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“With regard to the Malacostraca or crustaceans,…. another 
species is that of the carid, and another is that of the crab, and 
there are many kinds both of carid and of crab. Of carids there 

are the so-called cyphae, or “hunch-backs”, the crangons, or 
squillae, and the little kind, or shrimps, and the little kind do 

not develop into a larger kind.” 
 

Perhaps the first scientific classification of crustaceans,  
made by Aristotle, 350 B.C.E., from his “History of Animals” 
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1. INTRODUCTION 

Marine ecosystems are vast and cover three-fourths of the earth's surface. 
Coastal habitats are particularly important as they alone account for approxi-
mately 30% of all marine biological productivity (Levinton, 1995). These highly 
diverse and productive environments are very important for humans as they 
provide a rich source of food and income and they also maintain other important 
services such as protecting the coastlines from wave action and erosion, and act 
as natural filtering systems through binding organic pollution and nutrients. 
Despite the importance of marine ecosystems, increased human activities have 
caused significant damage to marine biodiversity. Among these threats, 
eutrophication and introduction of exotic species notably jeopardize the future 
sustainability of marine species and ecosystems (e.g. Grosholz et al., 2000; 
Cloern, 2001; Edelist et al., 2013). Thus, understanding the role of marine eco-
systems and the impact we have on them is critical to both conservation and 
sustainable use of marine resources.  

Human activities are often concentrated in coastal regions and adverse human 
impacts are most apparent there. Due to restricted water exchange with the 
ocean, the coastal habitats of enclosed seas are particularly vulnerable to such 
threats. On the other hand, our knowledge of coastal ecosystems mostly originates 
from the true oceanic waters. As the coasts of oceans and enclosed seas are 
expected to function differently, considering the huge contrast in the physical 
environmental conditions, the knowledge and theories derived from open ocean 
often cannot be directly applied to the enclosed seas and this situation calls for 
regional-specific studies (Snoeijs-Leijonmalm and Andrén, 2017). 

The Baltic Sea is an isolated area with only narrow connections to the 
Atlantic species pool. In a geological time scale, the Baltic Sea has had a very 
short lifetime as a brackish water environment following its origin as a fresh-
water lake, and is characterized by common features both of freshwater and 
marine systems (Snoeijs-Leijonmalm and Andrén, 2017). The number of 
species in the Baltic Sea decreases northwards and this has been explained 
primarily by concurrent reduction in salinity (Zettler et al., 2014). As a con-
sequence, the Baltic Sea has also low functional diversity with only small number 
of species performing each ecological function (e.g. suspension feeding, benthic 
primary production) (Ojaveer et al., 2010).  

The Baltic Sea area is under the pressure of various types of anthropogenic 
impacts, with eutrophication and introduction of non-indigenous species con-
sidered as the key factors for the dynamics of its ecosystem (Snoeijs-Leijon-
malm and Andrén, 2017). A notable increase of successful introductions of non-
native species to the Baltic Sea has been observed in the recent decades 
(Leppäkoski and Olenin, 2000). This is very likely to exert a major ecological 
impact on the structure and function of the Baltic Sea ecosystem (Leppäkoski et 
al., 2002a). Many of these non-native species have life-history traits that no 
other native species in the Baltic Sea possess, and thereby they add functional 
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complexity in the system (Ojaveer and Kotta, 2015). Others may share similar 
traits to the native species and under some environmental conditions exclude 
native species through different types of competitive interactions like compe-
tition for food or habitat or direct predation (e.g. Kotta et al., 2010). 

Because of the low levels of biological diversity in the Baltic Sea, and the 
tendency for this system to be naturally regulated by bottom-up processes, top-
down regulation by introduced predators can have particularly strong struc-
turing effects (Flecker and Townsend, 1994; Worm and Myers, 2003), and the 
appearance of an additional effective predator may lead to reorganization of the 
entire food web through many direct and indirect effects (Carpenter et al., 1985). 
For instance, when occurring at high numbers, even small-bodied predators may 
greatly reduce populations of herbivores and thus indirectly intensify blooms of 
filamentous macroalgae in coastal ecosystems (Eriksson et al., 2009; Sieben et 
al., 2011).  

Demersal predatory macroinvertebrates form an important link in coastal 
food webs worldwide. They prey on small benthic invertebrates and at the same 
time they are an important food item for upper trophic levels. In the coastal 
range of the Baltic Sea area macroinvertebrate predatory crustaceans form a 
trophic link to fish, being valuable prey for such commercially important pre-
dators as Atlantic cod (Gadus morhua Linnaeus, 1758) and perch (Perca flu-
viatilis Linnaeus, 1758) (Gruszka and Więcaszek, 2011; Järv et al., 2011). The 
predatory macroinvertebrates also have an important role in regulating the 
dynamics of species on lower trophic levels. Until recently, this group of 
macroinvertebrates consisted of only a few species in the northern Baltic Sea, 
including only two species of native caridean shrimps – Crangon crangon and 
Palaemon adspersus. However, very recently two non-native macroinvertebrate 
predators arrived – the caridean shrimp Palaemon elegans and the crab Rhithro-
panopeus harrisii. Furthermore, another potential invader – Palaemon 
macrodactylus – has recently established in the southern Baltic Sea (González-
Ortegón et al., 2010; Janas and Tutak, 2014). Thus, the non-native macroinver-
tebrate predators are filling up this nearly unoccupied niche. This is particularly 
true in the context of recent establishment of the invasive Palaemon elegans 
that has spread to many parts of the Baltic Sea and formed dense populations 
only within a few years (e.g. Katajisto et al., 2013) and potentially intensified 
competition for food and space with the native P. adspersus (Grabowski, 2006). 
Moreover, in the last decade the invasive crab R. harrisii has colonized the 
northern parts of the Baltic Sea and is rapidly expanding its distribution range 
(Kotta and Ojaveer, 2012; Fowler et al., 2013). The growing number of 
invasions by predatory invertebrates has a potential to strongly modify coastal 
food webs, particularly if such a function (large predator) is absent or 
underrepresented in the recipient communities (Weis, 2011).  

Previous studies have shown that the non-native shrimp can exploit a wide 
array of food by effectively preying on epibenthic amphipods and free 
swimming mysids but also grazing on macroalgae (Möller et al., 1985; Persson 
et al., 2008; Lesutienė et al., 2014). This feeding strategy is in accordance with 
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widely accepted knowledge in invasion ecology that, in case of crustaceans, 
generalist feeding strategy increases the chances of establishment of the non-
indigenous species in new environments (Hänfling et al., 2011). 

R. harrisii has formed self-sustaining populations and thereby added a 
completely new function of large-bodied predator and bioturbator to the local 
coastal ecosystems (Bonsdorff, 2006; Kotta and Ojaveer, 2012) because the 
northern Baltic Sea lacks native crabs. Experimental studies have demonstrated 
that this invasive crab species strongly affects food web dynamics and energy 
pathways, i.e. by removing a large proportion of native invertebrate biomass 
and modifying sediment characteristics and sediment dwelling micro-
invertebrates (Lokko et al., 2015; Jormalainen et al., 2016). In order to assess 
the effects of R. harrisii across all different coastal habitats, the habitat occu-
pancy of the invasive crab species needs to be quantified. As food availability 
and crab density are expected to modulate the habitat occupancy of mud crab, 
such linkages need to be evaluated.  

These introductions have raised a question of whether the native predatory 
crustaceans are absent from a part of the environmental niche space of the 
Baltic Sea, which now is being filled up by non-native species. Alternatively, 
these non-native species may have the capability to outcompete native pre-
datory crustaceans and they thereby may only marginally affect the overall 
functioning of the Baltic coastal ecosystems. Despite the accumulation of 
invasion history data on R. harrisii and P. elegans and other recent immigrants, 
we still lack sufficient knowledge on how these non-native species affect the 
structure and dynamics of the Baltic Sea ecosystems. To gain such knowledge, 
laboratory and field experiments are needed together with high-quality data on 
species distribution (Ojaveer and Kotta, 2015). 

It is important to understand the ecological niches of native and invasive 
species, including their habitat preferences, feeding habits, and reproductive 
strategies (Castro and Huber, 2003). The ecological niche is conventionally 
defined by spatial constraints or functional position of the organism in the 
environment (e.g., Elton, 1927; Grinnell 1928). The most influential ecological 
concept associated with niche is its width along the array of ecological gradients 
(Pianka, 1981). The niche breadth is defined by a large number of environ-
mental factors which ultimately results in trade-off between specialization and 
generalization. An understanding of factors governing the realization of eco-
logical niches may fill gaps in our present knowledge on how the geographic 
range of particular species is formed and at the same time may help to reveal 
mechanisms involved in adaptive responses of the species to environmental 
variation (Polechová and Storch, 2008). If species have similar environmental 
requirements then such a similarity constitutes an overlap of their niches 
(Leibold, 1995) with associated competitive relationships involved. On the other 
hand, the same species may find separation of ecological space over several 
environmental gradients (e.g., Priddis et al., 2009). If native and non-native 
species are taxonomically close then their adaptive characteristics are likely 
similar and the latter may manifest through the similarity in environmental 
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niche space between novel and native species and may translate to better survival 
of non-native species in the recipient environment (e.g. Duncan and Williams, 
2002). However, taxonomic affiliation may not play an important role in 
invasion success of some animal groups (e.g. fishes) as taxonomic similarity 
may be uncoupled with ecological similarity among native and non-native con-
generic species (Ricciardi and Mottiar, 2006). 

