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Probabilistic Forecasting with Monte-Carlo Dropout in Neural Net-
works

Abstract:

Integration of intelligent systems in our industries and society require more accurate and
reliable algorithms. Recent attempts to model and explain uncertainty in deep learning
has had many achievements, stepping forward toward making these models more reliable
and respectively more practical. At the same time, probabilistic forecasting is a similar
attempt to estimate the future value of a variable by a probabilistic expression rather a
point estimate. The probabilistic forecasting is more useful as it incorporates uncertainty
information on the forecast while the point forecast lacks this. To this day, there has
not been much research or study on probabilistic forecasts with Bayesian deep learning,
making it an interesting area for contribution. We considered this research to be more
interesting when carried it out on a real-world problem and therefore, chose the wind
power forecast beside an analytical study. We applied Monte-Carlo Dropout (MCDO),
a variant of deep Bayesian network approximator, together with a network capable of
estimating the variance. This predictive variance, produced by the model, is equivalent to
a probabilistic forecast and further, we show how to obtain higher quality forecasts that
are accurate and better-calibrated by scenario forecasting at test-time. We also assess
whether the results of the MCDO implementation were consistent with other works.
Our experiments show a successful use case of employing Bayesian deep learning and
suggest that these methods are the way to go, with promises on improving the accuracy,
scalability, and interpretability.
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Network, Uncertainty

CERCS: P176 — Artificial intelligence



Toendosuslik prognoosimine Monte-Carlo viljajatumeetodil nérvi-
vorkudes

Lithikokkuvote:

Intelligentsete siisteemide integreerimine meie todstusharudesse nduab tipsemaid ja
usaldusvéirsemaid algoritme. Hiljutised katsed modelleerida ja selgitada siigavoppe
ebakindlust on olnud edukad, astudes sammu edasi muutmaks need mudelid usaldus-
vidrsemaks ja seega praktilisemaks. Samal ajal on tdenidosuslik prognoosimine sarnane
katsele hinnata muutuja tulevast viirtust tdendosusliku véljendusega mitte punkthinnan-
guna. Esimene on kasulikum, sest erinevalt punktihinnagust sisaldub selles ebakindluse
informatsioon. Tédnase pievani pole tehtud veel kuigi palju uuringuid tdendosusliku
prognoosimise kohta kasutades Bayesi siivadpet, mistdttu on see huvitav valdkond mille
uurimisse panustada. Meie arvates teeb uuringu reaalmaailma probleemiga sidumine
selle huvitavamaks ja seetottu valisime analiiiitilise uuringu korvale tuuleenergia prog-
noosimise. Me kohaldasime Monte Carlo viljajitumeetodi (MCDO) vorgustikku, mis on
variant Bayesi siivavorgu ldhendajast, koos vorguga, mis on voimeline hindama disper-
siooni. See prognoositav dispersioon, mis on toodetud mudeli abil, annab tdendosusliku
prognoosi ja lisaks nditame, kuidas saada korgema kvaliteediga prognoose, mis on tidpsed
ja paremini kalibreeritud testimisaegse stsenaariumite prognoosimisega. Samuti uurime,
kas MCDO rakendamise tulemused on kooskdlas teiste toodega. Veelgi enam, meie
ldhenemisviis osutus voimeliseks looma korge kvaliteediga tdenédosuslike prognoose
ning seda on iisna lihtne seadistada. Meie katsed nditavad edukat Bayesi siivadppe ra-
kendamist ning viitavad sellele, et need meetodid on lootustandvad, lubades parandada
tapsust, skaleeritavust ja tdlgendatavust.

Votmesonad:
Tdendoline prognoosimine, Bayesi siivadpe, tuuleenergia prognoosimine, nirvivork,
ebakindlus

CERCS: P176 — Tehisintellekt
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1 Introduction

It’s all about ''the future''...

Forecasting is all about the future, and whatever about the future comes with a
degree of uncertainty. That is why a probabilistic expression of the future is better
suited its remote and uncertain nature. Our confidence in a possible future would
then be a function of its probability. Forecasting without sufficient consideration or
ignorance about the underlying uncertainties which were buried in the observations
and/or assumptions about the observations could lead to over/under confident results,
which consequently appear like a mismatch of what is about to come true. That is because
the future is not only derived from the past but also what could have happened in the past.
Therefore, considerations regarding uncertainty is an integral and inseparable part of
any forecast. Naturally with a higher degree of uncertainty, one could be less confident.
All these matters, when put into action, i.e. in the context of decision making, where
forecasts are being consumed to make decisions that shape the future. This being said,
an underconfident forecast should be equally avoided as overconfident forecasts, as it
translates to inconsistency in decision making that may even lead to more unpleasant
consequences far worse than overconfidence.

Al Gore in his book the future [Gor13] writes:

The cultural legacy that still influences the scientific method is reductionist —
that is, by dividing and endlessly subdividing the objects of our research and
analysis, we separate interconnected phenomena and processes to develop
specialized expertise. But the focusing of attention on ever narrower slices
of the whole often comes at the expense of attention to the whole, which
can cause us to miss the significance of emergent phenomena that spring
unpredictably from the interconnections and interactions among multiple
processes and networks. That is one reason why linear projections of the
future are so often wrong. [Gorl3, p. xxi]

Thus, this thesis is an attempt to make a realization of a bigger whole by incorporating
uncertainty information to make the projection(s) of the future less often wrong.

1.1 Uncertainty in machine learning and why should we care?

Machine Learning models and particularly Deep Learning are finding their way faster
and on a broader scale than ever before in real-world use cases. They are going to be
employed in more mission-critical tasks such as self-driving cars as well as tasks that
may not require a safety measure but some measure of reliability such as in stock market
forecasting. To this day, point estimation of the future has been the most common output



expected from these models. A single number is not informative enough, i.e. does
not imply anything about the reliability of the estimation. Traditionally, assessing the
generalization capability of a trained model has been one of the ways that its reliability
could be put to a test. However, methods for assessing or improving generalization of
the models such as cross-validation, regularization techniques, etc. are not sufficient to
make the forecast itself more informative.

Moreover, there has been an ongoing trend and desirability to replace complex sub-
intelligent systems with its end-to-end counterparts instead. This has been paced up
and facilitated by deep learning models as they specifically provide a robust end-to-end
scheme especially for cognitive tasks while outperforming their predecessors. However
dealing with image, speech, text, and other complex formats of data especially in an
end-to-end fashion require robust and capable models to deal with different aspects of the
data and not only caring about the average cases where the model would only produce a
point estimate of average cases. And more important of all is that the data is constantly
changing in real-world scenarios, it has inherited noise, models have limitations, and
many other factors contribute to not having a perfect forecast. The alternative is to
account for all these by taking uncertainty into consideration and make the models
uncertainty-aware, meaning that alongside the values of interest, the uncertainty should
also be considered to be estimated. To put this preliminary into perspective, there
are three main directions that are expected to achieve with this work by incorporating
uncertainty:

* To improve the accuracy and robustness of the models
* To make models reliable for secondary systems e.g. control mechanisms

* To understand the models better by making them more expressive and interpretable

1.2 Renewable Energies and Electricity Power Forecast

There is no doubt that a measure of uncertainty could benefit every application domain
that predictive models are being employed to. However, some domains depend on this
information more than the other. Weather forecasting is among those areas that deal with
a great amount of uncertainty as one tries to model a gigantic planetary system consisting
of many different factors. [Gos96] It also has a long history and so a good case study for
uncertainty. Likewise, forecasting electricity power generated from renewable energies
heavily depends on environmental variables such as the weather. The recent challenge of
integrating renewable energies in our energy sources brought research and engineering
communities together as a collective effort towards climate crisis!. Data-intensiveness,
dimensionality, complexity and other aspects of this challenge provide an opportunity

"https://ec.europa.eu/clima/citizens/eu_en
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for machine learning practitioners as well as researchers to study, employ, and devise to
methods to address this and its related challenges.

Over a decade or two, solar and wind power established better than the rest of their
class and proved to be among the most promising renewable energy sources. The wind
is much more ahead and also implemented very well in the Nordics. Over 25% of the
electricity production in Sweden is provided by the wind power and that is planned to
be doubled over a decade?. Similarly, Estonia has over 30% production of electricity
from wind power *. Even in Iran with less coastline per its square meter area, it is
estimated that wind can provide 50% of the total electricity consumption need. However,
employing wind power and integrating it into the grid comes with its challenges [PT13].
Besides the engineering aspects of building and installing wind turbines, the intermittent
nature of power generation from renewable sources such as wind makes it a constant
challenge to balance the power grid. This makes accurate and reliable forecasts crucial
for the operations and control mechanisms that sit on top of these forecasting models
possible. Moreover, the economics of energy would heavily rely on these forecasts.

To this end, the contribution of this thesis work is as follows:

1. Study the relevance of uncertainty in deep learning with probabilistic forecasting
2. Employ Monte-Carlo Dropout technique

3. Empirical experiments and results on synthetic data

4. Empirical experiments and results on real data

5. Demonstrate a novelty to improve the results

6. Demonstrate usefulness of the developed models for wind power forecasting

1.3 Structure of the thesis

For the background an overview of time-series modeling and forecasting is given in
Section 2, also an overview of Bayesian Deep Learning that is being used to model uncer-
tainty and ultimately produce probabilistic forecasting is given in Section 3. Methods and
models developed for this thesis are explained in Section 4. In Section 5, details of the
experiments and the setup explained. Results and related discussions obtained for these
experiments are demonstrated and discussed in sections 6 and 7, respectively. Finally,
the conclusion of this work together with the possible future directions is addressed in
Section 8.

