
UNIVERSITY OF TARTU

Institute of Computer Science
Software Engineering Curriculum

Tõnis Kasekamp

A Web Application to Support
Researchers in Predictive Process

Monitoring Tasks

Master’s Thesis (30 ECTS)

Supervisor: Fabrizio Maria Maggi

Tartu 2018

AWeb Application to Support Researchers in Predictive Pro-
cess Monitoring Tasks
Abstract: Predictive Process Monitoring aims at predicting the outcome, time
or cost of an ongoing execution of a business process using past process executions
recorded in event logs. In this Master’s Thesis, we describe the functionality of a
web application (Nirdizati Research) that can be used to find a predictive model
extracted from a given event log that can be used at runtime for making predictions
on ongoing cases.

Nirdizati Research allows the user to create a model to predict the remaining
time, the outcome and the next activity of an ongoing process execution. The
application offers various configuration options in a way that different predictive
models can be rated using various techniques and methods. There are also options
to compare the created prediction models using different metrics. The tool has
been evaluated on an authentic event log concerning the treatment process of
sepsis patients in a hospital. Furthermore, the performance of the tool has been
measured using a real-life log pertaining to the application process in a financial
institute.

Keywords: Predictive Process Monitoring, Process Mining, Process Analytics
Tool
CERCS: P170 - Computer Science, Numerical Analysis, Systems, Control

Veebipõhine tööriist ennetava protsessijälgimise uurimise toe-
temiseks
Lühikokkuvõte: Äriprotsesside ennustav seire üritab ennustada hetkel toimuva
äriprotsessi lõpptulemust, kestvust või maksumust, kasutades selleks sündmuste
logides leiduvaid eelnenud sündmuseid. Käesolevas magistritöös kirjeldame veebi-
rakenduse funktionaalsust (Nirdizati Research), mis võimaldab kasutajatel leida
konkreetse sündmuste logi jaoks parima ennustava mudeli. Seda mudelit saab see-
järel kasutada käimasolevate protsessidele ennustuste tegemiseks.

Nirdizati Research lubab kasutajal teha mudeli äriprotsessi järele jäänud aja,
tulemuse või järgmise sündmuse ennustamiseks. Rakendus pakub mudeli tege-
miseks erinevaid konfigureerimise võimalusi ning võimaldab visualselt võrrelda ge-
nereeritud mudeleid. Rakendust on hinnatud haigla raviprotsessi sündmuste logi
põhjal. Jõudluse hindamiseks on kasutatud finantsinstitutsiooni taotlusprotsessi
logifaili.
Võtmesõnad: Protsessi ennustav seire, Protsessikaeve, Protsessi analüüsi tööriis-
tad
CERCS: P170 - Arvutiteadus, arvanalüüs, süsteemid, juhtimine

2

Contents
1 Introduction 5

2 Related work 6

3 Background 7
3.1 Event log . 7
3.2 Predictive Process Monitoring . 7

3.2.1 Building the model . 7
3.2.2 Runtime predictions . 9

3.3 Hyperparameter optimization . 9
3.4 Nirdizati Training . 9

3.4.1 Implementation . 10

4 Contribution 12
4.1 Event log splitting . 12
4.2 Encoding . 13

4.2.1 Encoding methods . 14
4.2.2 Encoding configuration . 16
4.2.3 Task generation type . 17

4.3 Labelling . 18
4.3.1 Classification label types . 18
4.3.2 Regression label types . 20

4.4 Temporal and inter-case features 21
4.5 Clustering methods . 21
4.6 Classification methods . 22
4.7 Regression methods . 22
4.8 Evaluation metrics . 22

4.8.1 Classification metrics . 22
4.8.2 Regression metrics . 23

5 Functionality overview 25
5.1 Log upload page . 26
5.2 Log details page . 27
5.3 Splitting page . 28
5.4 Labelling page . 29
5.5 Task status page . 31
5.6 Training page . 32

5.6.1 Classification methods . 33
5.6.2 Regression methods . 34

3

5.6.3 Clustering methods . 35
5.6.4 Encoding methods . 35
5.6.5 Labelling . 35
5.6.6 Temporal and inter-case features 36
5.6.7 Hyperparameter optimization 36

5.7 Validation page . 37
5.7.1 Classification results . 38
5.7.2 Regression results . 40

6 Tool implementation 42
6.1 Architecture . 42

6.1.1 Back-end architecture . 43
6.1.2 Front-end architecture . 43

6.2 Technologies . 44
6.2.1 Back-end technologies . 44
6.2.2 Front-end technologies . 45
6.2.3 Development process . 45

7 Evaluation and Comparison 46
7.1 Evaluation . 46

7.1.1 Remaining time prediction 46
7.1.2 Next activity prediction . 48

7.2 Performance . 49
7.2.1 Encoding methods . 50
7.2.2 Log size impact on encoding performance 50
7.2.3 Machine learning methods 51
7.2.4 Hyperparameter optimization 52
7.2.5 Comparison with Nirdizati Training 53

7.3 Comparison with Nirdizati Training 54
7.3.1 New features . 54
7.3.2 Improvements . 54

8 Conclusion 56

4

1 Introduction
Business process executions can be supported by information systems. These
systems store events occurring during process executions in an event log, which
can then be used as a source of information to improve future executions. The
discipline of extracting knowledge from event logs is called process mining. The
information in event logs can be used to discover the actual process model from
the flow of events (process discovery), check the log against an existing process
model (conformance checking) and to improve an already existing process model
(model enhancement) [1].

A subset of process mining is Predictive Process Monitoring, which aims at
answering questions about the future of processes which are currently executing.
These predictions can be used to fulfill business goals. For example, Predictive
Process Monitoring techniques could be used by an insurance company to first
predict the time it takes to internally process an insurance application and then to
allocate more resources for executions that are predicted to be slow so that they
can be completed faster.

One of the challenges in Predictive Process Monitoring is identifying a predic-
tive model that is best suited for a particular event log. This predictive model is
built starting from the log, but the creation of the model can be configured with a
multitude of options that can strongly affect its accuracy. However, tuning these
options can be a time-consuming task if done manually.

In this thesis we aim at answering questions such as: "What is the best regres-
sion method for predicting the remaining time of a process?", "Does the event when
the prediction is given affect the quality of the prediction?", "Can hyperparameter
optimization provide a better accuracy than choosing the parameters manually?"
and "Do inter-case features improve the quality of the predictive model?".

To answer these questions, we present a A Web Application to Support Re-
searchers in Predictive Process Monitoring Tasks called Nirdizati Research. The
application helps researchers test various configuration options and compare the
generated models through various validation metrics. The tool has been evaluated
using a real-life event log concerning a treatment process in a hospital. The eval-
uation includes an use case of how the application could be used by researchers in
a real-world context. The functionality and performance of the tool was compared
against a similar application Nirdizati Training.

5

2 Related work
Existing predictive process monitoring prediction types can be classified as con-
cerning numerical, categorical or a future sequence of events [2]. Numerical predic-
tions are usually related to the duration or the cost of the ongoing case. Categor-
ical predictions can be about the risk or the outcome of an ongoing case. Activity
sequence predictions try to estimate the next activities of an ongoing case.

The presented tool considers a subset of numerical and categorical predictions,
which are further described in Section 4.3.

One of the numerical predictions is Remaining Time, which aims at answer-
ing questions such as "How long will it take for a case to be completed?" and
"What will be the duration of the currently executing activity?". In [3] the au-
thors offer to answer these questions using past cases of event logs. They propose
to use non-parametric regression to calculate the remaining case execution time.
This method is shown to be superior to deducting the already elapsed cycle time
from the average cycle time of the case. In [4] the authors present a way to use
annotated transition systems to determine the duration of a case. Another method
demonstrated in [5] is to use Petri nets to predict the remaining time of a process
execution.

Categorical orOutcome Based predictions provide a prediction from a limited
set of values. These methods try to answer questions such as "What is the next
activity of an ongoing case?" and "What is the outcome of a given case?", "What
is the value of a trace attribute of an ongoing case?". One method presented in
[6] proposes a way to predict the outcome with rules defined with linear temporal
logic. In [7] the authors predict the outcome of a trace by clustering the trace
prefixes based on control flow information and separately classifying prefixes of
different clusters. During a trace execution, the ongoing trace is compared against
the classifier in the corresponding cluster to provide a prediction.

Predicting a sequence of future activities is a more recent addition to prediction
types and this type of prediction is not included in this thesis. A method presented
in [8] uses an annotated data-aware transition system to make a prediction about
future activities. In [9], the authors propose to use past process executions in
combination with a-priori knowledge to make a prediction.

6

3 Background

3.1 Event log

Processes in the real world can be described as a series of events with attributes
such as the event name and the time of execution. These events can be grouped to-
gether to form a trace, which is the full execution of a given process case. Multiple
traces can be grouped into an event log.

Each event and trace can have various attributes. Event attributes are most
commonly the name of the event and the timestamp, but there can be additional
string or numerical attributes. Trace attributes apply for all events in a given
trace.

