
Introduction
This manual describes the Digital Repository Interface (DRI) as it applies to the DSpace digital
repository and DSpace XML UI. DSpace XML UI is a comprehensive user interface system. It is
centralized and generic, allowing it to be applied to all DSpace pages, effectively replacing the JSP-
based interface system. Its ability to apply specific styles to arbitrarily large sets of DSpace pages
significantly eases the task of adapting the DSpace look and feel to that of the adopting institution.
This also allows for several levels of branding, lending institutional credibility to the repository and
collections.

Manakin, the second version of DSpace XML UI, consists of several components, written using
Java, XML, and XSL, and is implemented in Cocoon. Changes and improvements to the previous
version, called Moa, are described in the Manakin Developerís Guide. Central to both versions of
DSpace XML UI is the XML Document, which is a semantic representation of a DSpace page. In
Manakin, the XML Document adheres to a schema called the Digital Repository Interface (DRI)
Schema, which was developed in conjunction with Manakin and is the subject of this guide. For the
remainder of this guide, the terms XML Document, DRI Document, and Document will be used
interchangeably.

This reference document explains the purpose of DRI, provides a broad architectural overview, and
explains common design patterns. The appendix includes a complete reference for elements used in
the DRI Schema, a graphical representation of the element hierarchy, and a quick reference table of
elements and attributes.

The Purpose of DRI
DRI is a schema that governs the structure of the XML Document. It determines the elements that
can be present in the Document and the relationship of those elements to each other. Since all
Manakin components produce XML Documents that adhere to the DRI schema, The XML
Document serves as the abstraction layer. Two such components, Themes and Aspects, are essential
to the workings of Manakin and are described briefly in this manual. Additionally, the Manakin
Developerís Guide provides a more detailed overview of Aspects and other Manakin components.

The Development of DRI
The DRI schema was developed for use in Manakin. The choice to develop our own schema rather
than adapt an existing one came after a careful analysis of the schemaís purpose as well as the
lessons learned from Moa, the first version of XML UI. Since every DSpace page in Manakin exists
as an XML Document at some point in the process, the schema describing that Document had to be
able to structurally represent all content, metadata and relationships between different parts of a
DSpace page. It had to be precise enough to avoid losing any structural information, and yet generic
enough to allow Themes a certain degree of freedom in expressing that information in a readable
format.

Popular schemas such as XHTML suffer from the problem of not relating elements together
explicitly. For example, if a heading precedes a paragraph, the heading is related to the paragraph
not because it is encoded as such but because it happens to precede it. When these structures are
attempted to be translated into formats where these types of relationships are explicit, the translation
becomes tedious, and potentially problematic. More structured schemas, like TEI or Docbook, are
domain specific (much like DRI itself) and therefore not suitable for our purposes.

We also decided that the schema should natively support a metadata standard for encoding artifacts.

http://cocoon.apache.org/
http://di.tamu.edu/projects/xmlui/manakin/
http://di.tamu.edu/projects/xmlui/manakin/
http://di.tamu.edu/projects/xmlui/manakin/

Rather than encoding artifact metadata in structural elements, like tables or lists, the schema would
include artifacts as objects encoded in a particular standard. The inclusion of metadata in native
format would enable the Theme to choose the best method to render the artifact for display without
being tied to a particular structure.

Ultimately, we chose to develop our own schema. We have constructed the DRI schema by
incorporating other standards when appropriate, such as Cocoonís i18n schema for
internationalization, DCMIís Dublin Core, and the Library of Congressís METS schema. The
design of structural elements was derived primarily from TEI, with some of the design patterns
borrowed from other existing standards such as DocBook and XHTML. While the structural
elements were designed to be easily translated into XHTML, they preserve the semantic
relationships for use in more expressive languages.

DRI in Manakin
The general process for handling a request in DSpace XML UI consists of two parts. The first part
builds the XML Document, and the second part stylizes that Document for output. In Manakin, the
two parts are not discrete and instead wrapped within two processes: Content Generation, which
builds an XML representation of the page, and Style Application, which stylizes the resulting
Document. Content Generation is performed by Aspect chaining, while Style Application is
performed by a Theme.

Themes
A Theme is a collection of XSL stylesheets and supporting files like images, CSS styles,
translations, and help documents. The XSL stylesheets are applied to the DRI Document to covert it
into a readable format and give it structure and basic visual formatting in that format. The
supporting files are used to provide the page with a specific look and feel, insert images and other
media, translate the content, and perform other tasks. The currently used output format is XHTML
and the supporting files are generally limited to CSS, images, and JavaScript. More output formats,
like PDF or SVG, may be added in the future.

A DSpace installation running Manakin may have several Themes associated with it. When applied
to a page, a Theme determines most of the pageís look and feel. Different themes can be applied to
different sets of DSpace pages allowing for both variety of styles between sets of pages and
consistency within those sets. The themes.xml configuration file determines which Themes are
applied to which DSpace pages. Themes may be configured to apply to all pages of specific type,
like browse-by-title, to all pages of a one particular community or collection or sets of communities
and collections, and to any mix of the two. They can also be configured to apply to a singe arbitrary
page or handle.

Aspect Chains
Manakin Aspects are arrangements of Cocoon components (transformers, actions, matchers, etc)
that implement a new set of coupled features for the system. These Aspects are chained together to
form all the features of Manakin. Five Aspects exist in the default installation of Manakin, each
handling a particular set of features of DSpace, and more can be added to implement extra features.
All Aspects take a DRI Document as input and generate one as output. This allows Aspects to be
linked together to form an Aspect chain. Each Aspect in the chain takes a DRI Document as input,
adds its own functionality, and passes the modified Document to the next Aspect in the chain. The
Manakin Developerís Guide provides a more detailed explanation of Aspects, their implementation,
and chaining rules.

http://di.tamu.edu/projects/xmlui/manakin/

Common Design Patterns
There are several design patterns used consistently within the DRI schema. This section identifies
the need for and describes the implementation of these patterns. Three patterns are discussed:
language and internationalization issues, standard attribute triplet (id, n, and rend), and the use of
structure-oriented markup.

Localization and Internationalization
Internationalization is a very important component of the DRI system. It allows content to be
offered in other languages based on userís locale and conditioned upon availability of translations,
as well as present dates and currency in a localized manner. There are two types of translated
content: content stored and displayed by DSpace itself, and content introduced by the DRI styling
process in the XSL transformations. Both types are handled by Cocoonís i18n transformer without
regard to their origin.

When the Content Generation process produces a DRI Document, some of the textual content may
be marked up with i18n elements to signify that translations are available for that content. During
the Style Application process, the Theme can also introduce new textual content, marking it up with
i18n tags. As a result, after the Themeís XSL templates are applied to the DRI Document, the final
output consists of a DSpace page marked up in the chosen display format (like XHTML) with
i18n elements from both DSpace and XSL content. This final document is sent through Cocoonís
i18n transformer that translates the marked up text.

Standard attribute triplet
Many elements in the DRI system (all top-level containers, character classes, and many others)
contain one or several of the three standard attributes: id, n, and rend. The id and n attributes can be
required or optional based on the elementís purpose, while the rend attribute is always optional. The
first two are used for identification purposes, while the third is used as a display hint issued to the
styling step.