Zhttps://www.scb.se/en/finding-statistics/statistics-by-subject-area/energy/
Shttp://www.tuuleenergia.ee/en/windpower-101/statistics-of-estonia
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2 Time-series Modeling and Forecast

Time-series is one of the very common forms of data. A time-series often contains real
value numbers that appear one after another, constituting a series of numbers representing
some phenomena over time. For that, each data point presents a form of dependency on
other data points. Forecasting of a single time series which depends on the history of its
own is referred to as univariate time series forecasting. Additional features contributing
to univariate forecasting are referred to as exogenous variables whether it be another time
series or any other data that could be used as an additional feature for the forecast. Also,
forecasting of multiple time series is referred to as multivariate time series forecasting.
Here, time series are treated as predictors for one another, while still other exogenous
variables could also be employed. A multivariate time series forecasting is perhaps
the most complex form of the forecast from the perspective of modeling. For instance,
the most widely used assumption with tabular datasets, known as i.i.d.* could not be
exercised here due to the dependency of each timestep with the previous timesteps.
Moreover, the distribution of each data point is not identical to one another. That is why
when modeling time-series each data point is being treated as a random variable. Figure 1
shows an observed time series on the top.

Due to these special characteristics, there have been specific tools and frameworks
developed to understand, formulate and model time-series. In this section, we address the
most important types of forecasts, modeling, evaluation, and formulations for time-series
forecasting that provides a basis for later sections.

2.1 Patterns and influence of time

Time as an important property of time-series not only affects how we perceive time-series
visually but also how we model, and forecast. Here we focus on the patterns emerging in
time-series as a basis for the conventional statistical models in the following section.

Trend and Seasonal patterns are two fundamental patterns in time series. In terms of
regression, the trend is the slope of the line that would fit the time series data. A time
series may have a number of local trends and/or a global trend. In Figure 1 we can see an
example of a global trend.

Seasonal patterns are those that are repeated in regular intervals over time and as the
name implies their key characteristics is their regular occurrence whether it is hourly,
daily, weekly, monthly, quarterly, yearly, or else. In Figure 1, seasonality of a signal is
being demonstrated.

In a simple case, these patterns would be deterministic, which means one could
perform forecasting, knowing the trend and seasonality components of the time-series.
In practice however these patterns usually are not deterministic, however, it is possible to

“Independent and identically distributed random variables
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remove these components and try to model the residuals. And so by removing the trend
and seasonality, one could focus on modeling the remainder. In such scenarios one could
use decomposition techniques as demonstrated in Figure 1 to achieve this.

Another property of a time-series is its stationarity, meaning that whether the distri-
bution of the time series changes over time or not. If a time series stationary it means that
the data points in the series are identically distributed but they could still be dependent
on one another (having historical dependency). Removing trend and seasonality could
make a time series stationary or close to stationary. There are different tests such as
Dickey-Fuller to check the stationarity of a series [HA14, ch. 8.1].

The historical dependency of the variables in time series, existence of trends and
seasonality patterns are a basis for models that are designed to address all these aspects
and properties of time series.

2.2 Statistical Models

In the previous section, important properties of the time series characterized. In the
time-series forecasting, we usually have a history of data up to time (usually the present
time) and we would like to forecast from the present into the future for a given number
of steps. Each step in the forecast referred to as lead time, and the whole forecast steps
referred to as horizon. Eq. (1) denotes the observed values of a time series from the past
to the present and future.

Yt—is Yts Yt+h i,h € Nyg (1)

It might also be desirable to refer to a beginning in the past which then denoted as in
Eq. (2)

Yo, Y1y - - -5 Yt Ye+1s - - -5 Ytdn h€N>0 (2)

Statistical models are an attempt to model the behavior of a time-series over time by
explaining recurring patterns and relationship between each variable at each time step.
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Explaining different types of statistical models in depth is out of the scope of this thesis,
however, we mention the most fundamental models that are related to concepts that are
relevant to the thesis. As briefly mentioned earlier, decomposition of series could be used
as either a pre-step to modeling or as a main approach to model and forecast time series.
One can decompose time series into additive or multiplicative terms.

ye =T + S; + I Additive decomposition
ye =T, X Sy X Iy Multiplicative decomposition

Here y; can be decomposed into Trend 7", Seasonal S, and Innovations I components,
where the modeling could be done on each of these components in order to achieve
a forecast y for y;.,. Taking a time-series as a random variable, if the future of this
random variable could be explained by its past we can use regression over the past
values of this random variable to explain its future. This is known as auto-regression
over the lagged values of the random variable. An Auto-regressive (AR) model is
essentially a linear combination of different steps from the past values of the variable.
The number of parameters of AR is also referred to as the order of the model, that
could be determined using Auto-correlation plots [HA14, ch. 2.8]. For the parameter
estimation there different possibilities, one of which is the maximum likelihood [BI76,
ch.7]. Equation (3) demonstrates the AR model with a p weighted linear combination
of p previous values of the variable Y with weights ¢;, an additive noise ¢, for each
timestep ¢, and a constant c.

p
}/;f:C_FZQOinS—i‘th (3)
i=1

If a time-series was not all explainable by an AR process then it means that the future
values are not only explained by a linear combination of the past values, but there is a
more complex relationship involved. Then after applying the AR model, there is still
some gap to get closer to the observed values in the past. This remainder which is the
difference of the observed values and the random variable referred to as innovations. If
innovations is a constant then the constant term of the AR model can compensate for
that, but if not then it is apparent that the AR model was incapable of modeling, i.e.
produced biased results. Therefore, another additional term needed to model innovations.
A Moving Average (MA) model can be used to fit the innovations produced as a result of
the AR model and putting these two together constitutes the ARMA model. Equation (4)
demonstrates the ARMA model that in addition to the AR terms it is a weighted linear

combination of previous error terms €, _; with weights #; and constant c.

p q
Yi=ctea+ Y oYt bier 4)
i=1 =1
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If a time-series exhibits some continuous increase or decrease, meaning that it has
some trend, then it could be removed by differencing each time-step of the time-series
from its previous time steps. Order of the differencing could be one or more meaning
that one or more times may be required to remove the trend. This is modeled using
an integrating ARMA referred to as ARIMA. It is called integrated since during the
forecasting the differenced values should be integrated back in order to obtain the
correct values for the forecast. ARIMA model could be extended into Seasonal ARIMA
(SARIMA) in order to model the seasonal components the same way as ARMA but
with a separate parameterization for the seasonal terms. Equation 5 is a general form of
the SARIMA with B the backshift operator (BY; = Y;_1) and A, corresponding to the
innovations.

6(B)®(B*)Y; = 0(B)O(B*) A, (5)

where,
p P
Sy) =1-Y b Oly) =1-) Dy
i—1 i=1

q Q
Oy) =1- Zeiyi O(y) =1- Z O,y
i=1 i=1

Finding the right number of parameters for each of these models requires a systematic
approach [HA14, ch. 8.6] and for that the auto-correlation and partial auto-correlation
functions (ACF and PACF) are being used as depicted in Figure 2.

All of these models are defined for a uni-variate time-series forecasting. We can
also use other time-series to enhance the forecasting by modeling the relationship and
influence of a random variable not only on its own lagged values but also on other
random variables lagged values. Methods such as SARIMAX and VAR [BJ76, ch.14]
are models designed for such scenarios. These statistical approaches are all in the family
of parametric methods, and for that, they have their own benefits and limitations. They
provide a good foundation for understanding time series modeling that would benefit
more complex and non-parametric models such as artificial neural networks that will be
discussed in Sections 3 and 4.

2.3 Forecast Types and their Quality

Different types of forecasts are employed by different use cases. Here an overview of
possible forecast types and a brief discussion of quality measures for each type is given.

13



2.3.1 Quality and Calibration

One aspect of the quality is to know how reliable a forecast is. And reliability ties closely
with the calibration of the produced forecasts. A well-calibrated model could be trusted
with its outputs. In general, calibration refers to correcting a system so that it matches
the underlying reality. Miscalibration is caused by a systematic error in our model. A
highly accurate model is also calibrated but not vice-versa. A model could be calibrated
but not calibrated at all. To demonstrate the concept of calibration take an example of
a classifier to classify cats and dogs. The proportion of examples of cats and dogs in
our data is equal, so there is a probability of 0.5 to have a cat and 0.5 to have a dog. If
we have a random classifier, the probability of classifying an image as a cat is 0.5 and a
dog is 0.5 which is matching the data distribution and hence calibrated. However, this
classifier would only be accurate 50% of the times and it is not accurate at all. Later in
Section 4 we show how the measure of uncertainty can help to provide better-calibrated
models, matching the underlying reality that model would have missed otherwise.

2.3.2 Point forecast

Point Forecast as it implies, it is a point predicted for the future. In this scenario model as
a function takes in point values and gives point values. Point forecasts are not interesting
nor convenient, especially for decision making. The main problem with the point forecast
is that there is no extra information besides the point estimate regarding the uncertainty
of the forecast. The point could be far off the true value or very close to it. Given the fact
that the model validated over many tests and produced very low errors over these tests,
one may have high confidence in the model. However, there always a possibility for the
model to observe novelty in its input. The fact that one cannot exhaust all the possible
inputs for the all possible outputs is a good reason not to rely only on model performance
on the validation set. As a conclusion, point forecasts are the least informative form of
forecasts. Figure 3a is an example of point forecast.

Calibration Curve

— ground truth
point forecast
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(a) Point forecast (b) Calibration Plot

Figure 3. A Point Forecast and its calibration plot

On the other hand, quality of the point forecasts could be measured by looking at
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the distribution of the point forecasts also referred to as predictive distribution (PD) and
comparing it with the empirical distribution of the data. This can be done by calculating
the frequency of the ground truth observation falls into different quantiles of the PD
starting from O to 1, also can be referred to as the least and most confidence levels,
respectively. This will result in a monotonically increasing curve that in the ideal case
it is expected to roughly follow the line y = x. Any deviation from the y = = would
indicate a miscalibration in the forecast. Figure 3b demonstrates a calibration/reliability
plot for a set of point forecasts.

