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Chapter 1

Introduction

This work was motivated by the Virtual Situation Room project [4]. Its purpose is

to predict the occurrence of some destructive events based on existing data. The goal

of this thesis was to design and implement algorithms useful for analyzing geo-tagged

events.

We focus on two di�erent kinds of data. The �rst type is data distributed normally

around central point sources which is a very common model in literature and in practice.

The second type and the main focus of this work is data distributed along line segment

sources. For example tra�c accidents in rural area are likely to be distributed along

highways which can be modeled as sequences of segments. In each case the goal is to

identify regions where the events of the same type are likely to occur in the future.

We accomplish this by applying model-based clustering techniques to our existing data

observations.

We will start by providing basic background statistical theory needed to bootstrap

the subsequent chapters. At the heart of this work is the well-known Expectation-

Maximization algorithm. We will provide its formal de�nition and describe one of

its most common applications - clustering of normally distributed data. We will also

describe the standard routine for hard clustering of normal data - the k-means algo-

rithm. Then we will suggest algorithms for both hard clustering and Expectation-

Maximization �tting of line segment source data. These segment related algorithms

are the main contribution of this thesis. Routines for dealing with noisy data will also

be presented. Lastly we will introduce the implementation of algorithms and present

the results of practical experiments.
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Chapter 2

Probability distributions

In this chapter, we will explain some basic statistical de�nitions. This is required

for understanding more advanced techniques described in the following chapters.

2.1 Basic de�nitions

Random variable X is a variable whose possible values are the numeric outcomes of

some phenomenon measurements. Random variables can be either discrete or contin-

uous. Discrete variables can only take values from a �xed set of possible exact values.

Continuous random variables can take any numeric value from some known intervals.

We will be working with continuous random variables in this thesis.

Probability density function p (x) of a continuous random variable X describes its

behavior. The probability of X to take values in range [a, b] is equal to the integral of

its density in that range:

Pr [a 6 X 6 b] =

ˆ b

a

p (x) dx .

Density is subject to the following constraints. It is non-negative:

p (x) > 0 ∀x ,

and the total probability is one:

ˆ ∞
−∞

p (x)dx = 1 .

Density can also depend on a number of parameters θ which will further be referred to

as the distribution parameters. The corresponding density will be denoted as p (x | θ).

The expected value E (X) is the average of all possible values ofX. For a continuous

random variable it is de�ned as

E (X) =

ˆ ∞
−∞

xp (x)dx .

Variance Var (X) is a measure of how far from E (X) the values of X are located
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in general. It is de�ned as

Var (X) = E
(
(X − E (X))2

)
.

Covariance Cov (X, Y ) of two random variables X and Y is a measure of how these

variable in�uence each other. It is de�ned as

Cov (X, Y ) = E ((X − E (X)) (Y − E (Y ))) .

Covariance is zero if the variables are independent. If Y tends to increase asX increases

(or vice versa) then the covariance is positive. If Y tends to decrease as X increases

(or vice versa) then the covariance is negative.

The α-th percentile pα of X is the value below which a random observation falls

with probability α:

p (X 6 pα) = α .

The upper α-th percentile qα is the value below which a random observation falls with

probability 1− α:

p (X 6 qα) = 1− α . (2.1)

Sample s is a set of independent, identically distributed random observations that

is used to make assumptions about the studied phenomenon.

2.1.1 Multivariate distributions

Suppose that a random variable X is a d-dimensional random vector, i.e., X =

(X1, · · · , Xd). Each observation xj of sample s is in this case also a d-dimensional vec-

tor, i.e., xj = (xj1, · · · , xjd). The distributions of such vectors are called multivariate

distributions. We will be working with 2-dimensional multivariate distributions in this

thesis.

2.2 Important distributions

2.2.1 Uniform distribution

If a random variable X can take arbitrary values in range [a, b] and nowhere else

then it is said to be uniformly distributed. The distribution is denoted as X ∼ U (a, b)

and has the following density:

p (x) =

{
1
|b−a| x ∈ [a, b] ,

0 x /∈ [a, b] .
(2.2)

Density is constant inside the range (hence the name) and is proportional to its length,

elsewhere the density is zero.
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2.2.2 Normal distribution

A normally (or Gaussian) distributed one-dimensional random variableX is denoted

as X ∼ N (µ, σ2). Here µ is the mean (central point of mass of the distribution) and

σ2 is the variance. The density function of the univariate normal distribution is

p (x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (2.3)

The density is therefore proportional to the di�erence between the observation and the

mean being highest at the mean. Variance controls the rate at which the density lowers

as the di�erence increases.

Normal random variable with zero mean and unit variance is called a standard

normal random variable, lets denote it as

Z ∼ N (0, 1) . (2.4)

Suppose that X is a non-standard normal random variable. It is possible to construct

a standard one from it via standardization:

X − µ
σ

∼ N (0, 1) . (2.5)

Any linear transformation of X is also a normal random variable:

aX + b ∼ N
(
aµ+ b, a2σ2

)
∀a ∈ R, ∀b ∈ R . (2.6)

2.2.2.1 Multivariate normal distribution

Random vector X is normally distributed if any linear combination of X has a

univariate normal distribution:

ATX =
d∑

k=1

akXk ∼ N ∀A ∈ Rd . (2.7)

Multivariate normal distribution is denoted as X ∼ Nd (µ, Σ) where µ is the d-

dimensional mean vector of X and Σ = (Σab) is its covariance matrix of size d× d:

µ = (E (X1) , · · · ,E (Xd)) ,

Σab = Cov (Xa, Xb) .

Probability density function of the multivariate normal distribution is de�ned as

p (x | µ, Σ) =
1

(2π)
d

2 |Σ| 12
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(2.8)

where |Σ| is the determinant of the covariance matrix and Σ−1 is its inverse matrix.
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2.3 Parameter estimation

Suppose we have a sample s = (x1, · · · , xn) of n independently selected and iden-

tically distributed observations. We know the density equation but the parameter θ

values on which it depends are unknown. To get a complete description of data it is

required to estimate the parameters based on s.

Maximum Likelihood Estimation (MLE) method is a common way of unknown

parameter estimation in case of known density equation [7]. Joint density of the sample

characterizes the likelihood of obtaining s from X. Since all xj ∈ s are independent,

the joint density is the product of individual observation densities:

L (θ | s) = p (s | θ) =
n∏
j=1

p (xj | θ) . (2.9)

Therefore the optimal choice of θ must produce the maximal possible value of likelihood

(2.9):

θ̂ = argmax
θ∈Θ

L (θ | s)

where Θ represents the entire parameter space. To simplify computation the log like-

lihood is often used instead:

` (θ | s) = logL (θ | s) =
n∑
j=1

log p (xj | θ) (2.10)

which has the same maximum points as (2.9). Therefore the goal is to �nd

θ̂ = argmax
θ∈Θ

` (θ | s) . (2.11)

There is a standard way of obtaining closed form MLE. First, �nd the partial

derivatives of (2.10) with respect to each parameter ψ ∈ θ. Then set this derivatives

to zero and solve the resulting system of equations

∂`(θ | s)

∂ψ
= 0 ψ ∈ θ .
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Chapter 3

Mixture distributions

3.1 Introduction

Suppose we are dealing with a mixture probabilistic model, i.e., the model in which

the overall population consists of M sub-components, each having its own distribution

with speci�c parameters θi.

