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1. INTRODUCTION 

1.1. General background 
Today one of the greatest global environmental issues is ocean acidification, 
which is directly related to our carbon dioxide (CO2) emissions. Ocean acidi-
fication is defined as a reduction in the global ocean pH, caused by the uptake 
of carbon dioxide from the atmosphere (Calderia and Wickett, 2003). Since the 
beginning of the Industrial Revolution in the 18th century, atmospheric carbon 
dioxide concentration has increased by ~40%, mainly due to the burning of 
fossil fuels and cement production emissions (Raven et al., 2005). If high CO2 
emissions continue, this trend will increase the CO2 atmospheric concentration 
to ~950 ppm (Van Vuuren et al., 2011) together with the global average tem-
perature increase of 3.2–5.4 °C by 2100 (IPCC, 2013). Since the Industrial 
Revolution the surface of the ocean has absorbed approximately 30% of anthro-
pogenic CO2 released from the atmosphere, resulting in a 26% increase in the 
acidity of the ocean (Sabine et al., 2004). However, this ocean sink buffers the 
effect of climate change in terrestrial systems by reducing anthropogenic CO2 
from the atmosphere. In fact, since the Industrial Revolution, the average surface 
ocean pH has already decreased by ~0.1 unit and if global emissions of CO2 
continue to increase, the pH may decrease an additional 0.3–0.4 units by 2100 
(IPCC, 2013). The projected future changes in the pH are not uniform across the 
globe.  

The worst-case future CO2 emission scenario predicts that the surface water 
pH in the central Baltic Sea may decrease approximately 0.4 units by the year 
2100. The low CO2 emission scenario predicts a decrease in the surface water 
pH of about 0.26 units (Omstedt et al., 2012; Schneider et al., 2015). Moreover, 
the brackish water of the Baltic Sea is sensitive to increasing acidity due to its 
low carbonate buffering capacity compared to seawater, particularly in its nort-
hern parts (Omsted et al., 2015). However, there is high alkalinity in the Gulf of 
Riga, caused by the input of large amounts of fresh water through the river 
runoff (Hjalmarsson et al., 2008). This makes an important change and is 
equivalent to an increase in the pH of 0.02–0.03 units (Schneider et al., 2015). 
In addition, in relatively low water temperature conditions characteristic of the 
Baltic Sea, CO2 dissolves faster compared to warm tropical waters. 

The Baltic Sea is an enclosed, brackish water sea area under a strong influ-
ence of human activities in the northern part of Europe (Fiestel et al., 2008). The 
main threat in the Baltic Sea is coastal eutrophication caused by over-
enrichment with nutrients, first of all nitrogen and phosphorus (Pawlak et al., 
2009). The complex of environmental factors characterised by wide regional 
and seasonal variations makes this water body a very unique and fragile 
environment. The biota in the Baltic Sea region consists of a mixture of marine, 
limnic and brackish water species (Schiewer, 2008). The carbonate system in 
the Baltic Sea region is affected mostly by the atmosphere–seawater gas 
exchange, river runoff, bottom sediments, eutrophication, hydrological processes 
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(upwelling), biological processes and coastal–offshore gradient (Kulinski and 
Pempkowiak, 2012). In the coastal areas the carbonate chemistry of seawater is 
also strongly affected by algal photosynthesis (increasing pH) and respiration 
(lowering pH) (Middelboe and Hansen, 2007). The pH and partial pressure of 
carbon dioxide (pCO2) show a remarkable amplitude of natural variability 
between different regions as well as a high variability on all time scales (diurnal 
and seasonal), especially under summer conditions (Omstedt et al., 2010; 
Wesslander et al., 2010). 

In the shallow coastal Baltic Sea macrophytes have adapted to live in a 
highly variable environment. Compared to oceanic conditions, in the Baltic Sea 
macrophytes must cope with harsh environmental conditions such as low 
salinity (Larsen and Sand-Jensen, 2006), high epiphytic load (Kersen et al., 
2013), high nutrient concentration and poor underwater light climate (Pawlak et 
al., 2009). Salinity is the main factor that controls the biomass and distribution 
of macrophytes all over the Baltic Sea region (Kautsky, 1988). Due to the low 
salinity in the north-eastern part of the Baltic Sea, the majority of the macro-
phytes grow at their lowest salinity limit, which may cause physiological stress 
for their communities. Water temperature is an important factor regulating 
macrophytes growth and physiological performance processes (Lobban and 
Harrison, 1994). In the Baltic Sea region, the water temperature is mainly 
associated with seasonal and annual variations (Feistel et al., 2008). Light 
availability controls macrophytes carbon fixation and therefore the potential 
productivity of coastal ecosystems where they grow (Kirk, 2011). The vertical 
distribution of macrophytes is mainly related to light availability, which is 
strongly linked to depth and water turbidity in the Baltic Sea (Kiirikki, 1996; 
Martin, 2000). In the Baltic Sea, the major threat to the macrophyte 
communities is the coastal eutrophication caused by the high nutrient supply 
(Cloern, 2001). Higher nutrient concentrations in seawater may cause changes 
in the community structure, first of all the replacement of slowly growing 
perennial algae with fast growing filamentous algal species (Worm and Lotze, 
2006). In addition, in the north-eastern Baltic Sea the environmental conditions 
such as light availability and salinity are considerably different as compared to 
the conditions of the western Baltic Sea and therefore factors driving the 
dynamics of macrophyte populations are expected to be different. 

Any changes in the seawater pH also cause shifts in carbonate chemistry. 
When CO2 dissolves in seawater, it reacts with H2O causing the equilibrium to 
shift the concentration of the bicarbonate ion HCO3

– and an increase of carbonic 
acid (H2CO3) while the concentration of carbonate ions (CO3

2–) decreases. The 
relative proportions of the forms of inorganic carbon depend on the pH, salinity 
and water temperature. In seawater of pH ~ 8 and salinity 35 PSU, about 91% 
of the inorganic carbon occurs as HCO3

–, approximately 8% as CO3
2– and only 

1% as CO2 (Raven et al., 2005). The majority of marine macrophytes utilise the 
C3 photosynthetic pathway without any carbon concentrating mechanisms 
(CCMs) (Koch et al., 2015). Based on the external carbon source for photo-
synthesis there are three different types among macroalgae: HCO3

– using 
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macroalgae, only CO2 using macroalgae and both CO2 and HCO3
– using mac-

roalgae. The vast majority of the investigated macrophytes use mainly HCO3
– as 

the external Ci source for photosynthesis (Sand-Jensen and Gordon, 1984; Koch 
et al., 2013; Beer et al., 2014). Thus, the response of macrpohytes to elevated 
pCO2 will depend also on which carbon source they use for photosynthesis and 
on the mechanisms of carbon acquisition (Van den Berg et al., 2002; Hepburn et 
al., 2011; Koch et al., 2013). The varying responses of different macroalgal 
species to elevated CO2 could be due to their different strategies for carbon use 
for photosynthesis, which vary significantly between macroalgal species, as 
well as to the habitat (Ray et al., 2003; Hepburn et al., 2011; Moulin et al., 
2011; Koch et al., 2013).  

