## UNIVERSITY OF TARTU

FACULTY OF BIOLOGY AND GEOGRAPHY INSTITUTE OF ZOOLOGY AND HYDROBIOLOGY

PRIIT KERSEN

# COMMUNITY LOSS OF THE LOOSE-LYING RED ALGAE THROUGH THE MACROALGAL BEACH CASTS IN VÄINAMERI AREA

MSc thesis

Supervisor: PhD Georg Martin

TARTU 2006

# CONTENT

| INTRODUCTION                                    | 3  |
|-------------------------------------------------|----|
| MATERIAL AND METHODS                            | 4  |
| STUDY AREA                                      | 4  |
| Field works                                     | 5  |
| LABORATORY WORKS                                | 6  |
| DATA ANALYSIS AND STATISTICAL MODEL             | 7  |
| RESULTS AND DISCUSSION                          | 9  |
| FIELD OBSERVATION                               | 9  |
| Wrack accumulation                              | 9  |
| Taxonomic composition and biomass               | 9  |
| STATISTICAL MODEL CALCULATION OF BIOMASS LOSSES | 13 |
| SUMMARY                                         | 15 |
| KOKKUVÕTE                                       | 16 |
| REFERENCES                                      | 17 |
| APPENDIXES                                      |    |
| Appendix 1                                      |    |
| Appendix 2                                      |    |
| Appendix 3                                      |    |

# **INTRODUCTION**

The sea area of West Estonian Archipelago hosts the largest known mixed community of loose-lying *Furcellaria lumbricalis* (Huds.) Lamour and *Coccotylus truncatus* (Pall.) Wynne & Heine. The community covers up to  $120 \text{ km}^2$  of sea bottom and forms more than 140 000 tons of biomass in Kassari Bay (Martin *et al.*, 2006). Commercial importance of the red alga *F. lumbricalis* is due to polysahharides technologically extracted from the thallus (Tuvikene *et al.*, 2006; Truus *et al.*, 1996; Bird *et al.*, 1991). The industrial exploitation of the community started in Saaremaa Island in 1966. The state of the drifting algal community is monitored since the beginning of industrial exploitation but only recently the investigations explaining the biomass formation and community fluctuation were started.

Previously, the marine wracks in the Väinameri area were observed by Trei (1965, 1968). More recent studies on the shores of Saaremaa Island were made in 1976–1982 (Martin *et al.*, 1996). Unfortunately no information on methods used while estimating the amount of wrack in these studies is available.

The present investigation was prompted by lack of the relevant information about algal biomass losses by natural forces. The aim of the master's thesis are (1) to estimate natural losses of the community thought cast ashore and (2) to compare these amount with commercially harvested biomass of the community.

The author of this thesis is very thankful to his supervisor Georg Martin for his multifold support. Jonne Kotta are acknowledged for his critical relevant comments of the manuscript. The author is also thankful to Kristjan Herkül for his assistance in field work.

# **MATERIAL AND METHODS**

### **STUDY AREA**

Kassari Bay (also Hiiu Strait) extend more than 600 km<sup>2</sup> (Mardiste, 1974) and is a relatively isolated from the Baltic Proper and other regions of the Väinameri (the inner sea of the West Estonian Archipelago). According to the EMHI archive ice cover lasts on average 100 days in Kassari Bay. Salinity is typically between 6.0–6.7 PSU (Suursaar et al., 2000).

Two shore types dominate: till shore and gravel-pebble shore (Orviku, 1993). The bottom of the bay is relatively flat (Mardiste, 1970) as the isobath of 5 m lies at 0.5–1 km from the studied coastal sites in the NE of Saaremaa Island. Less than half of the sea area is less than 5 m deep.

The loose-lying red algal communities cover about 120  $\text{km}^2$  surface area recently (Kersen, 2006). Circular currents and bottom morphology keep the unattached red algae community drifting away from the region. These communities are found at the depth range of 5–9 m mainly on clay and sand bottoms.

### **FIELD WORKS**

Field data for present study were collected on the sampling sites in the NE coast of Saaremaa Island from 21.04 to 05.11 in 2002 (Fig. 1):

- 1) 58,5863°N; 22,7642°E (Mujaste Village, Leisi Parish; in tables & figures: T1);
- 2) 58,6222°N; 22,8658°E (Rannaküla Village, Orissaare Parish; in tables & figures: T2);
- 3) 58,6145°N ; 22,9062°E (Jaani Village, Orissaare Parish; in tables & figures: T3).

The sites were visited monthly during the ice-free season (seven times in all). Firstly, the visual observations of the wrack were done to clarify whether new macroalgae have been accumulated on the shore. In the case of new wrack, they were described (location and taxonomic composition), measured (length and width of the wrack) and video recorded. The biomass samples were taken only when the unattached form of *F. lumbricalis* was found.



**Fig. 1.** Location of the study area in 2002. Study sites are indicated by filled circles (T1, T2, T3). Bright fine lines mark isobaths in Väinameri area.

In each study site three replicate coastal sections were studied. The average length of the section was about 49–67 m long. One sample was randomly taken within each replicate section (quadrate frame, 20 × 20 cm, n = 32). The collected flora was packed, labeled and then deep-frozen at –18 °C.

### LABORATORY WORKS

Three floristic components were separated: *F. lumbricalis, C. truncatus* and other macrophytes jointly. The latter was estimated only qualitatively. Determination was made according to the keys of Trei (1991) and Leht (1999). The species list of macrophytobenthos follows the nomenclature presented in Nielsen *et al.* (1995). Specimens were dried at 60 °C until constant dry weights two weeks (accuracy  $\pm 0.1$  mg). The dry mass/volume ratio of the red algae *F. lumbricalis* and *C. truncatus* in the sampling frame (dry weight divided by volume; i.e. "bulk density") was used to calculate the biomass of the shore casts (g/m). Due to unequal interval of observations the biomasses were divided with the number of days between data collections.