Let p (x | θi) denote the density of the i-th component. Let ωi denote the weight

of the i-th component in the mixture, i.e., the probability that a random observation

is originated from i. Due to the law of total probability

M∑
i=1

ωi = 1 . (3.1)

Let ω denote the vector of all mixture weights and let Θ denote the vector of all

mixture parameters:

ω = (ω1, · · · , ωM) ,

Θ = ω ∪ θ .

Then the density of the entire mixture is de�ned as the convex combination of individual

component densities:

p (x | Θ) =
M∑
i=1

ωip (x | θi) . (3.2)

3.2 Mixture parameter estimation

Suppose we have a sample s selected from the mixture population. We have made

assumptions about the distributions of mixture components, i.e., we known the density

equations but no actual Θ values. All observations xj are unlabeled, i.e., it is unknown

from which component each observation originates from. The goal is to determine the

unknown parameters Θ based on the sample.
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3.2.1 Expectation maximization algorithm

Direct Maximum Likelihood estimation is hard since the sample contains unknown

data - component membership of observations. One common way of estimating para-

meters in case of hidden data is the Expectation Maximization (EM) algorithm which

estimates parameters iteratively [6]. The idea is that the current estimations can be

used for making assumptions about observation origins. And those in turn can be used

to �nd new and better parameter estimations. The process continuous until conver-

gence, i.e., until each subsequent iteration doesn't give signi�cantly better estimations

than the previous one.

Let z denote the unobserved vector of sample origins of length n, i.e., zj = i if

sample element xj comes from the i-th component. According to the law of total

probability and (2.10)

` (Θ | s) =
n∑
j=1

log

(
M∑
i=1

p (xj, zj = i | Θ)

)
. (3.3)

Suppose we have the current parameter estimates Θ(m) obtained as a result of m-th

iteration. If each j-th element of (3.3) is multiplied and divided by p
(
zj = i | xj, Θ(m)

)
then the equation becomes

`
(
Θ, Θ(m) | s

)
=

n∑
j=1

log

 M∑
i=1

p
(
zj = i | xj, Θ(m)

) p (xj, zj = i | Θ)

p
(
zj = i | xj, Θ(m)

)


where

M∑
i=1

p
(
zj = i | xj, Θ(m)

)
= 1 ∀j ∈ (1, · · · , n) .

Then each component satis�es the conditions for Jensen's inequality [14] with

p
(
zj = i | xj, Θ(m)

)
being the weight and logarithm being the convex function:

`
(
Θ, Θ(m) | s

)
> Q

(
Θ | s, Θ(m)

)
where

Q
(
Θ | s, Θ(m)

)
=

n∑
j=1

M∑
i=1

p
(
zj = i | xj, Θ(m)

)
log

p (xj, zj = i | Θ)

p
(
zj = i | xj, Θ(m)

)
=

n∑
j=1

M∑
i=1

p
(
zj = i | xj, Θ(m)

)
log p (xj, zj = i | Θ)

−
n∑
j=1

M∑
i=1

p
(
zj = i | xj, Θ(m)

)
log p

(
zj = i | xj, Θ(m)

)
.
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Lets denote the two components of this function as Q′ and Q′′:

Q
(
Θ | s, Θ(m)

)
= Q′

(
Θ | s, Θ(m)

)
−Q′′

(
Θ | s, Θ(m)

)
where

Q′
(
Θ | s, Θ(m)

)
=

n∑
j=1

M∑
i=1

p
(
zj = i | xj, Θ(m)

)
log p (xj, zj = i | Θ) ,

Q′′
(
Θ | s, Θ(m)

)
=

n∑
j=1

M∑
i=1

p
(
zj = i | xj, Θ(m)

)
log p

(
zj = i | xj, Θ(m)

)
.

The goal is to �nd new estimates of Θ which maximize the outcome of Q given the

sample and the current estimates:

Θ(m+1) = argmax
Θ

Q
(
Θ | s, Θ(m)

)
.

Since Q′′ doesn't depend on Θ it can be ignored during maximization. Therefore the

problem boils down to maximizing Q′:

Θ(m+1) = argmax
Θ

Q′
(
Θ | s, Θ(m)

)
.

This is the maximization step of the EM algorithm. For simplicity we will denote Q′

as simply Q and it will be referred to as the Q-function:

Q
(
Θ | s, Θ(m)

)
=

n∑
j=1

M∑
i=1

p
(
zj = i | xj, Θ(m)

)
log p (xj, zj = i | Θ) .

In case of a mixture model p (xj, zj = i | Θ) is the density of the i-th component at

xj:

p (xj, zj = i | Θ) = p (zj = i | Θ) p (xj | θi) = ωip (xj | θi)

where ωi is the weight of the i-th component and θi are its distribution parameters.

In the Expectation step we use the current parameter estimates Θ(m) to compute

the posterior membership probabilities p
(
zj = i | xj, Θ(m)

)
. Lets denote these prob-

abilities as τ
(m)
ij . Each τ

(m)
ij is the probability of xj belonging to the i-th component

based on the parameter estimates we have after the m-th iteration:

τ
(m)
ij =

ω
(m)
i p

(
xj | θi(m)

)
M∑
h=1

ω
(m)
h p

(
xj | θ(m)

h

) . (3.4)

The full form of the Q-function in case of mixture model is then
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Q
(
Θ | s, Θ(m)

)
=

n∑
j=1

M∑
i=1

τ
(m)
ij (logω

(m)
i + log p (xj | θi)) . (3.5)

The algorithm uses the current parameter estimates in order to calculate the pos-

terior probabilities τ
(m)
ij in the E-step and they, in turn, are used in order to �nd new

(and better) estimates in the M-step. The process stops when parameter estimations

have converged to a value close enough to a local maximum, i.e.,∣∣∣Q(Θ | s, Θ(m+1)
)
−Q

(
Θ | s, Θ(m)

)∣∣∣ 6 εEM (3.6)

where εEM is some user-de�ned convergence threshold. This threshold is an absolute

number which depends on the model being analyzed. A more universal way is to express

the threshold in terms of percents. We decide that the algorithm has converged if the

di�erence between Q
(
Θ | s, Θ(m+1)

)
and Q

(
Θ | s, Θ(m)

)
is εEM percents or less.

That way we can reuse the same εEM value for di�erent settings.

In order to ease maximization the Q-function can be decomposed into a sum of indi-

vidual components which are independent from each other in terms of parametrization:

Q
(
Θ | s, Θ(m)

)
=

M∑
i=1

Qi

(
Θ | s, Θ(m)

)
+Q0

(
Θ | s, Θ(m)

)
where

Qi

(
Θ | s, Θ(m)

)
=

n∑
j=1

τ
(m)
ij log p (xj | θi) , (3.7)

Q0

(
Θ | s, Θ(m)

)
=

M∑
i=1

n∑
j=1

τ
(m)
ij logωi .

The main task can thus be split into multiple sub-tasks of maximizing individual Qi.

The component weight estimator is universal, i.e., it is the same for all distributions

and can be obtained by maximizing Q0

(
Θ | s, Θ(m)

)
with respect to ωi:

ω̂
(m+1)
i =

1

n

n∑
j=1

τ
(m)
ij (3.8)

which is simply the average of each components membership probabilities.

Sometimes it is also possible to obtain the exact formulas of parameter estimators

in closed form. In cases where such solution is not available it is sometimes possible to

estimate the values using other techniques, e.g., iteratively.

