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Chapter 1

Introduction

Firstly, it would be a pity not to retell the evergreen folkloristi storybehind the approximation problem. Having done that, we ontinuewith a self-ontained summary of the thesis. In the end of this hapter,we shall �x some notation and give referenes to soures that ontainwell-known general onepts and results in funtional analysis.
1.1 Historical roots of the field

In the 1930s, the mathematical life of Lwów (then in Poland, now Львiв, in the
Ukraine) was intense. Notable members of the Lwów School of Mathemat-

ics included Stefan Banach, Władysław Orlicz, Stanisław Saks, Hugo Steinhaus
Stanisław Mazur, Stanisław Ulam, Juliusz Schauder, Herman Auerbach, and
others.

According to Ulam’s memories, it must have been Banach who had suggested
keeping track of some of the problems occupying the group of mathemati-
cians there. Apart from the more official meetings, there were frequent infor-
mal discussions held in coffee houses “Roma” or “The Scottish Coffee House”
located near the University building. The problems were written down in a
large notebook which was deposited with the headwaiter of “The Scottish Cof-
fee House”. Later, after the war, the problems from the notebook were pub-
lished as the “Scottish Book” [Scottish].

In the “Scottish Book”, the Problem 153 is the following.

Given is a continuous function f (x, y) defined for 0 É x, y É 1

9



10 CHAPTER 1. INTRODUCTION

and a number ε > 0; do there exist numbers a1, . . . , an , b1, . . . ,bn ,
c1, . . . ,cn with the property that

∣
∣
∣
∣
∣
f (x, y)−

n∑

k=1

ck f (ak , y) f (x,bk )

∣
∣
∣
∣
∣
É ε

in the interval 0É x, y É 1?

This problem had been proposed by Mazur in November 6, 1936, and the
prize for solving it was exceptional: a live goose. (Other problems had smaller
prizes, such as free dinner or bottle of whiskey, etc.)

Grothendieck proved in his famous Memoir [Gro, “Proposition” 37] that Prob-
lem 153 is equivalent to the approximation problem: do all Banach spaces
have the approximation property? In other words, is it true for every Banach
space X that, given any compact set K ⊂ X and a number ε> 0, one can find
a bounded linear finite-rank operator T on X such that sup

x∈K

‖T x −x‖ < ε?

In fact, the “Scottish Book” was not the first source where the approximation
problem had been touched. Banach’s book “Théorie des opérations linéaires”
from 1932 [B] that created functional analysis as an independent discipline of
mathematics, contains at least two hints on the approximation problem.

On page 237, Banach considers a result originating from Mazur’s remark: let
(Un) be a sequence of compact linear operators on a Banach space E such
that Un x → x for every x ∈ E , then the relative compactness of a subset G ⊂ E

is equivalent to the fact that the convergence Un → IE is uniform on G . Here
Banach essentially considers the bounded compact approximation property.

On page 111, Banach emphasized: On ne sait pas si tout espace du type (B)
séparable admet une base1. This question, the basis problem, is related to the
approximation problem in the way that every space with a basis also has the
approximation property. Hence, the negative solution for the approximation
problem implies the negative solution for the basis problem.

Both problems were in the focus of analysts for a long time, until the negative
solution was given by Per Enflo in 1972 [E]. The live goose was then indeed
given to Enflo by Mazur (see, e.g., [Kałuża], for a photo of this remarkable
event in 1972).

Nowadays the field of approximation properties attracts many researchers,
since it contains a number of problems that have not been solved for a long
time. For instance, two of such famous open problems are: is the bounded

1It is not known whether every separable Banach space has a Schauder basis.
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approximation property always commuting (for separable spaces) and is the
approximation property of a dual space always metric?

1.2 Summary of the thesis

The main aim of the thesis has been to investigate the commuting bounded
approximation property (and also its compact version). On the one hand,
the property is in general weaker than the commuting metric approxima-
tion property or the finite-dimensional decomposition property. On the other
hand, it is stronger than the bounded approximation property. (At least for-
mally) in between the bounded approximation property and the commuting
bounded approximation property there is a new concept defined in the thesis:
the asymptotically commuting bounded approximation property.

The thesis has been organized as follows.

Chapter 1 contains a short historic overview of the approximation problem,
a summary of the thesis and some technical remarks on the notation used in
the thesis.

In Chapter 2 we make the reader familiar with several versions of approx-
imation properties, including the approximation property and its compact
version, the bounded (compact) approximation property (including the 1-
bounded, in other words, the metric (compact) approximation property), and
the commuting bounded (compact) approximation property. We present con-
cepts and results that are needed in the following chapters or that might be
required to obtain a holistic background on the subject.

In Chapter 3 we prove that the metric compact approximation of the identity
of the space XW due to Willis [W] is commuting. This shows that the space
XW has the commuting metric compact approximation property. Since XW

fails the approximation property as shown in [W], we establish now that the
commuting bounded compact approximation property and the approxima-
tion property are different properties.

Chapter 4 relies heavily on [O4] and [GS]. In 1988, Godefroy and Saphar [GS]
demonstrated how the geometric structure (being M-embedded) of a sepa-
rable Banach space permits to lift the commuting bounded approximation
property to its dual space. We extend their result in a number of ways, omit-
ting the assumption on separability as well as making use of a more gen-
eral structural framework that we call the M(a,B ,c)-inequality. Note that M-
embedded Banach spaces are precisely those that satisfy the M(1, {−1},1)-
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inequality. Among others, we prove that if a Banach space satisfies the
M(a,B ,c)-inequality and has a λ-bounded (compact) approximation property
(where λ must not exceed max |B |+c), then both the space and its dual space
enjoy the metric (compact) approximation property.

The concept of the M(a,B ,c)-inequality can be found implicitely in [O4], it
was considered there while investigating intensively property M∗(a,B ,c), an-
other general structural property that enables simultaneously describe a large
class of ideals of Banach spaces.

Chapter 5 focuses on an aspect of the space X J S , a space whose description
was published in [JO] but created already in 1996 by Johnson and Schecht-
man. The space is remarkable for the fact that it fails the metric approxima-
tion property but has the bounded approximation property. In 2001, Godefroy
[G] proved that X J S has the commuting 8-bounded approximation property.
Godefroy also wrote that no effort had been made to tighten the constant 8.
In Chapter 5 we show that X J S has the commuting 6-bounded approximation
property. It is still open whether the constant 6 is sharp.

Chapter 6 coins a new term: the asymptotically commuting bounded ap-
proximation property. For separable spaces it coincides with the commuting
bounded approximation property. In the general setting we prove that if a Ba-
nach space has the asymptotically commuting bounded approximation prop-
erty, then it has a strong form of the separable local complementation prop-
erty. We note that in view of this result it is not clear whether the commut-
ing bounded approximation property implies the separable complementation
property (a fact that has been claimed to be true in [C2, Theorem 9.3]).

Chapters 3 and 4 are based on [OZ1], Chapter 5 is based on [Z], and Chapter
6 on [OZ2].

1.3 Notation

Our notation is standard.

In a Banach (or normed linear) space X (over K=R or C), we denote the unit
sphere by SX and the closed unit ball by BX . For a set A ⊂ X , its norm closure
is denoted by A, its linear span by span A, its convex hull by conv A, and its
absolutely convex hull by absconv A. The norm closures of the three latter sets
are denoted by span A, conv A, and absconv A, respectively. For closures with
respect to other topologies, we mark the topology or specific space separately,
such as convw∗

A, etc.
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For Banach spaces X and Y , we denote the Banach space of bounded linear
operators from X to Y by L (X ,Y ) and its closed subspace of compact linear
operators by K (X ,Y ). The normed space of finite-rank linear operators from
X to Y will be denoted by F (X ,Y ). If X = Y , we shall write L (X ), K (X ), or
F (X ), respectively. For an operator T : X → Y , we denote ranT = {T x : x ∈ X },
the range of T , and ker T = {x ∈ X : T x = 0}, the kernel of T . The restriction of
T on a subset A will be denoted by T |A . The identity operator on X will be
denoted by IX , that is, IX x = x for every x ∈ X .

We are going to use the canonical embedding jX : X → X ∗∗, being defined by

( jX x)(x∗) = x∗(x), x∗ ∈ X ∗, x ∈ X ,

and the canonical projection πX : X ∗∗∗ → X ∗∗∗ onto ran jX∗ , being defined by

πX = jX∗( jX )∗.

Usually, we shall not write out jX and regard a Banach space X as a subspace
of its bidual X ∗∗.

Recall that the Banach-Mazur distance between isomorphic Banach spaces X

and Y is defined as

dBM (X ,Y ) = inf
{

‖J ‖
∥
∥J−1

∥
∥ : J is an isomorphism from X onto Y

}

,

and if X and Y are not isomorphic, then dBM (X ,Y ) =∞.

Well-known basic notions and theorems of the theory of Banach spaces
and topological vector spaces (such as the Hausdorff theorem, the Auerbach
lemma, the Minkowski functional, the Hahn-Banach theorem, the Alaoglu
theorem, the Goldstine theorem, etc.) are used without referring to their
wording. If required, the adequate background information can be found, for
instance, in [Day], [D], [FHHMPZ], [LTz I], and [SW].





Chapter 2

Approximation properties in general

In this hapter we introdue the terms needed in the following hap-ters, namely we de�ne several versions of approximation properties,inluding the �nite-dimensional deomposition, Shauder basis andothers, at the same time giving insight to some obvious or well-knownresults on these onepts. To aquire more bakground information onthese properties, we refer the reader to an exellent survey by Casazza[C2℄ whih desribes the state of the �eld as it was ten years ago.
2.1 The (compact) approximation property and its

bounded version

Let X be a Banach space.

Definition 2.1. If the following condition holds:

for every compact set K ⊂ X and every ε > 0 there exists an
operator T ∈K (X ) such that ‖T x −x‖ < ε,

then X is said to have the compact approximation property (CAP). If we can al-
ways choose T from F (X ), then X is said to have the approximation property

(AP).

As it was mentioned in Chapter 1, the problem whether every Banach space
has the AP, is fairly old. The ground-breaking negative solution by Enflo was
the following. (For the concept of Schauder basis, see Definition 2.28.)

15
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Theorem 2.2 ([E, Theorem 1]). There exists a separable reflexive Banach space

B with a sequence (Mn) of finite-dimensional subspaces, dim Mn → ∞ when

n →∞, and a constant C such that for every T of finite rank

∥
∥T |Mn − IMn

∥
∥Ê 1−

C ‖T ‖
logdim Mn

.

In particular, B does not have the AP and B does not have a Schauder basis.

For the case of the CAP, the first example was the very same space B in The-
orem 2.2. In [JSz], it has been pointed out that Figiel had noted: the crite-
rion used by Enflo [E] to guarantee that a separable space fails the AP, actually
guarantees that it fails the CAP. Among other examples, it was proven by Figiel
[F] and Davie [Davie] that ℓp , where p ∈ (2,∞), contains a closed subspace
failing the AP (due to Figiel’s note, also failing the CAP), and by Szankowski
[Sz1] (see [LTz II, Theorem 1.g.4, p. 107]) that ℓp , where p ∈ [1,2), contains a
closed subspace failing the CAP.

For a space having the CAP and failing the AP, we refer to [W] and Chapter 3.
(Hence the CAP and the AP are different properties.)

However, most of the classical spaces, such as c0, C [a,b], ℓp , Lp (a,b), where
1 É p < ∞, satisfy the basis property (see Definition 2.28); in fact, they en-
joy all the approximation properties described throughout this chapter. Most
examples failing different approximation properties are highly artificial; per-
haps the easiest example “to write down” failing the AP is L (ℓ2), again due to
Szankowski [Sz2].

Definition 2.3. If there exists a real number λ such that the following condi-
tion holds:

for every compact set K ⊂ X and every ε > 0 there exists an
operator T ∈K (X ) such that ‖T ‖ Éλ and ‖T x −x‖ < ε

then X is said to have the λ-bounded compact approximation property (λ-

bounded CAP). If we can always choose T from F (X ), then X is said to have
the λ-bounded approximation property (λ-bounded AP). (See also Remark
2.4.)

Remark 2.4. In all definitions of approximations, if the value of λ is not im-
portant, we omit the string “λ-”.

Remark 2.5. The least possible value of λ is 1: indeed, if ‖T ‖ Éλ< 1, then for
any x ∈ SX we have

‖T x −x‖ Ê ‖x‖−‖T x‖ Ê 1− sup
x∈BX

‖T x‖ = 1−‖T ‖ Ê 1−λ,
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the lower bound being a positive constant, thus disabling the possibility to
have T x −x as small as wanted for suitable T .

The 1-bounded (C)AP is called the metric (C)AP, or the metric (compact) ap-

proximation property, for long.

For a Banach space failing the metric AP, but having the bounded AP, we refer
to Chapter 5 for references and a result. For very recent examples of Banach
spaces failing the bounded AP, but still having the AP, we refer to the paper by
Figiel, Johnson, and Pełczyński [FJP, Corollary 1.13].

The (C)AP and the bounded (C)AP are inherited to complemented subspaces,
i.e. to such closed subspaces Y of a Banach space X for which there exists a
projection P ∈L (X ) onto Y .

Proposition 2.6. Let Y be a complemented subspace of a Banach space X . Let

X have the (C)AP or the bounded (C)AP. Then Y also has it.

Proof. A projection onto Y is identity on Y , since for every y ∈ Y there is x ∈ X

such that P x = y , hence
P y = PP x = P x = y.

Now fix an ε > 0 and a compact set K in Y , then K is compact in X and we
find a T ∈F (X ) (resp., T ∈K (X )) such that

∥
∥T y − y

∥
∥< ε, y ∈ K . Then

∥
∥PT y −P y

∥
∥É ‖P‖

∥
∥T y − y

∥
∥< ‖P‖ε ∀y ∈ K .

Hence PT |Y ∈ F (Y ) (resp., PT |Y ∈ K (Y )) is the required operator to show
that Y has the (C)AP. For the bounded version, if λ is a uniform bound on the
norms of T , then ‖P‖λ is a uniform bound on the norms of PT |Y .

The conditions in Definitions 2.1 and 2.3 can be written down in the language
of convergence to the identity operator uniformly on compact subsets. Recall
that a net (xα) is a function (xα) : α 7→ xα from a directed set of indices α.

Proposition 2.7. A Banach space X has the (C)AP if and only if there exists a

net (Tα) ⊂ F (X ) (resp., (Tα) ⊂ K (X )) converging to the identity operator uni-

formly on compact subsets, i.e. for any compact set K ⊂ X and a number ε> 0
there exists an index α0 such that

α<α0 ⇒ ‖Tαx −x‖ < ε ∀x ∈K .

For the case of the λ-bounded (C)AP, the equivalent condition is the same but

together with the restriction sup
α

‖Tα‖ Éλ.
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Proof. Firstly, if such a net exists, then for any compact set K ⊂ X and a num-
ber ε > 0 we take Tα0 that meets the needs of Definitions 2.1 or 2.3, yielding
that X has the (λ-bounded) (C)AP.

Let now X have the (C)AP. We order the pairs (K ,ε) (where K is compact and
ε> 0) to obtain a directed set as follows:

(K1,ε1) 4 (K2,ε2) ⇔ K1 ⊂ K2 ∧ ε1 Ê ε2.

For every such pair α = (K ,ε) we obtain an operator Tα for which ‖Tα‖ É λ

and ‖Tαx −x‖ < ε for every x ∈ K .

Now, let us have a compact set K ⊂ X and a number ε > 0. We denote α0 =
(K ,ε). Having (K1,ε1) =: α<α0, there holds

‖Tαx −x‖ < ε1 É ε

for all elements x ∈ K1, hence for all x ∈ K ⊂ K1. Therefore there exists a net
(Tα) such that Tα → IX uniformly on compact subsets.

For the bounded version, we see that all the elements from the net shall not
exceed λ by norm.

It is quite straightforward to verify that the λ-bounded (C)AP can be defined
using a strongly (i.e. pointwise) converging net of operators.

Proposition 2.8. A Banach space X has the λ-bounded (C)AP if and only if

there exists a net (Tα) ⊂ F (X ) (resp., (Tα) ⊂ K (X )) such that ‖Tα‖ É λ and

Tαx → x for every x ∈ X .

Proof. Let X have the λ-bounded (C)AP. By Proposition 2.7, we have a net
(Tα) ⊂ F (X ) (resp., (Tα) ⊂ K (X )) such that Tα → IX uniformly on compact
subsets. Since {x} is a compact subset, Tαx → x for every x ∈ X .

Now let there exist a net (Tα) of finite-rank (resp., compact) operators on X

such that ‖Tα‖ Éλ and Tαx → x for every x ∈ X . Fix a compact set K and a real
number ε> 0. By the Hausdorff theorem, one can find elements x1, . . . , xn ∈ K

such that for every x ∈K , there exists an index j = 1, . . . ,n for which
∥
∥x −x j

∥
∥<

ε

3λ
. Since Tαx → x for every x, one can find an index α0 such that

∥
∥Tα0 x j −x j

∥
∥<

ε

3
∀ j = 1, . . . ,n.

Let be given an x ∈ K . We find an x j ∈ {x1, . . . , xn} such that
∥
∥x −x j

∥
∥ <

ε

3λ
.

Therefore
∥
∥Tα0 x −x

∥
∥É

∥
∥Tα0

∥
∥
∥
∥x −x j

∥
∥+

∥
∥Tα0 x j −x j

∥
∥+

∥
∥x −x j

∥
∥< ε,
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as required.

Remark 2.9. Unlikely to the bounded (C)AP, one cannot define the (C)AP by a
net converging strongly to the identity. Namely, every Banach space has such
a net.

To see this, we order all finite sets of a Banach space X by the ordering

F1 4 F2 ⇔ F1 ⊂ F2.

Now F := {F : F is finite, F ⊂ X } is a directed set.

For every finite set F := {x1, . . . , xn} ⊂ X , the Auerbach lemma gives a projection
PF onto spanF such that ‖P‖ É dimspanF É n. In particular, for every k =
1, . . . ,n we have PF xk = xk . Now (PF ) converges strongly to IX . Indeed, let us
be given an x ∈ X , then for every F < {x} we even have PF x = x, hence by way
PF x → x.

Definition 2.10. A net (Tα) ⊂ K (X ) is called a compact approximation of the

identity (CAI) provided Tαx → x for any x ∈ X . In particular, if (Tα) ⊂ F (X ),
then (Tα) is called an approximation of the identity (AI). If there is a λ such
that for a (C)AI (Tα) there holds sup

α
‖Tα‖ É λ, then (Tα) is called a λ-bounded

(compact) approximation of the identity (λ-bounded (C)AI). (See also Remark
2.4.)

A 1-bounded (C)AI is called a metric (C)AI, or a metric (compact) approxima-

tion of the identity, for long. Bearing in mind Remark 2.5, any λ-bounded
(C)AI must have λÊ 1.

Recall that if (xα) and (yβ) are nets with directed sets A and B of their indices,
then (yβ) is called a subnet of (xα) if there exists a function h : B → A satisfying
the conditions

(i) yβ = xh(β) for all β ∈ B ,
(ii) β1 4β2 implies h(β1) 4 h(β2) for all β1,β2 ∈ B ,

(iii) for every α ∈ A there exists a β ∈ B such that h(β) <α.

It is obvious that every subnet of a (C)AI (or a λ-bounded (C)AI) is also a (C)AI
(resp., a λ-bounded (C)AI).

The next proposition shows that an AI must contain operators of arbitrarily
large rank.

Proposition 2.11. Let X be an infinite-dimensional Banach space and (Tα) be

an AI of X . Then for any m ∈N there exists an index α0 such that α<α0 implies

dimTα Ê m.
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Proof. Consider a subspace E of X such that dimE = m. As BE is a compact
set, we use Proposition 2.7 to find an α0 such that

α<α0 ⇒ ‖Tα|E − IE‖ = sup
x∈BE

‖Tαx −x‖ <
1

m
.

We claim that such operators Tα work.

Let P ∈ L (X ,E ) be a projection onto E for which ‖P‖ É m (due to the Auer-
bach lemma). Then P is the identity on E . Now PTα|E ∈ L (E ) is a bijection
on E . Indeed,

‖PTα|E − IE‖ = sup
x∈BE

‖PTαx −x‖ = sup
x∈BE

‖PTαx −P x‖ É

É ‖P‖ sup
x∈BE

‖Tαx −x‖ < 1,

which shows that PTα|E is invertible.

We conclude that

dimranTα Ê dimranTα|E Ê dimranPTα|E = dimE = m.

For the following condition equivalent to the bounded AP we slightly perturb
the operators of the bounded AI in order to obtain that they coincide with the
identity on suitable finite-dimensional subspaces.

Proposition 2.12 ([C2, Theorem 3.3]). A Banach space X has the bounded AP

if and only if there exists a λ′ Ê 1 so that for every finite-dimensional subspace

E ⊂ X there is an operator T ∈F (X ) such that ‖T ‖ Éλ′ and T |E = IE .

