Real Gelfand-Mazur algebras

Olga Panova



Faculty of Mathematics and Computer Science, University of Tartu,
Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in mathematics on June 30, 2006, by the Council
of the Faculty of Mathematics and Computer Science, University of
Tartu.

Supervisor:
Cand. Sc., Professor
Mati Abel
University of Tartu,
Tartu, Estonia
Opponents:

PhD, Docent
Jorma Arhipainen

University of Oulu,
Oulu, Finland

Cand. Sc., Assoc. Professor
Aleksander Monakov
Tallinn University,

Tallinn, Estonia

Commencement will take place on September, 21, 2006.

Publication of this dissertation is granted by the Estonian Science
Foundation, grant 6205.



Contents

List of original publications 7
Acknowledgements 8
Introduction 9
1 Real Gelfand-Mazur division algebras 11
1.1 Preliminary . . . . ... ... ... . 11
1.2 Real topological algebras and their complexifications . 13
1.3 Real locally pseudoconvex algebras
and their complexifications . . . . . . . . ... ... .. 14
1.4 Real galbed algebras and their complexifications . . . . 21
1.5 Strictly and formally real algebras . . . . . . . .. ... 25
1.6 Properties of the complexification of
some real topological algebras . . . . . .. .. ... .. 27
1.7 Real Gelfand-Mazur division algebras . . . . . . . . .. 29
2 Real Gelfand-Mazur algebras 34
2.1 Properties of quotient algebras and of the center of a
topological algebra . . . . .. ... ... ... ... .. 34
2.2 Commutative real Gelfand-Mazur algebras . . . . . . . 38
2.3 Some properties of ideals . . . . . . ... ... ... .. 40
2.4  Noncommutative real Gelfand-Ma-
zur algebras . . .. ... oo 43
2.5 Extendibleideals . . . ... ... ... .. ....... 44
2.6 Description of closed maximal ideals . . . ... .. .. 45
3 Description of ideals in subalgebras of C(X, A, o) 51
3.1 Properties of C(X, A;0) and of its subalgebras . . . . . 51



3.2 Description of ideals in subalgebras of C'(X, A, o)
3.3 Description of closed maximal ideals in subalgebras of

C(X,Ao) . .. ... ...
3.4 Description of

subalgebras of C'(X, A, 0)
3.5 Some results for C(X, A;0)

Kokkuvote
References
Index

Curriculum vitae

26

64
67

69

72

75

78



List of original publications

1. Mati Abel, O. Panova, Real Gelfand-Mazur division algebras.
Int. J. Math. Math. Sci. 40 (2003), 2541—2552.

2. O. Panova, Real Gelfand-Mazur algebras. Portugal Math., 63,
(2006), no. 1, 91—100.

3. O. Panova, Description of closed mazimal one-sided ideals in
several classes of real Gelfand-Mazur algebras. Contemp. Math.
Amer. Math. Soc., Providence, RI (to appear).



Acknowledgements

I wish to express deep gratitude to my supervisor Professor Mati Abel
for his guidance, encouragement and many helpful discussions during
the completion of this work.

I am grateful to Dr. Mart Abel for many new ideas and helpful
comments.

I am thankful to my teachers and colleagues at the Institute of
Pure Mathematics for their support.

I am also thankful to all teachers at the Faculty of Mathematics
and Computer Science for the help and knowledge they have given
during my studies.

I am very grateful to my family for understanding, patience and
moral support.



Introduction

The class of complex Gelfand-Mazur algebras was introduced, in-
depedently of each other, by Mati Abel (see [6]-[8]) and by Anastasios
Mallios (see [24]). The structure of complex Gelfand-Mazur algebras
has been enough well studied. The class of real Gelfand-Mazur alge-
bras was introduced recently in [18].

Properties of real topological algebras have been studied mainly in
case of Banach algebras (see [21, 30]). The main method for the study
of real Banach algebras is the following: first to complexify the real
Banach algebra A and then to transform the results, that are known
for complex Banach algebras, from the complexification A of A to the
initial real Banach algebra A. The same technics is working in case of
real Gelfand-Mazur algebras, too.

Using ideas of G. Allan and L. Waelbroeck (see [19, 32]), Mart Abel
showed in [2, 4] how to describe closed maximal ideals in complex (not
necessarily commutative) Gelfand-Mazur algebras. Using his results
on the complexification A of a real Gelfand-Mazur algebra A, a similar
description for a certain kind of closed maximal ideals (in particular, of
all closed maximal ideals with codimension 1) is presented in the this
Thesis. As an application, the description of closed maximal ideals in
subalgebras of C'(X, A;0) is given.

This Thesis consists of three Chapters. Properties of the com-
plexification of real topological algebras (in particular, of real locally
pseudoconvex and of real galbed algebras) are considered in the first
Chapter. Conditions, when a real topological division algebra is a real
Gelfand-Mazur division algebra, are given in the last section of this
Chapter.

A description of classes of real (commutative and noncommutative)
Gelfand-Mazur algebras is given in the second Chapter. Conditions



for a real topological algebra A, for which the center of A/P (the
quotient algebra of A by a closed primitive ideal P) is homeomorphic
to R, are found. Using this result, a description of closed maximal
left (right or two-sided) ideals in real unital Gelfand-Mazur algebra is
given.

Properties of the topological algebra C(X, A; o) (of A-valued con-
tinuous functions on a topological space X in case when o is a com-
pact cover of X and A a real Gelfand-Mazur algebra) are studied
in the third Chapter. A description of closed maximal left (right or
two-sided) ideals and of all nontrivial continuous linear multiplica-
tive functionals in subalgebras (X, A;0) of C'(X, A;0) are given as
an application. Conditions, when hom(2((X, A;0)) (the space of all
nontrivial continuous homomorphisms from (X, A; o) to R endowed
with the Gelfand topology) and X x hom(A) are homeomorphic, are
given.

Main results, presented in this Thesis, have been published in [18],
28], and in a coming paper [29]. The author has introduced these
results at the following international conferences and workshops: ”In-
ternational Conference on Topological Algebras and its Applications”
(Oulu, 2001), "Topological algebras, their applications and related
results” (Bedtewo, 2003), " International conference dedicated to 125-
th anniversary of Hans Hahn” (Chernivtsi, Ukraine, 2004), ”Inter-
national Conference on Topological Algebras and its Applications”
(Athens, 2005) and joint workshop ”Tartu-Riga” (Riga, 2005).
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Chapter 1

Real Gelfand-Mazur division
algebras

In this Chapter we consider properties of the complexification of
real topological algebras (in particular, of real locally pseudoconvex
and of real galbed algebras) and we give the conditions, when a real
topological division algebra is a real Gelfand-Mazur division algebra.

Main results in this Chapter are published in [18].
1.1 Preliminary

Here we give definitions of some terms, which are connected with
the topological vector space.

Let K be one of the fields R or C of real or complex numbers,
endowed with their usual topologies, X a vector space over K and 7
a topology on X. The pair (X, 7) is called a topological vector space
over K if

a) for each neighbourhood O of zero of X in the topology T there ex-
ists another neighbourhood U of zero of X such that
U+U CO;

b) for each neighbourhood O of zero of X in the topology 7 there
exist a neighbourhood U of zero of K and a neighbourhood V' of
zero of X such that VU C O.
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Throughout of this Thesis the zero element in X is denoted by 0.

Let now X be a topological vector space and U an arbitrary set in
X. Then U is

o balanced if \U C U, whenever |A| < 1;

e absorbing if for each a € X there exists a number g > 0 such
that a € AU, whenever |\| > y;

o convex if A\a+ (1 — )b € U for each a,b € U and 0 < A < 1;

e absolutely k-convex if A\a+ub € U for each a,b € U and \,p € K
such that [A[* + |p|* <1 and k € (0, 1];

e pseudoconvex it U +U C 2+ U for some k € (0, 1];

e bounded in X if for each neighbourhood O of zero of X there
exists a number \p > 0 such that U C A\pO.

Let k£ be a positive real number. The map p : X — R* is a k-ho-
mogeneous seminorm! on X if

a) p(z) = 0 for each x € X;
b) p(Ax) = |\[*p(z) for each z € X and ) € K;

c) p(z+vy) < p(x)+ p(y) for each z,y € X.

Let M be an absorbing subset in X. The map py; : X — RT (the set
of nonnegative real numbers), defined by

pu(z) = inf{|AF >0:2 € \M}

for each z € X, is called a k-homogeneous Minkowski functional of M
on X.

It is easy to see that, if M is an absolutely k-convex, absorbing
and balanced set in X, then the k-homogeneous Minkowski functional
py of M is a k-homogenous seminorm on X (see, for example, [20],
Propostion 4.1.10).

LA k-homogeneuos seminorm p on X is a k-homogeneous norm if from p(z) = 0
it follows that © = 0x.

12



1.2 Real topological algebras and their
complexifications

1. A topological vector space A over K is called a topological
algebra® over K (shortly, topological algebra) if there has been defined
in A an associative multiplication such that

a) A is an algebra over K with respect to this multiplication;
b) this multiplication is separately continuous.

The condition b) means that for any a € A and every neighbour-
hood U of zero in A there is another neighbourhood V' of zero in A
such that Va,aV C U.

In particular, when K = R, we will speak about real topological
algebras, and when K = C, about complex topological algebras.

In case when the multiplication of A is jointly continuous (that is,
for any neighbourhood U of zero in A there is another neighbourhood
V' of zero in A such that V'V C U), then A is called a topological
algebra with jointly continuous multiplication.

Throughout of this Thesis the unit element in A is denoted by e4.

For any unital topological algebra A we will use the following no-
tations:

e m(A) is the set of all closed two-sided ideals of A, which are
maximal as left or right ideals;

o my(A) (m,(A) or my(A)) is the set of all closed maximal left
(respectively, right or two-sided) ideals of A.

2. Let A be a real (not necessarily topological) algebra and

% = A + iA the complexification of A. Then every element a of
A is representable in the form @ = a + ib, where a,b € A and > = —1.

If the addition, the scalar multiplication and the multiplication in A

2In case, when we have already specified the topology 7 on X, then we talk
about a topological algebra (A, 7).
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to define by

(a+1ib) + (c+id) = (a+c)+i(b+d),
(a+ifB)(a+ib) = (aa— PBb)+i(ab+ Ba),
(a+ib)(c+1id) = (ac—bd)+ i(ad+ bc)

for all elements a,b,c,d € A and «, 5 € R, then Aisa complex algebra
with the zero element 0; = 04 + i04. In case, when A has the unit
element e, then e; = ey +i0,4 is the unit element of A. Herewith,
A is an associative (commutative) algebra if A is an associative (re-
spectively, commutatlve) algebra. Moreover, we can considered A as
a real subalgebra of A if we embed A into A by the map v defined by
v(a) = a+ 16, for each a € A.

3. Let (A, 7) be a real topological algebra and B4 = {U, : o € A}
a base of neighourhoods of zero in (A, 7). As usual (see [20] or [36]),
we endow A with the topology 7, in which a base of neighbourhoods
of zero is By = {Us + iU, : @« € A}. Tt is easy to see that (A,7) is a
topological algebra and the multiplication in (g, 7) is jointly continu-
ous if the multiplication in (A, 7) is jointly continuous (see Proposition
2.2.10 from [20]). Moreover, the underlying topological space of A is a
Hausdorff space if the underlying topological space of A is a Hausdorff
space.

4. A usual method for the study of properties of a real topological
algebra A is the following: complexify and then apply results known
for complex topological algebras to the complexification A of A and
deduce similar results for the original topological algebra A.

1.3 Real locally pseudoconvex algebras
and their complexifications

1. A topological algebra (A, ) is a locally pseudoconvex algebra
if its underlying topological vector space is locally pseudoconvex. It
means that (A, 7) has a base

Ba={U,: «a€A}

14



of neighbourhoods of zero, consisting of balanced and pseudoconvex
sets. The topology 7 of a locally pseudoconvex algebra (A, 7) is usually
given by a family

Pa={pa: a€A}

of k,-homogeneous seminorms, where k, € (0, 1] for each a € A (see
33, p. 4).

Now we define two paticular cases of locally pseudoconvex algebras.
A locally pseudoconvex algebra (A, 7) is

e locally absorbingly pseudoconvex (shortly, locally A-pseudocon-
vex) if for each U, € B4 and a € A there is a positive number
1t such that alU,, U,a C p,U, or, in terms of seminorms, if
every seminorm p € P4 is A-multiplicative, it means that for
each a € A there are positive numbers M (a, p) and N(a,p) such
that

p(ab) < M(a,p)p(b) and p(ba) < N(a,p)p(a)
forallbe A ;

o locally multiplicatively pseudoconvex (shortly, locally m-pseudo-
conver) if U2 C U, for each U, € B4 or, in terms of seminorms,
if every seminorm p € Py is submultiplicative, it means that

p(ab) < p(a)p(b)
for all a,b € A.

It is easy to see that every locally m-pseudoconvex algebra is lo-
cally A-pseudoconvex. Indeed, let (A, 7) be a locally m-pseudoconvex
algebra, U an arbitrary set in B4 and a € A. Then there is a number
A > 0 such that a € AU. Therefore aU C AUU C AU (similarily,
Ua C AU). Hence, (A, 1) is a locally A-pseudoconvex algebra.

2. Let now A be a real locally pseudoconvex algebra, A the com-
plexification of A,

Fka(Ua +i6,4) = {Z )\k(uk +iQA) : n € N,
k=1
ooty € Uny Ay dg €€ with > Al < 1}
k=1
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and
Gola +ib) = inf{\)\]k“: (a+1ib) € X'y (Uy +1i604)}

for each a + ib € A. Then [k, (Us 4 i6,4) is the absolutelly k,-convex
hull of U, +1i0 4 for each a € A and ¢, is a k,-homogeneous Minkowski
functional of I'y, (U, + i64) on A. For real normed algebras the fol-
lowing result has been proved in [21], p. 68—69 (see also [30], p. 8)
and for k-seminormed algebras with & € (0, 1] in [20], p. 183—184.

