure of rRNA molecules. The long C- and N-terminal extensions 
connect globular domains with rRNAs and other proteins, providing commu-
nication between functional centers of ribosome. Understanding the roles of r-
proteins and their domains in the ribosomal machinery is required to shed a 
light on the principles of protein synthesis. 

The theoretical part of the thesis gives a brief literature overview of the 
budding yeast ribosome and mechanism of protein synthesis in eukaryotes. 
First, the overall structure of the ribosome is described, with eukaryote-specific 
features and intersubunit interactions being covered in more detail. Second, 
assembly pathways of small and large ribosomal subunits are outlined. Finally, 
the main steps of protein synthesis and roles of intersubunit bridges in these 
steps are covered.   

The experimental part of the thesis focuses on the functions of two r-pro-
teins, eL19 and eL24, at the domain level. The importance of protein domains 
of eL19 for the assembly of large ribosomal subunit and intersubunit inter-
actions is determined. The roles of eL24 domains in the subunit association and 
protein synthesis are revealed.  
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1. REVIEW OF LITERATURE 

1.1. Structure of the budding yeast ribosome 
Translation, or protein synthesis, is a universal process carried out by large 
ribozymes called ribosomes. As ribonucleoprotein molecules budding yeast 
ribosomes (80S, MW≈3.2 MDa) consist of four rRNA molecules (total MW≈1.9 
MDa) and 79 r-protein molecules (total MW≈1.3 MDa). rRNA and r-proteins 
are unequally divided between a small (40S, MW≈1.2 MDa) and a large (60S, 
MW≈2.0 MDa) ribosomal subunit (Spahn et al. 2001; Ben-Shem et al. 2011). 
Small ribosomal subunit ensures recognition of correct start codon during initia-
tion of translation and selection of correct aminoacyl-tRNAs during elongation 
of translation (reviewed in Dever et al. 2018; Merrick & Pavitt 2018). Large 
ribosomal subunit catalyzes formation of peptide bond and stimulates hydro-
lysis of factor-bound GTP molecules (reviewed in Dever et al. 2016; Dever et 
al. 2018). The interlinked rotation of ribosomal subunits allows translocation of 
tRNA and mRNA molecules through the ribosome (Frank & Agrawal 2000; 
Behrmann et al. 2015). The three-dimensional shapes of both subunits are 
mainly defined by folding of rRNAs into tertiary structures. Folding of rRNAs 
is similar in all domains of life, regardless of extensive phylogenetic variations 
in the primary sequences and lengths of rRNAs (Spahn et al. 2001; Yusupov et 
al. 2001; Noller 2005; Ben-Shem et al. 2011; Greber et al. 2012; Anger et al. 
2013; Armache et al. 2013; Quast et al. 2013; Cole et al. 2014). High resolution 
atomic models of ribosomes revealed that rRNA molecules serve as a frame-
work for binding of r-proteins and vice versa r-proteins stabilize tertiary struc-
tures of rRNAs (Klein et al. 2004; Ben-Shem et al. 2011; Anger et al. 2013; 
Behrmann et al. 2015; Khatter et al. 2015). R-proteins are among the smallest 
cellular proteins: in budding yeast ribosome their length varies from 25 aa 
residues in eL41 up to 387 aa residues in uL3 (Planta & Mager 1998; Warringer 
& Blomberg 2006). R-proteins possess high isoelectric point and net positive 
charge compared to non-ribosomal proteins (Kaltschmidt & Wittmann 1970; 
Kaltschmidt 1971). In addition, r-proteins exhibit charge segregation, where 
positively charged regions of proteins interact with negatively charged rRNA 
residues and negatively charged regions of proteins are exposed to the solvent 
(Klein et al. 2004; Fedyukina et al. 2014). Charge segregation ensures tight 
binding of r-proteins to rRNA, which supports structure of ribosome (Klein et 
al. 2004; Fedyukina et al. 2014). 

 
 

1.1.1. Ribosomal subunits of the budding yeast ribosome 

Small ribosomal subunit of budding yeast contains 18S rRNA (1800 nt, 
MW≈0.65 MDa) and 33 r-proteins (total MW≈0.55 MDa) (Planta & Mager 
1998; Spahn et al. 2001; Ben-Shem et al. 2011; Ban et al. 2014). The secondary 
structure of 18S rRNA is sectioned into five domains: 5’, central, 3’major, 
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3’minor and recently defined central domain A (Gulen et al. 2016). These 
domains, with assistance from r-proteins, fold into nine distinguishable tertiary 
domains: head, beak, neck, platform, shoulder, body, right foot, left foot and 
penultimate stem (helix 44) (Figure 1) (Spahn et al. 2001). Such autonomous 
domain organization allows high degree of movements, exemplified by 
swiveling of the head domain, which is promoted by the flexible neck domain. 
During initiation of translation, small ribosomal subunit serves as a binding 
platform for initiation factors, which drives recruitment of mRNA and delivery 
of Met-tRNAi

Met to start codon (reviewed in Merrick & Pavitt 2018). mRNA 
enters the small subunit between the beak and the shoulder domains, mRNA 
exit site is located between the head and the platform domains (Figure 1). 
Helices 18 and 34 form the latch that regulates entry of mRNA into the mRNA 
channel between the head and the body domains (Frank et al. 1995; Schluenzen 
et al. 2000; Yusupova et al. 2001; Spahn et al. 2004b; Hussain et al. 2014). 
Although the position of mRNA channel is known, the movement of mRNA 
through the small subunit is not still well understood. mRNA channel as well as 
A, P and E tRNA-binding sites are predominated by 18S rRNA helices assisted 
by r-proteins (Spahn et al. 2001; Ben-Shem et al. 2011). The key function of 
this subunit during elongation of translation is entrusted to its decoding center at 
the A site, where helices 18 (G577) and 44 (A1755, A1756) recognize correct 
interactions between mRNA codon and tRNA anticodon stem loops (Ogle et al. 
2001; Loveland et al. 2017). Decoding center is a target for binding of various 
antibiotics (Garreau de Loubresse et al. 2014; Polikanov et al. 2018). As an 
example, aminoglycosides such as neomycin distort spatial orientation of 
nucleotide residues A1755 and A1756, which leads to decreased accuracy of 
aminoacyl-tRNA selection (Garreau de Loubresse et al. 2014). However, 
inhibitory activity of neomycin is lower in eukaryotes compared to prokaryotes, 
since residues G1645 and A1745 prevent accommodation of aminoglycosides 
(Fan-Minogue & Bedwell 2008; Garreau de Loubresse et al. 2014).  
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Figure 1. Intersubunit view at the three-dimensional structure of the small subunit 
of the budding yeast ribosome. 18S rRNA and r-proteins are grey and black, 
respectively. rRNA helices and r-proteins that contribute to the mRNA channel/tRNA-
binding sites are yellow and magenta, respectively. Domains of the small subunit, 
mRNA entry/exit sites and approximate positions of the A, P and E sites are indicated. 
H, head; Be, beak; N, neck; P, platform; Sh, shoulder; B, body; RF, right foot; LF, left 
foot; h44, helix 44. PDB coordinates 3U5F and 3U5G (Ben-Shem et al, 2011) were 
rendered in PyMol. 
 
 
Large ribosomal subunit of budding yeast contains three rRNA molecules (total 
MW≈1.26 MDa: 5S rRNA (121 nt), 5.8S rRNA (158 nt) and 25S rRNA  
(3396 nt)) and 46 r-proteins (total MW≈0.76 MDa) (Planta & Mager 1998; 
Spahn et al. 2001; Ben-Shem et al. 2011; Ban et al. 2014). The shape of this 
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subunit is mainly defined by folding of 25S rRNA into seven (0, I-VI) tightly 
packed and interwoven domains, where recently defined domain 0 serves as a 
root for other six domains (Petrov et al. 2013; Petrov et al. 2014a). Functional 
centers and features of the large subunit are distributed between different 
domains (Figure 2). Domain II is an essential platform for the formation of P-
stalk, where r-proteins uL10, uL11, P1 and P2 are bound to helices 42–44 
(Spahn et al. 2001; Tchorzewski et al. 2003; Ben-Shem et al. 2011). As an 
element of GTPase-associated center, P-stalk recruits translation factors and 
stimulates hydrolysis of factor-bound GTP (Shimizu et al. 2002; Uchiumi et al. 
2002; Nomura et al. 2012; Baba et al. 2013). Sarcin-ricin loop, located in the 
helix 95 of the domain VI, is the second element of the GTPase associated 
center and has been shown to stabilize the binding of translation factors (Shi et 
al. 2012). At the opposite side of the large subunit resides L1-stalk, which is a 
flexible feature formed by r-protein uL1 and helices 75, 76 and 79 of the 
domain V. It is located near the E site and is involved in the translocation and 
release of deacylated tRNA (Spahn et al. 2001; Trabuco et al. 2010; Ben-Shem 
et al. 2011; Reblova et al. 2012; Mohan & Noller 2017). Like in the small 
subunit, A, P and E tRNA-binding sites of the large subunit are predominated 
by rRNA helices and additionally assisted by r-proteins. Peptidyl transferase 
center involves A and P sites, and is formed by helices 73, 74, 80–93 of domain 
V (Ben-Shem et al. 2011). Although r-proteins stabilize structure of this center, 
catalysis of the peptide bond formation relies entirely on the rRNA (Nissen et 
al. 2000). Peptidyl transferase center is targeted by numerous antibiotics that 
affect proper alignment of the aminoacyl-tRNA and peptidyl-tRNA in the 
peptidyl transferase center. As an example, anisomycin inhibits peptidyl trans-
ferase activity by competing with aminoacyl-tRNA for binding to the A-site 
cleft (A2820, C2821) (Garreau de Loubresse et al. 2014). Peptide exit tunnel 
extends from the peptidyl transferase center to the solvent side of the large 
subunit. Tunnel is formed by 5.8S rRNA and 25S rRNA domains 0, I, III and V, 
and thus, has an overall electronegative potential. In addition, tunnel wall is 
supported by r-proteins uL4, uL22, uL23, uL24, uL29 and eL39 (Ben-Shem et 
al. 2011; Wilson & Beckmann 2011). Peptide exit tunnel participates in 
regulation of proteins synthesis and folding. The rim around the tunnel exit 
serves as a site for binding of co-translationally acting chaperones, signal 
recognition particles and protein conducting channels (reviewed in Wilson & 
Beckmann 2011). 5.8S rRNA, evolved from the 5’ end of prokaryotic 23S 
rRNA, has been shown to play a role in translocation (Jacq 1981; Abou Elela et 
al. 1994; Abou Elela & Nazar 1997). Central protuberance, formed by 5S rRNA 
and r-proteins uL5 and uL18, mediates communication between all described 
functional centers of the large subunit and also between subunits (Bogdanov et 
al. 1995; Smith et al. 2001; Dinman 2005). 
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Figure 2. Intersubunit view at the three-dimensional structure of the large subunit 
of the budding yeast ribosome. 5S rRNA is red, 5.8S rRNA is orange, 25S rRNA is 
grey, r-proteins are black. Landmarks of the large subunit (L1 stalk; P stalk; CP, central 
protuberance) and approximate positions of the A, P and E sites are indicated. 25S 
rRNA helices that form L1 stalk are colored cyan. Sarcin-ricin loop is colored purple. 
25S rRNA helices and r-proteins that form P stalk are colored yellow and brown, 
respectively. Peptide exit tunnel is not shown, as it extends from the P site to the solvent 
side of the subunit. PDB coordinates 3U5H and 3U5I (Ben-Shem et al, 2011) were 
rendered in PyMol.  
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1.1.2. Eukaryote-specific features of the budding yeast ribosome 

Peptidyl transferase center, decoding center and tRNA binding sites are posi-
tioned in the common structural core, which is conserved across ribosomes of 
all life domains. Conserved core comprises ~4400 rRNA bases and ~3000 
amino acid residues (Ben-Shem et al. 2011; Melnikov et al. 2012; Melnikov et 
al. 2018). In addition to the core, eukaryotic ribosomes contain a set of archaea/ 
eukaryote-specific and eukaryote-specific moieties of rRNAs and r-proteins. 
Differences in mass of eukaryotic ribosomes (3.2 MDa in lower eukaryotes and 
4.3 MDa in higher eukaryotes) are attributed solely to the different lengths of 
eukaryote-specific parts (Armache et al. 2010b, a; Anger et al. 2013; Melnikov 
et al. 2018). Characteristic structural features of eukaryotic rRNAs are 
eukaryote-specific rRNA expansion segments – specific rRNA sequences 
absent in prokaryotic rRNA molecules (Gerbi 1986; Yokoyama & Suzuki 2008; 
Petrov et al. 2014b). Budding yeast ribosome contains 27 expansion segments 
(9 in the small and 18 in the large subunit), if compared to E. coli ribosome 
(Ben-Shem et al. 2011; Anger et al. 2013). In the small subunit, the largest 
cluster of expansion segments resides at the bottom of subunit as a part of the 
body, helix44, right and left foots. Other segments are located in the head and 
platform of the small subunit (Figure 3) (Ben-Shem et al. 2011). In the large 
ribosomal subunit, rRNA expansion segments encircle peptide exit tunnel and 
can be divided into two clusters (Figure 4) (Ben-Shem et al. 2011). The first 
cluster is formed at the P-stalk side of the subunit and also connected to the 5S 
rRNA. The second cluster is located close to the L1-stalk and involves 25S 
rRNA as well as 5.8S rRNA. Intriguingly, number and complexity of rRNA 
expansion segments varies between eukaryotic species (Armache et al. 2010a; 
Anger et al. 2013). As an example, there are 30 expansion segments in the 
human rRNA. Many of them are longer, if compared to yeast segments, and 
demonstrate flexible tentacle-like nature (Anger et al. 2013). Increase in the 
complexity of human rRNAs resulted in the formation of new rRNA-rRNA and 
rRNA-protein contacts, absent in the budding yeast ribosome (Anger et al. 
2013). Several studies have demonstrated/suggested the importance of 
eukaryote-specific rRNA segments for the ribosome assembly, interactions 
between subunits and binding of protein factors (Sweeney et al. 1994; Jeeninga 
et al. 1997; Gomez Ramos et al. 2016; Ramesh & Woolford 2016; Fujii et al. 
2018; Knorr et al. 2019). 
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Figure 3. Intersubunit view at the rRNA expansion segments of the small subunit 
of the budding yeast ribosome. 18S rRNA and r-proteins are grey and black, 
respectively. Domains of the small subunit and approximate positions of the A, P and E 
sites are indicated. H, head; Be, beak; P, platform; Sh, shoulder; B, body; RF, right foot; 
LF, left foot; h44, helix 44. rRNA expansion segments are colored purple/red/yellow 
and indicated. Coordinates and nomenclature of rRNA expansion segments are used as 
defined in Anger et al, 2013. PDB coordinates 3U5F and 3U5G (Ben-Shem et al, 2011) 
were rendered in PyMol. 
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Figure 4. Intersubunit view at the rRNA expansion segments of the large subunit 
of the budding yeast ribosome. 5S rRNA is red, 5.8S rRNA is orange, 25S rRNA is 
grey, r-proteins are black. Landmarks of the large subunit (L1 stalk; P stalk; CP, central 
protuberance) and approximate positions of the A, P and E sites are indicated. The first 
and the second cluster of rRNA expansion segments are indicated and colored yellow 
and purple, respectively. Coordinates and nomenclature of rRNA expansion segments 
are used as defined in Anger et al, 2013. PDB coordinates 3U5H and 3U5I (Ben-Shem 
et al, 2011) were rendered in PyMol.  
 
