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Abstract

This thesis focuses on the development of the control electronics of the electrical power
system of ESTCube-2. The main goal of this thesis was to build a prototype that enhances the
electrical power system of ESTCube-1 by identifying all the areas where improvements could

be made and applying the solutions in the new system.

The first section of this thesis gives an overview of the scientific missions of the future
satellites that are planned to be developed within the ESTCube programme. Then the control
system of the electrical power system of ESTCube-1 is analysed from the hardware aspects
and the requirements for the prototype are listed. The fifth paragraph focuses on the design of
the prototype and gives a detailed explanation of the most important hardware and software

features, as well as the functional testing results.

A fully functional prototype alongside with the low level software was achieved. The
prototype features very efficient analog-to-digital converter control method, low power
consumption and an input voltage failure detection mechanism. All the aimed requirements
were fulfilled or exceeded. The module is easily expandable with other sections of the

electrical power system to simplify the further development.
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1. Introduction

ESTCube-1 is the first Estonian satellite and it was developed within the scope of the
ESTCube programme [1]. The mission of ESTCube-1 successfully reached the testing phase
of the electric solar wind sail [2] components. The electron guns operated as expected and the
satellite spun itself up to 840 degrees per second to unreel the tether. Only the reeling
mechanism was proven to be unreliable [3]. ESTCube-1 provided valuable experience and

established the infrastructure for future space projects in Estonia.

ESTCube-2 and ESTCube-3 are follow-up projects to ESTCube-1 with the main mission to
reach a successful test of the electrical solar wind sail outside of the Earth’s magnetic field.
The preliminary testing of the electrical solar wind sail components will be done by
ESTCube-2 in the low-Earth orbit. ESTCube-2 will be a three unit CubeSat [4] and
comparing to ESTCube-1, it has more solar panels to satisfy the higher power demand. Due to

the increased requirements, a new electrical power system (EPS) has to be developed.

Generally, the EPS subsystem can be divided into two major sections: the control electronics
and the power electronics. The control electronics part has to manage the entire EPS
subsystem by conducting numerous mission critical tasks. Therefore, all its components must
be developed with the utmost care, emphasizing reliability and robustness. The satellite has to
operate in a severe space environment which makes the design of the satellite even more

challenging.

This thesis focuses on the development of the control electronics of the EPS for ESTCube-2

with the main goals to:

e analyze ESTCube-1 EPS subsystem control electronics design from the hardware
aspects to find the areas where improvements could be made;

e specify the requirements of ESTCube-2 EPS control electronics;

e built a prototype that includes improvements and complies with all requirements;

e test the performance of the prototype and its conformance to the requirements.



2.0verview
2.1. ESTCube-1

The Estonian student satellite project began in 2008 at the University of Tartu, with the main
goal of educating students by providing an opportunity to build the first Estonian satellite. The
collaboration between students from the University of Tartu, Estonian Aviation Academy,
Tallinn University of Technology and University of Life Sciences led the successful
completion of ESTCube-1 [1]. On the May 7™ 2013 the satellite was sent to low-Earth orbit
with the primary mission to test the components of the electric solar wind sail [2], invented by
Pekka Janhunen in Finland. [1] The reeling mechanism in the payload subsystem of
ESTCube-1 had to unreel a thin conductive tether for this purpose [5]. The test was
performed, but unfortunately the reeling mechanism failed due to a mechanical fault. Later
investigation revealed that most probably the reeling mechanism got damaged due to the

severe vibration during the launch of the rocket Vega VVO02 that carried ESTCube-1.

ESTCube-1 can be considered as a great accomplishment because almost all of the goals were
achieved. Firstly, it prepared the ground for future space programmes in Estonia by
developing the necessary infrastructure and by providing the students with hands-on
experience. Secondly, the main objective to build and launch the satellite was achieved. One
of the main tasks of the satellite was to spin itself up to one rotation per second in order to

unreel the e-sail tether [5]. All other subsystems stayed fully functional during the test of the
spin-up. [3]

ESTCube team has already started developing follow-up projects to ESTCube-1. The concept
of the future satellites is to test the e-sail on a bigger scale and in the real environment which
is somewhere outside of the Earth’s magnetic field, for instance in the lunar orbit. ESTCube-3
is planned to be equipped with cold gas thrusters for attitude and orbit control purposes,
deployable solar panels to satisty the increased power demand and the e-sail tether to perform
the scientific experiment. The main purpose of ESTCube-2 is to test the e-sail components
and other subsystems used in ESTCube-3 in the low-Earth orbit. Satellite launches to the
orbits where ESTCube-3 can accomplish its mission are expensive and arranged infrequently.
Therefore ESTCube-2 must test the eligibility of the technology to increase the probability of
success of ESTCube-3.
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2.2. Overview of the EPS control electronics designs

The electrical power system (EPS) is one of the most important subsystems of every satellite.
It has to accomplish numerous critical tasks including energy harvesting, battery charging,
providing electrical supply to all other subsystems and logging data in order to provide

statistics of power production and consumption.

There are two commonly used approaches in the way the EPS is controlled within the
satellite. Firstly, the EPS can be controlled by the satellite’s main microcontroller unit
(MCU). This approach reduces the complexity of the EPS, but burdens the main MCU with

time consuming monitoring and logging operations.