2.3.3 Quantile forecast

Despite the point forecast, a Quantile Forecast is more aware of the distribution of the
data by giving a specific lower and upper bounds for the forecast. For example, the
model would learn a specific quantile(s) of the input data and forecasts for that specific
quantile(s). Still, it is not informative enough in the sense that as in point forecast, it does
not provide a full picture of uncertainty, especially if the error in the parameter estimation
of the model were not incorporated. Figure 4 is an example of quantile forecast. A
reliable quantile forecast (calibrated) should include more true values, and so a quantile
forecast would be better calibrated if the quantiles are tighter while inclusive of the true
values.

Scenario Forecasting with AL+EP

—— Ground truth
—— 95% Quantile
== median
— mean
frain-test

Power

24 20 16 12 8 4 0 4 [ 12 16 0 2 » 2 ® a0 a
Lead time

Figure 4. Quantile forecast

2.3.4 Probabilistic forecast

Probability or Dense Forecast is the most informative form of forecast. It can be thought
of stacking different quantile forecasts together, which would construct a dense forecast.
Being able to describe the distribution of each forecasted variable is the main purpose
of the probabilistic forecast. The concentration of probability mass at one point would
translate to a more confident forecast as in contrast to a less confident when this mass is
spread. However, the confidence of a probabilistic forecast does not necessarily mean
one has achieved an accurate or reliable forecast. Figure 5 depicts a probabilistic forecast.
For the more reliable forecast the same condition as in quantile forecast should exist, and
that inclusiveness of the model forecast of the true values.
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Figure 5. Probabilistic forecast

2.3.5 Scenario forecasts

Scenario Forecasting is another form of forecasting which is a more advanced case of
how one could deal with uncertainty. Scenario forecast is essentially a way to extract
information from the model about alternative, possible scenarios in the future. This is
very intuitive and convenient when it is thought in the context of decision making as
often users of the forecast would like to know uncertainty, as well as multi-modality as
each mode of the forecast, may have its own interpretation i.e. translates into different
decisions. Probabilistic forecasts not only provides more informative detail about the
forecast but also provides a good ground for scenario forecasting. Since we are capable of
explaining each forecast probabilistically then we can create different alternative futures
by sampling from the distribution of the forecasts with different probability and policies
over the scenarios. One of the contributions of this work explained in Section 4.5 was on
scenario forecasting. Figure 6 depicts an example of this type of forecast.

—— scenarios
—— Ground truth
train-test

00
1211109 8 765432101 2345678 910111213141516171819 2021222324 252627 25 2930 31 32 33 34 35 35 37 38 30 40 41 42 43 44 45 46 47

Figure 6. Scenario Forecast

Scenario forecasting in this work used to improve the quanlity of the probabilitic
forecasting, and so evaluation of the scenarios is not part of the thesis.

2.4 Model Validation

Since there is a time dependency between variables of the time series it is not possible to
shuffle or perform k-fold cross validation which is a common way to assess the ability of
the model for generalizing. Sliding Window and Expanding Windows are a counterpart
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for cross-validation on time-series [HA14, ch. 3.4]. Expanding the window is more
desired when there is a limited number of samples available (short time series). Figure 7
depicts these two schemes.

(a) Expanding window (b) Sliding window

Figure 7. Time-series validation schemes

2.5 Baselines

Baselines are simple heuristics that model a simple relationship between the input and
the target variables of a time series. They provide a reference to make sure the developed
models are not performing worse than them. Depending on the difficulty of a time
series forecasting task, a baseline may perform relatively better than a model. Here we
introduce two baselines, one for the point forecasts and one for probabilistic forecasts.
The goal of a model is to improve the forecasts over these baselines.

2.5.1 Naive

A conventional baseline for the time-series forecasting is a persistence model, also may
be referred to as naive, where the last observed value is being used as the forecast for the
whole horizon as shown in Eq. (6)

Ur4nT = Y1 (6)

Where h € Ny represents a lead time in the horizon, and T is time step in the
observation that all lead time forecasts in the horizon were conditioned on.

2.5.2 Quantile Naive

To provide a baseline for the probabilistic forecast we introduce a variant of naive, and
we name it as quantile naive®. In Quantile naive Instead of using the last observation
as the forecast, it uses the quantiles of the last n observations is as the forecast. In this
manner, quantile naive performs some form of probabilistic forecast or measurable as a
probabilistic forecast.

31t seems that such baseline has not yet been documented in the literature.
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Fy(y) =P <y) Y ={yr—w yr—w+1, .-, yr}
Qv (q) = Fy'(q) (7)
Yr+hly = Qy(q)
Equation (7) shows how quantile naive is being performed. ¥ is the forecast for the
horizon of size h which is calculated based on desired quantile ¢ from the cumulative
distribution Fy obtained from the history Y of the last w observed values. For example,

if w=4thenY = {yr_4,yr_3,yr—2,yr—1,yr} and the forecast for 90th percentile
quantile with h = 2 would be g7 = Qv (0.9).

2.6 Evaluation Metrics

Here three evaluation metrics introduced, two for evaluation of a point forecast and one
for a probabilistic forecast, which is also a generalization of the other two.

2.6.1 Mean Squared Error (MSE)

This metric is being used in this work mainly to be able to compare the results with
[KG17]. Equation (8) shows how MSE can be calculated for each lead time h in
the horizon, with n(T) denoting the cardinality of the forecasts. MSE has the same
measurement unit as of the squared of the series evaluated for. It is also equivalent to the
variance of the model output if the model is unbiased.

MSE(h) = Z(ijh\t - yt+h)2 )
teT

n(T)

2.6.2 Continuous Ranked Probability Score (CRPS)

CRPS [MCMT11] evaluates a probabilistic forecast represented by a predictive cumu-
lative distribution function F}(y) against the true value or observed probability passed
through a heaviside function H(y, y) as shown in Eq. (9). Perhaps it would be easier
to think of the CRPS as a Brier score (BS) shown in Eq. (10) which is essentialy an
MSE. Both of the scores calculate a difference, where in BS is in discrete space where f;
can be thought of a specific quantile of F} and o; an indicator of whether the true value
predicted correctly or not (for that specific quantile). The counterpart of o, in CRPS
is the heaviside function that H(z) = 1 for x > 0 and H(z) = 0 for z < 0. Another
minor but obvious difference is that for the CRPS the BSs are integrated over all possible
quantiles of the predictive distribution. If the intended forecast values were normalized,
then the calculated score would be normalized and referred to as NCRPS.
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NCRPS(y) = nLT) Z/ (Ft+h|t(y) — H(y — yt+h))2 ©)
teT v =
BS = ii(ft —0;)? (10)
N

t=1

An important property of CRPS is that it measures the accuracy, as well as the
sharpness of the predictions which means calibratedness of the forecasts is also reflected
in the score. Besides, it is a proper scoring rule, and so the lower the better (taking
minimum of 0), and with the same unit as the measured variables as it is a generalization
of the MSE. Figure 8 illustrates four scenarios for the calculation of the NCRPS. To
further convey the calculations four different scenarios were simulated for the forecast
where the probabilistic forecast is accurate (not biased and low variance), not biased
while high variance, biased while low variance, and finally biased while high variance.
In all the cases the true value had set to y = 0.6. CDF of the forecast had altered with a
bias = 0.15 and o = 0.1. The barcode plot in the bottom of the plots shows the PDF of
the forecast as it is visually appealing to see the bias and variance clearly.

2.6.3 Mean Absolute Error (MAE)

It is also a special case of the CRPS, where the forecast variable corresponds to a specific
percentile (usually and also in this work 50th percentile) and so it is appropriate for
evaluation of a point forecast.

1 .
MAE(h) = m tEZT ‘ Yi+hlt — Yt+h | (11)
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Figure 8. Demonstration of NCRPS calculate under different scanarios

3 Uncertainty in Deep Learning

A Bayesian framework is a powerful tool for modeling and inference. The most notable
aspects of Bayesian model is the power of modeling uncertainty which is an enabler to
also improve performance of the model as well as generalization capability as shown
by [KG17]. To begin with, an overview of the non-Bayesian neural network is given,
then different types of uncertainty and how it is framed in a deep learning model is
explained. Further, an overview of the Bayesian framework is presented by reviewing
the required terminology, notations, Bayes’ theorem, Bayesian inference, and Bayesian
prediction. Then we look into how the Bayesian framework is applied on neural networks
and explain a common approach that has become successful in deep learning and also
being used in this thesis work.
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3.1 Non-Bayesian Neural Network

An Artifcial Neural Network (ANN) i1s a general function approximator that initially
inspired by the neuron cells in the brain. They first appeared as a perceptron algorithm
[Ros58] and later many other additions to this family of methods emerged. They are
composed of layers within which a number of nodes reside. These nodes also known
as the weights of the network enable the network to take an input and transform it by
passing it through each layer and weight of the network to the final layer and output of the
network. This process called forward pass where network performs transformation with
the current weights. During training time, the obtained outputs are compared with the
target values and a loss measure calculated that provides a reference for optimizing the
network parameters (weights). An optimization algorithm called gradient descent is often
used to change the weights of the network with respect to each weight’s contribution to
the final output error/loss. This process is performed at the back-propagation stage. Each
time the network is trained on all or roughly all of the training instances by going through
the forward and backward pass. Every complete cycle of the forward and backward
pass is then denoted as epoch. Every epoch learning may occur on a single instance or
a batch of instances. Different loss measures could be chosen to perform optimization.
For regression tasks, MSE loss is the most convenient one. This learning scheme is also
referred to as supervised learning as targets (or labels) for matching the network output
to, has a supervision role in the network’s learning process.