 
R-proteins of the budding yeast can be divided into three groups (Figures 5 and 
6) (Ban et al. 2014). 33 proteins (15 in the small subunit and 18 in the large 
subunit) are conserved across all domains of life. 35 proteins (12 in the small 
and 23 in the large subunit) are conserved between archaeal and eukaryotic 
ribosomes. Remaining 11 proteins (6 in the small and 5 in the large subunit) are 
specific only for the eukaryotic ribosomes (Ban et al. 2014). Budding yeast 
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ribosome misses eukaryote-specific protein eL28 due to possible gene loss 
(Lecompte et al. 2002). In the small ribosomal subunit, universally conserved 
proteins are mainly located in the head and body domains, where they contri-
bute to the mRNA channel and tRNA binding sites. Archaea/eukaryote-specific 
proteins reside at the bottom of the subunit, at the platform domain and at the 
top of the head. Eukaryote-specific proteins form beak and platform/body 
domains (Figure 5) (Ben-Shem et al. 2011). In the large ribosomal subunit, 
universally conserved proteins form central protuberance, tRNA binding sites 
and GTPase binding site. Archaea/eukaryote-specific and eukaryote-specific 
proteins follow the cluster organization of rRNA expansion segments (Figure 6) 
(Ben-Shem et al. 2011). 

Despite the small size, many r-proteins have several structural domains. 
Recent comparison of tertiary structures of universally conserved proteins from 
different organisms demonstrated that conserved moieties are generally located 
in globular domains (Melnikov et al. 2018). Eukaryote-specific moieties are 
found in non-globular N- and C-terminal extensions that frequently reach far 
from the globular domains (Klinge et al. 2011; Rabl et al. 2011; Melnikov et al. 
2018). Such structural organization of r-proteins allows to form the vast neuron-
like network of protein-protein interactions, where eukaryote-specific exten-
sions interconnect core functional centers and surface of the ribosome as well as 
small and large ribosomal subunits (Table 1, Figures 7 and 8) (Klinge et al. 
2012; Poirot & Timsit 2016). In the small ribosomal subunit of the budding 
yeast ribosome, all proteins have at least one protein interaction partner, most 
proteins interact with 2–3 partners. (Table 1, Figure 7) (Ben-Shem et al. 2011; 
Poirot & Timsit 2016). In the large ribosomal subunit, only 5 r-proteins do not 
form any intrasubunit protein-protein interactions, others mostly interact with 
2–4 partners (Table 1, Figure 8) (Ben-Shem et al. 2011; Poirot & Timsit 2016). 
Therefore, eukaryote-specific extensions of r-proteins ensure stability of 
ribosome structure and provide communication between different ribosomal 
regions. They contribute to the functional centers, guide tRNAs and mRNAs 
through the ribosome, provide binding of chaperones and translation factors 
(reviewed in Ghosh & Komar 2015). In addition, eukaryote-specific extensions 
play a role in folding of rRNA during ribosome assembly (reviewed in 
Konikkat & Woolford 2017). 
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Figure 5. Position of three groups of r-proteins in the small subunit of the budding 
yeast ribosome. rRNA is grey. Universally conserved proteins are black. Archaea/ 
eukaryote-specific proteins are magenta. Eukaryote-specific proteins are yellow. 
Domains of the small subunit and approximate positions of the A, P and E sites are 
indicated. H, head; Be, beak; P, platform; Sh, shoulder; B, body; RF, right foot; LF, left 
foot; h44, helix 44. Protein groups are according to Ban et al, 2014. PDB coordinates 
3U5F and 3U5G (Ben-Shem et al, 2011) were rendered in PyMol. 
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Figure 6. Position of three groups of r-proteins in the large subunit of the budding 
yeast ribosome. rRNA is grey. Conserved proteins are black. Archaea/eukaryote-
specific proteins are magenta. Eukaryote-specific proteins are yellow. Landmarks of the 
large subunit (L1 stalk; P stalk; CP, central protuberance) and approximate positions of 
the A, P and E sites are indicated. Protein groups are according to Ban et al, 2014. PDB 
coordinates 3U5H and 3U5I (Ben-Shem et al, 2011) were rendered in PyMol. 
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Table 1. Number of intrasubunit protein partners for r-proteins in the budding 
yeast ribosome. “Partners” – number of intrasubunit protein partners. “BAE” – uni-
versally conserved proteins. “AE” – archaea/eukaryote-specific proteins. “E” – 
eukaryote-specific proteins. Protein names are according to the new nomenclature from 
Ban et al, 2014. Proteins that form intersubunit bridges (red) are according to Ben-Shem 
et al, 2011. Table is adapted with modifications from Poirot and Timsit, 2016. 

Subunit Partners BAE AE E 
40S 1 uS19 eS8, eS28, eS31  

 2 uS11 eS1, eS6, eS17, eS19, 
eS30 

eS7, eS12, 
eS26 

 3 
uS2, uS7, uS9, 

uS10, uS12, uS13, 
uS14 

eS10, eS24, 
eS25, eS27 eS10 

 4 uS15 eS4 eS21 

 5 uS3, uS4, 
uS5, uS17   

 8 uS8   

60S 0  eL19, eL31, 
eL38, eL41 eL22 

 1 uL22 eL40 eL29 
 2 uL5, uL14, uL24, eL24, eL43  

 3 uL2, uL3, uL16, 
uL18, uL23, 

eL30, eL32, eL34, 
eL37, eL42 eL6, eL27 

 4 uL6, uL29, uL30, eL14, eL18, 
eL33, eL39 eL36 

 5 uL13, uL15 eL8  
 6  eL13, eL20, eL21  
 7  eL15  
 8 uL4   
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Figure 7. Network of intrasubunit protein-protein interactions in the small subunit 
of the budding yeast ribosome. Universally conserved proteins are grey, archaea/ 
eukaryote-specific proteins are purple, eukaryote-specific proteins are yellow. Approxi-
mate positions of the small subunit domains are indicated. Intersubunit bridges are 
incorporated into network as a red circles. Protein names are according to the new 
nomenclature from Ban et al, 2014. Proteins that form intersubunit bridges are 
according to Ben-Shem et al, 2011. Figure is adapted with modifications from Poirot 
and Timsit, 2016.  
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Figure 8. Network of intrasubunit protein-protein interactions in the large subunit 
of the budding yeast ribosome. Universally conserved proteins are grey, archaea/ 
eukaryote-specific proteins are magenta and eukaryote-specific proteins are yellow. 
Approximate positions of the large subunit landmarks are indicated. Intersubunit 
bridges are incorporated into network as a red circles. Protein names are according to 
the new nomenclature from Ban et al, 2014. Proteins that form intersubunit bridges are 
according to Ben-Shem et al, 2011. Figure is adapted with modifications from Poirot 
and Timsit, 2016.  
 
 

1.1.3. Intersubunit bridges of the budding yeast ribosome 

The overall conformation and functionality of ribosome depends not only on the 
intrasubunit interactions, but also on the communication between ribosomal 
subunits provided by intersubunit contacts called bridges. High-resolution 
atomic model of the budding yeast ribosome describes 17 intersubunit bridges, 
comprising three types of interactions: rRNA-rRNA, protein-rRNA and protein-
protein (Tables 2, 3 and 4, Figures 9 and 10) (Ben-Shem et al. 2011). rRNA-
rRNA type interactions are suggested to be the most stable and unchanged 
during protein synthesis. These are located in the relatively static regions at the 
functional core of ribosome (Figures 9 and 10) (Gao et al. 2003; Ben-Shem et 
al. 2011). Protein-rRNA and especially protein-protein interactions are more 

P stalk 
side 

Central protuberance 
L1 stalk 

side 
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dynamic than rRNA-rRNA interactions. Consequently, these interactions are 
found peripherally, where extensive relative movements of ribosomal subunits 
occur (Figures 9 and 10) (Gao et al. 2003; Ben-Shem et al. 2011).  

Comparison of available structural models of bacterial and eukaryotic 
ribosomes resulted in division of intersubunit bridges into two groups. Twelve 
intersubunit bridges are conserved, as they have very similar composition and 
location in ribosomes of both Bacteria and Eukarya (Spahn et al. 2001; 
Yusupov et al. 2001; Ben-Shem et al. 2011). Conserved bridges are positioned 
in the conserved structural core (Tables 2 and 3, Figures 9 and 10). At the date, 
the roles of conserved intersubunit bridges were extensively studied in the 
bacterial ribosome and to lesser extent in the budding yeast ribosome (described 
below). Six conserved bridges (B2a, B2b, B2c, B3 and B7a) are solely formed 
by rRNA-rRNA interactions between domain IV of 25S rRNA (helices 62, 64, 
66, 67, 68, 69, 70 and 71) and 18S rRNA (helices 23, 24, 44 and 45) (Table 2, 
Figures 9 and 10). These bridges do not act independently, but overlap and form 
an extensive area of rRNA-rRNA interactions that follows the pathway of 
tRNAs and mRNA through the ribosome (Figures 9 and 10) (Ben-Shem et al. 
2011). Structural studies of bacterial ribosomes suggest rRNA-rRNA bridges 
ensure association of ribosomal subunits, but also allow their rotation (Gao et 
al. 2003). Importance of these bridges for the ribosome processivity (B2a), 
fidelity of decoding (B3) and translocation (B7a) has been shown (Kipper et al. 
2009; Sun et al. 2011; Liu & Fredrick 2013).  
 
 
Table 2. Components of the rRNA-rRNA intersubunit bridges in the budding yeast 
ribosome. Helices of 18S and 25S rRNAs that form intersubunit bridges in pre- and 
post-translocational conformations of ribosome are shown. “№” – number of intersubnit 
rRNA-rRNA contacts. Bridge nomenclature and interactions are from Ben-Shem et al, 
2011. 

 Pre-translocational   Post-translocational 

Bridge 18S 
rRNA  

25S 
rRNA  

№  18S 
rRNA 

25S 
rRNA 

№ 

B2a h24 
h44 
h45 

H69 
H69 
H69 

2 
11 
2 

 h24 
h44 
h45 

H69 
H69 
H69 

2 
11 
2 

B2b h24 
h24 
h45 

H68 
H70 
H71 

1 
2 
3 

 h24 
h45 
h45 

H68 
H70 
H71 

2 
1 
2 

B2c h24 
h24 

H66 
H67 

1 
3 

 h24 H67 2 

B3 h44 
h44 
h44 

H62 
H64 
H70 

1 
2 

14 

 h44 
h44 
h44 

H62 
H64 
H70 

1 
3 

14 
B7a h23 H68 3  h23 H68 2 
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Six conserved bridges (B1a, B4, B5, B6, B7b/c and B8) are formed by protein-
rRNA interactions that are assisted by several rRNA-rRNA and protein-protein 
contacts (Table 3, Figures 9 and 10). Conserved bridge B1b/c is the one and 
only solely protein-protein bridge (Ben-Shem et al. 2011). Bridges B1a and 
B1b/c are distinctive as they form a cluster of interactions between the central 
protuberance of the large subunit and the head domain of the small subunit 
(Table 3, Figures 9 and 10). Bridge B1a connects a highly flexible A-site finger 
(25S rRNA helix 38) of the large subunit with helix 33 and protein uS19 of the 
small subunit. B1b/c is a protein-protein type intersubunit bridge formed 
between protein uL5 of the large subunit and proteins uS13 and uS19 of the 
small subunit. Position of the B1a bridge allows large conformational changes 
in this bridges during swivel of the head domain. As a result, bridge B1a is 
present in the pre-translocational, but not in the post-translocational confor-
mation (Ben-Shem et al. 2011). In addition, components of B1a and B1b/c are 
directly connected to the tRNA binding sites and mRNA channel. In the small 
ribosomal subunit, C-terminal extension of uS13 interacts with P-site tRNA, 
while C-terminal extension of uS19 interacts with A-site tRNA and mRNA 
(Bulygin et al. 2005; Armache et al. 2010b; Khairulina et al. 2010; Budkevich 
et al. 2011). In the large ribosomal subunit, protein uL5 interacts with P-site 
tRNA and factor eEF3 (Triana-Alonso et al. 1995; Spahn et al. 2001; Andersen 
et al. 2006; Svidritskiy et al. 2014). A-site finger interacts with A-site tRNA 
(Spahn et al. 2001; Budkevich et al. 2011; Behrmann et al. 2015). Such position 
of bridges B1a and B1b/c allows them to transmit information from the 
decoding center of the small subunit to the large subunit and to be involved in 
translocation (Sergiev et al. 2005; Komoda et al. 2006; Rakauskaite & Dinman 
2006; Rhodin & Dinman 2011; Liu & Fredrick 2013; Bowen et al. 2015). 
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Figure 9. Position of the intersubunit bridges in the small subunit of the budding 
yeast ribosome. rRNA and r-proteins are white spheres. Conserved bridges that contain 
only rRNA-rRNA contacts are blue. Conserved bridges that comprise protein compo-
nent are orange. Eukaryote-specific bridges are magenta. Approximate positions of the 
A, P and E sites are indicated. Bridge nomenclature and coordinates are from Ben-Shem 
et al, 2011. PDB coordinates 3U5F and 3U5G (Ben-Shem et al, 2011) were rendered in 
PyMol. 
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Figure 10. Position of the intersubunit bridges in the large subunit of the budding 
yeast ribosome. rRNA and r-proteins are grey spheres. Conserved bridges that contain 
only rRNA-rRNA contacts are blue. Conserved bridges that comprise protein compo-
nent are orange. Eukaryote-specific bridges are magenta. Landmarks of the large sub-
unit (L1 stalk; P stalk; CP, central protuberance) and approximate positions of the A, P 
and E sites are indicated. Bridge nomenclature and coordinates are from Ben-Shem et 
al, 2011. PDB coordinates 3U5H and 3U5I (Ben-Shem et al, 2011) were rendered in 
PyMol. 
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Table 3. Components of the protein-containing conserved intersubunit bridges in 
the budding yeast ribosome. Components of intersubunit bridges in small (40S) and 
large (60S) subunits in pre- and post-translocational conformations of ribosome are 
shown. “№” – number of intersubunit contacts. Protein names are according to the new 
nomenclature from Ban et al, 2014. Bridge nomenclature and interactions are from Ben-
Shem et al, 2011. 

 Pre-translocational  Post-translocational 
Bridge 40S 60S №  40S 60S № 

B1a h33 
uS19 

H38 
H38 

1 
2 

 - - - 

B1b/c uS13 
uS19 

uL5 
uL5 

2 
6 

 uS13 
uS19 

uL5 
uL5 

2 
5 

B4 h20 
uS15 
uS15 

H34 
H34 
eL30 

6 
1 
1 

 h20 
uS15 

H34 
H34 

7 
5 

B5 h44 
h14 
h44 

H62 
uL14 
uL14 

1 
1 
4 

 h44 
h14 
h44 

H62 
uL14 
uL14 

2 
1 
4 

B6 h44 eL24 2  h44 eL24 2 
B7b/c h24 

h24 
uL2 
eL43 

6 
1 

 h24 
h24 
h27 

uL2 
eL43 
eL43 

4 
4 
1 

B8 h14 uL14 4  h14 uL14 5 
 
Table 4. Components of the eukaryote-specific intersubunit bridges in the budding 
yeast ribosome. Components of intersubunit bridges in small (40S) and large (60S) sub-
units in pre- and post-translocational conformation of ribosome are shown. “№” – number 
of intersubunit contacts. Protein names are according to the new nomenclature from Ban 
et al, 2014. Bridge nomenclature and interactions are from Ben-Shem et al, 2011. 