The spread of non-native species (sensu Olenin et al., 2010) provides 
valuable empirical support to fundamental ecological theories including relation-
ships between niche space and community assembly rules. Following the recent 
mass invasions, classic views of community saturation have been reconsidered 
(Sax et al., 2007). Although introductions of non-indigenous species may locally 
increase total species richness (Stachowicz and Tilman, 2005), the ecological 
impacts of invaders may be very severe (e.g., Weis, 2011; Dick et al., 2013), 
especially if the established alien species possess novel function to the system. 
Non-native species are expected to alter the established interspecific interactions, 
with strongest potential effects on highly specialized species (Hobbs et al., 2006; 
Clavel et al., 2011). 

The earlier studies indicate that non-native species often have broad environ-
mental tolerance or a wide environmental niche space (Marvier et al., 2004). 
The most successful invaders are generalized in their feeding and have a strong 
capability to persist in a wide range of environmental conditions (Snyder and 
Evans, 2006; Evangelista et al., 2008). Often, non-native species further expand 
their niche breadth after invasion, conceivably due to lack of enemies (predators, 
parasites, competitors) in the recipient environment (Elton, 1958; Mack et al., 
2000; Callaway and Ridenour, 2004). Opposing to this earlier theory, recent 
work from the shallow Baltic region contrastingly showed that non-native 
species may not necessarily expand their niche, but rather remain more 
specialized compared to native congeners (Herkül et al., 2016). This diverse 
evidence base suggests that niche width has not received a sufficient amount of 
attention in studies comparatively exploring environmental requirements of 
taxonomically or functionally close non-native and native species. 
 

Objectives 

The general aims of this thesis were to describe distribution (I–IV), environ-
mental niche space, habitat selection (I–III), and trophic interactions (II–III) of 
predatory macroinvertebrates in the coastal areas of the northern Baltic Sea. The 
specific objectives were to: 
‒ Describe the establishment, range expansion and geographical distribution 

of the non-native shrimp Palaemon elegans in comparison with the native 
shrimp species (IV, I). It was hypothesized that the patterns of geographical 
distribution differ between the non-native and native shrimps.  

‒ Measure habitat preferences and potential environmental niche separation 
between the non-native and native shrimp species (I). It was hypothesized 
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that the patterns of environmental niche space differ between the non-native 
and native shrimps. 

‒ Examine habitat preferences of the non-native Harris mud crab (Rhithro-
panopeus harrisii) in response to population density, prey availability and 
habitat specification (III). It was hypothesized that R. harrisii actively 
choose habitat and the habitat selection is modulated by the crab density and 
food availability. 

‒ Examine trophic interactions of the native and non-native shrimp species 
with the non-native amphipod Gammarus tigrinus (II). Given the taxo-
nomical and morphological similarity between the native P. adspersus and 
non-native P. elegans, it was hypothesized that the feeding activity is similar 
in these species. 
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2. MATERIALS AND METHODS  

2.1. Study area 
The experimental studies for this thesis were carried out at the Estonian Marine 
Institute (I), adjacent to the Kõiguste Marine Biology Laboratory (II–III) and 
the field studies were conducted all along the Estonian coastal sea (I–IV) 
located in the north-eastern Baltic Sea (Figure 1). 
 

 

Coastal waters of Estonia belong to northern part of the Baltic Sea encom-
passing the Gulfs of Finland and Riga, the Baltic Proper and the West Estonian 
Archipelago Sea. The area can be distinguished by various environmental gra-
dients (e.g. salinity, wave exposure) and complex topography, including extensive 
shallows. Salinity can be above 7 PSU in the Baltic Proper, while river inflows 
result in a drop of salinity to nearly zero in the inner parts of some bays (e.g. 
Haapsalu Bay, Matsalu Bay). Areas highly exposed to waves are predominantly 
characterized by the presence of hard substrate, namely limestone or granite 
boulders. Moderately exposed areas have typically mixed sediments of sand, 
gravel, and pebbles. Along the coastline in most sheltered bays, bottom sediments 
are predominantly consisting of fine sand and silt (Martin et al., 2013).  

Benthic macrophytes in the study area are mainly represented by several 
algal and vascular plant species. Seabed habitats on the hard substrate are hosting 
important biotope forming species, such as brown alga Fucus vesiculosus 
Linnaeus, 1753 or the red alga Furcellaria lumbricalis (Hudson) J. V. Lamouroux, 

 

 

Figure 1.Study region, sampling sites and locations of the experimental studies. 
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1813. F. vesiculosus is usually found within the depth range of 1–4 m, while 
F. lumbricalis can be found within much wider depth zone (1–10 m) (Martin et 
al., 2013). Additionally, on the hard bottom habitats, several widespread fila-
mentous green, brown, and red algae are present, such as Ulva intestinalis 
Linnaeus, 1753, Cladophora glomerata (Linnaeus) Kützing, 1843, Battersia 
arctica (Harvey) Draisma, Prud’homme & H.Kawai, 2010, Pilayella littoralis 
(Linnaeus) Kjellman, 1872, Ectocarpus siliculosus (Dillwyn) Lyngbye, 1819, 
Ceramium tenuicorne (Kützing) Waern, 1952, and Polysiphonia spp. (including 
P. fucoides (Hudson) Greville, 1824) (Martin et al., 2013). Vascular plants and 
charophytes are typical inhabitants of sandy and silty sediments of the shallow 
inner bays. Macrobenthic invertebrate communities of shallow areas are mainly 
associated to the plants and dominated mainly by different crustaceans (e.g. 
from orders Amphipoda, Isopoda), insect larvae (specifically in the diluted areas 
e.g. from orders Diptera, Lepidoptera) and brackish water snails (Kotta et al., 
2008a; Kotta et al., 2008b). 

As a consequence of eutrophication, extensive growth of annual filamentous 
algae and formation of drift algal mats are frequent events in coastal areas 
(Kotta et al., 2008c). Episodic hypoxia occurs all around the coastline (Conley 
et al., 2011). 
 
  

2.2. Study species 
Benthic communities in the northern Baltic Sea host four predatory macrofaunal 
species, which are studied in the present thesis: the Harris mud crab (Rhithro-
panopeus harrisii Gould, 1841), the brown shrimp (Crangon crangon Linnaeus, 
1758), the Baltic prawn (Palaemon adspersus Rathke, 1837) and the rockpool 
prawn (Palaemon elegans Rathke, 1837). Caridean shrimps (Crustacea: 
Decapoda) are represented in the study area by two native species (C. crangon 
and P. adspersus) and one non-native species (P. elegans) (Figure 2). 
 

 

Figure 2. Photographs of the studied shrimp species: (1) P. adspersus (2) C. crangon, 
(3) P. elegans (photograph by Ivan Kuprijanov). 
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C. crangon is a small epibenthic predator in the estuaries of northwest Europe, 
typical on unvegetated sandy or silty sediments. The Baltic Sea population of 
C. crangon is considered to belong to the north-eastern Atlantic phylogeo-
graphic group adapted e.g. to the low-salinity conditions (Luttikhuizen et al., 
2008). In contrast to the Palaemon species, C. crangon is known to inhabit 
predominantly bottom habitats with soft sediment where it may demonstrate 
burrowing behaviour while having exclusively carnivore diet, preying on 
passing smaller invertebrates and even young benthic fish from the ambush (Oh 
et al., 2001). 

P. adspersus in the oceanic waters typically inhabits seaweed habitats 
(Berglund, 1980; Manent and Abella-Gutierrez, 2006). Similarly, in the Baltic 
Sea, the main habitats of this shrimp are related to the lush benthic vegetation 
(Lapinska and Szaniawska, 2005). The species is sensitive to high fluctuations 
of salinity, temperature, and oxygen level (Berglund and Bengtsson, 1981). As 
many other species of the Palaemon genus, P. adspersus has specific migration 
pattern as it migrates into the coastal low salinity waters mainly during the 
summer months (Barnes, 1994). 

In its native range, particularly in estuaries and coastal lagoons of Atlantic 
coasts of north-western Europe, P. elegans is characteristic to the areas with 
wave exposed macrophyte covered habitats (Barnes, 1994). In the Baltic Sea the 
shrimp was firstly found in the southern region in 2002 (Janas and Mańkucka, 
2010) and in the northern region in 2011 (Paper IV). Currently, P. elegans is 
present almost in the entire Baltic Sea (Katajisto et al., 2013), but based on 
genetic evidence, the population originates from the Ponto-Caspian or Medi-
terranean region and was probably initially established in the southern Baltic 
Sea due to unintentional anthropogenic introduction (Reuschel et al., 2010). The 
further spread of the species inside the Baltic Sea has probably been natural but 
secondary introductions due to shipping are also possible. In the Baltic Sea, 
P. elegans is able to live under a wide range of environmental conditions; it can 
tolerate broad salinity variation (Janas et al., 2013) and even can survive during 
temporal hypoxia events (Taylor and Spicer, 1987). In the southern Baltic Sea, 
P. elegans seems to have a high overlap in environmental preferences with 
native shrimp species (Łapińska and Szaniawska, 2005, 2006). As a typical 
palaemonid prawn, P. elegans consumes smaller macrofauna species, such as 
amphipods and mysids as well as benthic macroalgae (Persson et al., 2008; 
Janas and Barańska, 2008; Moksnes et al., 2008; Lesutienė et al., 2014). 