Theorem 1.3.1. Let (A, T) be a real locally pseudoconvez algebra,
Pa = {pa : a € A} a family of k,-homogeneuos seminorms on A
(with ko € (0,1] for each o € A), which defines the topology T of A,
and let U, = {a € A: pa(a) < 1}. Then the following statements are
true for each o € A :

a) (g, T) is a complex locally pseudoconvex algebra, which topology T
is defined by the set {q, : o € A} of ko-homogeneuos seminorm
on A;

b) max{p,(a),pa(b)} < gu(a + ib) < 2max{p,(a),pa(b)} for each
a,be A;

¢) qola+1i04) = pa(a) for each a € A;
d) Th, (Us+i64) = {a+ib e A : go(a+ib) < 1}.

Proof. a) We will show that ¢, is a k,-homogeneuos seminorm on
A for each o € A. For it, it is enough to show, that T'y, (U, + 164) is
an absorbing set. Let a € A, (a +ib) € A\ {03} and

pike > max{pa(a), pa(b)}.

b
Then &, — € U,. Since

[ Ha
b b
2T (i n i—> — 0T (ﬁ + ¢9A> b2 <_ + ¢9A>
Ko Ho Ha Ha
and ) )
275 e Ji2 R e = 1,
then
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(a +b) € 2% pa Ty, (Un + i04). (1.3.1)

Hence, (a4 ib) € NIk, (Uy +i04) for each a € A if |\,| > 2% 1. It
means that the set 'y, (U, + i64) is an absorbing set. Consequently
(see [20], Proposition 4.1.10), ¢, is a k,-homogeneous seminorm on A.

b) Let now (a +1ib) € A\ {63}. Then from (1.3.1) it follows that
gala +ib) < 2uF
Since this inequality is valid for each pf> > max{p,(a), po(b)}, then

do(a +1ib) < 2max{py(a), pa(b)}. (1.3.2)
Let now a +ib € I'y_ (U, 4+ i64). Then

n

a+ib:Z(Ak—|—wk V(ag +1i04) = Z)\kak—l—zZukak

k=1

for some ay,...,a, € U, and real numbers \q,..., A\, and py, ...,y
such that

Y e il <1

k=1
Since |Ag| < [Ap + x| and |pg| < |Ak + | for each k = 1,... n,
then

n

a= Zn:)\kak and b= Zﬂkak
k=1

k=1
belong to I'y, (Uy) = U,.
Let now ¢ > 0 and

S
fa go(a+ib)+e/

Then from p,(a 4 ib) € Ty, (U, +i024) it follows that paa, ped € Uy,
or po(ftaa) < 1 and pa(pab) < 1. Therefore

max{p,(a), pa(b)} < pr* < qola +ib) +c. (1.3.3)

Since ¢ is arbitrary, then from (1.3.3) it follows that
max{pa(a), pa(b)} < ga(a +ib)

17



for each a,b € A. Taking this and the inequality (1.3.2) into account,
it is clear that the statement b) holds.

¢) Let a € A, a € A and pF= > g,(a +i04). Then from
(% + ¢9A> € Ty (Ua + i64)

it follows that a € pU, or p,(a) < pe. It means that the set of
numbers p* for which p*e > g, (a +i64) is bounded below by p,(a).
Therefore

Pala) < gola+1i64).
Let now pke > p,(a). Then a € pU, and from

(% + i9A> € Ty (Un +i6.4)

it follows that g,(a + i04) < p*. Hence gu(a + i04) < po(a). Thus
Jo(a +104) = pa(a) for each a € A and a € A.

d) It is clear that the set
{a+ibe A:qula+ib) <1} C Ty (Uy+i04).

Now we show that Ty, (U, +i604) C {a+ib € A : qo(a+ib) < 1}. For
it, let a 4+ ib € Ty, (U, + i04). Then

n

a—+1b= Z()\k + iuk)(ak + Z@A)

k=1

for some elements aq,...,a, € U, and real numbers A\{,...,\, and
[, - - - fby such that

Z |>\k + i/Lk|k“ < 1.
k=1

Since p,(ax) < 1 for each k =1,...,n, we can choose ¢, > 0 so that
max{pa(ai),...,palan)} < ek < 1.
Then a; € ¢,U, for each o € A and each k = 1,...,n. Therefore

a-+1b
Ea

e v+ W)(Z—’“ +i04) € Ty (U +i04).

k=1 o

18



Hence,
(a+1ib) € eql'k, (Usy + 1624)

or ¢o(a +ib) < ek» < 1. It means that the statement d) holds. O

A topological algebra (A, 1) is called a Fréchet algebra if the un-
derlying topological vector space of (A, T) is a Fréchet space that is,
(A, 7) is complete and metrizable. It means, that every Cauchy net?
in (A, 7) converges in (A, 7) and there exists a metrics d on A such
that the topology on A defined by d, consider with 7. It is well known
that (A, 7) is metrizable if it has a countable base of neighbourhoods
of zero.

Corollary 1.3.2. If (A, 1) is a real locally pseudoconver Fréchet
algebra, then (A,T) is a complex locally pseudoconvezr Fréchet algebra.

Proof. Let (A,7) be a real locally pseudoconvex Fréchet algebra
and {p,,n € N} a countable family of k,-homogeneuos seminorms
(with &, € (0,1] for each n € N), which defines the topology 7 on A.
Then {¢, : n € N} defines on A a metrizable locally pseudoconvex
topology 7 by Theorem 1.3.1. If (a, + ib,) is a Cauchy sequence in
A, then (a,) and (b,) are Cauchy sequences in A by the inequality
b) of Theorem 1.3.1. Because A is complete, then (a,) converges to
ag € A and (b,) converges to by € A. Hence (a, + ib,) converges in
A to ag + by € A by the same inequality b). Thus, Ais a complex
locally pseudoconvex Fréchet algebra. O

Theorem 1.3.3. Let A be a real locally A-pseudoconvex (locally
m-pseudoconver) algebra. Then A is a complez locally A-pseudoconver
(respectively, locally m-pseudoconvez) algebra.

Proof. Let (A,T) be a real locally A-pseudoconvex algebra and
Ps = {pa : a € A} a family of k,-homogeneous A-multiplicative
seminorms on A (with k, € (0,1] for each a € A), which defines
the topology 7 on A and (A,7) the complexification? of (A, 7). Then

3A net (zx)xea of elements of topological vector space X is called a Cauchy
net if for each neighbourhood U of zero of X there is an index Ag € A such that
zx —x, C U, whenever A > u > A.

4Here 7 denotes the topology on A defined by the system {¢a : a € A} (see
Theorem 1.3.1).
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every fixed ag € A and a € A there are positive numbers M, (ay) and
N, (ag) such that

Palaoa) < My (ao)pa(a) and pu(aap) < No(ao)pa(a)

for all @ € A. If ag + ibg is a fixed and a + ib an arbitrary element in
A, then

da((ag + ibo)(a + b)) = qu((apa — bob) + i(agh + bpa)) <
g 2 max{pa(aoa - bOb)apa(aob + bﬂa)}

for each a € A by the inequality b) of Theorem 1.3.1. If now
Palaoa — bob) = pa(aph + boa),

then

max{pa(aoa — bob), pa(aoh + boa)} =
= palaoga — bob) < My(ag)pa(a) + Ma(bo)pa(b) <
< max{pa(a), pa(b) }(Ma(ao) + Ma(bo)) <

1
< §Ma(a0, bo)qa(a + Zb)

by the same inequality b) of Theorem 1.3.1, where
M, (ag, bo) = 2(My(ag) + My (bo)).
Hence
qa((ag + ibo)(a + ib)) < My(ag, bo)qa(a + ib) (1.3.4)

for each a +ib € A and a € A.

The proof for the case, when p,(apa — bpb) < pa(agh + boa), is
similar. Thus, the inequality (1.3.4) holds for both cases. In the same
way it is easy to show that the inequality

do((a +1ib)(ag + iby)) < Nu(ag, bo)ga(a + ib)

holds for each a+ib € A and o € A. Consequently, (ﬁ, T) is a complex
locally A-pseudoconvex algebra.

20



Let now (A, 7) be a real locally m-pseudoconvex algebra, then each

Do € P4 is a submultiplicative seminorm on A. If a + b, a’ + iV’ € Z,
then

¢a((a+ib)(a' 4+ i) < 2max{p,(aa’ — bb'), p,(ab’ + ba')}
by the inequality b) of Theorem 1.3.1. Again, if
palaa’ —0b'") = pa(ab’ + ba'),
then
max{p, (ab’ — bb'), po(ab + bb')} = pa(ab’ — bb') <
< pal@)pa(a’) + pa(b)pa(b’) <

< 2max{pas(a), pa(b)} max{p,(a’), pa(v')} <
< 2¢a(a+ib)ga(a’ + ib')

by the inequality b) of Theorem 1.3.1 Hence,
4a((a+1ib)(a’ + b)) < 4qa(a +ib)ga(a’ 4 db').
Putting r, = 4q, for each o € A, we see that
ro((a+1b)(a" + i) < rola+ ib)ry(a’ + b)) (1.3.5)

for each a + ib,a’ + it/ € A and a € A.

The proof for the case, when p,(ab’ —bb') < p,(ab’+0bb'), is similar.
Hence, the inequality (1.3.5) holds for both cases. Since the families
{¢a : @ € A} and {ry : o € A} define on A the same topology 7,
then (ﬁ, 7) is a complex locally m-pseudoconvex algebra. O

1.4 Real galbed algebras and their com-
plexifications

Let £° be the set of all sequences (a,,) € RY, in which only finite
number of members «,, are different from zero. Moreover, let k be a
positive real number, ¢ the set of all sequences (a,,) € RY, for which

the series
[o@)
> lanlt
k=0
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converges and let £ = (1 \ (.

A topological algebra A is called a galbed algebra if its underlying
topological vector space is a galbed space, that is, there exist a se-
quence (a;,) € £ and for each neighbourhood O of zero in A another
neighbourhood U of zero such that

{i Qpay : Ag, ..., 0y € U} CcO (1.4.1)
k=0

for each n € N.
Now we give two particular cases of galbed algebras®. A topological
algebra A is

e strongly galbed if its underlying topological vector space is a
strongly galbed space that is, if there exists a sequence («,) € ¢
with ap # 0 and

a = inf o, |n > 0
n>0

such that the condition (1.4.1) has been satisfied;

o cxponentially galbed if A is a (27")-galbed algebra.

It is easy to see that every locally pseudoconvex algebra is an
exponentially galbed algebra and every exponentially galbed algebra
is an (o,)-galbed algebra with «,, = 27" for each n € N. Hence, the
class of galbed algebras is much larger than the class of exponentially
galbed algebras. Herewith, there exists a metrizable algebra, which is
not a galbed algebra (see [16], Proposition 5).

A topological algebra A is called a topological algebra with bounded
elements if all elements of A are bounded that is, for each a € A there
is A, € R\ {0} such that the set

{(%)" .n €N}
is bounded in A.

Next we will find conditions for a real (strongly) galbed algebra A
in order to the complexification A of A is a (strongly) galbed algebra.

°In case, when we have already specified the sequence (av,) € ¢, then we talk
about an (a,)-galbed algebra.
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Theorem 1.4.1. Let A be a real galbed algebra (a commutative
real strongly galbed algebra with jointly continuous multiplication and
bounded elements). Then A is a complex galbed algebra (respectively, a
commutative complex strongly galbed algebra with bounded elements).

Proof. Let A be a real galbed algebra and O a neighbourhood of
zero in A. Then there are a sequense («,) € ¢, a neighbourhood O of
zero in A such that O +iO C O and another neighbourhood U of zero
in A such that

n
{Zakak:ao,...,aneU}CO
k=0

for each n € N. Since U + iU is a neighbourhood of zero in A and

{Zak(ak—i—z’bk):ao—l—ibo,...,an—i—ibnGU—i—iU} C
k=0

cCO+i0OcCO (1.4.2)

for each n € N, then Aisa complex galbed algebra.

Let now A be a commutative real strongly galbed algebra with
jointly continuous multiplication and bounded elements. It is clear,
that A is a commutative complex strongly galbed algebra. We will
show that every element in A is bounded. For it, let O be an arbitrary
neighbourhood of zero in A and a+ib € A an arbitrary element. Then
there are a neighbourhood O of zero in A such that O +iO C O and
Ao, Ay € C\ {0} such that the sets

{(Ai) neN} and {</\%> ne N}

are bounded in A. The neighbourhood O defines now a balanced
neighbourhood U of zero in A such that (1.4.2) holds and U defines a
balanced neighbourhood V' of zero in A such that VV C U (because
the multiplication in A is jointly continuous). Now there are numbers
Las by > 0 such that

(|;a|)n € 1V and (M—i')n € 1V
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for each n € N. Let
R CAEY)

(67

Y

where a = inf, ]anﬁ > 0 because A is strongly galbed. Since
a+ib=(a+1i64) +i(b+i0,), then

()" = S () rm)m () o) =

k=0

n
= ,Ua,ubg ATy
k=0

for each n € N, where

T = Qmualub <<|;a|)k<|;b|)n_k +iy)

Onke = &ikin—k (Z) (IAKI)Y%)H

for each k < n. As |ag| = oF, then

and

1 /n 1 1y\n
e —— (™Y < Ao 4 A ”g(—> <1
| 0nk] |ak|nn(k>| R e (el £ bl)

ngn 2

and

(‘fﬂk(ﬁ)“ + 104 € papsVV + 104 C propn(U +iU).

