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Abstract 
This thesis focuses on the development of the control electronics of the electrical power 

system of ESTCube-2. The main goal of this thesis was to build a prototype that enhances the 

electrical power system of ESTCube-1 by identifying all the areas where improvements could 

be made and applying the solutions in the new system. 

The first section of this thesis gives an overview of the scientific missions of the future 

satellites that are planned to be developed within the ESTCube programme. Then the control 

system of the electrical power system of ESTCube-1 is analysed from the hardware aspects 

and the requirements for the prototype are listed. The fifth paragraph focuses on the design of 

the prototype and gives a detailed explanation of the most important hardware and software 

features, as well as the functional testing results. 

A fully functional prototype alongside with the low level software was achieved. The 

prototype features very efficient analog-to-digital converter control method, low power 

consumption and an input voltage failure detection mechanism. All the aimed requirements 

were fulfilled or exceeded. The module is easily expandable with other sections of the 

electrical power system to simplify the further development. 
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1. Introduction 
ESTCube-1 is the first Estonian satellite and it was developed within the scope of the 

ESTCube programme [1]. The mission of ESTCube-1 successfully reached the testing phase 

of the electric solar wind sail [2] components. The electron guns operated as expected and the 

satellite spun itself up to 840 degrees per second to unreel the tether. Only the reeling 

mechanism was proven to be unreliable [3]. ESTCube-1 provided valuable experience and 

established the infrastructure for future space projects in Estonia. 

ESTCube-2 and ESTCube-3 are follow-up projects to ESTCube-1 with the main mission to 

reach a successful test of the electrical solar wind sail outside of the Earth´s magnetic field. 

The preliminary testing of the electrical solar wind sail components will be done by 

ESTCube-2 in the low-Earth orbit. ESTCube-2 will be a three unit CubeSat [4] and 

comparing to ESTCube-1, it has more solar panels to satisfy the higher power demand. Due to 

the increased requirements, a new electrical power system (EPS) has to be developed. 

Generally, the EPS subsystem can be divided into two major sections: the control electronics 

and the power electronics. The control electronics part has to manage the entire EPS 

subsystem by conducting numerous mission critical tasks. Therefore, all its components must 

be developed with the utmost care, emphasizing reliability and robustness. The satellite has to 

operate in a severe space environment which makes the design of the satellite even more 

challenging. 

This thesis focuses on the development of the control electronics of the EPS for ESTCube-2 

with the main goals to: 

• analyze ESTCube-1 EPS subsystem control electronics design from the hardware 

aspects to find the areas where improvements could be made; 

• specify the requirements of ESTCube-2 EPS control electronics; 

• built a prototype that includes improvements and complies with all requirements; 

• test the performance of the prototype and its conformance to the requirements.  
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2. Overview 
2.1. ESTCube-1 

The Estonian student satellite project began in 2008 at the University of Tartu, with the main 

goal of educating students by providing an opportunity to build the first Estonian satellite. The 

collaboration between students from the University of Tartu, Estonian Aviation Academy, 

Tallinn University of Technology and University of Life Sciences led the successful 

completion of ESTCube-1 [1]. On the May 7th, 2013 the satellite was sent to low-Earth orbit 

with the primary mission to test the components of the electric solar wind sail [2], invented by 

Pekka Janhunen in Finland. [1] The reeling mechanism in the payload subsystem of 

ESTCube-1 had to unreel a thin conductive tether for this purpose [5]. The test was 

performed, but unfortunately the reeling mechanism failed due to a mechanical fault. Later 

investigation revealed that most probably the reeling mechanism got damaged due to the 

severe vibration during the launch of the rocket Vega VV02 that carried ESTCube-1. 

ESTCube-1 can be considered as a great accomplishment because almost all of the goals were 

achieved. Firstly, it prepared the ground for future space programmes in Estonia by 

developing the necessary infrastructure and by providing the students with hands-on 

experience. Secondly, the main objective to build and launch the satellite was achieved. One 

of the main tasks of the satellite was to spin itself up to one rotation per second in order to 

unreel the e-sail tether [5]. All other subsystems stayed fully functional during the test of the 

spin-up. [3] 

ESTCube team has already started developing follow-up projects to ESTCube-1. The concept 

of the future satellites is to test the e-sail on a bigger scale and in the real environment which 

is somewhere outside of the Earth´s magnetic field, for instance in the lunar orbit. ESTCube-3 

is planned to be equipped with cold gas thrusters for attitude and orbit control purposes, 

deployable solar panels to satisfy the increased power demand and the e-sail tether to perform 

the scientific experiment. The main purpose of ESTCube-2 is to test the e-sail components 

and other subsystems used in ESTCube-3 in the low-Earth orbit. Satellite launches to the 

orbits where ESTCube-3 can accomplish its mission are expensive and arranged infrequently. 

Therefore ESTCube-2 must test the eligibility of the technology to increase the probability of 

success of ESTCube-3. 
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2.2. Overview of the EPS control electronics designs 

The electrical power system (EPS) is one of the most important subsystems of every satellite. 