### DATA ANALYSIS AND STATISTICAL MODEL

Distances between the three sampling sites and the upper distribution limit of loose-lying algal community were measured (according to the biomass distribution area estimates in summer 2002; see Fig. 1). Nonlinear multiple regression analysis was used to describe the functional relationship between average wind speed (m/s), distance between community and sampling sites, and wrack biomass (g/m) (data are presented in Appendix 2).

Shoreline and basin border were divided into 24 sections wherein average distances between the edge of the red algal community and each section were measured. Some sections were directly located at Soela Strait, Hiiumaa Islets and around Kõinastu Islets (Fig. 2). The length of shoreline was measured with a step of 500 meters at the chart (*Soela Strait...*, 2001).

Prior to analysis the data were transformed due to an occurrence of non-linear relations (squared and/or multiplied, if such interactions were expected). Appropriate statistical model was constructed by means of stepwise regression analysis (StatSoft Inc., 2004) describing the relationships between wrack accumulation and environmental parameters.



**Fig. 2.** Division of the Kassari Bay area into 24 sections (indicated as black sticks). The length of sea areas (4, 14, and 19) were measured directly, the rest coastline by a step of 500 m. Dotted line marks edge of algal community distribution area at state of 2002 summer.

The forms of the statistical models were as follows:

 $F = 5577.485 T^{2} - 36472.5 T + 0.386441 K - 0.1204458 K T + 59395.78$ (1) where F - biomass of F. *lumbricalis* (g/m),

K – average distance from community edge (m),

T – average wind speed (m/s).

 $C = 2598.911 T^{2} - 16890.5 T + 0.333485 K - 0.104652 K T + 27344.49$ (2) where C - biomass of C. truncatus (g/m),

K and T as in previous model.

Based on these equations the wrack biomasses of *F. lumbricalis* and *C. truncatus* for each intersampling periods (6 total) and sections (24 totals; Fig. 2.) were calculated (see Appendix 3). Using spatial extrapolation, the dry weights of beach-cast macroalgae for every section were calculated by multiplying the wrack biomass (g/m) by the length of the shoreline (132 km). Total wrack biomass accumulated during the study period was obtained when the values of dry weights were summed and transformed to wet weight (by ratio of 1:5; according to our measurements and analogous to Greenwell *et al.*, 1984).

The aim of the study was to evaluate the natural losses of the loose-lying red algal community during the whole year of 2002. Therefore, we had to use temporal extrapolation, both retrospective and perspective. 197 days were covered by observations and 168 days were not, respectively. According to ice charts (EMHI archives) the dates of ice break-up and ice formation were 27.02.2002 and 09.12.2002, respectively. Thus, the ice-free period not covered by observations was 85 days in 2002.

We assumed that the wind characteristics prior to 21.04 and after 05.11 were similar to the adjacent studied periods. The biomass of the red algal beach cast (for simplification equated with natural losses) was calculated as follows: daily accumulation of the biomass of wrack during the first or last study period multiplied by the numbers of days extending the study period. The beach casts were considered negligible during the period of ice cover.

# **RESULTS AND DISCUSSION**

### FIELD OBSERVATION

#### Wrack accumulation

Fresh wrack (beach cast macroalgae) were observed at every sampling. The wrack included F. *lumbricalis* at five times (see Appendix 1). Storm casts in August and September were lacking F. *lumbricalis* in connection with unfavorable winds (mostly from S-directions). The accumulations values varied strongly and were highest in April. However, these values reflected the whole period between the break-up of ice (27.02) and the first sampling occasion (21.04). There is a possibility that this measurements included also beach casts from the previous periods since autumn 2001. The wrack of F. *lumbricalis* accumulated slightly or was missing between May and September which resemble an analogous accumulation pattern in Nuevo Gulf in Southern Hemisphere (Piriz *et al.*, 2003).

The formation of wracks varied at wide ranges both by areal biomasses and spatial coverage. The wrack was found as a from of regular and homogenous ridges/mounds to fragmented single blotches. The width of wracks varied between 0.02–30 m and the thickness between 0.002–0.5 m. The average dimensions of the wacks at the sampling points are shown in Appendix 1.

#### Taxonomic composition and biomass

A total of 32 macrophyte biomass samples were analysed. Altogether 14 taxa were recorded throughout study period: 5 species of red, 2 species of brown, 2 species of green algae, 1 species of charophyte, 5 species of flowering plants and 3 macrozoobenthos taxa, respectively (Table 1).

| Species                   | Reco | Recording level |   |  |
|---------------------------|------|-----------------|---|--|
| RHODOPHYTA                |      |                 |   |  |
| <i>Ceramium</i> sp.       | V    | Р               |   |  |
| Coccotylus truncatus      |      | Р               | В |  |
| Furcellaria lumbricalis   | V    | Р               | В |  |
| Polysiphonia fucoides     |      | Р               |   |  |
| Rhodomela confervoides    |      | Р               |   |  |
| РНАЕОРНҮТА                |      |                 |   |  |
| Fucus vesiculosus         | V    | Р               |   |  |
| Pilayella littoralis      |      | Р               |   |  |
| CHLOROPHYTA               |      |                 |   |  |
| Cladophora glomerata      | V    | Р               |   |  |
| Enteromorpha intestinalis |      | Р               |   |  |
| CHAROPHYTA                |      |                 |   |  |
| Chara aspera              | V    | Р               |   |  |
| MAGNOLIOPHYTA             |      |                 |   |  |
| Myriophyllum spicatum     | V    | Р               |   |  |
| Potamogeton sp.           | V    | Р               |   |  |
| Ruppia maritima           |      | Р               |   |  |
| Zostera marina            | V    | Р               |   |  |
| GASTROPODA                |      |                 |   |  |
| <i>Hydrobia</i> sp.       | V    |                 |   |  |
| BIVALVIA                  |      |                 |   |  |
| Mytilus edulis            | V    |                 |   |  |
| Macoma balthica           | V    |                 |   |  |

**Table 1.** List of the species occurred in the beach-cast wracks in 2002.

V - recorded in wracks (by observation)
P - recorded in samples (by laboratory determination)
B - biomass calculated

Most relevant taxonomical components of the wrack samples are given in Fig. 3.