The native habitat range of R. harrisii is situated along the north-western 
part of the Atlantic Ocean and extends from Canada to Mexico (Williams, 1984; 
Projecto-Garcia et al., 2009). It is characterized by its small size (carapace 
diameter up to 26 mm), omnivorous feeding, euryhalinity, and high fecundity. 
While adult crabs can withstand fresh water, their larval development occurs at 
salinity values above 0.5 (Turoboyski, 1973; Boyle et al., 2010). R. harrisii was 
first observed in Western Europe already in the 19th century (Wolff, 2005). The 
species was introduced into the southern Baltic Sea by the 1950es (Schubert, 
1936; Demel, 1953) but it was only in the 2000’s when the species spread 
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northward. R. harrisii was first sighted in Lithuania in 2000 (Bacevičius and 
Gasiūnaitė, 2008) and in Estonia and Finland in 2011 (Karhilahti, 2010; Kotta 
and Ojaveer, 2012). In parallel with the range expansion in the Baltic Sea, the 
species also invaded inland water bodies such as the Caspian and Black Seas 
(Zaitsev and Ozturk, 2001). The pelagic larval stage has probably facilitated the 
spread of R. harrisii due to the intake of larvae into ships’ ballast water and the 
intensification of ship traffic during recent decades has probably contributed to 
the new introductions of the invasive crab (Turoboyski, 1973; Gollasch and 
Leppäkoski, 1999; Forward, 2009). R. harrisii is suggested to compete strongly 
with other species e.g. native benthophagous fishes that share similar diets with 
the crab (Zaitsev and Ozturk, 2001). R. harrisii on rocky habitats could drasti-
cally deplete the previously abundant grazer taxa (Jormalainen et al., 2016) and 
likely shift the existing trophic interactions. 
 
 

2.3. Data collection 
2.3.1. Field sampling 

The distribution data of shrimps were compiled from two different sources: 
a.) macrobenthos database of the Estonian Marine Institute, University of Tartu, 
which holds benthic invertebrate surveys mostly carried out by the same 
institution in the frame of the Estonian National monitoring; and b.) by use of 
targeted trap sampling funded by the Environmental Investment Centre of 
Estonia in the framework of the Project ‘‘Identifying an invasive potential of 
alien shrimp in the Estonian coastal waters’’ (I). Crayfish traps were used in the 
targeted field sampling. These traps were deployed in 23 locations in the 
Estonian coastal sea in 2013 (Figure 1). Subsequently in each location, traps 
were deployed at two visually distinguishable habitats according to the presence 
of distinct substrate type (e.g. soft and hard bottom) and macrophyte community 
(a depth range from 0.4 to 1 m, a period of deployment of 24 h). Three replicate 
traps were mounted on each habitat (Figure 3). Coverage of seabed substrate 
types and benthic macrophyte species in a radius of 3 m around traps was 
estimated visually to provide characteristics of the bottom habitats sampled. 

All trapped predatory macrofauna individuals were identified and counted in 
the lab (I, II, III and IV). The body length of adult inter-molt shrimps used in 
the experiments was measured from the tip of the rostrum to the tip of the telson 
at the end of the experiment (I, II). Non-ovigerous adult R. harrisii individuals 
were categorized according to the measured carapace width before entry into 
the experimental mesocosms (III). 
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Figure 3. A cluster of crayfish traps, which were deployed at each sampling location. 
As generally visibility in the Baltic Sea is poor, shrimps rely often on chemoreception 
rather than visual sense organs (photograph by Ivan Kuprijanov). 
 
Data on the occurrence of caridean shrimp species and phytobenthic species 
from years 2011 to 2016 were extracted from the macrobenthos database of the 
Estonian Marine Institute and consisted of (a) quantitative samples (mainly frame 
samples, n=161) and (b) qualitative samples (n=35) derived e.g. from towed 
fishing gear or hand net. Quantitative sampling of benthic organisms used in the 
study was conducted according to HELCOM COMBINE guidelines (HELCOM, 
2015). From the macrobenthos database, only shrimp species presence data 
were incorporated in this study (n=196, Figure 1). 
 
 

2.3.2. Environmental variables  

In paper I, shrimp distribution data was used together with abiotic and biotic 
environmental data on shrimp habitats collected either in situ or acquired from 
georeferenced GIS layers (Table 1). Seabed substrate, macrophyte cover, and 
water depth were recorded during field sampling. Another set of the environ-
mental variables (slope of seabed, wave exposure, wave orbital velocity, near-
bottom water velocity, sea surface temperature and salinity, water transparency, 
near-bottom oxygen concentrations, ice conditions, concentrations of chemical 
components and chlorophyll a) was obtained from different georeferenced raster 
datasets using geographical information system (GIS). Grid size in GIS-based 
data layers varied between 25 and 200 meters. 

Cover of benthic macrophytes was assessed by visual estimation while 
snorkelling or scuba diving around the sampling location. Sediment types and 
macrophytes were identified simultaneously with field sampling. Among the 28 
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macrophyte species (aquatic macroalgae and vascular plants) that were recorded 
during in situ sampling, only the most frequently occurring species (see Paper I 
for details) were included in the following multivariate analysis. The 
information on coverage of the bottom by different hard sediment particles was 
consolidated into one parameter i.e. the proportion of coverage of hard substrate. 
In total, the environmental dataset included 24 variables (Table 1). 
 
Table 1. Variables used in the environmental niche analysis (see Paper I for a more 
complete version of the table). 

Variable  Description of variable Source 

Variables recorded in situ during sampling 

Depth Water depth (m) B 

hard_subst Proportion of coverage of hard substrate (%) B 

Furcellaria  Cover of Furcellaria lumbricalis (%) B 

Fucus Cover of Fucus vesiculosus (%) B 

Polysiphonia Cover of Polysiphonia fucoides (%) B 

Battersia  Cover of Battersia arctica (%) B 

Ceramium  Cover of Ceramium tenuicorne (%) B 

Cladophora Cover of Cladophora glomerata (%) B 

Pilayella/ 
Ectocarpus 

Cover of Pilayella littoralis, Ectocarpus siliculosus (%) B 

Variables obtained from GIS layers 

slope  Slope of seabed (°) A 

chlorophyll Chlorophyll a content of sea surface (ml m–3): based on long-
term (2009–2012) mean of daily satellite remote sensing 

B 

transparency Water transparency estimated as attenuation coefficient (m–1): 
based on long-term (2009–2012) mean of daily satellite remote 
sensing 

B 

Oxygen Near-bottom oxygen concentrations (mg l–1): average over 
2002–2008 

F 

PO4 Concentration of phosphates (µg l–1): long-term (1995–2005) 
mean values 

F 

NO3 Concentration of nitrates (µg l–1): long-term (1995–2005) 
mean values  

F 

ammonium Concentration of ammonium (µg l–1): long-term (1995–2005) 
mean values 

F 

velocity  Near-bottom water velocity (m s–1): long-term mean values at 
seabed 

F 
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Variable  Description of variable Source 

temp_cold Bottom layer water temperature in cold season (November – 
April) (°C): long-term (1995–2005) mean values at seabed 

F 

temp_warm  Bottom layer water temperature in warm season (May – 
October) (°C):) long-term (1995–2005) mean values at seabed 

F 

temp_sat Sea surface temperature based on satellite imagery (°C): 
average over 2009–2010 

B 

salinity  Salinity (PSU): long-term (2002–2008) mean value at seabed 
based on hydrodynamic model corrected with local in situ 
measurements  

B, G 

Wave Wave exposure based on simplified wave model (m2 s–1): based 
on long-term (1997–2006) mean wind speeds and directions 

C 

ice  Average ice thickness in winter (m): average over 2009–2011 D 

Orbspeed Wave orbital velocity (m s–1) E 

Sources:   

A – Bathymetric raster (Estonian Maritime Administration) 

B – Databases of the Estonian Marine Institute 

C – Wave exposure calculations for the Estonian coast (Nikolopoulos and Isæus, 2008) 

D – Finnish Meteorological Institute 

E – SWAN hydrodynamic model (Suursaar et al., 2014) 

F – Hydrographic model developed by the Marine Systems Institute,  
Tallinn University of Technology (Maljutenko and Raudsepp, 2014) 

G – COHERENS ocean circulation model (Bendtsen et al., 2009) 

 
2.3.3. Manipulative experiments 

Habitat occupancy of P. adspersus and P. elegans (I) was studied by meso-
cosm experiments conducted at the laboratory of the Estonian Marine Institute, 
University of Tartu in June 2013. Different soft and hard bottom habitats were 
recreated in an aerated aquarium (1.20 × 1.0 × 0.50 m, Figure 4). The meso-
cosm setup consisted of four habitat patches (60×50 cm each); all the animals 
were collected from Kopli Bay (Gulf of Finland, northern Baltic Sea) and 
acclimatized prior to the start of the trials for at least 24 h. Experimental habitats 
reflected natural coastal conditions of the northern Baltic Sea (Figure 4). 

The following treatments and treatment levels were used:  
– Habitat treatment (levels: soft bottom without vegetation, soft bottom with 

vegetation, hard bottom without vegetation, and hard bottom with vegetation) 
–  Palaemon shrimp treatment (levels: P. elegans, P. adspersus and P. elegans 

+ P. adspersus)  
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The soft bottom habitats consisted of medium sand with or without the vascular 
plants Zannichellia palustris and Stuckenia pectinata. The hard bottom habitats 
consisted of boulders either with or without the filamentous green algae charac-
terized by the mixed community of U. intestinalis and C. glomerata. The cover 
of macrophytes in mesocosms corresponded to that observed in natural habitats 
of shallow coastal areas. Within each experimental habitat, different assemb-
lages of Palaemon shrimps were deployed for 12-h period. 

Radio frequency identification technology was used for locating shrimp 
individuals which were equipped with individually coded passive integrated 
transponder (PIT) tags. Habitat occupancy of each tagged individual was 
recorded with a portable FDX/HDX Reader at intervals of 1 h (I). 
 