Fundamental changes in the carbonate chemistry of seawater due to the rapid 
ocean acidification are predicted to cause extensive changes in marine eco-
systems worldwide (Doney et al., 2009). The vast majority of studies have 
focused on the responses of calcifying organisms to the negative effects of ocean 
acidification, particularly corals, molluscs and calcareous micro- and macroalgae. 
Studies have shown mostly a decrease in calcification and enhanced dissolution 
in benthic calcifying macroalgae to elevated pCO2. Therefore, a future increase 
in seawater acidity has been predicted to influence negatively calcifying macro-
algae (e.g. Hall-Spencer et al., 2008; Jokiel et al., 2008; Kuffner et al., 2008; 
Martin and Gattuso, 2009; Baggini et al., 2014). For example, Kuffner et al. 
(2008) found a negative effect of acidification on the recruitment rate and 
growth of crustose coralline algae. On the other hand, studies conducted with 
non-calcifying macroalgae have overwhelmingly shown a positive response to 
CO2 enrichment; for example, resulting in enhanced photosynthesis (Porzio et 
al., 2011) and increased growth rate (Gao et al., 1991; Kübler et al., 1999; Eklöf 
et al., 2012). Thus, it has been suggested that future increasing CO2 concentra-
tions in seawater may enhance the competitive advantages of non-calcifying 
over calcifying macroalgal species (Kuffner et al., 2008; Hofmann et al., 2012; 
Koch et al., 2013). Beside non-calcifying macroalgae, seagrass meadows are 
expected to benefit under a future high CO2 world. Studies have shown enhanced 
photosynthesis (Thom, 1996; Invers et al., 2001), increased growth rate, 
increased reproduction and below-ground biomass of seagrasses under elevated 
pCO2 (Zimmerman et al., 1997; Palacios and Zimmerman, 2007). However, 
several studies have reported no effect of elevated pCO2 on the photosynthesis 
(Cox et al., 2016) and growth of seagrasses under long-term CO2 enrichment 
(Campbell and Fourqurean, 2013). 

The effects of the increasing CO2 concentrations on macrophytes in the 
brackish water Baltic Sea are still poorly studied. In recent years, there has been 
an increasing amount of literature on the effect of CO2 enrichment on macro-
phytes in brackish water conditions. Eklöf et al. (2012) investigated the seagrass 
Zostera marina and macroalgae from the Kattegat region of the Baltic and 
found substantial effects of warming and small positive effects of acidification 
on their growth. In mesocosm experiments, Graiff et al. (2015) investigated in 
all seasons the combined effects of elevated pCO2 and temperature on the 
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macroalga Fucus vesiculosus in the conditions of the western Baltic Sea. They 
found that elevated pCO2 in combination with the warming effect increases the 
growth of F. vesiculosus. A recent study from the same area focused on the single 
and combined effects of CO2 and warming on early life-stage F. vesiculosus 
during four seasons (Al-Janabi et al., 2016). Acidification was detected to have 
much weaker effects on F. vesiculosus compared to warming.  

Ocean acidification is a progressing research area. The assessment of the 
impact of increasing CO2 concentrations in seawater on marine organisms can 
be affected by different methodological approaches. Our present understanding 
of the sensitivity of marine organisms to ocean acidification is based largely on 
short-term laboratory experiments under constant environmental conditions. In 
recent years, numerous long-term ocean acidification studies have been conducted 
near natural CO2 vents (e.g. Hall-Spencer et al., 2008; Fabricius et al., 2011; 
Porzio et al., 2011; Russell et al., 2013; Takahashi et al., 2015). It should be 
noted that these studies are observational, and it is not always clear in these 
studies whether responses are driven only by changes in the CO2 concentration. 
In situ perturbation experiments are one of the key approaches used to study the 
biological response to ocean acidification. These studies are manipulative and 
based on comparisons between elevated pCO2 treatments and control conditions 
(Barry et al., 2010). Additionally, one of the important questions is which 
techniques to use for manipulating seawater carbonate chemistry. The majority of 
biological experiments have used CO2 bubbling or the additions of acid 
(commonly HCl⁄NaOH). However, it should be noted that these two techniques 
affect carbonate chemistry differently. The CO2 bubbling technique is more 
recommended because it is arguably much closer to actual ocean acidification 
(Hurd et al., 2009; Gattuso et al., 2010). 

 
 

1.2. Objectives and hypotheses 
The main aim of this doctoral thesis was to describe the possible effect of 
elevated water pCO2 on the net photosynthesis of macrophyte species that live 
in a highly variable pH environment in the brackish north-eastern Baltic Sea. 
 
The majority of ocean acidification experiments have been conducted in labo-
ratory under constant environmental conditions. In the shallow coastal Baltic 
Sea the environmental factors are characterised by large amplitude of natural 
variability caused by seasonality and rapid changes in meteorological con-
ditions. However, the biological responses to elevated pCO2 in combination 
with these short-term natural fluctuations of environmental factors have 
received relatively little attention. To fill in this gap the current study focused on 
following the effect of elevated pCO2 on photosynthesis of macrophytes in a 
natural light and temperature environment.  
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The second aim of this thesis was therefore to determine whether elevated pCO2 
in combination with short-term natural fluctuations of environmental factors 
exerts an interactive effect on the net photosynthesis of macrophytes. 
 
Based on the above the specific hypotheses were as follows: (1) the net photo-
synthesis of macrophytes would benefit from elevated pCO2 levels, (2) the 
response would vary between species and (3) the response would vary depending 
on surrounding environmental conditions.  
 
These hypotheses were tested in situ in short-term mesocosm experiments 
during four different experimental periods in 2011–2014 under summer con-
ditions in the north-eastern Baltic Sea. 
 