The prefix of a trace referrers to a subsequence of events up to a given index
or prefix length. For example, a prefix length of 3 indicates all events up to the
3rd event in a trace.

Log files are usually stored in the eXtensible Event Stream (XES) or MXML
formats, which are both based on the XML schema. A subset of a real-life XES log
[10] is shown in Listing 1. The example shows three events about a treatment pro-
cess with various attributes, including the most common attributes concept:name
and time:timestamp.

3.2 Predictive Process Monitoring

Predictive Process Monitoring is a family of methods for giving predictions and
recommendations about currently running cases. Predictive Process Monitoring
works first by building a predictive model from historical process executions, which
are described in an event log. Predictions are then continuously provided to the
user using this model over ongoing cases. The predictions can be about the re-
maining time, the outcome or the next activity of a trace, or about the value of
any other attribute.

3.2.1 Building the model

Building a predictive model for a process means finding a set of parameters for
a machine learning method so that if presented with a partial or on-going trace,
it can make an accurate prediction. The partial traces can have various lengths
and choosing a prefix length helps us make predictions at different points in the
process execution. For example, a prediction for the process remaining time is
very different at the start of the trace then near the end of the trace. Therefore a
different model should be created for every prefix length.

7

<trace>
<string key="concept:name" value="H"/>
<event>

<boolean key="InfectionSuspected" value="false"/>
<string key="org:group" value="A"/>
<boolean key="DiagnosticBlood" value="false"/>
<boolean key="DisfuncOrg" value="false"/>
<boolean key="SIRSCritTachypnea" value="true"/>
<boolean key="Hypotensie" value="false"/>
<boolean key="SIRSCritHeartRate" value="true"/>
<boolean key="Infusion" value="false"/>
<boolean key="DiagnosticArtAstrup" value="false"/>
<string key="concept:name" value="ER Registration"/>
<int key="Age" value="80"/>
<boolean key="DiagnosticIC" value="false"/>
<boolean key="DiagnosticSputum" value="false"/>
<boolean key="DiagnosticLiquor" value="false"/>
<boolean key="DiagnosticOther" value="false"/>
<boolean key="SIRSCriteria2OrMore" value="false"/>
<boolean key="DiagnosticXthorax" value="false"/>
<boolean key="SIRSCritTemperature" value="false"/>
<date key="time:timestamp" value="2014-03-11T09:50:02.000+01:00"/>
<boolean key="DiagnosticUrinaryCulture" value="false"/>
<boolean key="SIRSCritLeucos" value="false"/>
<boolean key="Oligurie" value="false"/>
<boolean key="DiagnosticLacticAcid" value="false"/>
<string key="lifecycle:transition" value="complete"/>
<string key="Diagnose" value="G"/>
<boolean key="Hypoxie" value="false"/>
<boolean key="DiagnosticUrinarySediment" value="false"/>
<boolean key="DiagnosticECG" value="false"/>

</event>
<event>

<string key="org:group" value="C"/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="ER Triage"/>
<date key="time:timestamp" value="2014-03-11T09:51:06.000+01:00"/>

</event>
<event>

<string key="org:group" value="A"/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="ER Sepsis Triage"/>
<date key="time:timestamp" value="2014-03-11T09:51:26.000+01:00"/>

</event>

Listing 1: Trace of an event log in XES format [10]

Predictive Process Monitoring always starts with an event log. The first step
is to split the encoded dataset into a training and test set. The training set will
be used to build the predictive model while the test set will be used to validate
quality of the predictive model.

To be able to apply prediction algorithms, the event log must be transformed
or encoded into a suitable format. The five encoding methods used in this thesis
were presented in a paper by Leontejeva et. al. [11]. The log file is encoded up to
a specified prefix length.

The next step after the encoding is labelling the dataset. The value of the label
is the value we are trying to predict. The label can be a numeric value, in which
case regression methods are used, or a categorical value, in which case classification
methods are used. Some label values are dependent on the prefix length, such as
the remaining time.

The encoded traces are then given as input to an algorithm which will create the
predictive model. There are several ways to configure how the predictive model is
generated, including the choice of classification/regression algorithm, the number
of events or prefixes to consider in a trace and the choice of the encoding method.

8

Additional features can be included in the encoded log file to improve the accuracy
of the predictions.

The encoded traces can be clustered so that the predictive algorithm is applied
to each cluster. For a given prefix length we create different clusters of similar
prefixes and for each cluster we create a different regressor/classifier. In this way
when a prediction has to be made for a currently ongoing trace the current prefix
is first associated to a cluster and then the corresponding regressor/classifier is
queried. This is done to increase the accuracy of the classification/regression
algorithm.

After the model has been created, it can be compared against other models
using various evaluation metrics to find the most suitable for the prediction task.

3.2.2 Runtime predictions

Making a prediction for an on-going process means using the model on a partial
trace. The partial trace will be encoded as per tyhe configuration used to build the
model. If the model configuration includes clustering then the trace is associated
to a corresponding cluster. The end result is a prediction for the on-going trace, for
example how long it will take to complete, if the prediction goal is the remaining
time.

3.3 Hyperparameter optimization

Hyperparameter optimization refers to choosing the optimal set of input parame-
ters for a machine learning method. For example, the number of neighbours for a
k-neighbours classifier is a hyperparameter as it is set before the training process.
For any given dataset, it can be difficult to know in advance the most suitable
hyperparameters. The optimization process will try out various values for the pa-
rameters and return the best configuration for a selected performance metric. This
process improves the accuracy of predictions and saves time for the researcher by
finding the best hyperparameters without trying them out manually [12].

3.4 Nirdizati Training

Nirdizati Training is a web-based tool that supports research into predictive process
analysis. The core predictive methods and general functionality was presented in
[13]. Later it was improved in [14] by adding a prediction task queue and various
prediction result visualization options.

The front-end application allowed the user to upload a log file, configure the
settings of the prediction tasks and to plot the results on various graphs.

9

The back-end application was divided into 6 modules besides the storage mod-
ule. The Log Manager module stored and provided information about the logs
in storage. The Encoder module transformed a log provided by the Log Manager
into an encoded CSV file and stored it onto the disk. The Prediction module in
turn retrieved the encoded file and created a predictive model. The last module
in the pipeline was the Evaluation module, which stored, aggregated and provided
the results of the prediction tasks. To allow for the execution of several predic-
tion tasks in parallel, the calculations were orchestrated by the Queuing module
which comprised of several worker applications. Figure 1 shows the architecture
of Nirdizati Training.

Figure 1: Nirdizati Training architecture

3.4.1 Implementation

The back-end application consisted of a web server and a queuing system. The
Django1 web server was written in Python 2 and it forwarded the prediction tasks
from the front-end to the queuing system. The form to submit an outcome pre-
diction task is shown in Figure 2.

The front-end application was developed using AngularJS with a Material
theme2. The application allowed the user to upload a single log file in XES format
for analysis, specify the configuration for outcome and remaining time prediction

1https://www.djangoproject.com/
2https://material.angularjs.org/latest/

10

https://www.djangoproject.com/
https://material.angularjs.org/latest/

Figure 2: Nirdizati Training outcome prediction options

tasks and see the results of the prediction tasks. Figure 3 shows the results page
of the outcome prediction task.

Figure 3: Nirdizati Training outcome prediction results

The queuing system was implemented using Django-RQ3, which is a Redis4
based queuing library specifically developed for use in Django projects. This
system allowed the web application to serve content while completing multiple
prediction tasks in the background.

3https://github.com/ui/django-rq
4https://redis.io

11

https://github.com/ui/django-rq
https://redis.io

4 Contribution
The tool presented in this thesis is Nirdizati Research. The application is an
improved version of Nirdizati Training which was developed in [13] and [14]. This
section describes the core concepts and the server side functionalities of Nirdizati
Research.

The application is deployed at http://research.nirdizati.org/#/. The
source code of the front-end5 and backend6 applications are available in public
Github repositories.

4.1 Event log splitting

In machine learning, a dataset is generally split into a training set for training the
model and a test set for validating the trained model. The application offers four
methods for splitting the event log: sequential ordering, random ordering, temporal
ordering and strict temporal ordering. By default, the application designates 80%
of the event log as the training set and 20% as the test set.

Sequential ordering is the default split type and it applies no sorting or
ordering on the log file. The log file is split according to the percentage considering
the traces in the order in which they are stored in the log.

Random ordering sorts the log file randomly before splitting it into training
and test set.

Temporal ordering sorts the traces by the timestamp date of the first event
in the trace. The sorted log file is then split according to the split percentage.

Strict temporal ordering is an advanced version of temporal ordering. It
first uses the temporal ordering to create a training and a test set. Next, it filters
the training set so that it includes only the traces where the last event ends before
the start of the first trace in the test set. This ordering prevents the traces in
the training and test sets from overlapping. However, because the training set is
filtered, it might result in fewer traces with respect to other split types.