Second way of controlling the EPS is by using a dedicated MCU that accomplishes all the
necessary tasks for the EPS to function. These tasks can be interacting with other subsystems,
monitoring and logging power harvesting and consumption, switching on and off the supply
voltage of other subsystems and handling the maximum power point tracking (MPPT)
algorithm. Since the EPS stays constantly operational and some of its tasks, like logging, are
done frequently, the EPS MCU should have low power consumption to reduce the overall

power demand of the satellite.

The Norwegian satellite CubeSTAR uses dedicated MCU ATxmegal28A1 from Atmel as a
dedicated EPS control MCU. The MCU is used for implementing the MPPT algorithm for
charging the batteries and it also provides the telemetry data. The MCU is connected with the

satellite’s main MCU via an inter-integrated circuit (I*C) bus. [6]

AAUSAT3, the third Danish CubeSat, uses a dedicated MCU AT90CAN128 (Atmel) for
controlling battery charging and discharging, monitoring general health of the satellite, and
organizing the power distribution. The MCU is connected to the other subsystems through a

controller area network (CAN) bus. [7]

The EPS design of the student satellite OUFTI-1, developed in the University of Liege, does
not have a dedicated MCU. The EPS printed circuit board (PCB) contains two analog-to-
digital converters (ADC) ADS7830IP (Texas Instruments) and MAX1039 (Maxim
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Integrated). The ADCs are connected with the on-board data handling subsystems via I’C bus

and they are used for measuring currents, temperatures and bus voltages. [8]

The EPS subsystem of NUTS-1, a 2-unit CubeSat from Norwegian University of Science and
Technology, does not have a MCU either. The EPS utilizes INA219 (Texas Instruments) I°C
current and power monitor integrated circuits (IC) that are controlled by the on-board

controller module as well as by the telemetry, tracking and control module. [9]

2.3. Electrical power system control electronics of
ESTCube-1

The EPS of ESTCube-1 is controlled by a dedicated MCU that is responsible for power
distribution, collecting and logging telemetry data and controlling the bacon signal. Figure 1

shows the block diagram of the EPS control electronics of ESTCube-1.

MAX6145 MAX6369 ADR3450
4.5V reference Watchdo 5V reference
I I 1
| RST b
Y
TCA6408PWR I MAX1230
( _) I
GPIO expander ADC
Y
DSR%M MAX1230
FM25V20 | @ o | ADG3304 ADC
Serial FRAM Logic translator MA:E; c1;1 9
FM25V20 ( ’ ADG3304
Serial FRAM Logic translator MAX([; (1:1 9
FM18W08 0 7T4HCS573
Parallel FRAM Logic latch LTS§230
<«—»| TXB0108
CDHS Logic translator LTC2630
PCA9306 Lol
il «——~| Logic translator
¢ Digital SPI
<« M
Si571 8-bit parallel UART
Beacon keyer >
<-Pnaeg T

Figure 1: The EPS control electronics of ESTCube-1 [12].
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2.3.1. Design analysis of the EPS control electronics of ESTCube-1

ESTCube-1 EPS is based on an 8-bit MCU ATmegal280 from Atmel, which has 128 KB of
program flash, 4 KB of electrically erasable programmable read-only memory (EEPROM),
8 KB static random-access memory (SRAM) and a 10-bit ADC with 16 inputs [10]. This
MCU was chosen for this application because it has low power consumption, 86 general
purpose input and output (GPIO) pins [10], it has been tested for radiation [11] and it had
previous flight heritage. [12]

An external watchdog timer (WDT) MAX6369 (Maxim Integrated) is used instead of the
MCUs internal WDT to provide flexible and independent timeout settings. The MAX6369
enables to set seven different timeout periods within the range from 1 millisecond to 60
seconds in the hardware, using pull-up or pull-down resistors [13]. ATmegal280s internal

WDT timeout can be varied only from 16 milliseconds to 8 seconds [10].

The microcontroller is connected to two types of ferroelectric random-access memory
(FRAM) chips. The 32 KB parallel FRAM memory FM18W08 (Cypress) is used to expand
the MCU’s random access memory and two serial 2 Mbit FM25V20 (Cypress) FRAM

memories are used for the measurement data and firmware image storage. [12]

All necessary measurements are performed using the MCU's internal 10-bit ADC as well as
standalone ADCs. The MCUs internal ADC uses a 4.5 V reference voltage source MAX6145
(Maxim Integrated). Two 16-channel 12-bit external ADCs MAX1230 obtain their 5V
reference voltage from ADR3450 (Analog Devices). Battery temperature acquiring and
backup measurements of the main power bus voltage are performed by two 8-bit ADCs
MAXI1119 (Maxim Integrated) with internal 4.096 V reference source. The system is capable
of measuring the main power bus voltage with three different ADCs (MAX1119, MAX1230
and ATmegal280 internal ADC). This feature allows comparing the results in order to detect

degradation of the ADCs. [12]

One of the tasks of the EPS is keeping the date and time of the satellite [12]. DS3234 (Maxim

Integrated) is used for this purpose due to its accuracy and thermal stability. It features
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internal temperature compensated crystal oscillator ensuring time precision of 3.5 ppm in the

temperature range of -40 °C to 85 °C [14].

