
UNIVERSITY OF TARTU
Institute of Technology

Computer Engineering Curriculum

Jonathan Karu

Towards a GraphQL Proxy for Apache
Kafka

Bachelor’s Thesis (12 ECTS)

Supervisor:

Riccardo Tommasini, PhD

Tartu 2019

Towards a GraphQL Proxy for Apache Kafka

Abstract:
Apache Kafka is a open-source stream-processing framework which is quickly becoming
an industry standard for event-driven applications. Kafka is written in Scala and, thus,
general purpose JVM (java virtual machine) programming languages can be used to write
native applications that interact with a Kafka cluster using the Kafka protocol. However,
the need to generalize the interaction to other languages, e.g. python, has pushed Kafka
developers to abstract the Kafka protocol using the REST API. The REST proxy is a
component of the Kafka suite that enables the use of a RESTful (representational state
transfer) API (application programming interface) to communicate with a Kafka cluster,
and thus allowing to control Kafka using HTTP.

GraphQL is a data query and manipulation language for APIs, and a runtime for
fulfilling queries with existing data [1]. Recently GraphQL has been gaining traction.
GraphQL enables developers to define which data will be returned by a request, moreover
GraphQL allows to interact with this data type through a full-fledged query language.

In this thesis we propose the GraphQL proxy, which enables communication with a
Kafka cluster using GraphQL.

Võtmesõnad:
Kafka, GraphQL, web, streams, Avro, REST

CERCS: P175 Informatics, systems theory;

Liikudes Apache Kafka GraphQL Proxy poole
Lühikokkuvõte:
Apache Kafka on avatud lähtekoodiga voogtöötluse raamistik, millest on saamas töös-
tusstandard südmustepõhiste rakenduste arendamisel. Kafka on kirjutatud Scalas ning
seega saab kasutada üldotstarbelisi JVM (java virtuaalmasin) programmeerimiskeeli, et
kirjutada rakendusi, mis töötavad Kafka protokolliga. Sellegipoolest, on vajadus Kafka
laiendamiseks teistesse keeltesse, näiteks pyhon, pannud Kafka arendajad välja töötama
Kafka jaoks REST (representational state transfer) API (application programming inter-
face). REST proxy on Kafka komponent, mis lubab kasutada RESTful APIt, et suhelda
Kafka klastriga ning seega lubab kasutada Kafkat üle HTTP.

Hiljuti on populaarsust kogunud veebiliides GraphQL. GraphQL on avatud lähtekood-
iga andmepäringu keel, mis lubab arendajatel rangelt defineerida päringule vastu saade-
tavad andmed. Kuna Avro skeemid on väga sarnased GraphQLi skeemidele, siis võib
GraphQL olla parem viist Kafka klastriga suhtlemiseks kui REST.

Keywords:
Kafka, GraphQL, veeb, vood, striimimine, Avro, REST
CERCS: P175 Informaatika, süsteemiteooria;

2

Contents
1 Introduction 6

1.1 GraphQL vs REST . 6

2 Background 9
2.1 Web APIs . 9

2.1.1 REST . 9
2.1.2 GraphQL . 10

2.2 Streaming data . 15
2.3 Pub/Sub . 17
2.4 Kafka . 18

2.4.1 Topics, brokers and records 18
2.4.2 Producer . 20
2.4.3 Consumer . 21
2.4.4 Zookeeper . 21
2.4.5 Schema registry . 22
2.4.6 Streams API . 23
2.4.7 Confluent REST Proxy . 24

3 Reasoning to use GraphQL with Kafka 26
3.1 Streams of records . 26

4 Implementation 27
4.1 GraphQL Proxy . 28

4.1.1 Data model . 29
4.1.2 Querying Metadata . 31
4.1.3 Producing to a topic . 32
4.1.4 Consuming from a topic . 33

4.2 Streams with GraphQL subscriptions 36
4.2.1 Streaming temperatures . 37

5 Conclusion 38
5.1 Future work . 38

5.1.1 Kafka Streams . 38
5.1.2 GraphQL to Avro parser . 38

References 41

Appendix 42
II. Licence . 42

3

List of Figures
1.1 Example GET request and response for temperatures 7
1.2 Example GraphQL query and response for temperatures 8
2.1 Example GraphQL schema . 11
2.2 GraphQL schema with Query and Mutation types for RoomTemperature

model . 11
2.3 Example Java resolver for query Temperature 12
2.4 Temperature query and response . 12
2.5 Query for only the timestamp of a temperature 13
2.6 Graph representation and schema for RoomTemperature model 14
2.7 Query for RoomTemperature . 15
2.8 Query which accepts room number as a parameter 15
2.9 The Internet Minute [2] . 16
2.10 Example temperature measurement data streaming pipeline 17
2.11 A simple object-based publish/subscribe system. [3] 18
2.12 Topic’s partitions [4] . 19
2.13 Producers and consumers [4] . 20
2.14 Storing and retreiving schemas . 22
2.15 Avro schema for Temperature model 23
2.16 Kafka Streams processor topology . 24
2.17 Confluent REST Proxy [5] . 25
4.1 UML diagram for the GraphQL Proxy 28
4.2 Modelling Kafka with GraphQL types 30
4.3 Query for existing topics . 31
4.4 Querying metadata about a single topic 32
4.5 Producing Avro records to a topic . 33
4.6 Creating an Avro consumer . 34
4.7 Subscribing a consumer instance to a topic 35
4.8 Consuming Avro records . 36
4.9 Consuming temperature measurements via GraphQL subscriptions, shown

using Google Chrome’s inspect element interface 37
5.1 Avro and GraphQL equivalents for Temperature model 39

List of Tables
2.1 Example REST endpoints, methods and actions 10
2.2 GraphQL scalar types . 13
2.3 Some of Confluent REST Proxy methods 26
4.1 Table of supported operations in our implementation of GraphQL proxy 29