Identification is important because it allows elements to be separated from their peers for sorting,
special case rendering, and other tasks. The first attribute, id, is the global identifier and it is unique
to the entire document. Any element that contains an id attribute can thus be uniquely referenced by
it. The id attribute of an element can be either assigned explicitly, or generated from the Java Class
Path of the originating object if no name is given. While all elements that can be uniquely identified
can carry the id attribute, only those that are independent on their context are required to do so. For
example, tables are required to have an id since they retain meaning regardless of their location in
the document, while table rows and cells can omit the attribute since their meaning depends on the
parent element.

The name attribute n is simply the name assigned to the element, and it is used to distinguish an
element from its immediate peers. In the example of a particular list, all items in that list will have
different names to distinguish them from each other. Other lists in the document, however, can also
contain items whose names will be different from each other, but identical to those in the first list.
The n attribute of an element is therefore unique only in the scope of that elementís parent and is
used mostly for sorting purposes and special rendering of a certain class of elements, like, for
example, all first items in lists, or all items named ìbrowseî. The n attribute follows the same rules
as id when determining whether or not it is required for a given element.

The last attribute in the standard triplet is rend. Unlike id and n, the rend attribute can consist of
several space delimited values and is optional for all elements that can contain it. Its purpose is to
provide a rendering hint from the middle layer component to the styling theme. How that hint is
interpreted and whether it is used at all when provided, is completely up the theme. There are

several cases, however, where the content of the rend attribute is outlined in detail and its use is
encouraged. Those cases are the emphasis element hi, the division element div, and the list
element. Please refer to the Element Reference for more detail on these elements.

Structure-oriented markup
The final design pattern is the use of structure-oriented markup for content carried by the XML
Document. Once generated by Cocoon, the Document contains two major types of information:
metadata about the repository and its contents, and the actual content of the page to be displayed. A
complete overview of metadata and content markup and their relationship to each other is given in
the next section. An important thing to note here, however, is that the markup of the content is
oriented towards explicitly stating structural relationships between the elements rather than focusing
on the presentational aspects. This makes the markup used by the Document more similar to TEI or
Docbook rather than HTML. For this reason, XSL templates are used by the themes to convert
structural DRI markup to XHTML. Even then, an attempt is made to create XHTML as structural as
possible, leaving presentation entirely to CSS. This allows the XML Document to be generic
enough to represent any DSpace page without dictating how it should be rendered.

Schema Overview
The DRI XML Document consists of the root element document and three top-level elements that
contain two major types of elements. The three top-level containers are meta, body, and
options. The two types of elements they contain are metadata and content, carrying metadata
about the page and the contents of the page, respectively. Figure 2 depicts the relationship between
these six components.

Figure 1: The two content types across three major divisions of a DRI DSpace page.
The document element is the root for all DRI pages and contains all other elements. It bears only
one attribute, version, that contains the version number of the DRI system and the schema used to
validate the produced document. At the time of writing the working version number is 1.0. However
it is reasonable to expect that this number will be incremented when future changes are made to the
schema.

The meta element is a the top-level element under document and contains all metadata information
about the page, the user that requested it, and the repository it is used with. It contains no structural
elements, instead being the only container of metadata elements in a DRI Document. The metadata
stored by the meta element is broken up into three major groups: userMeta, pageMeta, and
objectMeta, each storing metadata information about their respective component. Please refer to
the reference entries for more information about these elements.

The options element is another top-level element that contains all navigation and action options
available to the user. The options are stored as items in list elements, broken up by the type of
action they perform. The five types of actions are: browsing, search, language selection, actions that
are always available, and actions that are context dependent. The two action types also contain sub-
lists that contain actions available to users of varying degrees of access to the system. The
options element contains no metadata elements and can only make use of a small set of structural
elements, namely the list element and its children.

The last major top-level element is the body element. It contains all structural elements in a DRI
Document, including the lists used by the options element. Structural elements are used to build
a generic representation of a DSpace page. Any DSpace page can be represented with a combination

of the structural elements, which will in turn be transformed by the XSL templates into another
format. This is the core mechanism that allows DSpace XML UI to apply uniform templates and
styling rules to all DSpace pages and is the fundamental difference from the JSP approach currently
used by DSpace.

The body element directly contains only one type of element: div. The div element serves as a
major division of content and any number of them can be contained by the body. Additionally,
divisions are recursive, allowing divs to contain other divs. It is within these elements that all
other structural elements are contained. Those elements include tables, paragraph elements p, and
lists, as well as their various children elements. At the lower levels of this hierarchy lie the character
container elements. These elements, namely paragraphs p, table cells, lists items, and the
emphasis element hi, contain the textual content of a DSpace page, optionally modified with links,
figures, and emphasis. If the division within which the character class is contained is tagged as
interactive (via the interactive attribute), those elements can also contain interactive form fields.
Divisions tagged as interactive must also provide method and action attributes for its fields to use.

In addition to working with structural elements, body can also make use of metadata. While neither
the body element nor its children directly contain any metadata elements, the div element can
make use of metadata information stored under meta through the use of includeSet elements.
The includeSet element is simply a container of references to metadata stored in objectMeta
elements and their children. The objectInclude element can in turn contain other
includeSet elements allowing for structures with arbitrary level of depth and complexity.

Merging of DRI Documents
Having described the structure of the DRI Document, as well as its function in Manakinís Aspect
chains, we now turn our attention to the one last detail of their use: merging two Documents into
one. There are several situations where the need to merge two documents arises. In Manakin, for
example, every Aspect is responsible for adding different functionality to a DSpace page. Since
every instance of a page has to be a complete DRI Document, each Aspect is faced with the task of
merging the Document it generated with the ones generated (and merged into one Document) by
previously executed Aspects. For this reason rules exist that describe which elements can be merged
together and what happens to their data and child elements in the process.

When merging two DRI Documents, one is considered to be the main document, and the other a
feeder document that is added in. The three top level containers (meta, body and options) of
both documents are then individually analyzed and merged. In the case of the options and meta
elements, the children tags are taken individually as well and treated differently from their siblings.

The body elements are the easiest to merge: their respective div children are preserved along with
their ordering and are grouped together under one element. Thus, the new body tag will contain all
the divs of the main document followed by all the divs of the feeder. However, if two divs
have the same n and rend attributes (and in case of an interactive div the same action and method
attributes as well), those divs will be merged into one. The resulting div will bear the id, n, and
rend attributes of the main documentís div and contain all the divs of the main document followed
by all the divs of the feeder. This process continues recursively until all the divs have been
merged. It should be noted that two divisions with separate pagination rules cannot be merged
together.

Merging the options elements is somewhat different. First, list elements under options of
both documents are compared with each other. Those unique to either document are simply added
under the new options element, just like divs under body. In case of duplicates, that is list
elements that belong to both documents and have the same n attribute, the two lists will be

merged into one. The new list element will consist of the main documentís head element,
followed label-item pairs from the main document, and then finally the label-item pairs of
the feeder, provided they are different from those of the main.

Finally, the meta elements are merged much like the elements under body. The three children of
meta ñ userMeta, pageMeta, and objectMeta ñ are individually merged, adding the
contents of the feeder after the contents of the main.