We may compare this condition with the Auerbach lemma where for every
finite-dimensional subspace E ⊂ X one also obtains an operator T ∈ F (X )
satisfying T |E = IE . That operator is a projection onto E , but the bound is not
uniform: ‖T ‖ É dimE . The bound dimE can be made better: a result from
1971 by Kadets and Snobar [КС] establishes

p
dimE . Uniform bound, how-

ever, could never be possible, since this would mean that all Banach spaces
would have the bounded AP.

The proof of Proposition 2.12 relies heavily on the following result.

Proposition 2.13 ([JRZ, Lemma 2.4]). Let X be a Banach space, let F be an n-

dimensional subspace of X and let T : X → F be onto. Let k É n and let E be

a k-dimensional subspace of X such that ‖T |E − IE‖ < ε < 1, where
εk

1−ε
< 1.
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Then there is a rank n operator S on X such that S|E = IE , ‖S −T ‖ <
εk ‖T ‖

1−ε
,

and ranS∗ = ranT ∗. Moreover, if T is a projection, then S can be chosen to be a

projection.

We point out that the condition k É n is not really a restriction, in view of the
proof of Proposition 2.11. Indeed, there it has been shown that if ‖T |E − IE‖ <
ε for a number ε small enough, then the condition dimE É dimranT follows
automatically.

Proof of Proposition 2.12. Let X have the λ-bounded AP. Fix a finite-
dimensional subspace E , find an operator T ∈ F (X ) such that ‖T |E − IE‖ <
εdimE < 1 (Proposition 2.7) where ε is so small that also

εdimE

1−ε
< 1. Now

have ranT in the role of F in Proposition 2.13 and obtain an operator S ∈F (X )
such that S|E = IE and

‖S‖É ‖S −T ‖+‖T ‖ É
εk ‖T ‖

1−ε
+‖T ‖ É

εkλ

1−ε
+λÉ 2λ.

On the other hand, if there is a uniform bound λ′ such that any finite-
dimensional subspace can have a λ′-bounded TE ∈ F (X ) such that TE x = x

for all x ∈ E , then X has clearly the λ′-bounded AP. Indeed, order all the finite-
dimensional subspaces by inclusion (denote the order by 4), this will give an
ordering on the obtained operators TE . Being given an element x ∈ X , we see
that

E < span{x} ⇒ TE x = x

meaning by far that TE x → x.

Making ε> 0 in the proof of Proposition 2.12 arbitrarily small, we can have the

first addend
εkλ

1−ε
as small as desired, since lim

ε→0+

εkλ

1−ε
= 0.

Remark 2.14. If X is a separable Banach space, then we can use a se-
quence in the net definition (Proposition 2.8) of the λ-bounded (C)AP. Indeed,
let us have X = {x1, x2, . . .} and find subsequently the λ-bounded operators
T1,T2, . . . ∈F (X ) (resp., K (X )) such that

‖T1x1 −x1‖ < 1,

‖T2x1 −x1‖ <
1

2
, ‖T2x2 −x2‖ <

1

2
,

. . .

‖Tn xk −xk‖ <
1

n
k = 1, . . . ,n,

. . .
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then for any ε > 0 we can at first approximate ‖x −xk‖ <
ε

3λ
for some k and

after that find an N (with N Ê k) for which

n Ê N ⇒ ‖Tn xk −xk‖ <
ε

3
.

Putting these two estimations together gives us ‖Tn x −x‖→ 0.

On the other hand, if X has a (C)AI (Tn) (i.e., a (C)AI that is a sequence), then

X =
∞⋃

n=1
ranTn

which means that X is separable.

What is more, a (C)AI (Tn) (i.e., a (C)AI that is a sequence) is always bounded,
due to the Banach-Steinhaus theorem.

For separable Banach spaces we can use Proposition 2.12 to have even more.

Proposition 2.15 ([C2, Corollary 3.4]). A separable Banach space X has the λ-

bounded AP if and only if there is a sequence (Sn) ⊂F (X ) such that

(i) Sn x → x for any x ∈ X ,

(ii) SmSn = Sn for all m > n,

(iii) lim sup
n

‖Sn‖ Éλ.

Proof. Let a separable Banach space X have the λ-bounded AP. We have X =
∞⋃

k=1
Ek where {0} 6= E1 ⊂ E2 ⊂ . . . is a chain of finite-dimensional subspaces of

X .

Let us have a λ-bounded AI (Tn) (see Remark 2.14). For the base of induction,
find S1 by use of E1, ε1, a Tn1 , and Proposition 2.13. Then S1 is the identity on
E1 whereas

‖S1 −T1‖ <
ε1 dimE1

∥
∥Tn1

∥
∥

1−ε1
.

The step of induction can be performed as follows. We denote

E ′
k+1 := span

(

Ek+1 ∪
k⋃

j=1
ranS j

)

,
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take an εk+1 so small that max

(

εk+1 dimE ′
k+1,

εk+1 dimE ′
k+1

1−εk+1

)

< 1, and find a

Tnk+1 such that
∥
∥
∥Tnk+1 |E ′

k+1
− IE ′

k+1

∥
∥
∥< εk+1.

Inputting these ingredients into Proposition 2.13 gives an Sk+1 that is the iden-
tity on E ′

k+1 (hence also on Ek+1). Therefore Sk+1Sn = Sn for all n < k +1 due
to ranS j ⊂ E ′

k+1, j = 1, . . . ,k, and

∥
∥Sk+1 −Tnk+1

∥
∥<

εk+1 dimE ′
k+1 ‖Tk+1‖

1−εk+1
.

Demanding also εk → 0, the “only if” part is done.

Assume now that there exists a sequence (Sn) ⊂ F (X ) such that Sn x → x for
any x ∈ X , SmSn = Sn for all m > n, and lim sup

n
‖Sn‖ Éλ. Switching to a subnet

(Snk
), we have λ0 := lim

k

∥
∥Snk

∥
∥Éλ. Now denote

Tk =
λ0

∥
∥Snk

∥
∥

Snk
, k ∈N.

Then (Tk) is a λ-bounded AI. Indeed,

‖Tk x −x‖ =
∥
∥
∥
∥

λ0
∥
∥Snk

∥
∥

Snk
x −x

∥
∥
∥
∥É

∥
∥
∥
∥

λ0
∥
∥Snk

∥
∥
−1

∥
∥
∥
∥

∥
∥Snk

∥
∥‖x‖+

∥
∥Snk

x −x
∥
∥→ 0

and ‖Tk‖ =
∥
∥
∥
∥

λ0
∥
∥Snk

∥
∥

Snk

∥
∥
∥
∥=λ0 for all k, giving sup

k

‖Tk‖ Éλ.

Remark 2.16. The “only if” part of the proof of Proposition 2.15 shows the fol-
lowing. For a separable Banach space the λ-bounded AI (Tn) implies the exis-
tence of an AI (Sk) such that SmSn = Sn for all indices m > n, lim sup

k

‖Sk‖ É λ

and for some subsequence of natural number (nk ) there holds
∥
∥Sk −Tnk

∥
∥→ 0.

In the present days, investigations include the extensions of the classical no-
tions of approximation properties.

One way is to consider more general or different types of compactness for the
sets K in Definition 2.1, e.g. [OT] on approximation using weakly compact
sets, and [SK1], [SK2], [DOPS] on approximation using p-compact sets.

One can also consider different restrictions on the approximating operators.
Following [LO2], X has the weak λ-bounded AP if for an arbitrary Banach
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space Y and an operator S ∈ W (X ,Y ) (weakly compact operators, i.e., those
that map bounded sets to relatively weakly compact sets) there exists a net
(Tα) ⊂ F (X ) such that Tα → IX uniformly on compact subsets of X whereas
lim sup

α
‖STα‖ É λ‖S‖. The weak bounded AP has been intensively studied by

Oja, Å. Lima, and V. Lima (see, e.g., [LO2], [V.L], [O8]).

The strong AP of X (meaning that for an arbitrary separable reflexive Ba-
nach space Z and an operator S ∈ K (X , Z ) there exists a bounded net (Tα) ⊂
F (X , Z ) such that Tαx → Sx for all x ∈ X ) has been studied by Oja in [O7]. This
property is (at least formally) weaker than the weak bounded AP, but strictly
stronger than the AP.

Another way is to consider different classes of operators instead of K (X ) or
F (X ) in Definition 2.1. For references in this direction we suggest to look at
[LMO].

2.2 The commuting bounded approximation property

Let X be a Banach space.

Definition 2.17. A (C)AI (Tα) is called commuting if TαTβ = TβTα for all α

and β. A commuting (C)AI (Tα) is called a λ-commuting bounded (C)AI if
lim sup‖Tα‖ Éλ. A 1-commuting bounded (C)AI is called a commuting metric

(C)AI. (See also Remark 2.4.)

It is obvious that every subnet of a commuting (C)AI (or a λ-commuting
bounded (C)AI) is also a commuting (C)AI (resp., a λ-commuting bounded
(C)AI).

The concept of λ-commuting bounded (C)AI enables to isolate another ap-
proximation property.

Definition 2.18. If there is a λ-commuting bounded (C)AI (respectively, a
commuting metric (C)AI), then X is said to have the λ-commuting bounded

(C)AP (respectively, the commuting metric (C)AP). (See also Remark 2.4.)

This type of concept of the commuting bounded approximation property is
due to Casazza [C2].

It is interesting to make a historical note here: in [J] one finds a similar con-
cept (for separable spaces) due to Rosenthal, where the commutativity as-
sumption is stronger: TmTn = Tmin(m,n) whenever m 6= n. In [J] it is written that
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Rosenthal had observed that, for separable spaces, his concept is equivalent to
the (our) λ-commuting bounded approximation property, i.e., that Rosenthal
had already proven (twenty years before) the important equivalence (i)⇔(ii)
of Corollary 2.21, due to Casazza and Kalton [CK].

The AP and the commuting bounded CAP are different properties, as can be
seen from Chapter 3. It is an open question whether the bounded AP implies
the commuting bounded AP.

Though the condition lim sup
α

‖Tα‖ É λ is seemingly weaker than sup
α

‖Tα‖ É
λ, the λ-commuting bounded (C)AP implies trivially the λ-bounded (C)AP, as
can be seen from the following proposition.

Proposition 2.19. A Banach space X has the λ-commuting bounded (C)AP if

and only if X has a commuting (C)AI (Tα) together with one of the following

conditions:

(i) lim sup
α

‖Tα‖ Éλ; (ii) lim inf
α

‖Tα‖ Éλ;

(iii) lim
α

‖Tα‖ Éλ; (iv) sup
α

‖Tα‖ Éλ;

Proof. It is clear that (iii) implies (i) and (ii). The other direction can be ob-
tained by switching to a subnet.

It is also clear that (iv) implies (i) since lim sup
α

‖Tα‖ É sup
α

‖Tα‖.

The argument why (iii) implies (iv) is similar to the proof of the “if” part
of Proposition 2.15. Let (Tα) be such a commuting (C)AI for which λ0 :=
lim
α

‖Tα‖ Éλ. Now denote

Sα =λ0
Tα

‖Tα‖
.

Then Sα is a commuting (C)AI: indeed,

Sα1 Sα2 =
λ2

0
∥
∥Tα1

∥
∥
∥
∥Tα2

∥
∥

Tα1 Tα2 =
λ2

0
∥
∥Tα1

∥
∥
∥
∥Tα2

∥
∥

Tα2Tα1 = Sα2 Sα1 ,

‖Sαx −x‖ =
∥
∥
∥
∥

λ0

‖Tα‖
Tαx −x

∥
∥
∥
∥É

∣
∣
∣
∣

λ0

‖Tα‖
−1

∣
∣
∣
∣
‖Tα‖‖x‖+‖Tαx −x‖→ 0.

What is more,

‖Sα‖ =λ0 ∀α,

hence sup
α

‖Sα‖ Éλ.
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We are going to need all the arguments of the proof of the next result in a
slightly different context in Chapter 6 while proving Theorem 6.9 (see pp. 74–
84).

Theorem 2.20 ([CK, Proposition 2.1]). Let X be a separable Banach space

with an AI (Tn) such that TnTm = Tm if n > m, and lim sup
n

‖Tn‖ É λ. If
∑

n

‖TnTn+1 −Tn+1Tn‖ < ∞, then X has an AI (Sn) satisfying SnSm = Smin(n,m)

for all n 6= m, and lim sup
n

‖Sn‖ Éλ.

For the sake of completeness, we shall prove the next result originating from
[CK], which relies on Theorem 2.20, in detail.

Corollary 2.21 ([CK, Propositions 2.2 and 2.3]). For a separable Banach space

X , the following statements are equivalent:

(i) X has the λ-commuting bounded AP.

(ii) There is an AI (Tn) on X with TnTm = Tmin(n,m) for all n 6= m, and

lim sup
n

‖Tn‖ Éλ.

(iii) There is an AI (Tn) on X with lim
n

‖TnTm −TmTn‖ = 0 for all m, and

lim sup
n

‖Tn‖ Éλ.

(iv) There is an AI (Tn) on X with lim
m,n

‖TnTm −TmTn‖ = 0, and lim sup
n

‖Tn‖ É
λ.

Proof. The condition (ii) obviously implies all the other conditions. Also, (i)
easily implies (ii), by using Theorem 2.20.

Let us show that (iii) or (iv) is sufficient to fulfill the assumptions of Theorem
2.20.

In both cases, we shall first find an AI (Sk ) such that SmSn = Sn if m > n, and
for a subsequence (Tnk

) of (Tk) we have lim
k→∞

∥
∥Sk −Tnk

∥
∥= 0 (see Remark 2.16).

(iii). Assume that the original AI (Tn) on X satisfies lim
n

‖TnTm −TmTn‖= 0 for

all m, and lim sup
n

‖Tn‖ É λ. We find an AI (Sn) such that SmSn = Sn if m > n,

and for a subsequence (Tkn
) of (Tn) we have lim

n→∞

∥
∥Sn −Tkn

∥
∥= 0. This implies

that the limes superior of the right hand side of the inequality

‖Sn‖ É
∥
∥Sn −Tkn

∥
∥+

∥
∥Tkn

∥
∥

is not greater than λ, giving lim sup
n

‖Sn‖ Éλ.
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Let us denote by λ′ a number strictly greater than λ. If needed, we omit a
finite number of members from the beginning, so obtaining

sup
n

‖Sn‖ Éλ′, sup
n

‖Tn‖ Éλ′.

We also have lim
n

lim sup
m

‖SmSn −SnSm‖ = 0. Indeed, fix an index m and a

number ε, assuming 0 < εÉ 1. Clearly

‖SmSn −SnSm‖ É
∥
∥SmSn −Tkm

Tkn

∥
∥+

∥
∥Tkm

Tkn
−Tkn

Tkm

∥
∥+

∥
∥Tkn

Tkm
−SnSm

∥
∥ .

Let N be an index for which

n Ê N ⇒
{ ∥

∥Sn −Tkn

∥
∥<

ε

λ′ ,
∥
∥Tkm

Tkn
−Tkn

Tkm

∥
∥< ε

Hence for the case n Ê N we have
∥
∥SmSn −Tkm

Tkn

∥
∥ É ‖Sm‖

∥
∥Sn −Tkn

∥
∥+

∥
∥Tkn

∥
∥
∥
∥Sm −Tkm

∥
∥<

< ε+λ′∥∥Sm −Tkm

∥
∥ ,

∥
∥Tkm

Tkn
−Tkn

Tkm

∥
∥ < ε,

∥
∥Tkn

Tkm
−SnSm

∥
∥ É

∥
∥Tkn

∥
∥
∥
∥Tkm

−Sm

∥
∥+‖Sm‖

∥
∥Tkn

−Sn

∥
∥<

< ε+λ′∥∥Sm −Tkm

∥
∥ ,

or altogether
‖SmSn −SnSm‖ < 2λ′∥∥Sm −Tkm

∥
∥+ε.

Thus for all indices m we have

lim sup
n→∞

‖SmSn −SnSm‖É 2λ′∥∥Sm −Tkm

∥
∥ .

Therefore
lim

m→∞
lim sup

n→∞
‖SmSn −SnSm‖= 0.

Next, we choose a subsequence of (Sn) inductively such that
∥
∥Sln

Sln+1 −Sln+1 Sln

∥
∥É

1

2n
. For this task let l1 be an index such that

lim sup
n

∥
∥Sl1Sn −SnSl1

∥
∥<

1

2
.

Pass to a subsequence (call it again (Sn)) so that

lim
n

∥
∥Sl1Sn −SnSl1

∥
∥<

1

2
.
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Let l2 > l1 be such that

∥
∥Sl1Sl2 −Sl2Sl1

∥
∥<

1

2
, lim sup

n

∥
∥Sl2Sn −SnSl2

∥
∥<

1

4
.

Pass to a subsequence (call it again (Sn)) so that

lim
n

∥
∥Sl2Sn −SnSl2

∥
∥<

1

4
.

In general, having chosen ln , let ln+1 > ln be such that

∥
∥Sln

Sln+1 −Sln+1 Sln

∥
∥<

1

2n
, lim sup

n

∥
∥Sln+1Sn −SnSln+1

∥
∥<

1

2n+1 .

Passing to a subsequence and calling it again (Sn), we have the conditions

∥
∥Sln

Sln+1 −Sln+1Sln

∥
∥<

1

2n
, lim

n

∥
∥Sln+1 Sn −SnSln+1

∥
∥<

1

2n+1 .

Having denoted Un = Sln
, we are done:

∑

n

‖UnUn+1 −Un+1Un‖ É 1.

(iv). Assume now we have an AI (Tn) on X with lim
m,n

‖TnTm −TmTn‖ = 0, and

lim sup
n

‖Tn‖ É λ. As above, we again find an AI (Sn) such that SmSn = Sn if

m > n, and for a subsequence (Tkn
) of (Tn) we have lim

n→∞

∥
∥Sn −Tkn

∥
∥ = 0. In a

similar manner we have lim sup
n

‖Sn‖ Éλ.

This time we have also lim
m,n

‖SmSn −SnSm‖ = 0. Indeed, fix an ε such that

0< εÉ 1, and find an index N for which m,n Ê N implies the following condi-
tions:

∥
∥Sn −Vkn

∥
∥ <

ε

λ+1
‖Sn‖ < λ+ε

∥
∥Vkm

Vkn
−Vkn

Vkm

∥
∥ < ε.

Now the inequality

‖SmSn −SnSm‖ É
∥
∥SmSn −Tkm

Tkn

∥
∥+

∥
∥Tkm

Tkn
−Tkn

Tkm

∥
∥+

∥
∥Tkn

Tkm
−SnSm

∥
∥ .

enables to estimate all the addends separately, giving altogether

‖SmSn −SnSm‖ < 5ε.

This means that
lim

m,n→∞
‖SmSn −SnSm‖ = 0.
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Now we again go for
∥
∥Sln

Sln+1 −Sln+1 Sln

∥
∥É

1

2n
. We choose l1 such that

∀m > l1
∥
∥SmSl1 −Sl1Sm

∥
∥É

1

21 .

In general, having chosen ln , we choose ln+1 > ln such that

∀m > ln+1
∥
∥SmSln+1 −Sln+1 Sm

∥
∥É

1

2n+1

Denoting Un = Sln
, we are done:

∑

n

‖UnUn+1 −Un+1Un‖ É 1.

One of the most important positive results concerning approximation prop-
erties obtained after the fundamental works of Grothendieck in 1950s is the
following theorem due to Casazza and Kalton [CK] from 1990 (see also, e.g.,
[C2, Theorem 4.6]; for a different proof, see [GK]).

Theorem 2.22 (Casazza, Kalton). If X is a separable Banach space having the

metric AP, then X has the commuting metric AP.

It is not known whether Theorem 2.22 holds in the case of the metric CAP. As
we mentioned, the separable space XW of Willis not only has the metric CAP,
but it also has the commuting metric CAP.

It is not known (even for separable spaces) whether the λ-bounded AP (for
λ> 1) implies the commuting bounded AP (see [C2, Problem 4.2]).

However, in Theorem 4.33 we prove that for certain (large) class of separa-
ble Banach spaces and for certain real numbers λ (the upper bound on λ de-
pending on the class), the λ-commuting bounded AP implies the commuting
metric AP.

It is not clear whether Theorem 2.22 holds in the non-separable case. An easy
testbed for proving the negative could be ℓ∞ that has the metric AP, but we do
not know whether ℓ∞ fails the commuting metric AP.

Casazza, Kalton, and Wojtaszczyk (see [C2, Theorem 9.3]) have given the fol-
lowing result: if X is a non-separable Banach space having the commuting
bounded AP, then X has the separable complementation property (meaning
that every separable closed subspace of X is contained in a separable sub-
space which is complemented in X ). It appears that their proof might be in
error (see Theorem 6.9 and Remark 6.11 in Chapter 6).

It is known that every infinite-dimensional complemented subspace of ℓ∞ is
isomorphic to ℓ∞ (see [Lin] or, e.g., [LTz I, p. 57]). If [C2, Theorem 9.3] holds,
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then ℓ∞ cannot have the commuting metric AP since otherwise ℓ∞ would
have the separable complementation property which is not possible (for ex-
ample, a separable space c0 is a closed subspace of ℓ∞). In this case the non-
separable version of Theorem 2.22 would fail as well.