It has to accomplish numerous critical tasks including energy harvesting, battery charging, 

providing electrical supply to all other subsystems and logging data in order to provide 

statistics of power production and consumption. 

There are two commonly used approaches in the way the EPS is controlled within the 

satellite. Firstly, the EPS can be controlled by the satellite´s main microcontroller unit 

(MCU). This approach reduces the complexity of the EPS, but burdens the main MCU with 

time consuming monitoring and logging operations. 

Second way of controlling the EPS is by using a dedicated MCU that accomplishes all the 

necessary tasks for the EPS to function. These tasks can be interacting with other subsystems, 

monitoring and logging power harvesting and consumption, switching on and off the supply 

voltage of other subsystems and handling the maximum power point tracking (MPPT) 

algorithm. Since the EPS stays constantly operational and some of its tasks, like logging, are 

done frequently, the EPS MCU should have low power consumption to reduce the overall 

power demand of the satellite. 

The Norwegian satellite CubeSTAR uses dedicated MCU ATxmega128A1 from Atmel as a 

dedicated EPS control MCU. The MCU is used for implementing the MPPT algorithm for 

charging the batteries and it also provides the telemetry data. The MCU is connected with the 

satellite´s main MCU via an inter-integrated circuit (I2C) bus. [6] 

 

AAUSAT3, the third Danish CubeSat, uses a dedicated MCU AT90CAN128 (Atmel) for 

controlling battery charging and discharging, monitoring general health of the satellite, and 

organizing the power distribution. The MCU is connected to the other subsystems through a 

controller area network (CAN) bus. [7] 

The EPS design of the student satellite OUFTI-1, developed in the University of Liege, does 

not have a dedicated MCU. The EPS printed circuit board (PCB) contains two analog-to-

digital converters (ADC) ADS7830IP (Texas Instruments) and MAX1039 (Maxim 
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Integrated). The ADCs are connected with the on-board data handling subsystems via I2C bus 

and they are used for measuring currents, temperatures and bus voltages. [8] 

The EPS subsystem of NUTS-1, a 2-unit CubeSat from Norwegian University of Science and 

Technology, does not have a MCU either. The EPS utilizes INA219 (Texas Instruments) I2C 

current and power monitor integrated circuits (IC) that are controlled by the on-board 

controller module as well as by the telemetry, tracking and control module. [9] 

2.3. Electrical power system control electronics of  
ESTCube-1 

The EPS of ESTCube-1 is controlled by a dedicated MCU that is responsible for power 

distribution, collecting and logging telemetry data and controlling the bacon signal. Figure 1 

shows the block diagram of the EPS control electronics of ESTCube-1. 

Figure 1: The EPS control electronics of ESTCube-1 [12]. 
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2.3.1. Design analysis of the EPS control electronics of ESTCube-1 

ESTCube-1 EPS is based on an 8-bit MCU ATmega1280 from Atmel, which has 128 KB of 

program flash, 4 KB of electrically erasable programmable read-only memory (EEPROM), 

8 KB static random-access memory (SRAM) and a 10-bit ADC with 16 inputs [10]. This 

MCU was chosen for this application because it has low power consumption, 86 general 

purpose input and output (GPIO) pins [10], it has been tested for radiation [11] and it had 

previous flight heritage. [12] 

An external watchdog timer (WDT) MAX6369 (Maxim Integrated) is used instead of the 

MCUs internal WDT to provide flexible and independent timeout settings. The MAX6369 

enables to set seven different timeout periods within the range from 1 millisecond to 60 

seconds in the hardware, using pull-up or pull-down resistors [13]. ATmega1280s internal 

WDT timeout can be varied only from 16 milliseconds to 8 seconds [10]. 

The microcontroller is connected to two types of ferroelectric random-access memory 

(FRAM) chips. The 32 KB parallel FRAM memory FM18W08 (Cypress) is used to expand 

the MCU´s random access memory and two serial 2 Mbit FM25V20 (Cypress) FRAM 

memories are used for the measurement data and firmware image storage. [12] 

All necessary measurements are performed using the MCU´s internal 10-bit ADC as well as 

standalone ADCs. The MCUs internal ADC uses a 4.5 V reference voltage source MAX6145 

(Maxim Integrated). Two 16-channel 12-bit external ADCs MAX1230 obtain their 5 V 

reference voltage from ADR3450 (Analog Devices). Battery temperature acquiring and 

backup measurements of the main power bus voltage are performed by two 8-bit ADCs 

MAX1119 (Maxim Integrated) with internal 4.096 V reference source. The system is capable 

of measuring the main power bus voltage with three different ADCs (MAX1119, MAX1230 

and ATmega1280 internal ADC). This feature allows comparing the results in order to detect 

degradation of the ADCs. [12] 

One of the tasks of the EPS is keeping the date and time of the satellite [12]. DS3234 (Maxim 

Integrated) is used for this purpose due to its accuracy and thermal stability. It features 
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internal temperature compensated crystal oscillator ensuring time precision of ±3.5 ppm in the 

temperature range of -40 ⁰C to 85 ⁰C [14]. 

