
Return Codes from Lattice Assumptions⋆

Audhild Høg̊asen and Tjerand Silde

Department of Mathematical Sciences
Norwegian University of Science and Technology
audhildh@stud.ntnu.no, tjerand.silde@ntnu.no

Abstract. We present an approach for creating return codes for lattice-
based electronic voting. For a voting system with four control compo-
nents and two rounds of communication our scheme results in a total
of 2.3MB of communication per voter, taking less than 1 s of computa-
tion. Together with the shuffle and the decryption protocols by Aranha et
al. [1,2], the return codes presented can be used to build a post-quantum
secure cryptographic voting scheme.

Keywords: Lattice Cryptography · Return Codes · Electronic Voting

1 Introduction

In 2019, Switzerland put their electronic voting project on hold after having run
electronic voting trials for 15 years. Now, electronic voting trials with a new and
improved protocol [6] are in the planning. The new protocol offers individual
and universal verifiability. Individual verifiability is achieved by using return
codes, giving each voter a confirmation that the correct vote was registered by
the system. The protocol does not assume a trustworthy voting server but does
assume that at least one so-called control component is trustworthy.

The protocol [6] is based on discrete log-type assumptions, whose security
could in a decade or two be broken by quantum computers. This is not only a
future threat of integrity, but also a threat of privacy of votes cast today.

We present a lattice-based voting phase suitable for electronic voting with
return codes, extending the framework by Aranha et al. [1,2]. While [1] includes
return codes, but assumes a trustworthy voting server, [2] allows for an untrust-
worthy voting server, but does not include return codes. We fill this gap.

2 Lattice-Based Building Blocks

Let Rq = Zq[X]/⟨XN +1⟩ where N a power of 2, and p << q primes. We recall
the setup in [2, Sec 3].

BGV Encryption [4] of messagem ∈ ZN
p with public key pk = (a, b) = (a, as+pe)

with short uniform secret key sk = (s, e) is computed with short uniform r, e′, e′′:

c = Enc(m, pk) = (u, v) = (ar + pe′, br + pe′′ +m) (1)

⋆ This short paper is a compressed version of the master thesis of Audhild Høg̊asen,
which is available at ntnuopen.ntnu.no and tjerandsilde.no/academic.

ntnuopen.ntnu.no
tjerandsilde.no/academic

Commitments [3] to messages m ∈ Rq are computed with public matrices
A1 =

[
In A′

1

]
, A2 =

[
0ℓ×n Iℓ A

′
2

]
where A′

1 and A′
2 are sampled uniformly

random and a short uniform random vector d in the following way:

JmK = Com(m, d) = (c1, c2) = (A1d,A2d+m) (2)

The described ciphertexts and commitments are additively homomorphic.

Zero-Knowledge Proofs are used to prove properties of commitments without
revealing the openings. πLIN [2, Sec 3.3] proves a linear relation α1m1 + · · · +
αnmn = αn+1 with respect to commitments Jm1K, . . . JmnK and public scalars αi.
πAEx [2, Sec 3.4] is an amortized exact proof of short openings. πNEx [5, Section
5.2] is a proof of bounded opening. All these zero-knowledge proofs are proved
secure in the random oracle model, but not in the quantum random oracle model.

3 The Swiss Post Voting Protocol

The Swiss Post Voting Protocol [6] is a return code-based electronic voting pro-
tocol. The voting phase consists of a SendVote protocol and a ConfirmVote
protocol, with the following parties: voter (V), voting client (VC), voting server
(VS) and several return code control components (CCR). The voter receives in
advance of the election a voting card including return codes cc for each possible
voting option of the election and a confirmation return code VCC. The setup
and printing component making the voting cards are assumed to be trustwor-
thy. It is assumed that at least one control component is trustworthy and that
at least one honest auditor verifies the results using a trustworthy verifier. The
voting client is trusted for privacy. ELpk is the public election key. The SendVote
Protocol shown in Figure 1 consists of the following steps:

1. V enters to VC the start voting key k from the voting card and selects voting
options v corresponding to return codes cc.

2. VC computes the ballot b containing the encrypted vote ρ and encrypted
partial return codes pCC. VC sends b to VS which forwards to CCR. Both
verifies the ballot. CCR conducts a distributed decryption to retrieve pCC.

3. CCR generates return code shares lCCj and sends them to VS.
4. VS combines the shares from CCR. With a mapping table it extracts return

codes cc⋆ that are sent to VC and shown to V.
5. V verifies cc⋆ shown on the screen by checking that they are equal to cc.