 Pre-translocational  Post-translocational 
Bridge 40S 60S №  40S 60S № 

eB8 eS1 ES31L 2  eS1 
eS1 

ES31L 
eL43 

2 
2 

eB11 eS8 
eS8 

H63 
ES41L 

1 
6 

 eS8 ES41L 5 

eB12 ES6S 
uS17 

eL19 
eL19 

13 
3 

 ES6S 
eS7 

eL19 
eL19 

14 
2 

eB13 eS6 
eS6 

uL3 
eL24 

3 
8 

 h6 
ES3S 

ES12S 
eS6 
eS6 

uL3 
eL24 
eL24 
uL3 
eL24 

1 
6 
3 
2 

11 
eB14 h27 

h44 
h45 

eL41 
eL41 
eL41 

10 
4 

14 

 h27 
h44 
h45 

eL41 
eL41 
eL41 

10 
5 

14 
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Bridges B5, B6 and B8 form a cluster of intersubunit bridges near the binding 
sites for translational GTPases (Table 3, Figures 9 and 10) (Ben-Shem et al. 
2011). In both pre- and post-translocational states, bridges B5 and B8 are 
formed by interactions between protein uL14 of the large subunit and helices 44 
and/or 14 of the small subunit. Third bridge of this cluster, B6, is formed 
between protein eL24 of the large subunit and helix 44 of the small subunit 
(Table 3) Therefore, helix 44 links all three bridges of this cluster with rRNA-
rRNA bridges B2a and B3 (Tables 2 and 3). Protein uL14 locates closely to the 
binding sites of eEF2 and eIF5B and directly interacts with eRF1, eRF3, eIF6 
and ABCE1/Rli1 (Gartmann et al. 2010; Klinge et al. 2011; Becker et al. 2012; 
Taylor et al. 2012; Fernandez et al. 2013; Preis et al. 2014; Kiosze-Becker et al. 
2016; Pellegrino et al. 2018). Protein eL24 forms eukaryote-specific bridge 
eB13, which is discussed below (Ben-Shem et al. 2011). In the bacterial ribo-
some, bridges B5, B6 and B8 has been shown to regulate fidelity of decoding 
(Sun et al. 2011). Additionally, B8 bridge regulates the rate of translocation 
(McClory et al. 2010; Fagan et al. 2013; Liu & Fredrick 2013).  

Bridges B4 and B7b/c connect body/platform of the small subunit with L1 
stalk side of the large subunit (Table 3, Figures 9 and 10) (Ben-Shem et al. 
2011). B4 is formed by interactions between helix 34 and protein eL30 of the 
large subunit and helix 20 and protein uS15 of the small subunit. Bridge B7b/c 
is formed by interactions of proteins uL2 and eL43 of the large ribosomal 
subunit with helix 24 of the small ribosomal subunit (Table 3). Interestingly, 
components of bridges B4 and B7b/c are tightly connected to other intersubunit 
bridges (Figures 7 and 8). Protein eL43 is also involved in the formation of 
bridge eB8 (Figure 8). Helix 24 of the 18S rRNA links bridge B7b/c with 
rRNA-rRNA bridges B2a, B2b and B2c (Tables 2 and 3). Protein uS15 interacts 
with protein eS7, which is a component of the eB12 bridge (Figure 7). As a part 
of such extensively interconnected intersubunit contacts, bridges B4 and B7b/c 
regulate rotational state of ribosome (Liu & Fredrick 2013; Musalgaonkar et al. 
2014; Bock et al. 2015).  

Five out of seventeen intersubunit bridges in the budding yeast ribosome are 
specific for eukaryotic ribosomes (Figures 9 and 10, Table 4). These bridges are 
predominated by eukaryote-specific moieties of rRNAs and r-proteins. Only one 
of the eukaryote-specific bridges, eB14, locates in the core of the ribosome 
(Figures 9 and 10). The rest four bridges (eB8, eB11, eB12 and eB13) are 
positioned at the peripheral regions, where relative motion of ribosomal 
subunits is most pronounced (Figures 9 and 10) (Ben-Shem et al. 2011). 
Peripheral eukaryote-specific bridges are mainly formed by protein-rRNA 
interactions, and to a lesser extent by protein-protein interactions. Therefore, 
these bridges probably support the movement of ribosomal subunits (Ben-Shem 
et al. 2011; Behrmann et al. 2015). The functional importance of eukaryote-
specific bridges remains largely obscure due to limited number of studies, if 
compare to knowledge about conserved bridges. The role of eB8 and eB11 or 
their components in the protein synthesis is solely derived from structural 
studies of eukaryotic ribosomes, as no functional studies were yet conducted. 
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The role of eB14 was assessed in two published studies utilizing deletion of 
protein eL41 (Dresios et al. 2003; Meskauskas et al. 2003). In this thesis, the 
importance of bridge eB12 and eB13 for different aspects of ribosome 
functionality is demonstrated (chapters 2.1.1. and 2.2.1.) (References I and II). 

Bridge eB8 is a small bridge at the E site side of the ribosome (Figures 9 and 
10) (Ben-Shem et al. 2011). In both translocational states this bridge comprises 
two contacts between eukaryote-specific rRNA segment ES31L of the large 
subunit and protein eS1 of the small subunit. In the post-translocational con-
formation, these contacts are assisted by two additional interactions between 
proteins eL43 and eS1 (Table 4). Both large subunit components of this bridge, 
protein eL43 and 25S rRNA segment ES31L, interact with each other and are 
also interconnected with the L1 stalk through the protein eL8. Protein eL43 also 
links bridge eB8 with bridges B4 and B7b/c (Figure 8). Small subunit 
component of the eB8 bridge, protein eS1, locates on the edge of the platform 
domain, but its extension reaches the E-site of the small subunit. This protein 
interacts with components of the mRNA channel – 18S rRNA helix 26 and 
proteins eS26 and uS11 (Figure 7) (Ben-Shem et al. 2011). Crosslink studies of 
the mammalian ribosomes showed that helix 26, as well as both eS26 and uS11, 
interact with mRNA molecules in the mRNA channel (Demeshkina et al. 2003; 
Graifer et al. 2004; Pisarev et al. 2008). It is possible that such position of eB8 
allows this bridge to regulate translocation events at the E site side of the 
ribosome (Figure 9 and 10). 

Bridge eB11 is formed by interactions between 25S rRNA expansion 
segment ES41L of the large subunit and protein eS8 of the small subunit. In the 
pre-translocational conformation, this bridge has one additional contact of helix 
63 of 25S rRNA with protein eS8 (Table 4, Figure 9 and 10). Segment ES41L is 
a part of the second cluster of eukaryote-specific segments that extend to L1 
stalk (Figure 4). Protein eS8 locates at the left foot of the small subunit, where it 
interacts with expansion segment ES3S of the 18S rRNA (Figure 3). This makes 
eS8 a part of the eukaryote-specific cluster at the bottom of the small subunit. 
Protein eS8 also interacts with protein uS17, which is the component of the 
eukaryote-specific bridge eB12 (Figure 7). Helix 63 of 25S rRNA interacts with 
other component of the eB12 bridge - protein eL19 (Ben-Shem et al. 2011). 
Therefore, eB11 bridge is interconnected with bridge eB12.  

Bridge eB12 is distinctive by the long C-terminal α-helix of protein eL19 
that extends from the E site side of the large subunit (Figure 10). Helix interacts 
with 18S rRNA expansion segment ES6S of the small ribosomal subunit (Table 
4, Figure 9). Interestingly, the N-terminal domain and the middle region of 
eL19 do not interact with any r-protein of the large ribosomal subunit, but are 
buried within the 25S rRNA. Segment ES6S belongs to the largest cluster of 
eukaryote-specific expansion segments of the 18S rRNA (Figure 3). Structural 
studies have shown that eB12 bridge is dynamical. In the pre-translocational 
state, additional interactions between C-terminal α-helix of eL19 and uS17 
occur. In the post-translocational state, interactions with uS17 are replaced by 
interactions with eS7 (Table 4) (Ben-Shem et al. 2011) Proteins uS17 and eS7 
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interact with uS8, which has a largest number of contacts with other small 
subunit proteins (Figure 7). Therefore, all three small subunit components of the 
eB12 bridge are parts of protein-protein interaction network that may transduce 
information from the periphery of the small subunit to its central part. This 
network also interconnects eB12 with bridges eB11 (interaction of uS17 with 
eS8) and B4 (interaction of uS17 with uS15) (Figure 7). Functions of the eB12 
bridge and its main component, protein eL19, are further discussed in chapter 
2.1. 

By analogy to eB12, bridge eB13 is recognizable by the long C-terminal α-
helix and the linker region of protein eL24 that extend from the A-site side of 
large subunit (Figure 10).  Bulk of the eB13 bridge is formed by interactions of 
α-helix and linker of eL19 with protein eS6 of the small ribosomal subunit. 
These contacts are assisted by interactions between uL3 and eS6 (Table 4, 
Figures 9 and 10). In the post-translocational state additional contacts of eL24 
with 18S rRNA (h6, ES3S and ES12S) occur (Table 4). Unfortunately, possible 
interactions of eL24 with 18S rRNA are not visible in the pre-translocational 
state due to incomplete structure of the eL24 (Ben-Shem et al. 2011). The N-
terminal domain of the eL24 resides on the surface of the large subunit and 
interacts with proteins uL3 and uL14 (Figure 8). Collectively, interconnected 
proteins uL3, uL14 and eL24 form a structural cluster that gives rise to the 
interconnected intersubunit bridges B5, B6, B8 and eB13 (Figure 8). Functions 
of the eB13 bridge and its main component, protein eL24, are discussed in 
chapter 2.2. 

Bridge eB14 is an exceptional eukaryote-specific bridge, as it is located at 
the core of the ribosome (Table 4, Figures 9 and 10) (Ben-Shem et al. 2011). 
This bridge is formed by extensive interactions of the smallest r-protein eL41 of 
the large ribosomal subunit with conserved 18S rRNA helices 27, 44 and 45 
(Table 4). Interestingly, while only two aa residues of the eL41 interact with 
large ribosomal subunit, 18 aa residues out of 25 aa residues in the eL41 interact 
with small subunit. Due to its position at the core of the ribosome near the helix 
69, bridge eB14 may cooperate with rRNA-rRNA bridges B2a, B2b and B3 
(Tables 2 and 4, Figures 9 and 10). This bridge may participate in fine-tuning of 
ribosome functionality, as deletion of eL41 results in mildly decreased peptidyl 
transferase activity and fidelity of translation (Dresios et al. 2003; Meskauskas 
et al. 2003). 

Altogether, structural studies indicate that all bridges are interconnected 
through the network of interactions, which involves not only r-proteins and 
rRNAs, but also tRNAs, mRNA and translation factors. Functional studies 
demonstrate that integrity of intersubunit bridges is important for the func-
tionality of ribosomes. 
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1.2. Assembly of the budding yeast ribosome 
Assembly of the yeast ribosome is a nontrivial task, as it requires coordinate 
expression of ~150 rRNA genes and 137 genes encoding for r-proteins, 
accompanied by action of ~76 small nucleolar ribonucleoproteins (snoRNP) and 
~200 assembly factors (reviewed in Konikkat & Woolford 2017; Chaker-
Margot 2018; Klinge & Woolford 2019). It is estimated that exponentially 
growing budding yeast cell produces 2000 ribosomes per minute, which makes 
ribosome assembly an extremely fast, energy consuming and thereby critical for 
cellular homeostasis process (Kief & Warner 1981; Warner 1999; Strunk & 
Karbstein 2009). Assembly starts in the nucleolus, where transcription of 35S 
precursor rRNA (pre-rRNA) by polymerase I occurs (Miller & Beatty 1969; 
Neyer et al. 2016). 35S pre-rRNA contains two external transcribed spacers 
(5’ETS and 3’ETS), two internal transcribed spacers (ITS1 and ITS2) and 
sequences for 18S rRNA, 5.8S rRNA and 25S rRNA (Figure 11) (reviewed in 
Konikkat & Woolford 2017; Klinge & Woolford 2019). In parallel, polymerase 
III transcribes 5S rRNA (Dieci et al. 2007; Han et al. 2018). During assembly, 
pre-rRNAs undergo hierarchical processing, folding, chemical modification and 
assembly with r-proteins and assembly factors (reviewed in Fernandez-Pevida 
et al. 2015; Henras et al. 2015). Assembly machinery proceeds through the 
subsequent nucleolar, nucleoplasmic and cytoplasmic steps to result in mature 
small and large ribosomal subunits (Figure 11). R-proteins that form 
intersubunit bridges are also involved in assembly of ribosomal subunits, as 
they coordinate folding of rRNAs and binding of numerous assembly factors 
and other r-proteins.    
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Figure 11. The assembly pathways of small and large subunits of the budding yeast 

ribosome. Regions and cleavage sites of 35S pre-rRNA are shown. Domains of 18S 

rRNA (5’; C, central; 3’M, 3’ major; 3’m, 3’ minor) and 25S rRNA (I-VI) are indicated. 

Domain A of the 18S rRNA and domain 0 of the 25S rRNA are not shown as they are 

specific for the secondary and tertiary structures of rRNAs.  Pre-ribosomal particles and 

their rRNA content are shown. Pre-40S and pre-60S particles are light and dark grey, 

respectively. Mature 40S and 60S subunits are light and dark green, respectively. Dotted 

5S ring indicates not fully assembled 5S RNP. Filled 5S ring indicates stably associated 

5S RNP. 
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1.2.1. Assembly of the small ribosomal subunit 

Initial assembly of the small ribosomal subunit occurs co-transcriptionally in 
the nucleolus while 5’ETS, 18S rRNA and ITS1 of 35S pre-rRNA are 
transcribed. These regions are progressively packed into the 90S pre-ribosomal 
particle with a molecular weight of ~5 MDa (Figure 11) (Dragon et al. 2002; 
Osheim et al. 2004; Perez-Fernandez et al. 2007; Perez-Fernandez et al. 2011; 
Chaker-Margot et al. 2015; Zhang et al. 2016). About 40 % of this mass is 
attributed to the 5’ETS particle, which is generated by the large subcomplexes 
UtpA, UtpB and U3 snoRNP along with multiple factors that are bound to the 
5’ETS region (Chaker-Margot et al. 2015; Sun et al. 2017). Structural studies 
have demonstrated that domains of 18S rRNA in the 90S pre-ribosomal 
particles are already folded into native-like structures (Kornprobst et al. 2016; 
Cheng et al. 2017; Sun et al. 2017). Domains are associated with 19 r-proteins 
that predominantly adopt mature conformations: 8 proteins are in the 5’ domain, 
6 proteins are in the central domain, 5 proteins are in the 3’ major domain (Figure 
12) (Sun et al. 2017). Six r-proteins that form intersubunit bridges (eS1, eS6, eS7, 
eS8, uS15 and uS17) are already associated at this stage (Sun et al. 2017). 
Nonetheless, 18S rRNA is not yet fully packed as rRNA domains are still 
organized into independent structures covered by assembly factors (Kornprobst et 
al. 2016; Barandun et al. 2017; Cheng et al. 2017; Sun et al. 2017). 