2.3.2. Areas of improvements of the EPS of ESTCube-1 
The EPS subsystem together with the MCU operates at 5 V voltage, while the serial mass 

storage FRAM memories operate at 3.3 V. This difference in voltages requires for a transition 

in the logic levels. An ADG3304 (Analog Devices) is used to interface the lower voltage 

FRAMs with the MCU. Since all other subsystems in ESTCube-1 work on 3.3 V, logic level 

translators are required to communicate with them. TXB0108 (Texas Instruments) and 

PCA9306 (Texas Instruments) are connected to universal asynchronous receiver/transmitter 

(UART) and I2C buses which are providing vital communication interface to the command 

and data handling system (CDHS) and communication system (COM). [12] 

These logic level translators between mission critical peripherals and subsystem´s 

communication buses reduce overall system reliability. In the case of failure, they might have 

a severe impact on the functionality of the satellite. 

A simple solution would be to adopt components with working voltage of 3.3 V in the entire 

subsystem. This resolves the previously mentioned reliability issue by eliminating all the logic 

level translators as well as reducing overall current consumption and component count. 

The EPS of ESTCube-1 has a capacitor bank to ensure short time (80 milliseconds [12]) 

operation of the subsystem when the voltage on the main power bus suddenly disappears. This 

time can be used to pinpoint the fault, save it to a log and to try to restore the power to the 

system. The loss of the voltage can be detected only with the ADC during routine logging 

measurements. [12] The problem of this approach is the latency between the actual 

occurrence and the discovery of the fault. 

An ideal solution would notify the MCU with an external interrupt as soon as the voltage has 

decreased below a certain threshold. A separate, fast and reliable fault detection circuitry must 

be developed in order to achieve this. 
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ESTCube-1 EPS subsystem has to measure 48 analog voltages during one routine logging 

acquisition [12]. Due to the inefficient method of controlling the ADCs, the time it takes to 

measure all 48 channels is 5 milliseconds [3]. When measuring rapidly changing currents, this 

long measurement window can result in miscalculations because the acquired results do not 

describe the same moment in time. 

Another issue is that the MAX1230 ADCs are used in a mode where acquisitions are initiated 

one at a time by sending a command byte to the ADC [12]. Since the serial peripheral 

interface (SPI) clock signal is used to clock the ADC conversions, the MCU must conduct the 

whole measurement process. Should an external interrupt occur during a multichannel 

acquisition, the measurement process is suspended for undefined amount of time. This can 

lead to unpredictable timing errors between several sequential ADC measurements. The 

problem evolves further with the increase of total channels to be measured in series. 

These problems can be approached in two ways, either by using dedicated sample-and-hold 

circuits for every input channel of the ADC, or by controlling the ADCs in a more efficient 

way. First approach means that all channels would be sampled simultaneously and then 

measured separately from the sample-and-hold IC outputs. This would definitely solve the 

problem, but in the other hand it would increase the count of components by the number of 

necessary analog inputs and therefore make the design more complex and less robust. The 

more efficient method for controlling the ADCs can utilize the ADCs internal first in first out 

(FIFO) memory and oscillator in order to perform acquisitions autonomously. This can be 

achieved with no extra hardware but it would only reduce the severity of the problem, not 

solve it entirely. 

The power consumption of the EPS control electronics can be also viewed as an area of 

improvement. Since the EPS is constantly operational, its idle power consumption should be 

as little as possible. Therefore, the power consumption should be important criteria when 

choosing the components of the new design. The energy that can be saved would definitely 

have a better utilization, for instance, it can be used for charging the batteries. 
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3. System requirements 
The requirements for the EPS control electronics of ESTCube-2 are following: 

• a supply voltage of 3.3 V; 

• active mode power consumption less than 30 mW; 

• 30 12-bit external ADC channels with measurement time window less than 500 µsec. 

The number of input channels should be easily expandable; 

• a voltage fault detection system including capacity bank, that holds the MCU 

operational at least 100 ms after the input voltage failure; 

• at least 60 MCU GPIOs for peripheral devices; 

• MCU with at least 64 kB of internal FRAM memory; 

• at least 4 Mbit of external FRAM memory; 

• an real-time clock (RTC) with temperature compensated crystal oscillator and 

accuracy better than ±5 ppm; 

• two half-duplex RS485 UART channels for connecting the EPS with the satellite´s 

communication bus; 

• all components with radiation testing and previous flight history are preferred. 

Since the aim of this thesis is to build a prototype that must be easily debuggable and 

customizable, a few extra requirements were set to the prototype: 

• a 3.3 V voltage regulator for powering the platform from the universal serial bus 

(USB) port; 

• pin headers between the main supply and individual sections supply lines for 

measuring current consumption and for disabling individual devices; 

• debugging light-emitting diodes (LED) connected to the free GPIO pins of the MCU; 

• test points for all critical signals to enable convenient oscilloscope probing; 

• pin headers for the inputs and outputs of all peripheral devices. 
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3.1. Requirements for the electronic components 

Dedicated space grade components are expensive, bulky and not easily available. Therefore 

all the electronic components used in this project should be commercial off-the-shelf (COTS). 