V5) cc⋆
?
= cc VC VS CCR

1) k, v

4) cc⋆

2) b

4) cc⋆

2) b

3) lCCj

Fig. 1. The SendVote protocol of the Swiss Post Voting System [6, Figure 21].

In step 2, VC maps the selected∏voting options v of the voter to encodings
{pi}, then computes the vote ρ = pi and the partial return codes {pCCi} =
{pik}. VC computes b consisting of two ciphertexts: an ElGamal encryption of

ρ using ELpk and a multi-recipient ElGamal encryption of {pCCi} using the
public key of CCR. b also includes one additional ciphertext and zero-knowledge
proofs of correct exponentiation and of plaintext equality, proving that the initial
ciphertexts were computed correctly, leaving no options for an untrustworthy VC
to compute the two ciphertexts using different vote encodings {pi}. Finally, b
includes the identity of the voter and a signature [6, Sec 12.2.1.2].

In step 3, each component of CCR computes a return code share lCCj =

H(pCC)kj using a hash function and a secret user-specific key, and provides a
zero-knowledge proof of correct exponentiation [6, Sec 12.2.1.6].

The ConfirmVote protocol [6, Sec 12.2.2] is only initiated by V if the verifi-
cation from SendVote step 5 is successful. The steps of ConfirmVote are similar
to the steps of SendVote. V types another key k′ from the voting card. VC sends
a confirmation key CK=(k′)k to CCR. The CCR components compute shares

′

j

lCCj
′= H(CK)kj and a zero-knowledge proof of exponentiation. VS computes

VCC⋆ using the shares and a mapping table. Only after successfully verifying
VCC⋆ by comparing it with VCC from the voting card, V has completed the
voting process.

We observe that in the ConfirmVote phase, VC gives no exponentiation proof
for the computation of the confirmation key. An incorrect exponentiation would
result in an unsuccessful confirmation a ttempt, but could not change the vote.
The VC can always block the communication from the voter, thus an exponen-
tiation proof would not change the security analysis.

4 Our Voting Protocol

Cryptographic primitives based on discrete log-type assumptions are used in
the Swiss Post voting protocol [6] in steps 2 and 3 of the SendVote protocol of
Figure 1, and similarly for the ConfirmVote p rotocol. The hash-functions used
are considered post-quantum secure.

For privacy, the partial return codes are the weakest part of the protocol [6]
as they are based on the ESGSP assumption. In the protocol we present, these
partial return codes are uniformly random and therefore not an issue for long-
term privacy. Still, these partial return codes must somehow be linked to the
encrypted vote to avoid attacks from a cheating voting client. The ZK-proofs
needed must be post-quantum secure to achieve long-time privacy. Therefore,
when constructing a post-quantum secure voting system, we need to consider
the voting phase as well, not only the tally phase as already described by [2].

Figure 2 presents a SendVote protocol using primitives based on lattice as-
sumptions. In our protocol, VC does not encrypt the partial return codes pCC
as the protocol security reductions for privacy [6, Sec 19.4] omit this encryption
(but it could, if required). Commitments and shortness proofs to the polynomials
k, k′, kj and k′ are public information. The vote ρ is a bit-string which represents
the voting options v chosen by V. There is a natural mapping from bit-strings
to polynomials in Rq with coefficients modulo p = 2.

V5) cc⋆
?
= cc VC VS CCR

1) k, v

4) cc⋆

2) b

4) cc⋆

2) b

3) lCCj

ρ← Encode(v)
cρ ← Enc(ρ,ELpk)

pCC = ρ+ k mod p
b = (cρ, pCC)

kj
hpCC = H(pCC)

lCCj= hpCC · kj+ ej

lCC = ⌊p/q ·
∑

lCCj⌉
cc⋆ = table(lCC)

j j j

Fig. 2. Our SendVote protocol for lattice-based electronic voting.

In step 2, when VC computes pCC mod p, this might produce some com-
putational overflow w hich i s s tored i n a s ecret o verflow bi nary ve ctor z. VC
computes commitments to z and to the randomness used in cρ. A proof πLIN
proves correct computation of pCC by proving that pCC + 2 z = ρ + k mod q.
Proofs πLIN prove correct computation of cρ as in Equation (1). A proof πAEx
proves that z and the randomness used in cρ are binary. Together, these proofs
leave no options for an untrustworthy VC to compute cρ and pCC with different
values of ρ or too much noise.