2.3 Stronger properties

Recall that a Banach space X has the bounded AP if and only if there exists
a net of uniformly bounded finite-rank operators converging strongly to the
identity. Requiring finite-rank projections here gives us a stronger property.

Definition 2.23. If there is a net of finite-rank projections (Pα) on X such that
lim sup

α
‖Pα‖ É λ and Pαx → x for every x ∈ X , then X is said to have the πλ-

property. The π1-property is called the metric π-property. A space with the
πλ-property for some λ is said to have the π-property.

Obviously every space with the πλ-property also has the λ-bounded AP. The
converse case has been studied by Read and found to be not true (see [C2, p.
295]).

For a separable Banach space, applying Proposition 2.13, we obtain a result
similar to Proposition 2.15.

Proposition 2.24 ([C2, Proposition 5.5]). A separable Banach space X has the

πλ-property if and only if there is a sequence (Pn) ⊂ F (X ) of projections such

that

(i) Pn x → x for any x ∈ X ,

(ii) PmPn = Pn for all m > n,

(iii) lim sup
n

‖Pn‖ Éλ.

Amalgamating together the requirements of the commuting bounded AP and
the π-property, we obtain the finite-dimensional decomposition property.

Definition 2.25. A sequence of bounded linear finite-rank operators (Pm) on
X such that PmPn = Pmin(m,n), m,n ∈ N, and lim

n
Pn x = x for every x ∈ X , is

called a finite-dimensional decomposition of X . The number sup
n

‖Pn‖ is called

the decomposition constant of (Pn).
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In view of Remark 2.14, every Banach space with a finite-dimensional de-
composition is separable. It is clear from the definitions that a separable Ba-
nach space having a finite-dimensional decomposition with the decomposi-
tion constant λ also has the πλ-property as well as the λ-commuting bounded
AP. The following result shows that the converse holds as well.

Theorem 2.26 ([C1]). A separable Banach space has a finite-dimensional de-

composition if and only if it has both the commuting bounded AP and the π-

property.

The finite-dimensional decomposition has also a form closer to basis repre-
sentation.

Proposition 2.27. Let X be a Banach space. The following conditions are

equivalent.

(i) X has a finite-dimensional decomposition.

(ii) There exists a sequence of finite-rank projections (pk ) on X such that

pk pl = 0 for every k 6= l and for every x ∈ X there holds

x =
∞∑

k=1

pk x.

(iii) There exists a sequence of finite-dimensional subspaces (Xk) of X such

that every x ∈ X has a unique representation

x =
∞∑

k=1

xk , xk ∈ Xk , k ∈N.

Proof. (i) ⇒ (ii) We let P0 = 0 and define

pn = Pn −Pn−1, n ∈N.

We easily have pn pn = pn for every n. If k 6= l , then

pk pl = Pmin(k,l ) −Pmin(k,l−1) −Pmin(k−1,l ) +Pmin(k−1,l−1),

where without loss of generality we can assume k < l . Then k = min(k, l ) =
min(k, l −1) and k −1 = min(k −1, l ) = min(k −1, l −1), yielding pk pl = 0.

We see that
n∑

k=1

pk x = Pn x, hence x =
∞∑

k=1

pk x has been justified by x = lim
n

Pn x.
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(ii) ⇒ (i) We define

Pn =
n∑

k=1

pk .

Now the equality x = lim
n

Pn x clearly holds. We also have

PmPn =
(

m∑

k=1

pk

)(
n∑

k=1

pk

)

=
min(m,n)∑

k=1

p2
k =

min(m,n)∑

k=1

pk = Pmin(m,n)

as required.

(ii) ⇒ (iii) This is almost obvious if we denote Xn = ranPn , n ∈ N. The only

matter is the uniqueness: if x =
∞∑

k=1

pk x and also x =
∞∑

k=1

pk xk then applying

pn , n ∈N, on the latter equality, we deduce that pn x = pn xn . Hence the ele-
ments from Xn in the representation of x are indeed unique.

(iii) ⇒ (ii) For every x ∈ X , x =
∞∑

k=1

xk we define pn x = xn , n ∈N. The operators

pn are linear, since for x =
∞∑

k=1
xk and y =

∞∑

k=1
yk the representation of x + y

is
∞∑

k=1
(xk + yk ). The operators pn are projections that satisfy pk pl = 0 if k 6= l

since the representation of xn is 0+0+ . . .+0
︸ ︷︷ ︸

n −1 addends

+xn +0+ . . ..

It remains to verify that the operators pn are bounded. To see this, we point
out that the space

A =
{

(xk ) : xk ∈ Xk ,
∞∑

k=1

xk ∈ X

}

is a Banach space with respect to the norm ‖(xk )‖ = sup
n∈N

∥
∥
∥
∥
∥

n∑

k=1

xk

∥
∥
∥
∥
∥

. Moreover,

considering the operator T : A → X where

T (xk ) =
∞∑

k=1
xk

we have that T is a bounded linear bijection between Banach spaces, hence
an isomorphism. Therefore there exists an α > 0 such that α‖(xk )‖ É ‖T (xk )‖
or, in other words,

αsup
n

∥
∥
∥
∥
∥

n∑

k=1
xk

∥
∥
∥
∥
∥
É ‖x‖ .
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Now

∥
∥pn x

∥
∥ =

∥
∥
∥
∥
∥

n∑

k=1
xk −

n−1∑

k=1
xk

∥
∥
∥
∥
∥
É

∥
∥
∥
∥
∥

n∑

k=1
xk

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

n−1∑

k=1
xk

∥
∥
∥
∥
∥
É

É 2 sup
n

∥
∥
∥
∥
∥

n∑

k=1

xk

∥
∥
∥
∥
∥
É

2

α
· ‖x‖ .

We conclude that the operators pn , n ∈N, are bounded.

In the more general case when Xk need not be finite-dimensional, the con-
straint that every x ∈ X has a unique representation

x =
∞∑

k=1

xk , xk ∈ Xk , k ∈N,

turns the sequence (Xk) into a Schauder decomposition X . Therefore a finite-
dimensional decomposition is a special case of Schauder decomposition.

If dim Xk = 1 for every k, we reach to the concept of Schauder basis.

Definition 2.28. A Banach space X has a Schauder basis (or: X satisfies the
basis property) if there exists a sequence (ek) ⊂ X (basis elements) such that
for every element x ∈ X one can find a unique sequence (ak ) of numbers (co-

ordinates of x) satisfying

x =
∞∑

k=1
ak ek .

A Banach space having the basis property enjoys all the approximation prop-
erties (except perhaps the metric approximation property) described through-
out this chapter. This is so because the basis projections Pn ∈ F (X ), Pn x =

n∑

k=1

ak ek , x ∈ X , are suitable for most definitions and defining results that in-

clude nets (sequences) of operators.

The basis property on X implies that X = span(ek ), yielding that X is sepa-
rable. For separable Banach spaces, a Schauder basis is much more useful
than an algebraic basis (Hamel basis) since an algebraic basis of an infinite-
dimensional Banach space is always uncountable.

What is more, the coordinate functionals of the Schauder basis fn(ek ) = δkn

(yielding fn(x) = an for all x =
∞∑

k=1

ak ek) are always continuous, i.e., elements

of X ∗. On the contrary, one can define the coordinate functionals associated
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with the algebraic basis E of X : for e ∈ E , one defines fe(e) = 1 and fe (ε) = 0
where ε ∈ E \{e}, and extends fe linearly to all elements of X . There are always
non-continuous functionals among the coordinate functionals that have been
generated by the algebraic basis E of an infinite-dimensional Banach space.

However, in the following, we shall work in terms general enough such that
we shall never see the basis property again. Roughly speaking, the “best” ap-
proximation properties that we are going to use or touch are the commuting
metric CAP in Chapter 3, the commuting metric AP in Chapters 4 and 6, and
the finite-dimensional decomposition (with the constant λÉ 6) in Chapter 5.



Chapter 3

The metric compact approximation

of the identity of Willis is

commuting

In this hapter we prove that the approximation property is di�erentfrom the ommuting metri ompat approximation property. Morepreisely, in 1992, Willis [W℄ onstruted a separable Banah spae
XW failing the AP but having the metri CAP. We shall show that themetri ompat approximation of the identity onstruted by Willis inthe spae XW is ommuting. Hene, the ommuting metri ompatapproximation property does not imply the approximation property.The hapter is based on [OZ1℄.
3.1 Bochner integral

For the sake of completeness, we shall take a short excurse to integral theory
in order to use the concept of Bochner integral. This integral works on func-
tions f : Ω→ X , where Ω= (Ω,µ) is a measure space and X is a Banach space.
We need the case where µ(Ω) <∞. The path to follow is similar to that of the
Lebesgue integral, only absolute values have been replaced by norms.

We define simple µ-measurable functions, define the integral at first on these
functions and after that we define when an arbitrary function is Bochner in-
tegrable.

35
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Definition 3.1. A function f : Ω→ X is called simple if it has a finite number
of different values.

In other words, f is a simple function if and only if we can have

Ω=
n⋃

k=1
Ek , k 6= l ⇒ Ek ∩El =;,

and f (ω) = xk if ω ∈ Ek , k = 1, . . . ,n. Hence we may write down

f =
n∑

k=1
χEk

xk .

Definition 3.2. Let f : Ω → X be a simple function. It is said that f is µ-

measurable if in the expression of f =
n∑

k=1

χEk
xk all the sets Ek , k = 1, . . . ,n,

are µ-measurable.

For a function f : Ω→ X we denote by
∥
∥ f

∥
∥ the norm function of f , i.e.

∥
∥ f

∥
∥ (ω) =

∥
∥ f (ω)

∥
∥ , ω ∈Ω.

Definition 3.3. Let f : Ω→ X be a function. It is said that f is µ-measurable

if there exists a sequence ( fn) such that every fn is a µ-measurable simple
function and

lim
n

∥
∥ fn − f

∥
∥= 0 µ-almost everywhere.

It is straightforward to verify that if a function f : Ω→ X is µ-measurable then
∥
∥ f

∥
∥ : Ω→R is also µ-measurable.

Definition 3.4. Let f =
n∑

k=1
χEk

xk be a µ-measurable simple function. The

Bochner integral of f over a µ-measurable subset E ⊂Ω is

∫

E
f dµ :=

n∑

k=1
µ(Ek ∩E )xk .

For a µ-measurable simple function f : Ω → X one needs only the triangle
inequality to justify

∥
∥
∥
∥

∫

E
f dµ

∥
∥
∥
∥É

∫

E

∥
∥ f

∥
∥ dµ.
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Definition 3.5. It is said that a µ-measurable function f : Ω→ X is Bochner in-

tegrable if there exists a sequence ( fn) of µ-measurable simple functions such
that

lim
n

∫

Ω

∥
∥ fn − f

∥
∥ dµ= 0.

If that is the case, then for every µ-measurable subset E ⊂ Ω one can define
the Bochner integral of f over E by

∫

E
f dµ := lim

n

∫

E
fn dµ.

The Definition 3.5 is correct: if f is Bochner integrable, then the limit

lim
n

∫

E
fn dµ exists and is independent on the choice of the sequence ( fn).

Proposition 3.6. Let λ ∈ K be a scalar. If functions f , g : Ω → X are Bochner

integrable, then f +λg is Bochner integrable as well and

∫

E
( f +λg )dµ=

∫

E
f dµ+λ

∫

E
g dµ.

In general an easily accessible criterion to check the Bochner integrability of
a function is the following.

Proposition 3.7 (Bochner’s Criterion). If a function f : Ω→ X is µ-measurable,

then f is Bochner integrable if and only if
∥
∥ f

∥
∥ is (Lebesgue) integrable.

The justification of the following two facts is straightforward.

Proposition 3.8. If a function f : Ω→ X is Bochner integrable, then

∥
∥
∥
∥

∫

Ω

f dµ

∥
∥
∥
∥É

∫

Ω

∥
∥ f

∥
∥ dµ.

Proposition 3.9. Let a function f : Ω → X be Bochner integrable. If T ∈
L (X ,Y ), then the function T f : Ω→ Y is Bochner integrable and

∫

Ω

T f dµ= T

(∫

Ω

f dµ

)

.

3.2 Willis space

First we shortly describe the construction of XW due to Willis [W]. Let X be
a Banach space which does not have the AP. Then there exists a compact set
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K ⊂ X such that the identity operator cannot be approximated on K by finite-
rank operators. It may be supposed, in view of a theorem by Grothendieck
(see, e.g., [LTz I, Proposition 1.e.2]), that K = conv{xk : k ∈ N} where ‖xk‖ É 1
for all k ∈N and ‖xk‖ ↓ 0.

Put

Ut = absconv

{
xk

‖xk‖t
: k ∈N

}

for every arbitrarily fixed t ∈ (0,1). Define Yt = spanUt .

Lemma 3.10. Having defined Ut and Yt as above, the following holds.

1) Ut is a closed compact absolutely convex subset of X .

2) Yt is a Banach space with respect to the norm

|||x|||t = inf{λ> 0 : x ∈λUt }, x ∈ Yt ,

and with the unit ball Ut .

3) If s < t , then Ys ⊂ Yt and ‖y‖ É
∣
∣
∣
∣
∣
∣y

∣
∣
∣
∣
∣
∣

t É
∣
∣
∣
∣
∣
∣y

∣
∣
∣
∣
∣
∣

s , y ∈ Ys .

Proof. The claim 1) is obvious: Ut is a closure, hence closed; it is an abso-

lutely convex hull, hence absolutely convex. Since the set

{
xk

‖xk‖t
: k ∈N

}

∪{0}

is compact, the set

{
xk

‖xk‖t
: k ∈N

}

is relatively compact and having applied

Mazur’s Theorem (absolutely convex hull preserves relative compactness) we
see that Ut is compact.

The core of the claim 2) lies in the fact that |||·|||t is actually the Minkowski
functional pUt . It is well known that if U is closed bounded absolutely con-
vex non-empty subset of a normed space X , then spanU is a normed space
with respect to the Minkowski functional pU , whereas U is its unit ball. If,
moreover, U is compact, then (spanU , pU ) is complete.

If s < t , then

xk

‖xk‖s = ‖xk‖t−s xk

‖xk‖t
∈ absconv

{
xk

‖xk‖t
: k ∈N

}

for every k ∈ N. This proves that Us ⊂ Ut . The inclusion of the spaces itself
follows, since

y
∣
∣
∣
∣
∣
∣y

∣
∣
∣
∣
∣
∣

s

∈Us ⊂Ut ⊂ BX , y ∈ Ys , y 6= 0,

giving also the inequalities of the norms.
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Consider the following space of functions on (0,1) with values in X :

W = span{χ(s,t) y : 0 < s < t < 1; y ∈ Ys},

where χ(s,t) is the characteristic function of (s, t ). If f ∈ W , then f (r ) ∈ Yr for
all r ∈ (0,1). Define a norm on W by

‖ f ‖W =
∫1

0

∣
∣
∣
∣
∣
∣ f (r )

∣
∣
∣
∣
∣
∣
r dr, f ∈W .

The Willis space XW is the completion of W with respect to ‖ ·‖W .

Theorem 3.11 ([W]). The space XW has the metric CAP but fails the AP.

3.3 The result

We emphasize that the only thing that is new here is the “commuting” part.
Everything else has been done by Willis [W].

Theorem 3.12. The space XW has the commuting metric CAP.

Proof. We start with the description of the metric CAI (Tn) = (Tn)∞n=1 by Willis
and after that we shall show that the operators of this CAI commute.

For each r ∈ (0,1), define Sr (χ(s,t) y) = χ(s+r,t+r ) y for every s, t , 0 < s < t < 1,
and y ∈ Ys . Then extend Sr to W by linearity and after that, since Sr is a con-
traction mapping, extend Sr to XW by continuity. Now define, for each n,
operators Tn : XW → XW , by

Tn f = n

∫1/n

0
Sr f dr, f ∈ XW .

It is proven in [W] that (Tn) is a CAI of XW satisfying ‖Tn‖ É 1 for each n.

In order to obtain that TnTm = TmTn for any m and n, by the definitions of XW

and W , it suffices to show the commutativity of (Tn) on the elements χ(s,t) y ,
where 0 < s < t < 1 and y ∈Us . In fact, having done that, the commutativity of
(Tn) extends to W and then to XW due to the linearity and continuity of Tn .

Let us first prove the commutativity of (Tn) on the elements χ(s,t)xk , where
0 < s < t < 1 and k ∈ N. By the definition of Tn , it is straightforward to verify
that, for all ϕ ∈ L1(0,1),

Tn(ϕxk ) =
(

ϕ∗
(

nχ(0,1/n)
))

xk ,
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where ∗ denotes the usual convolution product over (0,1) (this equality was
used in [W] to show the compactness of Tn). Hence,

Tm

(

Tn

(

χ(s,t)xk

))

= Tm

((

χ(s,t) ∗nχ(0,1/n)
)

xk

)

=
((

χ(s,t) ∗nχ(0,1/n)
)

∗mχ(0,1/m)
)

xk

= mn
((

χ(s,t) ∗χ(0,1/n)
)

∗χ(0,1/m)
)

xk .

Since, by the Fubini-Tonelli theorem,

((

χ(s,t) ∗χ(0,1/n)
)

∗χ(0,1/m)
)

(r ) =
∫1/m

0

∫1/n

0
χ(s,t)(r − (u +v))du d v,

we clearly have

Tm

(

Tn

(

χ(s,t)xk

))

= Tn

(

Tm

(

χ(s,t) xk

))

as required.

Denote

K = absconv

{
xk

‖xk‖s
: k ∈N

}

.

By the above, we have the commutativity of (Tn) on the elements χ(s,t)x with
x ∈ K . To prove the commutativity on the elements χ(s,t) y with y ∈ Us , it
clearly suffices to show that for any ε > 0, s + ε < t , there exists x ∈ K such
that

‖χ(s,t) y −χ(s,t)x‖W < 3ε.

Recall that Us = K
X

, closure of K in X . We shall prove that K
X

equals K
Ys+ε ,

closure of K in Ys+ε.

First, let us notice that K
Ys+ε ⊂ K

X
(by Lemma 3.10, 3))). Since

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

xk

‖xk‖s

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

s+ε
= ‖xk‖ε

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

xk

‖xk‖s+ε

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

s+ε
→ 0

(we used that ‖xk‖ → 0 and xk /‖xk‖s+ε ∈ Us+ε), we have the convergence
xk

‖xk‖s
→ 0 in Ys+ε. Having applied Mazur’s theorem, we obtain that K

Ys+ε is

compact in Ys+ε. Since the identity operator from Ys+ε to X is continuous (see

Lemma 3.10, 3))), K
Ys+ε is compact in X as well. Now K

X ⊂ K
Ys+ε

X

= K
Ys+ε .

Therefore K
Ys+ε = K

X
.
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Since y ∈Us = K
X = K

Ys+ε , there exists x ∈ K such that
∣
∣
∣
∣
∣
∣y −x

∣
∣
∣
∣
∣
∣

s+ε < ε. Hence,
using Lemma 3.10, we have

∥
∥χ(s,t) y −χ(s,t)x

∥
∥

W =
∫1

0

∣
∣
∣
∣
∣
∣χ(s,t)(r )y −χ(s,t)(r )x

∣
∣
∣
∣
∣
∣

r dr

=
∫t

s

∣
∣
∣
∣
∣
∣y −x

∣
∣
∣
∣
∣
∣
r dr =

=
∫s+ε

s

∣
∣
∣
∣
∣
∣y −x

∣
∣
∣
∣
∣
∣
r dr +

∫t

s+ε

∣
∣
∣
∣
∣
∣y −x

∣
∣
∣
∣
∣
∣
r dr

É ε
∣
∣
∣
∣
∣
∣y −x

∣
∣
∣
∣
∣
∣

s +
∣
∣
∣
∣
∣
∣y −x

∣
∣
∣
∣
∣
∣

s+ε
< ε(

∣
∣
∣
∣
∣
∣y

∣
∣
∣
∣
∣
∣

s +|||x|||s )+ε

É 2ε+ε= 3ε

as desired.

Note that relying on the reflexive version of Willis space [W], Oja [O6] has con-
structed a Banach space X with Schauder basis such that its all duals are sep-
arable, its odd duals X ∗, X ∗∗∗, . . . , have the metric CAP with conjugate opera-

tors (i.e., have a metric CAI whose operators are conjugate operators), and its
even duals X ∗∗, X ∗∗∗∗, . . . , have the metric CAP, but fail the metric CAP with
conjugate operators.





Chapter 4

The M(a,B ,c)-inequality

In this hapter we introdue a geometri property of a Banah spae,the M(a,B,c)-inequality.The main result is the following. If the property is ful�lled for a Banahspae X, then for every λ-ommuting bounded ompat approximationof the identity (Tα) ⊂ K (X) (having 1 É λ <max |B|+ c), also the netof onjugates (T ∗
α) ⊂ K (X∗) is a (λ-ommuting bounded) ompatapproximation of the identity.We shall derive many orollaries from the main result, using severalonepts like the Radon-Nikodým property, weakly∗ strongly exposedpoints, et. Among other results, we shall prove that if a Banah spae

X satisfying the M(a,B,c)-inequality has a λ-ommuting bounded(ompat) approximation of the identity (with 1Éλ<max |B|+c), thenboth X and X∗ enjoy the metri (ompat) approximation property.A number of orollaries will make use of speial ases of theM(a,B,c)-inequality and other strutural properties.The hapter is based on [OZ1℄.
4.1 The concept

Throughout this chapter, B ⊂ K will be a compact set and a,c Ê 0. We write
max |B |, meaning max

b∈B
|b|. Since B is compact, we can always find a b0 ∈ B for

which |b0| = max
b∈B

|b|.