A non-Bayesian Neural Network equivalently a Frequentist Neural Network is a
conventional form of neural networks where an optimum point estimate of the parameters
is being estimated which means that by default is incapable of explaining the uncertainty
and so the model would always underestimate the variance of the predictive distribution.
That is why we already know that in theory, Bayesian Neural Networks (BNNs) are
more capable both for interpretability as well as generalization compared to their non-
Bayesian counterparts. Figure 9b demonstrates the output of a non-Bayesian network on
a dataset that involves a considerable amount of uncertainty as depicted in Figure 9a. As
a conclusion, every neural network model consists of following building blocks:

* training input and corresponding target values
* model (layers and nodes, also referred to as weights of the network)
* loss function

* optimizer

3.2 Types of Uncertainty

There are different taxonomies of uncertainty depending on the context. In the context of
machine learning, we are mainly concerned about two main categories of uncertainty.
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The root or main cause of uncertainty, however, is common for any context, and that
is an error. And error can be caused by partial observability, stochasticity - both can
be referred to as unknown or novelty in what it comes next - ignorance, indolence, or
possibly some other form or combination of these. Here we address these two types of
uncertainty that matter most to this thesis. Figure 9 adopted from astroNN® demonstrates
how added noise to the data translates to aleatoric and epistemic uncertainty, as well as
the output of a non-bayesian model to such noisy data. In Fig. 9a can be seen that there
is a misalignment of some of the data points from the expected trajectory of the points.
That could occur due to measurement error. Also, we can see that the distribution of the
data changes. We can see how the non-Bayesian model in Fig. 9b failed to model and
deal with these uncertainties. On the other hand, a model with the capability of capturing
two different types of uncertainty is more capable of explaining these different situations
in the data as can be seen in Fig. 9c and 9d.
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Figure 9. Comparison of different uncertainties

Shttps://github.com/henrysky/astroNN
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3.2.1 Uncertainty in Observations

Uncertainty in the data, also referred to as Aleatoric uncertainty, is mainly caused
by partial observability and stochasticity in the underlying process generating the data,
and/or errors in measurements. The Aleatoric uncertainty is explained by variance of the
observations which can be estimated the same way that the mean of a set of observations
estimated. If the variance of the observations is the same for a given data/task it is
referred to as a homoscedastic uncertainty, if it is changing across instances then it
is referred to as heteroscedastic uncertainty. Figure 9c demonstrates the captured
aleatoric uncertainty, as we can see there are regions with different changing variance in
Figure 9a that corresponds to the generated data.

3.2.2 Uncertainty in Model(ing)

Uncertainty in the model also referred to as Epistemic uncertainty, is mainly caused
by an error in the estimation of the model’s parameters when modeling. To model any
non-deterministic process, parameter estimation for the model is prone to errors. Also,
model misspecification, e.g. using a wrong parametric family could lead to epistemic
uncertainty. At the same time, this uncertainty is closely related to aleatoric uncertainty
because the uncertainty in the data could reflect on epistemic uncertainty. For example,
a model trained on a set of examples, when exposed to unseen instances are nothing
like the previous examples, impose uncertainty on the model. To this end, the epistemic
uncertainty is a function of error in parameter estimation and/or model misspecification
as well as the aleatoric uncertainty. Figure 9d demonstrates the epistemic uncertainty.
It is often expected to obtain larger uncertainty for future steps as the model is biased
towards the history, and so the farther it goes out of the sample, the more it diverges from
the reality.

3.3 Estimating Aleatoric Uncertainty

Since aleatoric uncertainty is a quantity to be measured from the data, it could be
estimated by the network besides the mean value that is already being estimated, and so
this can be done by adding another output to the network. This output would estimate
the variance of the input data. Equation (12) corresponds to the MSE loss used in a
regular regression task for optimizing a neural network. The net loss is the average of
each outputs’ loss as shown in Eq. (15). This loss comprised of two parts. The first part
is the MSE as before but weighted by the inverse of the variance as in Eq. (13) and the
second part is the logarithm of the variance as shown in Eq. (14).

N
1 2
»CNN = N E_ | Yy — H (12)
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Using this loss function, the model will be able to learn the variance in the data
and hence capturing the Aleatoric uncertainty. In this way, the network outputs a mean
and variance that could be associated with a normal distribution over each prediction.
Moreover, it is important to note that for learning the variance there is no need for more
labels or target values. The same target values for the mean would suffice and helps the
model to infer the logarithm of the variance.

(@) Ly < Lo (b) L1 > Lo () L1 < Lo d) L < Ly

Figure 10. Different cases for the loss - blue: prediction, dashed-black: real value,
red-bar: variance

Figure 10 depicts different possible scenarios that this new loss in Eq. 15 may
encounter:

(a) when MSE is large as well as the variance, £, gets small because the variance
is captured but then model gets penalized with £, to get even lower variance if
possible

(b) when MSE is large but the variance is not, £, gets bigger because the difference
in the MSE is not corresponding with the variance and model need to correct its
bias first, £, would not matter as much as £, in this case but still model is being
penalized to reduce the variance

(c) MSE is small but the variance is big, then £, encourages the model to reduce the
variance
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(d) model would ideally get to this scenario from all the other step and £, would still
encourage the model to reduce the variance

As a conclusion, since £ is the dominating term model needs to obtain a small £
first, then £5 becomes important. It is also noteworthy that this loss function is equivalent
to negative of the maximum likelihood (ML) function would obtain an ML solution by
minimizing this loss [Bis06, p.27].

3.4 Estimating Epistemic Uncertainty

Bayesian Neural Networks use the Bayesian inference, and Bayesian prediction in order
to explain a distribution possible values for the weights of the network as well as its
output. These two concepts will be addressed first, and then Monte-Caro Dropout
(MCDO) as the main method to practically obtain epistemic uncertainty from the model.

3.4.1 Bayesian Inference

One reason that Bayesian inference is very powerful goes to the fact of how the world
and interaction with the world occurs. Any intelligent entity has an assumption about
the world (a world model) which is updated continuously by observing the world and
correcting and operating in the world as an intelligent entity that adapts. The Bayesian
framework provides all the ingredients required for formulating, defining and employ at
the same level as any intelligent being and so makes it broadly applicable across different
disciplines and areas.
It all begins with the Bayes’ theorem:

PO W)
P(0)

Where W refers to the World-model, O to the observation we made. We begin
with an initial world model P(W') (prior probability), an estimate of the probability
of our world-model to be true. And what we would like to do is to update this world
model using the observation that has been made from the surrounding world and so to
obtain P(WW | O) (posterior probability) of how our World Model looks like with the
observation. This achieved by checking the compatibility of our World Model with the
Observation given by the P(O | W) (likelihood) which is a function of our observation
with a given fixed World Model. This joined with the probability of this observation
actually occurring P(O) (marginal likelihood) because it is independent of our world
model (marginalized).

Spherical model of the earth is a good example of updating a world model. Once it
was thought that earth is flat (P(117)). Given the observation that traveling from one part
of the earth to the other we observe different parts of the space then the chances that the

P(W | 0) = . P(W) (16)
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earth is flat and we have this observation (P(W | O)) should decrease because if earth
was flat we would have not seen any new constellation by traveling from one part of the
earth to the other as in a flat earth model all part of the sky should be visible so it must
be some other shape that is compatible with this observation. Also the probability of we
observing this phenomenon (P(O)) at least half of the time true because half of the time
travel made across the equator and half of the time along the equator.

To achieve a better world model this process could be generalized and joined with
other events and observations as well as this observation until obtaining a confident
posterior.

3.4.2 Bayesian Neural Networks

Neural networks could be turned into Bayesian neural networks by learning the distribu-
tion of its parameters instead of a scalar value for each weight. This means that we put
a prior on the weights of the network and we are interested in calculating the posterior
given the data.

p(X | 0)p(0)

p(X)

Here 6 represents parameters or weights of the network and X the data. P(#) is the
prior and we already know this (e.g. initialized by a Gaussian prior). P(X | 0) is the
likelihood of X under current weights of the network, which could be obtained simply by
a forward pass. In the denominator, the P(X) is the distribution of the observed values
that is marginalized over the parameters and can be calculated by integrating over all the
possible values of theta: [ p(X | 6)p(6)d6. This, however, is intractable for even small
networks and so there exist methods for approximating this probability instead.

Given one could find optimal parameters of the network, then prediction for an
unobserved instance can be done using posterior predictive distribution as follows:

p(0 | X) =

p(i | X, 0) = / p(i | 0)p(6 | X)db

3.4.3 Monte-Carlo Dropout

As mentioned earlier, to alleviate the intractability of calculating the posterior because
of the marginal likelihood a variational Bayesian method should be used instead that
addresses the intractability by providing an approximate solution. Different approxi-
mation methods developed for deep learning to calculate the posterior [TAS18, Grall].
Among all, Monte-Carlo Dropout [GG15] has been established since its introduction due
to simplicity and availability. It uses the same dropout technique used for regularization
of neural networks [SHK*14].
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Figure 12. Possible Dropout Masks for a layer with 3 nodes, masks with cross indicate 0
and those with hallow circles indicate 1

What dropout does at training time is to randomly ignore some of the nodes at
each epoch so that the learning takes place with the rest of the nodes. Nodes are being
dropped randomly and alternatively across different epochs. In the short run this makes
each part of the network trained independent of the other, in the long run however, it
provides a level of redundancy as well as regularization effect. One of the implications
of the redundancy is that the whole network could be thought of an ensemble of smaller
sub-networks as a result of the dropout.