Quad-flat no-leads packages (QFN) are preferred due to their size, thermal performance and 

mechanical robustness. In the near vacuum environment, there is no heat convection so 

thermal energy is transported only with conductivity and dissipated with thermal radiation. 

Consequently, low thermal resistance between components and the PCB has to be priority. 

QFN packages, for instance, have a large thermal pad to increase the heat transfer to the PCB. 

Integrated circuits using an SPI interface are recommended because SPI is simple, enables full 

duplex connection at high clock speeds and can be easily debugged compared to the UART 

and I2C. The SPI implementation in hardware does not have a flow control and it is based on 

shift registers [15]. This simplifies the software and makes the overall design more robust. 

Moreover, the SPI is ideal for transferring large amounts of data so it is very suitable for 

accessing the memories. 
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4. Materials and methods 
Altium Designer 14 was used for the schematic and the PCB design. It was chosen to ensure 

compatibility with other sections of the EPS subsystem. Altium Designer will be used 

throughout the design process of ESTCube-2. 

Texas Instruments LaunchPad MSP430FR5969 Evaluation Kit was used in order to flash the 

software onto the MCU. The board includes: 

• One MSP430FR5969 MCU with buttons, LEDs and pin headers for external circuitry; 

• a USB emulator for programming and debugging the on-board MCU as well as an 

MSP430FR series external MCU via Spy-Bi-Wire interface [16]; 

• an USB to UART channel, enabling virtual serial port communication between the 

MCU and the computer. [17] 

The freeware version of Code Composer Studio 6.0.1 was used for software development and 

debugging. This Eclipse framework based integrated development environment has 16 kB 

firmware size limit which is enough for preliminary testing. The software included plenty of 

code samples that made the studying of the previously unfamiliar MCU very easy. 

An Agilent MSOX4054A digital oscilloscope was used for debugging and testing purposes. 

All current and voltage measurements were taken with a Tektronix DMM4050 precision 

multimeter. 
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5. Results and testing 
5.1. Overview 

A complete EPS control electronics prototype was designed, assembled and tested. The 

prototype has two MCUs, one for subsystem control, and other for diagnostics purpose. In 

order to increase reliability, the main MCU can take over controlling the ADCs at any time 

using bus switch. The block diagram of the prototype is shown on Figure 2. 

  

  

Figure 2: Block diagram of the electrical power supply control electronics prototype design. 
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The prototype includes lots of pin headers for connecting external devices, test pins for 

convenient oscilloscope probing, debugging LEDs with common ground connected to pin 

header, and switching voltage regulator in order to supply the prototype from a USB port. Pin 

headers, shown on Figure 3 with red jumpers attached, were added into the power paths of 

every functional section to enable separate current measurements. 

 
Figure 3: Picture from the top of the assembled prototype. 

 Figure 4 views the back side of the prototype. In order to simplify the usage of the board, a 

description of every pin header was added to the bottom silkscreen layer, as well as the pinout 

to the top silkscreen.  
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 Figure 4: The back side of the assembled prototype. 

 

5.2. Hardware design based on 3.3 V supply voltage 
In order to remove all the logic level translators from the design, some components from the 

EPS of ESTCube-1 were replaced in the new design. The MCU was the starting point of 

selecting new components. 

MSP430FR5969 is a 16-bit reduced instruction set computing (RISC) architecture based 

MCU featuring 1.8 to 3.6 V supply voltage, 100 µA/MHz active mode current consumption, 

40 GPIOs, dual frequency clock system using separate crystal oscillator inputs and three 

21 

 



enhanced Universal Serial Communication Interfaces (eUSCI) supporting UART, SPI and I2C 

buses. In addition, this particular MCU includes 64 kB of FRAM that can be used for program 

memory as well as for random access memory. The FRAM is deployed in the software 

equally as traditional SRAM. This MCU suits ideally for this application, since the FRAM´s 

non-volatile manner enables the storage of a mission critical data inside the MCU. Moreover, 

FRAM´s high tolerance towards ionizing radiation increases the endurance of the MCU [18]. 

Two MSP430FR5969 (Texas Instruments) were integrated to the design mainly to fulfil  

the GPIO and program memory requirements but also to enable separated parallel threads that 

could be useful for controlling the ADCs more efficiently. The second MCU (hereafter called 

as diagnostics MCU) was planned to control the ADCs and to log data. Its purpose besides 

fulfilling the main requirements is to release the main MCU from time consuming data 

logging, thereby enhancing the ADC measuring method problem that occurred on ESTCube-1 

EPS. Both MCUs work at 8 MHz and communicate via SPI bus. 

At the time of choosing the components, the MSP430FR5969 had the largest internal FRAM 

among all available MCUs. About seven months later when all the practical work was already 

finished, a better MCU became available. The MSP430FR6989 has 128 KB of FRAM, 83 

GPIOs, and 4 eUSCI modules [19]. This particular MCU satisfies all the requirements but the 

decision whether to eliminate the second MCU from the next version of the EPS subsystem 

needs further analysis because the design based on two MCUs has its own advantages and 

disadvantages over the solution with a single MCU. 