Element Attributes Required
BODY

cell

cols
id
n
rend
role
rows

div

action required for interactive
behavior
behaviorSensitivFields
currentPage
firstItemIndex
id required
interactive
itemsTotal
lastItemIndex
method required for interactive
n required
nextPage
pagesTotal
pageURLMask
pagination
previousPage
rend

DOCUMENT version required

field

disabled
id required
n required
rend

http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#element:document
http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#element:cell
http://di.tamu.edu/projects/xmlui/schemaReference#element:body
http://di.tamu.edu/projects/xmlui/images/Drawing6c.png

required
type required

figure
rend
source
target

head
id
n
rend

help
hi rend required

includeSet

id required
n required
orderBy
rend
type required

instance

item
id
n
rend

label
id
n
rend

list

id required
n required
rend
type

META

metadata
element required
language
qualifier

object
objectIdentifier required
repositoryIdentifier required
url required

objectInclude
objectSource required
repositorySource required

objectMeta
OPTIONS

http://di.tamu.edu/projects/xmlui/schemaReference#element:options
http://di.tamu.edu/projects/xmlui/schemaReference#element:objectMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:objectInclude
http://di.tamu.edu/projects/xmlui/schemaReference#element:object
http://di.tamu.edu/projects/xmlui/schemaReference#element:metadata
http://di.tamu.edu/projects/xmlui/schemaReference#element:meta
http://di.tamu.edu/projects/xmlui/schemaReference#element:list
http://di.tamu.edu/projects/xmlui/schemaReference#element:label
http://di.tamu.edu/projects/xmlui/schemaReference#element:item
http://di.tamu.edu/projects/xmlui/schemaReference#element:instance
http://di.tamu.edu/projects/xmlui/schemaReference#element:includeSet
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:help
http://di.tamu.edu/projects/xmlui/schemaReference#element:head
http://di.tamu.edu/projects/xmlui/schemaReference#element:figure

p
id
n
rend

pageMeta

params

cols
maxlength
multiple
operations
rows
size

repository
repositoryIdentifier required
url required

repositoryMeta

row

id
n
rend
role required

table
cols required
id required
n required
rend
rows required

trail
rend
target

userMeta authenticated required

value
optionSelected
optionValue
type required

xref target required
Things that have changed: div, default, field, param, option, value

Appendix A: Element Refenence

BODY
Top-Level Container

The body element is the main container for all content displayed to the user. It contains any
number of div elements that group content into interactive and display blocks.

Parent document

http://di.tamu.edu/projects/xmlui/schemaReference#element:document
http://di.tamu.edu/projects/xmlui/schemaReference#type:Top-Level Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:xref
http://di.tamu.edu/projects/xmlui/schemaReference#element:value
http://di.tamu.edu/projects/xmlui/schemaReference#element:userMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:trail
http://di.tamu.edu/projects/xmlui/schemaReference#element:table
http://di.tamu.edu/projects/xmlui/schemaReference#element:row
http://di.tamu.edu/projects/xmlui/schemaReference#element:repositoryMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:repository
http://di.tamu.edu/projects/xmlui/schemaReference#element:params
http://di.tamu.edu/projects/xmlui/schemaReference#element:pageMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:p

Children div (any)
Attributes None
<document version=1.0>
 <meta> ... </meta>
 <body>
 <div n="division-example1" id="XMLExample.div.division-example1">
 ...
 </div>
 <div n="division-example2" id="XMLExample.div.division-example2"
interactive="yes" action="www.DRItest.com" method="post">
 ...
 </div>
 ...
 </body>
 <options> ... </options>
</document>

cell
Rich Text Container Structural Element

The cell element contained in a row of a table carries content for that table. It is a character
container, just like p, item, and hi, and its primary purpose is to display textual data, possibly
enhanced with hyperlinks, emphasized blocks of text, images and form fields. Every cell can be
annotated with a role (the most common being ìheaderî and ìdataî) and can stretch across any
number of rows and columns. Since cells cannot exist outside their container, row, their id attribute
is optional.

Parent row
Children hi (any) xref (any) figure (any) field (any)
Attributes

cols
optional
The number of columns the cell spans.

id
optional
A unique identifier of the element.

n
optional
A local identifier used to differentiate the element from its siblings.

rend
optional
A rendering hint used to override the default display of the element.

role
optional
An optional attribute to override the containing rowís role settings.

rows
optional
The number of rows the cell spans.

<table n="table-example" id="XMLExample.table.table-example" rows="2" cols="3">
 <row role="head">
 <cell cols="2">Data Label One and Two</cell>
 <cell>Data Label Three</cell>
 ...

http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#element:figure
http://di.tamu.edu/projects/xmlui/schemaReference#element:xref
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:row
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Rich Text Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:div

 </row>
 <row>
 <cell> Value One </cell>
 <cell> Value Two </cell>
 <cell> Value Three </cell>
 ...
 </row>
 ...
</table>

div
Structural Element

The div element represents a major section of content and can contain a wide variety of structural
elements to present that content to the user. It can contain paragraphs, tables, and lists, as well as
references to artifact information stored in artifactMeta, repositoryMeta,
collections, and communities. The div element is also recursive, allowing it to be further
divided into other divs. Divs can be of two types: interactive and static. The two types are set by the
use of the interactive attribute and differ in their ability to contain interactive content. Children
elements of divs tagged as interactive can contain form fields, with the action and method attributes
of the div serving to resolve those fields.

Parent body div
Children head (zero or one) pagination (zero or one) table (any) p (any) includeSet (any) list (any)
div (any)
Attributes

action
required for interactive
The form action attribute determines where the form information should be sent for
processing.

behavior
optional for interactive
The acceptable behavior options that may be used on this form. The only possible value
defined at this time is ìajaxî which means that the form may be submitted multiple times for
each individual field in this form. Note that if the form is submitted multiple times it is best
for the behaviorSensitiveFields to be updated as well.

behaviorSensitiveFields
optional for interactive
A space separated list of field names that are sensitive to behavior. These fields must be
updated each time a form is submitted with out a complete refresh of the page (i.e. ajax).

currentPage
optional
For paginated divs, the currentPage attribute indicates the index of the page currently
displayed for this div.

firstItemIndex
optional
For paginated divs, the firstItemIndex attribute indicates the index of the first item included in
this div.

id
required
A unique identifier of the element.

interactive
optional

http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#element:list
http://di.tamu.edu/projects/xmlui/schemaReference#element:includeSet
http://di.tamu.edu/projects/xmlui/schemaReference#element:p
http://di.tamu.edu/projects/xmlui/schemaReference#element:table
http://di.tamu.edu/projects/xmlui/schemaReference#element:pagination
http://di.tamu.edu/projects/xmlui/schemaReference#element:head
http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#element:body
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element

Accepted values are ìyesî, ìnoî. This attribute determines whether the div is interactive or
static. Interactive divs must provide action and method and can contain field elements.

itemsTotal
optional
For paginated divs, the itemsTotal attribute indicates how many items exit across all paginated
divs.

lastItemIndex
optional
For paginated divs, the lastItemIndex attribute indicates the index of the last item included in
this div.

method
required for interactive
Accepted values are ìgetî, ìpostî, and ìmultipartî. Determines the method used to pass
gathered field values to the handler specified by the action attribute. The multipart method
should be used for uploading files.

n
required
A local identifier used to differentiate the element from its siblings.

nextPage
optional
For paginated divs the nextPage attribute points to the URL of the next page of the div, if it
exists.

pagesTotal
optional
For paginated divs, the pagesTotal attribute indicates how many pages the paginated divs
spans.

pageURLMask
optional
For paginated divs, the pageURLMask attribute contains the mask of a url to a particular page
within the paginated set. The destination pageís number should replace the {pageNum} string
in the URL mask to generate a full URL to that page.

pagination
optional
Accepted values are ìsimpleî, ìmaskedî. This attribute determines whether the div is spread
over several pages. Simple paginated divs must provide previousPage, nextPage, itemsTotal,
firstItemIndex, lastItemIndex attributes. Masked paginated divs must provide currentPage,
pagesTotal, pageURLMask, itemsTotal, firstItemIndex, lastItemIndex attributes.

previousPage
optional
For paginated divs the previousPage attribute points to the URL of the previous page of the
div, if it exists.

rend
optional
A rendering hint used to override the default display of the element. In the case of the div tag,
it is also encouraged to label it as either ìprimaryî or ìsecondaryî. Divs marked as primary
contain content, while secondary divs contain auxiliary information or supporting fields.

