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Comparative Evaluation for the Performance of Big Stream Processing 

Systems 

Abstract: 

Nowadays data is growing with tremendous acceleration, and this growing data must be 

processed properly if we want to have control over it. It pushes us to think about data 

stream processing. Most of the time, a data-intensive fraud detecting, trading, 

manufacturing, military and intelligence systems require processing data immediately 

(real-time). These kinds of systems need considerably ssophisticated pattern matching and 

correlations. However, other uses of stream processing have also emerged over time. In 

this thesis, we will benchmark to compare and contrast Apache Flink, Apache Storm, 

Heron, Kafka an Apache Spark stream processing engines. In these applications and 

domains, there is a crucial requirement to collect, process, and analyze significant streams 

of data to extract valuable information. This thesis aims to conduct an empirical evaluation 

and benchmarking of the state-of-the-art of big stream processing systems. 

Keywords: 

Stream Processing, Batch Processing, Benchmark, Apache Flink, Apache Spark, Apache 

Storm, Apache Heron, Apache Kafka, Kafka Stream 

CERCS:  

P170 Computer Science, Numerical Analysis, Systems, Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Big Stream'i Töötlemissüsteemide Toimivuse Võrdlev Hindamine 

Luhikokkuvõte: 

Andmete hulk kasvab tänapäeval meeletu kiirusega ning seda andmete hulka tuleb 

korrektselt töödelda, et saavutada kontroll andmete üle. Antud olukord sunnib meid 

mõtlema andmevoo töötlemise peale. Enamasti nõuavad andmemahuline pettuse 

tuvastus-, kaubandus-, tootmis-, sõjanduse ja luure süsteemid pidevat andmete analüüsi 

(reaalajas). Sellist tüüpi süsteemid nõuavad kõrgetasemel ist mustrite sobitamist ja 

korrelatsioone. Aja jooksul on ilmnenud erinevaid andmevoo töötlemise võimalusi. Antud 

teesis tehakse jõudlustest Apache Flink, Apache Storm, Heron, Kafka ja Apache Spark 

andmevoo töötlemismootoritega ning tulemusi võrreldakse ja vastandatakse omavahel. 

Nendes rakendustes ja domeenides on väga oluline nõue koguda, menetleda ning 

analüüsida olulisi andmevooge, et eraldada sealt väärtusliku informatsiooni. Antud teesi 

eesmärk on läbi viia empiiriline hindamine ning võrdlemine kõrgtasemel andmevoo 

töötlemissüsteemide vahel. 

Võtmesõnad: 

Andmevoo töötlemine, Partii töölemine , Jõudlustest, Apache Flink, Apache Spark, Apache 

Storm, Apache Heron, Apache Kafka, Kafka Stream  

CERCS:  

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria) 
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1 Introduction 

New technologies are changing the world faster than one can imagine. These changes can 

be found in every field, and each of them brings tons of new data to us and most of the 

time the information we retrieve is not self-explanatory. At this point, the importance of 

Big Data and its process in a productive way emerge. It is not a coincidence that data is 

defined as 'the petrol of the economy' nowadays. Thus, big companies and institutions are 

very interested in investigating on Big Data, and they all realize that whoever takes the 

lead in this sector, will have a significant role in the market control.  

Big Data challenges include capturing data, data storage, data analysis, search, sharing, 

transfer, visualization, querying, updating, information privacy and data source. To ease 

the management of Big Data challenges are mostly grouped in two main aspects by 

engineers:  Data Storage and Data Process. In this master thesis, we will mainly concentrate 

on Data Process. A proper Data Process management can optimize the amount of the data 

to be stored as well, by reducing repeated or unnecessary information. However, today's 

good algorithms or methods for Data Process can easily be stale tomorrow. 

Before [1] getting started with Big Data Process, it is essential to have a look at the so-

called '3V of Big Data': Volume, Velocity, Variety. Volume problem can be easily 

understood by the fact that 9/10 part of the data currently existing on the Internet, was 

created in the last two and half years [2, 3]. Velocity is mostly about the amount of data 

going through the Internet in a single time unit. Because of the inevitable increment of 

internet users, we know that this number increases radically every day. Regarding Variety, 

we must consider that there are billions of video, audio and text files generated by 

different devices, and even each kind may contain variations in the file formats.  

 

Figure 1. Big Data 3Vs 
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With this research document, we will try to provide some information about the Data 

Process on different frameworks. In the following sections of this document, you will find 

information about the purpose of the benchmark, how it is exactly done, previous works 

in this specific topic, as well as some useful results regarding choosing the adequate 

framework for users' needs. 

1.1 Scope 

As we already mentioned, Data Process contains various steps. In this master thesis, we 

will mostly focus on Batch and Stream Processes and behaviors of different frameworks 

regarding them. To obtain more meaningful results, we chose the most well-known 

frameworks such as Flink, Spark, Storm, Heron, and Kafka. The streaming benchmark 

simulated an advertisement analytics pipeline, and the job of the benchmark was to read 

advertising log events and process them in the shortest potential time. The same amount 

of data- from 10K to 100K advertisement log events per second have been utilized for all 

frameworks, and results were evaluated concerning latency, throughput, and resource 

consumption. All the implementation process was done on CPU optimized Ubuntu1 

running servers of DigitalOcean2. 

We ran a specific algorithm to implement streaming machine learning algorithms such as 

regression, classification, and clustering on Big Stream processing environments. The data 

that was used for this research was similar to real-world advertisement log events, and the 

amount of the data was close to our servers’ capacity. Although we acknowledge that 

another implementation of this benchmark with a more extensive dataset could provide 

more trustful results, we are confident that all the tests we have accomplished gave us a 

bright idea about the performance of the mentioned frameworks. 

