
Don’t Do Things You Can’t Undo:

Reversibility Models for Generating Safe Behaviours

Maarja Kruusmaa, Yuri Gavshin, Adam Eppendahl

Abstract—We argue that an ability to determine the re-
versibility of actions allows a robot to identify safe behaviors
autonomously. We introduce a notion of reversibility model
and give a definition of model refinement. We implement
this on a real robot and observe that, when a reversibility
model is refined by the addition of proximity sensors, obstacle
avoidance emerges as a side-effect of avoiding irreversible
actions. We interpret this as evidence of a deep connection
between reversibility and safe behaviour. We also observe that,
on the real robot, reversiblities are learned as efficiently as
a dedicated reward function. We conclude that reversibility
identification may provide an abstract and yet practical method
of generating a variety of safe behaviours.

I. INTRODUCTION

This paper is concerned with a robot’s ability to undo its

actions. We suggest that reversibility, a necessary condition

of controllability, is a fundamental concept when program-

ming robots to behave safely and reliably. We ask if this

principle can be used to govern the operation of a robot, and

to generate useful behaviour on a real robot and in real time.

We speculate that the most undesirable actions in the real

world, those that damage the robot or the environment, for

example, are characterized by irreversibility. Thus, instead

of programming the robot with specific routines that prevent

collisions, prevent falls, and so on, we program the robot with

a more general principle of avoiding irreversible actions. In

other words, instead of telling the robot what should not be

done, we try to tell it why it should not be done. For example,

falling down stairs is not good because the robot does not

know how to climb back or pushing the door closed is not

good because it does not have knowledge of how to open it.

In this paper, we state the problem of learning a re-

versibility model. The reversibility model represents the

robot’s knowledge of state-action pairs that are reversible

and the ways of reversing them. We go on to demonstrate

how this reversibility model can be established and used to

generate new behaviours. In [1], we showed that by sup-

pressing irreversible actions the robot will develop obstacle

avoidance behaviour. In this paper, we confirm this result

and go on to demonstrate that, as a developmental system,

the efficiency of our abstract approach is comparable to

This work was supported in part by Estonian Science Foundation grant
number 6765.
Maarja Kruusmaa, corresponding author, is with the Tartu University In-

stitute of Technology, Nooruse 1, 50411 Tartu, Estonia. Tel. +372 5183074,
fax. +372 7374900 E-mail maarja.kruusmaa@ut.ee.
Yuri Gavshin is with the Department of Computer Science, Tartu Uni-

versity, Tartu, Estonia. E-mail yuri.gavshin@ut.ee.
Adam Eppendahl is with the Department of Engineering Design and

Manufacture, University of Malaya, Kuala Lumpur, Malaysia. E-mail
a.eppendahl@mac.com.

ordinary reinforcement learning. The reinforcement learning

algorithm, however, requires a signal that identifies collisions

in specific terms, while the reversibility algorithm identifies

the undesirable behaviours by their abstract properties and

this just happens to result in collision avoidance. Thus we

see a safe, concrete behaviour emerging autonomously and

efficiently from a very abstract principle.

An enormous amount of the robot literature is concerned

with algorithms for avoiding collisions as this is considered

an essential ability for mobile robots. In this literature, the

goal of avoiding collisions is explicitly identified [2], while

the solution may be coded for by hand or obtained indirectly

using learning algorithms [3, 4]. Collision-free navigation

can be learned, for example, by using genetic algorithms

[5], adaptive fitness functions [6], neural networks [7] or Q-

learning [8]. In [9], navigation behaviours are derived by

classifying random sensor data. Our approach is different in

that reliable navigation emerges from an abstract rule. The

rule is not grounded in a specific sensor-motor semantics

that explicitly identifies collisions, and so the resulting de-

velopmental system is insensitive to sensor permutations and

inversions. Indeed, the code can be written without knowing

the location or polarity of sensors and actuators, an odd

sensation after years of reaching for a manual.

The idea of generating behaviours top-down from abstract

principles is an emerging theme in parts of the autonomous

robotics community. In developmental robotics, for example,

relatively abstract emotional and motivational mechanisms

are used to derive behaviours that facilitate social interaction

[10, 11]. Kaplan and Odeyer show that a number of basic

visual behaviours can emerge from abstract motivational

principles based on prediction errors [12]. The general idea is

to identify principles that can be expressed without reference

to the ground meaning of sensor-motor values. Code based

on such principles should function reliably in a broad range

of environments and on different robots or on different parts

of the same robot. Our maxim of avoiding irreversible actions

is just one example of such a principle.