3.2.1.1 Generalized Expectation-Maximization algorithm

Despite the name it is actually not strictly necessary to maximize the expectation.

It is su�cient to just increase the value of the objective function after each iteration.
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Although such procedure produces slower convergence it is still guaranteed to reach

local maximum eventually. This technique is known as the Generalized Expectation

Maximization [6].

3.2.1.2 Local vs global maximum

Note that EM is guaranteed to reach its local maximum which is not necessarily

the global maximum. It can converge to di�erent results if we execute it more that

once on the same data set and with di�erent initial settings. It is a common practice

to run the entire �tting procedure multiple times and select the model with the highest

likelihood (3.3).

3.3 Constrained EM algorithm

Sometimes we want to control the way parameters are estimated. In particular,

we want to control the weight of components. If left uncontrolled some components

might disappear and some might grow too large. To prevent this we can de�ne weight

constraints and specify maximum or minimum allowed weight values. This technique

is described for example in [12]. Lets denote the constraints as ωmax and ωmin cor-

respondingly. Suppose we have estimated the weights after some iteration. Let Vmin
be the set of components whose weight is smaller than ωmin. Let Vmax be the set

of components whose weight is greater than ωmax. We set weights of all Vmin com-

ponents to ωmin and weights of all Vmax components to ωmax. Due to total weight

constraint (3.1) we also have to normalize estimated weights of other components. Let

I be the set of components whose initial weight did not violate any constraints, i.e.,

I = (1, · · · ,M) \ (Vmin ∪ Vmax). The sum of all weights is

S = ωmin | Vmin | +ωmax | Vmax | +
∑
i∈I

ωi .

In order to make this sum equal to one we can multiply each ωi by a normalization

factor f :

ωmin | Vmin | +ωmax | Vmax | +
∑
i∈I

ωif = 1 .

From this we can derive the equation for f itself:

f =
1− ωmin | Vmin | −ωmax | Vmax |∑

i∈I

ωi
.

As a result each component i will have ωmin 6 ωi 6 ωmax at any stage while (3.1) is

still respected.

Figure (3.1) illustrates constrained vs non-constrained �tting. Color of the point

indicates the component that this point is assigned to with larger probability. In the

non-constrained case one of the components becomes very small in favor of the other.
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It can only get smaller in the next iterations, up until disappearing. In the constrained

case we control its weight and therefore it cannot get smaller than allowed.

(a) Initial (b) Without constraint (c) With constraint

Figure 3.1: Constrained vs non-constrained EM

3.4 EM algorithm initialization

The simplest way to start the �rst iteration of EM is to provide some randomly

generated initial values of model parameters and hope that it will eventually reach

its maximum. This approach, however, might result in algorithm converging to values

which are far from being optimal. It also means that the algorithm will need to perform

more iterations until convergence. A better solution is to obtain the initial estimates

by using a hard clustering procedure suitable for the underlying model. Then the EM

algorithm receives input that is already close to optimal and it only needs to adjust

the parameters for improved sample �tting. Hard clustering is described in detail in

Chapter (4).

This gives as the initial membership probabilities τ (−1). We use them to bootstrap

the EM routine, i.e., parameters Θ(0) can be computed with the usual equations of the

maximization step.

A generalized version of the suitable hard clustering algorithm looks like this. We

�nd τ (−1) by clustering sample s into M components. First, M initial centers are

chosen. Then at each iteration each sample point is assigned to the cluster of its closest

center. After that each clusters center is re-calculated by �tting to the observations

assigned to that cluster. The process continues until convergence, i.e., until no more

re-assignments are performed. Initial membership estimates are then obtained from

hard clustering result as follows:

τ
(−1)
ij =

{
1 if xj belongs to cluster i ,

0 otherwise .

Such hard clustering algorithms are typically non-deterministic and can converge

to di�erent results if we start them from di�erent initial positions. We can execute

the algorithm multiple times and select the best result, i.e., the one that minimizes

the sum of squared distances from sample points to their cluster centers (see Section

(4.1.2.5)).
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3.5 Estimating the number of components

An important limitation of the described approach is that the number of compo-

nents M has to be given a priori. If those values are unknown then it is required to

choose the model that best �ts to the given sample from a set of candidate models.

Problem of over�tting also arises since models with more parameters tend to have big-

ger likelihood. The reason is that they can be more closely �tted to the sample without

generalizing from it. Consider Figure (3.2). The second model has more parameters

than the �rst one which allows it to �t more closely to the data. Therefore it has higher

likelihood. But it doesn't mean that the second model describes population in a better

way since it might be over�tted to this concrete sample.

(a) Less parameters (b) More parameters

Figure 3.2: Number of parameters and over�tting

One possible way is to use the Bayesian Information Criterion (BIC) measure [20].

For model M its BIC value is obtained by using the equation

BICM = 2`
(
s | Θ̂M

)
− | ΘM | log n (3.9)

where Θ̂M is the �nal estimation of parameters at which the EM has converged and

| ΘM | is the total number of parameters. This criterion penalizes models with larger

number of parameters thus reducing the risk of over�tting. E.g., in case of Figure (3.2)

the �rst model would probably have higher BIC value than the second over�tted one.

To �nd the best model we have to choose the minimum and maximum allowed

number of components Mmin and Mmax. Then we �t our sample to each M ∈
[Mmin, · · · ,Mmax]. This produces Mmax − Mmin + 1 mixture estimations. The op-

timal mixture model is the one that has the largest BIC value.
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Chapter 4

Model based clustering

Suppose we have a data set of objects and the goal is to partition these objects

into groups based on some meaningful similarity measure. This problem is known as

clustering and several di�erent approaches have been developed for it. E.g., one way is

to assign each object into exactly one cluster (also known as hard clustering). Another

way is to calculate the probabilities of each object belonging to each cluster (soft or

fuzzy clustering).

The initial situation for the clustering problem, however, is very similar to the

probability mixture parameter estimation problem described in the previous chapter.

There we also have a set of unlabeled observations initially and the goal is to estimate

model parameters based on them. If we make assumptions about the probabilistic dis-

tribution of the data then the clustering problem can be transformed into the mixture

parameter estimation problem. The objects are sample observations and probabilistic

mixture components are clusters. Inference of parameters leads to the inference of

likelihood of each object belonging to each cluster which means that the objects can

be assigned to clusters based on the probabilistic likelihood measure. This approach is

known as model based clustering.

In this chapter, we will introduce some data models that we worked with. Then we

will describe both hard clustering and soft clustering routines that can be applied to

these models.

4.1 Data models

In the next sections, we are going to consider data representing some events an-

notated with point geographical coordinates. This kind of data is in general case

represented by a tuple x = (x1, x2) = (latitude, longitude). We will analyze three

di�erent kinds of data distribution speci�c to geo-tagged events.

4.1.1 Point source events

Events such as tra�c accidents in large cities are likely to be distributed normally

around city centers (see Figure (4.1)). Therefore we can model them as multivariate

Gaussians, see Section (2.2.2.1).
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Figure 4.1: Point source events

4.1.2 Line segment source events

Some events are likely to be distributed along line segments rather than single

central points. E.g., rural area tra�c accidents are probably distributed along highways

which can be modeled as line segments (see Figure (4.2)). Next we will describe this

model in more detail.