In addition we aimed to describe the short-term variability of pCO2 and pH in a 
natural shallow water macroalgal habitat.  
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2. MATERIAL AND METHODS 

2.1. Studied macrophyte species 
In this thesis, macroalgae, charophytes and seagrass are collectively referred to 
as marine macrophytes (macro-autotrophs), which live in a highly variable pH 
environment in shallow coastal waters of the brackish Baltic Sea. This study 
focuses on three macroalgal species: Ulva intestinalis Linnaeus, a fast-growing 
green alga (I); Fucus vesiculosus Linnaeus, a perennial brown alga with a slow 
metabolism (I); and Furcellaria lumbricalis (Hudson) J.V. Lamouroux, a 
perennial red alga (I, III), three different soft bottom species of charophytes: 
Chara aspera Willd, C. horrida Wahlst and C. tomentosa L. (II) and the 
seagrass Zostera marina Linnaeus (IV). These macrophyte species play key 
roles in the shallow benthic ecosystem in the north-eastern part of the Baltic 
Sea. They have different requirements for substrates and their communities 
grow on different habitats throughout the Estonian coastal waters. Benthic 
macroalgae are dominant components of habitats in rocky shores throughout the 
Baltic Sea (Kontula and Haldin, 2012). Charophytes are submerged, rooted 
plants with well-developed complex thalli and they prefer shallow sheltered 
soft-bottom (especially mud) habitats (Kovtun-Kante, 2015). The seagrass 
Z. marina is one of the most common macrophytes on the species-poor sandy 
bottoms and is regarded as a key species of this habitat (Boström et al., 2014). 
Macrophyte communities are important habitats for diverse epiflora and fauna, 
providing food for coastal food webs, shelter and nursery areas for several 
species of macrozoobenthos, fish and birds. Moreover, they are the main 
primary producers in the shallow coastal Baltic Sea ecosystem. The studied 
macrophyte species are shown in Fig. 1 and Fig. 2.  

Figure 1. Experiments were carried out with three different soft-bottom species of 
charophytes: Chara horrida (1), Chara aspera (2) and Chara tomentosa (3). 
 

1 2 3
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Figure 2. Three macroalgal species: Ulva intestinalis (1), Fucus vesiculosus (2), 
Furcellaria lumbricalis (3), and the seagrass Zostera marina (4) used in the 
experiments. 
 
 

2.2. Mesocosm experiments 
The mesocosm experiments were carried out in the shallow semi-enclosed 
Kõiguste Bay, Gulf of Riga, northern Baltic Sea (58.371°N, 22.980°E) (Fig. 3). 
The study area lacks major freshwater inflows, but is affected by nutrient inputs 
from the moderately eutrophic Gulf of Riga (Astok et al., 1999; Kotta et al., 
2008a). The average salinity of the Gulf of Riga varies between 5.0 and 6.5 
PSU (Kotta et al., 2008a). The dominant sediment types in the study area are 
sandy clay mixed with pebbles, boulders or gravel. The dominant macroalgal 
species are Cladophora glomerata, Ulva intestinalis, Pilayella littoralis, Myrio-
phyllum spicatum, Potamogeton perfoliatus and Zannichellia palustris. 

The experimental design was similar during all experimental periods in 
2011–2014. In Paper I the experimental periods were 05 July–08 July 2011 and 
19 July–22 July 2011. In Paper II the experimental period was 26 June–4 July 
2012. In Paper III the experimental periods were 26 June–07 July 2012 and 18 
July–27 July 2013. In Paper IV the experimental periods were 18 July–27 July 
2013 and 16 July–26 July 2014. 

Specimens of the macroalgae F. lumbricalis, U. intestinalis and F. vesiculosus 
were collected by SCUBA diving from the sea area adjacent to the mesocosm 
experimental sites (I). Charophytes C. horrida, C. aspera and C. tomentosa 
were collected by SCUBA diving from the Väike Strait (58.512°N, 23.203°E) 
from depths down to 2.4 m (II). The specimens of F. lumbricalis were collected 
by SCUBA diving in Kõiguste Bay between the depths of 1.5 and 3 m (III). 
The specimens of Z. marina were collected by SCUBA diving at 3.0 m depth 
from Küdema Bay (58.533°N, 22.238°E) (IV). All specimens were placed in 
coolers containing seawater and transported to the experimental site im-
mediately. The collected specimens were cleaned of all macroscopic epiphytes. 
Specimens of the macroalgal species and charophytes (I–III) were acclimatised 

1

3

2

4
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at the experimental site for 24 hours and of the seagrass Z. marina (IV) for three 
weeks prior the start of taking net photosynthesis measurements. 
 

 
Figure 3. Location of the study area. The arrow shows the location of the experimental 
site. 
 
For all field experiments plastic bags (double wall of clear LDPE foil, 175 µm 
each) externally supported by metal frames were used as mesocosms (Fig. 4). 
The bags were floating in the sea, fixed to the bottom by anchors at a depth of 
0.8 m. The bags were open on the top, so there was free gas exchange with the 
atmosphere, but not with the surrounding water. In Paper I two plastic bag 
mesocosms, each with dimensions of 1.2 m × 1.0 m × 1.5 m and a volume of 
400 l, with an elevated CO2 level were set up. The amount of the added CO2 
was not actively controlled, and the concentrations fluctuated during the whole 
experimentation period, but always exceeded the average natural level. 
However, the actual pCO2 was always measured before incubations. Algae kept 
outside of the mesocosms were used as controls. 

In Papers II–IV three plastic bag mesocosms were set up: two mesocosms 
with elevated pCO2 levels ca. 1000 μatm and ca. 2000 μatm and one with the 
untreated level of ca. 200 μatm (control treatment). In the control treatment, 
during photosynthesis measurements the average of pCO2 was ca. 200 μatm. 
The pCO2 level of 2000 μatm is much higher than the recommended maximum 
pCO2 level of 1000 μatm predicted by the year 2100 for seawater (Barry et al., 
2010). The high target pCO2 level of ca. 2000 μatm was chosen because the 
natural values of pCO2 in Kõiguste Bay measured prior to the start of the 
mesocosm experiments turned out to be well above the level of 1000 μatm in 
the summer mornings. Water from the sea area adjacent to the mesocosms 
incubation site was sieved using a 0.25 mm mesh and used for mesocosms. The 
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tanks with CO2 slowly bubbled food grade carbon dioxide into the water in the 
mesocosms. The pCO2 level was measured using an underwater (sensor) 
automatic CO2 data logger (CONTROS™ DETECT 2.0, Germany), connected 
to a custom-made controller to maintain CO2 in mesocosms at the required 
levels. However, due to the response lag of the CO2 sensor used (15–20 min), 
the actual CO2 level oscillated by 10% around the level preset by the controller. 
The pHNBS (National Bureau of Standards scale) values of each treatment were 
controlled every day before net photosynthesis measurements were taken. 
 

 
Figure 4. Three plastic bag mesocosms were set up in the Kõiguste Bay: two 
mesocosms with elevated pCO2 levels ca. 1000 μatm and ca. 2000 μatm and one with 
the untreated level of ca. 200 μatm. 