In the following section we present these ideas about

reversibility in a more formal manner. In Section III, we

describe an experimental set-up with a Khepera mini-robot

that tests the reversibility principle. In Section IV, we present

the results and, in the last section, we discuss these results,

draw conclusions and envision possible directions for future

work.

II. REVERSIBILITY MODELS

A reversibility model tells the robot which actions are

reversible and how to reverse them if they are. In a fixed,

known, exact, deterministic world, modelled by a graph G
of states and actions, an action from state s to state s′ is
reversible if there is an action back from s′ to s. If we admit
sequences of actions, by taking G = PathG0, the graph of

paths over G0, where G0 is some graph of atomic actions,

then finding reversibilities in G is equivalent to finding loops

in G0, a standard problem in graph theory.

Real robots, however, face a changing, partially known,

inexact and non-deterministic world. We therefore model

non-determinism using labelled transition systems, we allow

inexactness with a metric on the space of states, and we

define a reversibility model pragmatically to be a set of

expected reversibilities that may grow or shrink as the robot

gains experience.

In addition, the robot may itself be changing as it learns,

reconfigures or develops. In this paper we consider one form

of development, the addition of sensors, and introduce a

notion of refinement that captures the relationship between

the robot’s world before and after this development. In the

learning experiments we describe, a reversibility model for

an unrefined world is adapted to a refined world (with

the interesting side-effect of producing obstacle avoidance

behaviour).

Suppose we have a set S of states given by vectors of

sensor values and a set A of actions given by vectors of

motor commands. If we view the states as the nodes in

a graph and the actions as labels, the robot’s body and

environment determine a labelled transition system which we

refer to as the robot’s world. A labelled transition system is a

standard structure for modelling non-determinitstic systems

and consists of a directed graph with edges, called transitions,

labelled by actions. When the result of an action a in state
s is not wholly determined by the robot, multiple transitions
from s are labelled with the same action a and it is the world
that determines which transition actually happens.

A reversibility for a world W is a state-action pair (s, a),
together with a state-action pair (s′, ā). A reversibility may or
may not hold, in a mathematical sense or in a physical sense.

Generally speaking, ā is expected to produce a transition

from s′ to s, assuming a produces a transition from s to s′ in
W . Because of the non-determinism, even given a perfectly

known worldW , there are different ways to define ‘holding’.

A reversibility ((s, a), (s′, ā)) may hold weakly if there exists
inW a transition from s to s′ labelled a and a transition from
s′ to s labelled a. Or, it may hold strongly if there exists a
transition from s to s′ labelled a and every transition from s′

labelled ā, and at least one, leads to s. In our implementation,
we use the strong definition. In addition, the action ā is

expected to work for any state x with d(x, s′) < ε′ and
is only expected to produce a transition back to a state y
when d(y, s) < ε, where d is a metric on states.

A reversibility model for a world W is a set of re-

versibilities for W that are expected to hold. In practice, a

reversibility model could be given in advance, communicated

to the robot, learned empirically, deduced from knowledge

about the world, or obtained in some other way. In the

experiments described here, the robot is given a model for

one world and uses this to learn a model for a refined world.

A refinement (of states) from a world W to a world W ′

is a pair of functions from the states and transitions of W ′

back to those of W , that respects the graph structure and

labelling and is surjective on states. In other words, every

state in W is the image of one or more states in W ′, which

‘refine’ the state in W , and the action on an edge in W ′ is

given by the action on the edge it is sent to in W .

For any reversibility model R for a world W and for any

refinement from W to W ′, with state function p, there is a
refined set of reversibilites R′ on W ′ defined by

R′ = {((s, a), (s′, ā))|((p(s), a), (p(s′), ā) ∈ R}.

To obtain a reversiblity model for the new worldW ′ we may

form R′ and then remove any pairs that fail in the refined

world. An important aspect of this procedure is that ‘it gives

the robot something to do’: the original model R provides

a specific list of actions together with the circumstances in

which they should be tried.