5https://github.com/TKasekamp/predict-react
6https://github.com/TKasekamp/predict-python

12

http://research.nirdizati.org/#/
https://github.com/TKasekamp/predict-react
https://github.com/TKasekamp/predict-python

4.2 Encoding

Encoding means transforming the data stored in event logs into a shape that can
be used by machine learning methods. The application supports the encoding
methods introduced in [11], which are illustrated in Figure 4. These methods vary
by the amount of data they retain from the event log, however all of them only
take into account the control-flow of a trace.

Figure 4: Encoding methods [11]

In the following examples and in the application, the Prefix length denotes
how many events to consider from a trace.

To illustrate the various encoding methods and configurations implemented in
the application, we are going to introduce a sample event log in Tables 1 and 2.
The event log pertains to an insurance claim procedure where each process has an
assignee and each step has a cost for the company. The event log contains 4 traces
and the event attributes are the Timestamp and a numeric attribute Cost. Table
1 defines trace attributes Priority and Assignee.

Case id Priority Assignee
1 15 Mike
2 40 Sam
3 20 Elsa
4 35 Mike

Table 1: Sample Event log trace attributes

13

Case id Event name Cost Timestamp
1 A 50 19/04/2018 14:00:00
2 A 50 19/04/2018 15:00:00
1 B 100 19/04/2018 15:05:00
2 C 100 19/04/2018 15:07:00
3 B 50 20/04/2018 10:00:00
3 C 400 20/04/2018 14:00:00
4 D 50 21/04/2018 11:00:00
4 D 100 21/04/2018 11:10:00
1 D 200 24/04/2018 14:30:00
1 E 200 24/04/2018 14:32:00
3 F 100 03/05/2018 10:00:00
2 D 200 04/05/2018 9:05:00
4 F 200 08/05/2018 14:30:00
3 D 200 12/06/2018 14:01:00
3 E 200 21/06/2018 11:00:00

Table 2: Sample event log

4.2.1 Encoding methods

The application supports a total of five encoding types: simple index, last payload,
complex, boolean, and frequency. The examples are created using the log defined
in Table 2. All examples are with prefix length 2, meaning that only the first two
events in a trace are considered. The log files are described here without a label.

Simple index encoding encodes the log file by inserting the event name at
each prefix position up to prefix length. An example of simple index encoding with
prefix length 2 is shown in Table 3.

case_id prefix_1 prefix_2
1 A B
2 A C
3 B C
4 B D

Table 3: Simple index encoding with prefix length 2

Last payload index encoding works similar to simple index encoding as the
event names are included at every prefix. However, it also includes the event
attributes of the event at the last prefix, in this case the Cost attribute. An
example of last payload encoding with prefix length 2 is shown in Table 4.

14

case_id prefix_1 prefix_2 Cost
1 A B 100
2 A C 100
3 B C 400
4 D D 100

Table 4: Last payload encoding with prefix length 2

Complex index encoding is another index-based encoding that includes all
event attributes at every considered prefix length. An example of complex index
encoding with prefix length 2 is shown in Table 5.

case_id prefix_1 Cost_1 prefix_2 Cost_2
1 A 50 B 100
2 A 50 C 100
3 B 50 C 400
4 D 50 D 100

Table 5: Complex index encoding with prefix length 2

Boolean encoding creates a column for each activity name in the event log and
the value is true if the event has occurred in the case up until the specified prefix
length. Trace attributes are not considered. An example of boolean encoding with
prefix length 2 is shown in Table 6.

case_id A B C D E F
1 true true false false false false
2 true false true false false false
3 false true true false false false
4 false false false true false false

Table 6: Boolean encoding with prefix length 2

Frequency encoding is similar to Boolean encoding, but it uses the number of
occurrences of each event. An example of frequency encoding with prefix length 2
is shown in Table 7.

15

case_id A B C D E F
1 1 1 0 0 0 0
2 1 0 1 0 0 0
3 0 1 1 0 0 0
4 0 0 0 2 0 0

Table 7: Frequency encoding at prefix length 2

4.2.2 Encoding configuration

In addition to the encoding method, the encoding of the log file can be configured
with the padding type and the prefix length. These options can be used with
all encoding methods. The following encoding options are described with simple
index encoding and using the event log defined in Table 2.

Prefix length of 3 means that only the first 3 events in a case are considered.
Using a prefix length of 3 will encode the log as follows.

A B D
A C D
B C F
D D F

The number of events in a case can vary greatly, but the data mining methods
require that each case in the encoded log file has the same number of columns.
There are two strategies on how to handle this: discarding cases that have fewer
events than the selected prefix length or to pad the encoded log with 0 values.

Which strategy to use depends on each specific log file and prefix length. Using
the "no padding" option might mean that the training and test set contain too few
cases to make a meaningful prediction. Using the "zero padding" option might
mean that there are so many zero values that they distort the generated model.

When using the option "no padding" and a prefix length of 5, the encoded log
file will only consist of case 3 as the other cases have been discarded.

B C F D E

When using the option "zero padding" and a prefix length of 5, the encoded
log file will consist of all 5 cases.

A B D E 0
A C D 0 0
B C F D E
D D F 0 0

16

4.2.3 Task generation type

Nirdizati Research also provides a macro option for creating many prediction tasks
with different prefix length. This option is called "Task generation type" and the
options are to create only one task with only this prefix length, multiple tasks with
every prefix length from 1 up to the specified value or with every prefix length up
to the specified value in a single log file.

Using the log file defined in Table 2 with the configuration "no padding", task
generation type "up to prefix length" and prefix length 5, there will be a total of
5 encoded log files with the following content.

Prefix length 1

A
A
B
D

Prefix length 2

A B
A C
B C
D D

Prefix length 3

A B D
A C D
B C F
D D F

Prefix length 4

A B D E
B C F D

Prefix length 5

B C F D E

The previous example created 5 separate log files with different prefix length.
Using the task generation option "all in one", padding "zero padding" and prefix
length 5, all these will be put into a single log file. The padding option here
referrers to the total length of the log. If it was set to "no padding", only the
traces that are at least as long as the prefix length would be included.

17

Prefix length 5 with no padding

B 0 0 0 0
B C 0 0 0
B C F 0 0
B C F D 0
B C F D E

Prefix length 5 with zero padding

A 0 0 0 0
A B 0 0 0
A B D 0 0
A B D E 0
A 0 0 0 0
A C 0 0 0
A C D 0 0
B 0 0 0 0
B C 0 0 0
B C F 0 0
B C F D 0
B C F D E
D 0 0 0 0
D D 0 0 0
D D F 0 0

4.3 Labelling

A dataset label is the output value which the machine learning algorithm is trying
to predict. This label is numeric for regression methods and a categorical value for
classification methods. The presented application supports two labelling types for
regression methods and four labelling types for classification methods. Examples
are provided for all labelling types.

4.3.1 Classification label types

The classification methods label types and their differences are outlined in Table
8.

Label Classification Choose Choose trace Depends on
type type threshold attribute prefix length

Duration Binary Yes No No
Numerical attribute Binary Yes Yes No

Next activity Multiclass No No Yes
String attribute Multiclass No Yes No

Table 8: Classification label types

Binary classification means that each instance in the training set can belong
to one of two classes. Nirdizati Research supports two labelling types for binary

18

classification: Duration and Trace numerical attribute. Both of these numerical
attributes are classified as True or False, depending on if they are below or above
a certain threshold. The threshold can be the mean of the values of the attribute
column in the entire training set or a custom threshold specified by the user. Both
of the labelling types are the same across all prefix lengths in a trace.

Duration is the time in seconds from the first to the last event in a trace.
The threshold is the number below which traces are classified as "Fast" or True.
Traces with duration greater than the threshold are classified as "Slow" or False.

Traces can contain additional meta data. If these values are numerical, then
these values can be classified as above or below a certain threshold.

case_id prefix_1 label
1 A True
2 A True
3 B False
4 D True

Table 9: Duration label

case_id prefix_1 label
1 A True
2 A False
3 B True
4 D False

Table 10: Numerical attribute label

Examples of duration and numerical attribute labelling are outlined in Tables
9 and 10. Both examples use simple index encoding with prefix length 1 with the
event log defined in Table 2.

The calculated duration values at prefix length 1 are equivalent to the remaining
time values in Table 14. The threshold type is the mean value and the calculated
threshold is 2,137,605.

The numeric attribute is Priority with threshold type mean value 27.5.
Multiclass classification means that the label of each instance can belong

to one of three or more classes. Nirdizati Research supports two labelling types
for multiclass classification: Next activity and Trace string attribute.

Next activity aims at predicting the event that will happen next at this prefix
length. The label value is dependent on the prefix length as a different event will
occur next for any given prefix in the trace. The user does not need to choose any
other options to use next activity labelling.

Any trace attribute which is not a number can be used as a source for a
multiclass classification. As a trace attribute, the label will be the same across all
prefix lengths.

Examples of next activity and string attribute labelling are shown in Tables 11
and 12. Both examples use simple index encoding with prefix length 1 using the
event log defined in table 2. String labelling uses the attribute Assignee.