As U is a balanced set, then 7}, € U+1U for each k = 0,...,n. Hence,

(a—i—ib

- ) € (O +10) C ua,ubé

by (1.4.2) for each n € N. It means that a + ib is bounded in A
Consequently, A is a commutative complex strongly galbed algebra
with bounded elements. ]
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Corollary 1.4.2. If A is a real exponentially galbed algebra
(a commutative real exponentially galbed algebra with jointly contin-
wous multiplication and bounded elements). Then Aisa complex ex-
ponentially galbed algebra (respectively, a commutative complex expo-
nentially galbed algebra with bounded elements).

Proof. According to the definition, every exponentially galbed al-
gebra is a strongly galbed algebra with a = % O

1.5 Strictly and formally real algebras

1. Let A be a (not necessary topological) algebra over C with the
unit element e 4 and Inv A the set of all invertible® elements in A. Then
the spectrum of a € A is the set

spyla) ={A € C:a— ey ¢ InvA}.
If A is a real algebra, then the spectrum of a € A is defined by
spala) =spz(a+iba),

where A is the complexification of A. Real algebras have two main
subclasses.

a) A real unital algebra A is strictly real if a®> +e4 € InvA for each
a € A.

Next result gives a sufficient condition for the strict reality of a
real algebra.

Proposition 1.5.1. Let A be a commutative real unital algebra.
If spy(a) C R for each a € A, then A is strictly real.

Proof. Let A be a commutative real unital algebra and A the com-
plexification of A. Suppose that there is an element a € A such that
a+if € spy(a), with 8 # 0. Then

r=(a—aey) —ifes = (a+i04) — (@ +if)es ¢ InvA.

6An element a € A is invertible in A if there is an element b € A such that
ab="ba =ey.
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Put T =a — (o +if)ea. If now 27 € InvA, then there is an element
¢ € A such that (2T)c = ¢(2T) = es. Therefore,

(2T)(c+i04) = (2T)c+ 104 = ea + i04.

Since A is a commutative algebra, then z € Invﬁ, what is not possible.
Hence,
2T = (a — aea)’ + B%es ¢ InvA

or )
<a aeA> +eq ¢ InvA.
g
It means, that A is not strictly real. O]

Corollary 1.5.2. Let A be a strictly real algebra, M a two-sided
ideal in A and mwy; the canonical homomorphism from A onto A/M.
Then A/M is a strictly real algebra, too.

Proof. If x € A/M, then there is a € A such that x = mys(a). Since
spa/m(mar(a)) Cspy(a) C R, then A/M is strictly real algebra. [

b) A real algebra A is formally real if
from a,b € A and a® +b* =6, it follows that a=0b=0,. (1.5.1)

The condition (1.5.1) shows that formally real algebras are ”similar”
to the field R. It is known (see [20], Proposition 1.6.20) that the com-
plexification A of a commutative real division algebra A is a division
algebra if and only if A is formally real and every commutative real
division algebra, which is not formally real, has the complex structure.
Moreover (see [20], Proposition 1.9.14), a formally real division alge-
bra is strictly real and a commutative strictly real division algebra is

formally real.

Next result gives a necessary and sufficient condition for a quotient
algebra A/I (over a two-sided ideal I) to be formally real.

Proposition 1.5.3. Let A be a real algebra and I a two-sided ideal
in A. Then the quotient algebra A/ is formally real if and only if A
satisfies the condition

from a,b € A and a* +b* € I it follows that a,bel. (1.5.2)
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Proof. Let A be a real algebra, I a two-sided ideal in A, m; the
quotient map of A onto A/I and let a, b € A be such that a®+b* € I.
Then

7T[(CL)2 + W[(b)Q = 7T[<CL2 + b2) = QA/[.

If A/I is formally real, then m;(a) = 7;(b) = 6a/; or a € I and b € 1.
Let now algebra A satisfy the condition (1.5.2) and x,y € A/I be
such that 22 +y? = 04,7. Then there are a, b € A such that = = m;(a),
y = m7(b) and
7T](CL2 + 62) = $2 + y2 = GA/[.

Hence, from a? + b? € I it follows that 2 =y = 0, ,1 by the condition
(1.5.2). O

2. Example. Let C(X) be an algebra’ of all continuous functions
f X — R, where X is a compact Hausdorff space. Then every
maximal ideal M in C'(X) satisfies the condition (1.5.2), because every
maximal ideal M defines x € X such that

M=M,={feA: f(x)=0}.

More generally, if A is an subalgebra of C'(X), in which every maximal
ideal M defines x € X such that M = M,, then every maximal ideal
M in A satisfies the condition (1.5.2) as well. Hence, the quotient
algebra A/M is formally real algebra for each maximal ideal M in A.

1.6 Properties of the complexification of
some real topological algebras

A unital topological algebra A is called a Q-algebra if the set InvA
of all invertible elements of A is open in A and is called a Waelbroeck
algebra if A is a QQ-algebra in which the inverse a — a~! is continuous
in InvA. B

Let now A be a real unital topological algebra and A its complex-
ification. Next we describe properties of A that we need later on.

TAll algebraic operations in C(X) are defined point-wisely.
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Proposition 1.6.1. If A is a commutative strictly real topological
Hausdorff division algebra with continuous inversion. Then the com-
plezification A of A is a commutative complex topological Hausdorff
division algebra with continuous inversion.

Proof. Let A be a commutative strictly real topological division al-
gebra. Then A is a complex division algebra (see Propositions 1.6.20
and 1.9.14 from [20]). Since the underlying topological space of A
is a Hausdorff space, then A is a QQ-algebra. If the inversion in A is
continuous, then A is a commutative real Waelbroeck algebra. There-
fore, A is a commutative complex Hausdorff Waelbroeck algebra (see
Proposition 3.6.31 from [20], or Proposition on the page 237 from
36]). Thus, A is a commutative complex Hausdorff division algebra
with continuous inversion. O

Proposition 1.6.2. Let A be a real topological algebra and A the
complezification of A. If the topological dual A* of A is not empty,
then the topological dual A* of A is also not empty.

Proof. 1t is easy to see that if ¢ € A*, then 1;, defined by

Y(a+1ib) = ¥(a) + iy (b)
for each a + b € ,ZL is an element of A*. n

Proposition 1.6.3. Let A be a commutative strictly real division
algebra and A the complexification of A. Then

spila+ib) ={a+if € C:a espy(a) and B € sp,(b)}.

Proof. Let o+ i3 € spy(a+1ib). Since A is a commutative strictly

real division algebra, then A is a commutative complex division alge-
bra (see [20], Propositions 1.6.20 and 1.9.14). Therefore

a+ib— (a+ifB)(ea+i0) = (a —aeq) +i(b— Bes) =04+ 104

if and only if o € spy(a) and 5 € sp,(b). O
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1.7 Real Gelfand-Mazur division algeb-
ras

1. Let (A, 7) be a topological algebra, M € m(A) and ), from A
to A/M be the canonical homomorphism, then the quotient topology
on A/M is defined by

Tam ={U C A/M : = 1(U) € 7).

A real topological algebra A is called a real Gelfand-Mazur algebra
if the quotient algebra A/M (in the quotient topology) is topologically
isomorphic® to R for each M € m(A). Complex Gelfand-Mazur alge-
bras are defined similary (see [1], [2], [11]-[14]). Hence, a real Gelfand-
Mazur algebra is a real topological algebra in which every M € m(A)
defines a homomorhism 15, € hom(A) such that M = keri,,. Here?
and later on hom(A) denotes the set of all nontrivial continuous ho-
momorphisms from A to R.

The next result describes several classes'®of real topological alge-
bras which belong to the class of real Gelfand-Mazur division algebras.

Theorem 1.7.1. Let A be a commutative strictly real topological
division algebra. If there is a topology T on A such that (A,T) is one
of the following algebras:

a) a locally pseudoconver Hausdorff algebra with continuous inver-
ston;

b) a Hausdorff algebra with continuous inversion for which the topo-
logical dual space A* is not empty;

¢) a strongly galbed (in particular, an exponentially galbed) Haus-
dorff algebra with jointly continuous multiplication and bounded
elements;

8Algebras A and B are topologically isomorphic if there is an isomorphism p
from A onto B such that p and p~! are continuous.

9The set hom(A) we endow, as usual, with the Gelfand topology. In this topol-
ogy the sets {¢p € hom(A4) : |(¢Y —o)(a)| < €} with a € A and € > 0 form a
subbase of neighbourhoos of 1y € hom(A).

10Geveral classes of complex Gelfand-Mazur algebras have been described in
[11]-[13] and [17].
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d)

a topological Hausdorff algebra for which the spectrum sp4(a) is
not empty for each a € A,

then A and R are topologically isomorphic.

Proof. If A is a commutative strictly real division algebra, then
its complexification A is a commutative complex division algebra as
above. Since (A, 7) satisfies

1)

the condition a), then the complexification (A,7) of (A,7) is a
commutative complex locally pseudoconvex Hausdorff division
algebra with continuous inversion (by Theorem 1.3.1 and Propo-
sition 1.6.1);

the condition b), then the complexification (A,7) of (A,7) is
a commutative complex topological Hausdorff division algebra
with continuous inversion for which the set A* is not empty (by
Propositions 1.6.1 and 1.6.2);

the condition ¢), then the complexification (A,7) of (A,7) is a
commutative complex strongly galbed Hausdorff division alge-
bra with bounded elements (by Theorem 1.4.1) (in particular,
a commutative complex exponentially galbed Hausdorff division
algebra with bounded elements by Corollary 1.4.2);

the condition d), then the complexification (A,7) of (A,7) is
a commutative complex topological Hausdorff division algebra
such that the spectrum sp y(a+1ib) is not empty for each a+1ib €

A (by Proposition 1.6.3).

Therefore (A,7) and C are topologically isomorphic (in cases a), b),
and d) see [11], Theorem 1, and in case c¢) see [9], Proposition 4.1).

Hence, every element a + ib € A is representable in the form

a+ib:)\eg

for some A € C. Now, for each a € A there is a real number pu, such
that a = pgea, because A is strictly real. It is easy to see that p,
defined by p(a) = p, for each a € A, is an isomorphism from A to R,
whose inverse map is, continuous. To show the continuity of p, let O
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be a neighbourhood of zero in R. Then there is a number € > 0 such
that
O.={a€eR: |a|<e}CO.

If Ap € O\ {0}, then there is a balanced neighbourhood V' of zero of
A such that A\geq ¢ V' (because A is a Hausdorff space). If |1,] = | Aol
then |p;'X\o| < 1. Therefore, Agea = (Aop, ')a € V for each a € V.
As it is not possible, then u, € O for each a € V. Consequently, p is
a continuous map. O

Remark. In Theorem 1.7.1 the topology 7 can be different from
the preliminary topology of A.

Corollary 1.7.2. Let A be a commutative strictly real division
algebra. If there is a topology T on A such that (A,T) is one of the
following algebras:

a) a locally pseudoconver Hausdorff algebra with continuous inver-
ston;

b) a locally A-pseudoconvexr (in particular, a locally m-pseudo-
convex) Hausdorff algebra;

¢) a locally pseudoconvex Fréchet algebra;

d) a strongly galbed (in particular, an exponentially galbed) Haus-
dorff algebra with jointly continuous multiplication and bounded
elements,

e) a topological Hausdorff algebra, for which the spectrum sp 4(a) is
not empty for each a € A,

then A is a commutative real Gelfand-Mazur division algebra.

Proof. 1t is easy to see that A is a commutative real Gelfand-Mazur
division algebra by Theorem 1.7.1 in cases a), d) and e). Since the
inversion is continuous in every unital locally m-pseudoconvex Haus-
dorff algebra (see Lemma 2.2 in [17]) and every locally A-pseudoconvex
Hausdorff algebra has a locally m-pseudoconvex topology (see Lemma
2.2 in [17]), then A is a commutative real Gelfand-Mazur division al-
gebra by a).
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Let now A be a commutative strictly real locally pseudoconvex
Fréchet division algebra. Then A is a commutative strictly real lo-
cally pseudoconvex algebra with continuous inversion (see Corollary
7.6 from [35]). Hence, A is a commutative real Gelfand-Mazur division
algebra by Theorem 1.7.1 a). O

Let now A be a real topological algebra with unit element e4. An
element a € A is topologically invertible in A if there is a net (ay)aea
of elements of A such that (aay)xea and (aya)rep converge in A to ey
(see, for example, [10], p. 14). The set of all topologically invertible
elements of A we denote by TinvA .

Proposition 1.7.3. Let A be a commutative real unital complete
locally m-pseudoconver Hausdorff algebra and B a strictly real subal-
gebra of A with the same unit ea. If m(B) # () and B satisfies the
condition (1.5.2) for each M € m(B), then claB is a commutative
real unital locally m-pseudoconver Hausdorff algebra, which satisfies
the condition (1.5.2) for each M € m(clsB).