43



44 CHAPTER 4. THE M(a,B ,c)-INEQUALITY

Recall that we denote by πX the canonical projection of X ∗∗∗ onto ran jX∗

where jX∗ : X ∗ → X ∗∗∗ is the canonical embedding.

Definition 4.1. It is said that a Banach space X is M-embedded if

∥
∥x∗∗∗−πX x∗∗∗∥

∥+
∥
∥πX x∗∗∗∥

∥=
∥
∥x∗∗∗∥

∥ ∀x∗∗∗ ∈ X ∗∗∗.

It is clear that the left hand side of the inequality is never less than the right
hand side.

Definition 4.2. We shall say that a Banach space X satisfies the M(a,B ,c)-

inequality if

∥
∥ax∗∗∗+bπX x∗∗∗∥

∥+c
∥
∥πX x∗∗∗∥

∥É
∥
∥x∗∗∗∥

∥ ∀b ∈B , ∀x∗∗∗ ∈ X ∗∗∗.

Having compared the two definitions, it is clear that being M-embedded
means precisely satisfying the M(1, {−1},1)-inequality.

The M(a,B ,c)-inequality was occasionally used in [O4] to characterize a large
class of ideals of compact operators, providing, in particular, an alternative
unified and easier approach to the theories of M-, u-, and h-ideals of compact
operators (see [O4, Section 4] for results and references).

The M(a,B ,c)-inequality follows from property M∗(a,B ,c) (see Proposition
4.46). The latter structural property was introduced in [O4] (see also [O3])
to characterize intrinsically a large class of shrinking metric (C)AI, including,
e.g., those related to M-, u-, and h-ideals.

Note that for every Banach space satisfying the M(a,B ,c)-inequality there
must hold |a+b| + c É 1. Indeed, if in such a space one uses an element
x∗ ∈ X ∗ such that

∥
∥x∗∥

∥= 1 and denotes x∗∗∗ = jX∗ x∗ (giving x∗∗∗ = πX x∗∗∗),
then

|a+b|+c =
∥
∥ax∗+bx∗∥

∥+c
∥
∥x∗∥

∥=
=

∥
∥ax∗∗∗+bπX x∗∗∗‖+c‖πX x∗∗∗∥

∥É
É

∥
∥x∗∗∗∥

∥=
∥
∥x∗∥

∥= 1.

Since for a reflexive Banach space X any element x∗∗∗ ∈ X ∗∗∗ satifies the con-
dition x∗∗∗ = πX x∗∗∗, every reflexive Banach space satisfies the M(a,B ,c)-
inequality.

The M(a,B ,c)-inequality inherits to closed subspaces and quotient spaces, as
can be seen from the following result.
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Proposition 4.3. If a Banach space X satisfies the M(a,B ,c)-inequality, then

any closed subspace Y of a quotient space of X satisfies the M(a,B ,c)-

inequality.

Proof. Consider a closed subspace Y of a Banach space X satisfying the
M(a,B ,c)-inequality. Denote by i : Y → X the natural embedding. It is
well known and straightforward to check that πY i∗∗∗ = i∗∗∗πX and that i∗∗ :
Y ∗∗ → X ∗∗ is isometric.

Fix y∗∗∗ ∈ Y ∗∗∗ arbitrarily and define a functional z∗∗∗ ∈
(

ran i∗∗
)∗ by

z∗∗∗ (

i∗∗y∗∗)

= y∗∗∗ (

y∗∗)

. Then ‖z∗∗∗‖ É ‖y∗∗∗‖. Thus for a norm-preserving
extension x∗∗∗ of z∗∗∗, one has ‖x∗∗∗‖ É ‖y∗∗∗‖ and i∗∗∗x∗∗∗ = y∗∗∗. Hence,

∥
∥ay∗∗∗+bπY y∗∗∗∥

∥+c
∥
∥πY y∗∗∗∥

∥ =
∥
∥ai∗∗∗x∗∗∗+bπY i∗∗∗x∗∗∗∥

∥

+c
∥
∥πY i∗∗∗x∗∗∗∥

∥

=
∥
∥i∗∗∗

(

ax∗∗∗)

+ i∗∗∗
(

bπX x∗∗∗)∥
∥

+c
∥
∥i∗∗∗πX x∗∗∗∥

∥

É
∥
∥ax∗∗∗+bπX x∗∗∗∥

∥+c
∥
∥πX x∗∗∗∥

∥

É
∥
∥x∗∗∗∥

∥É
∥
∥y∗∗∗∥

∥ ,

giving that Y satisfies the M(a,B ,c)-inequality.

Inheritance by quotient spaces follows similarly, using that q∗∗∗ is isometric
and q∗∗∗πX /Y =πX q∗∗∗ for the quotient mapping q : X → X /Y .

4.2 The main result

We start from the result dating back to 1988, when Godefroy and Saphar [GS]
demonstrated how the geometric structure of a separable Banach space per-
mits to lift the commuting bounded AP from the space to its dual space.

Definition 4.4. A (C)AI (Tα) of a Banach space X is called shrinking if T ∗
α x∗ →

x∗ for every x∗ ∈ X ∗.

Theorem 4.5 ([GS, Proposition 4.3]). Let X be an M-embedded separable Ba-

nach space. If 1 É λ < 2, then every commuting AI (Tn)∞n=1 of X such that

sup‖Tn‖ Éλ is shrinking.

The following theorem is the main result of this chapter. In particular, it ex-
tends Theorem 4.5 to non-separable Banach spaces and compact approxima-
tions of the identity.
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Theorem 4.6. Let X be a Banach space that satisfies the M(a,B ,c)-inequality.

If 1 Éλ< max |B |+c, then every λ-commuting bounded CAI of X is shrinking.

Note that since
|b|−a+c É |a+b|+c É 1,

the maximal value of max |B |+c can never exceed 1+a.

Theorem 4.6 applies, for instance, to the subspaces of non-separable M-
embedded spaces like c0(Γ) or K (ℓp (Γ)), 1 < p <∞, the Banach space of com-
pact operators on ℓp (Γ), where Γ is an uncountable set. It also applies, e.g., to
K (d(w, p)), 1< p <∞, the Banach space of compact operators on the Lorentz
sequence space d(w, p), which is not M-embedded (see [Hen], or, e.g., [HWW,
p. 305]), but satisfies the inequality in Theorem 4.6 with a = 1, B = {−2}, and
c = 0 (see Section 4.6 below).

The applications to Theorem 4.6 will be given in Sections 4.5–4.7. Among
other things, we prove (see Theorem 4.33) that if a Banach space X satisfy-
ing the M(a,B ,c)-inequality has a λ-commuting bounded (C)AI with 1 É λ <
max |B |+c, then both X and X ∗ enjoy the metric (C)AP.

The proof of Theorem 4.6 below will develop the idea of the original proof of
Theorem 4.5 due to Godefroy and Saphar (see [GS, Proposition 4.3]) (notice
that an alternative proof was recently given by Godefroy in [G, Theorem VI.I]),
and it will apply, among others, techniques from the paper [O4] by Oja.

Let us recall that the characteristic r (V ) of a subspace V of X ∗ is defined by

r (V ) = max
{

r Ê 0 : r BX∗ ⊂ BV
w∗}

.

Obviously, r (V ) É 1. We shall need the following auxiliary result which is im-
plicitly contained in [O4, proof of Theorem 4.1]. We include a proof for com-
pleteness.

Lemma 4.7. If a Banach space X satisfies the M(a,B ,c)-inequality with

max |B |+c > 1, then

r (V ) É
1

max |B |+c
< 1

for any proper closed subspace V of X ∗.

Proof. Since r (V ) É r (W ) if V ⊂ W , it is enough to consider the case when
V = ker x∗∗, where x∗∗ ∈ SX∗∗ . Let β = max |B | = b sgnb for some b ∈ B . We
have

‖((a sgnb)IX∗∗∗ +βπX +cπX )x∗∗∗‖ É |sgnb|‖(aIX∗∗∗ +bπX )x∗∗∗‖
+c‖πX x∗∗∗‖ É ‖x∗∗∗‖,
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x∗∗∗ ∈ X ∗∗∗, and therefore
∥
∥
∥
∥IX∗∗∗ +

β+c

a sgnb
πX

∥
∥
∥
∥É

1

a
.

(Notice that a > 0, since a = 0 would easily imply that β+ c É 1.) Applying a
characterization due to Godefroy, Kalton, and Saphar [GKS, Proposition 2.3],
this condition implies the existence of a net (xν) in BX converging weakly∗ to
x∗∗ in X ∗∗ such that

lim sup
ν

∥
∥
∥
∥x∗∗+

β+c

a sgnb
xν

∥
∥
∥
∥É

1

a
.

By a well-known theorem due to Dixmier [Dixmier, Theorem 7],

r (V ) = inf
x∈SX

sup
x∗∈BV

|x∗(x)|.

Hence,

(β+c)r (V ) É (β+c) inf
ν

sup
x∗∈BV

|x∗(xν)| =

= a inf
ν

sup
x∗∈BV

∣
∣
∣
∣x

∗
(

β+c

a sgnb
xν

)∣
∣
∣
∣=

= a inf
ν

sup
x∗∈BV

∣
∣
∣
∣x

∗∗(x∗)+x∗
(

β+c

a sgnb
xν

)∣
∣
∣
∣É 1

by the above inequality. This completes the proof.

Proof of Theorem 4.6. Let X be a Banach space. We assume that X satisfies
the M(a,B ,c)-inequality. Let 1 É λ < max |B |+ c and let (Tα) ⊂ K (X ) be a λ-
commuting bounded CAI of X . We need to show that

T ∗
α x∗ → x∗, x∗ ∈ X ∗.

Since Tαx → x for all x ∈ X , we clearly have that T ∗
αx∗ → x∗ weakly∗ in X ∗ for

all x∗ ∈ X ∗.

Denoting
V = span

⋃

α
ranT ∗

α ,

the closed subspace of X ∗ generated by the subspaces ranT ∗
α , let us first prove

that
T ∗
αv → v, v ∈V.
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Consider v ∈ V . Fixing ε > 0 arbitrarily, we find x∗ ∈ span
⋃

α
ranT ∗

α so that

‖x∗− v‖ < ε. Hence x∗ = T ∗
α0

y∗ for some index α0 and some y∗ ∈ X ∗. Due
to the compactness of T ∗

α0
and the weak∗ convergence of the bounded net

(T ∗
α y∗) to y∗, we have T ∗

α0
T ∗
α y∗ → T ∗

α0
y∗. As the net (T ∗

α ) is commuting, we
obtain

T ∗
α x∗ = T ∗

αT ∗
α0

y∗ = T ∗
α0

T ∗
α y∗ → T ∗

α0
y∗ = x∗.

Now

lim sup
α

‖T ∗
α v −v‖ É

(

lim sup
α

‖T ∗
α‖

)

‖x∗−v‖+ lim sup
α

‖T ∗
α x∗−x∗‖

+‖x∗−v‖ < (λ+1)ε,

yielding that lim
α

‖T ∗
α v −v‖= 0.

To conclude the proof, it suffices to show that V = X ∗. If we had V 6= X ∗,
then by Lemma 4.7, we would have r (V ) É 1/(max |B |+c). This is not the case,
however. Indeed, by assumption,

0 < lim sup
α

‖Tα‖ Éλ< max |B |+c.

By passing to a subnet, we may assume that

0< τ := lim
α

‖Tα‖ < max |B |+c.

But then, since T ∗
α x∗ → x∗ weakly∗ in X ∗ for all x∗ ∈ X ∗, also

T ∗
α x∗

‖Tα‖
→

x∗

τ

weakly∗ in X ∗. This immediately implies that

x∗

τ
∈ BV

w∗
, x∗ ∈ BX∗ .

Hence, r (V ) Ê 1/τ, and therefore r (V ) > 1/(max |B |+c), a contradiction.

Proposition 4.3 allows us to point out the following immediate extension of
Theorem 4.6.

Theorem 4.8. Let a Banach space satisfy the M(a,B ,c)-inequality and let X

be a closed subspace of its quotient space. If 1 É λ < max |B | + c, then every

λ-commuting bounded CAI of X is shrinking.
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Corollary 4.9. Let a Banach space satisfy the M(a,B ,c)-inequality with

max |B |+c > 1 and let X be a closed subspace of its quotient space. Let (en) be a

basic sequence in X . If the basis constant of (en) is strictly less than max |B |+c,

then (en) is shrinking.

Proof. Apply Theorem 4.8 to span{e1,e2, . . . } ⊂ X (which is a closed subspace
of a quotient space of a Banach space satisfying the M(a,B ,c)-inequality) and
to the sequence of partial sum projections associated with (en).

Corollary 4.9 extends [Г, Corollaries 1 and 2], [GS, Corollary 4.4], and [O4,
Corollary 1.8].

Below, we shall formulate several results for Banach spaces X satisfying the
M(a,B ,c)-inequality or having property M∗(a,B ,c). Notice that they actu-
ally hold for any closed subspace of a quotient space of X because both the
M(a,B ,c)-inequality and property M∗(a,B ,c) are inherited by subspaces and
quotient spaces (see Proposition 4.3 and [O4, Section 1]).

4.3 The M(r , s)-inequality

The next definition follows [CN] and [HO].

Definition 4.10. Let r, s Ê 0. We say that a Banach space X satisfies the M(r, s)-

inequality if

r‖πX x∗∗∗‖+ s‖x∗∗∗−πX x∗∗∗‖ É ‖x∗∗∗‖ ∀x∗∗∗ ∈ X ∗∗∗.

It is clear that satisfying the M(r, s)-inequality precisely means satisfying the
M(s, {−s},r )-inequality. Also, X is M-embedded if and only if X satisfies the
M(1,1)-inequality.

In [CN], the Godefroy-Saphar theorem (Theorem 4.5) was extended from M-
embedded spaces to spaces satisfying the M(r, s)-inequality with r + s > 1. Let
us point out its extension to non-separable Banach spaces and compact ap-
proximations of the identity. This is an evident special case of Theorem 4.6.

Corollary 4.11. Let X be a Banach space satisfying the M(r, s)-inequality. If

1 Éλ< r + s, then every λ-commuting bounded CAI of X is shrinking.
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4.4 The Radon-Nikodým property and exposed points

This section is based on Phelps’s monograph [Ph] and the book on integral
theory of vector-valued functions by Diestel and Uhl [DU]. We introduce
the notions of the Radon-Nikodým property and (weakly∗) (strongly) exposed
points that will be needed in the following sections.

At first we define the terms of slice and dentable subset in a Banach space X

and their weak∗ counterparts for a subset in the dual X ∗.

Definition 4.12. Let A be a non-empty subset in X . Choose an arbitrary num-
ber α> 0 and a functional x∗ ∈ X ∗. The subset S(x∗, A,α) ⊂ X where

S(x∗, A,α) =
{

x ∈ A : Re x∗(x) > sup
a∈A

Re x∗(a)−α

}

is called a slice of A.

Re x
∗(x) = sup

a∈A

Re x
∗(a)

Re x
∗(x) = sup

a∈A

Re x
∗(a) − α

S(x ∗
, A, α)

A

The gray area is the slice of A ⊂ X corresponding to a number α> 0 and a

functional x∗ ∈ X ∗ (see Definition 4.12).

Definition 4.13. Let A∗ be a non-empty subset in X ∗. Choose an arbitrary
number α> 0 and an element x ∈ X . The subset S(x, A∗,α) ⊂ X ∗ where

S(x, A∗,α) =
{

x∗ ∈ A∗ : Re x∗(x) > sup
a∗∈A∗

Re a∗(x)−α

}

is called a weak∗ slice of A∗.

Definition 4.14. It is said that a non-empty subset A of X is dentable if for
arbitrarily small ε > 0 there exists a functional x∗ ∈ X ∗ and a number α > 0
such that

diamS(x∗, A,α) < ε.
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Definition 4.15. It is said that a non-empty subset A∗ of X ∗ is weakly∗

dentable if for arbitrarily small ε> 0 there exists an element x ∈ X and a num-
ber α> 0 such that

diamS(x, A∗,α) < ε.

Definition 4.16. It is said that a Banach space has the Radon-Nikodým prop-

erty if its every non-empty bounded subset is dentable.

For the Radon-Nikodým property, we refer to [DU, Chapter VII] whose end
contains 29 equivalent formulations of the property as well as a representable
list of spaces that do and that do not have the Radon-Nikodým property. For
instance, reflexive spaces, separable dual spaces, ℓ1(Γ) for any Γ, L (ℓp ,ℓq ) for
1 É q < p < ∞ have the Radon-Nikodým property, whereas c0, c, ℓ∞, K (X )
and L (X ) where X = ℓp , do not.

Definition 4.17. It is said that X is an Asplund space if for every separable
subspace E ⊂ X the dual space E∗ is separable.

Theorem 4.18 ([Ph, Theorem 5.7]). A Banach space X is an Asplund space if

and only if X ∗ has the Radon-Nikodým property.

In the following we shall give the definitions of strongly exposed and exposed
points, together with their weak∗ counterparts.

Definition 4.19. Let C be a closed convex set in X . A point x ∈ C is
called strongly exposed if for some non-null functional x∗ ∈ X ∗ we have x ∈
S(x∗,C ,α) for every α> 0 and lim

α→0
diamS(x∗,C ,α) = 0. The suitable functional

x∗ is called strongly exposing and it is said that it strongly exposes x. The set
of all strongly exposed points of a closed convex set C ⊂ X is denoted sexpC .

Proposition 4.20. Let C be a closed convex set in X . Let us have x∗ ∈ X ∗ and

x ∈C . Then x∗ strongly exposes x if and only if for every sequence (xn) ⊂C there

holds

Re x∗(xn) → sup
c∈C

Re x∗(c) ⇒ ‖xn −x‖→ 0.

Proof. Let x∗ strongly expose x. This means that a functional x∗ and a point
x ∈C are such that

Re x∗(x) > sup
c∈C

Re x∗(c)−α ∀α> 0, lim
α→0

diamS(x∗,C ,α) = 0.

The definition of supremum enables us to find a sequence (xn) ⊂C for which
Re x∗(xn) → sup

c∈C
Re x∗(c). Letting α → 0 shows that Re x∗(x) = sup

c∈C
Re x∗(c).

Hence we have Re x∗(xn) →Re x∗(x).
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This also shows that for any fixed α > 0, starting from some index n0, the el-
ements xn belong to the slice S(x∗,C ,α). Assuming now that ‖xn −x‖ > ε for
some ε > 0 and all indices n, due to x ∈ S(x∗,C ,α) we have diamS(x∗,C ,α) Ê
‖xn −x‖ > ε which contradicts the fact that x∗ strongly exposes x. The “only
if” part is done.

Now let there hold

Re x∗(xn) → sup
c∈C

Re x∗(c) ⇒ ‖xn −x‖→ 0

for every sequence (xn) ⊂ C . Using the definition of a supremum, we find a
sequence (xn) ⊂ C such that Re x∗(xn) → sup

c∈C
Re x∗(c). Hence ‖xn −x‖ → 0,

which easily yields that x∗(xn) → x∗(x). Since Re x∗(xn) must converge to
a single point, we conclude that Re x∗(x) = sup

c∈C
Re x∗(c). Now Re x∗(x) >

Re x∗(x)−α is trivially true for any α> 0, hence x ∈ S(x∗,C ,α) for every α> 0.

It remains to show that lim
α→0

diamS(x∗,C ,α) = 0. Assume the contrary. Then

there exists a number ε> 0 and a decaying sequence (αn) such that

diamS(x∗,C ,αn) > 2ε

for every n. Thus there exist sequences (x̃n), (x̄n) ⊂C such that

2ε< ‖x̃n − x̄n‖ É ‖x̃n −x‖+‖x̄n −x‖ .

We see that at least one of the addends in the right hand side must exceed ε.
Hence for every index n, we select x′

n ∈ S(x∗,C ,αn) such that
∥
∥x′

n −x
∥
∥> ε.

The condition x′
n ∈ S(x∗,C ,αn) means that Re x∗(x′

n) > sup
c∈C

Re x∗(c)−αn , hence

Re x∗(x′
n) → sup

c∈C
Re x∗(c), which gives

∥
∥x′

n −x
∥
∥→ 0, contradicting

∥
∥x′

n −x
∥
∥> ε.

Therefore also lim
α→0

diamS(x∗,C ,α) = 0.

We have shown that x∗ strongly exposes x.

Definition 4.21. Let C∗ be a closed convex set in X ∗. A functional x∗ ∈ C∗ is
called weakly∗ strongly exposed if for some non-null element x ∈ X we have
x∗ ∈ S(x,C∗,α) for every α > 0 and lim

α→0
diamS(x,C∗,α) = 0. It is said that the

element x weakly∗ strongly exposes x∗. The set of all weakly∗ strongly exposed
points of a closed convex set C ⊂ X is denoted w*-sexpC .