 

 

2.3. Environmental variables  
In the mesocosm experiments water temperature, oxygen saturation, pHNBS and 
salinity were measured continuously using a YSI 6600V2 environmental 
multiprobe (pH electrode YSI 6589FR). Measurements were performed during 
a full 24-hour cycle with a frequency of 30 seconds. The irradiance at the 
incubation depths was measured as photosynthetically active radiation (PAR) 
using a light meter LI-COR 250 (I) and a spherical light intensity sensor (Alec 
Electronics Co Ltd.) (II–IV). Carbonate parameters pCO2 and pHNBS and water 
salinity and temperature were used to calculate total dissolved inorganic carbon 
(DIC), total alkalinity, CO3

2– and HCO3
– using the CO2SYS software (Lewis 

and Wallace, 1998), with carbonate system dissociation constants for estuarine 
studies (Cai and Wan, 1998). Additionally, in parallel with the photosynthesis 
measurements, the diurnal fluctuations of water pH, pCO2 and oxygen satu-
ration were measured outside the mesocosms at a depth of ca. 0.5 m in a natural 
shallow water macroalgal habitat. Water samples were taken from the surface in 
each mesocosm and outside each mesocosm once a day using the standard 
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method ISO 5667-9. The volume of one sample was 250 ml. Samples were 
frozen immediately in a deep freezer until further laboratory analyses using the 
standard method EN ISO 5667-3. Nutrient concentrations: total nitrogen (TN), 
total phosphorus (TP), phosphates (P-PO4) and nitrites+nitrates (N-NOx) were 
measured in a laboratory with a continuous flow automated wet chemistry 
analyser Skalar SANplus (Skalar Analytic B.V., De Breda, The Netherlands) 
using the standard methods EN ISO 11905-1, EN ISO 15681-2 and EN ISO 
13395. 
 
 

2.4. Laboratory experiments 
In Paper I the aim of the laboratory experiments was to develop the necessary 
techniques and experience for the following field experiments. The laboratory 
experiments were carried out using the laboratory facilities of the Estonian 
Marine Institute, University of Tartu. The experiments were conducted using 
specimens of F. lumbricalis collected from Kakumäe Bay (at 3.8 m depth) on 
28.04.2011. In the laboratory, specimens were acclimated in 54-litre aquariums 
for 14 days (28.04–11.05.2011) before incubation experiments were carried out 
with manipulated pH for 9 days (12.05–20.05.2011). Macroalgae were accli-
mated at pH ~ 8.0 and the temperature was enhanced every second day degree 
by degree up to 15 °C. The pH sensors were connected to a multi-channel pH 
controller, which automatically streamed CO2 through the inlets into the 
aquarium according to the predetermined pH, namely, 6.5, 7.0 and control 
~ 8.0. The salinity was kept at the natural level of ~ 5.0, water temperature at 
15 °C; the steady temperature was acquired through an active temperature 
controller. The light–dark cycle was 12 : 12 h and during the light cycle the 
photosynthetically active radiation (PAR) was ~ 200 μmol m–2 s–1. The net 
photosynthetic rate of macroalgae was measured using the oxygen method, 
described in detail below. 

In Paper III the aim of laboratory experiments was to determine the optimal 
temperature for photosynthesis in F. lumbricalis. The experiments were carried 
out using the laboratory facilities of the Kõiguste field station of the Estonian 
Marine Institute, University of Tartu. Specimens of F. lumbricalis were accli-
mated at different water temperatures (5 °C, 10 °C, 15 °C, 20 °C, 25 °C) in 54-
litre aquariums (filled with filtered sea water, pCO2 ca. 200 μatm) for 7 days 
before measurements of net photosynthesis. The net photosynthetic rate of 
macroalgae was measured using the oxygen method, described in detail below. 
The steady temperature was maintained through an active temperature control-
ler (±0.1 °C, AquaMedic cooling units Titan 1500). The light–dark cycle was 
12 : 12 h and during the light cycle under luminophore light the PAR was ca. 
200 μmol m–2 s–1. An ODYSSEY PAR Logger sensor was used to measure 
PAR. 
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2.5. Measurements of net photosynthesis 
In all experiments (I–IV) the photosynthetic rate of macrophytes at different 
pCO2 levels (mesocosms) was measured once a day using the oxygen method. 
For this procedure about 0.1 g (I–III) and 0.5 g (IV) (dry weight, dw) of plant 
material was incubated in 600 ml glass bottles. For field experiments, the glass 
bottles were filled with water from inside the mesocosm and placed horizontally 
on special transparent trays hanging outside at a depth of 0.1 m (I) and 0.5 m 
(II–IV). For laboratory experiments, the glass bottles with algal material were 
filled with water from inside aquariums and placed horizontally at the bottom 
(I, III). All incubations with macroalgae and charophytes were performed in 
triplicate per treatment and with the seagrass Z. marina in six replicates per 
treatment. Bottles without plant material (in triplicate per treatment) served as 
controls. The dry weight of the plant material was determined after drying at 
60 °C for 48 h. Net primary productivity (NPP) (given as mg O2 gdw–1 h–1) was 
calculated from the differences in dissolved oxygen concentrations in 
incubation bottles with and without algal material, measured over the incubation 
period (ca. 1 h) (Paalme, 2005). The dissolved oxygen concentrations were 
measured with a Marvet Junior dissolved oxygen meter (MJ2000, Elke Sensor, 
Estonia) using the standard method EN ISO 5814. Measurements were carried 
out between 10 am and 4 pm. 
 
  

2.6. Statistical analyses 
In Paper I the results of laboratory experiments were statistically analysed using 
one-way analysis of variance (ANOVA): pH as the independent variable with 
three levels and net photosynthetic rate as the dependent variable. Analysis of 
covariance (ANCOVA) was used to evaluate separate and interactive effects of 
CO2, PAR (covariates) and species (categorical predictor) on the NPP rate in the 
mesocosm experiments. We used square transformed CO2 and PAR values as 
covariates to meet the assumption of homogeneity of variances (Cochran’s test). 
Effects were considered to be statistically significant if the p-value was <0.05. 
When significant differences among main factors or their interactions were 
found, Bonferroni tests were used as post hoc comparisons to contrast specific 
means. 