2.3.2. Areas of improvements of the EPS of ESTCube-1
The EPS subsystem together with the MCU operates at 5 V voltage, while the serial mass
storage FRAM memories operate at 3.3 V. This difference in voltages requires for a transition
in the logic levels. An ADG3304 (Analog Devices) is used to interface the lower voltage
FRAMs with the MCU. Since all other subsystems in ESTCube-1 work on 3.3 V, logic level
translators are required to communicate with them. TXB0108 (Texas Instruments) and
PCA9306 (Texas Instruments) are connected to universal asynchronous receiver/transmitter
(UART) and I°C buses which are providing vital communication interface to the command

and data handling system (CDHS) and communication system (COM). [12]

These logic level translators between mission critical peripherals and subsystem'’s
communication buses reduce overall system reliability. In the case of failure, they might have

a severe impact on the functionality of the satellite.

A simple solution would be to adopt components with working voltage of 3.3 V in the entire
subsystem. This resolves the previously mentioned reliability issue by eliminating all the logic

level translators as well as reducing overall current consumption and component count.

The EPS of ESTCube-1 has a capacitor bank to ensure short time (80 milliseconds [12])
operation of the subsystem when the voltage on the main power bus suddenly disappears. This
time can be used to pinpoint the fault, save it to a log and to try to restore the power to the
system. The loss of the voltage can be detected only with the ADC during routine logging
measurements. [12] The problem of this approach is the latency between the actual

occurrence and the discovery of the fault.

An ideal solution would notify the MCU with an external interrupt as soon as the voltage has
decreased below a certain threshold. A separate, fast and reliable fault detection circuitry must

be developed in order to achieve this.
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ESTCube-1 EPS subsystem has to measure 48 analog voltages during one routine logging
acquisition [12]. Due to the inefficient method of controlling the ADCs, the time it takes to
measure all 48 channels is 5 milliseconds [3]. When measuring rapidly changing currents, this
long measurement window can result in miscalculations because the acquired results do not

describe the same moment in time.

Another issue is that the MAX1230 ADCs are used in a mode where acquisitions are initiated
one at a time by sending a command byte to the ADC [12]. Since the serial peripheral
interface (SPI) clock signal is used to clock the ADC conversions, the MCU must conduct the
whole measurement process. Should an external interrupt occur during a multichannel
acquisition, the measurement process is suspended for undefined amount of time. This can
lead to unpredictable timing errors between several sequential ADC measurements. The

problem evolves further with the increase of total channels to be measured in series.

These problems can be approached in two ways, either by using dedicated sample-and-hold
circuits for every input channel of the ADC, or by controlling the ADCs in a more efficient
way. First approach means that all channels would be sampled simultaneously and then
measured separately from the sample-and-hold IC outputs. This would definitely solve the
problem, but in the other hand it would increase the count of components by the number of
necessary analog inputs and therefore make the design more complex and less robust. The
more efficient method for controlling the ADCs can utilize the ADCs internal first in first out
(FIFO) memory and oscillator in order to perform acquisitions autonomously. This can be
achieved with no extra hardware but it would only reduce the severity of the problem, not

solve it entirely.

The power consumption of the EPS control electronics can be also viewed as an area of
improvement. Since the EPS is constantly operational, its idle power consumption should be
as little as possible. Therefore, the power consumption should be important criteria when
choosing the components of the new design. The energy that can be saved would definitely

have a better utilization, for instance, it can be used for charging the batteries.
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3.System requirements

The requirements for the EPS control electronics of ESTCube-2 are following:

a supply voltage of 3.3 V;

active mode power consumption less than 30 mW;

30 12-bit external ADC channels with measurement time window less than 500 psec.
The number of input channels should be easily expandable;

a voltage fault detection system including capacity bank, that holds the MCU
operational at least 100 ms after the input voltage failure;

at least 60 MCU GPIOs for peripheral devices;

MCU with at least 64 kB of internal FRAM memory;

at least 4 Mbit of external FRAM memory;

an real-time clock (RTC) with temperature compensated crystal oscillator and
accuracy better than £5 ppm;

two half-duplex RS485 UART channels for connecting the EPS with the satellite’s
communication bus;

all components with radiation testing and previous flight history are preferred.

Since the aim of this thesis is to build a prototype that must be easily debuggable and

customizable, a few extra requirements were set to the prototype:

a 3.3 V voltage regulator for powering the platform from the universal serial bus
(USB) port;

pin headers between the main supply and individual sections supply lines for
measuring current consumption and for disabling individual devices;

debugging light-emitting diodes (LED) connected to the free GPIO pins of the MCU;
test points for all critical signals to enable convenient oscilloscope probing;

pin headers for the inputs and outputs of all peripheral devices.

16



3.1. Requirements for the electronic components

Dedicated space grade components are expensive, bulky and not easily available. Therefore

all the electronic components used in this project should be commercial off-the-shelf (COTS).

Quad-flat no-leads packages (QFN) are preferred due to their size, thermal performance and
mechanical robustness. In the near vacuum environment, there is no heat convection so
thermal energy is transported only with conductivity and dissipated with thermal radiation.
Consequently, low thermal resistance between components and the PCB has to be priority.

QFN packages, for instance, have a large thermal pad to increase the heat transfer to the PCB.

Integrated circuits using an SPI interface are recommended because SPI is simple, enables full
duplex connection at high clock speeds and can be easily debugged compared to the UART
and I°C. The SPI implementation in hardware does not have a flow control and it is based on
shift registers [15]. This simplifies the software and makes the overall design more robust.
Moreover, the SPI is ideal for transferring large amounts of data so it is very suitable for

accessing the memories.
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4. Materials and methods

Altium Designer 14 was used for the schematic and the PCB design. It was chosen to ensure
compatibility with other sections of the EPS subsystem. Altium Designer will be used

throughout the design process of ESTCube-2.