**Fig. 3.** The average biomass of the wracks by floristic component in three sampling sites in 2002.

The proportion of the red algae *F. lumbricalis* and *C. truncatus* in biomass samples varied between 0.3–39.9% and 0.1–29.2%, respectively. The highest percentage of both algae was found in April. The average annual taxonomic composition of the wracks is described in Fig. 4.



**Fig. 4.** Floristic composition of the wrack in the NE coast of Saaremaa Island. Muu = other macrophytes

The red algae *F. lumbricalis* and *C. truncatus* accumulated on shores at a rate of 1601 g dw/m and 668 g dw/m, respectively. The highest amounts of above-mentioned taxa accumulated in the last intersampling period (Fig. 5). As the intersampling periods had no equal duration, the

accumulated wrack was divided by the number of days in each period in order to present the seasonality in the wrack accumulation (see Fig. 6).



Fig. 5. Wrack accumulation of the dominant species at three sites during the study period.



Fig. 6. The daily wrack accumulation of the dominant species at three sites during the study period.

### STATISTICAL MODEL CALCULATION OF BIOMASS LOSSES

The biomasses of *F*. *lumbricalis* and *C*. *truncatus* were positively correlated with wind speed and distance from the red algal community. The models were relatively good (r = 0.59 for *F*. *lumbricalis* and r = 0.51 for *C*. *truncates*; p < 0.05), although the sample size was poor (n =18) and biomass varied in wide ranges at 0–2676.1 g/m.

The loose-lying algae *F. lumbricalis* and *C. truncatus* were cast ashore at the same time periods and rates. Very strong linear correlation between the biomasses of these taxa in the wrack ( $R^2 = 0.85$ ) suggests that the algae responded similarly to hydrodynamic conditions.

According to our statistical model, the red alga *F. lumbricalis* was mainly cast ashore in autumn (see Fig. 7) when N- and NE-winds were prevailing. Relatively large wracks were sporadically recorded in summer. In general those wracks did not consist of *F. Lumbricalis*, but mainly *Zostera marina* (formerly also the dominant wrack taxa (Trei, 1965)), *Fucus vesiculosus* and *Potamogeton pectinatus*.



**Fig. 7.** Natural losses of the red algae through the beach-casts calculated by regression equations in the study period (21.04 to 05.11) separately for both dominant taxa: Cocc tunc – *C. truncatus*: Furc lumb – *F. lumbricalis*.

The wrack formation of *F. lumbricalis* and *C. truncatus* in April-November was estimated at 850 tons and 300 tons in wet weight, respectively (q.v. Fig. 7). During the remaining ice-free

season (85 days) the algal biomass amounted 600 and 200 tons, including the first sampling occasion on the April 21st.

Thus, the total annual losses of red algal community through the storm casts were estimated at 2000–4000 tons in wet weight. Therefore it is commercially advisable to harvest storm casts from the shores of the Väinameri area in addition to traditional harvesting of red algal stocks. The losses were strongly related to the meteorological and hydrological conditions in the area.

The losses due to beach cast made up approximately 2% of annual production of the algal community (Kersen & Martin, 2005; Martin *et al.*, 2006a). The annual losses due to dredging are only about 20% of the losses due to beach cast (Kersen, 2005a). The community loss through beach casts depend mainly on wind velocity and direction, bottom and surface currents, wave activity and ice conditions.

# SUMMARY

Unique, the largest known commercially usable loose-lying red algal community in the Baltic Sea is situated in Kassari Bay, the Väinameri Archipelago Sea. These macroalgae have been harvested since 1960s and continuous monitoring of biological characteristics of the community was carried out to enable sustainable exploitation of these marine living resource.

In this study the losses of the red algal community through beach casts were computed from the estimates in the amounts of marine wrack on the NE shores of Saaremaa Island from April to November 2002. The community loss through beach casts we estimated at 2000–4000 tons wet weight per year and it depended strongly on meteorological and hydrological conditions in the study area. Natural losses made up approximately 2% of annual growth rate of the algal community. The annual dredging contributed only 20% of the losses due to beach cast.

# KOKKUVÕTE

# Kinnitumata punavetikakoosluse biomassi kadu mereheidiste akumulatsiooni tulemusena Väinameres

Priit Kersen

Läänemere suurim teadaolev vabalt lebav töönduslikult tarbitav kinnitumata punavetikakooslus asub Kassari lahes Väinameres. Kõnealuseid vetikavarusid on välja püütud alates 1960ndatest aastatest. Koosluses kasvav punavetikas agarik (*Furcellaria lumbricalis*) on väärtuslik tooraine geelistuvate polüsahhariidide tootmises. Kõnealune punavetikakooslus on maailmas unikaalne leviala ulatuse ja põhja kohal vabalt lebava (kinnitumata) eluvormi poolest. Sarnaseid varusid esineb töönduslikes kogustes veel vaid Kanada rannikuvetes. Mujal Läänemeres on taolised varem esinenud kooslused tugevalt kahjustatud või koguni hävinud.

Käesolevas töös on uuritud punavetikakoosluses esinevaid biomassi kadusid mereheidiste akumulatsiooni kaudu. Looduslikke kadusid on arvutatud kooslusest väljauhtumise kaudu Saaremaa kirderanniku vaatlusjaamade põhjal aprillist novembrini 2002. aastal. Looduslikke kadusid kooslusest väljauhtumise tulemusena hinnati 2000–4000 tonni märgkaalus aastas, mis sõltus oluliselt vaatluspiirkonnas valitsevatest meteoroloogilistest ja hüdroloogilistest tingimustest. Looduslikud kaod moodustavad punavetikakoosluse aastasest produktsioonist hinnanguliselt 2%. Aasta jooksul randa uhutud kinnitumata punavetikakooslusest pärit mereheidised ületavad väljapüütava vetikasegu kogust *ca* 5 korda.