Trophic interactions of P. adspersus and P. elegans with G. tigrinus and 
macroalgae (II) were studied in an outdoor aquarium experiment conducted 
adjacent to the Kõiguste Marine Biology Laboratory in August 2012. The 
volume of filtered (mesh size 0.25 mm) sea surface water in experimental 
aquaria was 5 L. Experimental organisms were collected from the northern and 
southern coasts of Saaremaa Island, north-eastern Baltic Sea. The palaemonid 
prawns and gammarid amphipods were collected with a hand net from the depth 
of 0−1 m. Altogether 92 aquaria were used to deploy 23 treatments replicated 
four times (Figure 5). 
 

 

Figure 4. Setup of the experimental mesocosm in Paper I (photograph by Ivan Kuprijanov). 
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The following treatments and treatment levels were used:  
–  Shrimp assemblage treatment (levels: P. elegans, P. adspersus, mixed, none) 
–  Palaemon density treatment (levels: 1 or 2 individuals per aquarium, 

corresponding to 14 and 28 ind m–2) 
–  Macroalgae treatment (levels: vegetated boulders, unvegetated boulders) 
–  Gammarid amphipod treatment (levels: present at 10 ind per aquarium 

corresponding to 140 ind m–2, absent) 
 
During the experiment, filamentous algae on the boulders served simultaneously 
as an object of grazing for crustaceans and as a refuge for gammarid amphipods. 
Visual estimation of amphipod density was performed every 12 h. The experi-
ment was terminated after 48 h when about 50% of gammarids had been con-
sumed in at least one experimental unit. 

At the end of the experiment, algae were removed from their substrate and 
weighed (II). The gammarid amphipods were counted and species were identified 
using light microscopy. Their survival was calculated as the percentage of 
individuals of G. tigrinus and palaemonid shrimps that were alive at the end of 
the experiment. The individual lengths of amphipods and shrimps used in the 
study were assessed applying digital image-processing methods and using 
ImageJ software (Schneider et al., 2012) (I, II). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Detail of the 
outdoor aquarium 
experiment in Paper II 
(photograph by Ivan 
Kuprijanov). 
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Habitat preferences of R. harrisii were studied in an outdoor mesocosm 
experiment conducted adjacent to the Kõiguste Marine Biology Laboratory, the 
north-eastern Baltic Sea, in June 2013. The experiment setup consisted of 12 
aerated aquaria filled with 9 litres of filtered seawater.  
 
The following treatments and treatment levels were used:  
–  Habitat treatment (levels: boulder with F. vesiculosus, boulder with C. glo-

merata, unvegetated boulder and sand). 
–  R. harrisii density treatment (levels: 1, 2 and 4 individuals per aquarium 

corresponded to low, medium and high densities). 
–  Food treatment (levels: no food, presence of slow-moving snails and pre-

sence of mobile gammarids). 
 
The specimens of R. harrisii were brought from Pärnu Bay. R. harrisii were 
placed randomly into the aquaria and acclimatized prior to the start of the trials 
for 24 h. Other experimental material was collected from the coastal habitats 
adjacent to the Kõiguste Marine Biology Laboratory. 

Two runs of the experiment were conducted under similar conditions. Only 
treatments with no food and treatments with non-mobile food were offered in 
the first run. For the second run, mobile food was added to 6 aquaria and all R. 
harrisii specimens were randomly reassigned among the aquaria. 

Radio frequency identification technology was used for locating R. harrisii. 
All individuals were equipped with individually coded passive integrated 
transponder (PIT) tags (Figure 6). Occupancy of each tagged individual was 
recorded with Portable FDX/HDX Reader at an interval of 2 h during the period 
of 72 h. For further details see (III). 

 
Figure 6. RFID-tagged R. harrisii (photograph by Ivan Kuprijanov). 
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2.4. Statistical methods 
The habitat preferences of test animals were expressed as a frequency of 
occurrence of individuals on the studied experimental habitats (I). Two-way 
ANOVA was used to check if the habitat occupancy of a given palaemonid 
species was dependent on the presence or absence of the other caridean species. 
As it was not possible to demonstrate such dependence, data from single and 
two species treatments were pooled for further analyses. Thereafter, another 
two-way ANOVA with Tukey’s HSD post-hoc procedure was used to analyze 
differences in habitat occupancy between habitat treatments and between the P. 
elegans and P. adspersus treatments.  

Nested ANOVA with the density of shrimps nested within the Palaemon 
community factor followed by Post-hoc Bonferroni tests was used to analyse 
the separate and interactive effects of palaemonid shrimps on the macroalgal 
consumption and the survival of amphipod gammarids (II). In an experimental 
study on R. harrisii, three-way ANOVAs followed by Post-hoc Bonferroni tests 
were used to test if the habitat occupancy of the studied R. harrisii depended on 
habitat type, food type and R. harrisii density (III).  

In paper I, canonical correspondence analysis (CCA) was used to visualize 
the occurrence of different shrimp species in relation to multiple environmental 
variables using the statistical software R version 3.2.0 (R Development Core 
Team, 2015) with the package “vegan” (Oksanen et al., 2013). To eliminate 
statistically non-significant environmental variables from CCA ordination, we 
previously tested multivariate relationships between environmental variables 
and shrimp species occurrence using a permutation test. The analysis of outlying 
mean index (OMI) was used to assess habitat specialization and separation of 
habitat niches between the shrimp species (I). OMI quantifies the distance 
between the mean habitat conditions used by the species (niche centre) and the 
mean habitat conditions of the sampling area (Dolédec et al., 2000). A permu-
tation test was used to calculate the statistical significance of the values of OMI 
of each shrimp species. Hence the highest habitat specialization is indicated 
through the highest value of the OMI index of a species. The package “ade4” 
(Dray and Dufour, 2007) was used to perform OMI analysis in the statistical 
software R 3.2.0 (R Development Core Team, 2015). The environmental niche 
space of shrimp species was visualized by drawing a convex hull over the points 
where a given species was present. 
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3. RESULTS AND DISCUSSION 

3.1. Spatial distribution of caridean shrimps 
The frequent occurrences of the studied shrimps in a broad range of coastal 
habitats indicate a wide distribution of these decapod crustaceans along the 
Estonian coastal sea (I, IV). We found that the non-native P. elegans inhabits 
almost the whole geographical extent of the study area (out of 239 sampling sites, 
108 were occupied exclusively by P. elegans), whereas native species occurred 
within a smaller range (P. adspersus were found in 67 and C. crangon in 36 sites) 
(Figure 7). In addition, despite their recent arrival (Katajisto et al., 2013), the 
P. elegans were found at the lowest salinities (from 1.6 PSU, according to in situ 
measurements during targeted field sampling), contrary to native species that did 
not occur in places where water salinity was lower than 2.9 PSU.  

 
Arrival, initial colonization and secondary spread of alien crustaceans are gene-
rally facilitated by high dispersal capacity (Hänfling et al., 2011). Larval drift 
has probably facilitated the rapid spread of P. elegans because an increased 
occurrence of Palaemon larvae (not feasible to identify to species level) was 
observed in planktonic samples after the introduction of the P. elegans (A. Põllu-
mäe personal communication). The adults’ ability to move actively may have 

 

 
Figure 7. Distribution of caridean shrimps in the studied area. Coexistence in the same 
sampling point is indicated by sectors of different colours. The leader next to the circle 
shows position of the sampling site. (Redrawn from Paper I). 
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further facilitated the range expansion of P. elegans. According to our extensive 
field sampling, the P. elegans has established in areas along the Gulf of Finland, 
that were previously devoid of any native caridean shrimps, suggesting environ-
mental niche separation between the studied shrimp species (Figure 7). This was 
further evidenced by the relatively low proportion of cohabitation of P. elegans 
and P. adspersus compared to single-species occurrences. 

Our results indicate that primary factors leading to niche differentiation 
between the native and non-native shrimps include physical properties of the 
areas. In the eastern Gulf of Finland, specifically Narva Bay and in the north-
eastern Gulf of Riga (i.e. inner part of Pärnu Bay), only the P. elegans were 
present at quantities more than 5 individuals per m2. These sub-basins have 
distinctly low salinity, elevated levels of nutrients, and naturally low water 
transparency (Kotta et al., 2008b; Pitkänen et al., 2008). This is in agreement 
with previous studies, that suggest salinity to be behind the observed spatial 
distribution of caridean shrimps (González-Ortegón et al., 2006) as higher 
occurrences of P. elegans in more diluted habitats are supported by the weaker 
osmoregulatory capacity of the native P. adspersus compared to that of the non-
native P. elegans (Janas et al., 2013).  

While the congeners P. adspersus and P. elegans mostly occurred sympatri-
cally in a regional scale, they relatively seldom (only at 22 sites) co-occurred at 
local scales (I). The shrimp species were found on seabed habitats with mixed 
bottoms of soft and hard substrates where coverages of hard sediment types 
varied between 25 and 100% (I, IV). C. crangon primarily occurred in habitats 
that had a higher proportion of soft sediments (more than 50%) compared to 
habitats where Palaemon species were found (I).  