Figure 4.2: Line segment source events

4.1.2.1 Distance distribution

Suppose we have a line on a 2-dimensional plane parametrized by a vector of co-

e�cients β = (β0, β1, β2) where β1 and β2 determine direction and β0 corresponds to

bias of the line (see Figure (4.3)):

Lβ = {y = (y1, y2) | β1y1 + β2y2 = β0} . (4.1)

Lets also require an additional constraint for β:

β2
1 + β2

2 = 1 . (4.2)
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Figure 4.3: Line

The distance between some arbitrary point x = (x1, x2) and Lβ is the shortest

perpendicular distance between x and y ∈ Lβ. Its equation is

d (x, Lβ) = |β1x1 + β2x2 − β0| . (4.3)

Suppose X is a random vector such that its values are distributed along Lβ. Lets

assume that distances d (X, Lβ) are distributed normally with zero mean and some

variance σ2:

d (X, Lβ) ∼ N
(
0, σ2

)
.

The density of distance distribution is parametrized by β and σ2. It is the normal

distribution density of distances. According to (2.3) it takes the form

p
(
x | β, σ2

)
=

1√
2πσ2

exp

(
−(β1x1 + β2x2 − β0)2

2σ2

)
. (4.4)

4.1.2.2 Projection distribution

Let qβ (x) denote the projection of point x onto line Lβ:

qβ (x) = argmin
y∈Lβ

d (x, y) = (z1 (x) , z2 (x)) (4.5)

where

z1 (x) = x1 − β1 (β1x1 + β2x2 − β0) ,

z2 (x) = x2 − β2 (β1x1 + β2x2 − β0) .

Lets assume that projections are distributed uniformly in some segment [a, b] of
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Lβ as in Figure (4.4). According to (2.2) the density of projection distribution is

p (x | β, a, b) =

{
1

d(a, b)
qβ (xj) ∈ [a, b] ,

0 qβ (xj) /∈ [a, b]
(4.6)

where

d (a, b) > 0 ,

i.e., a and b have to be di�erent points.

Figure 4.4: Projections

4.1.2.3 Total distribution

Since the projection of a point and distance from it are assumed to be independent

the entire line distribution density is

p
(
x | β, σ2, a, b

)
= p1

(
x | β, σ2

)
p2 (x | β, a, b) (4.7)

where p1 is the distance distribution density (4.4) and p2 is the projection distribution

density (4.6).

4.1.2.4 Distance between a point and a segment

Intuitively, the distance between a point x and a segment [a, b] can be expressed

as

d (x, a, b) =

{
d (x, Lβ) qβ (x) ∈ [a, b] ,

min (d (x, a) , d (x, b)) otherwise .
(4.8)

In case x projects onto the segment like x1 in Figure (4.5) we use the diagonal distance

between x and the line. Otherwise it is the distance from x to its closest segment

endpoint like in case of points x2 and x3 in Figure (4.5).
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Figure 4.5: Distance between points and a segment

4.1.2.5 Line coe�cient �tting

In both hard and soft clustering we have to deal with estimating line orientation

coe�cients β based on sample. Consider the following function S:

S (β) =
n∑
j=1

wjd (xj, Lβ)2 (4.9)

where

0 6 wj 6 1 j ∈ (1, · · · , n) .

It is the sum of squared distances between observations xj and line Lβ. Distances are

weighted by wj that de�nes the contribution of observations to the total sum. The

goal is to �nd

β̂ = argmin
β

S (β) .

which is known as the Total Least Squares problem [10].

In Section (4.3.2.1) it will be shown that bias term β0 can be expressed as

β0 = β1x1 + β2x2 (4.10)

where x1 and x2 denote the weighted sample mean of the corresponding dimension

values:

x1 =

n∑
j=1

wjxj1

n∑
j=1

wj

,
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x2 =

n∑
j=1

wjxj2

n∑
j=1

wj

.

If we take equation (4.10) into account then (4.9) can be expressed as

S (β) =
n∑
j=1

wjd (xj, Lβ)2

=
n∑
j=1

wj (β1xj1 + β2xj2 − β0)2

=
n∑
j=1

wj (β1xj1 + β2xj2 − β1x1 − β2x2)2

=
n∑
j=1

wj (β1 (xj1 − x1) + β2 (xj2 − x2))2 .

The same equation in matrix form is

S (β) = (Uβ)T W (Uβ) (4.11)

where U is a n× 2 matrix such that

U j1 = xj1 − x1 ,

U j2 = xj2 − x2

and W is a n× n diagonal matrix of weights such that W jj = wj. We minimize this

function by taking its partial derivative with respect to β and setting it to 0:

∂S

∂β
= 2UTWUβ = 0

which is subject to β2
1 + β2

2 = 1 due to (4.2).

One common way of solving this equation is the Singular Value Decomposition

(SVD) method [9]. The idea is to decompose the matrix UTWU into the product of

three components:

UTWU = LV R (4.12)

where each matrix L, V and R is a 2× 2 matrix. V is a diagonal matrix which values

are known as the singular values of the original matrix. Columns of L are known as

the left singular vectors of the original matrix and the columns of R are known as the

right singular vectors. The total least squares estimates of β1 and β2 are
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(
β̂1, β̂2

)
= Rk (4.13)

such that

k = argmin
k∈(1, 2)

V kk .

I.e., the estimate is the right singular vector that corresponds to the smallest singular

value.

4.1.2.6 Robust coe�cient �tting

Maximization of coe�cients in its basic form requires to �t them to all observations.

This is dangerous, however, since least squares estimation is extremely sensitive to

outliers, i.e., the observations which are located signi�cantly further from the line

than the majority of observations. It gives excessive weight to each distance causing

the outliers to in�uence the total sum signi�cantly. Robust �tting techniques aim at

reducing this in�uence and �t only to the most probable observations. The di�erence

between non-robust and robust �tting is shown in Figure (4.6). In case of non-robust

�tting the few outliers shift the line away from its optimal orientation. In robust �tting

case this in�uence is eliminated.

(a) Non-robust (b) Robust

Figure 4.6: Non-robust vs robust �tting

A common way of making the �tting procedure robust to outliers is to use the

Iteratively Re-weighted Total Least Squares approach (IRTLS) [13]. We re-�t the

elements by iteratively re-weighting them so that the weight is proportional to the

current distance from the line. The points that are further from the current line

estimate have smaller in�uence on calculating the next estimate. The process stops

when the parameters have converged to optimal values.

Suppose we have obtained β̂1 and β̂2 from (4.13). We also calculate β̂0 based on

these values using (4.10). We use these coe�cients β̂ to bootstrap the iterative re-
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�tting procedure:

β(0) = β̂ .

At each iteration r the goal is to minimize the value of the objective function

Sirtls

(
β(r)

)
=

n∑
j=1

wjψ
(
d
(r)
j

)(
d
(r)
j

)2
where

d
(r)
j =| β(r)

1 (xj1 − x1) + β
(r)
2 (xj2 − x2) |

is the distance from xj to the current line estimation and ψ (d) is some outlier weighting

function. The new IRTLS coe�cient estimates are once again the values that minimize

the objective function:

β(r+1) = argmin
β(r)

Sirtls

(
β(r)

)
subject to

(
β
(r+1)
1

)2
+
(
β
(r+1)
2

)2
= 1. They can once again be found by using SVD

where the weight matrix is

W
(r)
jj = wjψ

(
d
(r)
j

)
.