Texas Instruments LaunchPad MSP430FR5969 Evaluation Kit was used in order to flash the
software onto the MCU. The board includes:

e One MSP430FR5969 MCU with buttons, LEDs and pin headers for external circuitry;

e a USB emulator for programming and debugging the on-board MCU as well as an
MSP430FR series external MCU via Spy-Bi-Wire interface [16];

e an USB to UART channel, enabling virtual serial port communication between the

MCU and the computer. [17]

The freeware version of Code Composer Studio 6.0.1 was used for software development and
debugging. This Eclipse framework based integrated development environment has 16 kB
firmware size limit which is enough for preliminary testing. The software included plenty of

code samples that made the studying of the previously unfamiliar MCU very easy.
An Agilent MSOX4054A digital oscilloscope was used for debugging and testing purposes.

All current and voltage measurements were taken with a Tektronix DMM4050 precision

multimeter.
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5. Results and testing

5.1. Overview

A complete EPS control electronics prototype was designed, assembled and tested. The
prototype has two MCUs, one for subsystem control, and other for diagnostics purpose. In
order to increase reliability, the main MCU can take over controlling the ADCs at any time

using bus switch. The block diagram of the prototype is shown on Figure 2.

Feedback

interrupt LTC2850

e h -
RS485 driver | COoM
FM25V20 LTC2850 - ».
ko RS485driver | | CoHS
FM25V20 ADR363
FRAM1 3V reference
DS3234 Ld
RTC Master select | \
]
74HC595 | 1MAXIZ
Shift register : ADCO
TS3A27518E !
Bus switch A4
MAX1231 / (MAX1257)
ADC1/(DAC, GPIO)
FM25V20
FRAM SPI
UART
UART RS485
_____ Analog
Digital
MAX6369
watchdog

Figure 2: Block diagram of the electrical power supply control electronics prototype design.
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The prototype includes lots of pin headers for connecting external devices, test pins for
convenient oscilloscope probing, debugging LEDs with common ground connected to pin
header, and switching voltage regulator in order to supply the prototype from a USB port. Pin
headers, shown on Figure 3 with red jumpers attached, were added into the power paths of

every functional section to enable separate current measurements.

b F‘; PF-Comp

i
< [ oF U et

 1oranL

L]

ds " IDFAIL-Uref

4.0 3.1 52 3.3
ok

Figure 3: Picture from the top of the assembled prototype.

Figure 4 views the back side of the prototype. In order to simplify the usage of the board, a
description of every pin header was added to the bottom silkscreen layer, as well as the pinout

to the top silkscreen.
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Figure 4: The back side of the assembled prototype.

5.2. Hardware design based on 3.3 V supply voltage

In order to remove all the logic level translators from the design, some components from the
EPS of ESTCube-1 were replaced in the new design. The MCU was the starting point of

selecting new components.

MSP430FR5969 is a 16-bit reduced instruction set computing (RISC) architecture based
MCU featuring 1.8 to 3.6 V supply voltage, 100 uA/MHz active mode current consumption,

40 GPIOs, dual frequency clock system using separate crystal oscillator inputs and three
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enhanced Universal Serial Communication Interfaces (USCI) supporting UART, SPI and I°C
buses. In addition, this particular MCU includes 64 kB of FRAM that can be used for program
memory as well as for random access memory. The FRAM is deployed in the software
equally as traditional SRAM. This MCU suits ideally for this application, since the FRAM's
non-volatile manner enables the storage of a mission critical data inside the MCU. Moreover,

FRAM’s high tolerance towards ionizing radiation increases the endurance of the MCU [18].

Two MSP430FR5969 (Texas Instruments) were integrated to the design mainly to fulfil
the GPIO and program memory requirements but also to enable separated parallel threads that
could be useful for controlling the ADCs more efficiently. The second MCU (hereafter called
as diagnostics MCU) was planned to control the ADCs and to log data. Its purpose besides
fulfilling the main requirements is to release the main MCU from time consuming data
logging, thereby enhancing the ADC measuring method problem that occurred on ESTCube-1
EPS. Both MCUs work at 8 MHz and communicate via SPI bus.

At the time of choosing the components, the MSP430FR5969 had the largest internal FRAM
among all available MCUs. About seven months later when all the practical work was already
finished, a better MCU became available. The MSP430FR6989 has 128 KB of FRAM, 83
GPIOs, and 4 eUSCI modules [19]. This particular MCU satisfies all the requirements but the
decision whether to eliminate the second MCU from the next version of the EPS subsystem
needs further analysis because the design based on two MCUs has its own advantages and

disadvantages over the solution with a single MCU.

The MSP430 series MCUs have been previously tested for ionizing radiation. A TelosB
wireless sensor node, containing a MSP430F1611 [20], stayed fully functional during the
radiation test in which it received a dose of 30 krad. After a 48 hour of annealing, it failed to
be reprogrammed with new firmware. [21] As this MCU used ordinary flash memory for

firmware storage, the MCU with internal FRAM may be more reliable.