To better convey the concept, take a simple neural network with 3 nodes as in
Figure 11. These three nodes could either be dropped or not dropped which makes up 23
possible states or masks to put on each node, depicted in Figure 12. Among all m1 and
mg8 are not desirable. If all nodes dropped (m8), no output will be obtained, therefore no
learning can be achieved. If no nodes dropped (m 1), there is no regularization effect in
the network. To this end, in total 2% — 2 = 6 different states are desirable for dropping
these nodes. Each of these possible dropouts results in effectively a different network,
depicted in Figure 13. And so for this simple example, learning these separate networks
and combining their result would effectively be the same as performing the dropout for
one network. Dropout technique makes it possible to keep the integrity of the network
as a whole while performing some kind of an ensemble. Instead of having separate
networks, a separate information flow constructed using this technique which its effect
would be the same as if one would train separate models and combine them.
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More formally, The simple network from Figure 11 can be written as in Eq. (17).
y=xw (17)

Where the input = and output y are scalar values and w = (wy, wy, w3)" a vector
representing each node of the network and x = (z, x, x) is a broadcast version of the
input with dimensions of 1 x 3 to match the first dimension of the w. Dropout can be
applied in a way shown in Eq. 18.

y=x.Mw (18)

Where M is a diagonal matrix of size 3 x 3 with its diagonal entries being the mask
m = (mq, my, m3) with each of its entries being drawn from a Bernoulli distribution
with probability of p. Probability p indicates the probability of an entry being 1 and so
the probability of dropout or being 0 would be 1 — p.

Dropout at the first layer would be equivalent to performing sampling from the input
data, which is similar to the bootstrap aggregating in ensemble methods [Flal2, ch. 11.1].
As discussed intuitively, while training, the dropout acts as a regularizer by training
portions of the network independent of the other at each time, which removes potential
influences that may cause the network to get stuck in a local optimum and hence overfit .
Moreover, another implication of such redundancy is that the dropout during test time
would result in different possible outputs produced by different subnetworks which would
imply the variance of the model, also known as epistemic uncertainty. Which is again, a
similar concept in ensemble method for reducing the variance of prediction by using a
number of unbiased models [Flal2, ch. 11.3].
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4 Deep Probabilistic Forecasting

Deep Probabilistic Forecasting (DPF) as the name implies, performs probabilistic fore-
casting using deep learning methods. Although there have been many efforts in recent
years with deep forecasting, it has been mostly limited to the estimation of quantiles. This
work is among the first to perform probabilistic forecasting with Monte-Carlo Dropout
Neural Network. In this section and the following the main contributions of this work is
being explained which is mainly inspired by [KG17] to achieve probabilistic forecasting.

4.1 Framing the problem as supervised learning

Supervised learning is the common scheme that has dominated the deep learning methods
for different tasks from analysis of spatial data such as images to temporal data such
as time-series data. Time-series forecasting could be framed as supervised learning by
placing a window of size n on the input sequence and a window of size m as the target of
that input sequence. In time series forecasting usually, the target sequence is right after
the input sequences. Hence, a sequence of size 7" produces ¢ — (n + m) + 1 instances
when it is framed into a supervised learning problem, see Figure 14. It can be thought
of as a window of size n + m that slides on the time series, where the first n elements
denoted as input X and the last m elements as the target .

T
1 Input (m) a(rmg)et‘

T-(n+m) —

T-(n+m)+1

Figure 14. Creating train and target(s) with sliding window

And so the dimensionality of a time-series forecasting problem would be (¢ — (n +
m)+ 1,n) for the input and (¢t — (n+m) + 1, m) for the target vectors. If the forecasting
problem is a multivariate time-series then the input dimension assuming that the length of
all series is the same would be (¢t — (n +m) + 1,m, f), where f is the number of series.
The output or target sequence would be (t — m,m, i), wherei € 1,..., f depending on
how many of these series need to be forecasted.
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4.2 Models topology

In a sequence modeling problem, different numbers of input and numbers of output can
be modeled. Figure 15 demonstrates possible mappings of multiple inputs to multiple
outputs. In most of time-series forecasting problems a history of past and present is
given and a model should forecast one step or a number of steps into the future, and so
many-to-one or many-to-many mappings are the most common.

model .
input
output D

Figure 15. Possible input to output mappings in sequence modeling

The focus of this work is on the uncertainty aspects and so the simpler architecture
with many-to-one output was used in the experiments.

4.3 Neural Network Architectures

Two very well-known artificial neural network architectures were used. One was mul-
tilayer perceptron (MLP), the other was a recurrent neural network (RNN). Recurrent
neural networks are famous for sequence modeling, especially in the area of natural
language processing (NLP), and machine translation where sequences of characters or
words are of particular interest. In time-series, the sequence modeling is on series of
real number or signals of various forms. Besides these two architectures, Convolutional
Neural Networks (CNN) may also be employed for sequence modeling. Since the main
focus of the work was on uncertainty and probabilistic forecasting, we only focused on
a simple version of MLP and RNN. The MLP architecture provides a good compari-
son with RNN to see if the complexity and computational cost of the RNN, which is
specialized for sequence modeling, is worth it over the performance of MLP.

4.3.1 Multi-layer Perceptron

Multi-layer perceptron or fully-connected network consists of a number of layers, each
consisting of units (also known as artificial neurons). These units are represented as
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matrices of weights for each layer, stacked together to construct a deep architecture. This
architecture is the most conventional, universal form of artificial neural networks that
in theory are capable of approximating any function given enough data and complexity
(layers and units per layer). In theory with this architecture, it is possible to learn any
function of the input, picking any linear or non-linear combination of the input sequence.
More complexity could be added to the network by adding more layers.
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Figure 16. Fully-connected Neural Network Architecture

Two variants of the architecture were employed. One with single output as shown in
Fig. 16a and the other with two outputs as shown in Fig. 16b. The Latter estimates both
the mean and variance of the data. The number of units and regularization determined
based on the synthetic data with the objective of having the simplest possible model.
Dropout was used as a regularizer to avoid overfitting in both models. In the second
model, it was also used for the purpose of estimating the epistemic uncertainty.

4.3.2 Recurrent Neural Network

Recurrent neural networks are ought to be good with memorizing sequences of data,
for that the data flows not only through the depth of the network but also through
lateral connections (referred to as recurrent connections) making the network capable of
exercising a capacity for memorizing. Gated Recurrent Units (GRU) was employed that
is a successor of Long-short Term Memory (LSTM) [CGCB14]. They are a simplified
version and computationally more convenient. Recurrent Dropout [GG16] was also
employed together with this model for both the purpose of regularization and MCDO
approximation.

As in the case of MLP, two variants of RNN-GRU were used. One with a single
output as shown in Fig. 17a and the other one with two outputs as shown in Fig. 17b.

4.4 Probabilistic Forecast

The 2-head models mentioned above were capable of predicting a Gaussian distribution
as their outputs estimate the mean and variance of the forecast variable one step ahead.
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Figure 17. Recurrent Neural Network Architecture

A preceding sequence to the target horizon for the forecasting is given to the model
as a warmup sequence. This sequence is used to make a multistep ahead forecast, by
appending the one step ahead forecasts to the input sequence and shift the warmup to
the left such that a new warmup sequence with the last prediction at the end could be
fed to the network for next step until the intended horizon steps are being covered. This
multi-step forecasting scheme is known as rolling forward forecasting [HA14, ch. 3.4]
depicted in Fig. 18.

This scheme, however, is biased because of the fact that the forecasts are being
treated as new observations which are not true. Since network input accepts a vector of
scalars and not distribution, the probabilistic forecast should either be sampled or the
mean should be used to perform roll forwarding. This means that the there is systematic
error/bias in the inputs that provided by the model forecast from previous steps and more
importantly even if the bias is negligible the uncertainty involved with these forecasts
are different from the uncertainty that the model is initially being trained on to capture.
It includes both aleatoric and epistemic uncertainty, but the model was not trained to
capture uncertainty about its own uncertainty as this scheme requires so. In other words,
the many-to-one model requires rolling forward forecasting, which introduces an ignore
by the model which consequently leads to biased results. In order to tackle this problem,
we propose to perform a form of scenario forecasting.
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1-step ahead
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Figure 18. Roll-forward forecasting to achieve multi-step ahead forecast (from left to
right forecast step O to h)

4.5 Probabilistic Scenario Forecasting

The purpose of scenario forecasting was two-fold. First, to tackle the problem of
the model’s ignorance. Second, to produce different forecast trajectories as another
informative form of forecasting. Since the forecasts were probabilistic, one could sample
from the forecast distribution and the sampled values could be used instead as the next
value in the input sequence. Scenario forecasting itself was made possible thanks to
MCDO variance estimation.
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Figure 19. Scenario Forecasting Steps

Figure 19 demonstrates the construction of trajectories. Figure 19a corresponds to
the generation of trajectories, where possible samples drew from the forecast distribution
(colored by red) in order to perform scenario forecasting on these values (colored by
blue). Figure 19b shows these generated trajectories. Each of these scenarios forecasts
performed as part of one MCDO simulation and so were averaged over all to obtain the
final result as shown in Fig. 19c. The final forecast would look like Fig. 19d.

As a conclusion, scenario forecasting was necessary for this work to achieve better-
calibrated forecasts otherwise results were biased due to use of the many-to-one model
for multistep ahead forecasting. It should also be emphasized that the multimodality that
can be seen in the scenario forecasts were possible because of the MCDO.
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S Experiments

In this section, we explain the setup of the problem, a specific configuration of the models,
datasets, baseline models, and evaluation metrics that were used for the experiments.
The deep forecasting models that were explained in the earlier chapter were first built
and tested on the synthetic data. Their performance was compared with the baselines so
that to make sure the models were not performing worse than what could be achieved
with simple heuristics. The performance and quality of the models were assessed using
the evaluation metrics introduced in Section 2.