The MSP430 series MCUs have been previously tested for ionizing radiation. A TelosB 

wireless sensor node, containing a MSP430F1611 [20], stayed fully functional during the 

radiation test in which it received a dose of 30 krad. After a 48 hour of annealing, it failed to 

be reprogrammed with new firmware. [21] As this MCU used ordinary flash memory for 

firmware storage, the MCU with internal FRAM may be more reliable. 

The same family MCU used in this project, MSP430FR5739, was used on-board ESTCube-1 

to control the piezoelectric motor which unreels the electric solar wind sail tether. [22] 

Both MCUs used in the prototype are connected with two different frequency crystals. One 

8 MHz for sourcing active mode clock and second 32.768 kHz for RTC operations. 

MSP430FR5969 supports a maximum clock frequency of 16 MHz, whereas the FRAM 
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maximum access speed is limited to 8 MHz. Wait-states are required for FRAM access if the 

MCU works at higher clock speeds than 8 MHz [23]. 

The MCUs continued using external watchdog timers MAX6369 (Maxim Integrated), as they 

work at 3.3 V, have robust wide range (1 ms to 60 s) timeout setting functionality via 

hardware and have open drain output, which is necessary for the Spy-bi-wire communication 

with the MCU [13]. MAX6369 are intended to provide a short runtime watchdog 

functionality to recover from the MCU software faults. The MCU´s internal watchdog timer, 

which timeout period can have 8 different values from the range from 1.95 ms to about 

181 hours [24], is used as a dedicated watchdog for hard resetting2 the satellite. 

 

  

1 18:12:16, when sourcing the watchdog clock from 32,768 kHz crystal. 
2 Hard reset causes a power cycle to the whole satellite by disabling battery discharge and waiting for the 
satellite to enter umbra. 
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5.3. The input voltage fault detection with capacitor bank 

The input voltage fault detection was implemented in two ways to test which of them operates 

better. First presumption was that it can be achieved with no extra hardware, using the power 

path controller IC LTC4412 (Linear Technology) which is already integrated into the 

incoming supply circuit in order to provide ideal diode functionality. This IC has an open 

drain status output that is activated when the voltage at the sense pin is 20 mV higher than the 

input voltage [25]. This solution suits for detecting the fault, but it lacks the opportunity to 

change the 20 mV threshold voltage. Figure 5 shows the schematic of the implementation. 

Figure 5: Input voltage fault detection circuit based on LTC4412 power path controller. 

In order to set a custom threshold voltage, a solution based on a Schmitt trigger was 

implemented. The circuit shown on Figure 6 consists of a comparator LMV7271 (Texas 

Instruments) and feedback resistors. In a normal condition, the output of the comparator is 

low [26] and therefore R78 and R79 make up a voltage divider that sets the comparator 

threshold at about 115 mV below the VCC. When the supply input voltage from the REG 

OUT line, fed to the inverting input, falls below the threshold, the output of the LMV7271 

goes high and this is registered in the MCU as an external interrupt. When the output is high, 

R78 and R79 are both at the potential of the VCC and consequently the threshold is set to the 

voltage of VCC. In this case the REG OUT has to rise above the VCC to restore the low state 
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of the comparator output. The JP30 is added to the supply line to enable measuring the current 

and isolating the IC from the VCC. 

 

 

 

 

 

Figure 6: Input voltage fault detection circuit based on a comparator. 

When the supply voltage suddenly disappears from the REG OUT, MCU and its peripherals 

are supplied from a tantalum capacitor bank tied to the VCC rail. To conveniently change the 

capacity during testing, the bank was divided into two blocks of 1760 µF, each connected to 

the pin headers. This enables the selection of the capacity of 880 µF, 1760 µF and 3520 µF by 

connecting the blocks in parallel or in series. This feature is implemented only in the 

prototype PCB. The flight version of the EPS will contain a capacitor bank with fixed 

capacity. 

The time diagram in the Figure 7 describes the test results of both methods discussed above. 

The test was carried out with capacitor bank of 880 µF, supply voltage of 3.3 V and by 

unplugging the USB cable that supplied the on-board switching regulator with 5 V. The MCU 

was programmed to transmit random data to the serial port in order to detect how long it stays 

operational. The test showed that both methods accomplish the task, but as the version with 

standalone comparator can be made more tolerant of false alarms generated by the 

interference in the supply line, this solution is preferred. 
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It can be seen from the oscilloscope screen capture (Figure 7) that the MCU shuts down 

precisely at 1.8 V, as the datasheet specifies [23] and is operational about 206 ms after both 

powerfail interrupts occurred. The time difference between two detection methods was 

measured roughly 1 ms, which is negligible. 

Figure 7: Test results of the input voltage fault detection methods captured with an 
oscilloscope. 