The same family MCU used in this project, MSP430FR5739, was used on-board ESTCube-1

to control the piezoelectric motor which unreels the electric solar wind sail tether. [22]

Both MCUs used in the prototype are connected with two different frequency crystals. One
8 MHz for sourcing active mode clock and second 32.768 kHz for RTC operations.
MSP430FR5969 supports a maximum clock frequency of 16 MHz, whereas the FRAM
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maximum access speed is limited to 8 MHz. Wait-states are required for FRAM access if the

MCU works at higher clock speeds than 8 MHz [23].

The MCUs continued using external watchdog timers MAX6369 (Maxim Integrated), as they
work at 3.3V, have robust wide range (1 ms to 60s) timeout setting functionality via
hardware and have open drain output, which is necessary for the Spy-bi-wire communication
with the MCU [13]. MAX6369 are intended to provide a short runtime watchdog
functionality to recover from the MCU software faults. The MCU's internal watchdog timer,
which timeout period can have 8 different values from the range from 1.95 ms to about

18" hours [24], is used as a dedicated watchdog for hard resetting” the satellite.

' 18:12:16, when sourcing the watchdog clock from 32,768 kHz crystal.
* Hard reset causes a power cycle to the whole satellite by disabling battery discharge and waiting for the
satellite to enter umbra.
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5.3. The input voltage fault detection with capacitor bank

The input voltage fault detection was implemented in two ways to test which of them operates
better. First presumption was that it can be achieved with no extra hardware, using the power
path controller IC LTC4412 (Linear Technology) which is already integrated into the
incoming supply circuit in order to provide ideal diode functionality. This IC has an open
drain status output that is activated when the voltage at the sense pin is 20 mV higher than the
input voltage [25]. This solution suits for detecting the fault, but it lacks the opportunity to
change the 20 mV threshold voltage. Figure 5 shows the schematic of the implementation.

CRS06
DI
REG OUT VCC
JP29 Ql il * I
0O % | t 5 SiA447D]
@) I VIN GATE ———————
ID P Cl7 3 6
_FOWeT 100nF—— | ———2. CTL  SENSE -
C0603 —
2 4 R1
— Fl:'r GND STAT = 470k
= 10k
GND _[_ — LTC4412 R0603
GND
: TPS
JP6] OQ | Connect to make fail POWERFAIL-ID

ID-FailMake
Figure 5: Input voltage fault detection circuit based on LTC4412 power path controller.

In order to set a custom threshold voltage, a solution based on a Schmitt trigger was
implemented. The circuit shown on Figure 6 consists of a comparator LMV7271 (Texas
Instruments) and feedback resistors. In a normal condition, the output of the comparator is
low [26] and therefore R78 and R79 make up a voltage divider that sets the comparator
threshold at about 115 mV below the VCC. When the supply input voltage from the REG
OUT line, fed to the inverting input, falls below the threshold, the output of the LMV7271
goes high and this is registered in the MCU as an external interrupt. When the output is high,
R78 and R79 are both at the potential of the VCC and consequently the threshold is set to the
voltage of VCC. In this case the REG OUT has to rise above the VCC to restore the low state
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of the comparator output. The JP30 is added to the supply line to enable measuring the current

and isolating the IC from the VCC.

P30 VCC
0O |2 T
o= ?
o7
100nF—— 78
C0603 12k s
L[| us
= REG OUT HEON g
GND RO —=2 3| 1
TP48 | |330k 7 TMvaen
T s
GND

Figure 6: Input voltage fault detection circuit based on a comparator.

When the supply voltage suddenly disappears from the REG OUT, MCU and its peripherals
are supplied from a tantalum capacitor bank tied to the VCC rail. To conveniently change the
capacity during testing, the bank was divided into two blocks of 1760 pF, each connected to
the pin headers. This enables the selection of the capacity of 880 uF, 1760 uF and 3520 pF by
connecting the blocks in parallel or in series. This feature is implemented only in the
prototype PCB. The flight version of the EPS will contain a capacitor bank with fixed

capacity.

The time diagram in the Figure 7 describes the test results of both methods discussed above.
The test was carried out with capacitor bank of 880 uF, supply voltage of 3.3 V and by
unplugging the USB cable that supplied the on-board switching regulator with 5 V. The MCU
was programmed to transmit random data to the serial port in order to detect how long it stays
operational. The test showed that both methods accomplish the task, but as the version with
standalone comparator can be made more tolerant of false alarms generated by the

interference in the supply line, this solution is preferred.
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It can be seen from the oscilloscope screen capture (Figure 7) that the MCU shuts down
precisely at 1.8 V, as the datasheet specifies [23] and is operational about 206 ms after both
powerfail interrupts occurred. The time difference between two detection methods was

measured roughly 1 ms, which is negligible.
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Figure 7: Test results of the input voltage fault detection methods captured with an
oscilloscope.

5.4. External analog-to-digital converters

Other significant components to be changed were the ADCs, as they were working on 5V
supply voltage. The MAX1230, used in ESTCube-1 EPS, was replaced with MAX1231. Both
these ADCs are produced by Maxim Integrated and differ only in supply voltage. This
simplifies the new design, especially from the firmware perspective. When examining the
datasheet of MAX1231, it turned out that one of its analog inputs has an alternative function
of providing capability to trigger conversions [27]. So instead of writing command byte via
the SPI bus, one can simply put this input low for at least 1.4 pusec to start a predefined

acquisition cycle. The ADC then performs measurements using its internal 4.4 MHz clock,
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writes results to its 34-byte FIFO and puts end of conversion output low [27]. This is
registered as an external interrupt event in the MCU, indicating that SPI data transaction can
commence. Then the data from the ADC FIFO is read into the MCU. The conversion time of

15 channels using this method is 70 psec’.