Proof. Let A be a commutative real unital complete locally
m-pseudoconvex Hausdorff algebra and B a strictly real subalgebra
of A which satisfies the condition (1.5.2) for each M € m(B). Then A
is a real topological algebra with jointly continuous multiplication and
B is a unital strictly real locally m-pseudoconvex Hausdorff algebra
which satisfies the condition (1.5.2) for each M € m(B). Hence B is a
real Gelfand-Mazur algebra by Corollary 1.7.2. Since m(B) # (), then
hom(B) # (). Therefore for each ¢ € hom(B) there is ¢ € hom(cly B)
such that ¢ = |p by Proposition 3 from [15] and the map ¢ —
is bijection from hom(B) onto'! hom(cly B) by Theorem 4 from [15].
Now, let b € clyB be an arbitrary element. Then there is in B a
net (ay)aea such that (ay)rea converges to b in the topology of A and
es+ a3 € InvB for each A € A because B is strictly real. Since

Y(eg +b%) = li{nib(@A +a3)=1+ liin Play)?> =14+ wB)|* >1

for each ¢ € hom(clyB), then e, +b? € Tinv(clyB) by Proposition 11
e) from [10]. As claB is complete and locally m-pseudoconvex, then

"Here and later on by clx (U) is denoted the closure of U C X in the topology
of the space X.
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Inv(cla(B)) = Tinv(cl,(B)) by Corollary 2 from [10]. Hence
e+ b0 € Inv(clyB).

Thus, cly B is a commutative strictly real locally m-pseudoconvex al-
gebra. Therefore clyB is a strictly real Gelfand-Mazur algebra by
Proposition 3 from [15] and m(claB) # 0.

Let now M € m(clsaB). Then there is ¢ € hom(clyB) such that
M =ker¢. If a,b € cl4B and a®*+b* € M, then from ¢(a)*+¢(b)? = 0
it follws that ¢(a) = ¢(b) = 0 or a,b € M. Consequently, cl4 B satisfies
the condition (1.5.2) for each M € m(claB). O
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Chapter 2

Real Gelfand-Mazur
algebras

In this Chapter we give a description of classes of real (commuta-
tive and noncommutative) Gelfand-Mazur algebras. We present con-
ditions for a real topological algebra A, for which the center of A/P
(the quotient algebra of A by a closed primitive ideal P) is homeomor-
phic to R. Using this result, we give a description of closed maximal
left (right or two-sided) ideals in real unital Gelfand-Mazur algebra.

Results of this Chapter are published in [28].

2.1 Properties of quotient algebras and
of the center of a topological algebra

Let A be a real topological algebra, I a closed two-sided ideal in
A, mr: A — A/I the canonical homomorphism and

Z(A)={z€ A: za=az for each a € A}
the center of A.

Proposition 2.1.1. Let (A, 7) be a real locally pseudoconvez (in
particular, a locally A-pseudoconver or a locally m-pseudoconver) al-
gebra and I a closed two-sided ideal in A. Then (A/I,Ta;r) (in the
quotient topology) and (Z(A/I),7z) (in the subspace topology) are also
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real locally pseudoconvez (in particular, locally A-pseudoconvex or lo-
cally m-pseudoconvex) algebras.

Proof. Let (A, 7) be a locally pseudoconvex algebra, then there is
a base

B={U,: aeA}

of neighbourhoods of zero, consisting of balanced and pseudoconvex
subsets of A. It is easy to see that

B =m;(B)={m;(U,): Uy€B, ae A}

is a base of neighbourhoods of zero in (A/I,74/;), consisting of bal-
anced and pseudoconvex subsets of A/I. Thus, (A/I,74/;) is a real
locally pseudoconvex algebra.

Since 7, = {O'NZ(A/I): O" € 741} is the subspace topology on
Z(A/I), generated by 74/, then it is clear that (Z(A/I),7z) is a real
locally pseudoconvex algebra.

Analogously, (Z(A/I),7z) is a real locally A-pseudoconvex (res-

pectively, locally m-pseudoconvex) algebra if A is a real locally
A-pseudoconvex (respectively, locally m-pseudoconvex) algebra.  [J

Proposition 2.1.2. Let (A,7) be a real locally pseudoconvex
Fréchet algebra and I a closed two-sided ideal in A. Then (A/I,Ta/r)
(in the quotient topology) and (Z(A/I),Tz) (in the subspace topology)
are also real locally pseudoconvex Fréchet algebras.

Proof. By Theorem 2, p. 138, from [23] the quotient algebra
(A/I,7a/r) is a Fréchet algebra. Since Z(A/I) is closed in A/I,
then (Z(A/I),7z) is complete and metrizable, hence (Z(A/I),7z) is
a Fréchet algebra. O]

Proposition 2.1.3. Let (A, 7) be a real topological algebra with
bounded elements and I a closed two-sided ideal in A. Then (A/I,Ta;r)
(in the quotient topology) and (Z(A/I),Tz) (in the subspace topology)
are also real topological algebras with bounded elements.

Proof. Let x € A/I be an arbitrary element and U an arbitrary
neighbourhood of zero in A/I. Then there is an element a € A such
that z = 7;(a). Moreover, 7;*(U) is a neighourhood of zero in A.
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Since every element in A is bounded, then there exist A € R\ {0} and
a number g > 0 such that

a\" B
(5) en'©)
for each n € N. Now

(5)" = (D) — 7 ((9)") € e @) = w0

Hence, (A/1,74/1) is a real topological algebra with bounded element.

Let now y € Z(A/I) be an arbitrary element and W” an arbitrary
neighbourhood of zero in Z(A/I). Then y € A/I and there exists a
neighbourhood W' of zero in A/I such that W” = W'NZ(A/I). Since
every element in A/I is bounded, then there exist A\, € R\ {0} and
number pj,, > 0 such that

i)n / W/
<)\y €

for each n € N. Asy € Z(A/I), then
y n
(Z,) e Z(A/I)
for each n € N. Therefore,

i)’fb ! W//
<)\y € Uy

for each n € N. Thus, every element in Z(A/I) is bounded. O

Proposition 2.1.4. Let (A,7) be a real galbed (in particular,
strongly or exponentially galbed) algebra and I a closed two-sided ideal
in A. Then (A/I,7a/r) (in the quotient topology) and (Z(A/I),7z)
(in the subspace topology) are also real galbed (in particular, strongly
or exponentially galbed) algebras.

Proof. Let (A, 7) be areal galbed algebra. Then there is a sequence
(cvn) € £ such that (A, 7) is a («,)-galbed algebra. Moreover, let O
be a neighbourhood of zero in (A/I,74/1). Then U = 7;'(O) is a

36



neighbourhood of zero in (A, 7) and there is in A a neighbourhood V'
of zero such that

n
{Zakxk; o, ..., T, € V} cuU
k=0

for each n € N. Now 7;(V) is a neighbourhood of zero in (A/I,74/1),
because 7y is an open map. Let now n € N and z,...,z, € 7 (V).
Then there are elements aq, .. .a, € V such that x; = mr(ay) for each
k=0,...,n and

Zakxk =y <Z ozkak) e m(r;1(0) =0
k=0 k=0

for each n € N. Hence, (A/I,74/1) is an (ov,)-galbed algebra.

Since 75 is the subspace topology on Z(A/I) generated by 74/,
then every neighbourhood O” of zero in Z(A/I) in this topology is
representable in the form O” = O'NZ(A/I), where O’ is a neighbour-
hood of zero in A/I. Now we find a neighbourhood V' of zero in A/
such that

n
{Zakak © o ag,...,an € V’} c O
k=0

for each n € N and put V" = V' N Z(A/I). Since

n
{Zakxk © o Xo,...,Tn € V"} coO’
k=0

for each n € N, then (Z(A/I),77) is a real («,)-galbed algebra. The
proof for strongly and exponentially galbed algebras is similar. O]

Proposition 2.1.5. Let A be a real topological algebra and M €
m(A). If for each a € A there exists A € R\ 0 such that a— X ey € M,
then the spectrum spasu(x) is not empty for each element x € A/M
and spa ) (b) s not empty for each b € Z(A/M).

Proof. Let A be a real topological algebra, M € m(A), my be
the canonical homomorphism from A onto A/M and x € A/M an
arbitrary element. Then there exists an element a € A such that
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x = my(a). Let A\, € R be such that a — A\,ea € M by assumption.
Then
WM(G) - )\aeA/M = 7TM(a — )\aeA) = HA/M-

Since A/M 1is a division algebra (see [22], the proof of the Theorem
24.9.6, or [27], Theorem 2.4.12), then

v (a) — Aaea/m & InvA/M.

Hence, A\, € sp,y(m(a)).
Moreover, sp4,,(b) C Spz(a () for each b € Z(A/M) (because
Z(A/M) C A/M) and

InvZ(A/M) =InvA/M N Z(A/M).
Thus, spya/u(b) is not empty for each b € Z(A/M) and

SPZ(A/M)(b) = SpA/M(b)'
]

2.2 Commutative real Gelfand-Mazur al-
gebras

In this section we describe some real commutative Gelfand-Mazur
algebras.

Theorem 2.2.1. Let A be a commutative real topological algebra.
If A satisfies the condition

from a,b € A and a* + b* € M it follows that a,b € M (2.2.1)

for each M € m(A) and there is a topology T on A such that (A, T) is
one of the following algebras:

a) a locally pseudoconver Waelbroeck algebra;

b) a locally A-pseudoconvex (in particular, a locally m-pseudocon-
ver) algebra;
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¢) a locally pseudoconvexr Fréchet algebra;

d) a strongly galbed (in particular, an exponentially galbed) algebra
with jointly continuous multiplication and bounded elements;

e) a topological algebra in which for each a € A and M € m(A)
there is A € R such that a — ey € M,

then A is a commutative real Gelfand-Mazur algebra.

Proof. Let (A, 7) be a commutative real topological algebra which
satisfies the condition (2.2.1) for each M € m(A) and let M be a
fixed element in m(A). Then (A/M, 7)) is a topological division
Hausdorff algebra. Moreover, (A/M, 74/ ) is a commutative formally
real algebra by Proposition 1.5.3. Hence, it is a commutative strictly
real algebra. Herewith, if (A, 7) satisfies

1) the condition a), then (A/M,74/n) is a locally pseudoconvex
Waelbroeck algebra by Proposition 2.1.1 and Corollary 3.6.27
from [20];

2) the condition b), then (A/M,74/u) is a locally A-pseudoconvex
(in particular, a locally m-pseudoconvex) algebra by Proposition
2.1.1;

3) the condition c), then (A/M,7T4/n) is a locally pseudoconvex
Fréchet algebra by Proposition 2.1.2;

4) the condition d), then (A/M,74/n) is a strongly galbed (in par-
ticular, an exponentially galbed) algebra with jointly continuous

multiplication and bounded elements by Propositions 2.1.3 and
2.1.4;

5) the condition e), then (A/M,T4/) is a topological algebra for
which the spectrum sp,,,,(7) is not empty for each x € A/M
by Proposition 2.1.5.

Hence, in all these cases A/M (in the quotient topology defined by the
topology 7 of A) is topologically isomorphic to R for each M € m(A)
by Theorem 1.7.1 and Corollary 1.7.2. Therefore, A is a commutative
real Gelfand-Mazur algebra. O]

39



2.3 Some properties of ideals

Let A be an algebra over R and M € my(A) (M € m,(A)). Then
Py ={a€ A:aA C M} (respectively, P,y ={a € A: Aa C M})

is the primitive ideal in A defined by M. Herewith, P,; is a closed
two-sided ideal in A and if M € m;(A), then Py = M.

Let now A be a real algebra and A the complexification of A. Then
the following results are true.

_ Proposition 2.3.1. Let A be a real topological Hausdorff algebra,
A the complexification of A and let M € my(A). Then

a) every ideal M e my(A) is representable in the form
M =M +iM,
where M € my(A), and M +iM € my(A) for every M € my(A);

b) the primitive ideal f’ﬁ in A/, defined by ]TJ/:MHM, s repre-
sentable in the form Pg; = Py +1Pyr, where Py is the primitive
ideal in A defined by M € my(A);

c) E/ﬁﬁ = A/Py + iA/ Py for each M = M + iM € my(A).
Similar results are true for ideals in m,.(A) and m(A) .

Proof. a) Let A be a real topological algebra, A its complexifica-
tion, M € my(A),

M={acA: a+ibe M forsomebec A}
and

M ={beA: a+ibe M for some a € A}.
Since

ca+icb = (c+iba)(a+ib),
—b+a i(a +1b),
b+i(—a) = —i(a+ib)
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for each a,b,c € A, then M and M’ are left ideals in A, M = M’, !
M—l—zM%A M + iM is a left ideal in A and

M C M +iM' = M +iM.
Hence, M = M + iM (because M is a left maximal ideal in A).

Now we show that M is a maximal ideal. For it, let / be an
arbitrary ideal in A, such that M C I. Since I + 4l is an left ideal in
A, M C I+l and M is maximal in A then M = I +il. Therefore,
M = I that is, M is maximal in A.

Next we show that M is a closed ideal in A. For it, let ag € cla M.
Then there is a net (m,\) aen in A, which converges in A to ag. Now
(my +i64) is a net in A, which converges in A to ag + 04 (because A
is a Hausdorff space). Hence, ag + 04 € M (because M is closed in
A). Consequently, ag € M. It means that M € my(A).

Now we show that M +iM € ml(A) for M € my(A). It is easy to

see that M +iM is a left ideal in A. If J is a left ideal in A such that
M +iM C J. , then

McJ={a€A: a+ibeJ forsomebec A}.

As J is an left ideal in A, J # A and M is maximal, then M = J.
Hence, similarily as above M + ¢M = J. Consequently, M + iM is a
maximal ideal in A.

Let now ag+1by € clz(M +iM). Then there is a net (my+1iny)aea
in M +iM such that (my + iny)xea converges to ag + ibyg. Therefore
(ma)xea converges in A to ag and (ny)aea converges in A to by. Hence,
ap + by € M + iM, because my, ny € M for each A € A and M is
closed. Consequently, M + iM € m;(A).