In step 3, each CCR component computes lCCj, a commitment to the added
noise ej, a proof πLIN proving that lCCj was computed correctly with respect to
hpCC, and a proof πNEx proving that the noise value is bounded.

For the ConfirmVote protocol, VC computes CK = k ′+ k mod p. Each CCR
component computes lCCj

′ = H(CK) · k′+ e′, a commitment to e′, and proofs
πLIN and πNEx.

5 Performance

We use equations, parameters and computed values from [2]. Sizes of ciphertexts,
commitments, πLIN are found in [Table 3]. The size of πAEx for binary secrets and
τ commitments is computed to (443 +6.3τ) KB by [Equation 2] with parameters
from [Sec 7.4]. The size of πNEx for only one commitment proving that both the
randomness and the message is computed correctly is estimated to 30 KB using
[5, Section 5.2] with Gaussian standard deviation for one-time commitments like
in [Table 1]. Timings of cryptographic operations to encrypt and commit are
found in [Table 4]. Protocol timings from [Table 5] are given for an input of
1000 commitments. We use the given timings of πLIN and assume the timings of
πNEx are at most the given timings of πANEx. By contacting the authors of [2]
we received the following timings for an input of 10 commitments: 90τ ms for
πAEx and 60τ ms for πAExV.

For the SendVote protocol, VC computes 1 ciphertext, 5 commitments, πLIN
for 8 commitments, and πAEx for 5 commitments. Each CCR component com-
putes 1 commitment, πLIN for 2 commitments, and πNEx for 1 commitment. For
the ConfirmVote protocol, each CCR component computes 1 commitment, πLIN
for 2 commitments, and πNEx for 1 commitment.

For the SendVote protocol we achieve 1095 KB of communication from VC,
and 145 KB from each CCR component. For the ConfirmVote protocol we achieve

another 145KB from each CCR component. As a concrete example having four
CCR components the total communication size of the two round voting phase is
2.3MB.

For the SendVote protocol we achieve timings of 498ms for VC and 404ms
for each CCR component, computing in parallel, including verifying the proofs
from VC. This results in total timings of 902ms. For the ConfirmVote protocol
we achieve timings of 65ms for each CCR component.

The estimates of communication sizes and timings are meant to give an
indication of the performance of the presented protocol, and not an exact per-
formance of an actual implemented system. The waiting time for V until return
codes are shown could be reduced if VC starts computing commitments and
proofs while V is typing the voting options. We emphasize that the waiting time
is not only dependent on the timing of the cryptographic operations, but would
in practice be dominated by human operations and network-latency. Among
the cryptographic operations, the proofs of exact shortness are the most expen-
sive, both in terms of size and timings. Because exact proofs keep the overall
parameters of the system low, they are to be preferred over relaxed proofs of
boundedness. We expect that future work on more efficient lattice-based zero-
knowledge proofs of exact shortness will improve the concrete efficiency of our
protocol.

Acknowledgements

We thank Diego F. Aranha for providing timings of the underlying protocols.

References

1. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T., Tunge, T.: Lattice-based proof of
shuffle and applications to electronic voting. In: CT-RSA (2021)

2. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T.: Verifiable mix-nets and distributed
decryption for voting from lattice-based assumptions. Cryptology ePrint Archive,
Report 2022/422 (2022), https://ia.cr/2022/422

3. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: International Conference on
Security and Cryptography for Networks. Springer (2018)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (2014)

5. Lyubashevsky, V.: Basic lattice cryptography: Encryption and fiat-
shamir signatures (2019), https://drive.google.com/file/d/1JTdW5ryznp-

dUBBjN12QbvWz9R41NDGU/view

6. SwissPost: Protocol of the swiss post voting system – computational
proof of complete verifiability and privacy – version 0.9.11 (2021),
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-

/blob/97c83a77c9ebda4c3a47fca022c60cbcb006d452/Protocol/Swiss_Post_

Voting_Protocol_Computational_proof.pdf

https://ia.cr/2022/422
https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view
https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/97c83a77c9ebda4c3a47fca022c60cbcb006d452/Protocol/Swiss_Post_Voting_Protocol_Computational_proof.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/97c83a77c9ebda4c3a47fca022c60cbcb006d452/Protocol/Swiss_Post_Voting_Protocol_Computational_proof.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/blob/97c83a77c9ebda4c3a47fca022c60cbcb006d452/Protocol/Swiss_Post_Voting_Protocol_Computational_proof.pdf

	Return Codes from Lattice Assumptions