4

4.2 Comparison of REST proxy vs GraphQL proxy 36

Abbreviations, constants, definitions
API - Application Programming Interface
REST - Representational State Transfer
ACL - Access Control List
JSON - Javascript Object Notation
RESTful - an application that implements REST architecture constraints
HTTP - HyperText Transfer Protocol
JVM - Java Virtual Machine

Unsolved issues

5

1 Introduction
Apache Kafka is an open-source stream-processing framework which enables the use
of fault-tolerant, scalable and durable messaging logs. Kafka proves useful when a
system needs to decouple, which means that services work asynchronously. Confluent,
the company who maintains Kafka, supports different native clients in several language
to communicate with Kafka. However many organizations demand more freedom in
choosing a language to implement Kafka platform [6]. With this in mind, Confluent
created the Kafka REST Proxy, which eases the use of Kafka adopting web based
technologies. REST is an architectural style to ease the communication between web
services. REST has been a de facto standard through many years since its introduction
in 2000 by Roy Fielding [7], however in 2015, Facebook released GraphQL, a spec
which enables developers to design their API in a graph-like structure and define a type
hierarchy.

The idea to develop GraphQL, came from the fact that GraphQL is capable of
returning exactly the data, which is requested and nothing more, in contrast to RESTful
interfaces which may require multiple requests and return excess data and it also enables
to model the API in a graph-like structure, which is more natural than what REST
provides. The goal of this thesis is to study the idea of using GraphQL instead of REST
for designing a proxy to Kafka protocol that allows to interface with the Kafka cluster.

This thesis is divided in to four sections: a) background, which describes REST
APIs, GraphQL and Kafka, b) reasoning to use graphql with kafka, c) implementation
and d) conclusion. In the GraphQL introduction the author explains the main concepts
and attributes of GraphQL, such as the syntax, fields, types, variables. In the Kafka
introduction the author explains Apache Kafka and its main concepts, such as topics,
brokers, consumers, producers and the schema registry, The reasoning section brings
forth the main reasons to use GraphQL instead of REST when communicating with a
Kafka cluster. The implementation section focuses on the GraphQL requests and resolver
functions which communcate with the Kafka cluster in the implementation of the project.

1.1 GraphQL vs REST
This section will briefly go over the main differences along with pros and cons of
GraphQL and REST.

Both REST and GraphQL have entry points to the data, in GraphQL they are query,
mutation and subscription types and in REST they are endpoints. Both interfaces also
have a way to differentiate a request that reads data or writes data. GraphQL enables
clients to request for related data about a resource in a single request, however in REST,
this requires multiple requests. When querying for data in GraphQL as opposed to REST,
the client can specify which data it would like to receive, whereas in REST, the client
gets what the server has prepared, this is referred to as overfetching.

6

Overfetching with REST
When using RESTful interfaces to communcate with a server, requests usually return
more data than necessary, this is called overfetching. This leads to higher bandwith
requirements, because irrelevant data for the client is usually returned as well. GraphQL
alleviates this problem, by allowing the client to specify which fields to return on
requests. This means that the server filters out the fields on the data which is returned. In
REST, however, the client would have to get the full request object and then filter out
the necessary fields, a workaround in REST architectures would be to define multiple
endpoints, each defining a subset of fields which the client might request, however this
often makes things too difficult, this would also mean making fields resources, which is
against the goal of REST.

If the mean temperature of each room were to be calculated, a request for all the
temperatures would be made. If this was done in REST, the object would return irrelevant
information, which is the timestamp for the taken measurement. Figure 1.1 shows
the server response for the REST query. Figure 1.2 shows the server response for the
GraphQL query which only queries the necessary information.

1 Request endpoint: /api/v1/temperatures
2 Response JSON object:
3 {
4 "data": {
5 "temperatures": [
6 {
7 "room": 412,
8 "value": 21,
9 "timestamp": "1589112659430"

10 },
11 {
12 "room": 412,
13 "value": 22,
14 "timestamp": "1589112659435"
15 },
16 {
17 "room": 410,
18 "value": 21,
19 "timestamp": "1589112659432"
20 }
21]
22 }
23 }

Figure 1.1. Example GET request and response for temperatures

7

1 {
2 temperatures {
3 room
4 value
5 }
6 }

Query (a)

1 {
2 "data": {
3 "temperatures": [
4 {
5 "room": 412,
6 "value": 21
7 },
8 {
9 "room": 412,

10 "value": 22
11 },
12 {
13 "room": 410,
14 "value": 21
15 }
16]
17 }
18 }

Response (a)

Figure 1.2. Example GraphQL query and response for temperatures

Overfetching is an important issue when dealing with data intensive applications,
because unnecessary data makes the system more demanding in terms of resources.
When making continuous requests, the amount of unnecessary data should be kept to a
minimum, to keep the latency as low as possible.

8

2 Background
This section explains the main ideas and technologies related to GraphQL, Kafka and
the proxy implementation. To understand Kafka, the publish/subscribe model must
be explained first and to understand the pros and cons of GraphQL a definition and
comparison with REST will be explained.

2.1 Web APIs
A web API is a construct to allow developers to create complex functionality more easily,
it is a way to abstract more complex code away and provide a more easier syntax on
the web. A web API can be used by clients to create, modify, fetch or delete resources
provided by the server. Web APIs are usually developed with ease of use in mind and
have different implementations, in this chapter we will introduce two web APIs: REST
and GraphQL.

2.1.1 REST

Representational State Transfer (REST) is an architectural style for distributed hyperme-
dia systems [7]. REST ignores the details of component implementation and protocol
syntax in order to focus on the roles of components, the constraints upon their interaction
with other components, and their interpretation of significant data elements [7].

REST principles
REST has 6 guiding constraints which must be satisfied if an interface needs to be
referred as RESTful [8]:

1. Client-server - By separating the user interface concerns from the data storage
concerns, we improve the portability of the user interface across multiple platforms
and improve scalability by simplifying the server components.

2. Stateless - Each request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of any stored
context on the server. Session state is therefore kept entirely on the client.