To form pre-40S ribosomal particles, 35S pre-rRNA is cleaved at the A2, 
which in rapidly growing yeast cells occurs co-transcriptionally once RNA 
polymerase I has reached ~1.2–1.5 kb downstream of that site (Osheim et al. 
2004; Kos & Tollervey 2010; Axt et al. 2014). Cleavage results in the formation 
of 20S and 27SA2 pre- rRNAs and thereby separates pathways of small and 
large ribosomal subunit assembly (Figure 11). Other critical steps at this point 
include cleavage at the A1 site, removal and degradation of 5’ETS particle, 
formation of central pseudoknot, further folding of 18S rRNA domains, 
incorporation of r-proteins and assembly/export factors. During this processes, 
pre-40S ribosomal particle is transited from the nucleolus to the nucleoplasm 
and then subsequently exported to the cytoplasm, where domains of 18S rRNA 
are finally folded (reviewed in Chaker-Margot 2018). Assembly of the head 
domain includes incorporation of two r-proteins, uS13 and uS19, that eventually 
form intersubunit bridges B1a and B1b/c (Figure 12) (Sun et al. 2017). 
Interestingly, the latest steps of cytoplasmic maturation of pre-40S particles 
involve association with mature large ribosomal subunits, which is particularly 
promoted by eIF5B (Lebaron et al. 2012). Formation of such 80S-like 
complexes allows to quality control the translation competence of the pre-40S 
ribosomal particles (Lebaron et al. 2012; Strunk et al. 2012). Dissociation of 
80S-like complexes triggers cleavage of the 20S pre-rRNA at the D site and 
dissociation of last assembly factors (Vanrobays et al. 2004; Lamanna & 
Karbstein 2009; Granneman et al. 2010; Lamanna & Karbstein 2011; Heuer et 
al. 2017b; Scaiola et al. 2018). Following that, newly made mature 40S subunits 
are ready to enter the translation pool.   
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Figure 12. Hierarchical assembly of r-proteins in the small subunit of the budding 
yeast ribosome. rRNA is colored grey. Landmarks of the small subunit and appro-
ximate positions of the A, P and E sites are indicated. H, head; Be, beak; P, platform; 
Sh, shoulder; B, body; RF, right foot; LF, left foot; h44. R-proteins associated with 90S 
particles are colored purple/teal. R-proteins assembled during pre-40S maturation are 
colored yellow/orange. R-proteins involved in the formation of intersubunit bridges are 
shown as spheres and indicated. PDB coordinates 3U5F and 3U5G (Ben-Shem et al, 
2011) were rendered in PyMol.  
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1.2.2. Assembly of the large ribosomal subunit 

Assembly of the large ribosomal subunit is more complex than that of the small 
subunit (Figure 11). Initial folding of 5.8S rRNA and domains I and II of 25S 
rRNA occurs co-transcriptionally while A2 is not yet cleaved (Kater et al. 2017; 
Sanghai et al. 2018). To form 27SA2 pre-rRNA, nascent transcript is cleaved at 
the A2 and B0 sites. Following that, 3’ETS and ITS1 are removed, which yields 
27SB pre-rRNAs (Allmang & Tollervey 1998; Konikkat & Woolford 2017). To 
remove 3’ETS, 27SA2 pre-rRNA is processed by exonuclease Rex1 to give 
mature 3’end (Henras et al. 2015). ITS1 is removed in two alternative pathways 
(Figure 11). In the major pathway, 85-90 % of 27SA2 pre-rRNA is cleaved at 
the A3 site (27SA3 pre-rRNA) and then processed by exonucleases to form 
27SBS pre-rRNA (Chu et al. 1994; Henry et al. 1994; Lygerou et al. 1996; 
Johnson 1997; Oeffinger et al. 2009). In the minor pathway, 15–10 % of 27SA2 
pre-rRNA is cleaved at the BL site, yielding 27SBL pre-rRNA (Henry et al. 
1994; Konikkat & Woolford 2017). Recent cryo-EM studies of the earliest pre-
60S particles revealed that 27SB pre-rRNAs are already associated with 18 r-
proteins (Figure 13) (Kater et al. 2017). Eleven of these proteins, along with 13 
assembly factors, have been shown to be  required for the removal of ITS1 
(Lebreton et al. 2008; Poll et al. 2009; Gamalinda et al. 2014; Chen et al. 2017; 
Kater et al. 2017). Removal of ITS1 also depends on the presence of r-protein 
uL3, which later forms intersubunit bridge eB13 (Poll et al. 2009; Gamalinda et 
al. 2014). All these proteins assist in the initial folding of domains I and II and 
5.8S rRNA region of pre-rRNA at the solvent side of pre-60S subunit (Kater et 
al. 2017; Sanghai et al. 2018). Pre-rRNA is subsequently circularized by 
interactions between domains I, II and VI (Kater et al. 2017; Sanghai et al. 
2018; Zhou et al. 2019). Initially flexible domains III, IV and V fold towards 
the intersubunit side of the pre-60S subunit, giving rise to peptide exit tunnel 
and peptidyl transferase center (Kater et al. 2017; Sanghai et al. 2018). Final 
nucleolar step of assembly, cleavage of ITS2 at the C2 site, results in the 
formation of 7S and 25.5S pre-rRNAs (Schillewaert et al. 2012; Castle et al. 
2013; Gasse et al. 2015). At this step, pre-60S particles contain 30 r-proteins, 
including bridge-forming proteins uL14, eL19 and eL30 (Figure 13) (Kater et 
al. 2017). Eleven of these r-proteins, including uL14 and eL19, are important 
for the cleavage of 27SB pre-rRNA at the C2 site (Poll et al. 2009; Gamalinda 
et al. 2014). Cleavage triggers transit of pre-60S particles from the nucleolus to 
the nucleoplasm, where 7S and 25.5S pre-rRNAs are processed to 6S pre-rRNA 
and 25S rRNA (Mitchell et al. 1997; Geerlings et al. 2000; Gadal et al. 2002; 
Schillewaert et al. 2012; Gasse et al. 2015; Fromm et al. 2017). Processing of 
the 7S rRNA depends on the presence of two bridge-forming proteins, uL2 and 
eL43 (Poll et al. 2009; Gamalinda et al. 2014). At the nucleoplasmic step, 
formation of the mature central protuberance occurs - 5S RNP (r-proteins uL18 
and uL5 bound to 5S rRNA) rotates ~180o to its mature position (Leidig et al. 
2014; Madru et al. 2015; Wu et al. 2016). Although 5S RNP may be associated 
with the earliest nucleolar pre-60S particles, it becomes structurally stable only 
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in the nucleoplasm (Zhang et al. 2007; Calvino et al. 2015; Kater et al. 2017). 
Stabilization of the 5S RNP allows further assembly of peptidyl transferase 
center. At this point, pre-60S particles comprise in total 37 r-proteins (Figure 
13) (Kater et al. 2017) Final nuclear step of the assembly involves structural 
proofreading of peptide exit tunnel and peptidyl transferase center as well as 
maturation of P stalk (Bradatsch et al. 2012; Matsuo et al. 2014; Sarkar et al. 
2016; Wu et al. 2016; Klinge & Woolford 2019). Correct folding of functional 
centers ensures binding of export factors that shield negative charges of pre-60S 
particle while guiding it through the nuclear pore complexes (Stage-Zimmer-
mann et al. 2000; Oeffinger et al. 2004; Hackmann et al. 2011; Bradatsch et al. 
2012; Konikkat & Woolford 2017). Upon export to the cytoplasm, 6S pre-
rRNA is processed into mature 5.8S rRNA, which has been proposed to be a 
signal that export has completed (Thomson & Tollervey 2010). Processing of 
the 6S pre-rRNA and cytoplasmic release of assembly factors particularly 
depends on the presence of the bridge-forming protein uL5 (Gamalinda et al. 
2014). Cytoplasmic step involves assembly of the last 9 r-proteins, including 
bridge-forming eL24 and eL41, and final folding of P stalk (Figure 13) 
(Saveanu et al. 2003; Lo et al. 2009; Lo et al. 2010; Konikkat & Woolford 
2017; Ma et al. 2017). Cytoplasmic pre-60S particles progress into mature 
active 60S subunits once assembly factors complete quality control and 
dissociate from all functional centers (Panse & Johnson 2010; Karbstein 2013). 
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Figure 13. Hierarchical assembly of r-proteins in the large subunit of the budding 
yeast ribosome. rRNA molecules are colored grey. Landmarks of the large subunit (L1 
stalk; P stalk; CP, central protuberance) and approximate positions of the A, P and E 
sites are indicated. R-proteins associated with earliest determined pre-60S particles are 
colored black. R-proteins further assembled before transit from the nucleolus to the 
nucleoplasm are colored blue/teal. R-proteins assembled in the nucleoplasm are colored 
yellow/orange. R-proteins assembled in the cytoplasm are colored magenta. R-proteins 
involved in the formation of intersubunit bridges are shown as spheres and indicated. 
PDB coordinates 3U5H and 3U5I (Ben-Shem et al, 2011) were rendered in PyMol. 
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1.3. Eukaryotic translation 
Translation of mRNA, or protein synthesis, is a decoding of mRNA nucleotide 
sequence into protein amino acid sequence. Translation can be divided into four 
steps: initiation, elongation, termination and ribosome recycling. Interplay of 
these steps determines efficiency/quality of protein synthesis and protein 
folding. It has been estimated that exponentially growing yeast cell synthesizes 
about 13000 proteins per second (von der Haar 2008). Rapidity and accuracy of 
translation is provided, among other things, by proper binding of translation 
factors and communication between ribosomal subunits. All these, in turn, 
depend on the functionality of ribosomal intersubunit bridges.  
 
 

1.3.1. Translation initiation 

Canonical translation initiation depends on the presence of cap structure at the 
5’end and poly(A) tail at the 3’end of mRNA molecule. Cap-dependent initia-
tion of translation occurs through a scanning mechanism: where preinitiation 
complex moves along mRNA in a 3’ direction and selects for a start codon 
(reviewed in Kozak 1978; Merrick & Pavitt 2018).  

Initiation begins with the formation of ternary complex, where GTP-bound 
eIF2 is associated with Met-tRNAi

Met (Kapp & Lorsch 2004; Kapp et al. 2006). 
Ternary complex, additionally stabilized by eIF5, is subsequently docked to the 
small subunit, resulting in the formation of 43S preinitiation complex (Figure 
14 step 2) (Algire et al. 2002; Majumdar et al. 2003; Olsen et al. 2003; Jennings 
et al. 2017). Docking of ternary complex is allowed by the rotation of the head 
domain of small subunit, which is induced by the cooperative binding of factors 
eIF1 and eIF1A near the P and A sites, respectively (Figure 14 step 1). In 
addition, head rotation opens a latch in the mRNA entry channel required for 
the recruitment of mRNA (Passmore et al. 2007; Hussain et al. 2014; Llacer et 
al. 2015). Factors eIF1 and eIF1A keep Met-tRNAi

Met in the preferable for 
mRNA scanning incompletely bound Pout state (Saini et al. 2010; Hashem et al. 
2013; Zhang et al. 2015). Formation of the 43S preinitiation complex is also 
promoted by eIF3, the largest initiation factor. eIF3 embraces the solvent side of 
the small subunit near the mRNA entry and exit channels, and interacts with 
other initiation factors (Aylett et al. 2015; Llacer et al. 2015; Aitken et al. 2016; 
Simonetti et al. 2016). 

mRNA is loaded into the opened mRNA channel of the small subunit 
through the activation by eIF4F complex, which consists of four factors: eIF4A, 
eIF4B, eIF4E and eIF4G (Figure 14 step 3) (Gingras et al. 1999). Loading starts 
with recognition of the 5’ cap structure containing mRNAs by the cap-binding 
eIF4E (Sonenberg et al. 1978; O'Leary et al. 2013). Factor eIF4G interacts with 
eIF4E and poly(A) tail-bound Pab1. This interactions circularize mRNA to give 
a cap-to-tail closed loop (Kessler & Sachs 1998; Wells et al. 1998; Gross et al. 
2003; Archer et al. 2015). ATP-dependent RNA helicase eIF4A, stimulated by 
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eIF4B, unwinds mRNA secondary structures and eliminates mRNA-bound pro-
teins at the 5’ end of mRNA (Grifo et al. 1984; Abramson et al. 1987; Rozen et 
al. 1990). 48S preinitiation complex is formed through attachment of circula-
rized mRNA to the 43S preinitiation complex, which is mediated by factors 
eIF3, eIF5, eIF4B and eIF4G (Figure 14 step 4) (Dever et al. 2016). 

Preinitiation complex scans 5’ untranslated region of mRNA for the correct 
codon-anticodon interactions between mRNA and Met-tRNAi

Met (Figure 14 step 
5) (Cigan et al. 1988). Recognition of start codon by the Met-tRNAi

Met anti-
codon leads to an extensive rearrangements in the preinitiation complex, 
resulting if the fully engaged Pin state of Met-tRNAi

Met. Back-rotation of the 
head to the closed conformation fixates preinitiation complex at the start codon 
and prevents further scanning (Hussain et al. 2014; Llacer et al. 2015). Factors 
eIF1, GDP-bound eIF2 and eIF5 are released (Figure 14 step 6) (Kapp & 
Lorsch 2004; Unbehaun et al. 2004; Cheung et al. 2007; Jennings & Pavitt 
2010; Jennings et al. 2017). 

Joining of ribosomal subunits is promoted by the GTP-bound eIF5B, which 
is recruited after the release of eEF2 (Figure 14 step 7) (Olsen et al. 2003; Acker 
et al. 2009; Fernandez et al. 2013; Zheng et al. 2014; Yamamoto et al. 2014). 
Cryo-EM reconstructions of the mammalian 80S initiation complexes suggest 
that eIF5B-promoted subunit joining occurs with rolling of the small subunit 
(Yamamoto et al. 2014). Hydrolysis of the eIF5B-bound GTP is followed by 
back-rolling of the small subunit. This results in the unique P/pa tRNA position, 
where the anticodon of tRNA is in the P site and the 3’CCA end of tRNA is in 
the A site. Upon the dissociation of GDP-bound eIF5B, the 3’CCA end of 
tRNA is relocated to the elongation-competent P/P position (Yamamoto et al. 
2014). Following that, GDP-bound eIF5B and eEF1A dissociate from the 
ribosome (Figure 14 step 8) (Fringer et al. 2007; Acker et al. 2009). 
Interestingly, it has been proposed that factor eIF3 remains associated with 80S 
ribosome during the joining of ribosomal subunits and few elongation cycles 
after (reviewed in Valasek et al. 2017). Initiation of translation leads to the 
formation of 80S ribosome, where the anticodon of Met-tRNAi

Met in the P site is 
base-pared with the start codon of mRNA. At the same time, vacant A site is 
ready to accept aminoacyl-tRNA.   
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Figure 14. Model of the eukaryotic initiation of translation. Steps described in the 
main text are shown. 1 - binding of factors eIF1, eIF1A and eIF3. 2 – docking of ternary 
complex to the small subunit. 3 – activation of mRNA by eIF4F complex. 4 – 
attachment of activated mRNA to the 43S preinitiation complex. 5 – scanning. 6 – 
recognition of start codon, dissociation of factors eIF1, GDP-bound eIF2 and eIF5. 7 – 
joining of ribosomal subunits promoted by the GTP-bound eIF5B. 8 – dissociation of 
eIF1A and GDP-bound eIF5B. Timing of eIF4F and eIF3 release is not shown. Adapted 
with modifications from Merrick and Pavitt, 2018. 
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Joining of ribosomal subunits depends on the correct formation of intersubunit 
bridges. Unfortunately, kinetics of intersubunit bridge formation in the euka-
ryotic ribosomes is yet not known. Time-resolved chemical probing and cryo-
EM studies of bacterial subunit association in the absence of other ligands sug-
gested a multi-step process of bridge formation (Hennelly et al. 2005; Shaikh et 
al. 2014). It has been proposed that conserved central bridges such as B2a, B3 
and B7b are formed fist. Following that, formation of peripheral bridges B1a, 
B1b and B8 occurs. Lastly, bridges B2c, B4, B5 and B6 are formed (Shaikh et 
al. 2014). Alternatively, other time-resolved studies did not observe stepwise 
manner of the intersubunit bridge formation. These studies asserted that forma-
tion of intersubuni bridges is a one-step reaction completed within 60 ms 
(Nguyenle et al. 2006; Chen et al. 2015). In addition, recent study of bacterial 
subunit association implying 50S subunit and 30S initiation complex de-
monstrated that all intersubunit bridges are formed within 20–80 ms after 
mixing 50S and 30S initiation complex together (Kaledhonkar et al. 2018). 