In Paper II the results of the field experiments were statistically analysed 
using the factorial ANOVA: pCO2 with three levels, species, experimental days 
and their combinations as the independent variables and NPP as the dependent 
variable. Bartlett’s test was used to test for homoscedasticity of the data before 
ANOVA. Effects were considered to be statistically significant at p < 0.05. 
When significant differences among main factors or their interactions were 
found, subsequent multiple comparisons of the means were done using Tukey’s 
HSD post hoc test.  
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In Paper III the effect of water temperature on the net photosynthetic rate of 
F. lumbricalis in the laboratory experiment was assessed using ANOVA: 
temperature as the independent factor with five levels. Tukey’s HSD post hoc 
test was used to find means that were significantly different from one another. 
In Papers III and IV one-factor permutational multivariate analysis of variance 
(PERMANOVA) with 9999 permutations was used to statistically test single 
and interactive treatment effects on net photosynthetic rates of macrophytes: 
pCO2 was used as the fixed factor with three levels (III, IV) and four levels in 
2014 (IV); PAR and water temperature were treated as covariates. Significant 
effects were explored when necessary with pairwise post hoc tests (with 9999 
permutations). Statistical analyses were performed using PERMANOVA 
(PRIMER, PRIMER-E Ltd, Plymouth, UK) and STATISTICA 7. For all sta-
tistical tests, a probability of 0.05 was used to determine statistical significance. 
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3. RESULTS  

3.1. Mesocosm experiments 
Macroalgae 
The response of macroalgal photosynthesis to CO2 enrichment was species 
specific (I). The highest response to elevated pCO2 levels was measured for the 
fast-growing filamentous alga Ulva intestinalis. The higher water CO2 con-
centrations also showed an increased net photosynthesis of the perennial red 
alga Furcellaria lumbricalis while the brown alga Fucus vesiculosus with a 
slow metabolism did not respond to elevated pCO2 levels on short-term basis. 
ANCOVA results indicated that the rate of net primary productivity was 
dependent on species and was interactively affected by the increase of pCO2 and 
the amount of PAR. Based on the Bonferroni post hoc test significant dif-
ferences (p < 0.01) between the NPP rates of all tested algal species (i.e. U. in-
testinalis, F. vesiculosus and F. lumbricalis) were found (I). 

The PERMANOVA analyses (conducted separately with the data obtained in 
2012 and 2013) indicated that the net photosynthetic rate of F. lumbricalis 
varied significantly between treatments at different pCO2 levels (PERMA-
NOVA: p < 0.05) (III). According to a PERMANOVA pair-wise post hoc test, 
the differences in the NPP rates of F. lumbricalis at the pCO2 levels of 
200 µatm and 1000 µatm were slight but at 2000 µatm a significantly higher 
photosynthetic rate was measured compared to the lower levels in 2012. In 2013 
the differences in the NPP rates of F. lumbricalis at the pCO2 levels of 
1000 µatm and 2000 µatm were slight, but at of 200 µatm a significantly lower 
average photosynthetic rate was measured (PERMANOVA pair-wise post hoc 
test: p < 0.05). In 2012 the NPP rates of F. lumbricalis were affected by PAR 
and the interactive effect of pCO2 and PAR as well pCO2 and the water 
temperature (PERMANOVA: p < 0.05). In 2013, besides the effect of elevated 
pCO2, the NPP rates of F. lumbricalis were also affected by water temperature 
(PERMANOVA: p < 0.05). The higher NPP rates of F. lumbricalis were 
measured at the lower water temperatures in 2013 compared to the values of 
2012. 
 
Charophytes 
Our results showed that NPP rates of charophytes varied both between species 
and treatments at different pCO2 levels (II). The highest average rate of net 
photosynthesis was measured for C. tomentosa. The response of C. horrida to 
the elevated CO2 levels was less pronounced as compared with that of 
C. tomentosa, while C. aspera showed a slight response during the experimental 
period (Tukey’s HSD: p < 0.05). The differences in the NPP rates of C. horrida 
at the pCO2 levels of 200 µatm and 1000 µatm were slight but at 2000 µatm a 
significantly higher photosynthetic rate was measured than at the lower levels 
(Tukey’s HSD: p < 0.05). Based on a post hoc test (Tukey’s HSD) the elevated 
pCO2 levels had no significant effect on the NPP rates of C. aspera (p > 0.05). 
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Among the tested charophyte species, the photosynthetic rate of neither 
C. tomentosa nor C. horrida differed significantly at the control treatment and 
at the highest pCO2 level while at the intermediate pCO2 level the NPP rate of 
C. tomentosa was significantly higher. The NPP rates measured for C. aspera 
were significantly lower as compared with those of the other studied charophyte 
species at all three pCO2 levels (Tukey’s HSD: p < 0.05). Factorial ANOVA 
indicated that all tested factors, i.e. pCO2, species, experimental days and their 
combinations, significantly affected the photosynthetic rate of the three tested 
charophyte species. 
 
Seagrass 
The PERMANOVA analyses (conducted separately with the data obtained in 
2013 and 2014) indicated that the photosynthetic rate of the seagrass Z. marina 
varied significantly between treatments at different pCO2 levels (PERMA-
NOVA: p < 0.05) (IV). In 2013 the variations of NPP rates were also affected 
by one of the tested environmental variables, namely water temperature, while 
the effect of the PAR was dependent on the level of pCO2 and water tempera-
ture (PERMANOVA: p < 0.05). In 2014 the NPP rates of Z. marina were 
affected by interactions of the PAR with water temperature and with the level of 
pCO2 (PERMANOVA: p < 0.05). There were remarkable differences in the 
NPP rates of Z. marina between the two experimental periods: the average NPP 
rate was 4.08 mgO2gDW

–1h–1 in 2013 and 5.19 mgO2gDW
–1h–1 in 2014. The 

highest NPP rates for Z. marina were measured in the untreated water (control 
conditions), while at the intermediate pCO2 level the seagrass had lower rates 
than at the high pCO2 levels. Based on a PERMANOVA pairwise post hoc test, 
the differences in the average NPP rates of Z. marina at the pCO2 levels 
between 1000 µatm and 2000 µatm were significant (p < 0.01) in 2013. At the 
same time, NPP rates of Z. marina at the pCO2 levels between 200 µatm and 
2000 µatm were not significant, while at the pCO2 level of 200 µatm a 
significantly higher average NPP rate was measured compared to the elevated 
pCO2 level of 1000 µatm (p < 0.01) in 2013. In 2014 the differences in the NPP 
rates of Z. marina at the pCO2 levels of 1000 µatm and 2000 µatm were not 
significant but at the pCO2 level of 200 µatm a significantly higher average 
photosynthetic rate compared to the elevated pCO2 levels was measured 
(PERMANOVA pairwise post hoc test: p < 0.05). In the natural conditions 
outside of the mesocosm the average photosynthetic rates of Z. marina were 
significantly lower (PERMANOVA pairwise post hoc test: p = 0.0001) com-
pared to the NPP values measured in mesocosms in 2014.  
 