3. Cacheable - Cache constraints require that the data within a response to a request
be implicitly or explicitly labeled as cacheable or non-cacheable. If a response is
cacheable, then a client cache is given the right to reuse that response data for later,
equivalent requests.

4. Uniform interface - By applying the software engineering principle of generality
to the component interface, the overall system architecture is simplified and the vis-
ibility of interactions is improved. In order to obtain a uniform interface, multiple

9

architectural constraints are needed to guide the behavior of components. REST is
defined by four interface constraints: identification of resources; manipulation of
resources through representations; self-descriptive messages; and, hypermedia as
the engine of application state.

5. Layered system - The layered system style allows an architecture to be composed
of hierarchical layers by constraining component behavior such that each compo-
nent cannot “see” beyond the immediate layer with which they are interacting.

6. Code on demand (optional) - REST allows client functionality to be extended by
downloading and executing code in the form of applets or scripts. This simplifies
clients by reducing the number of features required to be pre-implemented.

The key concept in any REST application is the resource. A resource is an object (e.g.
image, html document) which can have methods to create, change, delete or return the
object. A resource has an resource identifier attributed to it, which contains information
about the resource. Currently the most popular way to transport resources is using the
JSON (javascript object notation) data model.

To access and manipulate resources, resource methods are required. The most com-
mon methods to work with resources are HTTP methods (GET, PUT, POST, DELETE).
An example GET method can be seen on figure 1.1.

Usually REST APIs are defined as a list of endpoints, where an endpoint refers
to some underlying resource. Table 2.1 contains some example endpoints along with
methods and actions, when a method is called on an endpoint.

Method Endpoint Action
GET /temperatures/412 Return temperatures for room 412

POST /temperatures/412 Add a new temperature for room 412
DELETE /temperatures/412 Delete a temperature from room 412

Table 2.1. Example REST endpoints, methods and actions

2.1.2 GraphQL

GraphQL is a query language for APIs and a runtime for fulfilling those queries with
existing data [1]. A GraphQL service is created by defining the schema and the corre-
sponding backend resolvers. A GraphQL schema defines the possible set of requests
and types that the current application is capable of using. An example GraphQL schema
can be see on figure 2.1. GraphQL allows developers model the data with objects and
relations in mind (as graphs). Figure 2.6b shows a graph representation of the schema on
figure 2.6a.

10

1 type Query {
2 temperature: Temperature
3 }
4 type Temperature {
5 room: Int
6 value: Int
7 timestamp: String
8 }

Figure 2.1. Example GraphQL schema

In a GraphQL service, the set of types defined is called the service “schema” [9]. A
schema is composed of types and root operation types (query, mutation and subscription),
which determines the place in the type system where the operations begin.

In the schema on figure 2.2, which has the capabilities of getting a hotel room tem-
perature as well as sending a room temperature to the server, the type RoomTemperature
has a field "location" with type "Room", which resolves to fields: "number" of type Int
and "occupied" of type Boolean.

1 type Query{
2 roomTemperature: RoomTemperature
3 }
4 type Mutation{
5 addRoomTemperature(roomNumber: Int, value: Int): RoomTemperature
6 }
7 type RoomTemperature{
8 room: Room
9 value: Int

10 timestamp: String
11 }
12 type Room{
13 number: Int
14 occupied: Boolean
15 }

Figure 2.2. GraphQL schema with Query and Mutation types for RoomTemperature
model

On figure 2.3, a query with a return type of Temperature is defined, which contains data
about a temperature measurement. The query will return a Temperature object, which

11

has fields for the location of the measurement, the value in degrees and the timestamp of
the measurement. For this example query a java backend is used, which can be seen on
figure 2.3. Using this resolver, the query on figure 2.4a can be sent to the server.

1 public DataFetcher getTemperature(){
2 return datafetchingenvironment -> {
3 return ImmutableMap.of(
4 "room", 412,
5 "value", 21,
6 "timestamp", "1589112659430"
7);
8 }
9 }

Figure 2.3. Example Java resolver for query Temperature

1 {
2 temperature {
3 room
4 value
5 timestamp
6 }
7 }

GraphQL query (a)

1 {
2 "data": {
3 "temperature": {
4 "room": 412,
5 "value": 21,
6 "timestamp": "1589112659430"
7 }
8 }
9 }

Server response (b)

Figure 2.4. Temperature query and response

GraphQL currently supports the following scalar types:

12

Scalar type Description
Int signed 32 bit integer
Float signed double-precision

floating-point value
String UTF-8 character

sequence
Boolean true or false
ID unique identifier, serial-

ized as a string

Table 2.2. GraphQL scalar types

GraphQL currently has three types of operations available [10]:

• Query - a read only fetch.

• Mutation - a write followed by a fetch.

• Subscription - a long-lived request that fetches data in response to source events.

A query can be compared with a HTTP GET request, which only returns some data
from server, usually without any side effects. A mutation operation can be compared
with a HTTP POST request, which posts some data to the server and then returns some
information about the posted data (usually the data itself), mutations usually have side
effects. A subscription is a continuous flow of data from the server, it can be seen as a
live query (connection stays open until cancelled).

A GraphQL operation can select a set of information it needs from the server and
will receive exactly that information [11]. A selection set is similar to selections in SQL.
An example of querying only the timestamp field from a temperature object can be seen
on figure 2.5.

1 {
2 temperature {
3 timestamp
4 }
5 }

Query (a)

1 {
2 "data": {
3 "temperature": {
4 "timestamp": "1589112659430"
5 }
6 }
7 }

Response (b)

Figure 2.5. Query for only the timestamp of a temperature

13

A selection set is mostly composed of fields, which describe discrete pieces of
information available to request within a selection set [12]. All GraphQL operations
must eventually resolve to scalar types which can also be represented as leaf nodes in a
graph [12]. Figure 2.7 shows a query for a roomtemperature object, in which all queried
fields resolve to scalar values.