This method is significantly better for controlling these ADCs, because the MCU does not
have to intervene in the acquisition process. Furthermore, as the trigger signals can be
dispatched simultaneously to multiple ADCs, this minimizes the time gap between sequential
input channels of different ADCs. It also enables to increment the number of ADCs with no

increase in acquisition time.

Another feature involved with the ADCs was to provide compatibility to MAX1257, which
integrates 16-channel 12-bit ADC, 8-channel digital-to-analog converter (DAC) and 12 GPIO
into a single miniature 48-pin QFN package [28]. This highly functional IC could lose the
need for external DACs used for giving feedback to voltage regulators in the ESTCube-1 EPS
[12]. Unfortunately, the availability of this IC was problematic during the design phase, so
one ADC circuitry was made to support both, MAX1231 and MAX1257 footprints. This
enables the opportunity to test MAX1257 in the future, should the need for it arise.

The whole system’s supply voltage was reduced from 5 V to 3.3 V hence the ADCs reference
voltage source had to be replaced. ADR363B from Analog Devices was chosen since it
provides 3 V output with £3 mV accuracy, has fractional 9 ppm/°C temperature coefficient

and is specified to work in a temperature range from -40 °C to +125 °C [29].

To provide both MCUs with the ability to control the ADCs, a 6-channel multiplexer
TS3A27518E is used as SPI bus switch. The main MCU decides which MCU controls the
ADC:s by setting or clearing one digital output.

> MAX1231 using external reference, without averaging and temperature request, measured from the falling
edge of conversion start signal to the falling edge of the end of conversion signal.
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5.5. MCU Software

Since plenty of peripherals stayed consistent, some low level logic and frontend code from
ESTCube-1 EPS was reusable. However, the entire processor specific driver layer had to be
developed from scratch. This section describes the most important parts of the software that

make up a small amount of the whole software that was written within the scope of this thesis.

5.5.1. Improved external real-time clock DS3234 driver

The time and date in DS3234 real-time clock is stored in binary-coded decimal (BCD) [14],
whereas the MCU time structure is using ordinary 8-bit unsigned integer format. On the EPS
of ESTCube-1 the conversions between the two formats were implemented in the software. It
was based on lots of arithmetic including dividing, which resulted in relatively slow process.
The new driver version utilizes a special decimal to BCD and BCD to decimal hardware
conversion registers that are included in the MCU RTC module [24]. Driver software simply
writes to these registers in one format and reads another. This makes the driver very fast and

efficient.

5.5.2. Data connection between main- and diagnostics MCU

The communications between two microcontrollers is based on SPI because it enables full
duplex connection at high speeds, in our case 4 MHz. The master of the SPI bus is the main
MCU and data transactions are initiated with a command byte sent by the main MCU. The
diagnostics MCU sets data ready output, indicating that it is ready for the transaction.
Depending on the specific command, data can be received, transmitted or swapped. Due to the
high clock speed of the SPI bus, advanced techniques must be used for the diagnostics MCU
SPI logic. If the diagnostics MCU is not capable of reading or writing SPI shift registers fast

enough, erroneous data could be transferred.

Direct memory access (DMA) provides a splendid solution to this problem. With DMA, the
data can be moved between two software defined memory locations without the MCU
intervening. The software must specify transmit and receive memory addresses, byte count,

transaction trigger event and enable the DMA channel. After that, the DMA controller starts
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data transfer and the MCU can continue with other tasks, for instance processing the next

command. The transfer of one byte takes usually only few” clock cycles.

This method was applied to the diagnostics MCU’s driver software. Three types of
communications were implemented: sending, receiving and swapping. The full-duplex nature
of SPI was utilized by giving the opportunity to dispatch a new command to the diagnostics
MCU while it is sending data to the main MCU. Since all data transactions in the diagnostics
MCU are implemented with DMA, this gives a chance to process commands during the
transactions. A double buffering was added to the transmit channel of the DMA so that data

could not be modified during transmissions.

An example program, described on Figure 8, was developed to both MCUs demonstrating the

data link in operation.

Main MCU Diagnostics MCU
[dmgnosncsMCU sendCommand|0xAF) ]—h[ ADC_startConversion() ]—b

Data ready
[ diagnosticsMCU_getArray(rx_pointer, 60, OxBF) k—[SPI_slwe_send_both_AD C{ADCOresults, ADC1results) ]

0xBF __|ADCD_getTemperE|ture()
'| ADC1_getTemperature()

v

Data read
[di agnosticsMCU_getArray(rx_pointer, 4, 0x22) ]<—Y[ SPI_slave sendArray(&ADC _temperatures, 4) ]

Dx22

‘r‘[SPI_sIave_getArray( SPI_rx_buffer_pointer, 10) ]
| A

i - ] ], Dataready
diagnosticsMCU_sendArray(tx_pointer, 10) I

10 bytes of data

0x11
[diagnisticsMCU_sendCommand([])d 1) ]—P[SPI_SIave_swapArray(tx_pointer, SPI_rx_buffer_pointer, 15) ]
A

] Data ready
diagnosticsMCU_swapArmay(tx_pointer, ne_pointer, 15) J<

? 15 bytes of data

Figure 8: The software logic of the two MCUs doing various types of data transactions during

example program execution.