## REFERENCES

- Bird, C.J., Saunders, G.W. & McLachlan, J. 1991. Biology of *Furcellaria lumbricalis* (Hudson) Lamouroux (Rhodophyta: Gigartinales), a commercial carrageenophyte. J. *Appl. Phyc.* 3, 61-81.
- Greenwell, M., Bird, C.J. & McLachlan, J. 1984. Depth-related variation in gross chemical composition of several seaweeds. *Aquatic botany*, **20**, 297-305.
- Kersen, P. 2005. Kassari lahe töönduslikult kasutatav punavetikakooslus: varude hindamine ja prognoos. *Keskkonnatehnika*, **7**, 20–23.
- Kersen, P.(ed) 2005a. *Kassari lahe tööndusliku punavetikavaru hindamine ja modelleerimine*. Leping K-9-1-2005/649. Aruanne. TÜ Eesti mereinstituut, Tallinn, pp. 1-27.
- Kersen, P. & Martin, G. 2005. Preliminary assessment of natural losses in loose-lying red algal community through beach-cast macroalgae accumulation in the area of Kassari Bay (NE Baltic Sea). In *Book of Abstracts. "The Baltic Sea changing ecosystem"*. 5<sup>th</sup> BSSC, Sopot, Poland 20-24 June 2005.
- Leht, M. (ed.). 1999. Eesti taimede määraja. Eesti Loodusfoto. Tartu.
- Mardiste, H. 1970. Väinameri. In *Lääne-Eesti rannikualade loodus* (Kumari, E. ed.), pp. 7– 16. Loodusuurijate Selts ENSV TA juures. Valgus, Tallinn.
- Mardiste, H. 1974. Kassari lahe hüdroloogilisest režiimist. In *Eesti Geograafia Seltsi* aastaraamat 1973 (Merikalju, L. ed.), pp. 91–102. Valgus, Tallinn.
- Martin, G., Paalme, T. & Kukk, H. 1996. Long-term dynamics of the commercially useable *Furcellaria lumbricalis-Coccotylus truncatus* community in Kassari Bay, West Estonian Archipelago, the Baltic Sea. In *Proc. of Polish-Swedish symposium on Baltic Coastal Fisheries: Resources and Management*, pp. 121–129. Sea Fisheries Institute, Gdynia.
- Martin, G., Paalme, T. & Torn, K. 2006. Growth and production rates of the loose-lying and attached forms of the red algae *Furcellaria lumbricalis* and *Coccotylus truncatus* in Kassari Bay, the West Estonian Archipelago Sea. *Hydrobiologia*, **554**, 107–115.
- Martin, G., Paalme, T. & Torn, K. 2006a. Seasonality pattern of biomass accumulation in drifting Furcellaria lumbricalis community in waters of the West Estonian Archipelago, Baltic Sea. J. Appl. Phycol. (in press).
- Nielsen, R., Kristiansen, A., Mathiesen, L. & Mathiesen, H. (eds.). 1995. Distributional index of the benthic macroalgae of the Baltic Sea area. *Acta Bot. Fenn.*, **155**. 1–51.

- Orviku, K. 1993. Contemporary coasts. In *Geology of the Estonian shelf* (Luts, J. & Raukas, A. eds.), pp. 29–39. Estonian Geological Society, Tallinn.
- Piriz, M.L., Eyras, M.C. & Rostagno, C.M. 2003. Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia. J. Appl. Phycol., 15, 1, 67–74.
- StatSoft, Inc. 2006. Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/stathome.html.
- Suursaar, Ü., Otsmann, M., Kullas, T. 2000. Exchange Processes in The Väike Strait (Baltic Sea): Present, Past, Future. *Proc. Estonian Acad. Sci. Biol. Ecol.*, **49**, 3, 235–252.
- Suursaar, Ü., Kullas, T., Otsmann, M. 2001. The Influence of Current and Waves on Ecological Conditions of The Väinameri. *Proc. Estonian Acad. Sci. Biol. Ecol.*, **50**, 4, 231–247.
- Trei, T. 1965. Materjale Väinamere põhjataimestiku ja töönduslike punavetikate kasutamise võimaluste kohta. *Eesti NSV TA Toim. Biol.*, **14**, 2, 180–196.
- Trei, T. 1968. Töönduslike vetikate kasutamisest ja uurimisest. Abiks Kalurile, nr.1(46), 22-24
- Trei, T. 1991. Taimed Läänemere põhjal. Valgus, Tallinn.
- Truus, K., Vaher, M., Kukk, H., Pehk, T., Kollist, A. 1996. Läänemere punavetikate geelistuvad galaktaanid. *Eesti TA Toim. Keemia*, **45**, 15-29.
- Tuvikene, R., Truus, K., Vaher, M., Kalilas, T., Martin, G. & Kersen, P. 2006. Extraction and quantification of hybrid carrageenans from the biomass of the red algae *Furcellaria lumbricalis* and *Coccotylus truncates*. *Proc. Estonian Acad. Sci. Chem.*, 55, 1, 40–53.

#### **Charts:**

EMHI ice charts of Estonia: 27.02.2002.a. & 09.12.2002.a., EMHI Fond.

Soela Strait to Väike Strait [1:100 000]. In Charts of Estonia. Vol. 2. Väinameri (West-Estonian Archipelago): From Osmussaar to Saaremaa. Estonian Maritime Administration. Tallinn, 2001.