The process terminates when the coe�cients have converged, i.e., when∣∣∣S (β(r+1)
)
− S

(
β(r)

)∣∣∣ 6 εirtls (4.14)

where εirtls is a user de�ned threshold. To make this value more universal we can

also use percentage instead of absolute number just like we did for EM convergence

threshold (3.6). I.e., we decide that the process has converged if the di�erence between

S
(
β(r+1)

)
and S

(
β(r)

)
is εirtls percents or less.

Tukey's bisquare estimator One of the best known distance weighting functions

is Tukey's bisquare estimator [19]:

ψTB (d) =


(

1−
(
d
Cŝ

)2)2 d
ŝ
6 C ,

0 d
ŝ
> C

(4.15)

where C is a tuning constant commonly chosen to be 4.685 and ŝ is the robust esti-

mation of distance standard deviation, e.g., ŝ = MAD
0.6745

where MAD is the weighted

median absolute deviation [11] of distances:

MAD = median
(
| d(r) −median

(
d(r)
)
|
)
.
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We have also used (4.15) for our experiments.

4.1.2.7 Finding segment end points

Once we have estimated the orientation of the line (i.e., β) we have to estimate the

appropriate line segment endpoints a and b. We can do it by analyzing the projections

of our sample on the estimated line.

Suppose we have a �xed unbounded line Lβ and each observation xj projects onto

it producing qβ (xj). Each observation also has a weight wj proportional to its sig-

ni�cance. Only part of observations really belongs to the segment component so it's

required to distinguish �true� elements from the �false� ones. To do that lets assume

some requirements that the observations must satisfy:

1. They must be located signi�cantly close to Lβ.

2. Their weight must be signi�cantly high.

Compliance to the �rst requirement can once again be measured with the distance

weighting function ψ (d) described previously. We set the signi�cance threshold εd for

ψ (d) values. All xj that have ψ (dj) > εd can be considered signi�cantly close to

Lβ. For the second requirement we can use the weight threshold εw. All xj that have

wj > εw can be considered signi�cant in terms of weight. Let S denote the set of

signi�cant observations (Figures (4.7b) and (4.7c)):

S = {xj | ψ (dj) > εd, wj > εw} .

The corresponding signi�cant projections are:

qβ (S) = {qβ (xj) | xj ∈ S} .

We must estimate segment endpoints a and b such that all projections of qβ (S) fall

between them and distance between a and b is minimal. The boundary points of qβ (S)

are the estimations that satisfy these requirements (Figure (4.7d)).
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(a) All observations (b) Signi�cantly close observations

(c) Observations with signi�cant
weight

(d) Projections and segment end-
points

Figure 4.7: Finding segment endpoints

4.1.3 Noise events

The basic models assume that observation originates from one of the base model

components. It might, however, be the case that some elements are outliers and don't

really belong to any base component. Fitting such elements would result in distorted

parameter estimations. Therefore, we introduce an additional data model, the outlier

(or noise) component. It has a uniform distribution with constant probability density

p (x | A) =
1

A

where A denotes the area of the sample space (the area inside the convex hull of s).
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4.2 Hard clustering

4.2.1 The k-means algorithm

The k-means algorithm [17] is a popular algorithm for clustering Gaussian mixture

data. We start by selecting M initial cluster centers as described in Section (4.2.1.1).

Then at each iteration we assign observations to their closest cluster centers based on

the Euclidean distance measure. Then we re-calculate the cluster centers to be the

centroids of their assigned elements. The algorithm stops when there are no more

re-assignments of observations.

4.2.1.1 Initial center selection for k-means

One option is to randomly select centers for the �rst iteration. This simple approach

might lead to slower convergence and not-optimal solutions. Another option is to use

more intelligent ways to select initial centers. One popular initialization algorithm is

k-means++ [5].

M centers are selected from sample one by one. Let C be the set of centers known
so far. Let Dj be the distance between observation xj and its closest center:

Dj = min
ci∈C

d (xj, ci) .

The �rst center c1 is selected randomly as one of the observations. When selecting

centers c2, · · · , cM each observation can be selected with probability

pj =
D2
j

n∑
k=1

D2
k

.

I.e., observations that are located far from current centers have higher chance of be-

coming the next center. Therefore k-means++ �nds initial centers that are maximally

apart from each other. The process of selecting 4 cluster centers is depicted in Figure

(4.8).
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(a) c1 (b) c2

(c) c3 (d) c4

Figure 4.8: K-means++ with 4 cluster centers

4.2.2 The k-segments algorithm

In case of line segment source model we can cluster observations around central

segments. This clustering algorithm will further be referred to as k-segments. First,

we select M initial segments as described in Section (4.2.2.1). Then at each iteration

we assign observations to their closest segments based on the distance measure (4.8).

Then we re-�t the segments to their assigned elements in the following way.

Let Ci denote the set of observations assigned to the i-th cluster. We need to �nd

the βi estimates of the cluster line, i.e., its orientation. For that we apply IRTLS

algorithm (see Section (4.1.2.6)) giving Ci as input. There are no observation weights

here so we take wj = 1 for all j.

Next step is to �nd segment endpoints ai and bi. For that we �nd projections of

Ci onto Lβ and take their boundary points.

The algorithm stops when there are no more re-assignments of observations.

4.2.2.1 Initial segment selection

Hard clustering relies strongly on the quality of initial segment selection. So this

is a crucial step for the entire procedure. For our experiments we used the extended
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version of k-means++ algorithm described in (4.2.1.1). Not surprisingly we will refer

to this algorithm as k-segments++.

M center-segments are selected from sample one by one. Let C be the set of centers
known so far. Let Dj be the distance between observation xj and its closest center-

segment ci = (ai, bi):

Dj = min
ci∈C

d (xj, ai, bi) .

First, we need to select an observation yi that will be the seed of the next center-

segment (Figure (4.9a)). The �rst seed y1 is selected randomly. When selecting seeds

y2, · · · ,yM each observation can be selected with probability

pj =
D2
j

n∑
k=1

D2
k

.

First, we need to �nd initial estimation of line coe�cients βi which gives us the

orientation of the line. The ksegment nearest neighbors of yi (lets denote them as Yik)
must probably belong to the same cluster as yi itself. We apply the IRTLS procedure

described in Section (4.1.2.6) giving Yik as input and using weight wj = 1 for all

xj ∈ Yik (Figure (4.9b)). Here ksegment is a user de�ned parameter.

Next step is to �nd the new center-segment endpoints ai and bi. For that we �nd

projections of Yik and take their boundary points (Figure (4.9c)).

(a) Select seed yi (b) Fit line to k nearest neigh-
bors of yi

(c) Find segment endpoints

Figure 4.9: Finding a center-segment

K-segments++ also tries to �nd initial centers that are maximally apart from each

other. The process of selecting 4 cluster centers is depicted in Figure (4.10).
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(a) c1 (b) c2

(c) c3 (d) c4

Figure 4.10: K-segments++ with 4 cluster centers

4.3 Soft clustering using expectation maximization

algorithm

Expectation-maximization algorithm can be applied for soft clustering of data. Af-

ter running EM on our sample we have the mixture parameter estimations θ̂i as well as

the �nal membership probabilities τ ij, see (3.7) and (3.4). Parameters describe proba-

bilistic components while membership probabilities represent grouping of observations

across clusters. Each observation is assigned to each cluster with certain probability,

therefore EM solves the soft clustering problem.