<body>
 <div n="division-example" id="XMLExample.div.division-example">
 <head> Example Division </head>
 <p> This example shows the use of divisions. </p>
 <table ...>
 ...
 </table>

 <includeSet ...>
 ...
 </includeSet>
 <list ...>
 ...
 </list>
 <div n="sub-division-example" id="XMLExample.div.sub-division-example">
 <p> Divisions may be nested </p>
 ...
 </div>
 ...
 </div>
 ...
</body>

DOCUMENT
Document Root

The document element is the root container of an XML UI document. All other elements are
contained within it either directly or indirectly. The only attribute it carries is the version of the
Schema to which it conforms.

Parent none
Children meta (one) body (one) options (one)
Attributes

version
required
Version number of the schema this document adheres to. At the time of writing the only valid
version number is ì1.0î. Future iterations of this schema may increment the version number.

<document version="1.0">
 <meta>
 ...
 </meta>
 <body>
 ...
 </body>
 <options>
 ...
 </options>
</document>

field
Text Container Structural Element

The field element is a container for all information necessary to create a form field. The required
type attribute determines the type of the field, while the children tags carry the information on how
to build it. Fields can only occur in divisions tagged as "interactive".

Parent cell p hi item
Children params (one) help (zero or one) error (any) option (any - only with the select type) value
(any - only available on fields of type: select, checkbox, or radio) field (one or more - only with the
composite type) valueSet (any)
Attributes

disabled

http://di.tamu.edu/projects/xmlui/schemaReference#element:valueSet
http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#element:value
http://di.tamu.edu/projects/xmlui/schemaReference#element:option
http://di.tamu.edu/projects/xmlui/schemaReference#element:error
http://di.tamu.edu/projects/xmlui/schemaReference#element:help
http://di.tamu.edu/projects/xmlui/schemaReference#element:params
http://di.tamu.edu/projects/xmlui/schemaReference#element:item
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:p
http://di.tamu.edu/projects/xmlui/schemaReference#element:cell
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:options
http://di.tamu.edu/projects/xmlui/schemaReference#element:body
http://di.tamu.edu/projects/xmlui/schemaReference#element:meta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Document Root

optional
Accepted values are ìyesî, ìnoî. Determines whether the field allows user input. Rendering of
disabled fields may vary with implementation and display media.

id
required
A unique identifier for a field element.

n
required
A non-unique local identifier used to differentiate the element from its siblings within an
interactive division. This is the name of the field use when data is submitted back to the
server.

rend
optional
A rendering hint used to override the default display of the element.

required
optional
Accepted values are ìyesî, ìnoî. Determines whether the field is a required component of the
form and thus cannot be left blank.

type
required
A required attribute to specify the type of value. Accepted types are:
button

A button input control that when activated by the user will submit the form, including
all the fields, back to the server for processing.

checkbox
A boolean input control which may be toggled by the user. A checkbox may have
several fields which share the same name and each of those fields may be toggled
independently. This is distinct from a radio button where only one field may be toggled.

file
An input control that allows the user to select files to be submitted with the form. Note
that a form which uses a file field must use the multipart method.

hidden
An input control that is not rendered on the screen and hidden from the user.

password
A single-line text input control where the input text is rendered in such a way as to hide
the characters from the user.

radio
A boolean input control which may be toggled by the user. Multiple radio button fields
may share the same name. When this occurs only one field may be selected to be true.
This is distinct from a checkbox where multiple fields may be toggled.

select
A menu input control which allows the user to select from a list of available options.

text
A single-line text input control.

textarea
A multi-line text input control.

composite
A composite input control combines several input controls into a single field. The only
fields that may be combined together are: checkbox, password, select, text, and textarea.
When fields are combined together they can posses multiple combined values.

<p>
 <hi> ... </hi>

 <xref> ... </xref>
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text" required="yes">
 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized content</i18n>.</help>
 <value type="raw">Default value goes here</value>
 </field>
</p>

figure
Text Container Structural Element

The figure element is used to embed a reference to an image or a graphic element. It can be
mixed freely with text, and any text within the tag itself will be used as an alternative descriptor or a
caption.

Parent cell p hi item
Children none
Attributes

rend
optional
A rendering hint used to override the default display of the element.

source
optional
The source for the image, using either a URL or a pre-defined XML entity.

target
optional
A target for an image used as a link, using either a URL or an id of an existing element as a
destination.

<p>
 <hi> ... </hi>
 ...
 <xref> ... </xref>
 ...
 <field> ... </field>
 ...
 <figure source="www.example.com/fig1"> This is a static image. </figure>
 <figure source="www.example.com/fig1" target="www.example.net">
 This image is also a link.
 </figure>
 ...
</p>

head
Text Container Structural Element

The head element is primarily used as a label associated with its parent element. The rendering is
determined by its parent tag, but can be overridden by the rend attribute. Since there can only be
one head element associated with a particular tag, the n attribute is not needed, and the id attribute
is optional.

Parent div table list IncludeSet

http://di.tamu.edu/projects/xmlui/schemaReference#element:includeSet
http://di.tamu.edu/projects/xmlui/schemaReference#element:list
http://di.tamu.edu/projects/xmlui/schemaReference#element:table
http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:item
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:p
http://di.tamu.edu/projects/xmlui/schemaReference#element:cell
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container

Children none
Attributes

id
optional
A unique identifier of the element

n
optional
A local identifier used to differentiate the element from its siblings

rend
optional
A rendering hint used to override the default display of the element.

<div ...>
 <head> This is a simple header associated with its div element. </head>
 <div ...>
 <head rend="green"> This header will be green. </head>
 <p>
 <head> A header with <i18n>localized content</i18n>. </head>
 ...
 </p>
 </div>
 <table ...>
 <head> ... </head>
 ...
 </table>
 <list ...>
 <head> ... </head>
 ...
 </list>
 ...
</body>

help
Text Container Structural Element

The optional help element is used to supply help instructions in plain text and is normally
contained by the field element. The method used to render the help text in the target markup is up
to the theme.