* MSP430FR5969 in active mode: 4 cycles [24].
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The Figure 9 shows the interactions between the two microcontrollers on a time diagram
captured by an oscilloscope. Three different types of communications are shown and the

explanation of every step marked with number is described below.

1. The master MCU sends a command byte OxAF, which orders the diagnostics MCU to
measure all the channels of both ADCs.

2. The diagnostics MCU has received the command and initiates the ADC conversions by
clearing both ADCs conversion start inputs for 2 pusec.

3. The ADCs put the end of conversion outputs low, indicating that the measurement results
are ready in the FIFO. End of conversion signal goes high when the diagnostics MCU
starts shifting data in from the ADC. SPI clock and data signals are not visible because
they are on the second SPI bus of the diagnostics MCU.

4. When the diagnostics MCU has received the data from the ADCs and prepared the DMA,
it puts the data ready output high for 2 psec.

5. Since the data has to be transferred in only one direction, the main MCU starts transaction

by sending a command byte 0xBF, followed by 29 bytes of zeros.

10.0:1
10.0:1

Figure 9: Oscilloscope screen capture taken during the execution of the example program.
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6. During the data transfer with the main MCU, the diagnostics MCU starts processing the
new command which instructs it to get the temperatures of both ADCs. EOC0 and EOC1
signals go low indicating the end of temperature conversions and go high when the MCU
starts reading data from the ADC.

7. The diagnostics MCU sends data ready signal and the main MCU shifts the previously
measured ADC temperatures in from the diagnostics MCU. This time the main MCU
sends new command 0x22, meaning that the main MCU wants to send 10 bytes of data to
the diagnostics MCU.

8. The diagnostics MCU acknowledges the request by sending data ready signal and the
main MCU sends its data. A new command cannot be sent during the 10 byte transaction
because the diagnostics MCU assumes that only data and no commands are being sent.
The last spike in MOSI is 1" byte containing a new command 0x11, meaning that the
main MCU wants to swap 15 bytes of data.

9. The diagnostics MCU acknowledges the request and this time both MCUs send 15 bytes

to each other.

5.6. Power consumption

The prototype’s power consumption was measured while both MCUs were doing their routine
tasks including ADC measurements, data communication between the main and the
diagnostics MCU, writing and reading from FRAM memory and sending data to UART.

Table 1 describes the average current consumption of the main sections of the prototype.

The current measurements were conducted with a supply voltage of 3.301 V. The 10 mA
current range was selected because it matched with theoretical maximums and it uses 1 Q
shunt resistor which minimizes the burden voltage [30]. 15000 current readings were
collected during a time of one minute with the period of 4 milliseconds between each

measurement.
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Table 1: Power consumptions of the main sections of the prototype.

Device Average current, pA | Teoretical current, pA
Diagnistics MCU 1394,1 1220°
Main MCU 1136,0
2 x RS485 driver 796,9 900°
3 x FRAM 246,8 390’
ADC reference 130,8 1508
RTC 88,7 400°
Powerfail circuitry 17,3 131
ADCO + ADCI 7,3 3100"
Other peripherals 417,0
Total 4151,7

As the Table 1 states, the total current consumption is about 4.2 mA. This equals to 14 mW of

power, which is an order of magnitude lower compared to ESTCube-1 EPS control

electronics that was specified at 200 mW [12].

> 8 MHz clock, no FRAM wait-states, unified memory [23].

% In transmit mode [31].

’ During data transaction at 1 MHz [32].

¥ In temperature range between —40°C to +125°C [29].

? During transaction with SPI clock 4 MHz, supply voltage 3.63 V, includes temperature measurement [14].
' With comparator input voltages: V' =2.7 Vand V=0 V [26].

' Using external reference, during temperature measurement [27].
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6. Summary

The aim of this thesis was to build a prototype of ESTCube-2 EPS subsystem control
electronics. For that purpose, ESTCube-1 EPS was analyzed from the hardware perspective
and all the areas where improvements could be made were listed. The requirements for
ESTCube-2 EPS control electronics were set and a new design was implemented that
improves the functionality and the reliability of the system while making it more robust. The
testing results showed that the prototype meets or exceeds all the requirements that were set.

The main results are following:

e the supply voltage of the system is 3.3 V;

e power consumption of 14 mW was achieved which is less than the requested
maximum of 30 mW;

e the prototype has 30 external ADC input channels which are measured within a time
window of 70 usec. The number of the ADCs can be incremented with no increase in
the acquisition time;

e the system includes voltage fault detection system that notifies the MCU about the

voltage fault and holds the system operational for about 200 milliseconds.

The hardware module that was built during the practical work has two separate
microcontroller units - one for general tasks and other for diagnostics purpose. The prototype
features 3.3 V voltage regulator for obtaining supply from the USB port, pin headers between
the main supply and individual sections supply lines as well as in the inputs and outputs of all
peripheral devices, debugging LEDs and test points for convenient debugging. The module

can be easily connected to other EPS subsystem’s prototypes.