5.1 Synthetic Data

It was important to have a toy dataset that could help understand the behavior of the
model and match it up with expected behavior. At the same time, since we are interested
in the uncertainty and study of some particular aspects of the model, it is of greater
importance to be able to diagnose the model while making sure that there is no unknown
or unintended problem in the input of the models. To this end, we chose to build the
models first based on some synthetic data. This not only provided a chance for building
the models with an easier diagnosis but also to better understand and study the behavior
of the model under different controlled input conditions.
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Figure 20. Generated sinusoidal signal with Gaussian noise sampled at irregular timesteps

A sinusoidal was chosen for the synthetic data as it is easy to implement, it is a
relatively simple signal that is expected to be learned by the models relatively easily and
with not too many samples. Also, adding uncertainty to the data could be done with an
additive Gaussian noise as follows:

Y(t) = y(t) +e (19)
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Figure 21. Distribution of the sinusoidal signal

y(t) = Asin(wt + )
w=2rf
e~ N(u, 0%)

Frequency of the Sinusoid (f), parameters of the Gaussian noise(u, %), and amount
of samples per period were the parameters that could be chosen arbitrarily. Furthermore,
the sampling could be done in irregular time steps or regular. Irregular sampling was
chosen as it creates another source of uncertainty and makes the series more challenging
for the model to learn.

Figure 20 shows 200 samples of the synthetic dataset sampled in irregular time stops
from a sinusoidal with a frequency of f = 0.2 with additive Gaussian noise with mean
w = 0 and standard deviation of ¢ = 0.1. This data is then scaled to the range [0, 1]
to make it similar to the wind power data that will be explained in the next section.
Figure 21 shows the histogram of the re-scaled sampled sinusoidal. This data is then
split into train, development, and test sets for the fitting, model validation and final
evaluation of the models respectively with the sizes of 2678, 1072, and 72. These splits
were picked in the same order as of the original sequence of the data. The choice of
size of the datasets was motivated by the data sizes available from GEFCom’14 Wind
dataset. Test dataset includes 72 data points and hence 72 lead time in the horizon
to forecast, however, evaluations and demonstration were performed for 48 lead time
instead. Irregular sampling performed by changing the sampling time with a random
normal over the sampling timestep. A number of input sequences chose to be 24 as it
gave the best result based on empirical results.
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5.2 GEFCom’14: A Wind Power Forecasting Case Study

Global Energy Forecasting Competition 2014 [HPF* 16] was chosen for the experiments
on the real data. This competition had provided 4 different tracks including load, price,
solar power, and wind power forecasting. Our experiments were focused on wind power
data. History of wind power production from 10 different wind farms was provided
by the competition organizers. Each wind farm consists of a number of wind turbines
and the total power from each farm had to be forecasted. The data were categorized
into 15 different tasks which were released by the organizers over a couple of months
to the participants based on a schedule but that is not of any concern to our work.
Our experiments are only based on TASK15 and first wind farm (wf1) which was the
final task that participants were supposed to perform their best on. Besides generated
power, for each wind farm, a dataset with wind speed information was provided for
each wind farm. Wind speed contained information about the speed of the wind at
two different heights above the ground next to the wind turbine. For each height, two
measurements corresponding to Zonal and Meridional directions were given. These wind
speed measurements could then be translated into angle # and magnitude r if needed as
depicted in Figure 22. Two different experiments conducted for this dataset, one without
the wind speed information, and one with the wind speed, to see the influence. However,
according to Eq. 20 it is expected that much better results be obtained as a result of
employing the wind speed. The dates of the data for TASK15 begins from 2012-01-01
01:00:00 and ends on 2013-12-01 00:00:00, roughly 1 year and 11 months. Frequency
of the data is hourly. Also, dataset had some null values for the power forecast only in
wfl, wf2, and wf3 which in total they summed to be 112 instances, which then filled
with ffi11 null value’.

We chose following dates for the train, development and test sets according to the
[HG18]:

e train: 2012-01-01" to *2012-08-01
* development: *2012-08-01" to *2012-10-01

* test: "2013-10-01" to *2013-10-02" (48 hours)

P = %Apv?’ (20)

Equation 20 shows the relation of wind power per unit of time, where A is the area
of wind contact to the turbine’s rotor, p is the density of the air, and v is the speed of the
wind [GGO5].

"Data  exploration and cleaning adopted from https://github.com/greenlytics/
gefcom2014-wind
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Figure 22. Wind speed distribution for wfl with respect to the power, the higher the
power the lighter the points become and vice versa.

The length of the input sequence for the warmup chose to be 4 (meaning 4 hours) as
it was a right balance between performance and speed of training. As Fig. 23 also shows
this choice was supported by the fact that the auto-correlation of power is high enough
only for 4 lags.

38



5.3 Implementation Details

The TimeSynth was used with parameters of the sampler stop_time= 500, num_points=
15000, and keep_percentage= 500. The first parameter indicates the clock for sam-
pling, the second is for the number of data points, and the last, for the number of samples
to be kept (the less the sparser the samples from the original signal). And finally, the
range of the values scaled between 0 and 1 as an arbitrary desired range for the data.
Frequency of the sinusoidal set to f = 0.2 with additive Gaussian noise with mean ;. = 0
and standard deviation of o = 0.1.

To pace up the learning, a Cyclical Learning Rate scheduler used with both of the
models explained in Section 5. As demonstrated and discussed in [Smil5] this learning
rate scheduler helps to traverse the saddle points in the weight space faster and so it paces
up the learning process. Cyclical Learning rate Scheduler with parameters gamma = 0.8,
and the lowest and highest rate of 1e — 5 and 1 — €2, respectively.

The number of units for both MLP and RNN models were set to 100. Dropout
mask with rate 0.3 applied both for the regularization and for the epistemic uncertainty
estimation. The batch size for all experiments set to 32. For the RNN, recurrent dropout
was applied only. All models were run for 10 epochs with Adam optimizer and Cyclical
Learning Rate Scheduler. Activation function for the first layer set to default that is linear
for the Dense layer and tanh for the RNN layer with GRU cells. Activation of the first
dense output that estimate the mean set to hard sigmoid that proved to be slightly better
over sigmoid. Also, activation of the second dense output that estimates the logarithm
of the variance set to linear. Input and target sequences were generated using Keras’
TimeSeriesGenerator and a modified version of it for the model with two outputs.
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The code for producing the results and materials presented in this thesis can be
found in Github repository®. Here is an overview of the packages that were used in the
implementation of this work:

Keras version 2.2.4 was used for the implementation of neural networks [C*15]

From Scipy version 1.2.1, stats was used for implementation of probabilistic
forecasts [JOP™ ]

Numpy version 1.13.3 was used for manipulation of the data arrays [Oli06]

Pandas version 0.24.2 was used for reading the data from the csv files, manipula-
tion time series and dataframes [McK10]

sklearn version 0.20.3 was used for MSE and MAE measurements and time
series splitting [PVG*11]

matplotlib version 3.0.3 was used for the plots and visualizations [Hun07]

An implementation of Cyclical Learning Rate Scheduler compatible with Keras
was used ’

TimeSynth'® was used to generate Synethtic dataset

8https://github.com/novinsh/master_thesis
“https://github.com/bckenstler/CLR
https://github.com/TimeSynth/TimeSynth
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6 Results

All models were fitted to the training dataset and were validated over 20 different splits
of the development. At all time, models were fed by input sequence of size 24 for the
Synthetic data and of size 4 for the GEFCom’14 data set. Input sequences for the purpose
of validation were not revealed to the models during training time. Models had to forecast
a horizon of size 48, or this amount of time-steps ahead of the input sequence. Two
network architectures, MLP and RNN were tested and their results are being reported
here. Moreover, 5 different variation of each model per each architecture studied and
their results are being reported here. 4 of which correspond to the Bayesian models
and 1 to a non-Bayesian model. For the baseline, two variations of Quantile Naive
was used. One over all the dataset denoted as QNaiveX and one with only the warmup
sequence denoted as QNaiveW. Beside the baselines, the Non-bayesian model denoted
as old model used as another reference for comparing the point forecasts performance.
The Bayesian models are denoted as AL for Aleatoric, the EP for Epistemic, the ALEP for
Aleatoric+Epistemic, and SFALEP to for the Scenario Forecast on Aleatoric+Epistemic
models. Figure 24 demonstrates how each of the Aleatoric 24a and Epistemic 24b
uncertainties demonstrated. The final output of a complete model would add both of
these uncertainties together as in ALEP or SFALEP case, that are being demonstrated as
fan charts such as in Fig 31c and 31d.

As for the evaluation metrics, CRPS was used primarily for the probabilistic forecasts.
Beside CRPS, MAE and MSE were used as additional metrics for comparison with other
works, as well as the old model. It is noteworthy that the median of the probabilistic
forecasts was used to evaluate them across MSE and MAE.

6.1 Synthetic data

Figure 25a shows the results obtained from the RNN architecture. It can be seen that
the QNaiveX achieves better MSE with much lower variance compared to the other two
baselines. no-noise is the sampled signal without Gaussian noise. It was used as a
lower bound that the models would ideally be able to get an error as low as this. On
Synthetic dataset, Bayesian models were not able to perform much better and even in
some cases even did slightly worse than the o1d model. The SFALEP model however
usually reduced the variance if not performing better on the mean error compared to
the old model. Figure 25b demonstrates the execution time of each model for the
forecasting. This pattern can be seen in almost all other experiments as well, therefore we
omit demonstrating the execution time for the rest of the experiment. The SFALEP higher
execution time is due to the Monte-Carlo simulation, as well as the scenario forecasting.
This can be reduced by running the simulations concurrently, yet the scenario forecasting
execution is sequential and its execution time could not be reduced by running it in
concurrently.
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Figure 24. Demonstration of Aleatoric and Epistemic Uncertainty

Table 1 shows a numerical view on the performance of each model across different
metrics and architectures. Figure 26 illustrates the same with one additional metric, the
MAE. Based on these results for the synthetic dataset RNN did not improve results much
over the MLP.