Similar proposition to Proposition 4.20 can we proven in the weak∗ setting.
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Proposition 4.22. Let C∗ be a closed convex set in X ∗. Let us have x∗ ∈ X ∗

and x ∈ X . Then x weakly∗ strongly exposes x∗ if and only if for every sequence

(x∗
n ) ⊂C∗ there holds

Re x∗
n(x) → sup

c∗∈C∗
Rec∗(x) ⇒

∥
∥x∗

n −x∗∥
∥→ 0.

Definition 4.23. Let C be a closed convex set in X . A point x ∈C is called ex-

posed if for some non-null functional x∗ ∈ X ∗ we have Re x∗(x) = sup
c∈C

Re x∗(c)

and Re x∗(y) < sup
c∈C

Re x∗(c) for every y ∈C different from x. The functional x∗

is called exposing and it is said that x∗ exposes x. The set of all exposed points
of a closed convex set C ⊂ X is denoted expC .

Proposition 4.24. Let x be a point in a closed convex set C ⊂ X . If x is strongly

exposed, then x is exposed.

Proof. The fact that x ∈ S(x∗,C ,α) for every α > 0 gives that Re x∗(x) =
sup
c∈C

Re x∗(c). If for some y ∈C , y 6= x, we also had Re x∗(y) = sup
c∈C

Re x∗(c), then

having chosen xn = y in Proposition 4.20, we would have xn → x, a contradic-
tion.

Definition 4.25. Let C∗ be a closed convex set in X ∗. A functional x∗ ∈ C∗ is
called weakly∗ exposed if for some non-null element x ∈ X we have Re x∗(x) =
sup

c∗∈C∗
Rec∗(x) and Re y∗(x) < sup

c∗∈C∗
Rec∗(x) for every y∗ ∈C∗ different from x∗.

It is said that the element x weakly∗ exposes x∗. The set of all weakly∗ exposed
points of a closed convex set C ⊂ X is denoted w*-expC .

The following obvious proposition can be proved similarly to Proposition 4.24.

Proposition 4.26. Let x∗ be a functional in a closed convex set C∗ ⊂ X ∗. If x∗

is weakly∗ strongly exposed, then it is weakly∗ exposed.

We refer an example from [Ph, p. 83] showing that exposed points need not be
strongly exposed. Namely, let C be the closed convex hull of the orthogonal
basis vectors (en) in ℓ2. Then 0 is an exposed point of C , but not strongly
exposed, since every slice C containing 0 has diameter at least

p
2.

Theorem 4.27 ([Ph, Theorem 5.12]). The dual space X ∗ has Radon-Nikodým

property if and only if for every weakly∗ compact convex subset C∗ ⊂ X ∗ there

holds

C = convw*
w*-sexpC .



54 CHAPTER 4. THE M(a,B ,c)-INEQUALITY

In Lemma 4.30 we shall see that the M(a,B ,c)-inequality (in the case when
max |B |+c > 1) implies the Radon-Nikodým property.

Definition 4.28. A closed subspace Y of a dual space X ∗ is called norming if
‖x‖ = sup

x∗∈BV

∣
∣x∗(x)

∣
∣ for any x ∈ X .

Due to the Hahn-Banach theorem, it is clear that the whole X ∗ can recover
the norm of X , hence X ∗ itself is norming. The following lemma shows that
the norm of a separable Banach space is always separably determined.

Lemma 4.29. For any separable Banach space X there exists a separable closed

norming subspace of X ∗.

Proof. Let X = {xk : k ∈N}. For every xk we find a functional x∗
k ∈ SX∗ such

that x∗
k (xk ) = ‖xk‖. Now the required norming subspace is

V = span
{

x∗
k : k ∈N

}

.

4.5 The M(a,B ,c)-inequality and the metric (com-

pact) approximation property

Theorem 4.32 below shows that the isomorphic assumptions in Theorem 4.6
imply an isometric conclusion. Its proof will use the following auxiliary re-
sult which is implicitly contained in [O4, proof of Theorem 4.1]. We include a
proof for completeness.

Lemma 4.30. If a Banach space X satisfies the M(a,B ,c)-inequality with

max |B | + c > 1, then X ∗ has the Radon-Nikodým property and X ∗ =
span(w*-sexpBX∗ ).

Proof. If a closed subspace V of X ∗ is norming, then r (V ) = 1. Therefore
it is clear from Lemma 4.7 that X ∗ contains no proper norming closed sub-
space. As closed subspaces of X inherit the M(a,B ,c)-inequality, their duals
contain no proper norming closed subspace either. Since the dual space of
any separable subspace of X contains a separable norming subspace (Lemma
4.29), it must be separable. Hence, X ∗ has the Radon-Nikodým property (The-
orem 4.18). By Theorem 4.27, we have BX∗ = conv w∗

(w*-sexpBX∗). This
clearly implies that span(w*-sexpBX∗) is a norming subspace of X ∗. There-
fore X ∗ = span(w*-sexpBX∗), because X ∗ contains no proper norming closed
subspace.
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Corollary 4.31. Let X be a Banach space satisfying the M(a,B ,c)-inequality

with max |B |+c > 1. If X has a metric (C)AI, then it is shrinking.

Proof. Let Tνx → x for all x ∈ X and sup‖Tν‖ É 1. By Lemma 4.30, X ∗ =
span(w*-sexpBX∗), and therefore it suffices to show that T ∗

ν x∗ → x∗ whenever
x∗ ∈BX∗ is weakly∗ strongly exposed by some x 6= 0.

Let x∗ ∈ BX∗ be such a functional that there exists a non-null element
x ∈ X satisfying sup

f ∈BX∗
Re f (x) − Re x∗(x) < α for all numbers α > 0 and

lim
α→0

diamS(x,BX∗ ,α) = 0. Fix a number ε > 0, then the last convergence im-

plies the existence of an αε > 0 such that

y∗ ∈ S(x,BX∗ ,αε) ⇒
∥
∥y∗−x∗∥

∥< ε ∀ y∗ ∈ X ∗.

The convergence (T ∗
ν x∗)(x) → x∗(x) gives an index ν0 such that

ν< ν0 ⇒
∣
∣
(

T ∗
ν x∗)

(x)−x∗(x)
∣
∣<

αε

2
.

Hence if ν< ν0, we have

sup
f ∈BX∗

Re f (x)−Re(T ∗
ν x∗)(x) =

(

sup
f ∈BX∗

Re f (x)−Re x∗(x)

)

+

+
(

Re x∗(x)−Re(T ∗
ν x∗)(x)

)

É

É
αε

2
+

∣
∣x∗(x)− (T ∗

ν x∗)(x)
∣
∣<

< αε,

yielding that T ∗
ν x∗ ∈ S(x,BX∗ ,αε). This gives

∥
∥T ∗

ν x∗−x∗∥
∥< ε, as required.

Corollary 4.31 may be applied in the following context.

Theorem 4.32. Let X be a Banach space satisfying the M(a,B ,c)-inequality

and let 1Éλ< max |B |+c. If X has a λ-commuting bounded (C)AI, then X has

a shrinking metric (C)AI. In particular, both X and X ∗ have the metric (C)AP.

Proof. By Theorem 4.6, X has a shrinking (C)AI and, by Lemma 4.30, X ∗ has
the Radon-Nikodým property. But it is well known (this is an extension of
classical results of Grothendieck) that whenever a Banach space, the dual of
which has the Radon-Nikodým property, has a shrinking (C)AI, it also has a
shrinking metric (C)AI (see [GS, Corollary 1.6 and its proof] and [DU, p. 246]
(for the case of AI)).
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If X is separable in Theorem 4.32, then X ∗ also is (because, by Lemma 4.30,
X ∗ has the Radon-Nikodým property). But then both X and X ∗, being sep-
arable, by the Casazza-Kalton theorem (Theorem 2.22), have the commuting
metric AP whenever they have the metric AP. This proves the following result,
which contains [G, Theorem VI.1] (as a special case when X is M-embedded),
slightly improving it.

Theorem 4.33. Let X be a separable Banach space satisfying the M(a,B ,c)-

inequality and let 1 É λ < max |B | + c. If X has a λ-commuting bounded AI,

then both X and X ∗ have the commuting metric AP.

The following result (an extension of [G, Corollary VI.2]) concerns the case
when the metric AP passes from one space to the other satisfying the
M(a,B ,c)-inequality, if only the spaces do not lie too apart.

Corollary 4.34. Let X be a separable Banach space satisfying the M(a,B ,c)-

inequality with max |B |+c > 1. If there exists a Banach space Y with the metric

AP such that dBM (X ,Y ) < max |B |+c, then both X and X ∗ have the commuting

metric AP.

Proof. The assumption dBM (X ,Y ) < max |B | + c ensures the existence of λ,
1 É λ < max |B | + c, together with an isomorphism J : X → Y for which
‖J ‖

∥
∥J−1∥∥ < λ. In particular, Y is separable. Therefore the Casazza-Kalton

theorem (Theorem 2.22) gives that if Y has the metric AP, then Y has the
commuting metric AP as well. Now suppose there exists a sequence (Sn) of
finite-rank operators on Y such that lim sup‖Sn‖ É 1, Sn y → y for all y ∈ Y ,
and SmSn = SnSm for all m, n. Since the sequence of operators Tn =J−1SnJ

is a λ-commuting bounded AI for X , Theorem 4.33 applies.

4.6 Ideals and the M(a,B ,c)-inequality for

compact operators

We follow the definitions from [GKS].

Definition 4.35. A closed subspace K of a Banach space L is said to be an
ideal in L if there exists a norm one projection P on L ∗ with kerP = K ⊥ =
{ f ∈L ∗ : f |K = 0}. In this case, we shall say that P is an ideal projection.

Definition 4.36. If ‖P f ‖+‖ f −P f ‖ = ‖ f ‖ for all f ∈ L ∗, then K is called an
M-ideal in L .
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The class of M-ideals has been extensively studied by many authors (see, e.g.,
the monograph [HWW] for results and references).

Definition 4.37. If there are r, s ∈ (0,1] such that r‖P f ‖+ s‖ f −P f ‖ É ‖ f ‖ for
all f ∈L ∗, then we say that K is an M(r, s)-ideal in L .

The M(r, s)-ideals of compact operators have been studied by several authors
(see, e.g., [HOP] for references).

Definition 4.38. If ‖I −2P‖ = 1, then K is called a u-ideal in L . If ‖I − (1+
λ)P‖ = 1 whenever |λ| = 1, then K is called an h-ideal in L .

A deep study of u- and h-ideals was made in [GKS].

Finally, let us note that every Banach space K is an ideal in K ∗∗ with respect
to the canonical projection πK of K ∗∗∗ onto K ∗.

In the next section, we shall apply Theorem 4.32 to infer some new sufficient
conditions for K (X ) to be an M-, u-, or h-ideal in L (X ). But now, we are go-
ing to use implicitly ideals of compact operators to show that in many natural
cases, K (X ) satisfies the M(a,B ,c)-inequality with max |B |+c > 1.

Proposition 4.39. Let max |B | > 1. If a Banach space X is reflexive and has a

metric AI (Tα) such that

lim sup
α

‖IX +bTα‖ É 1 ∀b ∈ B ,

then K (X ) satisfies the M(1,B ,0)-inequality.

Proof. Since every AI of a reflexive space is shrinking, we get immediately
from [O4, Corollary 4.5, 3◦⇒1◦] that K (X ) is an ideal in L (X ) with an ideal
projection P such that ‖IL (X )∗+bP‖ É 1 for all b ∈B . Since K (X ) is an ideal in
L (X ) and X is reflexive, the ideal projection is unique (see [CNO, Proposition
3.2]). But by the well-known Grothendieck’s classics (see, e.g., [DU, p. 247]),
L (X ) =K (X )∗∗ (because X is reflexive and has the AP). Therefore P = πK (X )

and K (X ) satisfies the M(1,B ,0)-inequality.

Corollary 4.40. If a Banach space X is reflexive and has a 1-unconditional ba-

sis, then K (X ) satisfies the M(1, {−2},0)-inequality.

Proof. Denoting the partial sum projections by (Pn), we have ‖Pn‖ = 1 and
‖IX −Pn‖ = 1 for all indices n. Hence

‖IX −2Pn‖ É
1

2
(‖IX ‖+‖IX −Pn‖) É 1,

and it remains to apply Proposition 4.39.
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Reflexive Banach spaces having a 1-unconditional basis are, for instance, ℓp

(1 < p <∞), the Orlicz sequence space ℓM whenever both the Orlicz function
M and its complementary function M∗ satisfy the ∆2-condition at zero (see,
e.g., [LTz I, p. 148]), the Lorentz sequence space d(w, p) (1 < p <∞) (see, e.g.,
[LTz I, p. 178]).

4.7 Property M
∗(a,B ,c) and ideals of

compact operators

In this section we are going to use property M∗(a,B ,c), a structural property
that was introduced in [O3] in order to give a uniform approach to several
properties, including property (M∗), (w M∗) and others.

Let X be a Banach space.

Definition 4.41. It is said that X has property (M∗) if

lim sup
ν

∥
∥x∗+x∗

ν

∥
∥= lim sup

ν

∥
∥y∗+x∗

ν

∥
∥

for any functionals x∗, y∗ ∈ X ∗ where
∥
∥x∗∥

∥ =
∥
∥y∗∥

∥ and for any bounded net
(x∗

ν ) ⊂ X ∗ converging weakly∗ to null.

The following Kalton-Werner-Lima-Oja theorem is a basic result of the theory
of M-ideals of compact operators.

Theorem 4.42. For a Banach space X , K (X ) is an M-ideal in L (X ) if and

only if X has property (M∗) and the metric CAP.

The sequential version of property (M∗) was introduced by Kalton [K2]. For
separable X , Theorem 4.42 was proven by Kalton and Werner [KW], a simpler
proof was given in [L2]. For arbitrary (non-separable) X , the proof is due to
Oja [O2]. Known shortest proof to Theorem 4.42 has been given in [O4], and
a direct “non-separable” proof in [NP].

Definition 4.43. It is said that X has property (w M∗) if

lim sup
ν

∥
∥2x∗−x∗

ν

∥
∥= lim sup

ν

∥
∥x∗

ν

∥
∥

for any bounded net (x∗
ν ) ⊂ X ∗ converging weakly∗ to x∗ ∈ X ∗.
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Property (w M∗), a weak version of property (M∗), was introduced by Lima in
[L2]. For a reflexive space X , Lima obtained a similar condition: K (X ) is an
u-ideal in L (X ) if and only if X has property (w M∗) and the metric CAP.

Definition 4.44. It is said that a complex Banach space X has complex prop-

erty (w M∗) if

lim sup
ν

∥
∥x∗

ν +bx∗∥
∥É lim sup

ν

∥
∥x∗

ν

∥
∥ ∀b ∈ {b ∈C : |b +1| = 1}

for any bounded net (x∗
ν ) ⊂ X ∗ converging weakly∗ to x∗ ∈ X ∗.

Complex property (w M∗) was introduced by Oja in [O3].

In [O3] properties (M∗) and (w M∗) have been generalized as follows.

Definition 4.45. It is said that X has property M∗(a,B ,c) if

lim sup
ν

∥
∥ax∗

ν +bx∗+c y∗∥
∥É lim sup

ν

∥
∥x∗

ν

∥
∥ ∀b ∈ {b ∈C : |b +1| = 1}

for any functionals x∗, y∗ ∈ X ∗,
∥
∥y∗∥

∥ É
∥
∥x∗∥

∥, and for any bounded net (x∗
ν ) ⊂

X ∗ converging weakly∗ to x∗.

We can easily see that:

• property (M∗) is precisely property M∗(1, {−1},1);

• property (w M∗) is precisely property M∗(1, {−2},0);

• complex property (w M∗) is precisely property
M∗ (1, {b ∈C : |b +1| = 1} ,0);

• property (M∗) implies property (w M∗);

• property (M∗) implies property M∗ (1, {b ∈C : |b +1| É 1−c} ,0) for every
c ∈ [0,1];

• for a complex Banach space X , property (M∗) implies complex property
(w M∗);

The spaces c0(Γ) and ℓp (Γ), 1 < p <∞, satisfy property (M∗), but the Lorentz
sequence spaces d(w, p) do not. The Lorentz sequence spaces d(w, p), 1 <
p <∞, and, more generally, Banach spaces with a shrinking 1-unconditional
basis have property (w M∗) and, in the case of complex scalars, the complex
property (w M∗) (see [L2, Theorem 4.2] and [O4, Lemma 1.1]).

Property M∗(a,B ,c), hence also all its special cases, inherit to subspaces and
quotient spaces (see [O4, Section 1]).
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Proposition 4.46 ([O4, Proposition 1.3]). If X has property M∗(a,B ,c), then X

satisfies the M(a,B ,c)-inequality.

The proof of the proposition is essentially the same as the proof in [HWW, p.
298] of the fact that property (M∗) of X implies X being M-embedded.

Proof. Let X have property M∗(a,B ,c). Fix a x∗∗∗ ∈ X ∗∗∗ and b ∈ B . Let a
positive number α< 1 be chosen arbitrarily. Since

∥
∥ax∗∗∗+bπX x∗∗∗∥

∥= sup
‖x∗∗‖=1

Re
(

ax∗∗∗+bπX x∗∗∗)

(x∗∗),

we can find an element x∗∗ from the unit sphere of X ∗∗ such that

Re
(

ax∗∗∗+bπX x∗∗∗)

(x∗∗) >α
∥
∥ax∗∗∗+bπX x∗∗∗∥

∥ .

As
∥
∥x∗∗∥

∥ = 1, there exists a x∗
0 ∈ SX∗ such that x∗∗ (

x∗
0

)

> α. Letting now x∗ =
∥
∥πX x∗∗∗∥

∥x∗
0 , we have

∥
∥x∗∥

∥=
∥
∥πX x∗∗∗∥

∥ and

x∗∗(x∗) >α
∥
∥πX x∗∗∗∥

∥ . (4.1)

Due to weakly∗ closedness of
∥
∥x∗∗∗∥

∥BX∗∗∗ (the Goldstine theorem) we find a
net

(

x∗
ν

)

⊂ X ∗ such that jX∗ x∗
ν → w∗∗∗ weakly∗ in X ∗∗∗ and

∥
∥x∗

ν

∥
∥É

∥
∥x∗∗∗∥

∥.

Since
x∗∗ (

ax∗
ν +b( jX )∗x∗∗∗)

→
(

ax∗∗∗+bπX x∗∗∗)

(x∗∗),

we may assume that the members of the net
(

x∗
ν

)

have been chosen such that

Re x∗∗ (

ax∗
ν +b( jX )∗x∗∗∗)

>α
∥
∥ax∗∗∗+bπX x∗∗∗∥

∥ . (4.2)

What is more, we see that x∗
ν → ( jX )∗x∗∗∗ weakly∗ in X ∗.

Putting together property M∗(a,B ,c) and the inequalities (4.1) and (4.2), we
have

∥
∥x∗∗∗∥

∥ Ê lim sup
ν

∥
∥x∗

ν

∥
∥Ê (4.3)

Ê lim sup
ν

∥
∥ax∗

ν +b
(

jX

)∗
x∗∗∗+c

(

jX

)∗
x∗∗∗∥

∥Ê

Ê lim sup
ν

Re x∗∗ (

ax∗
ν +b

(

jX

)∗
x∗∗∗+c

(

jX

)∗
x∗∗∗)

Ê

Ê α
(∥
∥ax∗∗∗+bπX x∗∗∗∥

∥+
∥
∥cπX x∗∗∗∥

∥
)

,

Going α ↑ 1 in (4.3), we obtain
∥
∥ax∗∗∗+bπX x∗∗∗∥

∥+c
∥
∥πX x∗∗∗∥

∥É
∥
∥x∗∗∗∥

∥

as required.
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For an example showing that the M(a,B ,c)-inequality need not imply prop-
erty M∗(a,B ,c), we refer to [OZ1, Example 4.15].

Relying on Theorem 4.32 and the main result of [O4], we shall see in the next
Theorem 4.47 that this stronger property ensures the existence of a shrinking
metric (C)AI having certain important features.

Theorem 4.47. Let X be a Banach space having property M∗(a,B ,c) with

max |B | + c > 1 and let 1 É λ < max |B | + c. If X has a λ-commuting bounded

(C)AI, then for any S ∈ BK (X ), there exists a shrinking metric (C)AI (Tα) of X

such that

lim sup
α

‖aIX +bTα+cS‖ É 1 ∀b ∈ B.

Proof. Property M∗(a,B ,c) of X implies that X satisfies the M(a,B ,c)-
inequality (see Proposition 4.46). Hence, by Theorem 4.32, X has the metric
(C)AP. But then, since X has property M∗(a,B ,c) with max |B |+ c > 1, by [O4,
Theorem 3.5, 2◦⇒1◦], we have (Tα) as desired.