1 type Query{
2 roomtemperature: RoomTemperature
3 }
4 type RoomTemperature{
5 room: Room
6 value: Int
7 timestamp: String
8 }
9 type Room{

10 number: Int
11 occupied: Boolean
12 }

RoomTemperature schema (a) Graph representation (b)

Figure 2.6. Graph representation and schema for RoomTemperature model

14

1 {
2 roomtemperature {
3 room {
4 number
5 occupied
6 }
7 value
8 }
9 }

Query (b)

1 {
2 "data": {
3 "roomTemperature": {
4 "room": {
5 "number": 412,
6 "occupied": false
7 },
8 "value": 21
9 }

10 }
11 }

Response (b)

Figure 2.7. Query for RoomTemperature

Fields are functions, which return values and accept arguments that may alter their
behaviour [13]. These arguments often map directly to function arguments within a
GraphQL backend implementation. An example query that supports arguments can be
seen on figure 2.8. Here the query temperatureFromRoom accepts an integer, which
specifies what room the client is interested in querying.

1 {
2 temperatureFromRoom(room: 412) {
3 value
4 timestamp
5 }
6 }

Figure 2.8. Query which accepts room number as a parameter

2.2 Streaming data
In today’s world streaming data is more relevant than ever, due to an increased amount
of microservices, streaming services and growth in general computational power and
the amount of IoT devices. Figure 2.9 shows an infographic, which brings forward the
fact that we are truly living in the age of information. Since the amounts of data that
modern systems have to handle is growing at an increasing speed, the need for new
technologies is also on the rise. To handle large amounts of data, asynchronicity can not

15

be looked over, the following chapter introduces the underlying principles to build these
asynchronous systems.

Figure 2.9. The Internet Minute [2]

Data which is continuously generated by various sources is called Streaming data.
Streaming data is processed using Stream Processing engines. An example of streaming
data would be temperature measurements. For example a hotel has 500 rooms, which is
periodically taking temperature measurements from sensors and then sending the data to
a central server. This data is represented as an unbounded stream of events, which has no
predefined volume and an event is for example a temperature measurement.

16

Figure 2.10. Example temperature measurement data streaming pipeline

2.3 Pub/Sub
Due to increased amount of data which is being processed by devices, synchronous
services are not a feasible choice for large-scale application any more.

Pub/Sub also known as publish/subscribe is an asynchronous messaging service that
decouples services that produce events from services that process events [14]. Subscribers
have the ability to express their interest in an event and are subsequently notified of any
event, generated by a publisher, which matches their interests [3]. The strength of this
messaging service is that publishers and subscribers are fully decoupled, which means
that publishers and subscribers decide when they work. Producers publish information
on a software bus and consumers subscribe to the information they want to be notified
about on that bus [3]. This information is usually referred to as an event. Apache Kafka
is one of the most popular platforms that uses the pub/sub model. Kafka is also one of
the main parts of this thesis. Say we have four clients sending temperature measurements
to a server. If the server is handling clients one by one, at most a client would have to
wait for three clients to finish communicating with the server before it can send data.
This would result in making the client unable to collect any more data before sending the
existing data to the server. Increase this to a hundred clients and soon the clients have
1% uptime and the if amount of servers were to increase, the clients would have to be
notified. Instead, a publish/subscribe service could be used for increased uptime for the
clients and easier scalability of the servers.

17

Figure 2.11. A simple object-based publish/subscribe system. [3]

2.4 Kafka
Apache Kafka is an open-source distributed streaming platform which uses the pub/sub
model. Kafka is run as a cluster of a single or multiple servers which are referred to
as brokers. Streams of records that are received are stored in an append only logs by
brokers. A record consists of a key, a value and a timestamp. Clients, also known as
producers and consumers, and brokers communicate through a high-performance TCP
protocol.

2.4.1 Topics, brokers and records

A topic in Kafka is a category that organizes records logically. Multiple clients can
publish and subscribe to the same topic. The Kafka cluster maintains a partitioned log
for each topic. A Kafka server handling the topics within it is called a broker. A Kafka
cluster has one or more brokers, the producers and consumers don’t directly communicate
to each other but instead they use the broker to exchange messages. Kafka brokers are
stateless so a Zookeeper instance maintains the state. A partition is an immutable, ordered
sequence of records, where new messages are appended. Each new record, which is
appended to a log, is assigned a sequential id called the offset, which identifies each
record within the partition [4]. Kafka retains all records for a retention period which can
be configured, after the retention period has completed for a message, it will be deleted
[4].

18

Figure 2.12. Topic’s partitions [4]

Data size doesn’t have any effect on Kafka’s performance. This comes from the
fact that consumers only retain the offset of the consumer on the topic. The offset is
controlled by the consumer and can be changed as needed, which means that records can
be consumed in any order. For example, the offset can be reset to the start of the topic, to
start consuming from the beginning of the topic or to the end to consume newest records.
The number of consumers can be an arbitrary amount which can be controlled at runtime.

Partitioning allows to scale the Kafka cluster to store data that would not fit on a
single server and to allow parallel consumption of messages. The amount of partitions
can be arbitrary. Partitions also act as an unit of parallelism. The partitions of a topic
are distributed over the Kafka cluster with brokers. Each partition can be replicated
over an arbitrary amount of servers and each partitions has a leader broker and zero
or more follower brokers. The leader broker handles all read and write requests for
the partition and the followers replicate the leader’s actions [4]. When a leader broker
fails a new leader will be elected from the followers. Each broker acts as a leader for
some partitions and a follower for others, which means the load within the cluster is
well balanced. Message ordering is guaranteed within a single partition but not across
multiple partitions. If total ordering is required, a single partition must be used. A topic
with three partitions can be seen on figure 2.12.

19

Figure 2.13. Producers and consumers [4]

Records that are produced to a topic consist of a message key, value and timestamp.
A Kafka topic stores records as byte arrays, which means records have to be serialized
at production and deserialized at consumption. When a producer or consumer instance
is created, a serialization/deserialization type for both the key and the value must be
provided.

Kafka has the next guarantees [4]:

• Messages sent to a topic will be appended in the order they are sent.

• A consumer consumes records in the order they are appended to the topic.