# APPENDIXES

## **APPENDIX 1**

|          |            | C. ation      |                             | A                                 | Bioma          | ss sampling      | Biomass of sar             | nple (g, dry):           |                 |
|----------|------------|---------------|-----------------------------|-----------------------------------|----------------|------------------|----------------------------|--------------------------|-----------------|
| Date     | Location   | length<br>(m) | Avg. length<br>of ridge (m) | Avg.<br>thickness of<br>ridge (m) | Repeti<br>tion | Thickness<br>(m) | Furcellaria<br>lumbricalis | Coccotylus<br>truncatus  | Total           |
| 21.04.02 | T1         | 62.3          | 4.6                         | 0.26                              | 1              | 0.13             | 5.56                       | 0                        | 145.04          |
|          |            |               |                             |                                   | 2              | 0.12             | 5.05                       | 0                        | 106.01          |
|          |            |               |                             |                                   | 3              | 0.08             | 2.77                       | 0                        | 107.20          |
|          | T2         | 49.5          | 1.1                         | 0.25                              | 1              | 0.1              | 18.85                      | 0.27                     | 128.51          |
|          |            |               |                             |                                   | 2              | 0.05             | 26.39                      | 0.30                     | 93.40           |
|          |            |               |                             |                                   | 3              | 0.11             | 17.61                      | 0.77                     | 112.47          |
|          | Т3         | 51.4          | 15.1                        | 0.34                              | 1              | 0.1              | 49.85                      | 32.52                    | 121.36          |
|          |            |               |                             |                                   | 2              | 0.09             | 51.25                      | 41.71                    | 124.34          |
|          |            |               |                             |                                   | 3              | 0.12             | 46.91                      | 34.22                    | 124.81          |
| 23.05.02 | T1         | 49            | 15.5                        | 0.02                              | 1              | 0.02             | Furcella                   | <i>ria lumbricalis</i> a | bsent           |
|          |            |               |                             |                                   | 2              | 0.02             | 1.09                       | 0                        | 44.52           |
|          | _          |               |                             |                                   | 3              | 0.02             | 0.97                       | 0                        | 43.04           |
|          | T2         |               | 0.45                        | F<br>0.01                         | urcella        | iria lumbrica    | lis absent                 | 0.55                     | 22.27           |
|          | 13         | 51.4          | 0.45                        | 0.01                              |                | 0.01             | 0.46                       | 0.57                     | 22.37           |
|          |            |               |                             |                                   | 2              | 0.01             | 1.06                       | 0.78                     | 29.59           |
| 21.06.02 | <b>T</b> 1 |               | 0.2                         |                                   | 3              | 0.01             | 0.80                       | 0.50                     | 26.82           |
| 21.06.02 | 11         |               | 0.2                         |                                   |                |                  | 2.84                       | 0.11                     | /0.05           |
|          |            |               |                             |                                   | 2              |                  | 2.55                       | 0 23                     | 08.00<br>201.07 |
|          | т2         | Furcella      | ria lumbrical               | is absont                         |                |                  | 12.11                      | 0.23                     | 201.07          |
|          | 12<br>T3   | Гисени        |                             |                                   | 1              |                  | 0.47                       | 0.09                     | 15 30           |
|          | 15         |               | 0.15                        |                                   | 2              |                  | 0.47                       | 0.05                     | 13.30           |
|          |            |               |                             |                                   | 3              |                  | 0.95                       | 0.00                     | 38.51           |
| 21.07.02 | Т1         | 57.7          | 3.9                         | 0.04                              | 1              | 0.02             | 1.14                       | 0                        | 71.35           |
|          |            | 0,11,         | 0.5                         | 0.01                              | 2              | 0.035            | 0.60                       | Ő                        | 104.73          |
|          |            |               |                             |                                   | 3              | 0.03             | 0.40                       | 0                        | 113.08          |
|          | T2         | 49.5          | 0.125                       | 0.015                             | 1              | 0.015            | 0.04                       | 0                        | 13.36           |
|          |            |               |                             |                                   | 2              | 0.015            | 0.06                       | 0                        | 31.02           |
|          |            |               |                             |                                   | 3              | 0.015            | 0.33                       | 0                        | 86.97           |
|          | Т3         | Furcella      | ria lumbricali              | s absent                          |                |                  |                            |                          |                 |
| 22.08.02 |            |               |                             | Fu                                | rcellar        | ia lumbricalis   | absent                     |                          |                 |
| 17.09.02 |            |               |                             | Fu                                | rcellar        | ia lumbricalis   | absent                     |                          |                 |
| 05.11.02 | T1         | Furcella      | ria lumbricali              | s absent                          |                |                  |                            |                          |                 |
|          | T2         | 67            | 3.2                         | 0.14                              | 1              | 0.25             | 32.44                      | 5.47                     | 206.27          |
|          |            |               |                             |                                   | 2              | 0.13             | 8.33                       | 1.10                     | 86.56           |
|          |            |               |                             |                                   | 3              | 0.02             | 1.78                       | 0.64                     | 13.92           |
|          | Т3         | 66            | 4.3                         | 0.1                               | 1              | 0.05             | 6.58                       | 6.00                     | 31.85           |
|          |            |               |                             |                                   | 2              | 0.06             | 11.74                      | 8.28                     | 40.79           |
|          |            |               |                             |                                   | 3              | 0.08             | 42.75                      | 26.33                    | 140.01          |