Apart from the time-resolved studies, sedimentation analyses of ribosomal 
particles in sucrose density gradients have been extensively used in association 
studies of bacterial ribosomes. In vitro reassociation of purified ribosomal 
subunits in the absence of particular bridges demonstrated that bridges B1a, 
B1b, B2a, B2b, B2c, B3, B7a and B8 are important for the correct association 
of subunits (Cukras & Green 2005; Ali et al. 2006; Liiv & O'Connor 2006; 
Kipper et al. 2009). These results are consistent with chemical modification 
studies that indicate requirement of bridges B2a, B2b, B3, B4, B5 and B7a for 
the formation of ribosomal particles (Maiväli et al. 2002; Pulk et al. 2006). 
Finally, sedimentation analysis of cell extract from bridge mutants showed the 
importance of bridges B3, B5, B7b and B8 for the association of subunits (Liiv 
& O'Connor 2006; Sun et al. 2011). Therefore, all intersubunit bridges, except 
for the B6, has been shown to be involved in the efficient subunit joining. 
However, loss of single bridge rarely causes lethal phenotype, probably due to 
compensatory actions of intact bridges. Negative effect of compromised bridge 
can also be outdone by addition of trans-acting factors such as mRNA and 
tRNAs. In this thesis, the importance of eukaryote-specific bridge eB12 and 
eB13 for the association of budding yeast ribosomal subunit was demonstrated 
both in vivo and in vitro (discussed in chapters 2.1.1. and 2.2.1.). 

  
 

1.3.2. Translation elongation 

Elongation of translation is a cyclic process of peptide bond formation, where 
each round results in the attachment of an amino acid to the growing poly-
peptide chain (reviewed in Dever et al. 2016; Dever et al. 2018). Elongation 
round starts with delivery of aminoacyl-tRNA by the GTP-bound eEF1A to a 
sense codon in the empty A site (Figure 15, step 1). Upon formation of the 
correct codon-anticodon interactions, 18S rRNA nucleotide residue G577 of the 
decoding center latches codon-anticodon helix. Codon recognition results in the 
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movement of eEF1, so the GTPase domain of the eEF1A becomes positioned at 
the sarcin/ricin loop (Ogle et al. 2001; Ogle et al. 2002; Demeshkina et al. 2012; 
Budkevich et al. 2014; Shao et al. 2016; Loveland et al. 2017). Following GTP 
hydrolysis, GDP-bound eEF1A dissociates from ribosome and is recycled into 
GTP-bound form by the nucleotide exchange factor eEF1B (Gromadski et al. 
2007). Release of eEF1A allows proofreading of aminoacyl-tRNA – it is either 
accommodated to promote peptide bond synthesis or dissociates from ribosome 
(Figure 15, step 2). During accommodation, aminoacyl-tRNA is transferred 
from the A/T state to the A/A state, which allows acceptor arm of tRNA to 
reach peptidyl transferase center (Sanbonmatsu et al. 2005; Gromadski et al. 
2006; Geggier et al. 2010; Whitford et al. 2010; Caulfield & Devkota 2012). 
Interestingly, cryo-EM reconstruction of mammalian ribosomes demonstrated 
that accommodation of tRNA is coupled with rolling of the small subunit 
(Budkevich et al. 2014). Rolling results in the narrowing of the A site 
intersubunit region and opening of the E site intersubunit region. Consequently, 
rolling most notably affects peripheral bridges: B6, B8 and eB13 at the A site 
side and eB8 at the E site side (Budkevich et al. 2014). In general, intersubunit 
bridges ensure correct conformation of ribosome required for the efficient initial 
selection of aminoacyl-tRNA, hydrolysis of eEF1A-bound GTP and/or 
proofreading of aminoacyl-tRNA. Several functional studies of bacterial and 
yeast ribosomes support this possibility, demonstrating that bridges B1a, B1b/c, 
B2c, B3, B5, B6, B7a, B7b and B8 are important for the selection of aminoacyl-
tRNA (Cukras & Green 2005; Liiv & O'Connor 2006; McClory et al. 2010; 
Rhodin & Dinman 2011; Sun et al. 2011; Fagan et al. 2013; Musalgaonkar et al. 
2014; Bowen et al. 2015).  

 Following accommodation of aminoacyl-tRNA, peptide bond formation 
occurs in the peptidyl transferase center: the α-amino group of the aminoacyl-
tRNA attacks the carbonyl carbon of the peptidyl-tRNA with assistance of 
rRNA (Figure 15, step 3) (Rodnina et al. 2007). It has been recently suggested 
that factor eIF5A, located in the E site, orients acceptor arm of the P site tRNA 
for the reaction with the A site tRNA by the hypusine side chain (Saini et al. 
2009; Melnikov et al. 2016; Shin et al. 2017). Growing peptide chain moves 
through the peptide exit tunnel. Upon peptide bond formation, A site is 
occupied by peptidyl-tRNA and P site is occupied by deacylated-tRNA. This 
conformation is not stable, so acceptor arms of the A and P site tRNAs dislocate 
into the P and E sites, respectively. However, anticodon ends of tRNAs remain 
bound to the A and P sites, which altogether results in the formation of A/P and 
P/E hybrid states. This process is coupled with the rotation of the small subunit 
(Ratje et al. 2010; Budkevich et al. 2011; Dunkle et al. 2011; Svidritskiy et al. 
2014; Behrmann et al. 2015). Binding of the GTP-bound eEF2 to the GTPase 
associated center induces swiveling of the head domain. Factor eEF2 catalyzes 
translocation of tRNAs and mRNA (Figure 15, step 4) (Spahn et al. 2004a; 
Taylor et al. 2007; Sengupta et al. 2008; Munro et al. 2010; Achenbach & 
Nierhaus 2015). During translocation, diphthamide modification of eEF2 
interacts with mRNA and decoding center to maintain reading frame and 
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prevent slippage of mRNA (Pellegrino et al. 2018). Upon translocation, 
peptidyl- and deacylated-tRNA molecules are in P/P and E/E states, respecti-
vely. Finally, GDP-bound eEF2 is released (Figure 11, step 5) (Taylor et al. 
2007). Release of the deacylated-tRNA from the E site in the yeast ribosome is 
specifically promoted by the ATP-bound eEF3, which locates near the E site 
(Figure 15, step 6) (Triana-Alonso et al. 1995; Andersen et al. 2006). Interes-
tingly, eEF3 also stimulates eEF1A-dependent delivery of the aminoacyl-tRNA 
(Triana-Alonso et al. 1995; Kovalchuke et al. 1998). 

Several studies have demonstrated that rotation of the ribosomal subunits 
during translocation is regulated by intersubunit bridges. Intersubunit bridges 
contribute to the rotational equilibrium of ribosomes and regulate flow of 
information between subunit (Rhodin & Dinman 2011; Liu & Fredrick 2013; 
Musalgaonkar et al. 2014; Bock et al. 2015). The degree of rearrangements 
during rotation is the least at the central part, where rRNA-rRNA bridges lie, 
and increases at the periphery of ribosome. For example, the long C-terminal 
helical domain of proteins eL19 and eL24, that form the bulk of eukaryote-
specific bridges eB12 and eB13, follow rotational movement of the small 
ribosomal subunit (Ben-Shem et al. 2011; Behrmann et al. 2015; Khatter et al. 
2015). Thus, bridges eB12 and eB13 may coordinate rotation of the small 
subunit.  



44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Model of the eukaryotic elongation of translation.  Steps described in the 
main text are shown. 1 – delivery of aminoacyl-tRNA (aa-tRNA) by GTP-bound factor 
eEF1A. 2 – accommodation of aa-tRNA at the A site, release of the GDP-bound 
eEF1A. 3 – formation of peptide bond. 4 – binding of GTP-bound eEF2. 5 – 
translocation, release of GDP-bound eEF2. 6 – eEF3-promoted release of tRNA form E 
site. Timing of eIF5A and eEF3 release is not shown. Adapted with modifications from 
Dever et al, 2018. 
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1.3.3. Translation termination and ribosome recycling 

Termination of translation occurs once stop codon (UAA, UAG or UGA) enters 
the A site of ribosome (reviewed in Dever & Green 2012; Dever et al. 2016; 
Hellen 2018). Stop codon is recognized by the N-terminal domain of factor 
eRF1, while the C-terminal domain of eRF1 is bound to the eRF3 (Figure 16, 
step 1) (Bertram et al. 2000; Mantsyzov et al. 2010; Conard et al. 2012; Preis et 
al. 2014; Blanchet et al. 2015; Brown et al. 2015; Shao et al. 2016). Once stop 
codon is recognized, hydrolysis of GTP by eRF3 occurs (Frolova et al. 1996; 
Salas-Marco & Bedwell 2004; Alkalaeva et al. 2006; Pisareva et al. 2006; 
Cheng et al. 2009; des Georges et al. 2014). Subsequently, conformational 
changes reorient eRF1 closely to the 3’CCA end of peptidyl-tRNA (Figure 16, 
step 2) (Matheisl et al. 2015; Muhs et al. 2015; Shao et al. 2016). This results in 
rearrangements in the peptidyl transferase center that lead to the hydrolysis and 
release of peptide (Figure 16, step 3) (Frolova et al. 1999; Song et al. 2000; Jin 
et al. 2010). 

Budding yeast 80S ribosome is recycled by factor Rli1 (ABCE1 in mamma-
lians). Cryo-EM studies of ribosome recycling complexes demonstrated that 
Rli1/ABCE1 binds to the translational GTPase binding site (Figure 16, step 4). 
It interacts with 25S rRNA sarcin-ricin loop, 18S rRNA (helices 5, 8, 14 and 
15) and r-proteins eS6, eS24, uL6, uL10 and uL14 (Becker et al. 2012; Preis et 
al. 2014; Brown et al. 2015; Kiosze-Becker et al. 2016; Heuer et al. 2017a). FeS 
cluster domain of Rli1/ABCE1 interacts with eRF1, which is bound to the A 
site at the proximity to the central intersubunit bridges (Preis et al. 2014; Brown 
et al. 2015). Recent structural studies of pre- and post-recycling complexes 
suggested two steps of ribosome dissociation (Brown et al. 2015; Kiosze-
Becker et al. 2016; Heuer et al. 2017a). First, movement of the FeS cluster 
domain of Rli1/ABCE1 pushes eRF1 into the intersubunit space, which 
destabilizes intersubunit bridges. Following that, FeS cluster domain clashes 
with protein uL14 near the helix 44 and therefore prevents formation of the B5 
bridge (Heuer et al. 2017a) 

The timing of Rli1/ABCE1 dissociation after release of the large subunit 
remains unknown. It is either dissociates immediately after release (Figure 16, 
step 5) or retains on the small subunit to promote recruitment of the initiation 
factors (Pisarev et al. 2010; Heuer et al. 2017a; Hellen 2018). In both scenarios, 
factors eIF1, eIF1A and eIF3 bind to the small subunit and promote dissociation 
of the non-initiator tRNA from the P site, which in turn leads to release of 
mRNA (Figure 16, step 6) (Pisarev et al. 2007; Pisarev et al. 2010). Finally, 
ribosomal subunits can proceed into next round of protein synthesis. 
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Figure 16. Model of the eukaryotic termination of translation and ribosome 
recycling. Steps described in the main text are shown. 1 – binding of factors eRF1 and 
GTP-bound eRF3. 2 – recognition of stop codon, hydrolysis of eRF3-bound GTP. 3 – 
release of peptide. 4 – release of the GDP-bound eRF3, binding of the factor Rli1. 5 – 
Rli1-promoted recycling of ribosomal subunits. Scenario with dissociation of the Rli1 is 
shown. 6 – binding of factors eIF1, eIF1A and eIF3; release of mRNA and tRNA. 
Adapted with modifications from Dever and Green, 2012 and Hellen et al, 2018. 
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2. RESULTS AND DISCUSSION 

Aims of the study 
The high-resolution atomic models of eukaryotic ribosomes demonstrate that 
two r-proteins, eL19 and eL24, are distinctive by their position in the ribosome. 
Both proteins consist of three domains: an N-terminal globular domain, a 
middle/linker region and a C-terminal α-helical domain. The C-terminal α-
helices of eL19 and eL24 are long antennae-like domains that form eukaryote-
specific intersubunit bridges eB12 and eB13, respectively (chapter 1.1.3.). The 
main aim of the present study was to characterize functions of different domains 
of r-proteins eL19 and eL24 in the budding yeast ribosome.  

Protein eL19 is essential for viability of budding yeast cells (Song et al. 
1996). Previous study implying depletion of eL19 has revealed that this protein 
contributes to the cleavage of 27SB pre-rRNAs during assembly of the large 
ribosomal subunit (chapter 1.2.2.) (Poll et al. 2009). This study aspired to 
determine: 
 domains of eL19 that are important for the cleavage of 27SB pre-rRNAs; 
 functions of the intersubunit bridge eB12 in the budding yeast ribosome; 
 whether contribution to the pre-rRNA cleavage or formation of the 

intersubunit bridge is an essential for cell viability function of eL19. 
 
Second r-protein covered in this study, eL24, is nonessential for budding yeast 
cell viability (Baronas-Lowell & Warner 1990). However, the absence of eL24 
leads to the reduced by 30 % growth rate, accumulation of halfmer ribosomes 
and altered elongation of translation (Baronas-Lowell & Warner 1990; Dresios 
et al. 2000; Dresios et al. 2001). The tasks of this study were to dissect: 
 functions of the eB13 bridge in the budding yeast ribosome;  
 functions of the N-terminal globular domain of the eL24. 
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2.1. Functions of the r-protein eL19  
at the domain level (Ref I) 

Essential r-protein eL19 belongs to the group of archaea/eukaryote-specific 
proteins (Table 1, Figure 8) (Lecompte et al. 2002; Ban et al. 2014). Structural 
studies demonstrated that the eukaryotic variant of eL19 is composed of three 
domains (Figure 17) (Ben-Shem et al. 2011; Anger et al. 2013; Behrmann et al. 
2015). The globular N-terminal domain and the helical middle region of eL19 
are archaea/eukaryote-specific and demonstrate similar conformation in ribo-
somes of both Archaea and Eukarya (Figure 17) (Ban et al. 2000; Ben-Shem et 
al. 2011; Anger et al. 2013; Armache et al. 2013; Gabdulkhakov et al. 2013; 
Behrmann et al. 2015; Khatter et al. 2015). In the budding yeast ribosome, these 
domains are buried within the 25S rRNA and do not interact with any other 
large subunit protein (Table 1, Figure 8) (Ben-Shem et al. 2011; Poirot & Timsit 
2016). The third, C-terminal domain of eukaryotic eL19 is folded into a long 
eukaryote-specific α-helix (Figure 17). This domain extends far from the E-site 
side of the large subunit and forms eukaryote-specific bridge eB12 (Ref I Figure 
1C, chapter 1.1.3.). By comparison, archaeal eL19 has a short, only ~17 amino 
acid residues long C-terminal helix and therefore it cannot reach the small 
subunit (Figure 17) (Armache et al. 2013). In the budding yeast ribosomes, a 
bulk of the eB12 bridge is formed by interactions between C-terminal α-helix of 
eL19 and ES6S of 18S rRNA. Bridge eB12 is additionally stabilized by 
interactions of α-helix with proteins uS17 (pre-translocational state) and eS7 
(post-translocational state) (Table 4) (Ben-Shem et al. 2011). Based on the 
position of the eB12 bridge in the ribosome, involvement of this bridge in 
joining of subunit and shedding/releasing of factors during translation initiation 
has been suggested (Ben-Shem et al. 2011). 