Parent field
Children none
Attributes None
<p>
 <hi> ... </hi>
 ...
 <xref> ... </xref>
 ...
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text" required="yes">
 <params size="16" maxlength="32" />
 <help>Some help text with <i18n>localized content</i18n>.</help>
 </field>
 ...
</p>

http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container

hi
Rich Text Container Structural Element

The hi element is used for emphasis of text and occurs inside character containers like p and list
item. It can be mixed freely with text, and any text within the tag itself will be emphasized in a
manner specified by the required rend attribute. Additionally, hi element is the only text container
component that is a rich text container itself, meaning it can contain other tags in addition to plain
text. This allows it to contain other text containers, including other hi tags.

Parent cell p item hi
Children hi (any) xref (any) figure (any) field (any)
Attributes

rend
required
A required attribute used to specify the exact type of emphasis to apply to the contained text.
Common values include but are not limited to "bold", "italic", "underline", and "emph".

<p>
 This text is normal, while <hi rend="bold">this text is bold and this text
is <hi rend="italic">bold and italic.</hi></hi>
</p>

includeSet
Metadata Reference Element

The includeSet element is a container of artifact or repository references.

Parent div objectInclude
Children head (zero or one) objectInclude (any)
Attributes

id
required
A unique identifier of the element

n
required
Local identifier used to differentiate the element from its siblings

orderBy
optional
A reference to the metadata field that determines the ordering of artifacts or repository objects
within the set. When the Dublin Core metadata scheme is used this attribute should be the
element.qualifier value that the set is sorted by. As an example, for a browse by title list, the
value should be sortedBy=title, while for browse by date list it should be
sortedBy=date.created

rend
optional
A rendering hint used to override the default display of the element.

type
required
Determines the level of detail for the given metadata. Accepted values are:
summaryList

Indicates that the metadata from referenced artifacts or repository objects should be
used to build a list representation that is suitable for quick scanning.

http://di.tamu.edu/projects/xmlui/schemaReference#element:objectInclude
http://di.tamu.edu/projects/xmlui/schemaReference#element:head
http://di.tamu.edu/projects/xmlui/schemaReference#element:objectInclude
http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Reference Element
http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#element:figure
http://di.tamu.edu/projects/xmlui/schemaReference#element:xref
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:item
http://di.tamu.edu/projects/xmlui/schemaReference#element:p
http://di.tamu.edu/projects/xmlui/schemaReference#element:cell
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Rich Text Container

summaryView
Indicates that the metadata from referenced artifacts or repository objects should be
used to build a partial view of the referenced object or objects.

detailList
Indicates that the metadata from referenced artifacts or repository objects should be
used to build a list representation that provides a complete, or near complete, view of
the referenced objects. Whether such a view is possible or different from summaryView
depends largely on the repository at hand and the implementing theme.

detailView
Indicates that the metadata from referenced artifacts or repository objects should be
used to display complete information about the referenced object. Rendering of several
references included under this type is up to the theme.

<div ...>
 <head> Example Division </head>
 <p> ... </p>
 <table> ... </table>
 <list>
 ...
 </list>
 <includeSet n="browse-list" id="XMLTest.includeSet.browse-list"
type="summaryView" informationModel="DSpace">
 <head>A header for the includeset</head>
 <objectInclude source="123456789/1"/>
 <objectInclude source="123456789/2"/>
 </includeSet>
 ...
</p>

instance
Structural Element

The instance element contains the value associated with a form fieldís multiple instances. Fields
encoded as an instance should also include the values of each instance as a hidden field. The hidden
field should be appended with the index number for the instance. Thus if the field is "firstName"
each instance would be named "firstName_1", "firstName_2", "firstName_3", etc...

Parent field
Children value
Attributes None listed yet.
Example needed.

item
Rich Text Container Structural Element

The item element is a rich text container used to display textual data in a list. As a rich text
container it can contain hyperlinks, emphasized blocks of text, images and form fields in addition to
plain text.

The item element can be associated with a label that directly precedes it. The Schema requires that
if one item in a list has an associated label, then all other items must have one as well. This
mitigates the problem of loose connections between elements that is commonly encountered in
XHTML, since every item in particular list has the same structure.

http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Rich Text Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:value
http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element

Parent list
Children hi (any) xref (any) figure (any) field (any) list (any)
Attributes

id
optional
A unique identifier of the element

n
optional
A non-unique local identifier used to differentiate the element from its siblings

rend
optional
A rendering hint used to override the default display of the element.

<list n="list-example" id="XMLExample.list.list-example">
 <head> Example List </head>
 <item> This is the first item </item>
 <item> This is the second item with <hi ...>highlighted text</hi>, <xref ...>
a link</xref> and an <figure ...>image</figure>.</item>
 ...
 <list n="list-example2" id="XMLExample.list.list-example2">
 <head> Example List </head>
 <label>ITEM ONE:</label>
 <item> This is the first item </item>
 <label>ITEM TWO:</label>
 <item> This is the second item with <hi ...>highlighted text</hi>,
<xref ...> a link</xref> and an <figure ...>image</figure>.</item>
 <label>ITEM THREE:</label>
 <item> This is the third item with a <field ...> ... </field> </item>
 ...
 </list>
 <item> This is the third item in the list </item>
 ...
</list>

label
Text Container Structural Element

The label element is associated with an item and annotates that item with a number, a textual
description of some sort, or a simple bullet.

Parent item
Children none
Attributes

id
optional
A unique identifier of the element

n
optional
A local identifier used to differentiate the element from its siblings

rend
optional
An optional rend attribute provides a hint on how the label should be rendered, independent of
its type.

<list n="list-example" id="XMLExample.list.list-example">

http://di.tamu.edu/projects/xmlui/schemaReference#element:item
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:list
http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#element:figure
http://di.tamu.edu/projects/xmlui/schemaReference#element:xref
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:list

 <head>Example List</head>
 <label>1</label>
 <item> This is the first item </item>
 <label>2</label>
 <item> This is the second item with <hi ...>highlighted text</hi>, <xref ...>
a link</xref> and an <figure ...>image</figure>.</item>
 ...
 <list n="list-example2" id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label>ITEM ONE:</label>
 <item> This is the first item </item>
 <label>ITEM TWO:</label>
 <item> This is the second item with <hi ...>highlighted text</hi>,
<xref ...> a link</xref> and an <figure ...>image</figure>.</item>
 <label>ITEM THREE:</label>
 <item> This is the third item with a <field ...> ... </field> </item>
 ...
 </list>
 <item> This is the third item in the list </item>
 ...
</list>

list
Structural Element

The list element is used to display sets of sequential data. It contains an optional head element,
as well as any number of item and list elements. Items contain textual information, while
sublists contain other item or list elements. An item can also be associated with a label
element that annotates an item with a number, a textual description of some sort, or a simple bullet.
The list type (ordered, bulleted, gloss, etc.) is then determined either by the content of labels on
items or by an explicit value of the type attribute. Note that if labels are used in conjunction
with any items in a list, all of the items in that list must have a label. It is also recommended
to avoid mixing label styles unless an explicit type is specified.