These results also suggest that the spatial distribution of species is determined 
by dispersal limitation, suitable habitat availability and habitat complexity. On 
sympatric habitats, the studied shrimp species may stay separated on the scale 
of microhabitats (I). Here, the habitat complexity at very small spatial scales 
enables co-existence of native and alien species within a guild, as this separation 
relieves competition induced by using same habitat resources (Hänfling et al., 
2011). Data on distribution of shrimps along Estonian coastal waters covering a 
temporal extent from the first records of the non-native P. elegans to the 
colonization of the full coastal range of the region indicate the essential point of 
establishment, while wide geographic distribution refers to subsequent expansion 
of the population (I, IV). This information might help to prioritize sites as a hot-
spots for new introductions of invasive species (due to higher occurrences of 
P. elegans e.g. at ports of Tallinn and Pärnu) and distinguish geographic areas 
where impact on native ecosystem might be strongest (according to lower 
occurrences of native counterparts e.g. Narva bay). 

Dedicated seasonal field studies are needed in future to clarify the seasonal 
component influencing the pattern of distribution as seasonal migration of 
palaemonid shrimps between shallow and deep water have been reported from 
the southern Baltic and the Black Sea areas (Łapińska and Szaniawska, 2005; 
Bilgin et al., 2009). 
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3.2. Habitat occupancy and preferences  
of predatory macrofauna  

3.2.1. Habitat occupancy of Palaemon shrimps 

According to our field sampling in the northern Baltic Sea region, the palaemonid 
shrimps co-occurred on stony habitats rather than on soft bottom habitats (I). 
The experimental study, in turn, showed that palaemonid species preferred 
distinct habitats (Figure 8). In the laboratory experiment, the non-native 
P. elegans was found mostly on hard bottom habitats with vegetation (average 
occupancy 51%), while the native P. adspersus was almost uniformly observed 
on vegetated soft (36%) and hard (29%) substrates, and hard substrates without 
vegetation (32%) (Figure 4) (I). Both species were rarely observed on 
unvegetated soft bottom habitat (average occupancy 4%) and they showed 
similar rates of occupancy within vegetated soft bottom habitat. P. elegans 
stayed within unvegetated hard bottom habitat less frequently than P. adspersus 
(17 and 32%, respectively). 
 

 
Our laboratory experiment with the non-native P. elegans and native P. adspersus 
demonstrated substantial differences in microhabitat selection (I). This result 
corresponds to previous field studies in the North Atlantic coast and the fjords 
of southern Sweden suggesting that the coexistence of palaemonid shrimps 
relies on differences in microhabitat selection (Berglund, 1980; Barnes, 1994) 
along with dissimilarity in body size (Berglund, 1980). In accordance with our 
earlier field observations (IV), the P. elegans had a high affinity towards hard 
bottom habitats covered with annual filamentous algae. The prevalence of such 
habitats in the shallow waters of the northern Baltic Sea has potentially 
supported the rapid spread of P. elegans in the study area. Compared to the 

 

 
 
Figure 8. Average (±SE) habitat occupancy of palaemonid shrimps within the studied 
habitats.  
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native P. adspersus, the non-native P. elegans was more frequently observed 
among filamentous algae. This may be related to the larger body size and lower 
mobility of the native species (Berglund, 1980) that might hamper foraging in 
the dense mats of filamentous algae. 

The results derived from the habitat occupancy experiment support the idea 
that a coexistence of the two congeneric shrimp species in shallow hetero-
geneous habitats probably does not affect the species-specific habitat occupancy 
patterns (Berglund, 1982), as even over short time periods the niche partitioning 
may be expected at small spatial scales. The analysis of field sampling data 
covering a broad range of environmental niche space provided further evidence 
on the environmental niche separation between the studied shrimp species (I). 

 
 

3.2.2. Realized niches and habitat specialisation  
of the caridean shrimps 

Our field data showed that compared to the native shrimps, the invasive 
P. elegans more often occurred in low saline eutrophicated shallow water areas 
characterized by hard substrates covered with filamentous algae (I). Contrastingly, 
the native P. adspersus was mostly restricted to areas with higher water transpa-
rency dominated by the perennial brown alga F. vesiculosus. In contrast to the 
Palaemon species, C. crangon were found at greater depths and higher wave 
exposure (Figure 9) (I).  
 

 
Figure 9. CCA ordination visualizing the occurrence of studied shrimp species in 
relation to environmental variables derived from in situ measurements (i.e. seabed 
substrate, macrophyte cover, water depth) or acquired from georeferenced GIS layers. 
(Redrawn from Paper I). 
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Results from both the field sampling and the habitat occupancy experiment 
indicated that hard substrates overgrown with filamentous algae are favourable 
habitats for P. elegans and this is probably because such habitats simultaneously 
provide the shrimps food and shelter from predators. The observed divergence 
in the habitat preferences among the studied caridean shrimps also indicates that 
the P. elegans will not likely become the dominant shrimp species all over the 
coastal habitats of the northern Baltic region already because it was absent in 
deeper wave exposed areas. 

According to the analysis of habitat specialization (OMI values) (I), C. 
crangon was more specialized than the palaemonid shrimp species, among 
which the non-native P. elegans was slightly more specialized than its native 
counterpart (Figure 10). The latter result is different to the findings from the 
coastal fjords of western Baltic Sea where P. elegans had a broader ecological 
niche than P. adspersus (Berglund, 1980). The centre of the realized niche of 
the P. elegans was substantially closer to P. adspersus than to C. crangon, but 
did not coincide with that of P. adspersus (Figure 10). A partial overlap of the 
environmental niche space of the studied species indicates their potential 
interspecific competition. However, a broader environmental niche space of the 
native palaemonid shrimp enables the species to partly escape from this 
interference competition. Field observations are often limited in spatial and 
temporal coverage, i.e. they represent only episodic measurements of variables 
or species distribution patterns, and may not reflect the full range of variability. 
In the southern Baltic Sea the habitat occupancy of the studied shrimps varies 
along seasons (Łapińska and Szaniawska, 2005) and such migrations are likely 
taking place in the Northern Baltic Sea. Thus, a degree of the habitat overlap 
and the strength of competitive interactions among the studied shrimps may 
have a seasonal component. Targeted seasonal field studies are needed to clarify 
the seasonal patterns of habitat use.  

The width of the realized niche of an introduced species in its new 
geographic range is defined by the available niche space and biotic interactions 
with other species (Polechová and Storch, 2008). Our study demonstrated that 
the invasive P. elegans currently occupied marginally narrower niche (indicated 
by higher OMI value) than its native congener, P. adspersus, which was not 
determined by an inferiority of the invasive species but rather by its true 
preference to more eutrophicated and diluted environments. Since the intro-
duction of P. elegans is a very recent event, its further range expansion and niche 
widening together with intensified interspecific competition among the 
palaemonid shrimps is expected in the future. The continuation of targeted 
sampling of shrimps in future is needed in order to answer the question of 
potential widening of the niche of the P. elegans. 
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Figure 10. Environmental niche characteristics of the studied shrimp species based on 
PCA ordination of environmental variables in sampling sites. Dots represent sampling 
sites (n=239), polygons represent the realized niches, and letters on the plot mark the 
centres of niche spaces of the shrimps. The OMI identified axes that are positioned in 
the multidimensional space according to optimal separation between studied species as 
a function of environmental parameters. The values of OMI are shown in square 
brackets. OMI evaluate the distance between the mean habitat conditions used by the 
species (niche centre) and the mean habitat conditions of the sampling area. The highest 
value of the OMI index of a species indicates highest habitat specialization. (Redrawn 
from Paper I). 
 
As compared to P. adspersus, P. elegans is thought to be more euryoecious in 
its native distribution range and can better withstand extreme conditions such as 
low salinity, hypoxia, and thermal stress (e.g. Taylor and Spicer, 1987; Janas et 
al., 2013). Nevertheless, a presence of vacant habitats in its introduced range (in 
sensu Ricciardi et al., 2013) together with a low genetic diversity of introduced 
population(s) (genetic bottleneck; Lee, 2002), may promote specialization of the 
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P. elegans in a recipient environment compared to its native environment. The 
findings of this study and the recent invasion events by the amphipod 
G. tigrinus (Herkül et al., 2016) suggest that wider environmental tolerance does 
not necessarily result in a broader realized environmental niche space of a non-
native species in a recipient environment. 

Furthermore, recent introductions of round goby (Neogobius melanostomus) 
and mud crab (Rhithropanopeus harrisii) into the northern Baltic Sea have a 
potential to drastically change benthic communities (Lokko et al., 2015; Nurkse 
et al., 2016; Jormalainen et al., 2016) with expected effects on native and invasive 
shrimp species. Due to dietary overlap between the palaemonid shrimps and the 
invasive crab, stronger predation pressure through the cascading effects of the 
predation of shrimps on the gammarid amphipods are expected in the presence 
of the R. harrisii. Moreover, N. melanostomus and R. harrisii are large generalist 
predators that likely compete with shrimps but likewise exert predation pressure 
on them.  

The differential environmental preferences of native and non-indigenous 
species (I) are in accordance with the theory that states a separation of native 
species and successful invaders in environmental niche space in a recipient 
ecosystem (Stachowicz and Tilman, 2005). P. adspersus had an affinity towards 
temporally stable habitats inhabited by perennial brown algae whereas the non-
native P. elegans preferred habitats dominated by annual opportunistic fila-
mentous algae. Differences in the habitat preference of the studied shrimps have 
a potential link to differences in their life strategies. P. adspersus is known to 
have typical features of K-strategist (e.g. larger body size and lower mobility) 
while P. elegans exhibits life-history traits linked to r-selection strategy (e.g. 
rapid growth, early maturity) (Berglund, 1980). In addition to the differences in 
habitat preferences and life strategies, the invasive P. elegans can better 
withstand different stresses such as low salinity and low-oxygen environments 
compared to the native species (Taylor and Spicer, 1987; Janas et al., 2013). 
Generally, the invasiveness of an alien species within a recipient ecosystem is 
directly linked to its life-history traits, and often related to elevated tolerance to 
stresses as well as possessing some traits of adaptability (e.g. elevated fecundity) 
(McMahon, 2002; Jänes et al., 2015). Consequently, the P. elegans is able to 
colonize habitats formerly lacking native shrimps and therefore adding a novel 
function i.e. epibenthic predation to some coastal habitats of the Baltic Sea (e.g. 
in the Gulf of Finland).  