In order to study functions of different domains of eL19, we constructed 
several yeast mutants. To analyse the effect of eL19 depletion, we used a con-
ditional null mutant system. We ectopically expressed RPL19A gene under the 
control of the galactose inducible GAL1 promotor in rpl19AΔrpl19BΔ back-
ground (Ref I Materials and Methods, Supplemental Tables S1 and S2). To 
analyse the importance of the C-terminal α-helix of eL19, we constructed a set 
of eL19A variants that were expressed under the control of the native promotor 
in rpl19AΔrpl19BΔ background (Figure 17, Ref I Table 1). Full-length wild-
type eL19A variant served as a control. The eL191-183 variant lacked amino acid 
residues interacting with protein eS7. The eL191-154 variant lacked the eB12 
bridge forming region of the C-terminal α-helix of eL19. The eL191-146 variant 
mimicked the archaeal version of eL19 and was also not able to form the eB12 
bridge. The eL191-133 variant lacked the entire C-terminal α-helix of eL19.  
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Figure 17. Structure of the r-protein eL19. Structures of the wild-type eL19 in 
eukaryotic (Saccharomyces cerevisiae) and archaeal (Haloarcula marismortui) ribo-
somes are shown in the upper panel. Variants of eL19 constructed in this study are 
shown in the lower panel. The N-terminal domains (light blue), the middle regions (teal) 
and the C-terminal α-helical domains (dark blue) of eL19 are indicated. Amino acid 
residues interacting with uS17 (red), 18S rRNA ES6S (yellow) and eS7 (purple) are 
indicated. Coordinates for eukaryotic (PDB entry 3U5E from Ben-Shem et al, 2011) 
and archaeal eL19 (PDB entry 4V9F from Gabdulkhakov et al, 2013) were rendered in 
PyMol. 
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2.1.1 The C-terminal α-helix of eL19 is required for the 
association of ribosomal subunits 

We started our analysis with assessing the growth characteristics of all con-
structed mutants. In accordance with previous studies, protein eL19 was 
essential for yeast cell viability (Ref I Figure 3A) (Song et al. 1996). In contrast, 
all mutants expressing truncated variants of eL19, except for eL191-133, were 
viable (Ref I Figures 1D and 2A). This indicates that the eB12 bridge forming 
region of eL19 is not essential for yeast cell viability. In turn, the N-terminal 
domain, the middle region and the first 13 amino acid residues of C-terminal 
helix of eL19 are essential for viability (discussed in chapter 2.1.2.). 

Next, we accessed the functional importance of the eB12 bridge for the 
budding yeast ribosome. More detailed growth analysis demonstrated that the 
loss of interactions between eL19 and eS7 (variant eL191-183) resulted in similar 
to wild-type growth (Ref I Figure 2A). In contrast, loss of the entire eB12 
bridge upon truncation of C-terminal α-helix of eL19 led to slow growth at all 
analysed temperatures (variant eL191-154 and eL191-146) (Ref I Figure 2A). To 
more extensively characterize eL19 mutants, we evaluated global levels of 
translation (Figure 18). We determined incorporation of radioactive isotope 
labelled amino acids in newly synthesized proteins in exponentially growing 
mutant and control cells. No significant change in the translation levels was 
observed upon loss of interactions between eL19 and eS7 (variant eL191-183), if 
compared to eL19 control cells (Figure 18). Loss of the entire eB12 bridge 
(variants eL191-154 and eL191-146) reduced the level of translation by ~20 % 
(Figure 18). Taken together, our results demonstrate that growth phenotype of 
cells expressing eL191-183 variant is similar to that of control cells. This 
indicates that contacts between eL19 and eS7 have a minor role in ribosome 
functioning. Absence of the entire eB12 bridge, in turn, leads to reduced ribo-
some functionality, as can be deduced from slow growth and decreased global 
levels of translation. 
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Figure 18. Global levels of translation in cells with different variants of eL19. 

rpl19AΔrpl19BΔ strains expressing wild-type (eL19) or mutant variants (eL191-183, 

eL191-154 and eL191-146) of eL19 were analysed. Radioactive isotope labelled amino 

acids were added to exponentially growing cells in synthetic minimal medium at 30 °C. 

Culture samples were taken at every 15 minute over 2 hours of incubation. Samples 

were TCA precipitated and incorporation of radioactive label was measured. Values of 

disintegrations per minute (DPM) were plotted and slope was calculated. The average 

(mean± SD) normalized slope values from at least four biological replicates are plotted. 

Statistical significance was determined by the unpaired two sample Student’s t-test (* 

p<0.01; NS, not significant). 

 

 

In order to test the impact of reduced ribosome functionality on the populations 

of ribosomal particles, we analysed ribosome-polysome profiles of cells with 

different variants of eL19 (Ref I Figure 2B). Populations of ribosomal particles 

were similar in cells expressing eL191-183 variant and control cells at both 

temperatures. Expression of eL191-154 and eL191-146 variants, not able to form 

bridge eB12, resulted in excess large ribosomal subunits when grown at 20 °C 

(Ref I Figure 2B). Interestingly, excess of large subunits at 20 °C was not 

accompanied by excess of neither small ribosomal subunits nor stalled preini-

tiation complexes referred to as halfmer. Both scenarios would be indicative of 

defects in joining of ribosomal subunits during translation initiation. To 

determine relative levels of large and small ribosomal subunits more precisely, 

we prepared extracts of control and mutant cells in low Mg2+ conditions when 

grown at 20 °C (Figure 19). Low Mg2+ conditions cause ribosomes to dissociate 

into subunits, which can be then separated by sucrose density gradient centri-

fugation. Relative amount of subunits were assessed by quantifications of areas 

under the peaks of small and large subunits. Consistent with ribosome-poly-

some profile analysis, expression of eL191-183 has no effect on the levels of 

ribosomal subunits, if compared to eL19 control (Figure 19). Loss of the entire 
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eB12 bridge (variants eL191-154 and eL191-146) led to increased ratio of 60S/40S, 

which reflects decreased level of small subunits. It has been shown that shortage 

of the functional large ribosomal subunits leads to turnover of small ribosomal 

subunits (Gregory et al. 2019). This may prevent formation of preinitiation 

complexes not able to form 80S ribosomes due to absence of functional large 

subunits. Excess preinitiation complexes could sequester mRNAs and distort 

protein synthesis (Gregory et al. 2019). It is possible that loss of the eB12 

bridge leads to defects in subunit joining, which causes accumulation of free 

ribosomal subunits (Ref I Figure 2B). To secure the process of translation, free 

small subunits are degraded, resulting in increased 60S/40S ratio (Figure 19). 

Figure 19. Relative amounts of small (40S) and large (60S) ribosomal subunits in 

extracts of cells with different eL19 variants. rpl19AΔrpl19BΔ strains expressing 

wild-type (eL19) or mutant variants (eL191-183, eL191-154 and eL191-146) of eL19 were 

grown in YPD medium at 20 °C. The whole cell extracts were prepared at the low Mg2+ 

conditions and analysed in 10% - 30% sucrose gradients. Areas under the small (40S) 

and large (60S) ribosomal subunit peaks were quantified by ImageJ and 60S/40S ratios 

were calculated. The average (mean ± SD) normalized ratios of two biological 

replicates are plotted. Statistical significance was determined by the unpaired two 

sample Student’s t-test (* p<0.01; NS, not significant). 

  



53 

We speculate that increased amount of free large subunits upon loss of the eB12 
bridge is caused by defects in subunit joining. To test this possibility, we 
analysed the necessity of eB12 bridge for the in vitro reassociation of ribosomal 
subunits (Ref I Figure 4). In this assay we used purified large and small 
ribosomal subunits obtained through dissociation of monosomes by treatment 
with 0.5 M KCl. The reassociation reactions were conducted at different Mg2+ 
concentrations through mixing together large subunits containing either wild-
type or mutant variants of eL19 with wild-type small subunits. The reassocia-
tion efficiencies were assessed by centrifugation in sucrose density gradient 
with corresponding Mg2+ concentrations. Wild-type ribosomal subunits reas-
sociated already at 5 mM Mg2+. In the absence of contacts between eL19 and 
protein eS7 (variant eL191-183), reassociation of ribosomal subunits occurred 
similarly to wild-type (Ref I Figure 4). Deletion of the entire eB12 bridge 
forming region of eL19 (variant eL191-154 and eL191-146) resulted in the inability 
of large subunits to form 80S particles at all analysed Mg2+ concentrations (Ref 
I Figure 4). We conclude that interactions between eL19 and eS7 have a minor 
role in the formation of 80S particle. In accordance, structural studies of the 
budding yeast ribosomes demonstrated that these are transient contacts oc-
curring only in the pre-translocational state (Table 4) (Ben-Shem et al. 2011). 
The association of subunits largely relies on the extensive protein-rRNA 
interactions between C-terminal of eL19 and 18S rRNA expansion segment 
ES6S. These contacts are presented in both pre- and post-translocational states 
(Table 4) (Ben-Shem et al. 2011). 

Altogether, loss of the eB12 bridge (variants eL191-154 and eL191-146) lead to 
a reduced ribosome functionality, as can be deduced from slow-growth of yeast 
cells, decreased global levels of translation and accumulation of excess large 
ribosomal subunits (Figure 18, Ref I Figure 2). Analysis of in vitro reassocia-
tion activities of ribosomal subunits demonstrated inability to form 80S 
particles when the eB12 bridge is absent (Ref I Figure 4). All these phenotypes 
may reflect the involvement of the eB12 bridge in the association of 80S ribo-
some during the subunit joining step of translation initiation. The role of this 
bridge in the subunit joining has been also suggested based on the structural 
studies (Ben-Shem et al. 2011). Additionally, it has been shown that the eB12 
bridge forming region of eL19 is highly dynamical and follows movements of 
the small subunit during translocation (Figure 20) (Ben-Shem et al. 2011; 
Behrmann et al. 2015). Such position of the C-terminal domains of eL19 may 
allow it to regulate rotation of the small ribosomal subunits. Thus, eB12 may 
contribute to the elongation step of translation. However, this possibility 
remains to be examined. 
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Figure 20. Conformation of eL19 in pre-translocational (eL19 pre; yellow) and 
post-translocational (eL19 post; red) conformations of the human ribosome. 
rRNAs and proteins of large subunit are dark blue (pre-translocation) and dark grey 
(post-translocation). rRNAs and proteins of small subunit are light blue (pre-trans-
location) and light grey (post-translocation). Small panel illustrates approximate posi-
tion of the enlarged region (square) within 80S ribosome. Positions of helix 44 (h44) 
and L1 stalk (L1) are indicated. Human ribosomes in pre-translocational (PDB coordi-
nates 4UG0 from Khatter et al, 2015) and post-translocational conformation (PDB 
coordinates 4V6X from Anger et al, 2013) were superimposed in Chimera. 
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2.1.2. The N-terminal domain and the middle region of eL19 are 
required for the assembly of the large ribosomal subunit 

Our analysis of eL19 mutants demonstrated that N-terminal domain, the middle 
region and the first 13 amino acid residues of C-terminal helix of eL19 are 
essential for yeast cell viability (Ref I Figures 1D, 2A and 3A). Next, we 
analysed ribosome-polysome profiles of cells with depleted or truncated eL19 
by sucrose density gradient centrifugation (Ref I Figures 2A and 3B). The 
depletion of eL19 led to the reduction of polysome and monosome fractions 
accompanied by accumulation of excess small ribosomal subunits (Ref I Figure 
3B). This phenotype may reflect defects in the assembly of the large ribosomal 
subunit. Truncation of C-terminal α-helix of eL19, in turn, did not cause any 
changes in monosome and polysome fractions, if compared to control. 
Therefore, the eB12 bridge forming C-terminal domain of eL19 has no apparent 
role in assembly of large ribosomal subunit.  

During assembly of the large ribosomal subunit, 35S pre-rRNA is cleaved 
and processed in several subsequent steps, where each step gives rise to a speci-
fic intermediate pre-rRNA species (chapter 1.2.2.). Relative amounts of such 
pre-rRNAs reflect efficiency of large subunit assembly, so changes in the 
amounts of pre-rRNAs may point to a defective assembly step. To access the 
steady-state levels of pre-rRNAs, we employed primer extension analysis of 
total RNA extracted from mutant cells (Ref I Figures 3C and 3D). We used two 
specific oligonucleotides that allowed us to determine relative amounts of 
27SA2, 27SA3 and 25.5S pre-rRNA species. Unfortunately, we were not able to 
assess levels of 27SB and 7S pre-rRNAs separately, but only total levels of both 
pre-rRNAs. These are denoted as “27SBL+7SL“and “27SBS+7SS“(Ref I Figures 
3C and 3D). Depletion of eL19 led to the slight reduction in levels of 27SA2 and 
27SA3 pre-rRNAs and occurrence of a nonspecific stops at the ITS2 region. We 
also detected increase in total levels of 27SB and 7S pre-rRNAs, probably 
indicating increased levels of 27SBL and 27SBS pre-rRNAs (Ref I Figure 3D). 
In contrast, truncations of C-terminal domain of eL19 had no effect on the pre-
rRNA processing, according to the primer extension analysis. These results 
demonstrate that cleavage at the C2 cite depends on the presence of the N-
terminal domain, the linker region and the first 13 amino acid residues of C-
terminal domain of eL19. This is consistent with previous study that showed 
defects in cleavage of 27SB pre-rRNAs upon depletion of the whole eL19 (Poll 
et al. 2009).  

Altogether, our data demonstrates that the N-terminal domain, the middle 
region and the first 13 amino acid residues of C-terminal domain of eL19 are 
essential for yeast cell viability. The essential function of these domains is in 
contribution to the cleavage of 27SB pre-rRNAs at the C2 site. Interestingly, 
structural studies of pre-60S particles demonstrated that the N-terminal domain 
and the middle region of eL19 lie at the distance from the C2 site (Wu et al. 
2016; Kater et al. 2017). It remains to be shown how these domains of eL19 are 
linked with cleavage of ITS2. Depletion of eL19 has been recently 
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demonstrated to cause alterations in structure of 5.8S rRNA and decreased 
levels of r-proteins uL22, uL24, uL29 and eL31 (Biedka et al. 2018). Therefore, 
presence of eL19 may be important for the formation of the rim around the 
peptide exit tunnel (Biedka et al. 2018). Cleavage at the C2 site is carried out by 
endonuclease Las1 (Gasse et al. 2015; Pillon et al. 2017). It has been suggested 
that maturation of the rim around the peptide exit tunnel is necessary for Las1 to 
bind to the pre-60S particle and to cleave ITS2 (Biedka et al. 2018). 
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2.2. Functions of the r-protein eL24  
at the domain level (Ref II and III) 

Nonessential for yeast cell viability r-protein eL24 is an archaea/eukaryote-
specific protein (Table 1, Figure 8) (Lecompte et al. 2002; Ban et al. 2014). The 
N-terminal globular domain of eL24 lies on the surface of the large ribosomal 
subunit and has a similar structure in both archaeal and eukaryotic ribosomes 
(Figure 21) (Ban et al. 2000; Ben-Shem et al. 2011; Anger et al. 2013; Armache 
et al. 2013; Gabdulkhakov et al. 2013; Behrmann et al. 2015; Khatter et al. 
2015). In the budding yeast ribosome, R43 and R47 of the N-terminal domain 
of eL24 form two contacts with 18S rRNA helix 44, giving rise to a universally 
conserved bridge B6 (Table 3, Figures 9 and 10) (Ben-Shem et al. 2011). The 
linker region and the C-terminal α-helix of eukaryotic eL24 are eukaryote-
specific domains that extend to the small ribosomal subunit and form the 
eukaryote-specific intersubunit bridge eB13 (Table 4, Figures 9, 10 and 21). In 
the budding yeast ribosome, the best part of the eB13 bridge is formed by 
interactions of eL24 with r-protein eS6. In the post-translocational state, 
additional contacts of eL24 with 18S rRNA (helix 6, ES3S and ES12S) occur. 
Structural studies suggested that the eB13 bridge forming region of eL24 
follows movements of the small ribosomal subunit (Figure 22).  Therefore, the 
eB13 bridge may regulate rotation of this subunit (Ben-Shem et al. 2011; 
Behrmann et al. 2015). 