4.3.1 EM �tting of Gaussian models

Q-function of a single Gaussian component depends on its mean and covariance

matrix:

Qi

(
Θ | s, Θ(m)

)
=

n∑
j=1

τ
(m)
ij log p (xj | µi,Σi) . (4.16)

Closed form equations for these parameter estimation can be obtained via maximization

(2.11) [15]:
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µ̂
(m+1)
i =

n∑
j=1

τ
(m)
ij xj

n∑
j=1

τ
(m)
ij

, (4.17)

Σ̂
(m+1)

i =

n∑
j=1

τ
(m)
ij

(
xj − µ(m+1)

i

)(
xj − µ(m+1)

i

)T
n∑
j=1

τ
(m)
ij

. (4.18)

EM is basically a generalization of k-means and therefore they are very similar in

nature. The di�erence is that EM uses Mahalanobis distance (see Section (4.4.1)) as

its distance measure while k-means uses Euclidean distance. Therefore k-means can

only �t spherical Gaussians while EM can handle Gaussians of arbitrary shape.

4.3.2 EM �tting of line segment models

The Q-function component corresponding to total density (4.7) is

Qi

(
Θ | s, Θ(m)

)
=

n∑
j=1

τ
(m)
ij log p

(
x | βi, σ2

i , ai, bi
)

= −1

2
log (2π)

n∑
j=1

τ
(m)
ij

−1

2
log σ2

i

n∑
j=1

τ
(m)
ij

− 1

2σ2
i

n∑
j=1

τ
(m)
ij d (xj, Lβ)2

−
∑
xj∈Pi

τ
(m)
ij log d (ai, bi)

where

Pi = {xj | qβi (xj) ∈ [ai, bi]}

We can ignore the �rst component since it doesn't depend on any parameters. For

convenience lets decompose the remaining part into separate logical components:

Qi

(
Θ | s, Θ(m)

)
= −1

2
log σ2

i

n∑
j=1

τ
(m)
ij −

1

2σ2
i

Qi1 −Qi2 (4.19)

where
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Qi1 =
n∑
j=1

τ
(m)
ij d (xj, Lβ)2 (4.20)

de�nes the orientation of the line and

Qi2 = log d (ai, bi)
∑
xj∈Pi

τ
(m)
ij , (4.21)

de�nes the segment of the line.

4.3.2.1 Parameter estimation

Maximum Likelihood estimators of β
(m+1)
i0 and distance variance σ

2(m+1)
i can be ob-

tained in closed form by setting the corresponding partial derivatives to zero. The

estimators obtained this way are

σ̂2
i

(m+1)
=

n∑
j=1

τ
(m)
ij

(
β
(m+1)
i1 xj1 + β

(m+1)
i2 xj2 − β(m+1)

i0

)2
n∑
j=1

τ
(m)
ij

(4.22)

and

β̂
(m+1)
i0 = β

(m+1)
i1 xi1 + β

(m+1)
i2 xi2 (4.23)

where xi1 and xi2 denote the weighted sample mean of the corresponding dimension

values:

xi1 =

n∑
j=1

τ
(m)
ij xj1

n∑
j=1

τ
(m)
ij

,

xi2 =

n∑
j=1

τ
(m)
ij xj2

n∑
j=1

τ
(m)
ij

.

Qi1 is identical to the Total Least Squares objective function (4.9). The weights

wj are in this case the membership probabilities τ ij. We choose the robust �tting way

and therefore adjust each estimation using IRTLS described in Section (4.1.2.6). It

means that we don't necessarily maximize the likelihood but only increase it in order

to get robust estimations. Thus, we apply the Generalized Expectation-Maximization
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technique (see Section (3.2.1.1)).

We also use the Generalized EM for estimating segment end points ai and bi.

For that we apply heuristics described in Section (4.1.2.7). Here we can also use

membership probabilities τ ij as the weights wj.

4.4 Prediction regions

Once we have estimated component parameters we can use them to calculate pre-

diction regions. These are the regions that contain observations with some given proba-

bility.

4.4.1 Prediction ellipsoids of Gaussian models

The value (x− µ)T Σ−1 (x− µ) in the density equation (2.8) is the so-called squared

Mahalanobis distance [18] which measures how close a point x is to the mean. When

compared to standard Euclidean distance this measure is more appropriate for dis-

tributions which are not spherically symmetrical since it takes into account also the

correlations between variables X1 and X2.

All points with equal squared Mahalanobis distance also have the same probability

density. Therefore the set of all such points is called a constant probability density

contour. It has the form of an ellipsoid and is centered at µ. Contour axes have the

same directions as eigenvectors ek of Σ−1. Their half-lengths are equal to
√
λkC where

λk is the eigenvalue corresponding to ek and C is the squared Mahalanobis distance

from contour points to µ [15]. All points which are located inside the contour have

distance less than C.

Another distribution that must be mentioned is the chi-squared distribution [8].

The sum of squares of n independent standard normal random variables has chi-squared

distribution with n degrees of freedom:

n∑
k=1

Z2
k ∼ χ2

n, Z ∼ N (0, 1) . (4.24)

In [15] it is shown that the squared Mahalanobis distance has the chi-squared dis-

tribution with 2 degrees of freedom in case of 2-dimensional data:

(x− µ)T Σ−1 (x− µ) ∼ χ2
2 .

Let χ2
2(α) denote the upper α-th percentile of the chi-squared distribution with 2

degrees of freedom. According to (2.1)

p
(

(X − µ)T Σ−1 (X − µ) 6 χ2
2 (α)

)
= 1− α .

In other words, if we take a contour with squared Mahalanobis distance χ2
2 (α) then

there is a 1− α probability that a random observation falls inside that contour. This

contour is called a 1 − α prediction ellipsoid, the half-lengths of its axes are equal

32



to
√
λkχ2

2 (α). This contour is the region that contains observations with some given

probability 1− α. It can be used for visualization purposes like in Figure (4.11) .

Figure 4.11: Prediction ellipse

4.4.2 Prediction bands of segment models

From density equation (4.7) it is clear that the density is equal for points x such

that qβ (x) ∈ [a, b] and 1
σ2 (β1x1 + β2x2 − β0)2 = C where C is some constant. This

corresponds to 2 symmetrical lines L1 and L2 which are parallel to L and located at the

distance of σ
√
C in both directions from it. Segment [a, b] is projected on L1 and L2

producing [a1, b1] and [a2, b2] respectively. Density is equal for all x ∈ [a1, b1]∪[a2, b2].

All points y which are located between these segments have 1
σ2 (β1y1 + β2y2 − β0)2 < C.

We can refer to such prediction regions as prediction bands (see Figure (4.12)).

Recall that since X = (X1, X2) is a multivariate random variable any linear

combination of X1 and X2 is an univariate random variable, see (2.7). Therefore

β1X1 + β2X2 ∼ N . Recall that any linear transformation of a normal random variable

is also a normal random variable, see (2.6). Therefore |β1X1 + β2X2 − β0| ∼ N . This is

the exact equation (4.3) of distance between a point and a line and it has distribution

|β1X1 + β2X2 − β0| ∼ N
(
0, σ2

)
.

According to normal random variable standardization (2.5)

1

σ
|β1X1 + β2X2 − β0| ∼ N (0, 1) .