The changes enforced by the invasive species are not taking place in isolation 
of other elements of global change. Since the 1980’s several significant shifts in 
Baltic Sea ecosystems have been detected including changes in summer plankton 
community structure (Suikkanen et al., 2013) and phytoplankton dynamics 
(Kahru et al., 2016), and increasing hypoxia in coastal areas (Conley et al., 2011). 
The future environment of the Baltic Sea is expected to be more diluted resulting 
in a significant areal shrinkage of species of marine origin such as the perennial 
brown alga Fucus vesiculosus (Jonne Kotta, unpublished data). The loss of areal 
cover of such important habitat forming species may have implications on 
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environmental niches and the species realized niche space. It is not unlikely that 
the local species being less adapted to the new conditions will disappear and be 
replaced by invasive species that will form novel communities. Although the 
potential cascading effects of climate change on native and invasive species are 
yet to be fully understood (Clavel et al., 2011), the P. elegans is expected to be 
a “winner” as it prefers lower salinity, elevated eutrophication, and ephemeral 
algal communities (I). Shifts in community composition in the Baltic Sea may 
also result from trophic cascades caused by the introduction of other species 
from warmer regions (Leppäkoski et al., 2002b). Therefore the ongoing increase 
in sea water temperature in the Baltic region (Belkin, 2009) might further 
intensify stresses caused by the introduced species (Occhipinti-Ambrogi, 2007) 
ultimately resulting in a complete reorganization of community composition 
and associated ecological functions. 
 

3.2.3. Habitat occupancy of R. harrisii 

There were statistically significant effects of habitat type and interactive effects 
of prey and crab density on the habitat occupancy of R. harrisii (III) (Figure 11). 
The R. harrisii preferred hard substrate over soft substrates. The R. harrisii 
were found mostly burrowed under the boulders covered by F. vesiculosus 
(average occupancy 52%), while significantly lower occupancy was observed in 
sand (20%), boulders covered with C. glomerata (15%), and boulders without 
vegetation (13%) (Figure 11). 
 

 
Figure 11. Average (±SE) habitat occupancy by R. harrisii in experimentally studied 
habitats at three levels of crab densities were used: low (1 individual per aquaria), 
medium (2 individuals per aquaria) and high (4 individuals per aquaria) and three types 
of food conditions (no food, presence of slow-moving snails and presence of mobile 
gammarid amphipods). 
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Crab density and presence of food interactively influenced the habitat choice of 
R. harrisii (Figure 11) (III). Habitat occupancy at low and medium crab densities 
was significantly affected by the availability of food. Namely, non-migratory 
food in the case of medium crab density significantly decreased the crab pre-
sence within boulders covered with the perennial F. vesiculosus, while presence 
of the same food type significantly increased the habitat occupancy within 
another habitat, boulders with filamentous C. glomerata. The availability of food 
had no effect on the habitat occupancy of crabs in the high crab density treat-
ment. The only difference was a more uniform distribution of crabs among 
different habitats at high compared to low density treatments (Figure 11). In 
addition, the experiment showed that increased aggression between R. harrisii 
individuals increased their occupancy of otherwise less favourable habitats: in 
the presence of competition (in case of medium and high crab densities) less 
favored habitats (others than boulders covered with F. vesiculosus) were mostly 
inhabited by smaller individuals (III).  

A possible explanation of the observed pattern of habitat occupancy of 
R. harrisii is that thin and flat blades of perennial brown algae thallus provides a 
substrate and shelter not only for associated epiphytes and herbivores (e.g. 
Wallentinus, 1991) but likewise for the predatory crab. Moreover, the fucoid 
alga may provide the R. harrisii a lush feeding ground as previously described 
for nectobenthic fish (Aneer, 1985). Large thalli of F. vesiculosus likely offer 
the R. harrisii with year-round and stable habitat in the coastal ecosystem of the 
Baltic Sea. As compared to other perennial macroalgal species, the F. vesiculosus 
habitat hosts a high number of macroalgal and invertebrates species, and in 
addition, benthic biomass is highest there (Kautsky et al., 1992; Wikström and 
Kautsky, 2007). Similarly, in the Finnish Archipelago Sea, the habitat choice of 
R. harrisii seems to be determined by physical habitat properties (i.e. shelter) 
rather than food availability (Riipinen et al., 2017). In addition to the currently 
invaded two contrasting habitats, silty bottoms and hard bottom habitats over-
grown with the brown alga F. vesiculosus, it is likely that critically important 
meadows of eelgrass (Zostera marina) are invaded next in concurrent with the 
further range expansion of R. harrisii (Gagnon and Boström, 2016). 
 

3.3. Effects of P. elegans on trophic interactions 
The feeding experiment (II) showed that the grazing of palaemonid shrimps on 
the filamentous C. glomerata was negligible. Similarly, P. adspersus and P. ele-
gans did not impact macroalgal biomass through the removal of the meso-
herbivore G. tigrinus. Both the invasive and native shrimps did significantly 
reduce the survival of gammarids in all treatments (Figure 12) (II). The invasive 
P. elegans and the native P. adspersus had no significant difference in their 
feeding activity and the presence of macrophytes did not influence how much 
amphipods were preyed. Furthermore, neither did shrimp density affect the 
predation of shrimps on gammarid amphipods. Thus, the experiment indicated 
that the ecological roles of P. elegans and P. adspersus are similar.  
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Although the palaemonid prawns can potentially feed on both macroalgae and 
benthic invertebrates (e.g. Janas and Barańska, 2008; Moksnes et al., 2008; 
Persson et al., 2008), the experiments showed that the effect of the P. elegans 
does not likely cascade down to algal biomass. As both studied palaemonid 
shrimps exerted a strong predatory pressure on their gammarid prey, it is likely 
that the invasion of the P. elegans does not necessarily lead to the rearrangement 
of established trophic interactions in the coastal sea, unless P. elegans becomes 
established in areas where P. adspersus is not presented or has low densities. 

Caridean shrimps, similarly to other decapod crustaceans, are able to effec-
tively use their chemical senses in detection and localization of food-related 
compounds (Solari et al., 2017). However, P. elegans has been shown to be more 
effective than P. adspersus at finding immobile food items (Berglund, 1980). 
According to our experiment, both studied species consumed mobile prey with 
equal efficiency (II). Nonetheless, in treatments where two different shrimps 
co-occurred, the consumption of amphipods by any palaemonid species might 
have been impacted by the presence of its congeneric neighbour, but this effect 
was not controlled in the context of the current experiment.  

According to Janas and Barańska (2008), various filamentous algae (e.g. 
Cladophora spp.) are important components in the diet of the naturalized 
P. elegans in the southern Baltic Sea. Animal components were also present 
together with algal food, but the proportions of animal and algal food differed 
strongly between areas and seasons. Our work suggested that plants have minor 
importance in the diet of the shrimps, but this evidence might be related to the 
temporal limitation of our experimental study as well as lack of invertebrate 
food in habitats studied by Janas and Barańska (2008). Long-term and seaso-
nally repeated experiments and measurements of isotopic signatures of food 
may elucidate the dietary composition and its seasonal variability in various 
coastal habitats of the Baltic Sea.  

 
Figure 12. Effect of vegetation (factor levels: absent, present), Palaemon community 
(factor levels: no shrimp, P. elegans, P. adspersus, mixed community of P. elegans and 
P. adspersus) and Palaemon density (factor levels: 0, 1 (Density 1), 2 (Density 2) indi-
viduals per aquarium) on survival of gammarids. Vertical bars denote SE of the mean 
(n=4). 
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A lack of the effect of shrimp density on gammarid mortality suggests that 
shrimps were food limited in the experimental conditions. Under natural con-
ditions the densities of gammarids are expected to be occasionally much higher 
(up to three times) than used in the current study (e.g. sensu Reisalu et al., 2016). 
Moreover, this study also suggested that if a shoal of prawns with the density 
within the studied (i.e. natural) range remained at a place for about two days, 
then local gammarid population would be reduced by approximately 50% and 
the palaemonids might have to change their feeding grounds to meet their 
nutritional demands.  

Although the non-native amphipod G. tigrinus was heavily consumed by 
shrimps, it has high potential to overcome the high mortality owing to its higher 
reproduction rate, shorter development time, and longer reproduction period 
compared to native gammarids (Kotta et al., 2010; Sareyka et al., 2011; Jänes et 
al., 2015). Thus, it is likely that P. elegans populations may have ultimately 
stronger impacts on native gammarids than G. tigrinus. Moreover, the invasive 
gammarid may potentially assist the establishment of other non-native predators 
(the invasional “meltdown” hypothesis by Simberloff and Von Holle, 1999) by 
improving the food base and contributing as a more accessible food source 
compared to the native prey species. This indirect effect may also shape the 
trophic pathways in the invaded assemblages as a coexistence with the oppor-
tunistic non-native predatory shrimp eventually helps the invasive G. tigrinus to 
outcompete more vulnerable native gammarid amphipods. 