In order to study functions of the r-protein eL24 at the domain level, we 
constructed several yeast mutants (Figure 21, Ref II Figure 1A and Table 2). To 
study the effects of the absence of the whole eL24, we deleted both paralogous 
genes (mutant eL24Δ). In the eL24 control cells, the full-length wild-type 
eL24A was expressed under the control of native promotor in rpl24AΔrpl24BΔ 
background. Every other strain was generated by expression of mutant eL24A 
variants. To assess the role of the eB13 bridge forming region of eL24, the set 
of C-terminal truncated variants of eL24 was generated (Figure 21). The 112–
155Δ variant was not able to interact with 18S rRNA helix 6 and ES3S. The 81–
155Δ variant lacked amino acid residues interacting with r-protein eS6 and 18S 
rRNA helix 6 and ES3S. The eB13Δ variant lacked the entire eB13 bridge 
forming region of eL24. This variant of eL24 contained only the N-terminal 
domain and therefore mimicked the archaeal variant of eL24. Additionally, we 
constructed two variants to study the importance of the B6 bridge (Figure 21). 
The B6Δ variant harbored R43A and R47A substitutions in its N-terminal 
domain, which disrupted interactions between eL24 and 18S rRNA helix 44. 
The eB13ΔB6Δ variant was not able to form both eB13 and B6 bridges. 
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Figure 21. Structure of the r-protein eL24. Structures of wild-type eL24 in eukaryotic 
(Saccharomyces cerevisiae) and archaeal (Haloarcula marismortui) ribosomes are 
shown in the upper panel. The N-terminal domains (light blue), the middle regions (teal) 
and the C-terminal α-helical domains (dark blue) of eL24 are indicated. Amino acid 
residues interacting with 18S ES12S (red), protein eS6 (yellow) and 18S rRNA helix 6 
and ES3S (purple) are indicated. Arginine residues that interact with 18S rRNA helix 44 
(orange) and form B6 bridge are shown as orange spheres. Structures of the mutant 
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variants of eL24 constructed in this study are shown in the middle and lower panel. In 
variants B6Δ and eB13ΔB6Δ residues R43 and R47 that from bridge B6 were 
substitutes to residues A43 and A47. Coordinates for eukaryotic (PDB entry 3U5E from 
Ben-Shem et al, 2011) and archaeal eL24 (PDB entry 4V9F from Gabdulkhakov et al, 
2013) were rendered in PyMol. 
 
 

2.2.1. The C-terminal α-helix and the linker region of eL24 are 
important for both initiation and elongation steps of translation 

The most prominent role of the eL24, carried out by its C-terminal domain and 
linker region, is in formation of the eukaryote-specific intersubunit bridge eB13. 
In order to access the importance of the eB13 bridge forming region of eL24 for 
the ribosome functionality, we constructed C-terminal truncated variants 112–
155Δ, 81–155Δ and eB13Δ (Figure 21). Analysis of growth rates and global 
levels of translation in cells expressing truncated variants of eL24 allowed us to 
specify two phenotypic groups (Ref II Figure 2). First group contained variant 
112–155Δ, which was not able to interact with 18S rRNA helix 6 and ES3S. 
Cells expressing this variant exhibited similar to the eL24 control cells growth 
rates and global levels of translation (Ref II Figure 2). This suggests that 
interactions of eL24 with 18S rRNA helix 6 and ES3S play a minor role in the 
functioning of the eB13 bridge. Second group consisted of variants 81–155Δ 
and eB13Δ. Both were not able to interact with protein eS6 and 18S rRNA helix 
6 and ES3S. In addition, eB13Δ lacked contacts with 18S rRNA ES12S. This 
group demonstrated reduced ribosome functionality manifested in cold 
sensitivity and decreased global levels of translation by 15–20 % (Ref II Figure 
2). These data indicates that functionality of the eB13 bridge mainly depends on 
the interactions between eL24 and eS6.  

Additionally, we analyzed growth phenotypes of cells lacking the whole 
eL24 (eL24Δ) (Ref II Figure 2). These cells exhibited cold sensitivity and 
reduced by ~40 % global levels of translation, if compare to eL24 control cells. 
Interestingly, absence of the eL24 led to the intensified cold sensitivity and 
decreased by ~20 % global levels of translation, if compare to cells expressing 
eB13Δ variant of eL24 (Ref II Figure 2). This data suggests that the N-terminal 
domain of eL24 carries out additional functions. However, it is known that 
eL24 is incorporated into the large ribosomal subunit at the late, cytoplasmic 
step of maturation (Saveanu et al. 2003). Protein eL24 shares the same binding 
site with the essential biogenesis factor Rlp24 (Wu et al. 2016; Kater et al. 
2017; Schuller et al. 2018). At the cytoplasmic step of maturation, factor Rlp24 
is removed by AAA-ATPase Drg1, which is followed by incorporation of eL24 
(Saveanu et al. 2003; Pertschy et al. 2007; Lo et al. 2010; Kappel et al. 2012). It 
is possible that C-terminal truncated variants of eL24 are incorporated into 
ribosomes less efficiently than full-length protein, leading to a mixed population 
of ribosomes either with truncated eL24 or without eL24. This would explain 
intermediate phenotype of cells expressing eB13Δ variant, if compared to 
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control and eL24Δ cells (Ref II Figure 2). In order to quantitatively analyze 
protein composition of ribosomes, we first optimized metabolic labelling of r-
proteins, isolation of labeled ribosomes and mass spectrometric analysis of r-
proteins (Ref III Materials and Methods). To metabolically label r-proteins, we 
employed stable isotope labelling by amino acids in yeast cell culture (SILAC). 
Budding yeast cells were grown in synthetic minimal medium containing either 
“light” L-lysine and L-arginine or “heavy” [13C6/15N2] L-lysine and [13C6/15N4] L-
arginine (Ref III Materials and Methods). “Light” and “heavy” ribosomes were 
isolated through sucrose density gradient centrifugation (Ref III Materials and 
Methods, Figure 1). “Heavy” ribosomes served as a control that was mixed 
together with “light” ribosomes. Following that, r-proteins were digested by 
LysC/trypsin and “heavy/light” ratios for peptides were determined by HPLC-
MS/MS (Ref III Materials and Methods). 75 out of 79 budding yeast r-protein 
were identified, with at least two peptides identified for each r-protein (Ref III 
Table S1). We conclude that SILAC combined with HPLC-MS/MS allows us to 
characterize protein composition of ribosomes. Next, ribosomes from eL24Δ 
cells and cells expressing eB13Δ variant of eL24 were analysed by mass 
spectrometry Proteins of mutant and control ribosomes were labelled by “light” 
and “heavy” amino acids, respectively (Ref II Materials and Methods).  
“Heavy/light” ratios of peptides were determined by HPLC-MS/MS. Stoichio-
metric ratios of r-proteins in the ribosomes from eL24Δ and eB13 bridge mutant 
cells were similar to that in the ribosomes of control cells (Ref II Figure 4). 
Moreover, eB13Δ variant of eL24 was incorporated into ribosomes similarly to 
the full-length eL24 (Ref II Figures 4 and S2).  We also did not observe 
presence of biogenesis factors that are bound/released at the cytoplasmic step. 
This suggests that in cells lacking eL24 or expressing truncated variant of eL24 
ribosome maturation occurs similarly to that in control cells. Altogether, we 
conclude that phenotypic difference between cells lacking eL24 and expressing 
eB13Δ variant indicates additional functions of the N-terminal domain of eL24. 
Functions of this domain are further discussed in chapter 2.2.2.  Intermediate 
phenotype of cells expressing eB13Δ variant, if compared to control and eL24Δ 
cells, are caused by compromised eB13 bridge. 

Next, we employed ribosome-polysome profile analysis to assess popu-
lations of ribosomal particles in cells expressing eB13Δ variant of eL24 (Ref II 
Figure 3). Compromised eB13 bridge formation led to the reduction of 
polysome/monosome ratio by ~37 % at 30 °C and by ~46 % at 20 °C, if 
compared to control (Ref II Figure 3B). Interestingly, we also detected 
accumulation of halfmers at 20 °C, which was specific for cells with com-
promised eB13 bridge formation (Ref II Figure 3A). Accumulation of halfmers 
may indicate impaired association of ribosomal subunits upon loss of the eB13 
bridge. To test this possibility, we analysed the in vitro reassociation ability of 
the large ribosomal subunits impaired in the eB13 bridge formation as described 
in chapter 2.1.1. (Ref II Figure 5). Deletion of the eB13 bridge forming region 
of eL24 (variant eB13Δ) led to inability of large subunits to reassociate with 
small subunits at 5 mM Mg2+ and to formation of intermediate particles at 10–
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20 mM Mg2+. We conclude that the eB13 bridge forming region of eL24 is 
important for the formation of 80S particles both in vivo and in vitro.  

Association of ribosomal subunits occurs at the initiation step of translation. 
Thus, reduced association ability of ribosomal subunits (Ref II Figure 5) may 
cause a reduced rate of translation initiation. In order to test the importance of 
eB13 bridge for dynamics of translation in more detail, we examined in vitro 
cap- and polyA tail-dependent translation in cell-free translation extracts. In this 
assay, we analyzed the time course of synthesis of single Firefly luciferase over 
80 minutes (Ref II Figures 6A and 6B). The slope of the linear part of the 
luciferase activity time course depends on the maximum rate of translation (Ref 
II Figure 6A-6C). Given that initiation is the rate-limiting step of translation, 
slope reflects the rate of initiation (Andersson & Kurland 1990; Bulmer 1991; 
Arava et al. 2003; Shah et al. 2013). In case of eB13Δ extracts, slope was ~1.6 
times lower, if compared to control extracts (Ref II Figure 6C). This suggests 
that bridge eB13 contributes to the initiation step of translation.  

Unfortunately, the use of single Firefly luciferase did not allow to access 
processivity of ribosomes and the rate of elongation. To overcome this limita-
tion, we introduced novel system, where the time course of synthesis of fusion 
Renilla-Firefly luciferase was monitored. First, we determined the slopes of the 
linear parts of the obtained Renilla and Firefly luciferase time courses (Ref II 
Figures S4A-S4D). The ratio of slopes reflects processivity of ribosomes – the 
number of ribosomes that complete the Firefly moiety of fusion protein after 
completion of the Renilla moiety. Extracts of the eB13Δ mutant demonstrated 
similar to control extract slope ratios (Ref II Figures S4A-S4D). We conclude 
that apparent processivity of ribosomes with compromised eB13 bridge (variant 
eB13Δ) is similar to that of control ribosomes. 

To assess elongation rates of ribosomes, time of first appearance (TFA) of 
Renilla and Firefly luminescence signals were measured in cell-free translation 
extracts (Ref II Figure 7). TFA of Renilla luminescence signal indicates the 
completion of synthesis of the Renilla moiety of the fusion protein, when 
Firefly part is not yet synthesized. TFA of Firefly luminescence signal, in turn, 
indicates the completion of synthesis of the whole fusion protein. Difference 
between Renilla and Firefly TFAs depends on the time needed to synthesize the 
Firefly moiety of the fusion protein and, consequently, reflects the rate of 
elongation. Ribosomes with compromised eB13 bridge needed ~1.3 times more 
time than control ribosomes to synthesize the Firefly moiety of protein (Ref II 
Figure 7). This data suggests that the eB13 bridge contributes to the elongation 
step of translation. 

Taken together, our results indicate that presence of the eB13 bridge is 
important for the optimal ribosomal functionality (Ref II Figure 2). The 
principal contacts in this bridge are formed between the C-terminal helix and 
the linker region of eL24 and the r-protein eS6. Loss of the eB13 bridge leads to 
defects in association of ribosomal subunits, both in vivo and in vitro (Ref II 
Figure 3 and 5). This may lead to defects at the subunit joining step of 
translation initiation. Our in vitro translation experiments also support this 
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possibility, showing decreased rate of initiation upon loss of the eB13 bridge 
(Ref II Figures 6B and 6C). Additionally, in vitro translation experiments 
revealed that ribosomes with compromised eB13 bridge had decreased rate of 
elongation, if compared to control ribosomes (Ref II Figure 7). It has been 
previously demonstrated by structural studies that the eB13 bridge forming 
region of eL24 is highly dynamical and follows rotation of small subunit 
(Figure 22) (Ben-Shem et al. 2011; Behrmann et al. 2015; Khatter et al. 2015). 
Bridge eB13 is located in the vicinity of binding site for the eEF2 (Figure 22) 
(Anger et al. 2013). SHAPE analysis coupled with molecular dynamic 
simulations suggested that during translation elongation eB13 bridge transduces 
information between eEF2 binding site and small ribosomal subunit (Gulay et 
al. 2017). We speculate that reduced elongation rate in our in vitro translation 
experiments reflects involvement of the eB13 bridge in the regulation of small 
subunit rotation and flow of information between subunits. 
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Figure 22. Conformation of eL24 in pre-translocational (eL24 pre; yellow) and 
post-translocational (eL24 post; red) conformations. rRNAs and proteins of large 
subunit are dark blue (pre-translocation) and dark grey (post-translocation). rRNAs and 
proteins of small subunit are light blue (pre-translocation) and light grey (post-
translocation). R-protein uL14 (orange) have similar orientation in both conformations. 
Factor eEF2 (navy blue) is shown.  Small panel illustrates approximate position of the 
enlarged region (square) within 80S ribosome. Landmarks of the large subunit are 
indicated (P, P stalk; L1, L1 stalk). Human ribosomes in pre-translocational (PDB 
coordinates 4UG0 from Khatter et al, 2015) and post-translocational conformation 
(PDB coordinates 4V6X from Anger et al, 2013) were superimposed in Chimera. 
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2.2.2. The N-terminal domain of eL24 is involved in  
the initiation of translation 

Two budding yeast mutants employed in the present study allowed us to assess 
the functions of the N-terminal domain of eL24. Mutant eL24Δ lacked the 
whole eL24 protein. The eB13Δ mutant cells expressed variant of eL24 that 
carried deletion of the C-terminal helix and the linker region of eL24. Analysis 
of eL24Δ cells demonstrated the intensified cold sensitivity and decreased by 
~20 % global level of translation, if compare to the eB13Δ mutant (chapter 
2.2.1., Ref II Figure 2). This difference can be explained by the absence of the 
N-terminal domain of eL24 in the eL24Δ cells. It is known that the N-terminal 
domain forms intersubunit bridge B6 (chapter 1.1.3., Table 3). Therefore, 
difference of phenotypes may be provoked not by the deletion of the N-terminal 
domain per se, but by the concomitant loss of the B6 bridge. To test this 
hypothesis, we constructed B6Δ and eB13ΔB6Δ variants of eL24 that were not 
able to form the B6 bridge (Figure 21, Ref II Table 2 and Figure 2). In both 
variants, two arginine residues (R43 and R47) were substituted to alanine 
residues, which impaired B6 bridge formation (Figure 21, Ref II Figure 1). 
Cells expressing B6Δ variant displayed similar to control cells growth rates and 
global levels of translation (Ref II Table 2 and Figure 2). Phenotype of cells 
expressing eB13ΔB6Δ variant was similar to that of cells expressing eB13Δ 
variant. This indicates that bridge B6 has no apparent role in the budding yeast 
ribosome. The N-terminal domain of eL24, in turn, carries previously not 
known function. 

In order to determine possible functions of the N-terminal domain of eL24, 
we first analysed ribosome-polysome profiles of cells lacking eL24. These cells 
demonstrated reduction of polysome/monosome ratios by ~35 % at 30 °C and 
by ~47 % at 20 °C, if compared to control cells (Ref II Figure 3). However, no 
changes in populations of ribosomal particles were detected, if compared to 
cells expressing eB13Δ variant of eL24 (Ref II Figure 3). Subsequent analysis 
of in vitro reassociation demonstrated that large ribosomal subunits lacking the 
whole eL24 protein (eL24Δ) were not able to form ribosomal particles at 10 
mM Mg2+, while large subunits with compromised eB13 bridge (eB13Δ) 
formed at this Mg2+ concentration intermediate particles (Ref II Figure 5). This 
suggests that the N-terminal domain of eL24 is involved in the in vitro 
association of the ribosomal subunits. To access role of the N-terminal domain 
in more detail, we analysed in vitro translation in cell-free translational extracts 
as described in chapter 2.2.1. Analysis of the time course of synthesis of single 
Firefly luciferase demonstrated that rate of translation in eL24Δ extracts 
decreased by ~10 times, if compare to control extracts. Moreover, the rate of 
translation was ~6 times lower than that in the eB13Δ mutant extracts (Ref II 
Figures 6B and 6C). This suggests that the N-terminal domain of eL24 
contributes to the initiation step of translation. Interestingly, processivity and 
rate of elongation of ribosomes lacking the N-terminal domain of eL24 were 
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similar to that of ribosomes impaired in eB13 bridge formation (Ref II Figures 7 
and S4).  