• A topic with replication factor of N can tolerate N-1 server failures before any
records are lost.

2.4.2 Producer

In Kafka, the entity that writes messages to a topic is called a producer. A producer
partitioner maps each message to a topic partition, and the producer sends a produce
request to the leader of that partition and the partitioners shipped with Kafka guarantee
that all messages with the same non-empty key will be sent to the to the same partition,
however a partition can also be specified when producing a record. If a key is provided,
the partitioner will hash the key with murmur2 [15] algorithm and divide it by the number
of partitions. An example of a producer can be seen on figure 2.13.

Records written to the partition leader are not immediately readable by consumers.
When all in-sync replicas have acknowledged the write, then the message is considered
committed, which makes it available for reading.

20

2.4.3 Consumer

A consumer is the entity which reads messages from a topic. After the consumer receives
its assignment from the coordinator, it must determine the initial position for each
assigned partition. Typically consumption starts at either the earliest or latest offset. As a
consumer reads messages from a partition, it must commit the offsets corresponding to
the messages it has read, so that when the consumer shuts down, its partitions will be
re-assigned to another member, which will begin consumption from the last committed
offset of each partition. An example of consumers can be seen on figure 2.13.

A consumer group is a set of consumers which cooperate to consume data from some
topics, the partitions of all the topics are divided among the consumers in a consumer
group. When new consumers arrive and old consumers leave the group, partitions are
re-assigned. This is known as rebalancing the group.

2.4.4 Zookeeper

Apache Zookeeper is a centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services [16]. The
data within Zookeeper is divided across multiple nodes, if a node fails, Zookeeper can
perform instant failover migration. If a node is shutting down, the controller tells all the
replicas to act as partition leaders to fulfill the duties of the partition leaders on the node
that is about to fail [16]. When a node shuts down a new controller is elected. Zookeeper
holds configuration data which contains the list of existing topics, partitions for each
topic, location of replicas, list of configuration overrides for each topic and which node
is the preferred logic, etc. [16]. Finally, Zookeeper maintains a list of all the brokers.

21

2.4.5 Schema registry

Figure 2.14. Storing and retreiving schemas

Confluent Schema Registry provides a serving layer for metadata. It provides a RESTful
interface to store and retrieve Avro, JSON and Protobuf schemas. The Schema Registry
stores a versioned history of all schemas based on a specified subject name strategy. It
lives outside of and separately from Kafka brokers, consumers and producers can talk to
the Schema Registry to send and retreive schemas that describe the data models for the
messages. When a schema is registered, the Schema Registry returns a globally unique
ID, which identifies the registered schema.

Avro
Apache Avro is a data serialization system, which provides rich data structures, compact
and fast data formats along with simple integration with dynamic languages [17]. Apache
Kafka uses Avro as one of the main serialization types because it has the following
features [18]:

1. It has a direct mapping to and from JSON.

2. It has a very compact format.

3. It is very fast.

22

4. It has great bindings for a wide variety of programming languages.

5. It has a rich extensible schema language defined in pure JSON.

6. It has the best notion of compatibility for evolving your data over time.

Avro relies on schemas, when Avro data is read, the schema used when writing it is
always present. This permits fast serialization as well as making the data together with
its schema fully self-describing. An example Avro schema can be seen on figure 2.15.

The schema specifies how the records will be serialized and deserialized, which
means the schema must be present at both operations. Usually the client application can
get the schemas from the Schema Registry, which is introduced in chapter 2.4.5.

1 {
2 "type": "record",
3 "name": "Temperature",
4 "namespace": "com.KafkaGraphQL",
5 "fields": [
6 {
7 "name": "room"
8 "type": "int"
9 },

10 {
11 "name": "value",
12 "type": "int"
13 },
14 {
15 "name": "timestamp",
16 "type": "string"
17 }
18]
19 }

Figure 2.15. Avro schema for Temperature model

2.4.6 Streams API

Currently, Kafka Streams is the most widely adopted API from Kafka. A stream repre-
sents an unbounded, continuously updated data set. Kafka Streams defines a processor
topology, which can be represented as a graph, each stream processor has a source
processor and a sink processor. Data is streamed from a source processor to a sink
processor, which enables complex joins and transformations on the data being processed.
The Streams API is not used in this thesis.

23

Figure 2.16. Kafka Streams processor topology

2.4.7 Confluent REST Proxy

The Confluent REST Proxy is an HTTP-based proxy for communicating with a Kafka
cluster [6]. It supports producing and consuming messages along with providing the
metadata about the cluster. The proxy supports binary, JSON and Avro formats for
record encoding and integrates with the schema registry. The proxy was made to meet
the growing demands of many organizations that want to use Kafka, but also want more
freedom to select languages beyond those for which stable native clients exist today [6].

24

Figure 2.17. Confluent REST Proxy [5]

The Confluent REST Proxy is a HTTP wrapper of Java libraries [6]. It uses the
existing libraries provided with the Apache Kafka project, which also includes modules
to access the cluster’s metadata. The proxy requests use embedded data - serialized key
and value data that Kafka deals with [6]. To consume messages from a topic, the proxy
requires that a consumer instance is created and subscribed to a topic by the client. These
consumers are stateful and tied to a particular proxy instance. Some of the key operations
that the proxy supports are shown on table 2.3.

25

Name Description
GET /topics Get a list of Kafka top-

ics.
GET /topics/(string:topic_name) Get metadata about a

specific topic.
POST /topics/(string:topic_name) Produce messages to a

topic
GET /topics/(string:topic_name)/partitions Get a list of partitions

for the topic.
GET /topics/(string:topic_name)/partitions/
(int:partition_id)

Get metadata about a
single partition in the
topic.

POST /consumers/(string:group_name) Create a new consumer
instance in the con-
sumer group.

POST /consumers/(string:group_name)/instances/
(string:instance)/subscription

Subscribe to the given
list of topics or a topic
pattern to get dynami-
cally assigned partitions.
If a prior subscription
exists, it would be re-
placed by the latest sub-
scription.