In contrast to the previous results of this chapter which are mostly interesting
for non-reflexive spaces, Theorem 4.47 and the corollaries below are also in-
teresting for reflexive spaces. All these results are new even in the separable
case. The conclusion of Theorem 4.47 was known before to hold under the
assumptions of property M∗(a,B ,c) and the metric (C)AP (see [O4, Theorem
3.5]). We do not know whether Theorem 4.47 holds without the commutativity
assumption.

We shall now apply Theorem 4.47 to particular cases of property M∗(a,B ,c).
Our first application shows that the metric CAI in the criterion when K (X )
is an M-ideal in L (X ) can be replaced by a λ-commuting bounded CAI with
λ< 2.

Corollary 4.48. Let X be a Banach space having property (M∗) and let 1 Éλ<
2. If X has a λ-commuting bounded CAI, then K (X ) is an M-ideal in L (X ).

Proof. By Theorem 4.47, for any S ∈ K (X ), ‖S‖ É 1, there exists a shrinking
metric CAI (Tα) of X such that

lim sup
α

‖IX −Tα+S‖É 1.

It remains to apply [O4, Corollary 4.3, 7◦⇒1◦].

In the next definition, we follow [LO1].
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Definition 4.49. A closed subspace K of a Banach space L is said to have the
unique ideal property if there is at most one ideal projection, that is, at most
one norm one projection P on L ∗ with ker P =K ⊥.

It is well known that M-ideals have the unique ideal property. By [CNO,
Proposition 3.2], K (X ) has the unique ideal property in any subspace L of
L (X ) containing K (X ) and IX , provided X ∗ has the Radon-Nikodým prop-
erty and X ∗ = span(w*-sexpBX∗ ). Due to [O4, Corollary 1.6], this is the case in
the corollaries below.

Corollary 4.50. Let X be a Banach space having property M∗(s, {−s},r ) with

r +s > 1, r, s ∈ (0,1], and let 1Éλ< r +s. If X has a λ-commuting bounded CAI,

then K (X ) is an M(r, s)-ideal in I (X ) := span(K (X )∪{IX }) having the unique

ideal property.

Proof. By Theorem 4.32, X has the metric CAP. Moreover, in [O4, Remark 2 on
p. 2818] it is proven that property M∗(s, {−s},r ) implies the following stronger
property. For all T ∈BI (X ), one has

lim sup
ν

‖sT ∗(x∗
ν −x∗)+ r y∗‖ É lim sup

ν
‖x∗

ν‖

whenever x∗, y∗ ∈ X ∗ satisfy ‖y∗‖ É ‖x∗‖, and (x∗
ν ) is a bounded net converg-

ing weakly∗ to x∗ in X ∗. Therefore it only remains to apply [O4, Theorem 4.1,
2◦⇒1◦].

Remark 4.51. In the special case of property (M∗) = M(1, {−1},1), Corollary
4.50 yields that K (X ) is an M-ideal in I (X ). By a theorem due to Kalton [K2]
(established in [K2] for separable X and extended to arbitrary (non-separable)
X in [O1]) (see, e.g. [HWW, p. 299]), K (X ) is an M-ideal in I (X ) if and only if
K (X ) is an M-ideal in L (X ). Thus we regain Corollary 4.48. We do not know
whether I (X ) in Corollary 4.50 can be replaced by L (X ). It is not known
whether K (X ) is an M(r, s)-ideal in L (X ) whenever K (X ) is an M(r, s)-ideal
in I (X ). Notice that in [HJO], it is proven that if K (X ) is an M(r, s)-ideal in
I (X ), then it is an M(r 2, s2)-ideal in L (X ).

Corollary 4.52. Let X be a Banach space having property M∗(a,B ,0) with

max |B | > 1, and let 1 É λ < max |B |. If X has a λ-commuting bounded CAI,

then K (X ) is an ideal in L (X ) having the unique ideal property and the ideal

projection P satisfies ‖aIL (X )∗ +bP‖ É 1 for all b ∈B.

Proof. By Theorem 4.47, (for S = 0) there exists a shrinking metric CAI (Tα) of
X such that

lim sup
α

‖aIX +bTα‖É 1 ∀b ∈B.
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It remains to apply [O4, Corollary 4.5, 3◦⇒1◦]

The most important particular cases of Corollary 4.52 are those concerning
u-ideals and h-ideals of compact operators.

Corollary 4.53. Let X be a Banach space having property (w M∗) and let 1 É
λ< 2. If X has a λ-commuting bounded CAI, then K (X ) is an u-ideal in L (X )
having the unique ideal property.

Corollary 4.54. Let X be a complex Banach space having complex property

(w M∗) and let 1 É λ < 2. If X has a λ-commuting bounded CAI, then K (X )
is an h-ideal in L (X ) having the unique ideal property.





Chapter 5

The Johnson-Schechtman space has

the commuting 6-bounded

approximation property

In this hapter we show that the losed subspae XJS of c0 onstrutedby Johnson and Shehtman in 1996 has the ommuting λ-boundedAP with λÉ 6. This slightly improves the proof by Godefroy [G, The-orem VI.3℄ in 2001 where it was established that λ É 8. The hapteris based on [Z℄.
5.1 The setting

It is a well-known result of Grothendieck [Gro, Chapter I, “Proposition” 37]
that if there exists a Banach space which fails the AP, then there also exists a
closed subspace of c0 that fails the AP (see, e.g., [LTz I, p. 37]). Hence, rely-
ing on Enflo’s theorem [E], let Y =∪nYn be a closed subspace of c0 failing the
AP, where (Yn) is an increasing sequence of finite-dimensional subspaces of
Y . We denote by c(Yn) and c0(Yn) the Banach spaces of norm-convergent se-
quences and norm-decaying sequences (yn) ⊂ Y , respectively, where yn ∈ Yn ,
n ∈ N, with respect to the supremum norm. It is clear that c0(Yn) is a closed
subspace of c(Yn ).

The Johnson-Schechtman space X J S (constructed by Johnson and Schechtman
in 1996 and published in [JO]) is an isomorphic copy of c(Yn) in c0. The key
points of the construction are the Sobczyk theorem (Theorem 5.1) and [JZ, p.

65
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51, observation of Lindenstrauss]: if a Banach space X has a closed subspace
Y so that both the subspace Y and the quotient space X /Y embed isomor-
phically into c0, then so does X itself.

We denote the coordinate functionals on c0 by e∗
k , k ∈N.

Theorem 5.1 ([S]; see also [G, Theorem II.1]). Let X be a separable Banach

space, and Y a closed subspace of X . Let T ∈ L (Y ,c0). Then there exists an

operator T̃ ∈L (X ,c0) such that

1) T̃ x =
((

x∗
k − t∗k

)

(x)
)

k
, where x∗

k are Hahn-Banach extensions of function-

als y∗
k := T ∗e∗

k ∈ Y ∗;

2) x∗
k , t∗k ∈ ‖T ‖BX∗ , k ∈N;

3) t∗k is null on Y for all k ∈N;

4) T̃ |Y = T ;

5)
∥
∥T̃

∥
∥É 2‖T ‖.

Godefroy has proven in [G, Theorem VI.3] that X J S has a finite-dimensional
decomposition with the decomposition constant not exceeding 8. He wrote
in [G, Ch. VII, §VI] that no effort had been made in the proof to tighten the
constant and it is unlikely that 8 were the critical value. The main aim of this
chapter is to tighten the constant to 6.

5.2 The main result

The following – the main result of this chapter – is a slight improvement of [G,
Theorem VI.3].

Theorem 5.2. The Johnson-Schechtman space X J S has a finite-dimensional de-

composition with the decomposition constant not greater than 6, but X J S fails

the metric AP.

The proof in [G] goes in two parts: first the construction of X J S and the finite-
dimensional decomposition, and second, showing that X J S fails the metric AP.
We need to go through only the first part. For the second part, we refer the
reader to [G, p. 21].

Proof. Let Y =∪nYn be a closed subspace of c0 failing the AP, dimYn <∞, n ∈
N, and Y1 ⊂ Y2 ⊂ . . . . We define a quotient map L : c(Yn) → Y by L(yn) = lim

n
yn ,

thus kerL = c0(Yn), yielding that Y = c(Yn)/c0(Yn).
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We take an isometric embedding T : c0(Yn) → c0. For instance, having (yn) ∈
c0(Yn), where yn =

(

ξk
n

)

k
∈ c0, we can define

T (yn) =
(

ξ1
1, ξ1

2,ξ2
1, ξ1

3,ξ2
2,ξ3

1, ξ1
4,ξ2

3,ξ3
2,ξ4

1, . . .
)

.

It is straightforward to verify that T ∈L (c0(Yn),c0) and T is isometric.

We shall use Theorem 5.1 in the situation when X = c(Yn) and Y = c0(Yn).
Theorem 5.1 allows to extend the operator T to an operator T̃ ∈ L (c(Yn ),c0)
such that T̃ |c0(Yn ) = T and

∥
∥T̃

∥
∥ É 2‖T ‖ = 2. We also need the expression of

T̃ (yn) =
((

x∗
k − t∗k

)(

yn

))

k
, where x∗

k are Hahn-Banach extensions of functionals
y∗

k = T ∗e∗
k ∈ c0(Yn)∗, also x∗

k , t∗k ∈ ‖T ‖Bc(Yn )∗ and t∗k is null on c0(Yn) for all k.

Now the subspace c0(Yn) and the quotient space Y of c(Yn ) isomorphically
embed into c0. It can be easily verified that the operator V : c(Yn) → c0⊕∞ c0

∼=
c0, defined by V (yn) =

(

T̃ (yn),L(yn)
)

, is an isomorphism into c0 with ‖V ‖ É 2.

The next step in [G, proof of Theorem VI.3] yields
∥
∥V −1|ranV

∥
∥ É 4; we shall

present an argument that gives
∥
∥V −1|ranV

∥
∥É 3.

Assume that
∥
∥V −1|ranV

∥
∥> 3. As

∥
∥V −1|ranV

∥
∥= sup

‖T̃ (yn )‖<1
lim

n
‖yn‖<1

∥
∥(yn)

∥
∥ ,

there exists a sequence (yn) ∈ c(Yn ) such that
∥
∥
(

yn

)∥
∥ > 3, lim

n

∥
∥yn

∥
∥ < 1 and

∥
∥T̃ (yn)

∥
∥< 1. Let N ∈N be an index such that sup

nÊN

∥
∥yn

∥
∥< 1. Split (yn) into two

parts:
(

y0
n

)

=
(

y1, . . . , yN−1,0,0, . . .
)

and
(

y1
n

)

= (yn)−
(

y0
n

)

. Of course
∥
∥
(

y0
n

)∥
∥> 3,

(

y0
n

)

∈ c0(Yn) and
∥
∥
(

y1
n

)∥
∥< 1.

Due to the inequality sup
k

∣
∣y∗

k

(

y0
n

)∣
∣ =

∥
∥T

(

y0
n

)∥
∥ =

∥
∥
(

y0
n

)∥
∥ > 3, we find an in-

dex m ∈ N for which
∣
∣y∗

m

(

y0
n

)∣
∣ > 3. As sup

k

∣
∣x∗

k ((yn))− t∗k ((yn))
∣
∣ =

∥
∥T̃ (yn)

∥
∥ < 1,

we also have the inequality
∣
∣x∗

m((yn))− t∗m((yn))
∣
∣ < 1. Bearing in mind that

t∗m(
(

yn

)

) = t∗m
((

y1
n

))

, we have

∣
∣x∗

m((yn))
∣
∣+1 É

∣
∣x∗

m((yn))− t∗m((yn))
∣
∣+

∣
∣t∗m((y1

n))
∣
∣+1 <

< 2+
∥
∥t∗m

∥
∥
∥
∥
(

y1
n

)∥
∥< 3 <

∣
∣y∗

m((y0
n))

∣
∣=

=
∣
∣x∗

m((y0
n))

∣
∣É

∣
∣x∗

m((y0
n))+x∗

m ((y1
n))

∣
∣+

∣
∣x∗

m((y1
n))

∣
∣É

É
∣
∣x∗

m((yn))
∣
∣+

∥
∥x∗

m

∥
∥
∥
∥
(

y1
n

)∥
∥<

∣
∣x∗

m((yn))
∣
∣+1,

a contradiction. Therefore
∥
∥V −1|ranV

∥
∥É 3.
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We denote X J S = ranV and Pm = V QmV −1, where Qm(yn) =
(y1, . . . , ym−1, ym , ym , . . . ), m ∈ N. It is straightforward to verify that (Pm)
is a finite-dimensional decomposition of X J S and sup

m
‖Pm‖ É 6.

Before making a remark, we need to go through some definitions.

Definition 5.3. A class of operators A , F ⊂ A ⊂ L , where F and L consist
of all finite-rank and bounded linear operators, respectively, is said to be a Ba-

nach operator ideal if for all Banach spaces X and Y the following conditions
hold:

1) the component A (X ,Y ) = A ∩L (X ,Y ) is a Banach space with respect
to the norm ‖·‖A ,

2) for every x∗ ∈ X and y ∈ Y the one-dimensional operator T ∈ F (X ,Y ),
T x = x∗(x)y , x ∈ X , satisfies ‖T ‖A =

∥
∥x∗∥

∥ ·
∥
∥y

∥
∥,

3) for every A ∈ L , T ∈ A , B ∈ L we have BT A ∈ A and ‖BT A‖A É ‖B‖ ·
‖T ‖A · ‖A‖.

Definition 5.4. Let T ∈L (X ,Y ). The operator T is said to be weakly compact

if T (BX ) is relatively weakly compact.

The operator T is said to be strictly singular if for any infinite-dimensional
subspace Z ⊂ X and every ε> 0 there exists an element z ∈ Z such that ‖T z‖ <
ε‖z‖.

The operator T is said to be completely continuous if it maps every weakly
convergent sequence to a norm-convergent sequence.

The operator ideal norms with respect to the Banach operator ideals of weakly
compact operators, strictly singular operators, and completely continuous op-
erators coincide with the usual operator norm.

Definition 5.5. A Banach space X is said to have the metric A -approximation

property if for every compact set K ⊂ X and every ε> 0 there exists an operator
T ∈A (X ) such that ‖T x −x‖ < ε for all x ∈K .

Remark 5.6. By [O6, Corollary 2.5 and Remark 2.4], X J S fails the metric A -
approximation property for any operator ideal A which is contained in the
union of weakly compact, strictly singular, and completely continuous opera-
tors.

Remark 5.7. By [O7, Corollary 3.8], there exist a separable reflexive Banach
space Z and a compact linear operator T : X J S → Z such that for every net
(Tα) of finite-rank operators from X J S to Z converging strongly to T , there
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holds sup
α

‖Tα‖ > ‖T ‖; in particular, X J S fails the weak metric approximation

property (see [LO2]).

Since a finite-dimensional decomposition with constant λ implies the com-
muting λ-bounded AP, the following corollary is immediate.

Corollary 5.8. The Johnson-Schechtman space X J S has the commuting λ-

bounded AP with λÉ 6.

Note that the proof of Theorem 5.2 is useful for any closed subspace of c0 as a
starting point, yielding a finite-dimensional decomposition with the decom-
position constant not greater than 6 on the constructed space.

Since a finite-dimensional decomposition with constant λ implies the λ-
commuting bounded AP (see also Theorem 2.26), every Banach space con-
structed in this manner has the commuting bounded AP, hence this construc-
tion cannot provide any information on a well-known open problem whether
every Banach space with the bounded AP has the commuting bounded AP
(see remarks after Theorem 2.22).

5.3 Applications

It was already defined in Chapter 4 (see Definition 4.1) that X is called M-

embedded if the canonical projection πX from X ∗∗∗ onto X ∗ satisfies the in-
equality

‖x∗∗∗−πX x∗∗∗‖+‖πX x∗∗∗‖ É ‖x∗∗∗‖, x∗∗∗ ∈ X ∗∗∗.

M-embeddedness inherits to closed subspaces and quotient spaces (see
Proposition 4.3). A well-known example of an M-embedded Banach space is
c0. Therefore also X J S is M-embedded.

The following result is a special case of Corollary 4.34.

Theorem 5.9. Let X be a separable M-embedded space. If there exists a Banach

space Y with the metric AP such that dBM (X ,Y ) < 2, then X has the metric AP.

Merging the last result (note that it also applies to X J S) with the facts that
V : c(Yn) → X J S is an isomorphism, ‖V ‖

∥
∥V −1

∥
∥ É 6, and c(Yn) has the metric

AP, we have
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Corollary 5.10. For every Banach space Y with the metric AP, there holds

dBM (X J S ,Y ) Ê 2. On the other hand, there exists a Banach space Y with the

metric AP for which dBM (X J S ,Y ) É 6.

The question which is the greatest value of λ that would guarantee the metric
AP to pass over from a Banach space Y to any separable M-embedded space
X with dBM (X ,Y ) <λ, is yet open.



Chapter 6

Asymptotically commuting

bounded approximation property

This hapter oins a new term: the asymptotially ommutingbounded approximation property. The main result is the following:if a Banah spae has the asymptotially λ-ommuting bounded ap-proximation property, then it has a strong form of the separable loal
λ-omplementation property. The hapter is based on [OZ2℄.
6.1 The concept

Definition 6.1. We say that a Banach space X has the asymptotically λ-

commuting bounded approximation property if there exists a net (Sα) ⊂F (X )
such that

1) Sαx → x for every element x ∈ X ;

2) lim sup
α

‖Sα‖ Éλ;

3) lim
α

∥
∥SαSβ−SβSα

∥
∥= 0 for all indices β.

A net of operators (Sα) satisfying these conditions is called an asymptotically

λ-commuting bounded approximation of the identity. (See also Remark 2.4.)

Recall that the definition of the λ-commuting bounded (C)AP is alike, only
the third condition is stronger: SαSβ = SβSα for all indices α,β. Hence, the λ-

71
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commuting bounded (C)AP trivially implies the asymptotically λ-commuting
bounded (C)AP.

Proposition 6.2. Let X be a Banach space. If the dual space X ∗ has the

λ-bounded AP, then both X and X ∗ enjoy the asymptotically λ-commuting

bounded AP.

Proof. It is a known fact (see, e.g., [C2, Proposition 3.5]) that if a dual space
X ∗ has the λ-bounded AP, then X ∗ has the λ-duality bounded AP, i.e. we can
find a net (Sα) ⊂F (X ) such that

1) Sαx → x for every element x ∈ X ;

2) S∗
αx∗ → x∗ for every element x∗ ∈ X ∗;

3) ‖Sα‖ =
∥
∥S∗

α

∥
∥Éλ for all indices α.

Using this fact, we find a net (Sα) ⊂ F (X ) (then also (S∗
α) ⊂ F (X ∗)) such that

Sαx → x, S∗
αx∗ → x∗ where the convergences are uniform on compact sets,

and ‖Sα‖ =
∥
∥S∗

α

∥
∥ É λ. The justification for the uniformness of convergences

on compact sets is similar to that of in Chapter 2, proof of Proposition 2.7,
namely due to the Hausdorff theorem we choose a finite ε-net on the compact
set and approximate all the elements of the net well enough.

Therefore
∥
∥SαSβ−Sβ

∥
∥= sup

x∈BX

∥
∥(Sα− I )

(

Sβx
)∥
∥= sup

y∈Sβ(BX )

∥
∥(Sα− I ) y

∥
∥→ 0

since a finite-rank, hence a compact operator Sβ maps the unit ball BX to a
relatively compact set. Similarly

∥
∥
∥S∗

αS∗
β−S∗

β

∥
∥
∥= sup

x∗∈BX∗

∥
∥
∥

(

S∗
α− I

)(

S∗
βx

)∥
∥
∥= sup

y∗∈S∗
β(BX∗)

∥
∥
(

S∗
α− I

)

y
∥
∥→ 0.

Now for all indices β we have
∥
∥SαSβ−SβSα

∥
∥ É

∥
∥SαSβ−Sβ

∥
∥+

∥
∥Sβ−SβSα

∥
∥=

=
∥
∥SαSβ−Sβ

∥
∥+

∥
∥
∥S∗

αS∗
β−S∗

β

∥
∥
∥−→

α
0.

Proposition 6.2 applies, among others, to ℓ∞. Namely, ℓ∗∞ has the metric AP,
hence by Proposition 6.2, ℓ∞ has the asymptotically commuting bounded AP.
In [C2, Corollary 9.4], it has been asserted that ℓ∞ does not have the commut-
ing bounded AP. This, however, seems to be an open problem whether ℓ∞ has
the commuting bounded AP or not (see Remark 6.11).
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The aim of the following result is to say that in the case of separable Banach
spaces, the asymptotically commuting bounded AP gives nothing new, it co-
incides with the commuting bounded AP. Therefore, the difference from the
commuting bounded AP may arise only in the case of non-separable Banach
spaces.

Proposition 6.3. For a separable Banach space X the λ-commuting bounded

AP and the asymptotically λ-commuting bounded AP are equivalent properties.

If a separable Banach space X is a dual space, then X has the asymptotically

λ-commuting bounded AP if and only if X has the metric AP if and only if X

has the commuting metric AP.

Proof. It has been proven in [CK, Corollary 2.3] that a separable Banach space
X has the λ-commuting bounded AP if and only if X has a λ-bounded AI
(Tn) ⊂ F (X ) such that lim

n
‖TnTm −TmTn‖ = 0 for every m. The proof in de-

tail for this result has also been written out in Chapter 2, Corollary 2.21.