The kind of refinement we have in mind is produced

by extending a robot’s sensor vector. Suppose we have a

world with states given by pairs of wheel counter values

(w1, w2) and actions given by pairs of wheel displacement
commands (m1, m2). Assuming the robot is able to control
its own wheels, this world is fairly deterministic, all actions

are reversible and a good reversibility model R is given by

taking ā = (−m1,−m2) when a = (m1, m2) (for any s and
s′).
Now suppose we include one proximity value (say, the

front sensor) in the state vector (w1, w2, d1). Assuming the
new sensor does not effect the robot’s environment, we obtain

a refinement of the original world. The state function p is
the projection

p(w1, w2, d1) = (w1, w2).

When the simple model R described above is refined accord-

ing to this new world some of the refined reversibilities hold

and some do not. In our experiments, the robot tests these

refined reversibilities to discover which hold.

The interesting point here is that the ones that fail gen-

erally correspond to collisions of some sort. Consider the

following four cases (in which wheel counts and proximities

are given, without loss of generality, in comparable units).

1) The robot does not touch anything: we obtain, say, the

successful reversiblity

(((0, 0, 15), (10, 10)), ((10, 10, 5), (−10,−10))),

where the robot approaches and retreats from an object

without touching it.

2) The robot touches an object and the object slides: we

obtain a failed reversibility, say

(((0, 0, 8), (10, 10)), ((10, 10, 0), (−10,−10))),

where the robot runs into an object, pushing it 2 units

forward, and then retreats, only to find that, while its

wheel encoders are back to 0 as expected, its proximity

sensor now reads 10 instead of the original 8.

3) The robot runs into an object and its wheels slide: from

the robots point of view, this is identical to Case 2.

4) The robot runs into an object and its motors stall: if

motor commands time-out and report success, adjust-

ing the wheel encoder counts as necessary, then this

case is again identical to Case 2 (and may be thought

of as a kind of internal sliding).

Not only does the robot discover that it is ‘bad’ to

push things–without ever knowing what pushing is!–but the

refined state allows the robot to distinguish those cases in

which ‘bad things happen’ from those in which they do

not. Once the robot learns a reversibility model, it may

use the model to censor its actions. Because of the non-

determinism, we have a growing choice of definitions. A

state-action pair (a, s) is strongly reversible in world W ,

if there is a reversibility ((s, a), (s′, ā)) that holds in W
for every s′ that can be reached from s by a transition

labelled a. Alternatively, we could ask for just one such s′

to get a definition of weakly reversible. We must also say

if ((s, a), (s′, ā)) holds strongly or weakly in W , for a total

of four definitions. In our experiments, we use, in effect, the

strong-strong definition, but because we pretend the world is

deterministic by ignoring s (by taking ε′ = ∞), there is no
real difference.

Note that it is our method of creating a reversibility model

out of R′ by pruning that creates a pushing-is-bad model.

Alternatively, when a reversibility ((s, a), (s′, ā)) in R′ fails,

we could try replacing the action ā instead of throwing out
the reversibility. For example, we could construct the world

W ′∗ = PathW ′. The transitions in PathW ′ are paths of

transitions in W ′ labelled by sequences of actions from W ′.

The world W ′ embeds in W ′∗, along with R′, but now we

have sequences of actions to play with. In the object pushing

example, a sequence b of actions might cause the robot to
go behind an object, push it back 2 units, and then return to

its original place in front of the object, so that

(((0, 0, 8), (10, 10)), ((10, 10, 0), b)),

holds in W ′∗. Or we could form W ′∗ by adding a gripping

action and simply drag the object back 2 units.

III. EXPERIMENTS

This section describes experiments with two learning

algorithms. In all the experiments, both algorithms learn

from the same sequence of actions and sensor data. One

learns which reversibilities hold or fail. The other one is

a standard reinforcement algorithm that punishes collisions.

We compare the performance of the two algorithms over four

sequences of actions. These were produced by running the

same action generation routine in two test environments, an

easy one and a harder one, and over two sets of actions, 1D

and 2D.

The experiments were conducted on a Khepera II mini-

robot, which is a cylindrical robot about 7 cm in diameter

(see Fig. 1) with differential drive and a ring of eight

proximity sensors. In these experiments, the motor control

parameters were set so that, when the robot runs into a

wall, the motors stall before the wheels slip. This allows

us to detect collisions by watching for stalled motors. When

a collision does happen, the wheel command routine times

out and reports success, up-dating the wheel counters as if

the command had completed. This is equivalent to more a

forceful wheel command that would cause the wheels to slip,

but makes it easier to identify collisions, which is required

for the reinforcement algorithm and used for evaluating both

algorithms.