Parent div list
Children head (zero or one) label (any) item (any) list (any)
Attributes

id
required
A unique identifier of the element

n
required
A local identifier used to differentiate the element from its siblings

rend
optional
An optional rend attribute provides a hint on how the list should be rendered, independent of
its type. Common values are but not limited to:
alphabet

The list should be rendered as an alphabetical index
columns

The list should be rendered in equal length columns as determined by the theme.
columns2

The list should be rendered in two equal columns.
columns3

The list should be rendered in three equal columns.

http://di.tamu.edu/projects/xmlui/schemaReference#element:list
http://di.tamu.edu/projects/xmlui/schemaReference#element:item
http://di.tamu.edu/projects/xmlui/schemaReference#element:label
http://di.tamu.edu/projects/xmlui/schemaReference#element:head
http://di.tamu.edu/projects/xmlui/schemaReference#element:list
http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element

horizontal
The list should be rendered horizontally.

numeric
The list should be rendered as a numeric index.

vertical
The list should be rendered vertically.

type
optional
An optional attribute to explicitly specify the type of list. In the absence of this attribute, the
type of a list will be inferred from the presence and content of labels on its items. Accepted
values are:
form

Used for form lists that consist of a series of fields.
bulleted

Used for lists with bullet-marked items.
gloss

Used for lists consisting of a set of technical terms, each marked with a label element
and accompanied by the definition marked as an item element.

ordered
Used for lists with numbered or lettered items.

progress
Used for lists consisting of a set of steps currently being performed to accomplish a
task. For this type to apply, each item in the list should represent a step and be
accompanied by a label that contains the displayable name for the step. The item
contains an xref that references the step. Also the rend attribute on the item element
should be: ìavailableî (meaning the user may jump to the step using the provided
xref), ìunavailableî (the user has not meet the requirements to jump to the step), or
ìcurrentî (the user is currently on the step)

simple
Used for lists with items not marked with numbers or bullets.

<div ...>
 ...
 <list n="list-example" id="XMLExample.list.list-example">
 <head>Example List</head>
 <item> ... </item>
 <item> ... </item>
 ...
 <list n="list-example2" id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 ...
 </list>
 <label> ... </label>
 <item> ... </item>
 ...
 </list>
</div>

META
Top-Level Container

The meta element is a top level element and exists directly inside the document element. It
serves as a container element for all metadata associated with a document broken up into categories
according to the type of metadata they carry.

Parent document
Children userMeta (one) pageMeta (one) objectMeta (one)
Attributes None
<document version=1.0>
 <meta>
 <userMeta> ... </userMeta>
 <pageMeta> ... </pageMeta>
 <objectMeta> ... </objectMeta>
 </meta>
 <body> ... </body>
 <options> ... </options>
</document>

metadata
Text Container Structural Element

The metadata element carries generic metadata information in the form on an attribute-value
pair. The type of information it contains is determined by two attributes: element, which specifies
the general type of metadata stored, and an optional qualifier attribute that narrows the type down.
The standard representation for this pairing is element.qualifier. The actual metadata is contained in
the text of the tag itself. Additionally, a language attribute can be used to specify the language used
for the metadata entry.

Parent userMeta pageMeta
Children none
Attributes

element
required
The name of a metadata field.

language
optional
An optional attribute to specify the language used in the metadata tag.

qualifier
optional
An optional postfix to the field name used to further differentiate the names.

<meta>
 <userMeta>
 <metadata element="identifier" qualifier="firstName"> Bob </metadata>
 <metadata element="identifier" qualifier="lastName"> Jones </metadata>
 <metadata ...> ... </metadata>
 ...
 </userMeta>
 <pageMeta>
 <metadata element="rights" qualifier="accessRights">user</metadata>
 <metadata ...> ... </metadata>
 ...
 </pageMeta>

http://di.tamu.edu/projects/xmlui/schemaReference#element:pageMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:userMeta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:objectMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:pageMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:userMeta
http://di.tamu.edu/projects/xmlui/schemaReference#element:document
http://di.tamu.edu/projects/xmlui/schemaReference#type:Top-Level Container

 <objectMeta>
 ...
 </objectMeta>
</meta>

object
Metadata Element

The object element is used to describe a single object within the repository. This is done by
including a METS document inside the element to provide metadata about the object as a whole,
including descriptive and semantic metadata. All objects can be referenced from the document
body through the use of an objectInclude element. All object includes in the body are
guaranteed to have an object with a matching identifier available for their use, but the reverse is
not necessarily true. While the object element can contain multiple metadata sets, the only one
available at this time is METS.

Parent objectMeta
Children METS (as defined by the METS schema)
Attributes

objectIdentifier
required
A unique identifier assigned to the object within the repository system. This may be
referenced by the objectInclude element.

repositoryIdentifier
required
A reference to the unique identifier assigned to a repository.

url
required
A url of the object within the system

<objectMeta>
 <object objectIdentifier="123456789/1" repositoryIdentifier="123456789/1"
url="/handle/123456789/1">
 <mets> ... METS object ... </mets>
 </object>
 ...
</objectMeta>

objectInclude
Metadata Reference Element

objectInclude is a reference element used to access information stored in objectMeta and
its children for use within the body. The source attribute is used as a key to look up a particular
object element by its objectIdentifier. The objectInclude element is always a child of the
includeSet element whose type attribute determines the detail of metadata returned. A full
description of the object is returned for a detail type, and a partial one is returned for a summary
type. A summary might be a bibliographic citation or possibly a list of key metadata values in
tabular form.

objectInclude elements can be both contained by includeSet elements and contain
includeSets themselves, making the structure recursive.

Parent includeSet

http://di.tamu.edu/projects/xmlui/schemaReference#element:includeSet
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Reference Element
http://di.tamu.edu/projects/xmlui/schemaReference#element:mets
http://di.tamu.edu/projects/xmlui/schemaReference#element:objectMeta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Element

Children includeSet (zero or more)
Attributes

objectSource
required
A reference to the objectIdentifier of an object

repositorySource
required
A reference to the repositoryIdentifier of the repository.

<includeSet n="browse-list" id="XMLTest.includeSet.browse-list">
 <objectInclude objectSource="123456789/1" repositorySource="123456789" />
 <objectInclude objectSource="123456789/2" repositorySource="123456789" />
 ...
</includeSet>

objectMeta
Metadata Element

The objectMeta element contains metadata about repository objects that are currently available
for display. It contains any number of object elements, which contain METS encoded
information. The objects can then be referenced from the main body of the document through the
use of objectInclude elements.

See the object tag entry for more information on the structure of object elements.

See the includeSet and objectInclude tag entries for more information on the structure of
those elements.

Parent meta
Children object (any)
Attributes None
<meta>
 <userMeta> ... </userMeta>
 <pageMeta> ... </pageMeta>
 <objectMeta>
 <object objectIdentifier="..." repositoryIdentifier="..." url="...">
 <mets> ... METS object ... </mets>
 </object>
 ...
 </objectMeta>
</meta>

OPTIONS
Top-Level Container

The options element is the main container for all actions and navigation options available to the
user. It consists of any number of list elements whose items contain navigation information and
actions. While any list of navigational options may be contained in this element, it is suggested that
at least the following 5 lists be included.

Parent document
Children list (any)
Attributes None
<document version=1.0>

http://di.tamu.edu/projects/xmlui/schemaReference#element:list
http://di.tamu.edu/projects/xmlui/schemaReference#element:document
http://di.tamu.edu/projects/xmlui/schemaReference#type:Top-Level Container
http://di.tamu.edu/projects/xmlui/schemaReference#element:object
http://di.tamu.edu/projects/xmlui/schemaReference#element:meta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Element
http://di.tamu.edu/projects/xmlui/schemaReference#element:includeSet

 <meta> Ö </meta>

 <body> Ö </body>

 <options>
 <list n="navigation-example1" id="XMLExample.list.navigation-example1">

 <head>Example Navigation List 1</head>

 <item><xref target="/link/to/option">Option One</xref></item>

 <item><xref target="/link/to/option">Option two</xref></item>

 ...