19

case_id prefix_1 label
1 A B
2 A C
3 B C
4 D D

Table 11: Next activity label

case_id prefix_1 label
1 A Mike
2 A Sam
3 B Elsa
4 D Mike

Table 12: String attribute label

4.3.2 Regression label types

The application supports the trace remaining time and the trace numerical at-
tribute as a regression label. The differences of the regression labels are outlined
in Table 13.

Label Choose trace attribute Depends on prefix length

Remaining time No Yes
Numerical attribute Yes No

Table 13: Regression label types

For an event at a given prefix length in a trace, the remaining time is the
time in seconds until the last event in a trace. The value changes depending on
the prefix length.

case_id prefix_1 label
1 A 433,920
2 A 1,274,700
3 B 5,360,400
4 D 1,481,400

Table 14: Remaining time label

case_id prefix_1 label
1 A 15
2 A 40
3 B 20
4 D 35

Table 15: Numerical attribute label

Any trace numerical attribute can also be used as a label. This label will
be the same for any selected prefix length.

Examples of remaining time and numerical attribute labelling are shown in
tables 14 and 15. Both examples use simple index encoding with prefix length
1 using the event log defined in table 2. Numerical labelling uses the attribute
Priority.

20

4.4 Temporal and inter-case features

The encoded log file can be supplemented with additional feature columns, which
can improve the accuracy of the generated model [15][16]. All the presented fea-
tures are numerical values and are dependent on the selected prefix length. They
can be classified as temporal and inter-case features.

The supported temporal features are the remaining time and elapsed time.
These features are intra-case, meaning that their value depends on the execution
of the specific trace [15]. The remaining time is the time in seconds from the event
at the current prefix length to the last event in the trace. The elapsed time is the
time in seconds from the first event in the trace to the event at the current prefix
length.

Inter-case features are created using aggregate metrics over all the executed
events in the event log [15]. The three supported inter-case features are executed
events, resources used and new traces concerning the specified feature in the
time window corresponding to the day in which the last event of the current prefix
occurred. Using the sample event log defined in Table 2, an example of inter-case
feature columns using simple index encoding with prefix length 1 is shown in Table
16.

case_id prefix_1 executed_events resources_used new_traces
1 A 4 4 2
2 A 4 4 2
3 B 2 2 1
4 D 2 2 1

Table 16: Inter-case features

4.5 Clustering methods

Clustering is a machine learning technique which aims at improving the prediction
accuracy by grouping together similar elements and learning a predictive model
from each group separately. The presented application allows the user to choose
between no clustering and the k-means clustering method.

k-means is a popular clustering method for data mining. k-means divides the
n observations in an unlabelled dataset into k clusters so that each observation
belongs to a cluster with the nearest mean. The algorithm then tries to group
the observations in such a way that the the distance between each object in a is
minimal.

21

4.6 Classification methods

Classification methods are used in machine learning to predict a categorical value.
The application supports 3 classification methods: Decision trees, Random
Forest and K-Nearest Neighbor (KNN).

A Decision tree is a graph where each branch split represents a decision
and each end node represents the outcome of a test. The classification rules are
generated from the path from the root to the end node.

Random Forest is a machine learning method that uses multiple decisions
trees to make a prediction. The results of the decision trees are averaged to control
over-fitting and improve the prediction accuracy.

The K-Nearest Neighbor (KNN) method predicts the value based on the k
closest neighbors in the data set.

4.7 Regression methods

Regression methods are used in machine learning to predict a numeric value. The
application supports 3 regression methods: Linear, Lasso and Random forest.

Linear regression fits a linear function between one or many independent vari-
ables to make a prediction.

Lasso or the Least Absolute Shrinkage and Selection Operator decreases the
value of some features to improve prediction accuracy [17].

Random Forest differs from the classification variant by returning a numeric
value.

4.8 Evaluation metrics

In machine learning, a training set is used to fit a model and this model is then
compared against the test set. The quality of the model can be represented with
a variety of evaluation metrics.

4.8.1 Classification metrics

For classification methods, the application calculates theAccuracy, Area Under
the Curve (AUC), Precision, Recall and F1 score evaluation metrics. When
using the clustering option, the average value across all clusters is calculated.
Binary classification tasks will also calculate the metrics presented in table 17.

Accuracy measures the share of correct predictions out of all predictions.
This measure is calculated for both binary and multi-class classification tasks.
The formula of accuracy is:

22

Actual positive Actual negative
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

Table 17: Confusion matrix

Accuracy =
TP + TN

TP + TN + FP + FN

Precision is the share of true positive values out of all predicted positive
values. For multiclass classification, this metric is calculated by a function defined
in sklearn.metrics7 with the "macro" labelling average parameter. The formula is:

Precision =
TP

TP + FP

Recall measures the share of correct predictions out of all positive predictions.
For multiclass classification, this metric is calculated by a function defined in
sklearn.metrics8 with the "macro" labelling average parameter. The formula is:

Recall =
TP

TP + FN

F1-score or F-measure is the weighted average of recall and precision. For
multiclass classification tasks, this metric is calculated by a function defined in
sklearn.metrics9 with the "macro" labelling average parameter. The formula is:

F1 =
2TP

2TP + FP + FN

Area Under the Curve or AUC calculates the area under the Receiving
Operating Characteristic curve. This is calculated using the method provided by
sklearn.metrics10.

4.8.2 Regression metrics

For regression methods, the application calculates theRoot Mean Square Error
(RMSE), Mean Absolute Error (MAE) and Coefficient Of Determination
(r-score) evaluation metrics. When using the clustering option, the average value
across all clusters is calculated.

7http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.htm
8http://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.htmll
9http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

10http://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html

23

Root Mean Square Error measures the difference between predicted and
actual values. The formula is:

RMSE =

√√√√ 1

n

n∑
i=0

(xi − x̂i)2

where n is the number of rows in the dataset, x is the predicted value at xi and
x̂i is the actual value.

Mean Absolute Error measures the difference between predicted and actual
values. The formula is:

MAE =
1

n

n∑
i=0

|xi − x̂i|

where n is the number of rows in the dataset, x is the predicted value at xi and
x̂i is the actual value.

Coefficient Of Determination is the square of the measure of the linear
correlation between predicted and actual values.

24

5 Functionality overview
Nirdizati Research is a tool to find the most suitable predictive model for an event
log. The general flow to use the application is as follows.

The first step is to upload a log file. The next step is to create a training/test
split configuration using the event log. The Split configuration can be re-used for
multiple prediction and labelling tasks.

Before creating a classification prediction task, there is an option to test out
the labelling distribution. The configuration of the labelling tasks can then be
used as an input for the classification tasks.

Classification and regression tasks can be created with a multitude of configu-
ration options. When the tasks have been submitted, they are enqueued and will
be completed when computing resources become available. The completed mod-
els can be compared using several evaluation metrics with various visualization
options.

The front page of the application provides a walk through of how to use
Nirdizati Research, as can be seen from Figure 5.

Figure 5: Nirdizati Research walktrough

25

5.1 Log upload page

The upload page is used for uploading a log file. The user has two options when
uploading the log file: it can be either a single log file or it can be two log files,
where one is a training and the other is a test set. When uploading a single log
file the user must specify how the training and test set are generated. This is
configured in the splitting phase. Uploading two log files allows the user to fine-
tune the contents of the training and test set. When uploading two log files the
user can proceed to the Labelling or Training pages without creating the split.

The log files can be in plain and gzip compressed XES and MXML formats.
During the upload process, a record of the log file is made in the database and
the log file is processed to extract the data to create the charts on the Log details
page. Figure 6 depicts the Log upload page.

Figure 6: Log upload page

26

5.2 Log details page

The page features graphs that describe a log file, i.e, the number of events executed
per day, the number of resources employed per day and the number of new cases
started per day. Figure 7 shows the log details page with the events per day graph.

Figure 7: Logs page with events per day graph

27

5.3 Splitting page

The splitting page is used to split an uploaded log file into a training and a test
set. A split is a single log file with a configuration for separating it into a training
and test set. A split can also represent a training log and test log file, which are
uploaded separately. This allows the user to reuse the same split configuration
with multiple labelling and training tasks. The split create form can be seen in
Figure 8.

To create a split, the user must select a log file, a split type and the training/test
set percentage. The application supports four split types: sequential order, tem-
poral order, random order and strict temporal order. The split types are discussed
in more detail in section 4.1.

Figure 8: Split create form

After the splits have been created, the configuration can be verified in the split
page tables, as can be seen in Figure 9.

Figure 9: Split page tables

28

5.4 Labelling page

Nirdizati Research uses classification methods on an event log to predict the value
of a given label. Due to the amount of configuration options, the application
provides a page to try out different configurations for labelling types, prefix lengths
and log padding types, which can be seen in Figure 10. This allows the user to
see the distribution of labels in an encoded log file before applying data mining
methods. For example, using the "no padding" option will mean that a high
prefix length will decrease the amount of total traces in the training sets, leading
to different label counts.