### Wrack sampling data at the three study sites in the NE coast of Saaremaa Island

## **APPENDIX 2**

| Period      | *Avg.<br>wind speed<br>(m/s) | Location | Distance from<br>community<br>(m) | Wrack accur<br>(g/m)<br>Furcellaria<br>lumbricalis | mulation<br>Coccotylus<br>truncatus |
|-------------|------------------------------|----------|-----------------------------------|----------------------------------------------------|-------------------------------------|
| 21.04-23.05 | 3.714                        | T1       | 7700                              | 795.8                                              | 0                                   |
|             |                              | T2       | 1000                              | 0                                                  | 0                                   |
|             |                              | Т3       | 300                               | 8.7                                                | 6.9                                 |
| 24.05-21.06 | 3.400                        | T1       | 7700                              | 0                                                  | 0                                   |
|             |                              | T2       | 1000                              | 0                                                  | 0                                   |
|             |                              | Т3       | 300                               | 1.9                                                | 0.5                                 |
| 22.06-21.07 | 3.611                        | T1       | 7700                              | 93.7                                               | 0                                   |
|             |                              | T2       | 1000                              | 0.04                                               | 0                                   |
|             |                              | Т3       | 300                               | 0                                                  | 0                                   |
| 22.07-22.08 | 3.104                        | T1       | 7700                              | 0                                                  | 0                                   |
|             |                              | T2       | 1000                              | 0                                                  | 0                                   |
|             |                              | Т3       | 300                               | 0                                                  | 0                                   |
| 23.08-17.09 | 3.060                        | T1       | 7700                              | 0                                                  | 0                                   |
|             |                              | T2       | 1000                              | 0                                                  | 0                                   |
|             |                              | Т3       | 300                               | 0                                                  | 0                                   |
| 18.09-05.11 | 3.741                        | T1       | 7700                              | 0                                                  | 0                                   |
|             |                              | T2       | 1000                              | 1226.9                                             | 214                                 |
|             |                              | Т3       | 300                               | 2676.1                                             | 1779.1                              |

# Variables used in regression analysis to calculate (extrapolate) wrack biomasses over the whole bay area.

\*in Virtsu station, measured by EMHI

### **APPENDIX 3**

| <i>.</i>    | Wind           | Section | Length       | Distance from | F. lumbricalis | F. lumbricalis | C. truncatus | C. truncatus |
|-------------|----------------|---------|--------------|---------------|----------------|----------------|--------------|--------------|
| Period      | speed          | nr      | (m)          | community     | (g/m)          | (g)            | (g/m)        | (g)          |
| 1           | (m/s)          | 2       | 1            | (m)<br>5      | 6              | 7              | 0            | 0            |
| 1           | 2 3 714        | 3       | 4            | <u> </u>      | 0 282          | /              | 0 20         | 9 06/17      |
| 21.04-23.03 | 3.714          |         | 4800<br>5000 | 10000         | 303            | 1308602        | 20           | 90417        |
|             | 3.714          |         | 7500         | 12000         | 140            | 10/0035        | 0            | 0            |
|             | 3 714          |         | 5400         | 12000         | 140            | 690219         | 0            | 0            |
|             | 3 714          | 5       | 5600         | 9900          | 268            | 1499719        | 0            | 0            |
|             | 3 714          | 6       | 8700         | 7400          | 420            | 3653725        | 53           | 462724       |
|             | 3.714          | 7       | 5500         | 7500          | 414            | 2276351        | 48           | 262185       |
|             | 3.714          | 8       | 5500         | 6000          | 505            | 2778484        | 130          | 717308       |
|             | 3.714          | 9       | 7500         | 3600          | 651            | 4884404        | 263          | 1971141      |
|             | 3.714          | 10      | 6600         | 4000          | 627            | 4137593        | 241          | 1588965      |
|             | 3.714          | 11      | 4800         | 4100          | 621            | 2979943        | 235          | 1129131      |
|             | 3.714          | 12      | 3000         | 2400          | 724            | 2172874        | 329          | 987055       |
|             | 3.714          | 13      | 15400        | 1000          | 810            | 12466327       | 406          | 6256272      |
|             | 3.714          | 14      | 5500         | 2200          | 736            | 4050553        | 340          | 1870285      |
|             | 3.714          | 15      | 9400         | 4500          | 596            | 5606872        | 213          | 2003790      |
|             | 3.714          | 16      | 2300         | 3600          | 651            | 1497884        | 263          | 604483       |
|             | 3.714          | 17      | 3000         | 1200          | 797            | 2391987        | 395          | 1185654      |
|             | 3.714          | 18      | 1800         | 1700          | 767            | 1380414        | 368          | 661743       |
|             | 3.714          | 19      | 4200         | 3300          | 670            | 2811956        | 279          | 1173349      |
|             | 3.714          | 20      | 3000         | 3600          | 651            | 1953762        | 263          | 788457       |
|             | 3.714          | 21      | 6600         | 1000          | 810            | 5342712        | 406          | 2681259      |
|             | 3.714          | 22      | 5100         | 1600          | 773            | 3942213        | 373          | 1903073      |
|             | 3.714          | 23      | 3200         | 4500          | 596            | 1908722        | 213          | 682141       |
|             | 3.714          | 24      | 2600         | 7200          | 432            | 1123567        | 64           | 166972       |
| 24.05-21.06 | 3.400          | 1       | 4800         | 8000          | 0              | 0              | 0            | 0            |
|             | 3.400          | 2       | 5000         | 10000         | 0              | 0              | 0            | 0            |
|             | 3.400          | 3       | 7500         | 12000         | 0              | 0              | 0            | 0            |
|             | 3.400          | 4       | 5400         | 12200         | 0              | 0              | 0            | 0            |
|             | 3.400          | 5       | 5600         | 9900          | 0              | 0              | 0            | 0            |
|             | 3.400          | 6       | 8700         | 7400          | 0              | 0              | 0            | 0            |
|             | 3.400          | 7       | 5500         | 7500          | 0              | 0              | 0            | 0            |
|             | 3.400          | 8       | 5500         | 6000          | 0              | 0              | 0            | 0            |
|             | 3.400          | 9       | 7500         | 3600          | 0              | 0              | 0            | 0            |
|             | 3.400          | 10      | 6600         | 4000          | 0              | 0              | 0            | 0            |
|             | 3.400          |         | 4800         | 4100          | 0              | 0              | 0            | 0            |
|             | 3.400          | 12      | 3000         | 2400          | 0              | 0              | 0            | 0            |
|             | 5.400          | 13      | 15400        | 1000          |                |                | 0            | 0            |
|             | 3.400          | 14      | 0400         | 2200          |                |                | 0            | 0            |
|             | 3.400          | 15      | 9400         | 4500          |                |                | 0            | 0            |
|             | 3.400          | 10      | 2000         | 3000          | 0              |                |              | 0            |
|             | 3.400<br>3.400 | 1/      | 1200         | 1200          | 0              |                |              | 0            |
|             | 3.400          | 10      | 4200         | 3300          |                |                | 0            | 0            |
|             | 5.400          | 17      | ±∠00         | 5500          | 0              | 0              | 0            | 0            |