GET /consumers/(string:group_name)/instances/
(string:instance)/subscription

Get the current sub-
scribed list of topics.

GET /consumers/(string:group_name)/instances/
(string:instance)/records

Fetch data for the topics
of the consumer

Table 2.3. Some of Confluent REST Proxy methods

3 Reasoning to use GraphQL with Kafka
This chapter explains the reasoning behind why GraphQL could be used to communicate
with the Kafka cluster instead of a RESTful interface.

3.1 Streams of records
Since Kafka is a stream-processing framework, a proper Kafka interface for communicat-
ing with a Kafka cluster should implement streams to some extent. The Confluent REST

26

Proxy only supports getting records as a request and not in the form of a stream, which
is because RESTful interfaces are unable to define a request which might return infinite
data. Kafka streams could be implemented in REST using a workaround involving
webhooks and in GraphQL with GraphQL Subscriptions.

In REST architecture the client has to send requests each time they need new in-
formation, this means that for getting the latest pieces of information, the client has to
periodically send the same request to the server, which means that the client might make
requests more often than is required. One solution to this problem is using webhooks,
which means that the client will specify an URL, to which the server will send events as
they happen.

GraphQL has the subscription operation type, which supports streaming data from
the server. GraphQL subscriptions are usually implemented by the client and server
using WebSockets to communicate. WebSockets is a technology that makes it possible
to open a two-way interactive communication session between the user’s browser and a
server [19]. The client sends a subscription query to the server and specifies what data it
is interested in, a socket is created and when the server has new data for the client, it is
pushed to the client via the socket.

4 Implementation
In this section the implementation details for the GraphQL interface for Kafka will be
described. The implementation is based on the Confluent REST proxy java backend that
was redesigned to comply to graphql principles. Porting the REST proxy to GraphQL
enabled us to reuse some existing server functions used to interface Kafka with REST,
however the GraphQL logic and resolvers still had to be written accordingly to the
existing functions.

Preexisting codebase used for this implementation and not written by us can be
found on: https://github.com/confluentinc/kafka-rest and https://github.com/graphql-
java/graphql-java-subscription-example.

The GraphQL proxy implementation and Streaming Avro data via GraphQL was
implemented using the following:

• Java 8.

• Apache Kafka 2.5.0 - java library for Kafka.

• Confluent REST Proxy v5.4.0 - reusing some functions from Confluent.

• graphql-java 6.0 - java library for GraphQL.

• RxJava 2.1.5 - a Java VM implementation of Reactive Extensions: a library for com-
posing asynchronous and event-based programs by using observable sequences.

27

• Spring boot 2.2.6 - a framework to develop web applications.

• Jetty web server - servlet engine and http server.

4.1 GraphQL Proxy
In total our implementation of the GraphQL proxy supports 11 operations, which are
shown on table 4.1.

The Confluent REST Proxy provided functions to communicate with the Kafka cluster
on the server side. These functions were available through the DefaultKafkaRestCon-
text.java class, which provides wrappers for Kafka AdminClient [20]. The AdminClient
class is the administrative client for Kafka, which supports managing and inspecting
topics, brokers, configurations and ACLs (access control list).

Figure 4.1. UML diagram for the GraphQL Proxy

28

Type Name Descriptions
Query topics Returns a list of existing topics
Query topic Returns metadata about a single topic
Query partitionMetadata Returns metadata about a partition
Query getOffsets Returns offsets of a partition
Query consumeBinary Returns a list of binary records from a consumer

Query consumeAvro Returns a list of Avro records from a consumer
Query getSubscriptions Returns a list of subscribed topics for a consumer

Mutation ProduceBinary Produces binary records to a topic
Mutation ProduceAvro Produces Avro records to a topic
Mutation addConsumer Creates a consumer instance

Mutation subscribe Subscribes a consumer to a list of topics

Subscription temps Starts a stream of temperatures from the server

Table 4.1. Table of supported operations in our implementation of GraphQL proxy

4.1.1 Data model

To communicate with the Kafka cluster, GraphQL types for topics, producers, consumers
and records had to be designed. The models for these entities can be seen on figure 4.2,
the figure is not exhaustive of all the types written for this thesis.

29

1 type Query {
2 topics: [Topic] # Returns an array of topics
3 consumeBinary(group: String, instance: String): [ConsumedRecord]
4 consumeAvro(group: String, instance: String): [ConsumedRecord]
5 }
6 type Mutation {
7 produceBinary(topic: String, records: [BinaryRecord]): [Offset]
8 produceAvro(topic: String, records: [AvroRecord]): [SchemaInfo]
9 }

10 type Topic {
11 name: String
12 configs: [Property]
13 partitions: [Partition]
14 }
15 type Property {
16 key: String
17 value: String
18 }
19 type Partition {
20 id: Int
21 leader: Int
22 }
23 type Offset{
24 partition: Int
25 offset: Int
26 }
27 type SchemaInfo {
28 keyId: Int
29 valueId: Int
30 }
31 type ConsumedRecord { # Return type for a record query
32 topic: String
33 key: String
34 value: String
35 partition: String
36 offset: String
37 }
38 input BinaryRecord { # Input object to create a new record
39 key: String
40 value: String
41 partition: Int
42 }
43 input AvroRecord {
44 key_schema: String
45 key_schema_id: Int
46 value_schema: String
47 value_schema_id: Int
48 key: String
49 value: String
50 }
51 input Consumer { # Input object to create a new consumer
52 name: String
53 format: String
54 auto_offset_reset: String
55 auto_commit_enable: String
56 fetch_min_bytes: Int
57 request_timeout_ms: Int
58 }

Figure 4.2. Modelling Kafka with GraphQL types

30

4.1.2 Querying Metadata

To query metadata, the methods which AdminClient offers and were used in this thesis
are the following:

• describeTopics(Collection<String> topicNames) - get metadata about a collection
of topics.

• listTopics() - lists the available topics in the cluster.