A. Implementation Details

An action a = (m1, m2) consists of a pair of motor
displacement commands, for left and right wheels, expressed

in native wheel decoder units. A discrete set of actions is

used in the experiments:

a1 = (100, 100) short step forward,

a2 = (300, 300) long step forward,

a3 = (−100,−100) short step backward,

a4 = (−300,−300) long step backward,

a5 = (100,−100) rotate clockwise,

a6 = (−100, 100) rotate conterclockwise.

In the 1D experiments, we take

A = {a1, a2, a3, a4}.

These actions cause the robot to move back and forth in a

straight line. In the 2D experiments, we include the turning

actions,

A = {a1, a2, a3, a4, a5, a6}.

We provide the robot with the initial reversibility model

{((x, a1), (x + (100, 100), a3)),

((y, a2), (y + (300, 300), a4)),

((z, a5), (z + (100,−100), a6))},

where x, y and z are any states (w1, w2), consisting of a
pair of wheel counter values. Because we have fixed things

so that wheel commands always succeed, the reversibili-

ties in this model always hold. We then use (in effect)

a refinement function p, the projection from the set of

states (w1, w2, d1, d2, d3, d4, d5, d6, d7, d8,), which include
eight proximity values, to the original set of states (w1, w2)
without the proximity values, to induce a new set of refined

reversibilities from the original set. The new set contains, for

example,

((s, a1), (s
′, a3)) =

(((w1, w2, d1, d2, d3, d4, d5, d6, d7, d8), a1),

((w1 + 100, w2 + 100, d′1, d
′

2, d
′

3, d
′

4, d
′

5, d
′

6, d
′

7, d
′

8), a3))

for any wi, di and d′
i
. The learning algorithm then tests these

to see which hold and which fail.

For our definition of ‘near’, we use the Manhattan metric

defined by

d(s, s′) =

2∑

i=1

|wi − w′

i
| +

b∑

i=1

|di − d′
i
|

(but because our wheel commands always succeed, and the

original model is correct, the wheel value part of this is

always 0).

a) Robot motion: The Khepera runs in a real, physical

environment with motions that test the pairs of the refined

reversibility model. The robot moves according to the fol-

lowing algorithm:

1) Record current state si = (w1, w2, d1, . . . , d8).
2) Choose an arbitrary reversibility from R′ and execute

the forward action as ai.

3) Record the state si+1 = (w′

1, w
′

2, d
′

1, . . . , d
′

8).
4) Execute the reverse action as ai+1.

5) Record the resulting state as si+2.

6) Execute a random action as ai+2.

7) Add 3 to i and repeat.

So the robot performs a random forward action, then the

supposed reverse action, then a random action that goes

unreversed, and then another forward action, and so on.

b) Learning the reversibility model: As the robot moves

about, it notes how well the reversibilities hold using the

Manhattan metric.

For each forward action ai, calculate and store

d(si, si+2).

For the purposes of comparison with the reinforcement

algorithm, the model is also used to predict which actions

will be successfully reversed. When a failure is predicted, we

note whether there is a collision during the action. So we are

judging the reversibility model not by what it is meant to be

learning, but by how well this happens to predict collisions.

1) Get the current state si and the intended action ai

2) From memory, choose a state-action pair (sk, ai) that
minimizes d(sk, si).

3) If we have d(sk, si) > δ, predict randomly. Otherwise,
predict a collision unless d(sk, sk+2) < ε.

4) While executing the command ai check if there is a

collision. Store the predicted and the actual outcome.

c) Reinforcement learning: Reinforcement learning al-

gorithms [13] are commonly used in mobile robotics. The

aim here is to implement a simple version for collision avoid-

ance so that we may compare the ungrounded reversibility

method to a standard, grounded method. We have therefore

implemented the reinforcement learning algorithm so that the

robot is operating under similar conditions. First, the algo-

rithm does not have a terminal state, so collision avoidance is

considered to be a continuous task of reward maximization.

Second, the current version of the reversibility policy is

concerned only with immediate actions and reverse actions

and does not work along the history of action sequences.

Fig. 1. The robot in Environment I and in Environment II.