It is a known fact that for a separable dual space Y ∗ the AP and the metric
AP coincide (see, e.g., [C2, Theorem 3.6]). Hence, if a separable Banach space
X = Y ∗ has the asymptotically λ-commuting bounded AP, it has the bounded
AP, therefore the AP, hence the metric AP. By a famous result by Casazza and
Kalton (see Theorem 2.22), for a separable Banach space the metric AP and
the commuting metric AP coincide. Finally, if X has the commuting metric
AP, it also has the asymptotically λ-commuting bounded AP for any λ.

6.2 The separable (local) complementation property

Recall that a closed subspace Y of a Banach space X is complemented in X if
there exists a projection P ∈ L (X ) onto Y , i.e. P 2 = P and ranP = Y . For the
main result of this chapter, we shall need the following definition.

Definition 6.4. It is said that a closed subspace Y of a Banach space X is lo-

cally complemented in X if there exists a constant λÊ 1 such that whenever E

is a finite-dimensional subspace of X and a number ε> 0, there exists a linear
operator T : E → Y with T x = x for all x ∈ E ∩Y and ‖T ‖ É λ+ε. If λ works,
then it is said that Y is locally λ-complemented in X .

It is clear that a complemented subspace is locally complemented. Indeed,
let Y be a complemented subspace of X , with the projection P . Fix a finite-
dimensional subspace E of X and a number ε > 0. We define T = P |E . Then
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T ∈L (E ,Y ). If x ∈ E∩Y , we have x = P x since P is a projection and Y = ranP .
It is also clear that ‖P |E‖ É ‖P‖. Thus the working λ is ‖P‖ and we conclude
that Y is locally ‖P‖-complemented.

Definition 6.5. Let X be a Banach space and let Y be a closed subspace of X .
It is said that an operator Φ ∈L (Y ∗, X ∗) is an extension operator if

(

Φy∗)

|Y =
y∗ for every y∗ ∈ Y ∗, i.e.

(

Φy∗)

(y) = y∗(y), y ∈ Y , y∗ ∈ Y ∗.

It has been proven independently by Fakhoury [Fak] and Kalton [K1] that the
existence of an extension operator ensures the local complementation of a
closed subspace. We quote an improvement from [OP].

Proposition 6.6 ([OP, Corollary 3.3]). Let X be a Banach space and let Y be a

closed subspace of X such that there is an extension operator Φ ∈ L (Y ∗, X ∗).

Let E ⊂ X and F ⊂ Y ∗ be finite-dimensional subspaces, and let ε > 0. Then

there is a linear operator T : E → Y such that T y = y for all y ∈ E ∩Y , y∗(T x) =
Φy∗(x) for all x ∈ E and y∗ ∈ F , and ‖T ‖ É ‖Φ‖+ε. In particular, Y is locally

‖Φ‖-complemented in X .

Definition 6.7. A non-separable Banach space X is said to have the separable

complementation property if for every separable closed subspace Y in X , there
is a separable closed subspace Z with Y ⊂ Z ⊂ X and Z is complemented in
X .

“Definition” 6.8. We say that a non-separable Banach space X has the sepa-

rable local λ-complementation property if for every separable closed subspace
Y in X , there is a separable closed subspace Z with Y ⊂ Z ⊂ X and Z is locally
λ-complemented in X . If the value of λ is not important, we say that X has
the separable local complementation property.

We are using the quotation marks in the latter definition, since, by [HM]
or [SY], every non-separable Banach space X has the separable local 1-
complementation property.

6.3 The main result

The following is the main result of this chapter. For short, it states that if
a Banach space has the asymptotically λ-commuting bounded AP, it has a
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strong version of the separable local λ-complementation property. Among
other spaces, the result applies to ℓ∞.

It is worth emphasizing (see Remark 6.11) that it is not clear whether the com-
muting bounded AP for a non-separable Banach space implies the separable
complementation property (as claimed in [C2, Theorem 9.3]).

Theorem 6.9. Let X be a Banach space with the asymptotically λ-commuting

bounded AP. Let Y be a separable closed subspace of X . Then there exists a

separable closed subspace Z of X such that Y ⊂ Z , and there exists a sequence

(Rn) ⊂F (X , Z ) such that the following conditions hold:

(i) RnRm = RmRn = Rm whenever n > m;

(ii) ranRn = ranR2
n for every n;

(iii) lim sup
n

‖Rn‖ Éλ;

(iv) the sequence (Rn|Z ) ⊂ F (Z ) is a λ-commuting bounded AI on Z (hence

Z has the λ-commuting bounded AP);

(v) Z is locally λ-complemented in X .

For the proof, we shall construct sequences of operators, making their proper-
ties subsequently better and better. The last sequence to be constructed will
be (Rn) that meets all the claims of the theorem.

Construction of (Tn) and Z

Assume that Y =
{

y1, y2, . . .
}

. Choose a decaying sequence of positive reals (εn)
such that εn É 1 for every n and

∑

n

εn <∞.

Denote E1 = span
{

y1
}

and d1 = dimE1. Let P1 ∈L (X ) be a projection onto E1;
such a projection exists due to Auerbach Lemma where it is also established
that ‖P1‖É d1.

The unit ball BE1 is compact (since E1 is finite-dimensional), hence the as-
sumption of the theorem ensures the existence of an operator Sα1 ∈ F (X )

such that
∥
∥Sα1 x −x

∥
∥É

ε1

2d1
for every x ∈ BE1 and

∥
∥Sα1

∥
∥Éλ+

ε1

2
.

Denote

T1 = Sα1 +P1 −Sα1 P1.
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The operator T1 is the identity operator on E1. Indeed, if x ∈ E1, i.e. x = P1 y for
some y , then T1x = Sα1(P1 y)+P1(P1 y)−Sα1 P1(P1 y) = P1 y = x. What is more,

∥
∥T1 −Sα1

∥
∥ =

∥
∥Sα1P1 −P1

∥
∥= sup

y∈P1(BX )

∥
∥Sα1 y − y

∥
∥É

É sup
y∈‖P1‖BE1

∥
∥Sα1 y − y

∥
∥É ‖P1‖ ·

ε1

2d1
=

ε1

2
.

Now assume we have operators Sα1 , . . . ,Sαn ∈F (X ), and T1, . . . ,Tn ∈F (X ) such
that

(a) Tn yk = yk for every k = 1, . . . ,n,

(b) TnTm = Tm for every m = 1, . . . ,n −1,

(c)
∥
∥Tm −Sαm

∥
∥É

εm

2
, m = 1, . . . ,n,

(d)
∥
∥Sαm

∥
∥Éλ+

εm

2
, m = 1, . . . ,n,

(e) ‖TnTm −TmTn‖ É 2(λ+1)(εn +εm) for every m = 1, . . . ,n −1.

It is clear from the constraint on (εn) that the last condition also implies

∑

n

‖TnTn+1 −Tn+1Tn‖ <∞.

We construct an operator Tn+1 such that the similar conditions hold.

Denote

En+1 = span

(
{

y1, . . . , yn+1
}

∪
n⋃

m=1
ranTm

)

.

Then En+1 is finite-dimensional, let dn+1 = dimEn+1. Denote by Pn+1 : X →
En+1 a projection onto En+1 such that ‖Pn+1‖ É dn+1.

The unit ball BEn+1 is compact. The asymptotically λ-commuting bounded AI
(Sα) gives an index α′ such that

α<α′ ⇒







∥
∥Sαm Sα−SαSαm

∥
∥É εn+1 ∀m = 1, . . . ,n,

‖Sαx −x‖ É
εn+1

2dn+1
∀x ∈ BEn+1 .

We choose αn+1 such that these two conditions as well as (d), i.e.

∥
∥Sαn+1

∥
∥Éλ+

εn+1

2

hold.
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Denote
Tn+1 = Sαn+1 +Pn+1 −Sαn+1 Pn+1.

We shall verify that the conditions (a), (b), (c), (e) hold for Tn+1.

(a), (b): For every x ∈ En+1 we have x = Pn+1 y where y ∈ X and hence

Tn+1x = Sαn+1 (Pn+1 y)+Pn+1(Pn+1 y)−Sα1 Pn+1(Pn+1 y) = Pn+1 y = x.

Therefore Tn+1 yk = yk for every k = 1, . . . ,n + 1 and Tn+1Tm = Tm for every
m = 1, . . . ,n.

(c): We obtain that

∥
∥Tn+1 −Sαn+1

∥
∥ =

∥
∥Sαn+1 Pn+1 −Pn+1

∥
∥= sup

y∈Pn+1(BX )

∥
∥Sαn+1 y − y

∥
∥É

É sup
y∈‖Pn+1‖BEn+1

∥
∥Sαn+1 y − y

∥
∥É ‖Pn+1‖ ·

εn+1

2dn+1
=

εn+1

2
.

(e): Fix an index m ∈ {1, . . . ,n}. Then

‖Tn+1Tm −TmTn+1‖ É
∥
∥Tn+1Tm −Sαn+1 Tm

∥
∥+

∥
∥Sαn+1 Tm −Sαn+1 Sαm

∥
∥+

+
∥
∥Sαn+1 Sαm −Sαm Sαn+1

∥
∥+

+
∥
∥Sαm Sαn+1 −TmSαn+1

∥
∥+

+
∥
∥TmSαn+1 −TmTn+1

∥
∥É

É 2‖Tm‖
∥
∥Tn+1 −Sαn+1

∥
∥+2

∥
∥Sαn+1

∥
∥
∥
∥Tm −Sαm

∥
∥+

+
∥
∥Sαn+1 Sαm −Sαm Sαn+1

∥
∥ .

Since
‖Tm‖É

∥
∥Tm −Sαm

∥
∥+

∥
∥Sαm

∥
∥É

εm

2
+

(

λ+
εm

2

)

Éλ+εm ,

we have

‖Tn+1Tm −TmTn+1‖ É 2(λ+εm )εn+1 +2
(

λ+
εn+1

2

)

εm +εn+1 =

= 2λεn+1 +2λεm +2εmεn+1 +εn+1(εm +1) É
É 2(λ+1)(εn+1 +εm).

The inductive step, hence also the construction of the sequence (Tn), has been
completed.

Denote
Z = {z ∈ X : z = limTn z} .
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Then Y ⊂ Z and Z = span
∞⋃

n=1
ranTn .

Indeed, fix an element y ∈ Y and a number ε> 0, then there exists an index N

such that
∥
∥y − yN

∥
∥< ε. If n Ê N , then

∥
∥Tn y − y

∥
∥ É

∥
∥Tn y −Tn yN

∥
∥+

∥
∥Tn yN − yN

∥
∥+

∥
∥yN − y

∥
∥<

< (λ+1)ε+0+ε.

Hence
∥
∥Tn y − y

∥
∥→ 0, meaning that y ∈ Z .

It is evident that Z ⊂ span
∞⋃

n=1
ranTn .

To prove that span
∞⋃

n=1
ranTn ⊂ Z , it suffices to show the inclusions ranTn ⊂ Z

and the closedness of Z .

Fix an element Tn x ∈ ranTn , then TmTn x = Tn x whenever m > n, hence
TmTn x →Tn x, yielding that ranTn ⊂ Z for every n.

Now let x ∈ X be an element for which xm → x while (xm) ⊂ Z . We verify that
Tn x → x. Fix an ε > 0, find an M such that ‖xM −x‖ < ε, and an N such that
n Ê N implies ‖Tn xM −xM‖< ε. Then

‖x −Tn x‖ É ‖x −xM‖+‖xM −Tn xM‖+‖Tn‖‖xM −x‖ < ε+ε+ (λ+1)ε,

showing that Z is closed.

Up to now, we have constructed a sequence (Tn) ⊂ F (X ) with the following
properties:

(T a) Tn ym = ym for all indices n Ê m;

(T b) TnTm = Tm for all indices n > m;

(T c) ‖Tn‖ Éλ+εn for all indices n;

(T d) ‖TnTm −TmTn‖ É 2(λ+1)(εn +εm) for all indices m = 1, . . . ,n −1;

(T e) Z = span
∞⋃

n=1
ranTn is a separable space, Y ⊂ Z , and Tnz → z for every

element z ∈ Z .

Z is locally λ-complemented in X

Next we shall verify that Z is locally λ-complemented in X . For this it suf-
fices to show (see Proposition 6.6) that there exists an extension operator
Φ ∈L (Z∗, X ∗) such that ‖Φ‖ Éλ.
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We construct the extension operator Φ as follows. Consider the operators Tn ∈
L (X , Z ), n ∈ N. Then

∥
∥T ∗

n z∗∥
∥ É (λ+ εn)

∥
∥z∗∥

∥ for every functional z∗ ∈ Z∗.
Hence

(

T ∗
n z∗)

z∗∈Z∗ ∈
∏

z∗∈Z∗
(λ+εn )

∥
∥z∗∥

∥BX∗

while every factor (λ + εn)
∥
∥z∗∥

∥BX∗ is a w∗-compact set in X ∗ due to
the Alaoglu theorem. Due to the Tychonoff theorem the direct product
itself is compact in the product topology, therefore the net (sequence)
((

T ∗
n z∗)

z∗∈Z∗
)

n∈N contains a pointwise converging subnet
((

T ∗
n(ν)z∗)

z∗∈Z∗

)

ν
.

We denote
Φz∗ = lim

ν
T ∗

n(ν)z∗.

The definition of Φ is correct in the sense that Φz∗ is an element of X ∗. In-
deed, Φz∗ is linear since all the ingredients are linear; Φz∗ is bounded as

∣
∣(Φz∗)(z)

∣
∣ =

∣
∣
∣

(

lim
ν

T ∗
n(ν)z∗

)

(z)
∣
∣
∣=

∣
∣
∣lim

ν

(

T ∗
n(ν)z∗(z)

)
∣
∣
∣= lim

ν

∣
∣T ∗

n(ν)z∗(z)
∣
∣É

É lim sup
ν

∥
∥T ∗

n(ν)

∥
∥
∥
∥z∗∥

∥‖z‖ Éλ
∥
∥z∗∥

∥‖z‖ .

From the inequality we also see that Φ itself is bounded and ‖Φ‖ É λ. The
operator Φ is obviously linear, hence Φ ∈L (Z∗, X ∗).

The operator Φ is an extension operator since for every z∗ ∈ Z∗ we have

z∗(z) = z∗
(

lim
ν

Tn(ν)z
)

= lim
ν

z∗ (

Tn(ν)z
)

=

= lim
ν

((

T ∗
n(ν)z∗)

(z)
)

=
(

lim
ν

T ∗
n(ν)z∗

)

(z) =

=
(

Φz∗)

(z).

At this point, all the claims of our theorem have been proved, except (i) and
(ii). The argumentation for this final step has been essentially done in [CK,
proof of Proposition 2.1]. For the sake of completeness, we present here the
proof in detail.

Construction of (Un)

We construct the operators Un ∈F (X ), n ∈N, that possess the same properties
as the operators Tn , i.e.

(U a) Un ym = ym for every n Ê m;

(U b) UnUm =Um for every n > m;
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(U c) lim sup
n

‖Un‖ Éλ;

(U d) ‖UnUm −UmUn‖ É 4(λ+1)(εn +εm) for every m = 1, . . . ,n −1;

(U e) Z = span
∞⋃

n=1
ranUn is a separable space, Y ⊂ Z , and Un z → z for every

z ∈ Z ,

but in addition,

(U f) ranUn = ranU 2
n = ranTn .

For every n ∈N we take a projection Qn ∈L (X ) onto ranTn and an operator

Un = (1−αn)Tn +αnQn ,

where the numbers αn ∈ (0,1) have been chosen such that −
αn

1−αn
is not an

eigenvalue of the operator Tn|ranTn ∈ F (ranT ), n ∈ N, δn É εn , n ∈ N, and
∑

n

δn É 1, where δn :=αn (‖Qn‖+‖Tn‖).

(U a): Since for all indices n Ê m, we have Tn ym = ym , there also holds Qn ym =
ym , since a projection is the identity on its range. Hence

Un ym = (1−αn)ym +αn ym = ym , n Ê m.

(U b): Let us have n > m. By a simple calculation we obtain UnUm −Um = 0
due to the equalities TnTm = Tm , TnQm =Qm , QnTm = Tm , QnQm =Qm .

(U c): Since ‖Un −Tn‖ =αn ‖Qn −Tn‖É δn , we have

lim sup
n

‖Un‖É lim sup
n

‖Tn‖+ lim
n

‖Un −Tn‖ Éλ.

(U d): Due to ‖Un −Tn‖ É δn , we can also well estimate ‖UnUm −UmUn‖.
Namely, assuming that for all n there holds ‖Tn‖ É λ+ 1, ‖Un‖ É λ+ 1 (for
every Tn this is true since εn É 1; if not true for some Un , we can omit some
members from the beginning while not harming other properties), we have

‖UnUm −TnUm‖ É (λ+1)δn ,

‖TnUm −TnTm‖ É (λ+1)δm ,

‖TnTm −TmTn‖ É 2(λ+1)(εm +εn),

‖TmTn −TmUn‖ É (λ+1)δn ,

‖TmUn −UmUn‖ É (λ+1)δm .
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Summing up all these inequalities, we obtain that

‖UnUm −UmUn‖ É 2(λ+1)(εm +εn +δm +δn)

É 4(λ+1)(εm +εn), m = 1, . . . ,n −1.

This again implies
∑

n

‖UnUn+1 −Un+1Un‖ <∞

due to the choice of (εn).

(U f): It is clear that ranU 2
n ⊂ ranUn ⊂ ranTn . We are going to verify that

ranTn ⊂ ranU 2
n which would show that ranUn = ranU 2

n = ranTn .

Consider the operator Un|ranTn ∈L (ranTn), we see that it is injective. Indeed,
let us have x ∈ ranTn , x 6= 0, then

Un x = (1−αn)Tn x +αnQn x = (1−αn)Tn x +αn x 6= 0

due to the fact that −
αn

1−αn
is not an eigenvalue of Tn|ran Tn .

Now the operator U 2
n|ranTn ∈ L (ranTn) is injective as well: if x ∈ ranTn is

such that U 2
n x =Un(Un x) = 0, we must have Un x = 0, hence x = 0. Therefore

U 2
n|ran Tn is surjective. Hence ranTn ⊂ ranU 2

n .

(U e): Since ranTn = ranUn , we have

Z = span
∞⋃

n=1
ranUn .

The sequence (Un) is an approximation of the identity on Z . Indeed, fix an
element z ∈ Z , then

‖Un z − z‖ É ‖Un −Tn‖‖z‖+‖Tn z − z‖ É δn ‖z‖+‖Tn z − z‖→ 0.

Remark. The above proof developed the first five lines of the proof of [CK,
Proposition 2.1].

Construction of (Vn)

Next, we shall construct the operators Vn ∈F (X ), n ∈N, that possess quite the
same properties as the operators Un , i.e.

(V a) Vn ym = ym for all indices n Ê m;
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(V b) VnVm =Vm for all indices n > m;

(V c) lim sup
n

‖Vn‖ Éλ;

(V d) ‖VnVm −VmVn‖ É K ‖Um−1Um −UmUm−1‖ for some constant K > 0 and
all indices m > n;

(V e) Z = span
∞⋃

n=1
ranVn is a separable space, Y ⊂ Z , and Vn z → z for every

element z ∈ Z .

(V f) ranVn = ranV 2
n = ranUn .

Note that the previous condition (U d)

‖UnUm −UmUn‖É 4(λ+1)(εm +εn).

or its consequence
∑

n

‖UnUn+1 −Un+1Un‖ <∞

has been replaced by a stronger condition (V d) where the bound depends
only on the greater index m > n.

Denote
γn = ‖UnUn+1 −Un+1Un‖ , n ∈N.

We define

A(n,k) =
n+k−1∏

j=n

U j , k, n ∈N, A(n,0)= I .

The desired operators Vn will be the limits (by k) of A(n,k).

For every k ∈N it is easy to check the equality

A(n,k +1)= A(n,k)+ A(n,k −1)(Un+k−1Un+k −Un+kUn+k−1)

due to the property UnUm =Um if n > m. Thus having denoted

Mn(k) = max
1ÉlÉk

‖A(n, l )‖ ,

we have Mn(1) = ‖A(n,1)‖ = ‖Un‖. As

‖A(n,k +1)‖ É ‖A(n,k)‖+‖A(n,k −1)‖γn+k−1,

we also have

Mn(k +1) = max(Mn(k),‖A(n,k +1)‖) É
É max

(

Mn(k), Mn(k)+Mn(k)γn+k−1
)

É
É Mn(k)(1+γn+k−1).
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Therefore

‖A(n,k)‖ É ‖Un‖
∞∏

j=n

(1+γ j )

because

Mn(k +1)

Mn(1)
=

k∏

j=1

Mn( j +1)

Mn( j )
É

k∏

j=1
(1+γn+ j−1) É

∞∏

j=n

(1+γ j ).

Since
∞∑

j=n

γ j <∞, the product
∞∏

j=n

(1+γ j ) converges, indicating that there is a

uniform bound L on all sequences (‖A(n,k)‖)k .