 

5.4. External analog-to-digital converters 

Other significant components to be changed were the ADCs, as they were working on 5 V 

supply voltage. The MAX1230, used in ESTCube-1 EPS, was replaced with MAX1231. Both 

these ADCs are produced by Maxim Integrated and differ only in supply voltage. This 

simplifies the new design, especially from the firmware perspective. When examining the 

datasheet of MAX1231, it turned out that one of its analog inputs has an alternative function 

of providing capability to trigger conversions [27]. So instead of writing command byte via 

the SPI bus, one can simply put this input low for at least 1.4 µsec to start a predefined 

acquisition cycle. The ADC then performs measurements using its internal 4.4 MHz clock, 
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writes results to its 34-byte FIFO and puts end of conversion output low [27]. This is 

registered as an external interrupt event in the MCU, indicating that SPI data transaction can 

commence. Then the data from the ADC FIFO is read into the MCU. The conversion time of 

15 channels using this method is 70 µsec3. 

This method is significantly better for controlling these ADCs, because the MCU does not 

have to intervene in the acquisition process. Furthermore, as the trigger signals can be 

dispatched simultaneously to multiple ADCs, this minimizes the time gap between sequential 

input channels of different ADCs. It also enables to increment the number of ADCs with no 

increase in acquisition time. 

Another feature involved with the ADCs was to provide compatibility to MAX1257, which 

integrates 16-channel 12-bit ADC, 8-channel digital-to-analog converter (DAC) and 12 GPIO 

into a single miniature 48-pin QFN package [28]. This highly functional IC could lose the 

need for external DACs used for giving feedback to voltage regulators in the ESTCube-1 EPS 

[12]. Unfortunately, the availability of this IC was problematic during the design phase, so 

one ADC circuitry was made to support both, MAX1231 and MAX1257 footprints. This 

enables the opportunity to test MAX1257 in the future, should the need for it arise. 

The whole system´s supply voltage was reduced from 5 V to 3.3 V hence the ADCs reference 

voltage source had to be replaced. ADR363B from Analog Devices was chosen since it 

provides 3 V output with ±3 mV accuracy, has fractional 9 ppm/⁰C temperature coefficient 

and is specified to work in a temperature range from -40 ⁰C to +125 ⁰C [29]. 

To provide both MCUs with the ability to control the ADCs, a 6-channel multiplexer 

TS3A27518E is used as SPI bus switch. The main MCU decides which MCU controls the 

ADCs by setting or clearing one digital output. 

  

3 MAX1231 using external reference, without averaging and temperature request, measured from the falling 
edge of conversion start signal to the falling edge of the end of conversion signal. 
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5.5. MCU Software 

Since plenty of peripherals stayed consistent, some low level logic and frontend code from 

ESTCube-1 EPS was reusable. However, the entire processor specific driver layer had to be 

developed from scratch. This section describes the most important parts of the software that 

make up a small amount of the whole software that was written within the scope of this thesis. 

5.5.1. Improved external real-time clock DS3234 driver 

The time and date in DS3234 real-time clock is stored in binary-coded decimal (BCD) [14], 

whereas the MCU time structure is using ordinary 8-bit unsigned integer format. On the EPS 

of ESTCube-1 the conversions between the two formats were implemented in the software. It 

was based on lots of arithmetic including dividing, which resulted in relatively slow process. 

The new driver version utilizes a special decimal to BCD and BCD to decimal hardware 

conversion registers that are included in the MCU RTC module [24]. Driver software simply 

writes to these registers in one format and reads another. This makes the driver very fast and 

efficient. 

5.5.2. Data connection between main- and diagnostics MCU 

The communications between two microcontrollers is based on SPI because it enables full 

duplex connection at high speeds, in our case 4 MHz. The master of the SPI bus is the main 

MCU and data transactions are initiated with a command byte sent by the main MCU. The 

diagnostics MCU sets data ready output, indicating that it is ready for the transaction. 

Depending on the specific command, data can be received, transmitted or swapped. Due to the 

high clock speed of the SPI bus, advanced techniques must be used for the diagnostics MCU 

SPI logic. If the diagnostics MCU is not capable of reading or writing SPI shift registers fast 

enough, erroneous data could be transferred. 

Direct memory access (DMA) provides a splendid solution to this problem. With DMA, the 

data can be moved between two software defined memory locations without the MCU 

intervening. The software must specify transmit and receive memory addresses, byte count, 

transaction trigger event and enable the DMA channel. After that, the DMA controller starts 
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data transfer and the MCU can continue with other tasks, for instance processing the next 

command. The transfer of one byte takes usually only few4 clock cycles. 

This method was applied to the diagnostics MCU´s driver software. Three types of 

communications were implemented: sending, receiving and swapping. The full-duplex nature 

of SPI was utilized by giving the opportunity to dispatch a new command to the diagnostics 

MCU while it is sending data to the main MCU. Since all data transactions in the diagnostics 

MCU are implemented with DMA, this gives a chance to process commands during the 

transactions. A double buffering was added to the transmit channel of the DMA so that data 

could not be modified during transmissions. 