Therefore we have also implemented the reinforcement al-

gorithm to be concerned only with immediate rewards, thus

with discount rate γ = 0. The initial value of the action value
function is Q(si, ai) = 0. The reward signal is defined by
checking for collisions.

r =
(|w1| + |w2|)/100, if there is no collision

−5, if there is a collision

Thus a successful action is rewarded more if it moves the

robot a greater distance and an unsuccessful action is strongly

penalised. Note that the reinforcement learning algorithm

directly checks for collisions (by watching for stalled motors)

to calculate the reward, while the algorithm learning the

reversibility model only aims at predicting if the robot can

return to the initial state (by watching the proximity sensors).

The reinforcement learning algorithm is the following.

1) Get the current state si and the intended action ai.

2) If the current value of the action value function

Q(si, ai) < 0, predict a collision. If Q(si, ai) =
0 make a random prediction. Otherwise, predict no

collision.

3) After executing ai get the reward signal r.
4) Update the action value function

Q(si, ai) ← αr+Q(si, ai), with learning rate α = 0.1.
5) While executing ai, check for collisions. Store the

predicted and the real outcome.

B. Test Environments

In the experiments we compared the learning of re-

versibility models to the learning of a reward function that

discourages collisions. To find out how sensitive the learning

algorithms are to environmental conditions, the tests are

conducted in two environments. These are shown in Fig. 1.

Environment I is a rectangular space, whereas Environment

II is a smaller, triangular space, only slightly larger than

the robot, in which collisions are more probable. In both

environments the algorithms are run over sequences of 1D

movements and sequences of 2D movements. With 1D

actions, the robot only moves forewards and backwards. With

2D actions, the robot moves in all directions. This was done

Fig. 2. Experimental results in Environment I, with 1D actions.

Fig. 3. Experimental results in Environment I, with 2D actions.

to get an idea of how the algorithms scale from smaller to

larger, more complex action sets.

IV. RESULTS

As described in the previous section, the robot operates

by executing supposed reversals and random actions. The

reversed actions are determined according to the initial

reversibility model. The goal of the learning algorithms is to

observe and learn to predict the outcomes of actions. These

predictions are then compared to the real outcome of the

action (determined by detecting collisions) and the success

rate of each method is recorded.

Note that although the performance graphs for the two

methods are expressed in the same terms, we are not com-

paring two techniques for solving one learning problem,

but rather two learning problems whose solutions happen

to result in the same behaviour. The reversibility problem is

at a big disadvantage here, because we are evaluating it as

if it was intended to predict collisions, which is in fact just

a fortuitous emergent property.

Moreover, the motion routine, which performs reversals

interleaved with random actions, allows a reversibility to be

tested every third step, while the reinforcement algorithm

gets a feedback signal at every step. Thus the reinforcement

learning algorithm has more experiences to learn from, and

Fig. 4. Experimental results in Environment II, with 1D actions.

Fig. 5. Experimental results in Environment II, with 2D actions.

yet the performance of the two algorithms is seen to be

comparable.

The figures show the performance of the two algorithms

over four sequences of actions and sensor values. All four

graphs show the average correctness of predictions for each

successive 100 actions for both prediction methods. From

Fig. 2 and Fig. 4, we see that with 1D actions the robot

rapidly learns to avoid collisions in both environments. The

rate of successful predictions reaches 80during the first 200–

300 steps, and the learning problem is equally trivial for both

learning algorithms. From Fig. 3 and Fig. 5, we see that with

2D actions the learning problems are more complicated, with

both algorithms converging around 1900–2100 steps.

During the runs in Environment II, the wheels occasionally

got stuck on the uneven surface. These incidents can be seen

on the graphs around 1400–1700 steps in 1D (Fig. 4) and

3700–4100 in 2D (Fig. 5), where there are sharp downward

peaks in the prediction rates. It appears that reinforcement

learning recovers better. However, this is caused more by

the method we use to determine the prediction rate than a

failure to relearn the reversibility model. For the robot with

the blocked wheels, the reversibility of actions is perfect,

since the robot certainly ends up in the same state it starts

from. However, when this is used to predict no collision,

which is to say no motor stall, the prediction is wrong.

In these runs, which consist of thousands of actions, it is

clear that both learning problems are solved with comparable

speed. The reversibility model is learned with roughly the

same speed as the reward function in Environment I, whereas

in Environment II reinforcement learning happens slightly

faster. Likewise, both approaches scale equally well from a

1D to a 2D environment.