Using the listTopics() method, a GraphQL resolver was written, which asks the
AdminClient wrapper for a list of existing topics, which are then returned to the client,
this list enables to get information about partitions and offsets as well.

Figure 4.3. Query for existing topics

31

Figure 4.4. Querying metadata about a single topic

4.1.3 Producing to a topic

For record production, the Confluent REST Proxy uses a shared pool of producers, who
will send the provided records to a topic. The client specifies records via the REST
interface which will then be sent to a producer with the desired serialization type. The
serialization type is specified in the request and the ProducerPool object stores a map with
keys specifying the serialization type and values with corresponding producer objects.

To produce data to a topic, our implementation supports two GraphQL mutations:

• produceBinary(topic: String, records: [Record]), produces the provided records to
the topic.

• produceAvro(topic: String, records: [AvroRecord]), produces the provided Avro
records to the topic.

Binary producing In our implementation, the client can specify the key, value and
partition of the record to be produced as well as a topic. The keys and values provided,
must be strings, which will then be converted into byte arrays in the class Producer-
DataFetchers’ (figure 4.1) resolver method produceBinary and afterwards sent to the
specified topic with a NoSchemaProducer instance, which will just send the records to
the partition as they are provided.

32

Avro producing In our implementation, Avro producing works by specifying the
schemas or schema ids for both the record’s key and value when posting records. If the
schema is not provided, the id must identify the schema and the schema must match with
key and the value of the record. The resolver method in class ProducerDataFetchers’
called produceAvro then forwards data to a AvroRestProducer instance, which encodes
the key and value and sends them to the topic specified, the resolver then responds the
client with the schema id for both the key and the value (if the schema didn’t exist in the
registry before, a new schema is registered).

Figure 4.5. Producing Avro records to a topic

4.1.4 Consuming from a topic

To consume records from a topic, our implementation has three steps:

1. Create a consumer instance in a consumer group and specify record type

2. Subscribe the created consumer to a topic

3. Consume records using the consumer instance

To create a consumer, the client must specify a set of parameters, describing the
consumer instance, these parameters are:

• Group - consumer group where the consumer instance will be created.

33

• Name - name for the created consumer.

• format - record format - either "binary" or "avro".

• auto_offset_reset - sets the auto.offset.reset setting for the consumer.

• auto_commit_enable - sets the auto.commit.enable setting for the consumer.

• fetch_min_bytes - sets fetch.min.bytes setting for the consumer.

• consumer_request_timeout_ms - sets the consumer.request.timeout.ms setting for
the consumer, this controls the maximum time to wait for records if the maximum
request size has not been reached.

Figure 4.6. Creating an Avro consumer

Both the group and the name must be specified to consume data from a topic. After
sending the request the server creates a new consumer instance, which is now ready to be
used. To use the consumer instance for consumption, it must subscribe to a set of topics,
which can be done with a subscribe mutation. The subscribe mutation takes parameters
of group, consumer name and an array of topic names, to which the consumer instance
will subscribe to. This mutation doesn’t return anything.

34

Figure 4.7. Subscribing a consumer instance to a topic

Once the consumer has subscribed to a set of topics, a query can be made to the
server, which will return keys and values from the subscribed topics, when the query is
made, the offsets are saved for the consumer and for every subsequent query, records
will be returned starting from that offset.

35

Figure 4.8. Consuming Avro records

REST Proxy vs GraphQL Proxy

Table 4.2 compares some of the total times of the Confluent REST Proxy and our
implementation. The times were measured using the ubuntu time utility, which measures
the runtime of a command, we used curl as the command in both proxies. According
to the benchmarks, GraphQL performed better overall. This means that in terms of
execution and response time, graphql is a better choice for such a proxy.

Operation REST Proxy GraphQL Proxy
Get a list of topics 0.493s 0.056s

Get metadata about a topic 0.079s 0.044s
Produce a binary message 0.183s 0.083s
Produce an Avro message 0.279s 0.117s
Consume 5 Avro messages 1.023s 0.500s

Table 4.2. Comparison of REST proxy vs GraphQL proxy

4.2 Streams with GraphQL subscriptions
To stream records from a topic over GraphQL, GraphQL subscriptions and RxJava was
used by us. When the server recieves a subscription request from the client, the server

36

subscribes to a publisher of events and starts sending data over the websocket to the
client.

4.2.1 Streaming temperatures

In the following, a temperature example is used for subscriptions and streaming. The
subscription is of type Temperature similar to the one shown on figure 2.1. A publisher
instance is created, which is consuming the desired Kafka topic in 100 ms intervals for
new records and upon consuming new records, sending the records over a WebSocket
to the client. For the demo a producer instance is running that is generating random
temperature measurements at random intervals up to 2 seconds apart.

Figure 4.9. Consuming temperature measurements via GraphQL subscriptions, shown
using Google Chrome’s inspect element interface

37

5 Conclusion
During the writing of this thesis a GraphQL proxy was written, which provides a web
API to communicate with the Kafka cluster. This enables the use of Kafka without it’s
native clients (Java, Go etc.), this makes the Kafka cluster much more accessible. During
the thesis 11 GraphQL operations were developed, which enable to query for metadata,
produce and consume records.

5.1 Future work
This thesis did not interface GraphQL with Kafka to the full extent. The current streaming
implementation is not able to stream records of generic types and since Avro schemas
can in theory be parsed into GraphQL schemas, then it makes sense that such a parser
would prove useful in the future as well.

5.1.1 Kafka Streams

In the future our work could be extended to work with Kafka streams API using GraphQL
subscriptions. This would mean streaming records similarly to streaming temperatures,
but enabling the server to send arbitrary types of Avro records. First the used temperature
subscription could be generalized to a type AvroRecord, which has fields for the key,
value and timestamp. Then those fields could be generified to return either binary keys
and values or support Avro records using JSON string as in the GraphQL proxy proposed
in this implementation.

5.1.2 GraphQL to Avro parser

Avro and GraphQL schemas share an inherent similarity, which can be seen on figure
5.1. In the future, a parser for these schemas to translate one to the other could be
implemented to avoid explicit conversion of the schemas. To do these translations some
equivalence between types must be implemented and fields which resolve to custom
types, could be translated recursively.