To summarize, the trophic experiment suggests that both palaemonid prawns 
act as important predators in the coastal ecosystem of the Baltic Sea. Although 
the predatory function of the non-native P. elegans largely overlaps with that of 
the native P. adspersus, it could introduce a new ecological function of epi-
benthic invertebrate predator when colonizing areas that were previously devoid 
of shrimps (I). 
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CONCLUSIONS 

1. The current thesis updates the distribution data of the caridean shrimp 
species and shows that, despite of a short invasion history, the non-native P. 
elegans inhabits almost the full extent of Estonian coastal sea and has the 
largest geographic range among all caridean shrimps in the study area (I, IV). 
Only very rarely, the native P. adspersus and the invasive P. elegans co-
occurred (I). The P. elegans spread into the most diluted and eutrophicated 
coastal sea areas, where no native shrimps occur, and thereby intensifies pre-
dation pressure on mesoherbivores in such habitats.  

 
2. Under field conditions, the native and invasive shrimp species had different 

habitat associations along the studied biotic and abiotic environmental gra-
dients (I). P. elegans was associated with habitats characterized by lower 
salinity and higher concentrations of nutrients compared to the habitats used 
by P. adspersus. Key phytobenthic species were among the most significant 
variables behind the habitat segregation of the studied shrimps. Among the 
studied caridean shrimps, C. crangon was the most specialized species. Under 
experimental conditions, the non-native species was mostly associated with 
vegetated hard bottom habitats whereas the native shrimp was almost 
uniformly observed on all studied habitat types (I).  

 
3. The experimental study on trophic interactions (II) showed that palaemonid 

shrimps can efficiently prey on the invasive amphipod Gammarus tigrinus. 
The two Palaemon species had no difference in their feeding rates and the 
presence of macrophytes did not affect shrimp predation on amphipods. Thus, 
P. adspersus and P. elegans seem to perform similar roles in the coastal food 
webs of the Baltic Sea. However, P. elegans may rearrange trophic inter-
actions in areas previously lacking any native shrimp species e.g. in the eastern 
Gulf of Finland. 

 
4. The invasive crab R. harrisii selected hard bottom habitats covered by F. 

vesiculosus over other habitat types (III). There was an interactive effect 
between the presence of prey and crab population density with prey 
availability increasing the crab’s affinity towards less favoured habitats when 
the population density of crabs was low or medium.  
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SUMMARY 

Decapod crustaceans are an important component of coastal food webs as they 
prey on small benthic invertebrates and at the same time they are an important 
food item for upper trophic levels. This group of invertebrates includes many 
important alien invasive species. The Baltic Sea with its low taxonomic and 
functional diversity is particularly vulnerable to be impacted by such invasions. 
Recent years have witnessed the establishment of several invasive decapod 
crustaceans into the Baltic Sea area. These broad-scale “natural experiments" 
provide valuable empirical evidence on the roles of different species and 
functions in the Baltic Sea ecosystem. The relative simplicity of the Baltic Sea 
ecosystem allows the testing of many ecological theories e.g. fundamental 
“Darwin’s naturalization” or “pre-adaptation hypothesis”. The former theory 
emphasizes the importance of biotic resistance to establishment of non-native 
species (through negative interspecific interactions), whereas the letter 
emphasizes the significance of the invader’s tolerance to local abiotic factors for 
invasion success. Furthermore, by quantifying species-specific separation along 
environmental gradients of niche space and determining the degree of 
specialization for habitats between native and invasive species we may further 
advance the niche partitioning theory considering spatial concept of the niche 
while the “invasional meltdown hypotheses” and top-down regulation mech-
anisms may be addressed by studying interspecific interactions and trophic 
relationships. If we know the roles and impacts of invasive decapod species, 
management actions can be planned to oppose the threats that may accompany 
the introductions. 

In this thesis, four species of predatory macrofauna where chosen as research 
objects: the native shrimps Crangon crangon and Palaemon adspersus, the non-
native shrimp Palaemon elegans and the crab Rhithropanopeus harrisii. 
Although the invasion histories of these non-native shrimp and crab species are 
well documented, prior to this thesis their environmental preferences and 
complex trophic interactions with native species within northern Baltic were 
under-examined. Moreover, there was no comprehensive information on the 
distribution of caridean shrimps along different environmental gradients in the 
studied region.  

We provided information on the first observations of the non-native 
P.elegans in the Estonian coastal sea. The samples of shrimp species were 
mostly collected in the frame of regular macrobenthos monitoring. In addition, 
the monitoring data were supplemented by a semi-quantitative sampling with a 
benthic hand-net, dredge and by diver’s visual observations. The frequent 
occurrences of the studied shrimps showed that all studied shrimp species were 
widely distributed in the Estonian coastal sea. The spatial distribution of the 
non-native P. elegans was wider than that of native species. The presence of the 
P. elegans in the most diluted and eutrophicated coastal sea areas suggests the 
introduction of a new ecological function in such areas. 
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The updated distribution data of the shrimp species was used together with 
relevant environmental variables to describe environmental niches and to 
quantify habitat segregation of the non-native and native shrimps. Radio fre-
quency positioning technology was used in a laboratory experiment to 
investigate patterns of habitat occupancy between sympatric P. adspersus and 
P. elegans. The results revealed significant differences in habitat preferences 
between native and non-native shrimp species. P. elegans was associated with 
habitats characterized by lower salinity and higher concentrations of nutrients, 
relative to P. adspersus. The cover of key phytobenthic species were among the 
most influential habitat variables behind the habitat segregation of the studied 
shrimps. 

Among the studied shrimps, C. crangon was the most specialized. The non-
native P. elegans showed slightly higher habitat specialization compared to the 
native P. adspersus. The habitat differentiation suggests that P. adspersus can at 
least partly escape from potential interference competition with P. elegans in 
areas that are not optimal for P. elegans. The study also suggested that higher 
tolerance to environmental stress promotes invasiveness of the shrimp species. 

Then we analysed the feeding behaviour and activity of palaemonid prawns 
with the filamentous macroalga C. glomerata and the alien gammarid amphipod 
G. tigrinus. The two Palaemon species had no difference in their feeding rates, 
and the presence of macrophytes did not modulate shrimp predation on 
amphipods. Thus, P. adspersus and P. elegans seem to perform a similar role in 
the coastal food webs of the Baltic Sea. However, P. elegans may rearrange 
trophic interactions in areas previously lacking any native shrimp species. 

Habitat occupancy of R. harrisii in response to its population density, prey 
availability and habitat specification was studied using a mesocosm experiment. 
Radio frequency positioning technology enabled us to evaluate habitat occupancy 
patterns between different crab specimens as they were equipped with indi-
vidually coded tags. The experiment indicated a significant difference of habitat 
occupancy among investigated habitats. The experiment also indicated that the 
habitat occupancy was influenced by food levels and R. harrisii density. The 
study suggests that fucoid algal habitat offers the R. harrisii a favourable year-
round and stable habitat, where the diverse native community may become 
heavily impacted by this novel generalist feeder. 

To sum up, the Baltic Sea is undergoing dramatic changes involving intro-
duction of multiple invasive species, often decapod crustacean. Recent decapod 
invaders are situated at various trophic levels, some of which levels are 
completely novel to the system, e.g. the infaunal predator R. harrisii. The estab-
lishment of just one of such decapod species has a potential to reorganize 
coastal food webs and cause regime shifts in the Baltic Sea environments. 
However, due to the generic lack of knowledge on the roles of most invasive 
species and many confounding stressors (e.g. climate change, pollution) such 
shifts are increasingly difficult to demonstrate. This thesis showed that the 
successful establishment and rapid expansion of non-native predatory inver-
tebrates within the Northern Baltic can introduce new ecological functions or 
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considerably strengthen already existed ones. Impacts of novel species on 
coastal ecosystems are difficult to predict as such impacts are very context 
specific and tipping points are controlled by local and large scale variability of 
environmental background conditions and anthropogenic stressors. This has 
important implications to sustainable water management in the Baltic Sea basin 
as the outcome of a given invasion may range from no shift, to dramatic reor-
ganization of communities and impacts to ecosystem services and socio-
economic benefits. The results suggested that ecological state and heterogeneity 
of habitats affected the potential for spread of native or invasive species 
variably. If the invasive species were often associated with eutrophicated 
habitats characterized by the excessive growth of filamentous algae then the 
native species were often found within habitats characterised by better water 
quality and the prevalence of perennial species. Thus, future studies should 
reveal such habitat features (e.g. filamentous algal blooms) that can facilitate 
the establishment and spread of invasive species. This knowledge should be 
then used to suggest opposing or compensatory measures (e.g. the reduction of 
nutrient loads) to control the further spread of invasive species. Commercial 
harvesting should also be considered as an additional measure to decrease the 
negative impacts of non-native species as some of these recent invasive species 
may have potential commercial interest and be used in fisheries. 
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SUMMARY IN ESTONIAN 

Kohalike ja invasiivsete röövtoiduliste suurselgrootute 
elupaigakasutus ja toitumissuhted Läänemere põhjaosas 

Rannikumere ökosüsteemid on kõrge produktiivsusega ning pakuvad inimühis-
konnale olulist toiduressurssi. Rannikualade kõrge asustustiheduse ja ranniku-
mere intensiivse kasutuse tõttu on rannikumere ökosüsteemid väga tugeva 
inimtegevuse surve all. Läänemere puhul on kõige olulisemateks inimsurveteks 
eutrofeerumine ja võõrliikide sissetoomine. Kuna Läänemeri on geoloogiliselt 
arengult noor, ookeanist isoleeritud ja madala soolsusega, siis on liigiline 
mitmekesisus meres väga madal. Madala liigilise mitmekesisuse foonil on võõr-
liikide levik Läänemeres eriti olulise mõjuga, kuna võõrliigid võivad lisada öko-
loogilisi funktsioone, mida kohalikud liigid ei täida. Näiteks puudus Läänemere 
põhjaosas alles hiljuti suuremõõtmeline selgrootu kiskja-bioturbaator, kes suudab 
purustada limuste kodasid. 