Metrics CRPS \ MSE

Architectures MLP GRU MLP GRU

no-noise N/A N/A 0.007 0.007
old N/A N/A 0.033 £ 0.020 0.035 £ 0.021
QNaiveX 0.163 = 0.055 0.163 £0.055 | 0.0824+0.014 0.082£0.014
ONaiveW 0.210+0.129 0.210£0.129 | 0.1354+0.042 0.135 4 0.042
AL 0.116 £ 0.100 0.103 £ 0.105 | 0.033 £0.019 0.030 £ 0.024
EP 0.131 £0.106 0.1324+0.111 | 0.033 £0.019 0.035 £ 0.022
ALEP 0.112£0.095 0.103 +£0.104 | 0.033 £0.019 0.030 £ 0.024
SFALEP 0.107 £0.086 0.098 +0.085 | 0.034 +£0.019 0.031 +0.024

Table 1. Results obtained on the Synthetic Data

In Figure 26 the error bars are the standard deviation of the metrics and the bars
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are the mean value for that metric. These results obtained from running the models
on different splits of the development set. As can be seen in this figure as well as the
table, there is no much difference between the performance of the MLP and the RNN
architectures, yet RNN is slightly better.
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Figure 26. Performance on Synthetic data across different metrics and models

Figure 27 shows the reliability/calibration plots for each of the models. These
plots produced by taking all forecasted variables under the same posterior predictive
distribution. EP was the most miscalibrated model for both cases. SFALEP was better
calibrated compared to all other methods at the RNN case, and so RNN should be
preferred over the MLP architecture, although the performance gain was not significant.
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Figure 27. Calibration of models on Synthetic data

6.1.1 Stepwise Evaluation and Improvement

Performance of the forecasts for each lead time averaged over 20 splits of the development
set and demonstrated in Figures 28 and 29 for MLP and RNN cases, respectively. In
each of these figures, the top two plots show the NCRPS and NMAE with the worst and
best expectation which were set as an ideal case based on the results achieved by [HG18].
Therefore, the expectation is to have a model that does not do worse than the red dotted
line and ideally perform with zero error (the green dotted line). The same applied for
the improvement plots, the two bottom plots. Going below the red line or y = 0 for the
improvement plots not only means that the forecast was not an improvement over the
QNaiveX but also performed worse. As it can be observed in these two figures, none of
the models performed worse than expected and almost for all the horizon it is catching
up with the best performance expected. However, the caveat is that this expectation was
not initially set for the Synthetic data and due to the simplicity of this datasets nothing
much strong could be said until looking at the results on the real data. SFALEP shows
better performance in later lead times in the horizon.
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Figure 28. Stepwise Evaluation plots for MLP Forecasts
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Figure 29. Stepwise Evaluation plots for RNN Forecasts
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6.1.2 Fancharts for Probabilistic Forecasts on Test set

Probabilistic forecasts of the models on the Synthetic test dataset visualized using fan-
charts. Each fan corresponding to a quantile of the predictive distribution for that lead
time. Persistence or the naive (not the quantile naive) also plotted, together with the
old (or non-Bayesian) model forecast. Figure 30 shows the QNaive forecast, Figure 31
and 32 show the MLP and RNN forecasts, respectively.
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Figure 30. Forecast plots for QNaive on Synthetic data
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(c) Model AL+EP forecast on test set
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(d) Model AL+EP with Scenario Forecasting on test set

Figure 31. Forecast plots for MLP on Synthetic dataset
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(c) Model AL+EP forecast on test set
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(d) Model AL+EP with Scenario Forecasting on test set

Figure 32. Forecast plots for RNN on Synthetic dataset

50



6.2 GEFCom Data

Results obtained from applying sample architectures and experiments on the GEFCom
dataset are being demonstrated in this section. These results also include a multivariate
case where it is reported separately. Table 2 and Table 3 give an overview over the
NCRPS and MSE results obtained from this dataset, respectively.

NCRPS Univariate \ Multivariate
Architectures MLP GRU \ MLP GRU
old N/A N/A N/A N/A
QNaiveX 0.211 £0.103  0.2114£0.103 | 0.209 £0.092  0.209 + 0.092
QNaiveW 0.266 £0.246  0.266 +=0.246 | 0.266 +=0.256  0.266 + 0.246
AL 0.215+£0.157  0.218 £0.155 | 0.167+0.121  0.169 £ 0.150
EP 0.247£0.197  0.263 £ 0.186 | 0.196 £0.154  0.157 £0.141
ALEP 0.208 £0.147  0.21740.150 | 0.166 ==0.097 0.159 £0.137
SFALEP 0.203 £0.149 0.183 +0.097 | 0.1734+0.104 0.144 +0.099
Table 2. NCRSP results obtained on the GEFCom’ 14 Dataset
MSE Univariate \ Multivariate
Architectures MLP GRU \ MLP GRU
old 0.112£0.073 0.107+0.063 | 0.084 +0.062 0.050 £+ 0.035
QNaiveX 0.147 £0.079  0.147 £ 0.079 | 0.136 =0.062  0.136 + 0.062
QONaiveW 0.156 £0.114  0.156 +0.114 | 0.156 =0.114  0.156 £0.114
AL 0.099 £0.048  0.103 4+ 0.051 | 0.080=£0.059  0.075+£0.048
EP 0.113£0.073  0.1074+0.064 | 0.080 +0.058 0.050 +0.036
ALEP 0.098 £0.047 0.102 +0.046 | 0.0824+0.046  0.068 £ 0.042
SFALEP 0.132 £0.087 0.103 +£0.037 | 0.0904£0.055 0.063 £ 0.044

Table 3. MSE results obtained on the GEFCom’ 14 Dataset

6.2.1 Univariate

In Figure 33 the error bars are the standard deviation of the metrics and the bars are the
mean value for that metric. These results obtained from running the models on different
splits of the development set. The performance on RNN architecture is obviously better
than the MLP, especially, with respects to the variance of the errors.
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Figure 34 shows the reliability/calibration plots for each of the models. These plots
produced by taking all forecast variables under the same posterior predictive distribution.
EP was the most miscalibrated model for both cases. SFALEP was better calibrated from
MLP to RNN case, and overall it was the second best-calibrated model after QNaiveX.
RNN should also be preferred over the MLP architecture both for the sake of NCRPS

mae
evaluation metric

(a) MLP architecture

mae
evaluation metric

(b) RNN architecture

performance as well as calibration of the model.
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Figure 34. Calibration of models on GEFCom data

Stepwise Evaluation and Improvement Performance of the forecasts for each lead
time averaged over 20 splits of the development set and demonstrated in Figures 35
and 36 for MLP and RNN cases, respectively. In each of these figures, the top two plots
show the NCRPS and NMAE with the worst and best expectation which were set as
an ideal case based on the results achieved by [HG18]. Therefore, the expectation is to
have a model that does not do worse than the red dotted line and ideally perform with
zero error (the green dotted line). The same applied for the improvement plots, the two
bottom plots. Going below the red line or y = 0 for the improvement plots not only
means that the forecast was not an improvement over the QNaiveX but also performed
worse. Both models were within the expected region for 7 hours ahead but after that
performing worse than expected, and even after 12 hours the improvement became either
very subtle or negative. The gap between the SFALEP and ALEP is more considerable for
the NCRPS. And that proves the effectiveness of the approach taken in SFALEP. This gap
is apparent for MSE however.
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(b) NMAE accross the forecasted horizon
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Figure 35. Stepwise Evaluation plots for MLP Forecasts
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(d) NMAE improvement over QNaiveX
Figure 36. Stepwise Evaluation plots for RNN Forecasts



Fancharts for Probabilistic Forecasts on Test set Probabilistic forecasts of the mod-
els on the univariate GEFCom test set visualized using fan-charts. Each fan corresponding
to a quantile of the predictive distribution for that lead time. Persistence or the naive
(not the quantile naive) also plotted, together with the old (or non-Bayesian) model
forecast. Figure 37b shows the QNaive forecast, Figure 38 and 39 show the MLP and
RNN forecasts, respectively.
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(a) QNaiveX forecast on test set
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Figure 37. Forecast plots for QNaive on GEFCom dataset
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(d) Model AL+EP with Scenario Forecasting on test set

Figure 38. Forecast plots for MLP
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(d) Model AL+EP with Scenario Forecasting on test set

Figure 39. Forecast plots for RNN
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6.2.2 Multivariate

In the multivariate case other than the power time-series, 4 wind speed variables were
used. Results reported here correspond to the models that were trained on all these 5
variables in order to forecast the wind power time series. In Fig. 40 the error bars are the
standard deviation of the metrics and the bars are the mean value for that metric. These
results obtained from running the models on different splits of the development set. The
performance on RNN architecture is obviously better than the MLP, especially, with
respects to the variance of the errors. Also, the multivariate case improved results from
the univariate.
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(b) RNN architecture

Figure 40. Performance on GEFCom data with wind data across different metrics and
models