 </list>

 <list n="navigation-example2" id="XMLExample.list.navigation-example2">

 <head>Example Navigation List 2</head>

 <item><xref target="/link/to/option">Option One</xref></item>

 <item><xref target="/link/to/option">Option two</xref></item>

 ...

 </list>

 ...

 </options>
</document>

p
Rich Text Container Structural Element

The p element is a rich text container used by divs to display textual data in a paragraph format.
As a rich text container it can contain hyperlinks, emphasized blocks of text, images and form fields
in addition to plain text.

Parent div
Children hi (any) xref (any) figure (any) field (any)
Attributes

id
optional
A unique identifier of the element.

n
optional
A local identifier used to differentiate the element from its siblings.

rend
optional
A rendering hint used to override the default display of the element.

<div n="division-example" id="XMLExample.div.division-example">

http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#element:figure
http://di.tamu.edu/projects/xmlui/schemaReference#element:xref
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Rich Text Container

 <p> This is a regular paragraph. </p>
 <p> This text is normal, while <hi rend="bold">this text is bold and this
 text is <hi rend="italic">bold and italic.</hi></hi>
 </p>
 <p> This paragraph contains a <xref target="/link/target">link</xref>, a
 static <figure source="/image.jpg">image</figure>, and a <figure target=
 "/link/target" source="/image.jpg">image link.</figure>
 </p>
</div>

pageMeta
Metadata Element

The pageMeta element contains metadata associated with the document itself. It contains generic
metadata elements to carry the content, and any number of trail elements to provide
information on the userís current location in the system. Required and suggested values for
metadata elements contained in pageMeta include but are not limited to:

• browser (suggested): The userís browsing agent as reported to server in the HTTP request.
• browser.type (suggested): The general browser family as derived form the browser metadata

field. Possible values may include "MSIE" (for Microsoft Internet Explorer), "Opera" (for
the Opera browser), "Apple" (for Apple web kit based browsers), "Gecko" (for Netscape,
Mozilla, and Firefox based browsers), or "Lynx" (for text based browsers).

• browser.version (suggested): The browser version as reported by HTTP Request.
• contextPath (required): The base URL of the Digital Repository system.
• redirect.time (suggested): The time that must elapse before the page is redirected to an

address specified by the redirect.url metadata element.
• redirect.url (suggested): The URL destination of a redirect page
• title (required): The title of the document/page that the user currently browsing.

See the metadata and trail tag entries for more information on their structure.
Parent meta
Children metadata (any) trail (any)
Attributes None
<meta>

 <userMeta> ... </userMeta>

 <pageMeta>
 <metadata element="title">Examlpe DRI page</metadata>

 <metadata element="contextPath">/dspace-xmlui/</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail source="123456789/6"> A bread crumb item </trail>

http://di.tamu.edu/projects/xmlui/schemaReference#element:trail
http://di.tamu.edu/projects/xmlui/schemaReference#element:metadata
http://di.tamu.edu/projects/xmlui/schemaReference#element:meta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Element

 <trail ...> ... </trail>

 ...

 </pageMeta>
 <objectMeta> ... </objectMeta>

</meta>

params
Structural Component

The params element identifies extra parameters used to build a form field. There are several
attributes that may be available for this element depending on the field type.

Parent field
Children none
Attributes

cols
optional
The default number of columns that the text area should span. This applies only to textarea
field types.

maxlength
optional
The maximum length that the theme should accept for form input. This applies to text and
password field types.

multiple
optional
yes/no value. Determine if the field can accept multiple values for the field. This applies only
to select lists.

operations
optional

The possible operations that may be preformed on this field. The possible values are "add"
and/or "delete". If both operations are possible then they should be provided as a space
separated list.

The "add" operations indicates that there may be multiple values for this field and the user
may add to the set one at a time. The front-end should render a button that enables the user to
add more fields to the set. The button must be named the field name appended with the string
"_add", thus if the fieldís name is "firstName" the button must be called "firstName_add".

The "delete" operation indicates that there may be multiple values for this field each of which
may be removed from the set. The front-end should render a checkbox by each field value,
except for the first, The checkbox must be named the field name appended with the string
"_selected", thus if the fieldís name is "firstName" the checkbox must be called
"firstName_selected" and the value of each successive checkbox should be the field name.
The front-end must also render a delete button. The delete button name must be the fieldís
name appended with the string "_delete".

rows

http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Component

optional
The default number of rows that the text area should span. This applies only to textarea field
types.

size
optional
The default size for a field. This applies to text, password, and select field types.

<p>

 <field id="XMLExample.field.name" n="name" type="text" required="yes">

 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized content</i18n>.</help>

 <default>Default value goes here</default>

 </field>

</p>

repository
Metadata Element

The repository element is used to describe the repository. Its principal component is a set of
structural metadata that carrier information on how the repositoryís objects under objectMeta
are related to each other. The principal method of encoding these relationships at the time of this
writing is a METS document, although other formats, like RDF, may be employed in the future.

Parent repositoryMeta
Children METS (as defined by the METS schema)
Attributes

repositoryIdentifier
required
A unique identifier assigned to a repository. It is referenced by the object element to signify
the repository that assigned its identifier.

url
required
A url of the repository.

<repositoryMeta>

 <repository repositoryIdentifier="123456789" url="/" >
 <mets> ... METS object ... </mets>

 </repository>
 ...

</repositoryMeta>

repositoryMeta
Metadata Element

http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Element
http://di.tamu.edu/projects/xmlui/schemaReference#element:mets
http://di.tamu.edu/projects/xmlui/schemaReference#element:repositoryMeta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Element

The repositoryMeta element contains metadata about the repositories that provide the objects
under objectMeta. It can contain any number of repository elements.

See the repository tag entry for more information on the structure of repository elements.

Parent Meta
Children repository (any)
Attributes None
<meta>

 <userMeta> ... </usermeta>

 <pageMeta> ... </pageMeta>

 <objectMeta> ... </objectMeta>

 <repositoryMeta>
 <repository repositoryIdentifier="..." url="..." >

 <mets> ... METS object ... </mets>

 </repository>

 ...

 </repositoryMeta>
</meta>

row
Structural Element

The row element is contained inside a table and serves as a container of cell elements. A
required role attribute determines how the row and its cells are rendered.

Parent table
Children cell (any)
Attributes

id
optional
A unique identifier of the element

n
optional
A local identifier used to differentiate the element from its siblings

rend
optional
A rendering hint used to override the default display of the element.

role
required
Indicates what kind of information the row carries. Possible values include "header" and
"data".

<table n="table-example" id="XMLExample.table.table-example" rows="2" cols="3">

 <row role="head">

http://di.tamu.edu/projects/xmlui/schemaReference#element:cell
http://di.tamu.edu/projects/xmlui/schemaReference#element:table
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#element:repository
http://di.tamu.edu/projects/xmlui/schemaReference#element:Meta

 <cell cols="2">Data Label One and Two</cell>

 <cell>Data Label Three</cell>

 ...