The proof for ideals in m,(A) is similar. If M € m(A), then
M € my(A) and M € m,(A), therefore result is also true.

b) Let 13]\7 be the primitive ideal in A, defined by M € my(A).
Then there is an ideal M € my(A) such that M = M + iM. Let
a,b e Py and v +iw € A. Since

(a+ib)(v+ 1w) = av — bw + i(aw + bv) € M,
then Py, + 1Py C ]3]\7 Let now a + b € ]31\7 and v + 04 € A. Then

(a+1ib)(v+104) = av +ibv € M
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if and only if av, bv € M or a, b € Py;. Thus ﬁﬁ C Py +1Py. The
proof for ideals in m,.(A) is similar.

¢) Let M € my(A) and a, b € A. Then again there is an ideal
M € my(A) such that M = M +iM and

a+ Py +i(b+ Py) = (a+ib) + (Py+iPy) = (a+ib) + Py € A/ Py
Hence A/Py +iA/Py C A/ 15]\7 and similarly

APy C A/Py +iA/ Py
The proof for ideals in m,(A) is similar. O

Proposition 2.3.2. Let A be a real topological algebra and A the
complexification of A. Then

Z(A) = Z(A) +iZ(A).

Proof. 1t is clear that Z(A) + iZ(A) C Z(A). Now we show that

Z(A) C Z(A)+iZ(A). For it, let ag + iby € Z(A). Since
aag + iaby = (a +i04)(ap + iby) = (ag + ibo)(a + i04) = aga + ibga
for each a € A, then ap € Z(A) and by € Z(A). O

A topological algebra A is called a topologically primitive algebra
if there is an ideal M € my(A) (M € m,(A)) such that Py = {04}.

Corollary 2.3.3. If A is a real topologically primitive algebra,
then the complexification A of A is a complex topologically primitive
algebra.

Proof. Let A be a real topologically primitive topological algebra.
Then there is M € m;(A) such that Py = {04}. Since

Pij = Py +iPy = 04+ 0.4
for M = M +iM € ml(g), then A is a complex topologically primitive

topological algebra. O
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2.4 Noncommutative real Gelfand-Ma-
zur algebras

Let A be a real topological algebra and mj(A) the set of such
M € my(A) for which the primitive ideal Py, satisfies the condition

from a,b € A and a® + b* € Py, it follows that a,b € Py, (2.4.1)

The set m,(A) we define simirarily. If M € m;(A), then Py, = M.
Therefore, by m}(A) we define the set of such M € m,(A) for which
the condition (2.2.1) is true.

Theorem 2.4.1. Let A be a real unital locally A-pseudoconver
algebra or a real unital locally pseudoconvexr Fréchet algebra. Then
Z(A/Py) is topologically isomorphic to R (in the subset topology on
Z(A/Py)) for each M € mj(A) (M € m/(A)). If M € mj(A), then
Z(A/M) is topologically isomorphic to R.

Proof. Let (A, 7) be a real unital locally A-pseudoconvex (or lo-
cally pseudoconvex Fréchet) algebra, M € mj(A), Py the primitive
ideal in A, defined by M, my : A — A/Pys the canonical homomor-
phism and 7y, the quotient topology on A/Py, defined by 7 and 7.
Then (A/ Py, Tar) is a unital formally real locally A-pseudoconvex (re-
spectively, locally pseudoconvex Fréchet) algebra by Propositions 1.5.3
and 2.1.1 (respectively, by Propositions 1.5.3 and 2.1.2).

Now, let A/ ﬁﬁ be the complexification of A/ Py (see Proposition
2.3.1), where ﬁﬁ is the primitive ideal in A defined by M. Then

(Z/ ]3]\7, 737) is a unital complex locally A-pseudoconvex algebra by
Theorem 1.3.3 or a unital complex locally pseudoconvex Fréchet alge-
bra by Corollary 1.3.2. Therefore Z(A/Pj;) is topologically isomor-
phic to C by Theorem 1 from [1] or by Theorem 2.17 from [2]. Since
A/ Py is formally real, then Z(A/Pyy) is formally real, too.
As
Z(A/Pyp) = Z(A]Pu) +iZ(A/ Py)

by Proposition 2.3.2 and Z(A/P),) is formally real (see [20], Proposi-
tion 1.6.20), then Z(A/P)) is isomorphic to R. In the same way as
in Theorem 1.7.1, it is easy to show that Z(A/Py) is topologically
isomorphic to R, because Z(A/Py) is a Hausdorff space in the subset
topology.
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The proof for M € m.(A) and M € mj(A) is similar. O

Corollary 2.4.2. Let A be a real unital locally m-pseudoconvex
topological algebra. Then Z(A]Pyr) is topologically isomorphic to R
for every M € mj(A) and M € m!(A). If M € mj(A), then Z(A/M)

1s topologically isomorphic to R.

Proof. Since every locally m-pseudoconvex algebra is locally
A-pseudoconvex, then Z(A/Py) is topologically isomorphic to R by
Theorem 2.4.1. ]

Corollary 2.4.3. Let A be a formally real unital topologically
primitive locally A-pseudoconvex Hausdorff algebra or a formally real
unital topologically primitive locally pseudoconver Fréchet algebra.
Then Z(A) is topologically isomorphic to R.

Proof. Since A is a topologically primitive topological algebra,
then there is a closed maximal left (right) ideal M of A such that
Py = {64}. Hence, Z(A) is topologically isomorphic to R by Theo-
rem 2.4.1. O

2.5 Extendible ideals

Let A be a real topological algebra with a unit element e, B a
closed subalgebra of Z(A) containing e4 and M € m(B). If

n

I(M) = CIA{Z armi; n €N, ay,...,ap, € A; mq,...,my € M} #+ A,
k=1

then M is called an extendible ideal in A. We denote the set of all
extendible ideals of B by m.(B).

Proposition 2.5.1. Let' A be a real locally A-pseudoconvex (in
particular, a real locally m-pseudoconver) algebra with a unit element
ea or a real locally pseudoconver Fréchet algebra with a unit element

ea. Let M € mj(A) (M € m/(A) or M € mj(A)) and B be a closed
subalgebra of Z(A) containing e4. Then

1) every b € B defines a number A € R such that b — ey € M;

For complex topological algebra this result has been proved in [2], p. 50—51.
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9) M N B € m.(B).

Proof. Let M € mj(A), Py be the primitive ideal in A, defined by
M, and 7y : A — A/Py a canonical homomorphism. Then (by The-
orem 2.4.1) there exists a topological isomorphism p from Z(A/Py)
onto R. Since my(b) € Z(A/Py) for every b € B, then we can find a
number )\, € R such that

p(mar (b)) = Ao = pu(mar(Avea))-

Therefore, from my(b) = mar(Apea) it follws that b— \eqs € Py C M.

Let Mg = M N B. Then Mg is a closed ideal in B. Moreover, let
I be an ideal in B such that Mg C I. If Mg # I, then there exists an
element b € I\ Mp and by the statement 1) a number ), € R such that
b— \ea € Mp. Since b ¢ Mp, then A\, # 0. Now, from b — \peq € 1
it follows that eq = A, '[b — (b — M\pea)] € I. Therefore I = B, which
is not possible. Hence, Mp € m(B). Since Mp C M # A, then
I(Mg) C M # A. Thus, Mg € m.(B).

The proof for closed maximal right ideals is similar. Consequently,
the results are true for closed two-sided ideals, too. O

2.6 Description of closed maximal ideals

Let A be a real topological algebra and B a closed subalgebra of
Z(A). Here and later on we assume that m.(B) is not empty. Then
for each M € m.(B) let Ayy = A/I(M) and kp 0 A — A denote
the canonical homomorphism. To describe the sets mj(A) (m!.(A) and
my(A)),we need the following results.

Lemma 2.6.1. Let A be a real unital locally A-pseudoconvex (in
particular, a real unital locally m-pseudoconvex) algebra or a unital real
locally pseudoconvex Fréchet algebra and B a unital closed subalgebra

of Z(A). If M € mj(A) and M € m.(B) is such that
Em(M) = {rm(a) :a € M} # A,
then kp (M) € mi(Am).

Similar result holds in case, when M € m!(A) and M € mj(A).
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Proof. Let M € mj(A) and M € m.(B) be such that
km(M) # Anm. First we show that ka (M) is a left ideal in A
for each M € mj(A) and M € m.(B). For it, let by, by € (M),
A€ R and d € Apq. Then there are a}?,a}’ € M and ¢ € A such that
km(a}) =b; for i = 1,2 and kp(c) = d. Since M is a left ideal in A,
then a + ad, \al, ca}! € M. Therefore,

bitby = kmlay) +rmlar’) = kulay’ +a3') € ku(M),
My = Map(al) = sy (Aalt) € k(M)
and
dby = rapm(e)ram(al) = ka(cal?) € ra(M).

Hence, k(M) is a left ideal in A .

Now we show that (M) is maximal. For it, let W be a left ideal
in A such that k(M) C W, then

M C K (km(M)) C kg (W)

and there are two possibilities: (W) = A (it gives us a contradic-
tion W = Ap) or k(W) # A (then M = k(W) or kp(M) = W).
Thus, k(M) is a maximal left ideal in A.

Next, we show that k(M) is closed in Ays. Again, we have two
possibilities:

CIAM(KM<M)) 7é AM or CIAM(KM<M)) = AM

If cla,, (km(M)) # Am, then cly, (kpm(M)) is a closed left ideal in
A (see [26], p.169). Since k(M) is a maximal left ideal, then

IiM(M) = CIAM(/{M(M)).

Otherwise, kap(ea) € cla, (km(M)).  Therefore, there is a net
(ma)aea in M such that (ka(my))aea converges to ka(eq) in Ay

Let O" be an arbitrary neighbourhood of zero in A, then O =
km(0') is a neighbourhood of zero in Apq. Therefore we can find an
index p € A such that Ky (my —es) € O for each A > p. Since

Em(I(M)) = ba,, € km(M),
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then
I(M) € w5} (sad(M)) = M

by maximality of M (because (km(M)) # A). Let now Ao > p.
Then

My, — €4 € ki (km(0)) =I(M)+0' Cc M+ 0.
Therefore
ea=(ea—my)+my € M+0 +MCM+0O.
Hence
esa € m{M + O’ : 0'isaneighbourhood of zeroin A} =
= cu(M)=M

(see [31], p. 13). In this case M = A, which is not possible. Conse-
quently, k(M) is a closed maximal left ideal in Ax,.

Now we show that ka (M) satisfies the condition (2.4.1). For it,
let My = kpm(M) and ug,us € Apq be such that uf + u3 € Py,
Since

km(Pr) = {pm(a) € Ay s k(@) Ay € Ma} = Py,

then there are g € Py, such that uf + u3 = k(7), and ay,ay € A
such that u; = kaq(a;), i =1,2. As

rm((af +a3)A) = (u] +u3)kpm(A) = k(o) kp(A) =
= Km(@0d) € Km(M),
then
(ai +a3)A € kg (kam(M)) = M.
Hence, a?+ a3 € Py. Therefore, a1, ay € Py, by the condition (2.4.1).
Consequently, uy, us € Py, and My € my(Apm).

The proof for M € m!(A) is similar. Consequently, the result is
true for closed maximal two-sided ideals as well. ]
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Lemma 2.6.2. Let A be a real unital locally A-pseudoconver (in
particular, a unital real locally m-pseudoconvex) algebra or a real uni-

tal locally pseudoconvex Fréchet algebra and B a closed subalgebra of
Z(A). If M € m(B) and My € mj(Anm), then

kg (Mp) € mj(A).
Similar result holds in case, when M € m/.(A) or M € my(A).

Proof. First we show that (M) is a left ideal in A. For it, let
c1,¢o € Ky (Mpy) and X € R. Then there are elements by, by € M
such that rka(c;) = b; for i = 1,2, Since My, is a left ideal in Ay,
then

IiM(Cl + 02) =b+ by € Mg and RM()\Cl) = \b; € M.

Therefore ¢; + o, A\c1 € ki (Mam). If @ € A and d = ku(a), then
km(acy) = dby € May or acy € iy (My). Moreover, it is easy to
see that Kk (Muz) # A and k(M) is closed in A (because My is
closed in Apq). Thus, ky(Mu) is a closed left ideal in A.

Now we show that (M) is maximal in A. For it, let H be a
left ideal in A such that x{(Mu) C H. Then

M C fpa(Rng (M) C wopa(H).
If Ky (H) = Ap, then there is an element A € H such that

KM(h) ZBAM :%M(eA).
Since
h—eyq€ KJ/_V%(QAM) € I{/_V}(MM) C H,

then
ea=h—(h—es)€eH

implies that H = A, which is a contradiction. Therefore, kp(H) # A.
Thus, kpm(H) is a left ideal in Ay (see the proof of Lemma 2.6.1).
Hence, kp(H) = My (because My, is maximal) and from

H C ky(km(H)) =k (Mym) CH

it follows that ry{(Mu) = H. Hence, ryf (M) is a closed maximal
left ideal in A.
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Now we show that M* = k(M) satisfies the condition (2.4.1).
For it, let a;,as € A be such that a? + a3 € Py«. Then

(a2 +a3)A C M*.
Since
(km(ar)? + kp(a2)?) A = kml(al +a3)A) C
C KM(KX/}(MM)) = MM,

then raq(a1)? + kam(az)® € Pyy,. Consequently, ka(a;) € Pay,, for
i = 1,2, because My, € mj(Ar) (in this case from xy, 29 € Ay and
z3 + 23 € Py, it follows that z1, 29 € Py,,). Now

a; A C kflkam(a) A C Ky (Mayg) = M™.

Therefore, a; € Py« for i = 1,2. Thus, M* € mj(A).
The proof for right ideals is similar. Consequently, the result is
true for closed maximal two-sided ideals, too. O

Now we prove the main result of this chapter.