Figure 10: Label create form

The encoding options are discussed in sections 4.2.2 and 4.2.3. The classifi-
cation labelling options are outlined in section 4.3.1. After selecting the labelling
configuration and submitting the labelling task, the user is directed to the Tasks
page. When the labelling task has been completed, the results can be viewed on
the Labelling page.

The labelling task results can be filtered by the Split, the label type, the thresh-
old type, the attribute name and prefix lengths. The filters can be seen in Figure
11. All available custom thresholds are available in a dropdown menu, so the user
does not have to remember the exact threshold value.

29

Figure 11: Label results filter

Below the filtering options there is a line chart that provides a high level
overview of the count of labels. As can be seen from the next activity labelling
results on an example log file in figure 12, the number and distribution of label
classes change depending on the prefix length. The chart also shows that at prefix
length 1 and 2 the next activity is always "Analyze Defect", making the prediction
at this point trivial.

Figure 12: Next activity labels by prefix length

Next to the line chart is a bar chart that provides a more detailed overview of
the label count distribution, as can be seen in figure 13. The "END" label in this
case means the trace ends at this point, so there is no next activity.

30

Figure 13: Next activity label details chart

5.5 Task status page

The Task status page provides an overview of all labelling, classification and re-
gression tasks in the server. By default, this page automatically fetches tasks from
the server every 10 seconds, but automatic fetching can be turned off. All tasks
can be deleted. The full configuration of each task can be seen by clicking on the
task table row. The tasks status page is shown in Figure 14.

Figure 14: Task status table

31

5.6 Training page

The training page is where the user creates tasks to apply machine learning meth-
ods on an event log. First the user must choose the Split that contains the training
and test set. The next choice, depending on the prediction task type, is whether
to use regression to predict numeric values or classification to predict categorical
values. The application also offers a choice for encoding options, clustering meth-
ods, learning methods and labelling. An overview of the configuration options is
shown in Figure 15.

The application uses default parameters for each machine mining method.
However, users can change the selection of these parameters or find the best con-
figuration using hyperparameter optimization. Additional temporal and inter-case
features can be added to the encoded log file.

After choosing the all the required inputs, the prediction task will be visible
on the Task status page.

Figure 15: Training page

Multiple prediction tasks can be generated all together. A task will be created
for each selected learning method, clustering method, encoding method and prefix
length. By choosing all available options with hyperparameter optimization, the
user can create all possible prediction tasks with the most suitable configuration
by clicking the "Submit" button only once.

32

5.6.1 Classification methods

The application supports 3 classification methods: Decision trees, Random
Forest and K-Nearest Neighbor (KNN). These methods are described in section
4.6 while section 4.3.1 provides an overview of the supported the classification
labels.

For Decision tree, the user can configure the maximum depth, the minimum
sample split and the minimum sample split of the method. The configuration
options are shown in Figure 16.

Figure 16: Decision tree configuration options

For Random Forest, the user can configure the number of estimators, the
maximum depth and the maximum number of features. The configuration options
are shown in Figure 17.

Figure 17: Random forest configuration options

For K-Nearest Neighbor (KNN), the user can configure the KNN weights and
the number of neighbors. The configuration options are shown in figure 18.

Figure 18: KNN configuration options

33

5.6.2 Regression methods

The application supports 3 regression methods: Linear, Lasso and Random
forest. These methods are described in section 4.7 while section 4.3.2 provides an
overview of the supported the regression labels.

For Linear regression, the user can configure the fit intercept and normalize
values. The configuration options are shown in figure 19.

Figure 19: Linear regression configuration options

For Lasso, the user can configure the alpha, fit intercept and normalize values.
The configuration options are shown in Figure 20.

Figure 20: Lasso configuration options

For Random Forest, the user can configure the number of estimators, the
maximum depth and the maximum number of features. The configuration options
are shown in Figure 21.

Figure 21: Random forest configuration options

34

5.6.3 Clustering methods

The user can choose between using no clustering and the k-means clustering
method. The clustering options are described in section 4.5.

The application provides additional configuration options for k-means, which
are shown in Figure 22. The user can configure the number of clusters to create,
the maximum number of iterations and the k-means algorithm.

Figure 22: K-means configuration options

5.6.4 Encoding methods

The application supports five encoding methods: simple index, boolean, frequency,
last payload and complex index encoding. The encoding process can be further
configured by specifying the padding, prefix length and task generation type. The
encoding methods and options are described in section 4.2. The configurations
options can be seen on the training page form in Figure 15.

5.6.5 Labelling

The label is the value that the machine learning methods will try to predict.
The application supports remaining time and trace numerical attribute labels for
regression methods. For classification methods, the supported labels are duration,
next activity, trace numerical and string attributes. For numerical classification
tasks, such as duration and trace numerical attribute, the user must also choose a
threshold for how to classify the label. These options are discussed in section 4.3.
An example of classification numerical attribute label selection is shown in Figure
23.

For classification tasks, the label distribution can be tested and examined on
the Labelling page.

35

Figure 23: Trace numerical attribute classification options

5.6.6 Temporal and inter-case features

The user can add a total of five features to the encoded log file, as can be seen
from Figure 24. The features are discussed in section 4.4.

Figure 24: Temporal and inter-case features options

5.6.7 Hyperparameter optimization

Determining the most suitable input parameters for the previously described clas-
sification and regression methods can be difficult. By enabling hyperparameter
optimization, the application will try to find the best parameters automatically.
The user can configure the number of evaluation runs and the target performance
metric, as can be seen in Figure 25.

36

Figure 25: Hyperparameter optimization options

5.7 Validation page

The results of the completed classification and regression tasks are visible on the
Validation page. Results can be filtered by the prediction, clustering, encoding,
learning algorithm, padding and labelling configurations. An example of classifica-
tion task filters is shown on Figure 26. The page also features a table with the full
configuration of each prediction task. The results are visualized in a data table, a
line chart and four bubble charts.

Figure 26: Validation page result filters

37

5.7.1 Classification results

The results for the filtered classification tasks are presented in a sortable data
table. The contents of this table can be exported in a CSV format. Each row
in the table represents a classification task with the task id, a string identifier of
the task and the prefix length. The results of the training task are presented with
the F1 score, accuracy, AUC, precision and recall. For binary classification tasks,
the true positive, true negative, false positive and false negative metrics are also
presented in the table. Figure 27 shows the classification results table.

Figure 27: Classification results table

The classification tasks can be grouped together by run configuration to high-
light the differences at every prefix length. This configuration is visualized in a
line chart with the prefix length on the x-axis. The user can select any metric
in the results table to be shown on the y-axis. Figure 28 shows the precision of
various task configurations by prefix length.

Figure 28: Precision by prefix length

38

All classification results are presented in four different bubble charts, as shown
in Figure 29. These charts highlight the differences by classification method, clus-
tering method, encoding method and prefix length. In all of the charts, the F1
score is the x-axis, the accuracy is the y-axis and the size of the bubble is deter-
mined by the AUC. The value on the bubble chart is the task id.

Figure 29: Classification bubble charts

39

5.7.2 Regression results

The results for the filtered regression tasks are presented in a sortable data table.
The contents of this table can be exported in a CSV format. Each row in the table
represents a regression task with the task id, a string identifier of the task and the
prefix length. The results of the training task are presented with the MAE, RMSE
and rscore metrics. Figure 30 shows the regression results table.

Figure 30: Regression results table

The regression tasks can be grouped together by run configuration to highlight
the differences at every prefix length. This configuration is visualized in a line
chart with the the prefix length on the x-axis. The user can select any metric
in the results table to be shown on the y-axis. Figure 31 shows the precision of
various task configurations by prefix length.

Figure 31: RMSE by prefix length

All regression results are presented in four different bubble charts, as shown in
Figure 29. These charts highlight the differences by regression method, clustering
method, encoding method and prefix length. In all of the charts, the MAE is the
x-axis, the RMSE is the y-axis and the size of the bubble is determined by the
rscore value. The number on the bubble chart is the task id.

40

Figure 32: Regression bubble charts

41

6 Tool implementation
This section provides an overview of the architecture of Nirdizati Research, the
used technologies and the development process.

6.1 Architecture

Nirdizati Research is an improved version of Nirdizati Training and as such has a
similar architecture. Nirdizati Research retains the concept of a front-end applica-
tion for prediction task management, a back-end web application that provides the
data for the front-end and a queuing system that manages the worker applications.
Figure 33 shows an overview of the application architecture.

The communication between the front and back-end applications is achieved
in the JSON (JavaScript Object Notation) [18] format.

Figure 33: Nirdizati Research architecture

The back-end application modules can be divided into web-service and data-
mining modules. The web-service modules are mainly concerned with processing
the queries from the front-end while also being the only modules that have direct
access to the database. This separation of concerns makes it possible to run the
prediction tasks directly without the use of web services or database objects.

The data-mining modules serve as the "client" of the queuing system, and by
proxy, of the web-service modules. The intent was that the data-mining modules
would have no dependencies on the surrounding web application and they could be
directly ported to other applications without any changes. In practice this means

42

that the data-mining modules only comprise of pure functions that return plain
objects.