# Calculated amounts of wrack biomass for every 24 shoreline sections in the area of Kassari Bay

## **APPENDIX 3.** CONTINUED

| 1           | 2              | 3        | 4            | 5     | 6          | 7                  | 8   | 9                |
|-------------|----------------|----------|--------------|-------|------------|--------------------|-----|------------------|
|             | 3.400          | 20       | 3000         | 3600  | 0          | 0                  | 0   | 0                |
|             | 3.400          | 21       | 6600         | 1000  | 0          | 0                  | 0   | 0                |
|             | 3.400          | 22       | 5100         | 1600  | 0          | 0                  | 0   | 0                |
|             | 3.400          | 23       | 3200         | 4500  | 0          | 0                  | 0   | 0                |
|             | 3.400          | 24       | 2600         | 7200  | 0          | 0                  | 0   | 0                |
| 22.06-21.07 | 3.611          | 1        | 4800         | 8000  | 33         | 159544             | 0   | 0                |
|             | 3.611          | 2        | 5000         | 10000 | 0          | 0                  | 0   | 0                |
|             | 3.611          | 3        | 7500         | 12000 | 0          | 0                  | 0   | 0                |
|             | 3.611          | 4        | 5400         | 12200 | 0          | 0                  | 0   | 0                |
|             | 3.611          | 5        | 5600         | 9900  | 0          | 0                  | 0   | 0                |
|             | 3.611          | 6        | 8700         | 7400  | 62         | 542494             | 0   | 0                |
|             | 3.611          | 7        | 5500         | 7500  | 58         | 316265             | 0   | 0                |
|             | 3.611          | 8        | 5500         | 6000  | 130        | 716629             | 0   | 0                |
|             | 3.611          | 9        | 7500         | 3600  | 247        | 1850/42            | 82  | 611566           |
|             | 3.611          | 10       | 6600         | 4000  | 227        | 1500537            | 64  | 420835           |
|             | 3.611          | 11       | 4800         | 4100  | 223        | 1068006            | 59  | 284/26           |
|             | 3.011<br>2.611 | 12       | 3000         | 2400  | 305<br>272 | 915001<br>5742280  | 155 | 404040           |
|             | 5.011<br>2.611 | 13       | 13400        | 2200  | 5/5<br>215 | 3743289<br>1720884 | 197 | 2022437          |
|             | 3.011          | 14       | 9400         | 2200  | 203        | 1/30884            | 144 | 790733<br>300464 |
|             | 3.011          | 15       | 2300         | 3600  | 203        | 567561             | 42  | 187547           |
|             | 3 611          | 10       | 2000         | 1200  | 363        | 1089705            | 188 | 564654           |
|             | 3 611          | 18       | 1800         | 1200  | 339        | 610147             | 166 | 298789           |
|             | 3 611          | 10       | 4200         | 3300  | 261        | 1097562            | 95  | 398482           |
|             | 3 611          | 20       | 3000         | 3600  | 247        | 740297             | 82  | 244626           |
|             | 3 611          | 20       | 6600         | 1000  | 373        | 2461410            | 197 | 1300910          |
|             | 3.611          | 22       | 5100         | 1600  | 344        | 1753500            | 170 | 869237           |
|             | 3.611          | 23       | 3200         | 4500  | 203        | 649887             | 42  | 132924           |
|             | 3.611          | 24       | 2600         | 7200  | 72         | 187360             | 0   | 0                |
| 22.07-22.08 | 3.104          | 1        | 4800         | 8000  | 24         | 113395             | 25  | 122252           |
|             | 3.104          | 2        | 5000         | 10000 | 49         | 243817             | 43  | 213733           |
|             | 3.104          | 3        | 7500         | 12000 | 74         | 554271             | 60  | 450179           |
|             | 3.104          | 4        | 5400         | 12200 | 76         | 412650             | 62  | 333458           |
|             | 3.104          | 5        | 5600         | 9900  | 48         | 266036             | 42  | 234543           |
|             | 3.104          | 6        | 8700         | 7400  | 16         | 139914             | 20  | 176489           |
|             | 3.104          | 7        | 5500         | 7500  | 17         | 95365              | 21  | 116324           |
|             | 3.104          | 8        | 5500         | 6000  | 0          | 0                  | 8   | 45056            |
|             | 3.104          | 9        | 7500         | 3600  | 0          | 0                  | 0   | 0                |
|             | 3.104          | 10       | 6600         | 4000  | 0          | 0                  | 0   | 0                |
|             | 3.104          | 11       | 4800         | 4100  | 0          | 0                  | 0   | 0                |
|             | 3.104          | 12       | 3000         | 2400  | 0          | 0                  | 0   | 0                |
|             | 3.104          | 13       | 15400        | 1000  | 0          | 0                  | 0   | 0                |
|             | 3.104          | 14       | 5500         | 2200  | 0          | 0                  | 0   | 0                |
|             | 3.104          | 15       | 9400         | 4500  |            | 0                  | 0   | 0                |
|             | 5.104<br>2.104 | 10       | 2000         | 3000  |            |                    | 0   | 0                |
|             | 5.104<br>2.104 | 1/       | 1000         | 1200  |            |                    | 0   |                  |
|             | 5.104<br>3.104 | 18       | 1000         | 1/00  |            |                    | 0   |                  |
|             | 3.104<br>3.104 | 19<br>20 | 4200<br>3000 | 3500  |            |                    | 0   | 0                |
|             | 3.104          | 20       | 6600         | 1000  | 0          | 0                  | 0   | 0                |