The sequence (‖A(n,k)‖)k converges since it is a Cauchy sequence. Indeed,
for every k ∈N we have

‖A(n,k +1)− A(n,k)‖ É Lγn+k−1.

Assuming l > k, we now have

‖A(n, l )− A(n,k)‖ É L
n+l−1∑

j=n+k−1

γ j −→
k,l

0.

For every n we define

Vn = lim
k→∞

A(n,k) =
∞∏

j=n

U j .

(V a): We have Vn ym = ym for every n Ê m, since VnUm = Um for the case
n > m, and VnUn =U 2

n (indeed, U 2
n = (UnUn+1 . . .Un+k−1)Un from where going

to the limit as k →∞ yields U 2
n =VnUn).

(V b): If n > m, we also have

VnVm = lim
k

VnUmUm+1 . . .Um+k−1 =Vm

since VnUm =Um .

(V f): We have ranVn = ranV 2
n = ranUn , hence the operators Vn are of finite

rank. Indeed, we have

ranUn = ranU 2
n ⊂ ranV 2

n ⊂ ranVn ⊂ ranUn .

More precisely, the inclusion ranU 2
n ⊂ ranV 2

n holds because U 2
n = VnUn , as

shown before, and for every x ∈ X there is an element y such that Un x =U 2
n y ;

hence,
U 2

n x =VnUn x =VnU 2
n y =VnVnUn y =V 2

n y.
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The inclusion ranVn ⊂ ranUn holds since for every x ∈ ranVn there exists an
element y such that

x =Vn y = lim
k→∞

(

A(n,k)y
)

.

For all indices k, we have A(n,k)y ∈ ranUn ; as ranUn is closed (it is finite-
dimensional), we also have x ∈ ranUn .

(V d): We have the estimate

‖Vn‖ = lim
k→∞

‖A(n,k)‖ É
∞∏

j=n

(1+γ j )‖Un‖ .

As the remainder of a converging infinite product vanishes (i.e. converges to
1), we find that

lim sup
n

‖Vn‖ É lim sup
n

‖Un‖ Éλ.

(V e): Since ranUn = ranVn , we have

Z = span
∞⋃

n=1
ranVn .

The sequence (Vn) is an approximation of the identity on Z . Indeed, fix an
element z ∈ Z , then

‖Vn+1z − z‖É ‖Vn+1z −Vn+1Un z‖+‖Un z − z‖ É (‖Vn+1‖+1)‖Un z − z‖→ 0,

since Vn+1Un =Un for every n.

(V d): We are going to obtain a vanishing bound on ‖VnVm −VmVn‖ depending
only on m, where m > n. For any k where n +k −1 Ê m, we have

A(n,k)Vm = lim
j→∞

(UnUn+1 . . .Un+k−1)Um A(m +1, j −1) =

= lim
j→∞

UnUn+1 . . .Um−1UmUm A(m +1, j −1) =

= lim
j→∞

A(n,m −n +1)A(m, j ) =

= A(n,m −n +1)Vm .

Therefore

VnVm = lim
k→∞

A(n,k)Vm = A(n,m −n +1)Vm = A(n,m −n −1)Um−1UmVm

and
VmVn =Vn = A(n,m −n −1)UmUm−1Vm .
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Denote K = L sup
n

‖Vn‖, then

‖VnVm −VmVn‖É ‖A(n,m −n −1)‖‖Um−1Um −UmUm−1‖‖Vm‖ É Kγm−1

whenever m > n.

Remark. The above proof developed the first half-page of the proof of [CK,
Proposition 2.1].

Construction of (Rn)

As the final step of the proof, we construct a sequence (Rn) ∈F (X ) such that

(Ra) for l < k we have RkRl = Rl Rk = Rl ;

(Rb) ranRk = ranR2
k = ranVnk

for every k;

(Rc) lim sup
n

‖Rn‖ Éλ;

(Rd) Z = span
∞⋃

n=1
ranRn ;

(Re) Rn z → z for every element z ∈ Z .

For this end we shall choose an increasing sequence of positive integers (nk )
and operators Rk ∈ L (X , Z ) such that the following conditions hold for every
k:

(1) for l < k we have RkRl = Rl Rk = Rl ;

(2) ranR2
k = ranRk = ranVnk

;

(3) Rk is a polynomial in Vn1 , . . . ,Vnk
;

(4)
∥
∥Rk −Vnk

∥
∥< 2−k .

At first we choose n1 = 1 and R1 =V1, then conditions (1)–(4) hold trivially.

Now suppose we have already chosen n1, . . . ,nk and R1, . . . ,Rk that satisfy (1)–
(4).

Denote rk = Rk |ran Rk
. The operator rk ∈L (ranRk ) is invertible, since it is onto

ranR2
k = ranRk . Denote wk = (rk)−1 ∈ L (ranRk ), then wk Rk x = x for every

x ∈ ranRk . The operator wk is a polynomial in rk . Indeed, if dimRk = d , then

dimL (ranRk ) = d 2 and there exist coefficients ai ,
d2
∑

j=0
|ai | > 0, such that

a0I +a1rk + . . .+ad2 r d2

k = 0.
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From this equation we can express wk by carrying the first non-null member
ai r i

k to the right and multiplying both sides by a−1
i w i

k . We obtain wk = p(rk)
where p is a polynomial.

Denote Wk = p(Rk) ∈ F (X ). Since Rk is a polynomial in Vn1 , . . . ,Vnk
, for m >

n there holds Vn(I −Vm) = Vn −VnVm = VmVn −VnVm , and ‖VnVm −VmVn‖
vanishes if m →∞, we have

lim
m→∞

‖Rk (I −Vm)‖ = 0.

Using this, we find an index nk+1 such that nk+1 > nk and

∥
∥Rk (I −Vnk+1 )

∥
∥<

1

2k+1 ‖Wk‖
.

We define
Rk+1 =Vnk+1 +Wk Rk(I −Vnk+1 ).

It remains to verify that conditions (1)–(4) hold for Rk+1.

Condition (3) holds trivially since Wk is a polynomial in Rk , hence WkRk

is a polynomial in Vn1 , . . . ,Vnk
, thus altogether Rk+1 is a polynomial in

Vn1 , . . . ,Vnk
,Vnk+1 .

Condition (4) is also easily verifiable:

∥
∥Rk+1 −Vnk+1

∥
∥É ‖Wk‖

∥
∥Rk(I −Vnk+1 )

∥
∥<

1

2k+1
.

Let us verify (1). We have

I −Rk+1 = I −Vnk+1 −Wk Rk(I −Vnk+1 ) = (I −WkRk )(I −Vnk+1 ).

Due to the choice of Wk there holds (I −WkRk)Rk = 0. Since Wk is a polyno-
mial in Rk , we obtain

Rk (I −Wk Rk) = Rk −RkWk Rk = Rk −Wk R2
k = (I −WkRk )Rk = 0.

We also have Vnk+1 Rk = Rk as Rk is a polynomial in Vn1 , . . . ,Vnk
and m > n

implies VmVn =Vn . Now putting this together, we get that

Rk(I −Rk+1) = Rk (I −Wk Rk)(I −Vnk+1 ) = 0,

(I −Rk+1)Rk = (I −WkRk )(I −Vnk+1 )Rk =
= (I −WkRk )

(

Rk −Vnk+1

)

= 0.

We have verified that
Rk Rk+1 = Rk+1Rk = Rk .
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Let now an index l be such that l < k. Then

Rl Rk+1 = Rl Rk Rk+1 = Rl Rk = Rl ,

Rk+1Rl = Rk+1Rk Rl = Rk Rl = Rl .

Finally we shall verify that (2) holds. We have

ranR2
k+1 ⊂ ranRk+1 ⊂ ranVnk+1 .

The inclusion ranRk+1 ⊂ ranVnk+1 can be justified by the fact that WkRk (I −
Vnk+1 )x =Vnk+1 WkRk (I −Vnk+1 )x for every x ∈ X .

Consider the operator Rk+1|ranVnk+1
. We verify that it is injective. Let us have

an element x ∈ ranVnk+1 such that Rk+1x = 0. As Wk is a polynomial in Rk , we
have

Vnk+1 x =Wk Rk

(

I −Vnk+1

)

(−x) ∈ ranRk = ranVnk
,

hence Vnk+1 x =Vnk
y for some y ∈ X . Thus

Vnk+1 x =Vnk
y =Vnk+1 Vnk

y =Vnk+1Vnk+1 x.

Since Vnk+1 |ranVnk+1
is injective, we now have x =Vnk+1 x and therefore

0= Rk+1x =Vnk+1 x +WkRk (I −Vnk+1 x) = x +WkRk x −WkRk x = x,

indicating that Rk+1|ranVnk+1
is injective.

Like we have already done on page 77, we obtain that R2
k+1|ranVnk+1

is injective

as well. Therefore it is surjective. Hence ranVnk+1 ⊂ ranR2
k+1.

We have Rn ym = ym , if n Ê m, due to the similar property for the operators Vn .

As all the previous sequences, (Rn) is an approximation of the identity as well.
Namely, for every z ∈ Z we have

‖Rk z − z‖É
∥
∥Rk −Vnk

∥
∥‖z‖+

∥
∥Vnk

z − z
∥
∥→ 0.

Hence

Z ⊂ span
∞⋃

n=1
ranRn ⊂ span

∞⋃

n=1
ranVn = Z ,

yielding that

Z = span
∞⋃

n=1
ranRn .

What has done up to now is sufficient since the other conditions (Rd) and
(Re) follow from the fact that every Rk is a polynomial in first k members of a
subsequence of (Vn).
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Remark. The construction of (Rn) and verifying its properties developed the

last
2

3
pages of the proof of [CK, Proposition 2.1].

In conclusion we see that all the claims of the theorem have been proven. �

6.4 Corollaries and remarks

The following corollary is immediate.

Corollary 6.10. Let X be a non-separable Banach space. If X has the asymp-

totically λ-commuting bounded AP, then every separable closed subspace of X

is contained in a locally λ-complemented separable closed subspace with the

λ-commuting bounded AP.

For the case of the λ-bounded AP, an analogous claim holds. Namely due to
[HM] or [SY], every separable closed subspace is contained in a separable lo-
cally 1-complemented subspace. Now, if X has the λ-bounded AP, then its
every locally 1-complemented subspace has also the λ-bounded AP (for the
proof of this fact, see [K1, Theorem 5.1], [L1, Corollary 2], or [O5, Proposition
2.1]). Hence every separable closed subspace of X is contained in a separable
locally 1-complemented subspace having the λ-bounded AP.

Remark 6.11. It can be seen from the proof that if Y =
{

y1, y2, . . .
}

, yn ∈ Y , Yn =
span

{

y1, . . . , yn

}

(hence, (Yn) is an increasing sequence of finite-dimensional
subspaces of Y whose union is dense in Y ), then, moreover, the constructed

sequence (Rn) is such that Rn|Yn = IYn for every n and Z = span
∞⋃

n=1
ranRn .

Under these assumptions in the proof of the theorem due to Casazza, Kalton
and Wojtaszczyk (see [C2, the proof of Theorem 9.3]) it has been asserted that
“by switching to a pointwise convergent subnet of (Rn)” a projection P ∈L (X )
with ranP = Z can be obtained, meaning that Z is complemented in X . How-
ever, the assumptions of Theorem 6.9 are met for X = ℓ∞, and it is known that
there does not exist any separable complemented subspace in ℓ∞. This indi-
cates that the proof of the Casazza-Kalton-Wojtaszczyk theorem [C2, the proof
of Theorem 9.3] is in error, and it remains an open problem whether a non-
separable Banach space with the commuting bounded AP has the separable
complementation property or not. In particular, we do not know whether ℓ∞
has the commuting bounded AP.

Our conjecture is that the Casazza-Kalton-Wojtaszczyk theorem does not
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hold: the commuting bounded AP of a non-separable Banach space does not
imply the separable complementation property.
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properties of Banach spaces and Banach lattices, Israel J. Math. (to ap-
pear).

[G] G. GODEFROY, The Banach space c0, Extracta Math. 16, (2001), 1–25.

[GK] G. GODEFROY, N. J. KALTON, Approximating sequences and bidual pro-

jections, Quart. J. Math. Oxford Ser. 48 (1997), 179–202.

[GKS] G. GODEFROY, N. J. KALTON, and P. D. SAPHAR, Unconditional ideals in

Banach spaces, Studia Math. 104 (1993), 13–59.

[GS] G. GODEFROY and P. D. SAPHAR, Duality in spaces of operators and

smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672–695.

[Г] B. V. GODUN, Безусловные базисы и натягивающие базисные после-

довательности (in Russian) [Unconditional bases and shrinking basic
sequences], Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1980), 69–72.

[Gro] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucle-

aires (in French) [Topological tensor products and nuclear spaces], Mem.
Amer. Math. Soc. 16 (1955).

[HJO] R. HALLER, M. JOHANSON, and E. OJA, M(r, s)-ideals of compact oper-

ators (article in preparation).



BIBLIOGRAPHY 93

[HO] R. HALLER and E. OJA, Geometric characterizations of positions of Ba-

nach spaces in their biduals, Arch. Math. (Basel) 69 (1997), 227–233.

[HOP] R. HALLER, E. OJA, and E. PLEWNIA, Quantitative versions of hereditary

results on M-ideals of compact operators, Math. Nachr. 246-247 (2002),
106–120.

[HWW] P. HARMAND, D. WERNER, and W. WERNER, M-ideals in Banach

Spaces and Banach Algebras, Lecture Notes in Math., vol. 1547, Springer,
Berlin-Heidelberg-New York, 1993.

[HM] S. HEINRICH and P. MANKIEWICZ, Applications of ultrapowers to the

uniform and Lipschitz classification of Banach spaces, Studia Math. 73

(1982), 225–251.

[Hen] J. HENNEFELD, M-ideals, HB-subspaces, and compact operators, Indi-
ana Univ. Math. J. 28 (1979), 927–934.

[J] W. JOHNSON, A complementary universal conjugate Banach space and its

relation to the approximation problem, Israel J. Math., 13 (1972), 301–310.

[JO] W. JOHNSON and T. OIKHBERG, Separable lifting property and extensions

of local reflexivity, Illinois J. Math. 45 (2001), 123–137.

[JRZ] W. B. JOHNSON, H. P. ROSENTHAL, and M. ZIPPIN, On bases, finite di-

mensional decompositions and weaker structures in Banach spaces, Israel
J. Math. 9 (1971), 488–504.

[JSz] W. B. JOHNSON and A. SZANKOWSKI, Complementably universal Banach

spaces, Studia Math. 58 (1976), 91–97.

[JZ] W. B. JOHNSON and M. ZIPPIN, Subspaces and quotient spaces of

(
∑

Gn)ℓp
and (

∑

Gn)c0 , Israel J. Math. 17 (1974), 50–55.

[КС] M. I. KADETS and M. G. SNOBAR, О некоторых функционалах на ком-

пакте Минковского (in Russian) [Certain functionals on the Minkowski
compactum], Mat. Zametki 10 (1971), 453–457.

[K1] N. J. KALTON, Locally complemented subspaces and Lp -spaces for 0 < p <
1, Math. Nachr. 115 (1984), 71–97.

[K2] N. J. KALTON, M-ideals of compact operators, Illinois J. Math. 37 (1993),
147–169.



94 BIBLIOGRAPHY

[KW] N. J. KALTON and D. WERNER, Property (M), M-ideals, and almost iso-

metric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–
178.
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Kommuteeruvad tõkestatud aproksimatsiooni-
omadused Banachi ruumides

Kokkuvõte

Käesoleva väitekirja põhieesmärk on uurida kommuteeruvat tõkestatud ap-
roksimatsiooniomadust (ja selle kompaktset versiooni). Ühelt poolt on see
omadus üldjuhul nõrgem kui kommuteeruv meetriline aproksimatsioonioma-
dus või lõplikumõõtmelise lahutuse omadus, teiselt poolt aga tugevam kui
tõkestatud aproksimatsiooniomadus. Tõkestatud ja kommuteeruva tõkesta-
tud aproksimatsiooniomaduse vahele (vähemalt formaalselt) jääb väitekirjas
defineeritud uus mõiste asümptootiliselt kommuteeruv tõkestatud aproksi-
matsiooniomadus.

Väitekirja esimene peatükk kujutab endast sissejuhatust, mille koosseisu on
paigutatud lühike ajalooline ülevaade aproksimatsiooniprobleemist, väitekir-
ja kokkuvõte ning mõningad tehnilised märkused väitekirjas kasutatud tä-
histuste kohta.

Väitekirja teises peatükis tutvustatakse lugejale aproksimatsiooniomaduste
erinevaid versioone, sealhulgas klassikalist aproksimatsiooniomadust ja kom-
paktset aproksimatsiooniomadust, tõkestatud (kompaktset) aproksimatsioo-
niomadust (hõlmates muuhulgas 1-tõkestatud, see tähendab, meetrilist (kom-
paktset) aproksimatsiooniomadust) ning kommuteeruvat tõkestatud (kom-
paktset) aproksimatsiooniomadust. Välja on toodud mõisted ja tulemused,
mis on järgnevate osade mõistmiseks või teemast tervikliku pildi saamiseks
vajalikud.

Kolmandas peatükis tõestatakse, et artiklis [W] G. Willise poolt konstrueeri-
tud meetriline kompaktne aproksimeeriv pere Willise ruumil XW on kommu-
teeruv. See tähendab, et ruumil XW on kommuteeruv meetriline kompaktne
aproksimatsiooniomadus. Kuna ruumil XW ei ole aproksimatsiooniomadust,
on seega näidatud, et kommuteeruv meetriline kompaktne aproksimatsiooni-
omadus ja aproksimatsiooniomadus on erinevad omadused.

Neljas peatükk tugineb artiklitele [O4] ning [GS]. Aastal 1988 näitasid G. Go-
defroy ja P. D. Saphar artiklis [GS], kuidas separaabli Banachi ruumi X geo-
meetriline struktuur (täpsemalt, M-ideaaliks olemine oma teises kaasruumis)
võimaldab tõsta kommuteeruva tõkestatud aproksimatsiooniomaduse ruu-
milt X kaasruumi X∗. Väitekirjas parendatakse seda tulemust mitmel moel.
Muuhulgas näidatakse, et separaabluse eeldusest saab loobuda ning ruumi
geomeetria osas kasutatakse eeldusena üldisemat tingimust, mida väitekir-
jas nimetatakse M(a,B,c)-võrratuseks. Märgime, et Banachi ruum on M-
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ideaal oma teises kaasruumis parajasti juhul, kui ta rahuldab M(1, {−1} ,1)-
võrratust.

Rakendusena näidatakse, et kui Banachi ruum rahuldab M(a,B,c)-võrratust
ning temal on λ-tõkestatud (kompaktne) aproksimatsiooniomadus (kus λ ei
ületa arvu max |B|+c), siis nii ruumil endal kui ka tema kaasruumil on meet-
riline (kompaktne) aproksimatsiooniomadus.

M(a,B,c)-võrratus esineb defineerimata kujul juba artiklis [O4], kus seda
kasutati omaduse M∗(a,B,c) intensiivsel uurimisel. Omadus M∗(a,B,c) on
samuti Banachi ruumide struktuurne omadus, mis võimaldab ühekorraga kir-
jeldada teatud (suurt) ideaalide klassi Banachi ruumides.

Kolmanda ja neljanda peatüki põhitulemused on ilmunud artiklis [OZ1].

Viiendas peatükis keskendutakse ruumile XJS, mille kirjeldus on avaldatud
artiklis [JO], ent mille konstrueerisid juba aastal 1996 W. B. Johnson ja
G. Schechtman. Ruum XJS on selle poolest märkimisväärne, et tal ei ole
meetrilist aproksimatsiooniomadust, kuid on tõkestatud aproksimatsiooni-
omadus. Aastal 2001 tõestas G. Godefroy [G], et ruumil XJS on kommu-
teeruv 8-tõkestatud aproksimatsiooniomadus, ning märkis, et pole tehtud
mingeid pingutusi leidmaks väiksemat konstanti 8 asemel. Viiendas peatükis
tõestataksegi, et ruumil XJS on kommuteeruv 6-tõkestatud aproksimatsioo-
niomadus. Siiski jääb lahtiseks, kas konstant 6 on vähim võimalik.

Viienda peatüki põhitulemused on ilmunud artiklis [Z].

Kuuendas peatükis võetakse kasutusele uus mõiste – asümptootiliselt kom-
muteeruv tõkestatud aproksimatsiooniomadus. Separaablite ruumide korral
langeb see mõiste kokku kommuteeruva tõkestatud aproksimatsiooniomadu-
sega. Üldjuhul näidatakse, et kui Banachi ruumil on asümptootiliselt kom-
muteeruv tõkestatud aproksimatsiooniomadus, siis tal on separaabel lokaalse
täiendatavuse omadus tugeval kujul. Märgime, et selle tulemuse valguses po-
le selge, kas kommuteeruvast tõkestatud aproksimatsiooniomadusest järeldub
separaabel täiendatavuse omadus (nagu on väidetud teoreemis [C2, Theorem
9.3]).

Kuuenda peatüki põhitulemusi sisaldava artikli eelvariant on [OZ2].
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