6.1.1 Back-end architecture

The back-end application comprises of 5 main modules in addition to the database
and storage. Core and Encoders are classified as data-mining modules while Jobs
and Logs are web-service modules. The Queuing module serves as the middleware
between the modules.

The Core module is the main module of the application. It includes the predic-
tion methods for classification and regression. It is also responsible for calculating
the various evaluation metrics based on the prediction results.

The Encoders module is one of the data-mining modules and it encodes and
labels the log for further use in the Core module. The Jobs module provides the
REST endpoints for creating and managing the prediction tasks. This module will
also add prediction tasks to the worker queues.

The Logs module is responsible for log upload and storage. It provides the
REST endpoints for creating, listing and querying information about log and split
configurations.

The Queuing module manages the worker applications and uses the Core and
Encoding modules to complete the predictions tasks.

The log files are stored on the file system. The log metrics, split configurations
and prediction task results are stored in a database.

6.1.2 Front-end architecture

The front-end application is implemented as a SPA (Single Page Application).
Instead of retrieving the entire web page from the server, a SPA rewrites the
current page based on user interactions. Similar to a desktop application, all the
required user interface code is retrieved on the first page load. Additional resources,
such as the data describing the state of the prediction tasks, is dynamically loaded
when necessary.

The main functions of the front-end are the uploading of log files, configuration
of the training tasks, overview of the running training tasks and visualization of
the results.

43

6.2 Technologies

Nirdizati Training is the foundation on which Nirdizati Research is built and both
application share a similar architecture and process flow. However, there are sig-
nificant differences. The backend of Nirdizati Training was written in Python 2,
but the use of the OpyenXES [19] package for log encoding required the use of
Python 3. Therefore the backend of Nirdizati Research was rebuilt from scratch
to take into account the added functionalities. To accompany the additional func-
tionalities, Nirdizati Research also introduces an entirely new frontend application.

6.2.1 Back-end technologies

The back-end web application is written in Python and supports Python 3.5, 3.6
and the development branch of 3.6. The web application is built using the Django
Framework11 version 1.11.7 and the web service API is built using the Django
REST Framework12 version 3.7.1.

The queuing system is retained from Nirdizati Training [14]. Each received
prediction task is put into a worker queue, which allows the application to process
multiple prediction tasks in parallel. The queuing system is implemented with
Django-RQ13.

OpyenXES [19] is a Python package for handling event logs based on the XES
standard and it is based on the Java implementation OpenXes. This package allows
the application to parse event logs in XES and MXML format. Furthermore, it is
used to extract event attributes and generate the various log metrics.

The aggregated log metrics, split configurations and prediction task validation
results are stored in an SQLite14 database. SQLite [20] was chosen due to its
compact size and good integration with Django.

The Hyperopt package is used for managing the Hyperparameter optimization
tasks 15.

11https://www.djangoproject.com/
12http://www.django-rest-framework.org/
13https://github.com/ui/django-rq
14https://www.sqlite.org/index.html
15https://github.com/hyperopt/hyperopt

44

6.2.2 Front-end technologies

The frontend application of Nirdizati Research is built using React16, which is
a JavaScript library for building user interfaces. The state of the application is
managed with Redux17, which is a predictable state container for JavaScript apps.
React and Redux were chosen due to the developer’s prior experience with the
libraries.

The application is styled with react-md18, which provides React components
in Material Design19. The charts in the application are generated using Google
Charts20. The choices for styling and charting were influenced by their prior usage
in Nirdizati Training.

6.2.3 Development process

Both the frontend and backend applications are partially covered by unit tests to
increase application reliability and to make it more suitable for future development.
The backend application is tested using the Python standard unittest21 framework.
Both applications use Travis CI for continuous testing22 23. After testing the
frontend application, the test coverage metric is calculated, which is at 74% of all
lines of code [21].

16https://reactjs.org/
17https://redux.js.org/
18https://react-md.mlaursen.com/
19https://material.io/
20https://developers.google.com/chart/
21https://docs.python.org/3/library/unittest.html
22https://travis-ci.org/TKasekamp/predict-python
23https://travis-ci.org/TKasekamp/predict-react

45

7 Evaluation and Comparison

7.1 Evaluation

In this section, we evaluate the application by using a real-life event log pertaining
to the treatment of sepsis cases in a hospital [10]. The aim is to find the best
predictive model for predicting the remaining time and the next activity. Another
aim of the evaluation is to determine if inter-case features and hyperparameter
optimization can improve the predictive model.

The hospital event log reference [10] shows that the each trace has an average
of 14.49 events. Therefore in the following examples we are going to generate
prediction tasks up to prefix length 20 as this will cover most of the relevant cases.
The event log was split sequentially with a training/test split of 80%/20%.

7.1.1 Remaining time prediction

As a starting point for finding the best model for remaining time prediction, we
generated tasks using every combination of the three regression, five encoding and
two clustering methods. These tasks were created with no padding and with every
prefix length up to 20. In total, 600 prediction tasks were created.

Using the filtering options, the search for the best predictive model can be
narrowed down to configurations using no clustering and lasso regressor with every
encoding method. Figure 34 shows the best five configurations for remaining time
prediction by prefix length. Of these configurations, the models using simple index
encoding perform the worst, if measured using RMSE. The other four encoding
methods perform rather similarly and the final choice for the best method would
depend on the prefix length to optimize the model for.

Figure 34: Remaining time prediction configurations

46

To evaluate if inter-case features improve the model quality, we have selected
prefix length 16 as the test focus. As can be seen from Figure 34, the best per-
forming configuration at prefix 16 is lasso regressor with complex index encoding
and no clustering. Figure 35 shows the results for prediction task configurations
where Task ID 1073 has no additional features and Task ID 1240 has the added
inter-case features of executed events, resources used and new traces. The Fig-
ure shows that adding these features decreases the error measured by RMSE and
MAE. Therefore, adding inter-case features can at times improve the predictive
model.

Figure 35: Remaining time prediction with and without inter-case features

However, finding a prefix at which inter-case features improve the model is a
difficult task which requires substantial experimentation with various parameters.
Additional features are not always guaranteed to improve the predictive model.

47

7.1.2 Next activity prediction

As a starting point for finding the best model for next activity prediction, we
generated tasks using every combination of the three classification, five encoding
and two clustering methods. These tasks were created with no padding and with
every prefix length up to 20. In total, 600 prediction tasks were created.

Figure 36 shows all prediction model configurations by prefix length and F1-
score. As there are 30 unique configurations, the chart does not allow us to easily
distinguish the best predictive model. However, this array of configurations can be
filtered down to a more manageable size. Figure 37 shows the four candidates for
the best next activity prediction configuration. All four remaining configurations
use a combination of random forest and decision tree classifiers with simple index
and frequency encoding with no clustering. The final choice for the best method
would depend on the prefix length to optimize the model for.

Figure 36: All next activity predictions

To evaluate if hyperparameter optimization can improve the model quality,
we have selected prefix length 15 as the test focus. As can be seen from Figure
37, the best performing configuration at that prefix is decision tree classifier with
frequency encoding and no clustering. Figure 38 shows the results for prediction
task configurations where Task ID 311 used the default parameters for decision
tree and Task ID 1242 has been optimized for F1-score. The Figure shows that the
F1-score, Accuracy, Precision and Recall metrics have all been improved over the
default configuration. Figure 38 also indicates that hyperparameter optimization
is a viable option for improving the predictive model.

48

Figure 37: Filtered next activity predictions

Figure 38: Next activity prediction with and without hyperparameter optimization

7.2 Performance

This section provides a performance overview of the encoding and machine learning
methods of Nirdizati Research. The following tests are intended as a guide about
the relative performance of Nirdizati Research as several hundred prediction tasks
can be submitted simultaneously. Therefore it is important to understand how
different configurations can impact the time it takes to complete the prediction
tasks.

Several of the tests in this section were completed using a real-life log file
pertaining to a loan application process in a financial institution. This log was
presented in the 2017 BPI challenge [22]. This log file was chosen for its large size
as it contains 31,509 traces and 1,202,267 events.

The tests were conducted on a 2015 MacBook Pro with the following configu-
ration:

• CPU: 2.7 GHz Intel Core i5 4 core CPU

• RAM: 8 GB 1867 MHz DDR3

• Operating system: macOS High Sierra 10.13.4

The computer was not used for resource-intensive tasks during the execution
of the tests.

49

7.2.1 Encoding methods

The first test is a comparison of the five encoding methods. As the focus of this
test is on the encoding and labelling part of the application, these numbers do not
include the time to load and parse the log from the file system as this would be
identical for all five methods. These tests were conducted with the BPI Challenge
2017 event log [22]. To create the largest possible encoded data set, the test
configuration was the maximum prefix length of 180 with zero padding and no
labelling.

The results are displayed in Table 18. Boolean and frequency encoding are the
fastest as they only include Boolean or Integer values to the encoded log instead
of the more computationally complex structure String, as it is done in the other
three encoding methods. Last payload and simple index encoding are similar in
performance. Complex index encoding takes by far the longest as it has to include
all attributes for every event.