Figure 41 shows the reliability/calibration plots for each of the models. These plots
produced by taking all forecast variables under the same posterior predictive distribution.
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EP was the most miscalibrated model for both cases. SFALEP was better calibrated from
MLP to RNN case, and overall it was the second best-calibrated model after QNaiveX.
Other than SFALEP the rest of the models were better calibrated in the MLP case. For the
SFALEP, RNN should also be preferred over the MLP architecture both for the sake of

NCRPS performance as well as calibration of the model.
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Figure 41. Calibration of models on multivariate GEFCom data

Stepwise Evaluation and Improvement Performance of the forecasts for each lead
time averaged over 20 splits of the development set and demonstrated in Figures 42
and 43 for MLP and RNN cases, respectively. In each of these figures, the top two plots
show the NCRPS and NMAE with the worst and best expectation which were set as
an ideal case based on the results achieved by [HG18]. Therefore, it was expected to
obtain a model that does not do worse than the red dotted line and ideally perform with
zero error (the green dotted line). The same applied for the improvement plots, the two
bottom plots. Going below the red line or y = 0 for the improvement plots not only
means that the forecast was not an improvement over the QNaiveX but also performed
worse. Compared to the univariate case results had considerable improvement. Now the
performance is within the expected region for both of the methods and models for the
most part of the horizon. For the MLP architecture, the NCRPS is within the expected
region for almost 14 hours ahead, which is twice the univariate case, and for the RNN
case, it is almost 21 hours, which is three times better than its same counterpart. Also,
for the most part of the horizon, the improvements were positive. At the same time it
seems at around 33 hours into the forecast the performance drops dramatically as low as
the QNaiveX for both of the architectures. Moreover, SFALEP proved to be effective once
more in this case.
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(b) NMAE accross the forecasted horizon
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Figure 42. Stepwise Evaluation plots for MLP Forecasts
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(d) NMAE improvement over QNaiveX
Figure 43. Stepwise Evaluation plots for RNN Forecasts



Fancharts for Probabilistic Forecasts on Test set Probabilistic forecasts of the mod-
els on the multivariate GEFCom test set visualized using fan-charts. Each fan corre-
sponding to a quantile of the predictive distribution for that lead time. Persistence or the
naive (not the quantile naive) also plotted, together with the old (or non-Bayesian) model
forecast. Figure 37b shows the QNaive forecast which is the same as the univariate case
as the additional predictors are not counted in the quantile naive forecast. Figure 45
and 46 show the MLP and RNN forecasts, respectively.
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Figure 44. Forecast plots for QNaive on Multivariate GEFCom
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(d) Model AL+EP with Scenario Forecasting on test set

Figure 45. Forecast plots for MLP
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Figure 46. Forecast plots for RNN
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7 Discussions

Study of the MSEs in Table 1 obtained from the AL, EP, and the ALEP models were slightly
different from observations made in [KG17]. For example, in our experiments, MSE
obtained by EP was slightly worse than AL, also its miscalibration was more severe.
Direct comparison of the results in this work and the original paper is not possible since
the problem at hand, network architecture, and the data are totally different. But the
general claim that aleatoric model outperforms the old model can also be observed and
other results in Table 3 support that as well.

To obtain multi-step ahead forecast in a many-to-one architecture, one should use the
forecast 77,1 and concatenate it to the input sequence, then rolling the input sequence
window forward, in order to make a forecast for next time step ¢.o. This process is
repeated as long as needed to obtain a forecast for the whole horizon. The problem with
this scheme, however, is that the model treats the prediction in the previous step as a new
observation which is not what it is. It matters because the error in these so-called new
observations is no same as those in the original data, and so the uncertainty involved are
different require the model to take that into account, otherwise the model would diverge
from true values. In other sense, the model may get biased toward its own forecasts and
the accumulated error in the forecasts lead to poorer and poorer performance in further
steps ahead. The SFALEP could compensate for this, however, it seems that the model is
still biased but not because of this ignorance, or at least not mainly because of it. This
approach improved the quality of the probabilistic forecast by producing better-calibrated
forecasts. It also improved the performance except for the MLP in Synthetic data and
multivariate RNN in real data.

The Quantile Naive baselines proposed, provided fairly good baselines in the Sinu-
soidal synthetic dataset. They were also a good baseline for assessing the calibration
of the models. These baselines could also give a better understanding of the data when
quantiles of the recent history are being compared with all the history. For example,
the mean and median of the QNaiveX implies the skewness in the dataset distribution,
or when compared with QNaiveW in recent history (or a specific range of data). Some

important observations:

* In the synthetic results, the performance of the models were decreasing over
time although the added noise was homoscedastic (Gaussian noise with constant
standard deviation across the experiment). However, due to the fact that the signals
from the underlying model were sampled irregularly, that had introduced some
uncertainty for the model as well and therefore causing the model to perform worse
over time.

* Lag 4 seemed to be just the right number of input sequence/history for the real
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data and that is explainable by the ACF plot where shows the high correlation for
the lags 1 to 4 of the series.

Quantile Naive proved to be useful for: 1) probabilistic forecast, 2) diagnosis tool

Quantile Naive over all the training data QNaiveX has a good calibration which
makes sense. By definition, calibration means how closely the predictive distribu-
tion was to the empirical distribution of the observations and so QNaive is basically
using different quantiles of the whole dataset in order to make forecasts for the
horizon which makes it be in general fairly calibrated

On the other empirical distribution of the observations in QNaiveW was limited to
the recent observation and so were the results biased

Results obtained on the Synthetic data were comparable in the GEFCom dataset
with real data and proved the effectiveness of the Synthetic data

Incorporating additional variables in the GEFCom dataset improved the results
compared to the univariate case

The improved model SFALEP improved the NCRPS for the farther lead time more
than the ALEP which shows its importance and advantage to use this model for
longer horizons.

All models performed worse than expected at the extremes of the data (0 and 1).
That is perhaps because the activation function used for the final layer mean value
was hard sigmoid and that makes the learning to stall for very big or negative
values, moreover values of the extremes are much rare near to 1 which makes
the learning at those values even harder, but model has a less hard time for lower
values around 0 because there were more examples of that in the data. Further
investigation is needed to handle these cases either by changing the loss function
or different outputs for separate modeling of these rare cases.

hard sigmoid gave better results compared to sigmoid

Scenario Forecasting in SFALEP was mainly devised to compensate for the igno-
rance of the model regarding feeding the prediction values as new observations in
the roll forward forecasting. However, the benefit of SFALEP is two-fold. Now the
model is also capable to generate scenarios or trajectories.

Wind speed plays an important role in the wind power forecasting as one would
expect because of the dynamics of the problem

In the calibration plots, we could observe that the Model EP had the worst calibra-
tion. The reason yet to be investigated.
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8 Conclusion

We used neural network models to estimate the variance of the data (aleatoric uncertainty)
as well as the epistemic uncertainty using Monte-Carlo Dropout technique. These two
uncertainties reflected in the predictive variance of the model which with the predicted
mean helped to construct a probabilistic forecast. To this end, our models were capa-
ble of performing probabilistic forecasting with the use of MCDO approximation for
Bayesian Neural Networks. Moreover, we enhanced the results by scenario forecasting
to compensate for the ignorance of the many-to-one model. This approach helped to
improve the accuracy of the model and make the probabilities more calibrated in general.
Our devised approach made an improvement over all the baselines and models.

Synthetic data-set played an important role as a pre-step to the real data-set to make
sure that the developed model is functional and then applying it on real data. Moreover,
the results obtained from the synthetic data were consistent on the real data as well which
shows that the synthesized data was a good indicator of the models’ performance, at least
on the wind power forecasting problem.

After obtaining promising results on the synthetic dataset, the same models with
the same configuration were applied on the real data-set that obtained nearly as good
results as in the synthetic case. Multivariate case of the wind power forecast was more
successful than the uni-variate case as was expected based on the literature in the wind
power generation.

In the end, our experiments to produce probabilistic forecasting were successful
and we showed how one could use the idea of Monte-Carlo dropout as well as scenario
forecasting in the many-to-one model to improve the result to obtain more accurate and
calibrated probabilities. Two different paths could be drawn for future works. One that
aims for the improvement of the current line of work and the other introduces new paths
for performing deep probabilistic forecasting.

Possible improvements over the current methods:
* Using another measure of loss
* Try to improve the model at the extreme values

* Run the Monte-Carlo simulation concurrently for faster forecasting execution,
especially for the SFALEP

* Handle ignorance of the model in another way, instead of using the scenario
forecasting e.g. make the model aware of its own uncertainties, compensating for
the bias by learning the innovations (similar to the moving average method)
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* Investigate other possibilities other than the normal distribution as the output of
the network

* Further studies on other Synthesized datasets, and effects of different network
design choices on the calibration

* Evaluating scenario forecasts
* Deeper architectures
* Feature engineering for better results on the real dataset

* Comparing the results with more competitive baselines such as Bayesian Decision
Trees [Lak16]

New directions for the future work:

* Explore other approaches such as [TLP18, PSP19] and more recent variational
methods that approximate the Bayesian networks such as [TAS18]

* Other architectures such as convolution neural networks [vdODZ"16] and encoder-
decoder architecture [VSP117]

* What would be the challenges or quality of uncertainty estimation in different
architectures

* How uncertainty estimation get better or worse if regression treated as a classifica-
tion task by discretizing the output

As a conclusion, the main goal of the thesis fulfilled which was to apply to use
a Bayesian Neural Network using MCDO in order to capture uncertainty and obtain
probabilistic forecast. The main motivation to use a many-to-one architecture was its
simplicity and possibility to focus on the uncertainty aspects. Moreover, it turned out
to be useful to produce scenario forecasts with this type of architecture and possible to
improve the calibration of the forecasts. We hope that these experiments together with
the results and discussions that were obtained from this work would inspire the future
works and contribute to the forecasting and deep learning communities.
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