An example program, described on Figure 8, was developed to both MCUs demonstrating the 

data link in operation. 

Figure 8: The software logic of the two MCUs doing various types of data transactions during 

example program execution. 

4 MSP430FR5969 in active mode: 4 cycles [24]. 
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The Figure 9 shows the interactions between the two microcontrollers on a time diagram 

captured by an oscilloscope. Three different types of communications are shown and the 

explanation of every step marked with number is described below. 

1. The master MCU sends a command byte 0xAF, which orders the diagnostics MCU to 

measure all the channels of both ADCs. 

2. The diagnostics MCU has received the command and initiates the ADC conversions by 

clearing both ADCs conversion start inputs for 2 µsec. 

3. The ADCs put the end of conversion outputs low, indicating that the measurement results 

are ready in the FIFO. End of conversion signal goes high when the diagnostics MCU 

starts shifting data in from the ADC. SPI clock and data signals are not visible because 

they are on the second SPI bus of the diagnostics MCU. 

4. When the diagnostics MCU has received the data from the ADCs and prepared the DMA, 

it puts the data ready output high for 2 µsec. 

5. Since the data has to be transferred in only one direction, the main MCU starts transaction 

by sending a command byte 0xBF, followed by 29 bytes of zeros. 

Figure 9: Oscilloscope screen capture taken during the execution of the example program. 
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6. During the data transfer with the main MCU, the diagnostics MCU starts processing the 

new command which instructs it to get the temperatures of both ADCs. EOC0 and EOC1 

signals go low indicating the end of temperature conversions and go high when the MCU 

starts reading data from the ADC. 

7. The diagnostics MCU sends data ready signal and the main MCU shifts the previously 

measured ADC temperatures in from the diagnostics MCU. This time the main MCU 

sends new command 0x22, meaning that the main MCU wants to send 10 bytes of data to 

the diagnostics MCU. 

8. The diagnostics MCU acknowledges the request by sending data ready signal and the 

main MCU sends its data. A new command cannot be sent during the 10 byte transaction 

because the diagnostics MCU assumes that only data and no commands are being sent. 

The last spike in MOSI is 11th byte containing a new command 0x11, meaning that the 

main MCU wants to swap 15 bytes of data. 

9. The diagnostics MCU acknowledges the request and this time both MCUs send 15 bytes 

to each other. 

 

5.6. Power consumption 
The prototype´s power consumption was measured while both MCUs were doing their routine 

tasks including ADC measurements, data communication between the main and the 

diagnostics MCU, writing and reading from FRAM memory and sending data to UART. 

Table 1 describes the average current consumption of the main sections of the prototype. 

The current measurements were conducted with a supply voltage of 3.301 V. The 10 mA 

current range was selected because it matched with theoretical maximums and it uses 1 Ω 

shunt resistor which minimizes the burden voltage [30]. 15000 current readings were 

collected during a time of one minute with the period of 4 milliseconds between each 

measurement. 
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Table 1: Power consumptions of the main sections of the prototype. 
Device Average current, µA Teoretical current, µA 

Diagnistics MCU 1394,1 
12205 

Main MCU 1136,0 
2 x RS485 driver 796,9 9006 
3 x FRAM 246,8 3907 
ADC reference 130,8 1508 
RTC 88,7 4009 
Powerfail circuitry 17,3 1310 
ADC0 + ADC1 7,3 310011 
Other peripherals 417,0   
Total 4151,7   
 

As the Table 1 states, the total current consumption is about 4.2 mA. This equals to 14 mW of 

power, which is an order of magnitude lower compared to ESTCube-1 EPS control 

electronics that was specified at 200 mW [12].  

5 8 MHz clock, no FRAM wait-states, unified memory [23]. 
6 In transmit mode [31]. 
7 During data transaction at 1 MHz [32]. 
8 In temperature range between −40°C to +125°C [29]. 
9 During transaction with SPI clock 4 MHz, supply voltage 3.63 V, includes temperature measurement [14]. 
10 With comparator input voltages: V+ = 2.7 V and V− = 0 V [26]. 
11 Using external reference, during temperature measurement [27]. 
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6. Summary 
The aim of this thesis was to build a prototype of ESTCube-2 EPS subsystem control 

electronics. For that purpose, ESTCube-1 EPS was analyzed from the hardware perspective 

and all the areas where improvements could be made were listed. The requirements for 

ESTCube-2 EPS control electronics were set and a new design was implemented that 

improves the functionality and the reliability of the system while making it more robust. The 

testing results showed that the prototype meets or exceeds all the requirements that were set. 

The main results are following: 

• the supply voltage of the system is 3.3 V; 

• power consumption of 14 mW was achieved which is less than the requested 

maximum of 30 mW; 

• the prototype has  30 external ADC input channels which are measured within a time 

window of 70 µsec. The number of the ADCs can be incremented with no increase in 

the acquisition time; 

• the system includes voltage fault detection system that notifies the MCU about the 

voltage fault and holds the system operational for about 200 milliseconds. 