GraphQL schemas are similar to Avro schemas because both define types and fields
on those types. In both GraphQL and Avro, fields can be scalar types or complex types,
which have fields as well.

38

1 {
2 "type": "record",
3 "name": "Temperature",
4 "fields": [
5 {
6 "name": "room"
7 "type": "int"
8 },
9 {

10 "name": "value",
11 "type": "int"
12 },
13 {
14 "name": "timestamp",
15 "type": "string"
16 }
17]
18 }

Temperature Avro Schema (a)

1 type Temperature {
2 room: Int
3 value: Int
4 timestamp: String
5 }

Temperature GraphQL type (b)

Figure 5.1. Avro and GraphQL equivalents for Temperature model

39

References
[1] “Graphql | a query language for you api.” https://graphql.org/.

[2] “Infographic: What happens in an internet minute
2020.” https://www.allaccess.com/merge/archive/31294/
infographic-what-happens-in-an-internet-minute.

[3] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe,” 2003.

[4] “Apache kafka.” https://kafka.apache.org/intro.

[5] “Confluent rest proxy and schema registry (concepts, archi-
tecture, features).” https://www.slideshare.net/KaiWaehner/
confluent-rest-proxy-and-schema-registry-concepts-architecture-features/
10.

[6] “A comprehensive rest proxy for kafka.” https://www.confluent.io/blog/
a-comprehensive-rest-proxy-for-kafka/.

[7] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” 2000.

[8] “Rest api tutorial.” https://restfulapi.net/.

[9] “Graphql specification - schema.” http://spec.graphql.org/June2018/
#sec-Schema.

[10] “Graphql specification - operations.” http://spec.graphql.org/June2018/
#sec-Language.Operations.

[11] “Graphql specification - selection sets.” http://spec.graphql.org/June2018/
#sec-Selection-Sets.

[12] “Graphql specification - fields.” http://spec.graphql.org/June2018/
#sec-Language.Fields.

[13] “Graphql specification - arguments.” http://spec.graphql.org/June2018/
#sec-Language.Arguments.

[14] “What is pub/sub? | cloud pub/sub documentation | google cloud.” https://cloud.
google.com/pubsub/docs/overview.

[15] “Murmurhash.” https://en.wikipedia.org/wiki/MurmurHash.

40

https://graphql.org/
https://www.allaccess.com/merge/archive/31294/infographic-what-happens-in-an-internet-minute
https://www.allaccess.com/merge/archive/31294/infographic-what-happens-in-an-internet-minute
https://kafka.apache.org/intro
https://www.slideshare.net/KaiWaehner/confluent-rest-proxy-and-schema-registry-concepts-architecture-features/10
https://www.slideshare.net/KaiWaehner/confluent-rest-proxy-and-schema-registry-concepts-architecture-features/10
https://www.slideshare.net/KaiWaehner/confluent-rest-proxy-and-schema-registry-concepts-architecture-features/10
https://www.confluent.io/blog/a-comprehensive-rest-proxy-for-kafka/
https://www.confluent.io/blog/a-comprehensive-rest-proxy-for-kafka/
https://restfulapi.net/
http://spec.graphql.org/June2018/#sec-Schema
http://spec.graphql.org/June2018/#sec-Schema
http://spec.graphql.org/June2018/#sec-Language.Operations
http://spec.graphql.org/June2018/#sec-Language.Operations
http://spec.graphql.org/June2018/#sec-Selection-Sets
http://spec.graphql.org/June2018/#sec-Selection-Sets
http://spec.graphql.org/June2018/#sec-Language.Fields
http://spec.graphql.org/June2018/#sec-Language.Fields
http://spec.graphql.org/June2018/#sec-Language.Arguments
http://spec.graphql.org/June2018/#sec-Language.Arguments
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://en.wikipedia.org/wiki/MurmurHash

[16] “What is zookeeper and why is it needed for apache kafka?.” https:
//www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_
zookeeper.html.

[17] “Apache avro 1.9.2 documentation.” https://avro.apache.org/docs/1.9.2/.

[18] “Why avro for kafka data?.” https://www.confluent.io/blog/
avro-kafka-data/.

[19] “The websocket api (websockets).” https://developer.mozilla.org/en-US/
docs/Web/API/WebSockets_API.

[20] “Adminclient (kafka 2.3.0 api).” https://kafka.apache.org/23/javadoc/
index.html?org/apache/kafka/clients/admin/AdminClient.html.

41

https://www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html
https://www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html
https://www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html
https://avro.apache.org/docs/1.9.2/
https://www.confluent.io/blog/avro-kafka-data/
https://www.confluent.io/blog/avro-kafka-data/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://kafka.apache.org/23/javadoc/index.html?org/apache/kafka/clients/admin/AdminClient.html
https://kafka.apache.org/23/javadoc/index.html?org/apache/kafka/clients/admin/AdminClient.html

Appendix

Acknowledgements
I would like to thank Riccardo for the opportunity to work with him, during which i
learned a lot of valuable things.
In memory of professor Sherif Aly Ahmed Sakr.

Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Jonathan Karu,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Towards a GraphQL Proxy for Apache Kafka,

supervised by Riccardo Tommasini, PhD.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Jonathan Karu
20.05.2020

42

	Introduction
	GraphQL vs REST

	Background
	Web APIs
	REST
	GraphQL

	Streaming data
	Pub/Sub
	Kafka
	Topics, brokers and records
	Producer
	Consumer
	Zookeeper
	Schema registry
	Streams API
	Confluent REST Proxy

	Reasoning to use GraphQL with Kafka
	Streams of records

	Implementation
	GraphQL Proxy
	Data model
	Querying Metadata
	Producing to a topic
	Consuming from a topic

	Streams with GraphQL subscriptions
	Streaming temperatures

	Conclusion
	Future work
	Kafka Streams
	GraphQL to Avro parser

	References
	Appendix
	II. Licence