Theorem 2.6.3. Let A be a real unital locally A-pseudoconvez (in
particular, a locally m-pseudoconvex) algebra or a real unital locally
pseudoconver Fréchet algebra, B a closed subalgebra of Z(A) with the
same unit element as A and let M € mj(A). Then

1) M = k(M) for some Mag € mj(Ap) (here M = M N B);
2) there exists a bijection
N U MY xmi(A) — mi(A).
Meme(B)
Similar results hold in case, when M € m_(A) or M € mj(A).

Proof. Let M € mj(A). Then M = M N B € m.(B), by Proposi-
tion 2.5.1, and
My = rp(M) € my(Anm),

by Lemma 2.6.1, because in this case k(M) # Arq (otherwise there
is an element m € M such that m — ey € I[(M) C M, therefore
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ea=m—(m—ea) € M). As M C Ky (Mu), then M = k(M)
because M is maximal. Moreover, if M € m.(B) and M € my(Anm),
then (M) € mj(A) by Lemma 2.6.2. Hence, for each M € m,(B)
and My € mj(Anm) the map A, defined by

Ai((M, M) = kg (M),

is an onto map.
Now we show that A; is one-to-one. For it, let

M = K/_/_\/}l (MMI) = I{_X/}Q<MM2>

for some M; € m.(B) and My, € mj(An,), where i = 1,2. Then
M € mj(A) by Lemma 2.6.2, and

M=MnNB e mB),
by Proposition 2.5.1. Since
K (L(M;)) = 04y, € M,
for each 7 = 1, 2, then
M; CI(M;) C kyy (Mag,) = M

Hence, M; C M for 7+ = 1,2. Since M; is maximal in B for each
1= 1,2, then Ml :Mg :M and

M/\/l1 = K'/Vh["{'/_v}l (M./\/h)] = K’M2[K’j_\/}2(MM2)] = MM2'
Therefore, from A;(M1, Ma,)) = A((Ma, Mayy,)) it follows that
(My, M/Vh) = (MQ’ MMQ)'

Hence, A; is an one-to-one map. Consequently, A; is a bijection.

The proof for right ideals is similar. Consequently, similar results
are true for closed maximal two-sided ideals, too. O
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Chapter 3

Description of ideals in
subalgebras of C'(X, A, o)

We study in this Chapter properties of the topological algebra
C(X, A;0), a description of closed maximal left (right or two-sided)
ideals and of all nontrivial continuous linear multiplicative functionals
in subalgebras (X, A;0) of C(X, A;0).

Results of this Chapter are published in [29].

3.1 Properties of C'(X, A;0) and of its sub-
algebras

Let A be a real topological algebra with jointly continuous multi-
plication, X a topological space, o a cover of X and C(X, A; o) the set
of all continuous functions f : X — A for which the closure of f(5)
(in the topology of A) is compact in A for each S € o. All algebraic
operations on C (X, A; o) we define point-wisely and endow C(X, A;0)
with the topology, whose subbase of neighbourhoods of zero is

{T(S,0): S €0, Oisaneighbourhood of zero in A},

where T'(S,0) ={f € C(X, A;0) : f(S) C O}. Then C(X,A,0)is a
real topological algebra. It is easy to see that C'(X, A; o) is a Hausdorff
space if A is a Hausdorff space. Now we describe these properties of
C(X, A;0), which we need later on.
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Lemma 3.1.1. Let' X be a topological space, o its cover and A a
unital real locally m-pseudoconver algebra. Then C(X, A;0) is also a
unital real locally m-pseudoconvex algebra.

Proof. Since A is a unital real locally m-pseudoconvex algebra,
then A has a base By = {U,; a € A} of neighourhoods of zero, consist-
ing of balanced, pseudoconvex and idempotent sets. Let O be a neig-
bourhood of zero in C'(X, A;0). Then there aren € N, Sy,...,S, €0
and neigbourhoods Oy, ... O, of zero in A (by definition of topology
of C'(X, A;0)) such that

()T (S Ox) C O.
k=1

Now, for every k there is a neigbourhood U, € By of zero such that
Ua, C Oy. It is easy to see that

{ﬁT(Sk,Uak):nEN,Sl,...,SHEU,Uak eBA}

k=1

is a base of neigbourhoods of zero in C(X, A;0), which consists of
balanced, pseudoconvex and idempotent sets. Thus C'(X, A;0) is a
unital real locally m-pseudoconvex algebra. O]

Lemma 3.1.2. Let X be a completely reqular Hausdorff space and
o a compact cover* of X, which is closed with respect to finite unions.
Then

1) for every ¢ € hom(C(X,R;0)) defines an element xy € X such
that ¢ = ¢,,,, where ¢, () = awy) for each o € C(X,R;0);

2) every M € m(C(X,R;0)) defines an element xp € X such that

M={aeC(X,R;0): «alxy) =0}

Proof. See [5], the proof of Theorem 2 b) and v) in case of compact
cover. ]

For complex topological algebra A this result has been proved in [2], p. 67.
2That is, every S € o is a compact subset of X.
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Lemma 3.1.3. Let® A be a real topological Hausdorff algebra and
a € A\ Os. Then v, : R — Ra C A, defined by v,(\) = Aa for each
A € R, s a homeomorphism.

Proof. Let A be areal topological Hausdorff algebra and a € A\ 4.
It is clear that v, : R — A, defined by v,(\) = Aa for each A € R, is
a continuous bijection. We show that v, ! is continuous. For it, let O
be a neigbourhood of zero in R. Then there is € > 0 such that

O.={ eR: [\ <e}cCoO.

If Ao € O:\ {0}, then A\ga # 4. Since A is a Hausdorff space, then
there is a neigbourhood Oy4 of zero in A such that A\ga ¢ O4. Let Vy
be a balanced neigbourhood of zero in A such that V4 € O4. Now
O = V4N (Ra) is a neigbourhood of zero in Ra. If Aa € V4 and
Ao| < |Al, then |AgA™Y < 1 and Aga = (AgA1)Aa C Vi, which is a
contradiction. Therefore, from Aa € O’ it follows that A € 0, C O,
which means that v, ! is continuous. ]

3.2 Description of ideals in subalgebras

of C(X, A, o)

1. Let 2A(X, A;0) be a subalgebra of C(X, A;0), endowed with
the subset topology. The following results hold.

Lemma 3.2.1. Let* X be a topological space, o its cover, A a (not
necessary real) topological algebra with jointly continuous multiplica-

tion and A(X, A;0) a subalgebra of C(X, A;0). If
{f(z): feUX, A0)} = A
for each x € X, then

ZAX,A;0)) =A4(X, A;0)NC(X, Z(A); 0).

3For complex topological algebra A this result has been proved in [2], p. 70.
4For complex topological algebra this result has been proved in [2], p. 70—71.
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Proof. Since (X, A;0) is a subalgebra of C(X, A;0), then

A(X,4;0) N C(X,Z(A);0) =
AX, As0) N Z(C(X, 4;0)) C Z(AX, A;0)).

Now we show that Z(2A(X, A;0)) C C(X,Z(A);0). Let x € X and
g € Z(A(X, A;0)). By assumption, every a € A defines a function
fa € A(X, A; o) such that f,(x) = a. Since f,g = gf, for each a € A,
then

fag(x) = gfa(xz) or ag(x)=g(zr)a
for each z € X and each a € A. Thus g(z) € Z(A), which implies
that Z(A(X, A;0)) C C(X, Z(A);0). O

Next let e, : A(X, A;0) — A be the homomorphism, defined by
e:(f) = f(z) for each f € A(X, A;0).

Lemma 3.2.2. Let X be a topological space, o its cover, A a
unital topological algebra with jointly continuous multiplication and

A(X, A;0) a subalgebra of C(X, A; o). If
{fo:a€ A, fu(x)=aforcach z € X} CUX,A;0),  (3.2.1)
then
M. ={f € UX, A;0): f(x) € M} € m(A(X, A;0))

for each x € X and M € mj(A).

Similar result holds for the pairs m.(A(X,A;0)), ml(A) and
my(A(X, A;0)), mi(A).

Proof. Let + € X and M € mj(A). It is clear that 9,y is a
left ideal in A(X, A;0). We show that 9, s is closed. For it, let
Jo € clux,a,0)(Myzar). Then there is a net (fa)aea of elements of
M, ar, which converges to fy in A(X, A;0). Since ,(T(S5,0)) C O
for each neighbourhood O of zero in A and aset S' € o such that z € S,
then e, is continuous. Therefore (£,(f)))xrea converges to £,(fy) and
e:(fo) € M, because M is closed. Thus, f, € M, »r which means that
M, ar is a closed ideal.

Next, we show that 9, s is maximal. For it, let I be a left ideal
of A(X, A; o) such that M, py C I. Then e,(M, as) C e.(I). Suppose
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that €,(I) = A. Then there is an element g € [ such that e4 = €,(g).
Therefore

Ex(fea —9) = fea(®) —2(9) =04 € M,
which means that f., —g C M, C . Hence f., = (fe,—9)+g €I,
which is not possible, because f., is the unit element in A(X, 4;0).
Thus, e,(1) # A, e,(I) is a left ideal in A and M C &,(IM, 1) C e.(1).
Since M is a maximal ideal in A, then M = ¢,(I). Taking this into
account, from

ICe M (e,(I) =" (M) =M, s C I

it follows that I = 9, ps. Consequently, I, »r € my(A(X, A;0)).
Now we show that Py, ,, satisfies the condition (2.4.1). For it let
f.9 € A(X, A;0) be such that f? + ¢* € Poy, ,,. Then from
(f* + )X, A 0) C My s
it follows that
(f2 + 92)fa € mm,M
for each a € A by the assumption (3.2.1). It means that

(f*(2) + g*(z))a € M

for each a € A. Hence f*(z) + g*(z) € Py As M € mj(A), then Py,
satisfies the condition (2.4.1). Hence, f(z),g(z) € Py or f(x)AC M
and g(x)A C M. Therefore,

f@)h(z), g(x)h(x) € M or  fh,gh € My n
for each h € A(X, A;0). Consequently, f,g € Poy, ,,. Thus, for each
x € X and M € mj(A) holds M,y € m(A(X, A4;0)).
The proof for right and two-sided ideals is similar. O]
2. Let again X be a topological space, o its cover and A a real
topological algebra. For each® a € C'(X,R) and a € A let aa denote
the map defined by (aa)(x) = a(x)a for each z € X. Moreover, let
A(X,R;0) = {aeC(X,R): aaecUAX, A;0)}
and
AX,R;o0) = A, (X, R;0).

°The set of all continuous functions f : X — A we denote by C(X, A). It is
clear that C(X, A;0) C C(X, A).
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Lemma 3.2.3. Let® X be a topological space, o its cover, which is
closed with respect to finite unions, A a real topological Hausdorff al-
gebra, a € A\{04} and A, = A (X,R;0)a. Then the map p,, defined
by pe(a) = aa for each a € A (X, R; o), is a topological isomorphism
between A, (X, R;0) and 2,.

Proof. Tt is clear that p, is a bijection between the sets 2, (X, R; o)
and 2A,. We show that p, is continuous. For it, let O be a neighbour-
hood of zero in A,. Then O = O’ N A,, where O is a neighbour-
hood of zero in 2A(X, A;0). Now there is S € o, neighbourhood O4
of zero in A and neighbourhood O, = {A € K : |A\| < ¢} of zero
in R such that T(S,04) NA(X, A;0) C O and O.a C Oyx. Since
T(S,0.) N2A,(X,R;0) is a neighbourhood of zero in 2, (X,R; o) and

ta(T(S,0:) NA (X, R;0)) C T(S,0.a) NA, C
C (T(S,0.a) NA(X, A;0))NA, CcO'NA, = O,

then u, is continuous.

Next we show, that p;! is continuous. For it, let U be a neigh-
bourhood of zero in A,(X,R; o). Then there is S € o and € > 0 such
that T'(S,0.) N A, (X,R;0) C U. Because O.a = v,(0;) and v, is
a homeomorphism, by Lemma 3.1.3, then O.a is a neighbourhood of
zero in v,(R). Hence, there is a neighbourhood Uy of zero in A such
that 1,(0.) = Ua N 1,(R). Therefore, U' = T(S,U4) N2, is a neigh-
bourhood of zero in 2, and u; ' (U') C T(S,0.) NA(X,R;0) C U
which means that p ! is continuous. ]

3.3 Description of closed maximal ideals
in subalgebras of C'(X, A, o)

To describe closed maximal ideals in subalgebras of C'(X, A, o), we
need the following result.

Lemma 3.3.1. Let X be a topological space, o a cover of X,
which is closed with respect to finite unions, A a real unital locally
m-pseudoconver Hausdor(f algebra and A(X, A; o) a complete subalge-
bra of C(X, A; o), which contains the unit element of C(X, A;0). If

SFor complex topological algebra A this result has been proved in [2], p. 72—73.

o6



A(X,R;0) is strictly real and every M € m(A(X,R;0)ea) defines a
point x € X such that

M =M, ={aes € A(X,R;0)es : a(r) =0},

then
B = clzx,a0) (X, R;0)ea)

is a commutative real unital complete Gelfand-Mazur Hausdorff alge-
bra.