The low level software that was written utilizes direct memory access that allows high speed
data connection between two microcontrollers. The software is written in C language and
enables to reuse the high level software of the ESTCube-1 thanks to similar function

arguments and return types.
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ESTCube-2 elektrienergia alamsiisteemi juhtelektroonika prototiiiibi ehitamine ning

testimine

Martin Poder

7. Kokkuvote

ESTCube-2 ja ESTCube-3 on Eesti tudengisatelliidi projekti jatkumissioonidena
kavandatavad satelliidid. Nende peamine eemirk on testida elektrilist pdikesetuulepurjet
suuremal skaalal ning véljaspool planeet Maa magnetvilja, nditeks Kuu orbiidil. ESTCube-2
missioon seisneb elektrilise pdikesetuulepurje komponentide ja teiste ESTCube-3 kasutatavate
alamsiisteemide testimises maaldhedasel orbiidil. Kuna ESTCube-2 on suurema
energiavajadusega kui Eesti esimene satelliit ESTCube-1, tuleb selle rahuldamiseks disainida

uus elektrienergia alamsiisteem.

Kéesolev bakalaureuset6d analiiiisib ESTCube-1 elektrienergia alamsiisteemi riistvara
seisukohalt, pakub vilja lahendused ilmnenud kitsaskohtade parandamiseks, piistitab
ESTCube-2 elektrienergia alamsiisteemi juhtelektroonika funktsionaalsed nduded ning

kirjeldab prototiilibi valmimist ja testimise tulemusi.

Praktilise t66 tulemusena valmis prototiilip, mis parandas ESTCube-1 elektrienergia
alamsiisteemi kontrollelektroonikal ilmnenud kitsaskohad. Samuti tiitis voi iiletas prototiiiip

koiki sellele esitatud nduded. T66 tulemusena valminud prototiiiibi olulisemad omadused on:

e 3.3 voldine toitepinge;

e seadme energiatarve 14 mW, mis on kaks korda vdhem piistitatud maksimaalsest
vadrtusest (30 mW);

e 30 analoog-digitaalmuundi  sisendit, mille = moddtetulemused  saadakse
70 mikrosekundiga. Analoog-digitaalmuundite arvu saab skeemis suurendada selliselt,
et mooteaeg sellest ei pikene;

e toitepinge kadumist tuvastav ahel, mis teatab mikrokontrollerit pinge kadumisest ning

mille mahtuvuspank hoiab siisteemi t66s 200 millisekundit pérast vea ilmnemist.
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Valminud prototiiiibil on kaks mikrokontrollerit, millest iiks tegeleb ainult diagnostikaga ning
teine koigi lilejddanud iilesannetega. Prototiilibil on 3.3 V pingeregulaator, et toita seda USB
pordist, viljaviigud kdikide alamosade sisendites, viljundites ning toitepinge ahelates. Samuti
on trilkkkplaadile lisatud hulganisti moodtevéljaviike ning valgusdioode, mis lihtsustavad vea
otsingut ja silumist. Prototiilipi on lihtne kasutada ja tdiendada teiste elektrienergia

alamsiisteemi osadega iihtseks tervikuks.

Prototiiiibi jaoks arendatud tarkvara kasutab otsemdlupdordust, et tagada kiire andmevahetus
kahe mikrokontrolleri vahel. Tarkvara on kirjutatud C keeles ning vdimaldab taaskasutada
ESTCube-1 korgema taseme tarkvara, sest funktsioonide argumendid ja tagastustiiiibid on

sarnased ESTCube-1 tarkvaraga.
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Appendices

Appendix 1 - Schematics
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Figure 10: The main sheet of schematics.
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Figure 11: Shift register.
40




A
JP31 vCce
2 ug
1 TE? S I ) S M— 7 MoST |
C29 <= HOLD
FRAM_Power 100nF 3») WP SO - 2 } MISO
B C0603 g
L scK =L CIK |
GND 4 Gnp o TS -k  CS-FRAMO|
= FM25V20-DG
GND TP16 9
CS-FRAMO
U9
8 5 D15
S E—
&5 G| Sl S 47T FRAMO
100 = HOLD
nF 3 Ee o 2
€0603 =
- ScK | GND
GND 4 GNp S = . CS-FRAMI]
= FM25V20-DG
TP17 30
c CS-FRAMI
D16
45 FRAMI
GND
FRAM.SchDoc
D Project: EPS_Controls.PrjPcb
Subsystem:  EPS University of Tartu
Drawn by: Martin Poder Ravila 14¢ - D601
Modified: 19.05.2015 Tartu 50411 .
Checked by:  Erik Ilbis Tartumaa i
Checked on:  19.05.2015 Estonia ESTCUBE
Approved by: Erik Ilbis estcube(@estcube.eu
Approved on: 19.05.2015 Revision: | Sheet: 3 of 14
1 2 3

Figure 12: FRAM memories.
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Figure 13: Real-time clock.
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Figure 14: RS485 transceivers.
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Figure 15: Analog-to-digital converters.
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Figure 16: Low pass filter of ADCO.
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Figure 17: Low pass filter of ADCI.
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Figure 18: Main microcontroller unit.
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Figure 19: Second microcontroller unit.
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Figure 21: External watchdog timer of second MCU.
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Figure 22: Bus switch.
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Figure 23: Power supply with capacitor bank and powerfail detection circuitry.
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Appendix 2 - PCB design
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Figure 26: Inner copper layer 1.
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Figure 27: Inner copper layer 2.
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Figure 28: Top assembly and silkscreen layers.
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Figure 29: Bottom assembly and silkscreen layers.
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