 

3.2. Laboratory experiments 
In case of the laboratory experiments the macroalga F. lumbricalis demon-
strated increasing photosynthetic rates with  decreasing pH due to increased 
acidification (I). Our results showed that the highest average NPP rate of 
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F. lumbricalis was measured at pH 6.5 compared to NPP rates at pH 7.0, while 
the lowest average NPP values were measured at pH ca. 8.0. Based on the 
Bonferroni post hoc test significant differences (p < 0.01) were found between 
the F. lumbricalis photosynthetic rates and three different pH levels. 

The water temperature showed a significant effect on the NPP rates of 
F. lumbricalis in the laboratory experiments (one-way ANOVA: F = 23.11, 
p < 0.05) (III). The significantly higher average photosynthetic rate of 
F. lumbricalis was measured at 10 °C compared to NPP rates at 5 °C, 15 °C, 
20 °C and 25 °C. At the same time, based on Tukey's HSD post hoc test, there 
were no significant differences in the NPP rates measured at 5 °C, 15 °C and 
20 °C (p > 0.9) while a significantly lower average NPP rate of F. lumbricalis 
was measured at 25 °C compared to the above-mentioned temperatures 
(Tukey’s HSD post hoc test: p < 0.05). 
 
 

3.3. Natural fluctuation of seawater pCO2 and pH in 
shallow water macroalgal habitats 

The pH and pCO2 show a substantial amplitude of natural variability under 
summer conditions. The daily pH fluctuations may be larger than 1 unit. For 
example, fluctuation between 8 and 9 are common in shallow water macroalgal 
habitats in the north-eastern Baltic in summer conditions. In the early morning 
pCO2 values turned out to be well above the pCO2 of 1000 μatm. However, 
during the day when inorganic carbon was used for photosynthesis they 
declined to ~150 µatm (Fig. 5). 
 

 
Figure 5. Natural fluctuation of seawater pCO2 and pH levels in shallow water 
macroalgal habitats in Kõiguste Bay. An example of measurement results from 
28.07.2014 (continuous recordings). 
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4. DISCUSSION 

In the current thesis, we focused on the most common benthic macrophytes in 
the north-eastern Baltic Sea that play key roles in the local ecosystem. Due to 
different requirements concerning abiotic factors such as light, temperature, 
salinity, bottom substrate, depth and exposure, their communities grow in dif-
ferent habitats throughout the Estonian coastal waters. Our results suggest that 
future increasing CO2 concentrations are expected to enhance photosynthesis of 
at least some macrophyte species in the north-eastern Baltic Sea under summer 
conditions (I, II, III) (Table 1). However, this effect was highly species specific, 
most probably due to differences in the photosynthetic biochemistry, eco-
physiology, life strategy and life stage of the species (I, II). Similarly, several 
studies conducted outside of the Baltic Sea have shown that the effect of 
elevated pCO2 on macrophytes is highly species specific (e.g. Invers et al., 
1997; Ow et al., 2015; Porzio et al., 2011; Koch et al., 2013). Additionally, the 
species specific response of macrophytes to the pH suggests that pH is one of 
the most important environmental factors in regulating primary production in 
shallow coastal ecosystems. 
 
Table 1. The effect of CO2 enrichment on the photosynthetic rate of the studied 
macrophyte species.  

Macrophyte species Responses to elevated pCO2 

Macroalgae  

Fucus vesiculosus None 

Furcellaria lumbricalis Positive 

Ulva intestinalis Positive 

Charophytes  

Chara aspera None 

Chara horrida Positive 

Chara tomentosa Positive 

Seagrass  

Zostera marina None  

 
4.1. Interactive effects of elevated pCO2 and other 

environmental factors on macrophytes 
Numerous studies have shown that macrophytes’ responses to ocean acidifi-
cation depend on other limiting environmental factors such as nutrients content, 
light availability (e.g. Celis-Plá et al., 2015), water temperature and interactions 
of various factors (e.g. Graiff et al., 2015; Al-Janabi et al., 2016). Moreover, 
different macrophyte species have different requirements for abiotic factors for 
photosynthesis and growth. For example, the net photosynthesis of C. aspera 
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showed a significantly weaker response to elevated pCO2 levels than the other 
tested charophytes (II). As compared with other charophyte species in Estonian 
coastal waters, C. aspera is considered to be the most tolerant species to the 
variation of environmental factors such as light, salinity, bottom substrate, depth 
and exposure, while habitat requirements of C. tomentosa and C. horrida are 
stricter (Torn et al., 2004; Torn, 2008; Torn et al., 2015).  

Considering that in the shallow coastal Baltic Sea the environmental factors 
have turbulent dynamics caused by seasonality and rapid changes in meteoro-
logical conditions (Voipio, 1981; Feistel et al., 2008) the mesocosm experi-
ments with F. lumbricalis (III) and Z. marina (IV) were carried out during two 
experimental periods (years). In both experiments, some differences in the NPP 
between the two experimental periods were found. The dissimilarity in NPP 
rates between the two experimental periods could be explained first of all by the 
differences in the water temperature. For example, in our experiment the higher 
NPP values of Z. marina were measured under the higher water temperatures in 
2014 (average water temperature 21.9 °C) compared to the values of 2013 
(average water temperature 13.5 °C) (IV). In contrast, the experimental results 
showed that higher NPP values of F. lumbricalis were measured under the lower 
water temperatures in 2013 (average water temperature 13 °C) as compared to 
values of 2012 (average water temperature 18 °C) (III). Based on our findings it 
could be suggested that a future increase in water temperatures under climate 
change may reduce the photosynthetic rate of F. lumbricalis while the photo-
synthesis of Z. marina may benefit under the same temperature conditions to 
CO2 enrichment. The photosynthetic response of these species to elevated pCO2 
levels appears to be the result of interactions with water temperature. In the 
Baltic Sea region where the water temperature is characterised by high seasonal 
and annual variations, the effects of increasing CO2 and water temperature 
should be observed together. 