Encoding method Time in seconds
Complex 440.85

Last payload 58.91
Simple index 52.37
Frequency 29.64
Boolean 27.26

Table 18: Encoding method performance comparison

7.2.2 Log size impact on encoding performance

The encoding performance might be influenced by the number of traces in the
event log. The following is a test of every encoding method with three log files of
various size. The first log file is about a treatment process from a hospital [10],
which contains 1050 traces and 15,214 events in total. The second log file is a
real-life log from a financial institution and it was introduced for the 2012 BPI
Challenge [23]. It contains 13,087 traces and 262,200 events in total. The largest
log file in the test was introduced for the 2017 BPI Challenge [22] and contains
31,509 traces and 1,202,267 events.

The test measures only the encoding of the log file without the time taken to
read in and parse the log file from the file system. The test configuration was
prefix length 20 with zero padding.

As can be seen from Table 19, the size of the event log has an effect on the
encoding time. For a log file with only a 1000 traces such as the hospital log, the
differences in encoding methods are not significant. For a large log file such as BPI

50

Encoding Hospital log BPI 2012 BPI 2017
method (seconds) (seconds) (seconds)

Simple index 0.21 2.86 14.60
Boolean 0.08 1.71 7.29
Frequency 0.11 1.35 5.44
Complex 0.50 4.32 45.27

Last payload 0.20 2.57 20.11
Read in time 3.01 45.36 323.07

Table 19: Encoding method performance by log size

Challenge 2017, the choice of encoding method greatly impacts the encoding time.
It can also be observed that the number of traces in the log file has an enormous
impact on the time it takes to read and parse the log file.

7.2.3 Machine learning methods

The aim of the following test is to give an overview of how long it takes to gen-
erate a prediction model with every regression and classification method. These
tests were conducted with the BPI Challenge 2017 event log [22]. This process
includes reading in the log file from the file system, encoding, labelling, applying
the machine learning method and calculating the results. For both regression and
classification, the training and test test set were split sequentially with the split
percentage of 80%/20%. The resulting training and test set contained 23,898 and
5942 rows respectively.

The classification tests were run with the configuration: encoding type boolean,
no padding, prefix length 20, prediction label duration, no clustering and default
classification method parameters. The results of the test can be seen in Table 20
with a separation of the task stages. It can be seen that decision tree is the fastest
while KNN is the slowest classification method. However, the difference between
the methods is relatively small compared to the overall time of the test.

Classification Log read in time Encoding Method time Total
method (seconds) (seconds) (seconds) (seconds)

Decision tree 278.42 1.66 0.06 297.94
Random forest 268.41 1.78 0.39 293.70

KNN 286.33 1.19 4.60 317.56

Table 20: Classification method performance comparison

The regression tests were run with the configuration: encoding type boolean,

51

no padding, prefix length 20, prediction label remaining time, default regression
method parameters and no clustering. The results of the test can be seen in Table
21 with a separation of the task stages. With this configuration, linear is the
fastest method while random forest is 0.24 seconds slower. However, the time for
any regression method takes up an insignificant percentage of the total task time.

Regression Log read in time Encoding Method time Total
method (seconds) (seconds) (seconds) (seconds)
Linear 294.86 1.88 0.09 345.08
Lasso 298.27 1.78 0.15 334.85

Random forest 232.40 1.19 0.35 254.71

Table 21: Regression method performance comparison

The tests in Tables 20 and 21 also show that reading in the log file from the file
system is the most time-consuming stage of the entire model generation process.
It can also be seen that the time for the log read in and encoding steps differ across
all test runs, suggesting that the background processes of the test computer can
influence these times.

7.2.4 Hyperparameter optimization

Compared to a normal prediction task, the machine learning method is invoked
multiple times with various parameters when using Hyperparameter optimization.
In this test, we compared the results of a classification prediction task with and
without Hyperparameter optimization. The optimization task was evaluated 10
times with the performance metric F1-score.

The test was conducted with the BPI Challenge 2017 event log [22]. The test
configuration was encoding method simple index, no padding, prefix length 20,
prediction label next activity, default classification method parameters and no
clustering.

As can be seen from Table 22, enabling the optimization increases the task
execution time by 50 seconds while improving the F1-score metric by close to
1%. This makes hyperparameter optimization a credible option for improving the
prediction model.

Time in seconds F1-score
With optimization 377.61 0.4649
No optimization 326.09 0.4560

Table 22: Hyperparameter optimization comparison

52

7.2.5 Comparison with Nirdizati Training

Nirdizati Training is a similar web application for finding the best predictive model
for an event log. In this test, we compared the encoding performance of Nirdizati
Research and Nirdizati Training. Only the encoding performance was measured
as the machine learning methods in both applications are identical. The event log
for this test is a real-life event log about sepsis cases from a hospital [10]. This log
contains 1050 traces and 15214 events.

The test measured reading in the log file from the file system and the encoding.
Both applications were tested with three encoding methods: simple index, boolean
and frequency as complex and last payload were not included in the final released
version of Nirdizati Training 24. Nirdizati Training offered no additional encoding
configuration options, therefore the configuration of Nirdizati Research was used
to replicate the encoded log file. The configuration was as follows: prefix length
at the log maximum of 185, zero padding enabled, all prefixes in a single log file.

Encoding method Nirdizati Research Nirdizati Training
Simple index 17.17 46.07

Boolean 5.02 373.66
Frequency 4.93 374.36

Table 23: Encoding method comparison

As can be seen from Table 23, the encoding methods offered by Nirdizati Re-
search are considerably faster. This is because Nirdizati Research uses the Opy-
enXES [19] package for handling event logs while Nirdizati Training needs to con-
vert the event log to a CSV file before it can be encoded.

24https://github.com/nirdizati/nirdizati-training-backend

53

7.3 Comparison with Nirdizati Training

Nirdizati Research is the tool presented in this thesis, but it shares some of the
approaches with its predecessor Nirdizati Training. This section aims at giving an
overview of their differences, but it does not mention the common functions.

The improvements in Nirdizati Research fall into two broad categories: new
features and improvements to existing features.

7.3.1 New features

Nirdizati Research introduces several new features related to log file handling,
labelling and advanced configuration.

Log files can now be in XES, MXML, gzipped XES and MXML while Nirdizati
Training only allowed the XES format. Nirdizati Research allows to upload the
test and training set separately. When uploading a single log file, the user can
select the test/training set split percentage. There are also four options for how
the log should be split.

Nirdizati Training provided 3 classification, 4 regression and 1 clustering meth-
ods, however these methods were used with their default configuration. For pre-
diction fine-tuning, Nirdizati Research adds the option to configure a subset of the
method parameters.

Nirdizati Training added the remaining time of the trace to the encoded log
file. Nirdizati Research builds on this by adding elapsed time and three inter-case
features.

Nirdizati Training had the option to use regression methods to predict the
remaining time and to use classification methods to predict the remaining time
and duration. Nirdizati Research adds the choice to label with a trace numerical
attribute for regression. For classification, the user can label with the duration,
next activity, trace numerical and string attributes.

To see the distribution of labels prior to applying machine learning methods,
Nirdizati Research adds the option to test out labelling configurations.

Hyperparameter optimization was also added to help find the best configuration
for a predictive model.

7.3.2 Improvements

The main improvements are evident in the performance of the encoding process,
as can be seen in Table 23. Nirdizati Research adds the option to encode each
prefix to separately, to choose the prefix length and to configure the log padding.

As Nirdizati Research adds many more configuration options, one of the focuses
of development was the ability to filter the prediction results. The trends of the
various configurations can be seen on a line chart that can display any metric by

54

prefix length. Also added is a bubble chart that depicts prediction tasks by prefix
length.

The recall and precision metrics are now calculated for classification. Further-
more, the binary classification tasks include the confusion matrix metrics shown
in Table 17.

Both the frontend and backend applications were completely rebuilt to support
the added functionality. The frontend is an entirely new application while the
backend has few lines of code in common with Nirdizati Training. Code quality
was further improved by adding automated unit tests to the applications. The
result of these improvements is a faster and more streamlined user experience. The
architecture and technologies used for Nirdizati Research should allow for future
development without needing to rebuild the entire application from scratch.

55

8 Conclusion
This thesis introduces a tool called Nirdizati Research for creating and validating
models for predictive process monitoring. The application allows the user to create
a predictive model for remaining time, duration, next activity and trace attribute
prediction. The user can select among several encoding, clustering and machine
learning method combinations. Hyperparameter optimization was also added to
improve the quality of the models.

Nirdizati Research was evaluated using a real-life event log. Furthermore, this
thesis gave overview of the performance impact of various encoding and machine
learning methods. Finally, it compared the functionality of the presented applica-
tion Nirdizati Research against a similar tool Nirdizati Training.

Finding the best predictive model for a given event log requires trying out
various configurations and comparing hundreds of possible model candidates. The
goal of the presented tool is to make this process easier.

The most significant area for future improvement is the ability to use the
created models during runtime prediction and the work to integrate this feature
is currently on-going. At the time of writing some of the required functionality is
already present in the backend source code repository.