V. CONCLUSIONS

This paper introduces the concept of reversibility for learn-

ing and developing robots. We show that reversibility models

can be used to learn a useful new behaviour. The experiments

verify the performance of the reversibility method against a

well-established learning method commonly used in robotics.

The results show that both of the methods converge to

obstacle avoidance behaviour.

The most general conclusion drawn from the experimental

results is that the efficiency of the policy of reversibility is

comparable to reinforcement learning. Both methods learn

more or less equally, converging to satisfactory performance.

The basic difference of these methods is that the rein-

forcement learning algorithm uses a reward signal explicitly

designed to make the robot avoid obstacles. The policy we

introduce, uses a reversibility measure to learn a reversibility

model, and yet the robot learns the useful behaviour of

collision avoidance.

Based on these experimental results we speculate that the

concept of reversibility could generate a variety of useful

behaviours depending on the properties of the environment.

We surmise, for example, that a robot placed initially close to

an object or wall might, using reversibility models, discover

behaviours like ‘do not leave the territory’ or ‘stay in the

vicinity of guidelines’. Our future experiments are planned

to check this hypothesis and find more evidence concerning

the robustness of this principle.

Another hypothesis we are planning to test is whether

learning algorithms can be accelerated by using reversibility

models. Generally, learning algorithms converge to a stable

behaviour by repeating actions that lead from one state to

another. The problem of how the robot gets back to the state

it wants to repeat, however, is not addressed. Knowing the

reversibility model, it may be easier to guide the learning

algorithm to faster convergence.

We also suggest that reversibility models could be used

in combination with formal reasoning methods, such as

task or path planning, where the plans can be checked for

reversibility. For mobile robots such a reversibility check

could, for example, guarantee safe homing or safe explo-

ration. We suggest that the concepts introduced in this paper

may provide handy and simple guidelines for building safe

and reliable robots.

REFERENCES

[1] A. Eppendahl and M. Kruusmaa, Obstacle avoidance as a consequence
of suppressing irreversible actions, in Proceedings of the Sixth Inter-
national Workshop on Epigenetic Robotics, Lund University Cognitive
Studies, vol. 128, 2006.

[2] J. Borenstein, Y.Koren, Real-time obstacle avoidance for fast mobile
robots, in IEEE Transactions on Systems, Man, and Cybernetics, vol.
19, no. 5, pp. 1179-1187.

[3] R. Arkin, Behavior-based Robotics, MIT Press, Cambridge, MA.
[4] S. Nolfi, D. Floreano, O. Miglino and F. Mondada, How to evolve

autonomous robots: Different approaches in evolutionary robotics, in
Artificial Life IV, pp. 190–197, MIT Press, 1994.

[5] D.Bajaj and M. Ang, Jr., An incremental approach in evolving robot
behavior, in Proceedings of the Sixth International Conference on
Control, Automation, Robotics and Vision, Singapore, 2000.

[6] E. Uchibe, M.Yanase and M. Asada, Behavior generation for a
mobile robot based on the adaptive fitness function, in Robotics and
Autonomous Systems, vol. 40, pp. 69–77, 2002.

[7] J. Blynel and D. Floreano, Exploring the T-Maze: evolving learning-
like robot rehaviors using CTRNNs, in Applications of Evolutionary
Computing, 2003.

[8] G.-S. Yang, E.-K. Chen and C.-W. An, Mobile robot navigation using
neural Q-learning, in Proceedings of the International Conference of
Machine Learning and Cybernetics, vol. 1, pp. 48–52, 2004.

[9] E. Simonin, J. Diard and P. Bassiere, Learning Bayesian models
of sensorimotor interaction: from random exploration toward the
discovery of new behaviors, in Proceedings of the 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 1226–
1231.

[10] C. Breazeal, Designing Sociable Robots, MIT Press, 2002.
[11] L. Moshkina and R. C. Arkin, On TAMEing Robots, in Proceedings of

the IEEE International Conference on Systems, Man and Cybernetics,
vol. 4, pp. 3949–3959, 2003.

[12] F. Kaplan and P.Y. Oudeyer, Motivational principles for visual know-
how development, in Proceedings of the Third International Workshop
on Epigenetic Robotics, Lund University Cognitive Studies, 2003.

[13] R.S.Sutton and A.G.Barto, Reinforcement Learning, an Introduction,
MIT Press, 1998.