The hardware module that was built during the practical work has two separate 

microcontroller units - one for general tasks and other for diagnostics purpose. The prototype 

features 3.3 V voltage regulator for obtaining supply from the USB port, pin headers between 

the main supply and individual sections supply lines as well as in the inputs and outputs of all 

peripheral devices, debugging LEDs and test points for convenient debugging. The module 

can be easily connected to other EPS subsystem´s prototypes. 

The low level software that was written utilizes direct memory access that allows high speed 

data connection between two microcontrollers. The software is written in C language and 

enables to reuse the high level software of the ESTCube-1 thanks to similar function 

arguments and return types. 
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ESTCube-2 elektrienergia alamsüsteemi juhtelektroonika prototüübi ehitamine ning 

testimine 

Martin Põder 

7. Kokkuvõte 
ESTCube-2 ja ESTCube-3 on Eesti tudengisatelliidi projekti jätkumissioonidena 

kavandatavad satelliidid. Nende peamine eemärk on testida elektrilist päikesetuulepurjet 

suuremal skaalal ning väljaspool planeet Maa magnetvälja, näiteks Kuu orbiidil. ESTCube-2 

missioon seisneb elektrilise päikesetuulepurje komponentide ja teiste ESTCube-3 kasutatavate 

alamsüsteemide testimises maalähedasel orbiidil. Kuna ESTCube-2 on suurema 

energiavajadusega kui Eesti esimene satelliit ESTCube-1, tuleb selle rahuldamiseks disainida 

uus elektrienergia alamsüsteem. 

Käesolev bakalaureusetöö analüüsib ESTCube-1 elektrienergia alamsüsteemi riistvara 

seisukohalt, pakub välja lahendused ilmnenud kitsaskohtade parandamiseks, püstitab 

ESTCube-2 elektrienergia alamsüsteemi juhtelektroonika funktsionaalsed nõuded ning 

kirjeldab prototüübi valmimist ja testimise tulemusi. 

Praktilise töö tulemusena valmis prototüüp, mis parandas ESTCube-1 elektrienergia 

alamsüsteemi kontrollelektroonikal ilmnenud kitsaskohad. Samuti täitis või ületas prototüüp 

kõiki sellele esitatud nõuded. Töö tulemusena valminud prototüübi olulisemad omadused on: 

• 3.3 voldine toitepinge; 

• seadme energiatarve 14 mW, mis on kaks korda vähem püstitatud maksimaalsest 

väärtusest (30 mW); 

• 30 analoog-digitaalmuundi sisendit, mille mõõtetulemused saadakse 

70 mikrosekundiga. Analoog-digitaalmuundite arvu saab skeemis suurendada selliselt, 

et mõõteaeg sellest ei pikene; 

• toitepinge kadumist tuvastav ahel, mis teatab mikrokontrollerit pinge kadumisest ning 

mille mahtuvuspank hoiab süsteemi töös 200 millisekundit pärast vea ilmnemist. 
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Valminud prototüübil on kaks mikrokontrollerit, millest üks tegeleb ainult diagnostikaga ning 

teine kõigi ülejäänud ülesannetega. Prototüübil on 3.3 V pingeregulaator, et toita seda USB 

pordist, väljaviigud kõikide alamosade sisendites, väljundites ning toitepinge ahelates. Samuti 

on trükkplaadile lisatud hulganisti mõõteväljaviike ning valgusdioode, mis lihtsustavad vea 

otsingut ja silumist. Prototüüpi on lihtne kasutada ja täiendada teiste elektrienergia 

alamsüsteemi osadega ühtseks tervikuks. 

Prototüübi jaoks arendatud tarkvara kasutab otsemälupöördust, et tagada kiire andmevahetus 

kahe mikrokontrolleri vahel. Tarkvara on kirjutatud C keeles ning võimaldab taaskasutada 

ESTCube-1 kõrgema taseme tarkvara, sest funktsioonide argumendid ja tagastustüübid on 

sarnased ESTCube-1 tarkvaraga.  
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Appendices 
Appendix 1 - Schematics 
  

Figure 10: The main sheet of schematics. 39 

 



  Figure 11: Shift register. 
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Figure 12: FRAM memories. 
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Figure 13: Real-time clock. 
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Figure 14: RS485 transceivers. 
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  Figure 15: Analog-to-digital converters. 
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Figure 16: Low pass filter of ADC0. 

45 

 



  

Figure 17: Low pass filter of ADC1. 
46 

 



  

Figure 18: Main microcontroller unit. 
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Figure 19: Second microcontroller unit. 
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Figure 20: External watchdog timer of the main MCU. 
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  Figure 21: External watchdog timer of second MCU. 
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  Figure 22: Bus switch. 
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  Figure 23: Power supply with capacitor bank and powerfail detection circuitry. 
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Appendix 2 - PCB design 
  

Figure 24: Top copper layer. 
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Figure 25: Bottom copper layer. 

Figure 26: Inner copper layer 1. 
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Figure 28: Top assembly and silkscreen layers. 

Figure 27: Inner copper layer 2. 
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Figure 29: Bottom assembly and silkscreen layers. 
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