Recall that the sum of squares of n independent standard normal random variables has

33



chi-squared distribution with n degrees of freedom, see (4.24). Therefore

1

σ2
(β1X1 + β2X2 − β0)2 ∼ χ2

1 .

Let χ2
1(α) denote the upper α-th percentile of a chi-squared distribution with 1

degree of freedom. According to (2.1)

p

(
|β1X1 + β2X2 − β0| 6 σ

√
χ2
1 (α)

)
=

p

(
d (X, Lβ) 6 σ

√
χ2
1 (α)

)
= 1− α .

This can be interpreted as a band with C = χ2
1 (α) and 1−α probability that a random

observation falls inside that band. Therefore we can call it a 1 − α prediction band

where [a1, b1] and [a2, b2] are located at σ
√
χ2
1 (α) distance from [a, b] (see Figure

(4.12)).

Figure 4.12: Prediction band

4.5 Modeling background noise

Recall from Section (4.1.3) that we model noise as a separate uniformly distributed

component of the mixture. Lets denote it as the 0-th component. Let N denote the

elements which are considered to be outliers and let ω0 denote the fraction (weight)

of outliers in the population. The estimation of weight ω0 is then ω̂0 = |N |
n
. Initial

membership probabilities for the noise component can also be found based on N :
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τ
(−1)
0j =

{
1 if xj ∈ N ,

0 otherwise .

The remaining inlier elements xj /∈ N can then be clustered into M components by

using the usual hard clustering routine for �nding τ
(−1)
ij .

4.5.1 Outlier detection with LoOP algorithm

One way to �nd outliers is by using the Local Outlier Probabilities (LoOP) density

based method [16]. The main idea of this approach is that outlier observations typi-

cally have lower local density than their nearest neighbors while cluster elements have

approximately the same local density as their nearest neighbors.

Let Kx denote the set of kLoOP nearest neighbors of element x where kLoOP is a

user de�ned number. The standard distance from y ∈ Kx to x is an estimation of

density around x, i.e., the average distance from x to its neighbor element:

s (x) =

√√√√√
∑
y∈Kx

d (x, y)2

kLoOP
.

The Probabilistic Local Outlier Factor (PLOF) of x is a measure of how close the

standard distance of x is to the average standard distance of its neighbors.

plof (x) =
s (x)

[
∑
y∈Kx

s (y) ]/kLoOP

− 1 .

plof(x) 6 0 indicates that x is not an outlier while higher values indicate an increasing

chance of x being an outlier. This measure, however, is not normalized and its value

depends on the model being analyzed. Therefore we need to normalize the measure and

present the result in the form of probability. Let σplof denote the standard deviation

of PLOF values:

σplof =

√√√√√√
n∑
j=1

plof (xj)
2

n− 1
.

The probability of element x being an outlier is then referred to as the Local Outlier

Probability (LoOP) and is de�ned as

LoOP (x) = max

(
0 , erf

(
plof (x)

σplof

√
2

))
where erf is the Gaussian Error Function:

erf (a) =
2√
π

ˆ a

0

e−t
2

dt . (4.25)
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We can then de�ne a LoOP threshold εLoOP to classify observations as outliers:

N = {x ∈ s | LoOP (x) > εLoOP} . (4.26)

4.5.2 Noise weight constraint

In our experiments we have used a separate maximum weight constraint ωNmax for

the noise component as described in Section (3.3). This prevents the noise component

from growing beyond acceptable limits.

4.6 Final algorithm for �tting with background noise

We start by detecting outliers according to (4.5.1).

Recall from Section (3.5) that we typically don't know the exact number of com-

ponents M . Therefore we have to try �tting all numbers of mixture components

M ∈ [Mmin, · · · ,Mmax].

For each M we �rst partition the inlier observations into M clusters using hard

clustering routines as described in Section (3.4). This procedure is executed multiple

times and the best clustering result is used to bootstrap the EM routine. The entire

�tting ofM components is also repeated multiple times and the model with the highest

likelihood value as selected (see Section (3.2.1.2)). For that model we calculate its

corresponding BIC value according to (3.9). The �nal result is the model that has the

maximum BIC value.

Finally we calculate prediction regions of interest for all resulting mixture compo-

nents as described in Section (4.4). This regions as well as model parameters can be

used for visualization and �nal output.

4.6.1 Con�guration parameters

Our overall algorithm is a composition of multiple sub-routines. Each one of them

depends on one or multiple con�guration parameters that we need to de�ne. See Table

(4.1) for a list of all these parameters and their descriptions.
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Parameter Description Reference

Mmin, Mmax Minimum and maximum number of mixture models to �t. (3.5)

εEM EM convergence threshold. (3.6)

EM trials Number of EM trials per one number of mixture
components.

(3.2.1.2)

Hard
clustering
trials

Number of hard clustering executions per one EM trial. (3.4)

ωmin Minimum allowed weight of a non-noise mixture component. (3.3)

ωNmax Maximum allowed weight of a noise component. (4.5.2)

kLoOP Number of nearest neighbors for LoOP computation. (4.5.1)

εLoOP LoOP threshold. (4.26)

εirtls IRTLS convergence threshold. (4.14)

εd, εw Distance and weight thresholds for segment �tting. (4.1.2.7)
ksegment Number of nearest neighbors for k-segments++ seeds. (4.2.2)

Table 4.1: All parameters
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Chapter 5

Implementation and experimental

results

In this chapter, we are going to describe the actual implementation of the algo-

rithms. We will also describe the settings of practical experiments and present their

results.

5.1 Implementation

The algorithm was implemented in Python, see Appendix A. We have used a number

of third-party libraries for various purposes:

• NumPy [2] for working with arrays and matrices.

• SciPy [3] for calculating the value of Gaussian Error Function (4.25), Singular

Value Decomposition (4.12) and �nding chi-squared percentiles (4.4.2).

• Matplotlib [1] for visualization.

5.2 Experimental results

The implementation was evaluated using both generated synthetic data and a real

world data set. Main goal was to test the line segment �tting routine. Therefore, we

shall only present segment �tting results in this work. Point source data �tting using

EM of Gaussian mixture models is well known and provides little practical challenge.

5.2.1 Synthetic data

We have tested the algorithm on three synthetic data sets. The �rst is the �sim-

ple� data set which contains points aligned to three segments. These segments don't

intersect or connect in any way. The second is the �cross� data set which contains

points aligned to two intersecting segments. And the third is the �circular� data set

which contains points aligned to four segments with matching endpoints. Each data
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set also has a second form with added random noise points. All data sets are depicted

on Figures (5.1), (5.2) and (5.3).

(a) Without noise (b) With noise

Figure 5.1: �Simple� data set

(a) Without noise (b) With noise

Figure 5.2: �Cross� data set

(a) Without noise (b) With noise

Figure 5.3: �Circular� data set
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Both EM and IRTLS convergence thresholds were equal to 0.00005% during ex-

periments (εEM = 0.00005, εirtls = 0.00005). Minimum allowed weight of a segment

component was 0.05 as well as the maximum allowed weight of a noise component

(ωmin = 0.05, ωNmax = 0.05). We used 10 trials for both the k-segment routine and the

entire EM routine. LoOP outlier probability threshold εLoOP was 60% for �tting with

noise and 100% for �tting without noise, i.e., we didn't allow any noise points while

�tting such data sets. Other common parameters: εd = 0.1, εw = 0.1, kLoOP = 5,

ksegment = 5.