Proof. Let X, o, A and B be such as in the formulation of Lemma
3.3.1. Then B is a real closed Hausdorff subalgebra of the center
Z(A(X,A;0)) of A(X, A;0). The map fie,, defined by

fres (@) = s

for each a € A(X,R;0), is a topological isomorphism of 2A(X,R;0)
into B, by Lemma 3.2.3. Let 7 be the topology on g, (2A(X,R;0)),
induced by the topology of Z((X, A;0)). Since o is closed with re-
spect to finite unions, then every element of a base of neighbourhoods
of zero in i, (A(X,R;0)) has the form

B={aes: acAUX,R;o), a(S)es C Oz NReq}

for some S € o and neighbourhood Oy of zero in Z(A), by Lemma
3.2.1. Since the map A — Aey is continuous (by Lemma 3.1.3), then
there exists a number € € (0, 1) such that O.e4 C Oza) NRey, where
O. ={N e R: |\ <e}. It is easy to see that

{T(S,0.€4) N pie, AX,R;0)): S €0,e>0}

is also a base of neighbourhoods of zero in p. , (A(X, R; )) in the topol-
ogy 7. Because every set T'(S,O.e4) N pie, (A(X,R; 0)) is idempotent
and absolutely convex, then (u., (A(X,R;0)), 7) is a commutative real
locally m-convex algebra.

Now we show that ., (A(X,R;0)) is strictly real. By assump-
tion the unit element f., of C(X, A;0) belongs to A(X,R; ). Since
fes = ees (here e(z) = 1), then e € A(X,R;0) and eey is the unit
element in p., (A(X,R;0)). Now it is easy to show that

SPp. , (A(X,R;0)) (aea) C SPgx ko) (@)
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for each o € A(X,R;0). As

Sle(XJR;U) (Oé) CR

for each a € A(X,R;0) by Proposition 1.5.1 (because 20(X,R;0) is
strictly real), then
SpueA(Ql(X,R;o))(f )CR

for each f € p.,(A(X,R;0)). Hence, ., (A(X,R;0)) is also strictly
real by Proposition 1.5.1. If p is a homogeneous submultiplicative
seminorm on (i, (A(X,R;0)), then (similarily as in [21], Proposition
4, p. 129) its extension p’ onto B is a homogeneuos submultiplica-
tive seminorm on B. Hence B is a commutative real unital locally
m-pseudoconvex Hausdorff algebra. By assumption of Lemma 3.3.1,
every M € m(2A(X,R;0)e4) defines a point = € X such that M = M,,.
Therefore from a, 8 € A(X,R;0)es and o? + 32 € M it follows that
a,f € M. Thus A(X,R;0)e, satisfies the condition (2.2.1) for each
M € m(2(X,R;0)es). Since 2A(X, A;0) is complete, then the cen-
ter Z(A(X, A;0)) (as a closed subspace) is complete. Thus B is also
complete and, by Lemma 1.7.3, satisfies the condition (2.2.1) for each
M € m(B). Consequently, B is a real unital commutative Gelfand-
Mazur Hausdorff algebra, by Corollary 1.7.2. [

Now we prove the main result of Chapter 3, which describes closed
maximal ideals in subalgebras of C'(X, A; o).

Theorem 3.3.2. Let X be a completely reqular Hausdorff space,
o a cover of X, which is closed with respect to finite unions, A a
real unital locally m-pseudoconvexr Hausdorff algebra and A(X, A;0) a
complete subalgebra of C(X, A; o) (with the same unit as C(X, A, 0)).

If
1) {fo:a€ A, folx) =a for each v € X} CA(X, A;0};
2) every M € m(A(X,R;0)) defines an element x € X such that
M=M,={acAX,R;o): alx)=0}
3) af e U(X, A;0) for each o € C(X,R) and f € A(X, A;0);
4) A(X,R;0) is strictly real,
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then every MM € mj(A(X, A;0)) is representable in the form
M=, ={f eUX,A0): f(z)e M}

for some x € X and M € mj(A).
Similar result is true for ideals in m!.(A(X, A;0)) and for ideals in
mi(A(X, A;0)).

Proof. We give the proof only for left ideals (the proof for right and
two-sided ideals is similar). Let X, o and A be as in the formulation
of Theorem 3.3.2,

B = CIZ(QL(XA;J)) (QL(X, R; U)GA)

and M € m(2A(X,R;0)eq). Then pu_ (M) € m(2A(X,R;0)) by Lem-
ma 3.2.3. Now by the condition 2) there is a point € X such that

po (M) ={a € C(X,R;0): a(z) =0}
Hence,
M ={aes €e A(X,R;0)es: a(z)=0}.

Consequently, B is a commutative real unital complete Gelfand-Mazur
Hausdorff algebra by Lemma 3.3.1 and the condition 4). In this case
the set m(B) is not empty, because every ¢ € hom(A(X,R;0)ea)
has the extension ¢ € hom(B) by Proposition 3 from [15]. Therefore,
every M € m(B) defines a map 1y, € hom(B) such that M = ker ;.
Since fie, is a topological isomorphism from 2(X,R;o) into B, by
Lemma 3.2.3, and g, (A(X,R;0)) is dense in B, then

s 0 e, € hom(A(X,R;0)).
By the condition 2), there is a unique element xy € X such that
ker(¢pr o pie,) = {a € C(X,R;0):  «afzg) = 0}.

Since &, : A(X,R;0) — R, defined by &, () = a(x) for each o €
2A(X,R;0), is a homomorphism and ker¢,, = ker (¢as o pe,), then
(yve O ey = gazo- Now

Hea (ker&ﬂo) = Hey (lue_Al (keer)) = keryps N He 4 (Ql<X7 R; U)) =
=Mn ﬂeA(Ql(Xa R; U))
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Since B is a commutative real unital Gelfand-Mazur algebra, then
clp (e, (keréy, ) = clp(M 0 e, (A(X, R 0))) = M,

by Corollary 1 from [15]. Hence, every M defines an element = € X
such that

M =M, =clg({aes: ac AUX,R;0)), alr)=0}).
Let f € A(X, A;0),
rar, c A(X, As0) =Y =A(X, A;0)/I(M,)
be the quotient map” and J, : Y — A the map, defined by

0o (a7, (f)) = €2(f)
for each x € X and f € A(X, A;0). To show that ¢, is well defined,

we show that kere, = I(M,) for each z € X. For it, let f € I(M,). If
we define the multiplication over A in A(X, A;0) by (af)(z) = af(z)
for each x € X and a € A, then M, C kere, (because ¢, is continuous

and A is a Hausdorff spase) and

Es < z”: fkmk> =04
k=1

foreachn € N, fi,..., f, € X, A;0) and my, ..., m, € M,. Hence,
e(I(M,) =0, or I(M,)C kere,

for each x € X.

Next, we show that kere, C I(M,) for each + € X. For it, let
xg € X, f € kere,, and O(f) be any neighbourhood of f in (X, A4; o).
Since o is closed with respect to finite unions, then

[+ (T(S0, 00) NA(X, A; o)) C O(f)

for some Sy € o and balanced neighbourhood Oy of zero in A. Now
there exists an open neighbourhood O’ of zero in A such that O’ C O.

"Here 1(M,) is extendible ideal in (X, A; o), defined by M,.
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Since f(xy) € O', then Xor = X\ f~1(O') is closed in X and zy ¢ Xo.
By assumption, X is a completely regular space. Therefore, there is
a € C(X,[0,1]) such that a(zg) = 0 and a(Xor) = {1}.

Let now x € Sy. If x € X/, then

(af = P(x) = (afx) = 1) f(x) € Op.
If z ¢ Xor, then z € f71(O') and

(af = Px) = (afx) = 1) f(2) € (afx) = 1)Op € Oy,
because |a(z) — 1| < 1 and Oy is balanced set. Therefore,
af — f € T(So,00) NAX, A;0),
by the condition 3) and® af = faes € I(M,,), then

[(Ma,) N O(f) # 0.

Consequently, f € I(M,,), which implies that kere,, C I(M,,).
Therefore, 1(M,,) = kere,,. Since every M € m(B) defines an ele-
ment € X such that M = M, and kere, # (X, A;0), because
A(X, A;0) has the unit element, then every closed maximal ideal in
B is extendible.

It is easy to see that C'(X, A;0) is a Hausdorff algebra, if A is
a Hausdorff algebra. By the assumption of Theorem 3.3.2 and by
Lemma 3.1.1 we see that C(X, A; o) is locally m-pseudoconvex. There-
fore A(X, A; o), as a subalgebra of C'(X, A; o), is a real unital locally
m-pseudoconvex Hausdorff algebra. It is shown in the proof of Theo-

rem 2.6.3 that every ideal 9t € mj(A(X, A;0)) has the form
M = 4] (1 (M)

for some z € X and M, = M N B € m(B) (because every ideal of
m(B) is extendible). Hence,

M={feUAX,A;0): [flx)€e (MM}

81t is clear that ceq = afe, € A(X, A;0) by the conditions 1) and 3). Therefore
a€UX,A;0) and ceqg € M, .

61



Next we show that ,(90) is a closed maximal left ideal in A. If
£,(9M) = A, then there is an element g € M such that €,(g) = ea.
Since hg € 9 for each h € A(X, A; o), then from

ex(h) = h(z)ea = (hg)(x) = ex(hg)

it follows that h — hg € kere, = I(M,). Since M, = 9N B (that is,
kg7, (M) is an ideal in Y by Lemma 2.6.1) and

kg, (I(My)) = Oy € kz;, (9M),

then

I(M,) C ’{_Mlz [kg7, ()] = M.
Thus A(X,A;0) = 9M, which gives us a contradiction. Hence
(M) # A and €,(9M) is a left ideal in A. Let now I be a left
ideal in A such that €,(9t) C I. Then

M C =, (e,(M) C £, (1) # AKX, As o)

because of which e;1(I) is a left ideal in A(X, A;0). Since M is a
maximal left ideal in A(X, A;0), then M = . 1(I) or e,(M) = I,
because ¢, is an onto map by the condition 1). Consequently, ¢, (9)
is a maximal left ideal in A.

Next, we show that ¢,(9) is closed. For it, let ap be an arbitrary
element of cly(e,(9M)). Then there is a net (my)rea in M such that
ez(my) converges to ag. Let p: A — C(X, A;0) be a map, defined
by (p(a))(z) = a for each € X and a € A. Then p is continuous
(because p is linear and p(O) C T'(S, O) for each neighbourhood O of
zero in A and S € o). Therefore, p(e,(m,)) converges to p(ap). Since

exlp(ex(ma))] = (pea(ma)))(x) = a(my)

and J, is an one-to-one map, then ry; [p(e.(ma))] = k37, (my) for each
A € A. Thus

plea(m)) € rr (g, (p(es(m))] = r5) [z, (ma)] € M

for each A € A. Hence p(ag) € 9, because M is closed in A(X, A4;0).
Therefore, ay = e;((p(ap)) € e,(M). So we have proved that
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cla(ex(M)) = €,(M), which means that Moy = £,(9M) is a closed
maximal left ideal in A. Consequently,

m = mI,Mgm

for some € X and Moy € m(A).
Next we show, that €,(9) € mj(A). For it, let a,b € A be such
that a? + b* € €,(9M). Then from

eolfa + 1y) = (fa + fi) (@) = a® + b* € e (M)

it follows that gz, (f2 + f7) € kyr, (9M) because o, is a one-to-one
map. Hence,

P24 f2 € n g (F2 4 J2)) © gl [y, (90)] = O

Since M € mj(A(X, A;0)), and f,, f € A(X, A;0) by condition 1),
then f,, fy € M or a,b € £,(M). Consequently, e,(M) € mj(A). O

Corollary 3.3.3. Let X be a completely reqular Hausdorff k-spa-
ce®, o a compact cover of X, which is closed with respect to finite
unions, A a real unital complete locally m-pseudoconvexr Hausdorff al-
gebra and A(X, A; o) a closed subalgebra of C(X, A; o) (with the same
unit as C(X,A,0)). If all conditions 1) — 4) of Theorem 3.3.2 have
been satisfied, then every M € mj(A(X, A;0)) is representable in the
form O = M, pr for some x € X and M € mj(A).

Similar result is true for ideals in m!.(A(X, A; o)) and my(A(X, A; 0)).

Proof. Since X is a k-space, ¢ is a compact cover and A is com-
plete, then C'(X, A; o) is complete by Theorem 43.11 from [34]. There-
fore A(X, A; o) is also complete as a closed subset. Taking this into
account, Corollary 3.3.3 is true by Theorem 3.3.2. O]

Corollary 3.3.4. Let all assumtions and conditions of Theorem
3.3.2 be fullfilled. Then the map Q : mj(A(X, A;0)) — X x mj(A),
defined by

QM) = (z, M)

9A topological space is a k-space or a compactly generated space if the following
condition holds: A C X is open if and only if ANK is open in K for each compact
set K in X (see [25]). The collection of k-spaces contains a considerably wide
class of topological spaces. It is known (see [25], p. 172, or [34], p. 285) that
every locally compact Hausdorff space and every Hausdorff space, satisfying the
first axiom of countability, are k-spaces.
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for each x € X and M € mj(A), is a bijection.
Similar result is true for ideals in m!.(A(X, A; o)) and mi(A(X, A; 0)).

Proof. 1t is clear that 2 maps m} (A(X, A;0)) onto X x m}(A)
by Lemma 3.2.2 and Theorem 3.3.2. If now Q(M,, ) = QOMuy ),
then from (xy, My) = (x9, M) it follows that z; = x5 and M; = M.
Hence M, ar, = My, v, and thus € is a bijection. O

Remark. In case, when A is a complex unital locally m-pseudo-
convex Hausdorff algebra, similar results to Theorem 3.3.2 and Corol-
lary 3.3.4 have been proved in [2] (see also [3, 4]).

3.4 Description of homomorphisms in
subalgebras of C'(X, A, o)

In this section we give some results, which follow from Theorem
3.3.2, and describe homomorphisms from subalgebras of C(X, A, o)
onto R.