Röövtoidulised suurselgrootud, peamiselt vähilaadsed, on rannikumere toitu-
misvõrgustikes oluliseks lüliks põhjaelustiku ja kalade vahel ning ühtlasi nad 
reguleerivad väiksemate selgrootute arvukust. Läänemere põhjaosas elas selle 
rühma esindajaid seni ainult kaks liiki – läänemere krevett (Palaemon adspersus) 
ja põhjamere garneel (Crangon crangon). Hiljuti lisandusid neile kohalikele 
liikidele kaks võõrliiki – elegantne krevett (Palaemon elegans) ja rändkrabi 
(Rhithropanopeus harrisii). Rändkrabiga lisandus Läänemere põhjaosa öko-
süsteemi täiesti uus suuremõõtmelise kiskja-bioturbaatori funktsioon. Uute kisk-
jate lisandumine tõstatas küsimuse nende sobitumisest keskkonnaruumi ja toidu-
võrgustikesse. Võõrliikide lisandumine Läänemere põhjaosa madala liigilise 
mitmekesisuse tingimustes annab suurepärase võimaluse uurida liikide rolli 
kooslustes ja testida ökoloogilisi teooriaid kohalike ja võõrliikide nišširuumi 
eristumise kohta. Võõrliikide „looduslikud eksperimendid“ Läänemeres võimal-
davad testida teooriaid nagu näiteks Darwin’i naturaliseerumise hüpotees, mille 
kohaselt võõrliikide naturaliseerumine on raskendatud, kui piirkonnas esinevad 
võõrliigi sugulasliigid. Kvantifitseerides kohalike ja võõrliikide levikut kesk-
konnagradientidel ja nende spetsialiseerumise taset on võimalik edasi viia niššide 
jaotamise teooriat ning invasiivsete liikide vastastikuse soodustamise hüpoteesi 
(invasional meltdown) ja ülalt-alla kontrolli mehhanisme on võimalik kontrollida 
uurides liikidevahelisi troofilisi suhteid. Lisaks olulistele baasteaduslikele tead-
mistele võimaldavad sellised uuringud saada teavet võõrliikidega seotud mõju-
dest ja ohtudest seoses mereressursside haldamisega, keskkonnaseisundiga ja 
looduskaitseliste tegevustega. Selgrootute kiskjate roll Läänemere põhjaosa 
rannikumere ökosüsteemis oli seni vähe uuritud ning uute liikide ja ökoloogi-
liste funktsioonide lisandumise mõju täiesti teadmata. Nende teadmiste hanki-
miseks uuriti röövtoiduliste selgrootute levikut (I–IV), elupaiganišše (I–III) ja 
toitumissuhteid (II, III). Doktoritöö konkreetsed eesmärgid olid: 
‒ invasiivse kreveti P. elegans leviku kirjeldamine ja võrdlus kohalike kreveti-

liikidega (IV, I); 
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‒ krevetiliikide elupaigaeelistuste ja võimalike keskkonnaniššide eristumise 
väljaselgitamine (I); 

‒ rändkrabi elupaigavaliku uurimine sõltuvalt krabide asustustihedusest ja 
toitumistingimusest (III); 

‒ kohalike ja võõrliigist krevettide ja võõrliigist kirpvähi Gammarus tigrinus 
toitumissuhete uurimine (II). 

 
Uuringutes kasutati olemasolevaid põhjaelustiku seire andmeid, spetsiaalselt 
uuritavatele liikidele suunatud proovide kogumist loodusest ja laborikatseid. 
Krevettide levikuinfo pärines peamiselt põhjataimestiku seire proovidest, aga 
lisaks ka semi-kvantitatiivsetest või kvalitatiivsetest kahvapüükidest, põhjatraalist 
ja sukeldujate visuaalsetest vaatlustest. Lisaks sellele teostati eraldi väliuuring, 
kus proove koguti vähimõrdadega. Levikuandmestikule toetudes uuriti kreveti-
liikide levikut erinevate keskkonnagradientide suhtes ja selleks kasutati suurt 
hulka georefereeritud topograafilisi, füüsikalisi, keemilisi ja bioloogilisi kesk-
konnaandmeid. Täiendavalt teostati elupaigavaliku laborikatsed, kus kasutati 
loomade raadiomärgistamist ja -jälgimist. Andmetöötluseks kasutati peamiselt 
dispersioonanalüüsi, mitmemõõtmelisi ordineerimisi ja võimendatud regres-
sioonipuude meetodit. 

Kõik kolm krevetiliiki olid Eesti merealal laialt levinud. Võõrliigi levik oli 
ulatuslikum kui kohalike liikide levik ulatudes ka väga madala soolsusega ja 
kõrge toitelisusega merelahtedesse, kus kohalikud krevetiliigid puudusid. 
P. elegans’i tungimine varem krevettide poolt asustamata piirkondadesse tähen-
dab ka uue ökoloogilise funktsiooni sissetoomist ja kiskluse mõju intensiivis-
tumist nendel aladel. 

Kohalike ja võõrliigist krevettide vahel esines elupaikade eristumine uuritud 
keskkonnagradientidel. Võõrliik oli kohalike krevettidega võrreldes enam 
seotud elupaikadega, millele on iseloomulik madal soolsus, madal vee läbipaist-
vus ja kõrgemad toitainete kontsentratsioonid. Lisaks eristusid uuritud krevetid 
elupaiku moodustavate põhjataimestiku liikide alusel. Kõige kitsama elu-
paigakasutusega oli põhjamere garneel. Palaemon liikidest oli võõrliigi 
P. elegans spetsialiseerumise tase mõnevõrra kõrgem kui kohalikul liigil. Elu-
paikade eristumine Palaemon liikide vahel võib olla seotud sellega, et võõrliik 
on asustanud elupaigad, mis ei ole kohalikule liigile parima sobivusega või ka et 
võõrliik on kohaliku liigi teatud elupaikadest välja tõrjunud. 

Krevettide toitumisuuringud näitasid, et uuritud Palaemon liikide toitumis-
intensiivsus ja toidu kooseis ei erinenud ja taimestiku olemasolu ei mõjutanud 
krevettide kisklussurvet kirpvähkidele. Seega on kohaliku ja võõrkreveti roll 
rannikumere toiduvõrkudes ilmselt sarnane, ent võõrliik võib troofilisi suhteid 
ümber kujundada piirkondades, kus kohalikud krevetid puuduvad. 

Rändkrabi elupaigavalikut ja selle seoseid krabide asustustihedusega, saak-
loomade olemasoluga ja elupaiga omadustega uuriti mesokosmidega labori-
katses. Krabi eelistas põisadruga (Fucus vesiculosus) elupaika. Elupaigavalikut 
mõjutasid saakloomade olemasolu ja krabide asustustihedus. Tulemused viitavad 
sellele, et põisadruga elupaik pakub krabile aastaringset stabiilset elupaika ja 
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põisadruga seotud mitmekesine põhjakooslus võib saada seetõttu krabidest olu-
liselt mõjutatud. 

Läänemere ökosüsteemid on muutumas seoses võõrliikide levikuga. Mitmed 
uued võõrliigid kuuluvad kümnejalaliste vähkide hulka, nagu ka hiljuti Lääne-
mere põhjaossa jõudnud rändkrabi, kes esindab kooslustes seni puudunud suure-
mõõtmelise kiskja-bioturbaatori funktsiooni. Ka juba ühe uut funktsiooni omava 
liigi sissetung võib oluliselt ümberkujundada rannikumere toiduvõrkusid ja 
põhjustada režiiminihkeid. Paraku on uute liikide mõjude kohta teadmisi vähe ja 
mitmete teiste samaaegsete survete (nt kliimamuutused, reostus) koosmõjus on 
ka muutuste empiiriline demonstreerimine üha keerulisem. Doktoritöö tule-
mused näitasid, et võõrliikidest selgrootute kiskjate saabumine ja kiire levila 
laienemine Läänemere põhjaosas toovad kaasa täiesti uute ökoloogiliste funkt-
sioonide lisandumise või juba varem regionaalselt esinenud funktsioonide leviku 
piirkondadesse, kus see varem puudus. Uute liikide mõju ennustamine on 
keeruline, sest mõjud on kontekstispetsiifilised ja muutuste murdepunktid on 
seotud nii lokaalsete kui suureskaalaliste keskkonnatingimustega ja inimtekke-
liste survetega. Doktoritöö tulemused näitasid, et elupaikade iseloom ja seisund 
mõjutab kohalike ja võõrliikide levikumustreid ning sellel on olulised järelmid 
Läänemere piirkonna veemajanduse kujundamisele – võõrliigid olid kohalikest 
enam seotud eutrofeerunud elupaikade tunnustega (nt lühiealiste niitjate veti-
kate vohamine). Tulevikus tehtavad tööd peavad seega üheaegselt arvestama nii 
loodusliku elupaikade muutlikkusega, liikide bioloogiliste omadustega kui ka 
suureskaalaliste inimtekkeliste survetega. Saadud teadmisi tuleb seejärel 
kasutada võõrliikidega seotud negatiivsete mõjude vähendamise meetmete välja-
töötamisel, sealhulgas toitainete koormuste vähendamine ja võõrliikide töön-
duslik püük. 
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