 </row>
 <row>
 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>
 ...

</table>

table
Structural Element

The table element is a container for information presented in
tabular format. It consists of a set of row elements and an
optional header.
Parent div
Children head (zero or one) row (any)
Attributes

cols
required
The number of columns in the table.

id
required
A unique identifier of the element

n
required
A local identifier used to differentiate the element from its siblings

rend
optional
A rendering hint used to override the default display of the element.

rows
required
The number of rows in the table.

<div n="division-example" id="XMLExample.div.division-example">

 <table n="table1" id="XMLExample.table.table1" rows="2" cols="3">
 <row role="head">

http://di.tamu.edu/projects/xmlui/schemaReference#element:row
http://di.tamu.edu/projects/xmlui/schemaReference#element:head
http://di.tamu.edu/projects/xmlui/schemaReference#element:div
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element

 <cell cols="2">Data Label One and Two</cell>

 <cell>Data Label Three</cell>

 ...

 </row>

 <row>

 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>

 ...

 </table>
 ...
</div>

trail
Text Container Metadata Element

The trail element carries information about the userís current location in the system relative of
the repositoryís root page. Each instance of the element serves as one link in the path from the root
to the current page.

Parent pageMeta
Children none
Attributes

rend
optional
A rendering hint used to override the default display of the element.

target
optional
An optional attribute to specify a target URL for a trail element serving as a hyperlink. The
text inside the element will be used as the text of the link.

<pageMeta>

 <metadata element="title">Examlpe DRI page</metadata>

 <metadata element="contextPath">/dspace-xmlui/</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail target="/myDSpace"> A bread crumb item pointing to a page. </trail>
 <trail ...> ... </trail>

http://di.tamu.edu/projects/xmlui/schemaReference#element:pageMeta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container

 ...

</pageMeta>

userMeta
Metadata Element

The userMeta element contains metadata associated with the user that requested the document. It
contains generic metadata elements, which in turn carry the information. Required and suggested
values for metadata elements contained in userMeta include but not
limited to:

• identifier (suggested): A unique identifier associated with the user.
• identifier.email (suggested): The requesting userís email address.
• identifier.firstName (suggested): The requesting userís first name.
• identifier.lastName (suggested): The requesting userís last name.
• identifier.logoutURL (suggested): The URL that a user will be taken to when logging out.
• identifier.url (suggested): A url reference to the userís page within the repository.
• language.RFC3066 (suggested): The requesting userís preferred language selection code as

describe by RFC3066
• rights.accessRights (required): Determines the scope of actions that a user can perform in the

system. Accepted values are:
• none: The user is either not authenticated or does not have a valid account on the

system
• user: The user is authenticated and has a valid account on the system
• admin: The user is authenticated and belongs to the systemís administrative group

See the metadata tag entry for more information on the structure of metadata elements.
Parent meta
Children metadata (any)
Attributes

authenticated
required
Accepted values are "yes", "no". Determines whether the user has been authenticated by the
system.

<meta>

 <userMeta>
 <metadata element="identifier" qualifier="email">

 bobJones@tamu.edu

 </metadata>

 <metadata element="identifier" qualifier="firstName"> Bob </metadata>

 <metadata element="identifier" qualifier="lastName"> Jones </metadata>

 <metadata element="rights" qualifier="accessRights">user</metadata>

 <metadata ...> ... </metadata>

 ...

http://di.tamu.edu/projects/xmlui/schemaReference#element:metadata
http://di.tamu.edu/projects/xmlui/schemaReference#element:meta
http://di.tamu.edu/projects/xmlui/schemaReference#type:Metadata Element

 <trail source="123456789/6"> A bread crumb item </trail>

 <trail ...> ... </trail>

 ...

 </userMeta>
 <pageMeta> ... </pageMeta>

 <objectMeta> ... </objectMeta>

</meta>

value
Rich Text Container Structural Element

The value element contains the value associated with a form field and can serve a different purpose
for various field types. The value element is comprised of two subelements: the raw element which
stores the unprocessed value directly from the user of other source, and the interpreted element
which stores the value in a format appropriate for display to the user, possibly including rich text
markup.

Parent field
Children hi (any) xref (any) figure (any)
Attributes

optionSelected
optional
An optional attribute for select, checkbox, and radio fields to determine if the value is to be
selected or not.

optionValue
optional
An optional attribute for select, checkbox, and radio fields to determine the value that should
be returned when this value is selected.

type
required
A required attribute to specify the type of value. Accepted types are:
raw

The raw type stores the unprocessed value directly from the user of other source.
interpreted

The interpreted type stores the value in a format appropriate for display to the user,
possibly including rich text markup.

default
The default type stores a value supplied by the system, used when no other values are
provided.

<p>
 <hi> ... </hi>
 <xref> ... </xref>
 <figure> ... </figure>
 <field id="XMLExample.field.name" n="name" type="text" required="yes">
 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized content</i18n>.</help>
 <value type="default">Author, John</value>
 </field>
</p>

http://di.tamu.edu/projects/xmlui/schemaReference#element:figure
http://di.tamu.edu/projects/xmlui/schemaReference#element:xref
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:field
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Rich Text Container

xref
Text Container Structural Element

The xref element is a reference to an external document. It can be mixed freely with text, and any
text within the tag itself will be used as part of the linkís visual body.

Parent cell p item hi
Children none
Attributes

target
required
A target for the reference, using either a URL or an id of an existing element as a destination
for the xref.

<p>

 <xref target="/url/link/target">This text is shown as a link.</xref>
</p>

Documentation
• Installation Guide (HTML)
• Schema Reference Manual (HTML)
• Developer's Guide (PDF)
• Theme Creation Tutorial (PDF)

Live Demo at the DI Labs
• Demo

Get Manakin
• Anonymous SVN Access
• Snapshots
• Installing Manakin

What is a Manakin?
The Moon Walking Manakin (and related article) The Wing Knocking Manakin (and related article)

http://www.news.cornell.edu/stories/July05/Cricketbird.kr.html
http://www.sciencemag.org/content/vol309/issue5735/images/data/736/DC1/bostwick-SOM-movieS1.mov
http://www.pbs.org/wnet/nature/deepjungle/episode1_bostwick.html
http://www.ebaumsworld.com/videos/manakin.html
http://di.tamu.edu/projects/xmlui/install
http://di.tamu.edu/projects/xmlui/snapshots/
http://di.tamu.edu/projects/xmlui/anonymous-svn-access
http://labs.di.tamu.edu:8080/manakin/
http://di.tamu.edu/projects/xmlui/resources/ThemeTutorial.pdf
http://di.tamu.edu/projects/xmlui/resources/DevelopersGuide.pdf
http://di.tamu.edu/projects/xmlui/schemaReference
http://di.tamu.edu/projects/xmlui/install
http://di.tamu.edu/projects/xmlui/schemaReference#element:hi
http://di.tamu.edu/projects/xmlui/schemaReference#element:item
http://di.tamu.edu/projects/xmlui/schemaReference#element:p
http://di.tamu.edu/projects/xmlui/schemaReference#element:cell
http://di.tamu.edu/projects/xmlui/schemaReference#type:Structural Element
http://di.tamu.edu/projects/xmlui/schemaReference#type:Text Container