Altogether, our data suggests that the N-terminal domain of eL24 is 
important for the functionality of budding yeast ribosomes (Ref II Figure 2). 
This domain contributes to the in vitro association of ribosomal subunits (Ref II 
Figure 5). Defect in the association of ribosomal subunits may explain reduced 
rate of in vitro translation initiation (Ref II Figure 6C). Structural models of the 
eukaryotic ribosomes demonstrated that the N-terminal domain of the eL24 
interacts with protein uL14, which has a unique position in the ribosome (Figure 
22). First, uL14 resides closely to the main binding site for the translation 
factors. Two factors, eIF5B and eIF6, act at the subunit joining step of 
initiation. Factor eIF5B promotes joining of ribosomal subunits. In contrast, 
factor eIF6 sterically prevents formation of 80S particle. We speculate that 
presence of the N-terminal domain of eL24 is prerequisite for the efficient 
binding/dissociation of factors eIF5B and/or eIF6. Additionally, protein uL14 is 
involved in the formation of two conserved intersubunit bridges B5 and B8 
(chapter 1.1.3., Table 3, Figures 9 and 10).  Loss of the N-terminal domain of 
eL24 may affect formation of these bridges and consequently lead to the 
defective subunit joining. Altogether, the N-terminal domain of eL24 may 
contribute to the local structure of the large ribosomal subunit. The future cryo-
EM studies will shed a light on this possibility. 
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2.3. The pleiotropic functions of r-proteins eL19 and eL24 
R-proteins eL19 and eL24 belong to the group of archaea/eukaryote-specific 
proteins (chapter 1.1.2.). Eukaryotic variants of these proteins have a similar 
three-domain structure, consisting of an N-terminal domain, a middle/linker 
region and a C-terminal α-helical domain (Figures 17 and 21). These domains 
can be divided into archaea/eukaryote-specific and eukaryote-specific domains. 
The present study demonstrates that different domains of eL19 and eL24 bear 
distinctive functions. Interestingly, such distribution of functions reflects the 
evolutionary history of these proteins.      

During the course of evolution, the complexity of ribosomes increased 
through the attachment of domain-specific structural elements. The transition 
from bacteria to archaea was accompanied by the appearance of the set of 35 
proteins named archaea/eukaryote-specific (Lecompte et al. 2002; Ban et al. 
2014). It has been proposed that archaea evolved from gram-positive bacteria as 
a result of antibiotic selection and search for vacant niches (Gupta 2000; 
Cavalier-Smith 2002; Valas & Bourne 2011). It is possible that archaea/ 
eukaryote-specific r-proteins were an evolutionary adaptation that enabled to 
maintain structure of ribosome and efficiency of protein synthesis in new, often 
extreme environments. In this study, functions of the archaea/eukaryote-specific 
domains of proteins eL19 and eL24 were examined in the eukaryotic ribosome. 
These domains fully resemble structures of the archaeal eL19 and eL24 (Figures 
17 and 22). In the eukaryotic eL19, archaea/eukaryote-specific domains are the 
N-terminal domain and the middle region, both buried within the 25S rRNA. 
These domains of eL19 are essential for the assembly of the large ribosomal 
subunit (chapter 2.1.2.). In contrast, the archaea/eukaryote-specific N-terminal 
domain of eL24 lies on the surface of the large subunit and possibly contributes 
to the local structure of the large ribosomal subunit (chapter 2.2.2.). Thus, 
archaea/eukaryote-specific domains of eL19 and eL24 support formation of the 
proper structure of the large ribosomal subunit, which is important for the 
functionality of ribosome. 

Although the origin of eukaryotes remains largely enigmatic, their emerging 
seems to be associated with endosymbiosis between archaeal host and eubac-
terial endosymbiont (McInerney et al. 2014; Martin et al. 2015). It has been pro-
posed that archaeal superphylum Asgard (contains Lokiarchaeota, Thorarchaeota, 
Odinarchaeota and Heimdallarchaeota) is related to the archaeal host and thus 
comprises close archaeal relatives of eukaryotes (Spang et al. 2015; Zaremba-
Niedzwiedzka et al. 2017; Spang et al. 2018). In accordance to the endo-
symbiotic theory, eukaryotic ribosomes has been suggested to be evolved from 
archaeal ribosomes through the attachment of additional structural elements 
such as eukaryote-specific rRNA and rRNA expansion segments, eukaryote-
specific proteins and protein domains (Hartman et al. 2006). Eukaryote-specific 
structural elements formed a vast network of intra- and intersubunit interactions 
that possibly was an evolutionary adaptation to increased complexity of 
ribosomes and cells in general (Klinge et al. 2012; Anger et al. 2013; Poirot & 
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Timsit 2016). For example, eukaryotic r-proteins eL19 and eL24 contain long 
antennae-like eukaryote-specific domains that extend far from the large subunit 
and form eukaryote-specific bridges eB12 and eB13. Archaeal ribosomes lack 
these bridges (Armache et al. 2013). In this study, two archaea-like variants of 
eL19 and eL24 were constructed and examined. Variant eL191-146 lacked the C-
terminal α-helix of the eL19 and was not able to form intersubunit bridge eB12. 
Variant eB13Δ lacked the C-terminal α-helix and the linker region of eL24, 
being impaired eB13 bridge formation. Analysis of these variants revealed that 
both eB12 and eB13 bridges are important for the optimal functionality of the 
budding yeast ribosome (chapters 2.1.1. and 2.2.1.). These bridges contribute to 
the formation of 80S particles and communication between subunits. Thus, 
eukaryote-specific domains of eL19 and eL24 support complex structure of 
eukaryotic ribosomes and may give an advantage in regulation of protein 
synthesis.    
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CONCLUSIONS 

The three-dimensional shape of ribosomes is mainly defined by a tertiary 
structure of ribosomal RNAs that serve as a framework for binding of r-pro-
teins. R-proteins shape a vast network of interactions that contribute to a various 
aspects of the protein synthesis machinery, including assembly of ribosomes 
and interactions of ribosomal subunits. Two r-proteins in this network, eL19 
and eL24, are distinctive by their structure and position in the eukaryotic 
ribosome. Both proteins consist of three domains: an N-terminal globular 
domain, a middle/linker region and a C-terminal α-helical domain. These 
domains can be divided into archaea/eukaryote-specific and eukaryote-specific 
domains. Eukaryote-specific domains of eL19 and eL24 are long antennae-like 
protein moieties that form the eukaryote-specific intersubunit bridges eB12 and 
eB13, respectively.  

In the present study, the functions of different domains of r-proteins eL19 
and eL24 in the budding yeast ribosome were assessed. The mutational analysis 
of the eL19 revealed that the N-terminal domain and the middle region 
contribute to the cleavage of 27SB pre-rRNAs during assembly of the large 
ribosomal subunit. These archaea/eukaryote-specific domains of eL19 are 
essential for cell viability. Formation of the eB12 bridge by the eukaryote-
specific C-terminal α-helical domain is important for the optimal functionality 
of the budding yeast ribosomes. This bridge is required for the stable associa-
tion of ribosomal subunits in the absence of other ligands. As for the eL24, 
eukaryote-specific domains of this protein form intersubunit bridge eB13, and 
are necessary for the formation of 80S ribosomes. The eB13 bridge is involved 
in both initiation and elongation steps of translation. The archaea/eukaryote-
specific N-terminal domain of eL24, in turn, contributes to the initiation step of 
translation, possibly through the regulation of the local structure of large ribo-
somal subunit. 

Our data demonstrate that different structural domains of eL19 and eL24 
bear distinctive functions. The archaea/eukaryote-specific domains are impor-
tant parts of the intrasubunit interaction network that ensures the proper 
formation of large ribosomal subunit structure. The eukaryote-specific domains 
of eL19 and eL24 contribute to the network of intersubunit interactions and 
support translation by stabilizing the association of ribosomal subunits. 
Altogether, our results broaden the knowledge about the principles of the struc-
tural organization of the eukaryotic ribosome. Moreover, the functional impor-
tance of the eukaryote-specific bridges eB12 and eB13 for the protein synthesis 
is shown for the first time.  
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SUMMARY IN ESTONIAN 

Ribosoomi valkude eL19 ja eL24 funktsioonid  
pagaripärmi ribosoomis 

Ribosoomid on makromolekulaarsed kompleksid, mis viivad läbi valgu sünteesi 
kõikides eluslooduse domeenides (Bacteria, Archaea ja Eukarya). Eukarüoodi 
ribosoom (pagaripärmi Saccharomyces cerevisiae 80S ribosoomi näitel) koos-
neb neljast ribosomaalse RNA molekulist (rRNA)  ja 79 valgust, mis on jagatud 
kahe ribosomaalse alaühiku vahel. Väikese (40S) alaühiku koostisesse kuulub 
18S rRNA ja 33 valku. Selle alaühiku põhilisteks funktsionaalseteks üksusteks  
on dekodeerimistsenter, aminoatsüül-, peptidüül- ja väljuva transpordi RNA-de 
(tRNA) seondumiskohad ning informatsiooni RNA (mRNA) kanal. Translat-
siooni initsiatsiooni käigus seob väike alaühik initsiatsioonifaktoreid, tänu mil-
lele seob ta initsiaator-tRNA-d ja skaneerib mRNA-d. Translatsiooni elongat-
siooni käigus valitakse väikese alaühiku dekodeerimistsentris korrektne 
aminoatsüül-tRNA sõltuvalt mRNA järjestusest. Suure (60S) alaühiku koosti-
sesse kuulub kolm rRNA molekuli (5S rRNA, 5,8S rRNA ja 25S rRNA) ning 
46 valku. Suure alaühiku põhilisteks funktsionaalseteks tsentriteks on peptidüül-
transferaasne tsenter, tRNA-de seondumiskohad ning peptiidi kanal. Translat-
siooni elongatsiooni käigus sünteesitakse peptidüültransferaasses tsentris 
peptiidside – protsess, mida katalüüsib rRNA. Seega arvatakse, et ribosoom on 
ürgne, RNA maailmast pärit ribosüüm. 
  Ribosoomi alaühikute kolmemõõtmelist struktuuri määrab peamiselt rRNA 
tertsiaarne struktuur. Valgud omakorda tagavad rRNA korrektse voltumise ja 
stabiliseerivad selle struktuuri. Üheskoos moodustavad rRNA-d ja valgud euka-
rüoodi ribosoomis ulatusliku interaktsioonide võrgustiku. Need on valk-valk, 
rRNA-valk ning rRNA-rRNA alaühikutesisesed ja -vahelised kontaktid, mis 
tagavad ribosoomi optimaalse funktsionaalsuse. Näiteks, pagaripärmi ribosoo-
mis on kirjeldatud 17 alaühikutevahelist silda, millest 12 on konserveerunud 
ning 5 spetsiifilised eukarüoodi ribosoomi jaoks. Alaühikutevahelised sillad 
tagavad alaühikute koospüsimise ja liikumise translatsiooni käigus. 

Eukarüoodi ribosoomi interaktsioonide võrgustikku kuulub kaks selle töö 
raames uuritud valku – eL19 ja eL24. Mõlemad valgud koosnevad kolmest do-
meenist: N-terminaalne domeen, keskmine regioon ja C-terminaalne α-heeli-
kaalne domeen. Neid domeene saab jagada arhede- ja eukarüoodispetsiifilisteks 
ning eukarüoodispetsiifilisteks domeenideks. Valkude eL19 ja eL24 eripäraks 
on pikad C-terminaalsed domeenid, mis osalevad alaühikutevaheliste eukarüoo-
dispetsiifiliste sildade eB12 ja eB13 moodustamisel. Vaatamata sellele, et 
valkude struktuur on teada, ei ole nende struktuursete domeenide funktsioone 
senini välja põhjalikult uuritud. Lisaks, on eukarüoodispetsiifiliste sildade eB12 
ja eB13 roll suuresti teadmata. Käesolev töö keskendub valkude eL19 ja eL24 
funktsioonidele pagaripärmi ribosoomis. 

Pagaripärmi ribosoomi valku eL19 kodeerivad kaks paraloogset geeni: 
RPL19A ja RPL19B. Mõlema geeni kustutamine on rakkudele letaalne, mis 



70 

näitab, et valk eL19 on eluks hädavajalik. On teada, et valgu eL19 puudumine 
põhjustab suure ribosomaalse alaühiku kokkupakkimise defekte, kus 27SB pre-
rRNA-d ei lõigata C2 lõikekohast. Meie tulemused näitavad, et C2 lõikamisel 
mängivad rolli eL19 valgu N-terminaalne domeen ja keskmine regioon. Just 
need arhede- ja eukarüoodispetsiifilised eL19 valgu domeenid on hädavajalikud 
pärmirakkude eluks. Teine eL19 valgu roll seisneb silla eB12 moodustamisel, 
mis toimub eL19 eukarüoodispetsiifilise C-terminaalse α-heelikaalse domeeni 
vahendusel. Valgu eL19 deletsioonimutantide analüüsil selgus, et eB12 silla 
funktsionaalsus peamiselt sõltub valk-rRNA interaktsioonidest valgu eL24 ja 
18S rRNA lisasegmendi ES6S vahel.  Kuigi eB12 sild ei ole eluks hädavajalik, 
on see erakordselt oluline ribosoomi optimaalseks toimimiseks. Biokeemiline 
analüüs näitas, et eB12 sild toetab ribosoomi alaühikute koospüsimist in vitro.  

Pagaripärmi ribosoomi valku eL24 kodeerivad paraloogsed geenid RPL24A 
ja RPL24B. See valk ei ole eluks hädavajalik. Varasemast on teada, et valgu 
eL24 puudumisel aeglustub rakkude kasv, kuhjuvad poolteistmeersed ribosoo-
mid ning langeb translatsiooni elongatsiooni kiirus. Meie analüüs näitab, et 
valgu eL24 N-terminaalne domeen mängib rolli translatsiooni initsiatsioonil. On 
võimalik, et see arhede- ja eukarüoodispetsiifiline domeen tagab suure alaühiku 
struktuuri korrektse moodustamise. Valgu eL24 keskmine regioon ja C-
terminaalne α-helikaalne domeen on eukarüoodispetsiifilised domeenid, mis 
moodustavad silla eB13. Käesoleva töö raames selgus, et silla funktsioneerimise 
tagavad eelkõige valk-valk interaktsioonid valkude eL24 ja eS6 vahel. Sild 
eB13 on vajalik 80S ribosoomi moodustamiseks in vivo ja in vitro. Rakuvaba 
translatsiooni analüüs näitas, et eB13 sild mängib rolli nii translatsiooni 
initsiatsioonis kui ka elongatsioonis. 

Saadud tulemuste põhjal saab järeldada, et valkude eL19 ja eL24 funkt-
sioonid on jagatud struktuursete domeenide vahel. Arhede- ja eukarüoo-
dispetsiifilised domeenid tagavad suure alaühiku struktuuri korrektse moodus-
tamise. Eukarüoodispetsiifilised domeenid moodustavad alaühikutevahelisi 
sildasid eB12 ja eB13. Need sillad toetavad efektiivset valgusünteesi stabili-
seerides ribosoomi alaühikute koospüsimist. Kokkuvõtteks, käesoleva doktori-
väitekirja tulemused laiendavad meie teadmisi eukarüoodi ribosoomi struk-
tuurse ülesehituse printsiipidest. Lisaks, doktoriväitekirjas näidatakse esma-
kordselt eukarüoodispetsiifiliste alaühikutevaheliste sildade olulisus ribosoomi 
funktsionaalsuse jaoks. 
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