## **APPENDIX 3.** CONTINUED

| 1           | 2     | 3  | 4     | 5     | 6   | 7        | 8   | 9       |
|-------------|-------|----|-------|-------|-----|----------|-----|---------|
|             | 3.104 | 22 | 5100  | 1600  | 0   | 0        | 0   | 0       |
|             | 3.104 | 23 | 3200  | 4500  | 0   | 0        | 0   | 0       |
|             | 3.104 | 24 | 2600  | 7200  | 14  | 35277    | 19  | 48252   |
| 23.08-17.09 | 3.060 | 1  | 4800  | 8000  | 158 | 759760   | 101 | 483466  |
|             | 3.060 | 2  | 5000  | 10000 | 194 | 970185   | 127 | 636109  |
|             | 3.060 | 3  | 7500  | 12000 | 230 | 1723431  | 154 | 1152912 |
|             | 3.060 | 4  | 5400  | 12200 | 233 | 1260177  | 156 | 844407  |
|             | 3.060 | 5  | 5600  | 9900  | 192 | 1076597  | 126 | 705022  |
|             | 3.060 | 6  | 8700  | 7400  | 148 | 1283748  | 93  | 807118  |
|             | 3.060 | 7  | 5500  | 7500  | 149 | 821397   | 94  | 517534  |
|             | 3.060 | 8  | 5500  | 6000  | 123 | 673913   | 74  | 408223  |
|             | 3.060 | 9  | 7500  | 3600  | 80  | 597189   | 42  | 318170  |
|             | 3.060 | 10 | 6600  | 4000  | 87  | 572721   | 48  | 314969  |
|             | 3.060 | 11 | 4800  | 4100  | 89  | 425105   | 49  | 235428  |
|             | 3.060 | 12 | 3000  | 2400  | 58  | 174519   | 27  | 79568   |
|             | 3.060 | 13 | 15400 | 1000  | 33  | 510439   | 8   | 122783  |
|             | 3.060 | 14 | 5500  | 2200  | 55  | 300287   | 24  | 131300  |
|             | 3.060 | 15 | 9400  | 4500  | 96  | 899715   | 54  | 510866  |
|             | 3.060 | 16 | 2300  | 3600  | 80  | 183138   | 42  | 97572   |
|             | 3.060 | 17 | 3000  | 1200  | 37  | 110162   | 11  | 31869   |
|             | 3.060 | 18 | 1800  | 1700  | 46  | 82187    | 17  | 31046   |
|             | 3.060 | 19 | 4200  | 3300  | 74  | 311901   | 38  | 161480  |
|             | 3.060 | 20 | 3000  | 3600  | 80  | 238876   | 42  | 127268  |
|             | 3.060 | 21 | 6600  | 1000  | 33  | 218760   | 8   | 52621   |
|             | 3.060 | 22 | 5100  | 1600  | 44  | 223745   | 16  | 81207   |
|             | 3.060 | 23 | 3200  | 4500  | 96  | 306286   | 54  | 173912  |
|             | 3.060 | 24 | 2600  | 7200  | 144 | 374353   | 90  | 234318  |
| 17.09-05.11 | 3.741 | 1  | 4800  | 8000  | 496 | 2380548  | 65  | 311032  |
|             | 3.741 | 2  | 5000  | 10000 | 368 | 1838380  | 0   | 0       |
|             | 3.741 | 3  | 7500  | 12000 | 239 | 1795533  | 0   | 0       |
|             | 3.741 | 4  | 5400  | 12200 | 227 | 1223517  | 0   | 0       |
|             | 3.741 | 5  | 5600  | 9900  | 374 | 2094902  | 0   | 0       |
|             | 3.741 | 6  | 8700  | 7400  | 534 | 4649533  | 100 | 866550  |
|             | 3.741 | 7  | 5500  | 7500  | 528 | 2904085  | 94  | 515914  |
|             | 3.741 | 8  | 5500  | 6000  | 624 | 3433205  | 181 | 994485  |
|             | 3.741 | 9  | 7500  | 3600  | 778 | 5836088  | 320 | 2400272 |
|             | 3.741 | 10 | 6600  | 4000  | 752 | 4966439  | 297 | 1959096 |
|             | 3.741 | 11 | 4800  | 4100  | 746 | 3581170  | 291 | 1396953 |
|             | 3.741 | 12 | 3000  | 2400  | 855 | 2565324  | 390 | 1168940 |
|             | 3.741 | 13 | 15400 | 1000  | 945 | 14551431 | 471 | 7251223 |
|             | 3.741 | 14 | 5500  | 2200  | 868 | 4773643  | 401 | 2206866 |
|             | 3.741 | 15 | 9400  | 4500  | 720 | 6771975  | 268 | 2517588 |
|             | 3.741 | 16 | 2300  | 3600  | 778 | 1789734  | 320 | 736083  |
|             | 3.741 | 17 | 3000  | 1200  | 932 | 2796213  | 459 | 1377771 |
|             | 3.741 | 18 | 1800  | 1700  | 900 | 1620005  | 430 | 774455  |
|             | 3.741 | 19 | 4200  | 3300  | 797 | 3349020  | 337 | 1417243 |
|             | 3.741 | 20 | 3000  | 3600  | 778 | 2334435  | 320 | 960109  |
|             | 3.741 | 21 | 6600  | 1000  | 945 | 6236327  | 471 | 3107667 |
|             | 3.741 | 22 | 5100  | 1600  | 906 | 4622725  | 436 | 2223873 |
|             | 3.741 | 23 | 3200  | 4500  | 720 | 2305353  | 268 | 857051  |
|             | 3.741 | 24 | 2600  | 7200  | 547 | 1422866  | 111 | 289134  |