Proposition 3.4.1. Let all assumptions and conditions of The-
orem 3.3.2 be fullfilled. If, in addition, A is a commutative algebra,
then every homomorphism ® € hom(A(X, A;0)) defines v € X and
¢ € hom(A) such that ® = ¢ oe,.

Proof. 1f & € hom(A(X, A;0)), then ker® is a closed maximal two-
sided ideal in A(X, A;0) (see [24], p. 68). Let now f,g € A(X, 4;0)
be such that f2 + g? € ker®. Then

O(f* +g%) = (2(f))* + (2(9))* = 0.

Since ®(f),®(g) € R, then ®(f) = ®(g9) = 0. Thus, the condition
(2.2.1) is true in the present case. Hence, ker® = 9, p; for some
z € X and M € m(A) by Theorem 3.3.2.

Since A is a real Gelfand-Mazur algebra by Corollary 1.7.2 case
b), then there is ¢ € hom(A) such that M = ker¢. Now from
f € kerg it follws that e,(f) € ker¢ or f € ker(¢ oe,). Therefore
ker® C ker(¢oe,). Since ker(¢poe,) is a two-sided ideal in A(X, A; o)
and ker® is a maximal two-sided ideal, then ker® = ker(¢ o ¢,) and
therefore & = ¢ o ¢, by Lemma 7.2 from [24]. O
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A subset H C hom(A) is equicontinuous at ay € A if for every
e > 0 there is a neighbourhood O,, such that |¢p(a) — ¢(ag)| < € for all
¢ € Hand a € O,y and H C hom(A) is equicontinuous if it is equicon-
tinuous at every a € A. The set hom(A) (in the Gelfand topology)
is locally equicontinuous if every ¢y € hom(A) has an equicontinuous
neighbourhood Oy, of ¢ in hom(A) that is, for each e > 0 and ¢y € A
there is a neighbourhood O,, of ag in A such that |¢(a) — ¢o(ag)| < €
for all a € O,y and ¢ € Oy, .

Theorem 3.4.2. Let all assumptions and conditions of Theorem
3.3.2 be fullfilled. Let

hom(A(X, A;0)) =1{&: =z € X},

where & (o) = a(x) for each a € A(X,R;0), and the map § — =
from hom(2A(X,R;0)) onto X be continuous. If, in addition, A is a
commutative algebra, for which hom(A) is locally equicontinuous, then
hom(2A(X, A;0)) and X x hom(A) are homeomorphic.

Proof. By Proposition 3.4.1, every ® € hom(24(X, A;0)) is repre-
sentable in the form
O =P, 4 =0¢ocg,

for some x € X and ¢ € hom(A). Since g, is a continuous ho-
momorphism from A(X,A;0) onto A for each =z € X, then
¢poe, € hom(A(X,R;0)) for each x € X and ¢ € hom(A). Therefore
), defined by
AP) = UPg) = (2. 9)

for each z € X and ¢ € hom(A) maps hom(A(X, A;0)) onto
X x hom(A).

We show that €2 is one-to-one. For it, let Q(®(,.4)) = QUP(zy,01))-
Then (x,¢) = (z1,¢1). Hence, @, 4y = Pa, 4,), which means that
is a bijection.

Next we show that €2 is continuous. For it, let

(¢i)i€[ = (¢(I“¢1))’L€I

be a net in hom(A(X, A;0)), which converges to ®; = @, 4,) in the
Gelfand topology on hom(2((X, A;0)). Then the net (®;(f))icr con-
verges to ®o(f) for each f € hom((X, A;0)). Since (by the condition
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2) of Theorem 3.3.2) f, € A(X, A;0) for each a € A, and

(I)z'(fa) =¢;0 59:i<fa) = ¢z(5mz(fa)) = ¢Z(fa($z)) = ¢i(a)

for each i € TU{0}, then (¢;(a));cr converges to ¢g(a) for each a € A.
Hence (¢;)ier converges to ¢g in the Gelfand topology on hom(A).

Moreover, aey = af., € A(X, A;0) for each a € A(X, A;0) by
condition 1) and 3) of Theorem 3.3.2. Therefore the net (®;(ae4))icr
converges to ®g(aey) for each o € A(X,R; ). Since

2,0 (aea) = a(z5)p(ea) = ax;) = &, (a)

for each ¢ € hom(A) and o € A(X,R;0), then (&, (a));er converges
to &, () for each o € A(X,R;0). Hence (&,;,)icr converges to &, in
the Gelfand topology on hom(A(X,R;0)). By assumption, , — =
is continuous. Thus (z;);c; converges to z in the topology of X and
therefore (z;, ¢;)ic; converges to (xg, @) in the product topology on
X x hom A. Tt means that € is continuous.

Now we show that Q7! is continuous. First, we show that for
each 79 € X, ¢ € hom(A) and neighbourhood Og, , ; of @z, in
the Gelfand topology on hom(4(X, A;0)) there is a neighbourhood
O(z0,60) Of (20, @) such that

Q! (O(z07¢0)) - Oq“(zo,%) )

For that, it is enogh to show that for each ¢ > 0, xy € X, ¢, € hom(A)
and f € A(X, A; o) there is a neighbourhood O, 4,) such that

D (2.6) () = Prag,0) ()] <&,

whenever (x, ) € Oay,40)-

Since hom(A) is locally equicontinuous, then every ¢y € hom(A)
has an equicontinuous neighbourhood Oy, of ¢y in the Gelfand topol-
ogy on hom(A). Therefore, for every o € X, f € (X, A;0) and

e > 0 there is a neighbourhood Oy g of f(x¢) such that
[6(a) = #(f(20))] = éla — f(xo))] < 5

for each a € Oy,,) and ¢ € Og,. Since f is continuous, then there is a
neighbourhood O, of o such that f(z) € Og(,), whenever x € O,,.
Hence

6(f(@) = flao))| < 3,
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whenever ¢ € Oy, and x € O,,. Let now

O(0) = O {6 € hom(A) 1 |(6 = d0)(F(w0))] < 5}

Since Oy, x Oy, is a neighbourhood of (x¢, ¢g) in the product topology
of X x hom(A) and

1D 2.6) (f) = Plan.io) () = [@(f () — do(f(20))] <
<|o(f(z) = f(xo))| + (¢ — do)(f(m0))| <5+ 5=¢

for each f € (A(X, A;0), whenever (x,9) € Oy X Oy, then Q71 is

continuous. Hence, () is a homeomorphism. O

3.5 Some results for C(X, A;0)

Next we describe ideals in C'(X, A4; o).

Proposition 3.5.1. Let X be a completely regular Hausdorff
k-space, o a compact cover of X, which is closed with respect to finite
unions, and A a real unital complete locally m-pseudoconver Hausdorff
algebra. Then

a) every M € mj(C(X, A;0)) is representable in the form
M = M0 = {f € C(X, As0) : f(z) € M},
for some v € X and M € mj(A);
b) M, € m)(C(X, A;0)) for each x € X and each M € mj(A);
¢) the map Q : mj(C(X, A;0)) — X x mj(A), defined by
Q(me) = (v, M)
for each x € X and M € mj(A), is a bijection.

Similar results are true for ideals in m,(A(X,A;0)) and in

mi(A(X, A; 7).
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Proof. 1t is easy to see that C(X, A;0) is strictly real and the
conditions of Lemma 3.2.1 and Theorem 3.3.2 are fullfilled by Lemma
3.1.1 and Lemma 3.1.2. Thus, the statements a), b) and ¢) are true
by Lemma 3.2.2 and Corollaries 3.3.3 and 3.3.4. O

Proposition 3.5.2. Let X be a completely reqular Hausdorff
k-space, o a compact cover of X, which is closed with respect to finite
unions, A a commutative real unital complete locally m-pseudoconvex
Hausdorff algebra.

Then every ® € hom(C(X, A;0)) defines x € X and ¢ € hom(A)
such that ® = ¢oe,. If, in addition, hom(A) is locally equicontinuous,
then hom(C'(X, A;0)) and X x hom(A) are homeomorphic.

Proof. All assumptions and conditions of Corollary 3.3.3 and The-
orem 3.4.2 have been fullfilled by Lemmas 3.1.1 and 3.1.2. Therefore,
every ® € hom(C(X, A;0) defines x € X and ¢ € hom(A) such that
¢ = ¢ o e, by Proposition 3.4.1. It is shown in [5], Theorem 2, that
hom(C(X,R;0)) = {& : = € X} and the map {x — z is a home-
omorphism from C(X,R;o) onto X. Consequently, hom(C(X, A;0)
and X x hom(A) are homeomorphic by Theorem 3.4.2, because
hom(A) is locally equicontinuous. O
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Kokkuvote

1. Olgu A topoloogiline algebra iile reaalarvude korpuse R, s.t.
selline topoloogiline vektorruum iile korpuse R, milles on defineeritud
assotsiatiivne eraldi pidev korrutamine, ning olgu m(A) koigi selliste
kinniste kahepoolsete ideaalide hulk algebras A, mis on maksimaalsed
kui vasakpoolsed ideaalid voi kui parempoolsed ideaalid. Topoloogilist
algebrat iile R nimetatakse reaalseks Gelfand-Mazuri algebraks, kui
faktoralgebra A/M (faktortopoloogias) on topoloogiliselt isomorfne
korpusega R. Analoogiliselt defineeritakse kompleksne Gelfand-Ma-
zuri algebra.

Kompleksse Gelfand-Mazuri algebra moiste votsid teineteisest
soltumatult kasutusele Mati Abel (vt. [6]-[8]) ja Anastasios Mallios
(vt. [24]). Komplekssete Gelfand-Mazuri algebrate struktuur on seni
killaltki hasti uuritud. Reaalse Gelfand-Mazuri algebra moiste on
kasutusele voetud t60s [18].

Reaalse Gelfand-Mazuri algebra A omaduste uurimiseks sisesta-
takse A komplekssesse Gelfand-Mazuri algebrasse A. Kasutades
kompleksse Gelfand-Mazuri algebra korral teada olevaid tulemusi al-
gebra A korral, saame kirjeldada algebra A omadusi. Seda meetodit
on edukalt kasutatatud reaalsete Banachi algebrate uurimisel (vt. [21]
ja [30]).

2. Kaéesolev vaitekiri koosneb kolmest peatiikist. Esimeses
vaadeldakse topoloogiliste (s.o. lokaalselt pseudokumerate ja gilb) al-

gebrate kompleksifitseerimist ja selle omadusi. Antakse pohi-
liste reaalsete Gelfand-Mazuri jagamisega algebrate kirjeldus (Jareldus
1.7.2).

Teises peatiikis ndidatakse (Teoreem 2.2.1), et juhul kui kommu-
tatiivne reaalne topoloogiline algebra A rahuldab tingimust
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kui a,b € A ning a® + b*> € M, siis a,b € M
iga M € m(A) korral, ning algebral A leidub selline topoloogia T, et
(A, 7) on iiks jargmistest topoloogilistest algebratest:

a) lokaalselt pseudokumer Waelbroecki algebra;

b) lokaalselt A-pseudokumer (erijuhul lokaalselt m-pseudokumer)
algebra;

c) lokaalselt pseudokumer Fréchet algebra;

d) pideva korrutamisega ja tokestatud elementidega tugevalt gilb
(erijuhul eksponentsiaalselt gilb) Hausdorfhi algebra;

e) topoloogiline Hausdorffi algebra, milles iga a € A ja M € m(A)
korral leidub selline A € R, et a — Aeyq € M,

siis A on kommutatiivne reaalne Gelfand-Mazuri algebra.

Kasutades saadud tulemusi, leitakse selliste topoloogiliste algeb-
rate A kirjeldus, mille korral faktoralgebra A/P (iile kinnise primitiiv-
se ideaali P) tsenter Z(A/P) on topoloogiliselt isomorfne kor-
pusega R.

Kasutades G. Allani ja L. Waelbroecki ideid (vt. [19, 32]) ja
Mart Abeli poolt saadud tulemusi (vt. [2] ja [4]) kinniste maksi-
maalsete ideaalide kirjeldamiseks komplekssetes Gelfand-Mazuri al-
gebrates, antakse iihe- ja kahepoolsete ideaalide kirjeldus lokaalselt
A-pseudokumerates (erijuhul lokaalselt m-pseudokumerates) algebra-
tes ning lokaalselt pseudokumerates Fréchet algebrates.

Kolmandas peatiikis kirjeldatakse topoloogilise algebra C (X, A; o)
omadusi juhul, kui A on reaalne iihikuga lokaalselt m-pseudokumer
algebra (vt. Lemma 3.1.1). Leitakse piisavad tingimused (Teoreemid
3.3.2 ja 3.4.1) selleks, et algebra C(X, A;0) alamalgebrates oleks
voimalik kirjeldada koiki kinniseid maksimaalseid iihe- ja kahepoolseid
ideaale (samuti koiki pidevaid lineaarseid multiplikatiivseid
funktsionaale) ruumide X ja hom(A) punktide abil.

3. Kéesoleva viitekirja tulemused on publitseeritud to6des [18]
ja [28] (66 [29] ilmumisel). Oma tulemusi on tutvustatud jargmistel
rahvusvahelistel konverentsidel: ”International Conference on Topo-
logical Algebras and its Applications” (Oulu, 2001), " Topological al-
gebras, their applications and related results” (Bedtewo, 2003), ”In-
ternational conference dedicated to 125-th anniversary of Hans Hahn”
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(Chernivtsi, Ukraina, 2004), ”International Conference on Topologi-
cal Algebras and its Applications” (Athens, 2005) ja rahvusvahelisel
puhta matemaatika iihisseminaril ” Tartu-Riga” (Riga, 2005).
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