While there are no significant shortcomings, the optimization of the encoding
and prediction task performance was not a development focus. Therefore, a major
area of improvement could be the overall performance of the application.

The validation page could be improved by adding more or reworking the fil-
tering options. While the current options work, the user experience for searching
through the models could be more intuitive. Furthermore, additional visualization
options could be added that better highlight the differences of the model results.

Hyperparameter optimization can currently only find the best parameters for
the three classification and three regression methods. This could be built upon
by also finding the best parameters for every combination of clustering, labelling,
encoding configuration and additional feature columns. By optimizing everything,
the process to find the best predictive model would be automatic and therefore
faster for the user.

56

References
[1] W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer

Berlin Heidelberg, 2016.

[2] Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, and
Fredrik Milani. “Predictive Process Monitoring Methods: Which One Suits
Me Best?” In: CoRR abs/1804.02422 (2018). arXiv: 1804.02422. url: http:
//arxiv.org/abs/1804.02422.

[3] B. F. van Dongen, R. A. Crooy, and W. M. P. van der Aalst. “Cycle Time
Prediction: When Will This Case Finally Be Finished?” In: On the Move
to Meaningful Internet Systems: OTM 2008. Ed. by Robert Meersman and
Zahir Tari. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 319–
336. isbn: 978-3-540-88871-0.

[4] W.M.P. van der Aalst, M.H. Schonenberg, and M. Song. “Time prediction
based on process mining”. In: Information Systems 36.2 (2011). Special Is-
sue: Semantic Integration of Data, Multimedia, and Services, pp. 450–475.
issn: 0306-4379. doi: https : / / doi . org / 10 . 1016 / j . is . 2010 . 09 .
001. url: http : / / www . sciencedirect . com / science / article / pii /
S0306437910000864.

[5] Andreas Rogge-Solti and Mathias Weske. “Prediction of Remaining Service
Execution Time Using Stochastic Petri Nets with Arbitrary Firing Delays”.
In: Service-Oriented Computing. Ed. by Samik Basu, Cesare Pautasso, Liang
Zhang, and Xiang Fu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 389–403. isbn: 978-3-642-45005-1.

[6] Fabrizio Maria Maggi, Chiara Di Francescomarino, Marlon Dumas, and
Chiara Ghidini. “Predictive Monitoring of Business Processes”. In: CoRR
abs/1312.4874 (2013). arXiv: 1312.4874. url: http://arxiv.org/abs/
1312.4874.

[7] Marco Federici, Williams Rizzi, Chiara Di Francescomarino, Marlon Dumas,
Chiara Ghidini, Fabrizio Maria Maggi, and Irene Teinemaa. “A ProM Oper-
ational Support Provider for Predictive Monitoring of Business Processes”.
In: BPM. 2015.

[8] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano de
Leoni. “Time and Activity Sequence Prediction of Business Process Instances”.
In: CoRR abs/1602.07566 (2016). arXiv: 1602.07566. url: http://arxiv.
org/abs/1602.07566.

57

http://arxiv.org/abs/1804.02422
http://arxiv.org/abs/1804.02422
http://arxiv.org/abs/1804.02422
https://doi.org/https://doi.org/10.1016/j.is.2010.09.001
https://doi.org/https://doi.org/10.1016/j.is.2010.09.001
http://www.sciencedirect.com/science/article/pii/S0306437910000864
http://www.sciencedirect.com/science/article/pii/S0306437910000864
http://arxiv.org/abs/1312.4874
http://arxiv.org/abs/1312.4874
http://arxiv.org/abs/1312.4874
http://arxiv.org/abs/1602.07566
http://arxiv.org/abs/1602.07566
http://arxiv.org/abs/1602.07566

[9] Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, Giulio
Petrucci, and Anton Yeshchenko. “An Eye into the Future: Leveraging A-
priori Knowledge in Predictive Business Process Monitoring”. In: Business
Process Management. Ed. by Josep Carmona, Gregor Engels, and Akhil Ku-
mar. Cham: Springer International Publishing, 2017, pp. 252–268. isbn: 978-
3-319-65000-5.

[10] F (Felix) Mannhardt. Sepsis Cases - Event Log. en. 2016. doi: 10.4121/
uuid:915d2bfb-7e84-49ad-a286-dc35f063a460. url: https://data.
4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

[11] Anna Leontjeva, Raffaele Conforti, Chiara Di Francescomarino, Marlon Du-
mas, and Fabrizio Maria Maggi. “Complex Symbolic Sequence Encodings for
Predictive Monitoring of Business Processes”. In: BPM. 2015.

[12] Chiara Di Francescomarino, Marlon Dumas, Marco Federici, Chiara Ghi-
dini, Fabrizio Maria Maggi, and Williams Rizzi. “Predictive Business Pro-
cess Monitoring Framework with Hyperparameter Optimization”. In: Ad-
vanced Information Systems Engineering. Ed. by Selmin Nurcan, Pnina Sof-
fer, Marko Bajec, and Johann Eder. Cham: Springer International Publish-
ing, 2016, pp. 361–376. isbn: 978-3-319-39696-5.

[13] Kerwin Jorbina. A Web-Based Tool For Predictive Process Analytics. Uni-
vesity of Tartu. 2017.

[14] Ayham Taleb. A Web Tool For The Comparison Of Predictive Process Mon-
itoring Algorithms. Univesity of Tartu. 2017.

[15] Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, Kerwin Jorbina,
and Fabrizio Maria Maggi. “Intra and Inter-case Features in Predictive Pro-
cess Monitoring: A Tale of Two Dimensions”. In: Business Process Man-
agement. Ed. by Josep Carmona, Gregor Engels, and Akhil Kumar. Cham:
Springer International Publishing, 2017, pp. 306–323. isbn: 978-3-319-65000-
5.

[16] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Mandel-
baum. “Queue mining for delay prediction in multi-class service processes”.
In: Information Systems 53 (2015), pp. 278–295. issn: 0306-4379.

[17] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) 58 (1996),
pp. 267–288. issn: 00359246. url: http : / / www . jstor . org / stable /
2346178.

[18] JSON. Json home. url: http://json.org. (accessed: 22.03.2018).

58

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
http://json.org

[19] H. Valdivieso, J. Lee, Arias M., Rojas E., and Sepúlveda Munoz-Gama J.
OpyenXes: A Complete Open-Source Python Library for the Extensible Event
Stream Standard (under review). 2017.

[20] SQLite — Wikipedia, The Free Encyclopedia. [Online; accessed 9-May-2018].
2018. url: https://en.wikipedia.org/w/index.php?title=SQLite&
oldid=840189627.

[21] TKasekamp/predict-react | Build #180 | Coveralls - Test Coverage His-
tory and Statistics. [Online; accessed 21-May-2018]. 2018. url: https://
coveralls.io/builds/17076511.

[22] B.F. Van Dongen. BPI Challenge 2017. en. 2017. doi: 10 .4121 / uuid :
5f3067df-f10b-45da-b98b-86ae4c7a310b. url: https://data.4tu.nl/
repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

[23] B.F. Van Dongen. BPI Challenge 2012. nl. 2012. doi: 10 . 4121 / uuid :
3926db30- f712- 4394- aebc- 75976070e91f. url: https://data.4tu.
nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f.

59

https://en.wikipedia.org/w/index.php?title=SQLite&oldid=840189627
https://en.wikipedia.org/w/index.php?title=SQLite&oldid=840189627
https://coveralls.io/builds/17076511
https://coveralls.io/builds/17076511
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f

Non-exclusive licence to reproduce thesis and make thesis public

I, Tõnis Kasekamp (date of birth: 21st of April 1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

A Web Application to Support Research in Predictive Monitoring
Tasks

supervised by Fabrizio Maria Maggi

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

60

	Introduction
	Related work
	Background
	Event log
	Predictive Process Monitoring
	Building the model
	Runtime predictions

	Hyperparameter optimization
	Nirdizati Training
	Implementation

	Contribution
	Event log splitting
	Encoding
	Encoding methods
	Encoding configuration
	Task generation type

	Labelling
	Classification label types
	Regression label types

	Temporal and inter-case features
	Clustering methods
	Classification methods
	Regression methods
	Evaluation metrics
	Classification metrics
	Regression metrics

	Functionality overview
	Log upload page
	Log details page
	Splitting page
	Labelling page
	Task status page
	Training page
	Classification methods
	Regression methods
	Clustering methods
	Encoding methods
	Labelling
	Temporal and inter-case features
	Hyperparameter optimization

	Validation page
	Classification results
	Regression results

	Tool implementation
	Architecture
	Back-end architecture
	Front-end architecture

	Technologies
	Back-end technologies
	Front-end technologies
	Development process

	Evaluation and Comparison
	Evaluation
	Remaining time prediction
	Next activity prediction

	Performance
	Encoding methods
	Log size impact on encoding performance
	Machine learning methods
	Hyperparameter optimization
	Comparison with Nirdizati Training

	Comparison with Nirdizati Training
	New features
	Improvements

	Conclusion