In addition, several studies have found that the benefits of elevated pCO2 for 
macroalgae (Celis-Plá et al., 2015) and seagrasses (Martínez-Crego et al., 2015) 
are more pronounced when combined with increased nutrients. In the nutrient-
rich (eutrophicated) Baltic Sea, under the future CO2 increase scenario, the 
natural level of nutrients will probably not become a limiting factor for the 
photosynthesis of macrophytes. There is high seasonal variation in nitrogen and 
phosphorus concentrations: during summer and autumn their concentrations are 
relatively low in shallow coastal conditions (Pawlak et al., 2009). Perennial 
macroalgae, including F. lumbricalis, are capable to store nutrient reserves in 
their thallus from seawater for periods of low nutrients availability (Indergaard 
and Knutsen, 1990). Therefore, the interaction of an increasing CO2 concent-
ration with a high nutrients availability in a brackish water may enhance the 
photosynthesis of F. lumbricalis (I, III). On the other hand, several studies in 
the Baltic Sea have shown that the decrease of Z. marina distribution is caused 
by eutrophication-related poor underwater light climate (Boström et al., 2014 
and references therein). In the Estonian coastal waters, the main distribution 
depth of Z. marina is between 2 and 4 m, which is probably due to the poor 
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underwater light conditions (Möller et al., 2014). Our results indicated that NPP 
rates of macrophytes were affected by the combined effects of elevated pCO2 

and light (I, III, IV). Thus, macrophyte responses to elevated pCO2 will depend 
also on the light availability in the north-eastern Baltic Sea. 

Additionally, in Paper I it was demonstrated that under elevated CO2 con-
centrations the filamentous fast-growing green alga U. intestinalis had signi-
ficantly higher photosynthetic rates than the perennial algae F. lumbricalis and 
F. vesiculosus. Thus, it could be theorised that future increasing CO2 concen-
trations may cause shifts in the macroalgal species composition, first of all 
towards the replacement of slowly growing perennial algae with fast growing 
filamentous algal species. A similar response pattern of macroalgae was pre-
dicted by climate change (Kotta et al., 2000, 2008b; Paalme et al., 2002). More-
over, mass occurrence of filamentous macroalgae is considered to be one of the 
main effects of eutrophication in shallow coastal Baltic Sea waters. Thus, future 
increasing CO2 concentrations in seawater may indirectly enhance the 
eutrophication effect by accelerating the growth of ephemeral filamentous 
macroalgae in the coastal Baltic Sea.  

 
 

4.2. Sources of inorganic carbon and mechanisms of carbon 
acquisition for photosynthesis in macrophytes 

The response of macrophytes to elevated pCO2 depends also on which carbon 
source they use for photosynthesis (Van den Berg et al., 2002; Hepburn et al., 
2011; Koch et al., 2013). The vast majority of the investigated seagrasses 
(Sand-Jensen and Gordon, 1984; Beer and Rehnberg, 1997; Koch et al., 2013), 
macroalgae (Raven, 2010; Koch et al., 2013; Beer et al., 2014) and charophytes 
(Moore, 1986) use mainly HCO3

– as the external Ci source for photosynthesis, 
which will become slightly more available with the expected increasing CO2 
content in seawater (Raven et al., 2005). However, several studies have shown 
that macroalgae prefer CO2 over HCO3

– for photosynthesis, and HCO3
– use can 

be facultative, i.e. at high CO2 concentrations HCO3
– use is downregulated 

(Sand-Jensen and Gordon, 1984; Hepburn et al., 2011; Cornwall et al., 2012). 
Raven et al. (2011) pointed out that this facultative ability of macroalgae to alter 
the dependence of photosynthesis on HCO3

– to CO2 may provide a competitive 
advantage at future increasing CO2 concentrations because of reduced energy 
requirements for carbon acquisition. 

Additionally, the response of macrpohytes to elevated pCO2 depends on 
which mechanisms of carbon acquisition they use for photosynthesis. Several 
studies have shown that Z. marina can use different mechanisms of carbon 
acquisition for photosynthesis in different environmental conditions (e.g. Beer 
and Rehnberg, 1996; Hellblom et al., 2001). It could be speculated that in our 
experiment under high-pH treatment in the enclosed conditions HCO3

– transport 
was more efficient for Z. marina (IV). However, this statement needs further 
verification. Van den Berg et al. (2002) demonstrated that C. aspera is a better 
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competitor for HCO3
– than Potamogeton pectinatus and will be the ‘winner’ of 

this interspecific competition under future ocean acidification. In Paper II our 
results also suggest that the species specific response of charophytes to elevated 
pCO2 levels may have implications for interspecific competition from increased 
carbon availability under future ocean acidification. 

One of the key questions is whether or not the photosynthesis of macro-
phytes is saturated by the seawater DIC under present-day conditions. Several 
studies have found that photosynthesis and growth in most species are not 
saturated under present-day CO2 concentrations (e.g. Israel and Hophy, 2002; 
Wu et al., 2008). It should be noted that future increasing CO2 concentrations in 
seawater are expected to influence species without carbon-concentrating mecha-
nisms (CCMs) more than those possessing CCMs. The reason is that species 
with CCMs have shown photosynthesis close to saturation by the seawater DIC 
under today’s conditions (Beer at al., 2014). Kübler et al. (1999) indicated that 
macroalgae that rely exclusively on CO2 diffusion may be carbon limited under 
the present-day environmental conditions due to the lower concentrations of 
CO2 compared to HCO3

–. On the other hand, numerous studies have indicated 
that the photosynthesis of Z. marina may be carbon limited by the low seawater 
DIC under present conditions, even with their capacity to utilise HCO3

– for 
photosynthesis (Beer and Koch, 1996; Beer and Rehnberg, 1997; Zimmerman 
et al., 1997; Hellblom et al., 2001; Invers et al., 2001; Palacios and Zimmerman, 
2007; Buapet et al., 2013; Koch et al., 2013). As previously mentioned, our 
results showed that the net photosynthetic rate of macrophytes varied signi-
ficantly between different pCO2 levels. In our experiments (I, II, III) the vast 
majority of studied macrophytes demonstrated lower photosynthetic rates in the 
untreated water (control conditions) as compared to elevated pCO2 treatments. 
This suggests that the photosynthesis of macrophytes (HCO3

– users) is limited 
by the current water CO2 concentration of shallow coastal waters in the north-
eastern Baltic Sea during their active vegetation period. 

Furthermore, various studies have found seagrass meadows to be globally 
significant as carbonate reservoirs (e.g. Daurte et al., 2010; Hendriks et al., 2014; 
Mazarrasa et al., 2015). Photosynthetic processes are likely to buffer ocean 
acidification in seagrass meadows, but the magnitude of buffering depends on 
metabolic parameters and hydrodynamic processes of each system and varies 
regionally as well as seasonally (Hendriks et al., 2014). As previously men-
tioned, our results showed that the photosynthesis of several macrophyte species 
may be carbon limited at the current summer conditions. Therefore, we can 
conclude that also in the Baltic Sea conditions macrophyte communities may 
have a buffering role under the conditions of elevated pCO2 in seawater. 