For �simple� data set we used Mmin = 2, Mmax = 4. For �cross� data set Mmin = 1,

Mmax = 3. For �circular� data set Mmin = 2, Mmax = 4. In all cases our algorithm

successfully selected the expected models based on BIC values. I.e., 4 components for

�simple� and �circular� data sets and 2 components for �cross� data set. See Figures

(5.4), (5.5) and (5.6) for graphical visualization of results. All �gures illustrate 1−0.01

prediction bands.

(a) Without noise (b) With noise

Figure 5.4: �Simple� data set results

(a) Without noise (b) With noise

Figure 5.5: �Cross� data set results
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(a) Without noise (b) With noise

Figure 5.6: �Circular� data set results

5.2.2 Real world data

We used the sample of 400 Tallinn addresses. We assumed that they should be

grouped according to major city regions and aligned to major streets. Therefore, it is

reasonable to apply the line segment model based clustering routine to such data. The

addresses sample is depicted on Figure (5.7).

Figure 5.7: Tallinn addresses data set

Most of the parameter values are the same as in case of synthetic data experiments.

However, we chose larger outlier probability threshold εLoOP , i.e., 90%. The reason is

that the sample clearly doesn't contain much outliers so we should only �lter out the

most extreme ones. Total number of outliers detected using this threshold was 32.
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First we �tted our sample to 10, 15, 20, 25, 30 and 35 components to observe the

trends in output and overall behavior of algorithm. Corresponding 1− 0.01 prediction

bands are depicted on Figure (5.8).

(a) 10 (b) 15

(c) 20 (d) 25

(e) 30 (f) 35

Figure 5.8: Addresses clustering results

We can conclude that the algorithm identi�es segment regions quite reliably. As

we increase the number of components segments tend to become shorter and more

accurately �tted to corresponding data groups. This demonstrates e�ectiveness of
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existing data clustering but it also is a sign of over�tting in terms of prediction regions.

Recall that for identifying most likely model we select the one with maximum BIC

value. We �tted our sample to 3 to 9 components (Mmin = 3, Mmax = 9). According

to BIC value the most likely number of components is 6 which roughly corresponds

to the number of major city parts. Resulting 1 − 0.01 prediction band is depicted on

Figure (5.9).

Figure 5.9: Largest BIC value - 6 components

The log likelihood and BIC values of mixtures of 3 to 9 components are listed in

Table (5.1).

M Log likelihood BIC

3 -7248.12 -14664.02
4 -7221.84 -14665.38
5 -7195.84 -14667.28
6 -7164.48 -14658.50
7 -7158.81 -14701.07
8 -7152.93 -14743.24
9 -7147.12 -14785.53

Table 5.1: Log likelihood and BIC of mixtures of 3 to 9 components

If we increase the number of components then the likelihood also increases since

the sample can be �tted more accurately. BIC value, however, reaches its maximum

at 6 components and starts decreasing with each new component.
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Chapter 6

Summary

In this thesis we have presented algorithms for model-based clustering of two-

dimensional geo-tagged events of two types: distributed normally around central points

and distributed along line segments. Routines have been presented for hard clustering

as well as soft clustering using the Expectation-Maximization algorithm. We have also

described techniques for �nding prediction regions and for dealing with sample outliers.

Normal data related model-based clustering routines are quite standard and well

known. Segment related techniques, however, have been designed speci�cally for this

thesis and are the main contribution of it. We have implemented the described algo-

rithms and conducted practical experiments using both synthetic and real world data

to con�rm algorithm reliability.

One possible direction of future research is developing routines for �tting data

distributed along curved lines. The current approach allows modeling curves as a

sequence of multiple straight segments and �tting data to them. Fitting to actual

curves, however, would produce much more accurate and realistic results.

Another problem is selecting values for the large number of algorithm parameters.

The current work doesn't contain any guidelines for doing that. We used trial and error

approach during experiments which is not very practical. More intelligent strategies

could be investigated.
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Geograa�liste andmete mudelipõhine

rühmitamine

Magistritöö (30 EAP)

Roman Tekhov

Resümee

Töö eesmärk oli disainida ja realiseerida algoritme teatud tüübiga andmete analüüsi-

miseks. Tegu on geograa�liste koordinaatidega annoteeritud sündmustega (pikkus ja

laius). Algoritmide põhiülesanne on ennustada geograa�lisi piirkondi, kus sama tüübiga

sündmused toimuvad suure tõenäosusega ka tulevikus.

Me vaatlesime kahte tüüpi andmeid. Esimene tüüp on kahemõõtmelise normaaljao-

tusega sündmused, mis paiknevad ümber keskset punktallikat. Teine tüüp on sünd-

mused, mis on jaotatud mööda keskset joonelõiku. Näiteks liiklusõnnetuste toimu-

miskohad paiknevad mööda maanteesid, mida saab modelleerida sirgete lõikude kogu-

mina. Esimene andmetüüp on laialt esitatud kirjanduses, ning antud töös kirjeldatakse

hästi tuntud sellekohased algoritmid. Teise andmetüübi analüüsimiseks sobivate algo-

ritmide arendus ja esitamine oli aga selle töö peamine panus.

Iga andmetüübi puhul me vaatlesime kahte mudelipõhist klasterdamise viisi. Esi-

mene viis on tavaline rühmitamine, kus iga olemasolev sündmus määratakse täpselt

ühte klastri. Punktallikatega sündmuste puhul sobib selle ülesanne jaoks populaarne

k-means algoritm, mis on antud töös kirjeldatud. Lõiguallikatega sündmuste jaoks so-

bilik k-segments algoritm on tuletatud lähtudes k-means algoritmi printsiibist ning

arvestades mudeli eripäradega.

Teine viis on pehme rühmitamine, kus iga sündmuse kohta leitakse tema kõikidesse

klastritesse kuuluvuse tõenäosused. Antud ülesannet saab lahendada esitades sünd-

musi tõenäosusliku segumudelina ning rakendades tuntud Expectation-Maximization

algoritmi. Selle tulemuseks on nii sündmuste kuuluvuse tõenäosused, kui ka sündmuste

geograa�lise jaotuse parameetrite hinnangud, mis on ühtlasi ka põhiülesanne lahen-

duseks. Antud töös on kirjeldatud klassikaline protseduur EM algoritmi rakendamiseks

normaaljaotusega komponentidest koosneva segumudeli korral. Pärast seda on välja

pakutud hinnangufunktsioonid lõiguallikatega komponentidest koosneva segumudeli

parameetritele.

Mõlema andmemudeli puhul on toodud algoritmid ennustuspiirkondade arvuta-

miseks, ehk on kirjeldatud viisid kuidas leida ja visualiseerida piirkondi, mis sisal-
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davad tuleviku sündmusi mingi etteantud tõenäosusega. Lõpus on pakutud viis, kuidas

saab rühmitada andmeid mis sisaldavad müra, ehk juhuslikke elemente, mis ei kuulu

põhikomponentidesse.

Kõik kirjeldatud algoritmid on realiseeritud programmina kasutades Python keelt.

Antud töös on esitatud ka programmi abil tehtud eksperimentide kirjeldus ning tule-

mused.
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Appendix A

Implementation

The implementation code and instructions can be found at https://bitbucket.

org/romantek/model-based-clustering.
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