Ocean acidification is a relatively new research field. As to future research, it 
is important to conduct long-term mesocosm and in situ field experiments to 
study evolutionary adaptation. It is critical to measure local variability in the pH 
values within shallow coastal ecosystems as these natural pH fluctuations could 
interact with the effects of ocean acidification. Future studies should also focus 
on the effect of elevated pCO2 with multiple stressors on community level. 
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5. CONCLUSIONS 

• The elevated pCO2 levels in brackish water are expected to enhance 
photosynthesis of macrophytes in the north-eastern Baltic Sea under summer 
conditions. However, this effect is species specific, most probably due to 
differences in the ecophysiology, life strategy and life stage of the species. 

 
• The magnitude of the effect of elevated pCO2 levels on macrophytes is 

affected by various environmental factors, mainly by changes in water tem-
perature and light availability. 

 
• The natural concentrations of inorganic carbon in brackish water most likely 

limit the net photosynthesis of macrophytes, especially in shallow water 
macrophyte habitats during the active vegetation period. 

 
• During the active vegetation period macrophyte communities will have a 

buffering role under future increasing CO2 concentrations in the north-eastern 
Baltic Sea conditions. 

 
• Increased CO2 concentrations may cause shifts in the species composition of 

macrophyte communities, first of all the replacement of slowly growing 
perennial algae with fast growing filamentous algal species. These shifts could 
have implications for interspecific competition and community structure in a 
future high CO2 world. 

 
• By accelerating the growth of filamentous fast growing macroalgae an 

increase of water CO2 levels may enhance indirectly the phenomena usually 
attributed to eutrophication in the Baltic Sea. 
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SUMMARY IN ESTONIAN 

Merevee hapestumise mõju bentiliste makrofüütide 
fotosünteesile riimveelistes tingimustes 

Ookeanide hapestumine on kiiresti kasvav üleilmne keskkonnaprobleem, mis on 
otseselt seotud inimtekkelise süsihappegaasi (CO2) emissiooniga atmosfääri. 
Hapestumise all mõistetakse ookeanide pH-taseme langust, mida peamiselt põh-
justab suurenenud atmosfäärse süsinikdioksiidi neeldumine pinnavees. Alates 
tööstusrevolutsioonist 18. sajandi lõpul on umbes kolmandik inimtegevuse tõttu 
atmosfääri eraldunud CO2-st talletunud maailma ookeanides, põhjustades 
ookeanide pinnavee pH-taseme languse umbes 0,1 ühiku võrra. Hinnanguliselt 
neeldub ookeanides 24 miljonit tonni süsinikdioksiidi päevas. Kui CO2-emis-
siooni ei reguleerita, võib ookeanivee pH-tase järgmise sajandi alguseks langeda 
0,3–0,4 ühiku võrra, mis tähendaks merevee happesuse kolmekordistumist. 
Sarnaseid muutusi ennustatakse ka Läänemere piirkonnas. Igasugune merevee 
pH-taseme muutus, muudab omakorda kogu merekeemia tasakaalu. See aga 
võib endaga kaasa tuua laiaulatuslikke muutusi mereökosüsteemides. 

Merevee hapestumise mõju mereorganismidele ei ole suures osas veel täpselt 
teada. Märkimisväärne osa hapestumise teemalistest teadusuuringutest kesken-
dub lubiskeletsete organismide negatiivsele mõjule (näiteks: korallid, karbid, 
kokolitofoorid). Samal ajal on suurem osa uuringuid näidanud, et CO2-sisalduse 
suurenemine merevees mõjutab positiivselt mitte-lubiskeletsete makrovetikate 
ja meriheina füsioloogilisi protsesse. 

Antud doktoritöö peamine eesmärk oli selgitada välja, kuidas mõjutab CO2-
emissioonist põhjustatud merevee happesuse suurenemine Eesti rannikumeres 
laialt levinud bentiliste makrofüütide fotosünteesi riimveelistes tingimustes. 
Teine eesmärk oli uurida temperatuuri ja valguse lühiajalise loodusliku varieeru-
vuse ja suurenenud CO2-sisalduse koosmõju makrofüütide fotosünteesile. 
Lisaks mõõdeti süsinikdioksiidisüsteemi iseloomustamiseks looduslikes tingi-
mustes merevee pH-d ja süsiniku partsiaalrõhku (pCO2), eesmärgiga koguda 
taustaandmeid produktsioonikatsete korraldamiseks erinevatel pCO2- ja pH-
tasemetel ning ühtlasi selgitada välja nende parameetrite ööpäevane kõikumine 
madalas rannikumeres tihedas vetikakoosluses. 

Laboritingimustes korraldatud esimeste katsete peamine eesmärk oli 
arendada meetodeid ja leida tehnilisi lahendusi in situ mesokosmikatsete jaoks. 
Aastatel 2011 kuni 2014 vahemikus juuni-juuli viidi Saaremaa lõunarannikul 
Kõiguste lahes läbi mesokosmikatsed. Vaatluse all olevaid liike inkubeeriti 
lühiajalistes katsetes, mille käigus manipuleeriti erinevate CO2-tasemetega: 
kõrgendatud pCO2 tase ca 1000 μatm ja ca 2000 μatm ning kontroll tingimused 
ca 200 μatm. Erinevate pCO2-tasemete juures mõõdeti makrofüütide fotosünteesi 
hapniku meetodil. Eksperimentide käigus monitooriti keskkonnaparameetreid 
salvestavate automaatsete mõõteriistadega ka erinevaid keskkonnategureid: 
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soolsust, valgust ja hapniku. Lisaks mõõdeti erinevate toitainete: üldlämmastiku, 
üldfosfori, fosfaatide ja nitraatide sisaldust automaatanalüsaatoril.  
 
 
Antud töö põhitulemused on: 
 
•  Uurimistulemused näitasid, et bentilised makrofüüdid on võimelised foto-

sünteesima kõrgete pCO2-sisalduste juures. CO2 tõusust tingitud pH-taseme 
languse mõju on liigispetsiifiline ja selle mõju ulatus sõltub koosmõjust 
teiste keskkonnateguritega, peamiselt vee temperatuuri ja valguse kättesaada-
vusega 

 
•  CO2 looduslik sisaldus merevees limiteerib makrofüütide fotosünteesi vege-

tatsiooniperioodi jooksul. 
 
•  Makrofüütide kooslused võivad tulevikus vegetatsiooni perioodi jooksul 

puhverdada merevee hapestumise negatiivset mõju Läänemere kirdeosa 
tingimustes. 

 
•  Üks peamisi merevee happesuse suurenemise tagajärgi tulevikus on muutused 

põhjakoosluste liigilises koosseisus. CO2-sisalduse suurenemine merevees 
võib süvendada kaudselt Läänemere ühe suurema probleemi, eutrofeerumise 
mõjusid, kuna soodustab eelkõige üheaastaste niitjate suurvetikate vohamist. 
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