1.2 Motivation 

In the Big Data world, what is important is not the amount of the data are worked with, 

but how that data is handled. Processing Data means manipulating all of it in a way to 

produce useful information depending on own purposes. Combining big data with high-

powered analyses, business-related tasks such as customer-based content management, 

risk management, fraud and real-time failure detection, etc. can efficiently be 

accomplished. Thus, the most challenging and critical part is not just about if you can 

extract the information that your analytics will use, also if you do it efficiently. The term 

'Derived Data' is what you will have at the end of the day [4]. 

There are many derived data processing types. Batch Processing and Stream Processing 

are the most valuable types, and our benchmark is focused on them. Below in Figure 2, 

you can find brief definitions of the two processes that we are going to talk about: 

                                                 
1 https://www.ubuntu.com/ 
2 https://www.digitalocean.com/ 

https://www.ubuntu.com/
https://www.digitalocean.com/
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Batch Processing: Batch processing loads a significant amount of data, runs specific jobs 

and algorithms on it, generates output data. The most relevant performance measures are 

the throughput and latency. Batch Process is useful for long-term strategies, and the 

process itself requires a considerable amount of time comparing with stream processing. 

Since this process is based on one (or several but not too many) huge file/record, the need 

for Map Reducer tools is expected. 

Stream Processing: Stream processing is an online data [4] processing which runs jobs on 

flooding data. The stream processors consume the input and produce an output. 

Furthermore, the analyses are done for each event or small event groups in real time. Due 

to the I/O bottlenecks of Distributed File Systems, Map Reduce is not preferred in this 

process. Moreover, since records per unit are not big at all, you will most likely want to 

keep them in memory. Running micro/macro batch processes during stream processing is 

also probable. 

Existing engines behave differently in each step of the data processing because of the way 

they are designed. To choose the most convenient framework; the user should define the 

problem clearly and consider the engines' performance in that specific case. With this 

paper, we aim to show the performance evaluation of previously mentioned engines based 

on three main characteristics of Big Data: Volume, Velocity, and Variety. We hope that 

after reading our research paper, readers will get some ideas about Big Data Streaming 

process, the main features of each engine that have been used, and finally their more and 

less powerful sides. 

1.3 Research Problem  

The main purpose of this master thesis is to find the proper engines for users' needs. To 

achieve it, we had to have an idea about behaves of different frameworks, how they are 

affected by their configuration, which of '3V' aspects they have a better performance, etc. 

To put all these notions together and also have a structured research path, we came up 

with the following questions which we believe that describes the principal goal of this 

thesis: 

 

Figure 2. Stream and Batch Processing 
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1) Which Big Data Benchmarking standard is more suitable for Big Data Stream 

Processing? 

2) What is the most effective configuration of Apache Flink, Spark, Storm, and Kafka? 

3) What is the volume, velocity and variety capacity on fixed clustered 

implementation of these stream processor? 

4) Which stream processors are more efficient for clustered deployment? 

We hope readers will find answers to these questions after studying this paper. However, 

in future works part, you can see that we are not going to stop searching and we will always 

try to reach the most satisfying answers for Big Data Process users. 

1.4 Structure 

This document contains six chapters. First of all, we begin with giving some general 

formation about the scope and the purpose of this master thesis, and the methods we 

have followed to achieve the final results. In the following section, we provide the 

necessary background knowledge every reader should have before reading this document. 

Most of them are about the frameworks and the environment that was used during the 

research. Even though we believe that we shared enough resources for the users to 

understand the concept of each framework, it is not reasonable to expect that the readers 

will become an expert on these technologies. 

Later on, in the third section, a reader can find previous works related to our research area. 

Although the benchmarks are not the same, just close to each other, those papers and 

research works were very enlightening for us, and we think they can be very useful for the 

reader as well. Contribution section is where we talk about our work and benchmark, its 

environment, implementation, configuration and management of each framework for our 

requirements, and other small improvements we have accomplished. Since the 

frameworks are kind of similar at some point and share identical terminology, to avoid 

confusions, we separated that section into subsections. In Section 5.2, we evaluate the 

results obtained from the benchmarking and efficiently share them with the reader. We 

discuss the results and interpret the possible reasons for the expected and unexpected 

figures at the end of the research.  

Finally, we conclude the achieved results, gains and the aim of this master thesis, and add 

some words about future works can be done in the related area. 
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2 Background 

Before getting started with research details, we would like to let readers fulfill their 

knowledge about the technology we have used. In this section, first we will provide some 

middle-level terminologies that have been mentioned in this paper, and then we will talk 

about the technologies which were mostly used to achieve our goals. 

2.1 Streaming 

Nowadays, everything we see on the internet or in the technology world is data, and that 

data is being transmitted from one point to another one without cease. Transactions we 

do through our bank’s mobile app, ‘likes’ and ‘comments’ of our social media accounts, 

messages and millions of other things are examples of the data being generated as a 

stream. There are two types of streaming; Bounded and Unbounded. An unbounded 

stream is a stream, which never ends (or we do not know when it will), and event data is 

being processed continuously, which means future events are not important for the events 

that are being handled now. In this case, all events are similar, and the only way to 

differentiate them is their creation or received time. In contrast, start and end times are 

defined in bounded streams. Data is handled in batches, and thus, this kind of streams are 

also called batch processing. Below. in Figure 3, you can find an illustration of two 

mentioned types of streams: 

2.1.1 Use case 

Users can easily develop and run diverse types of applications with stream processors. We 

can group those applications into three main categories. 

First of them would be event-driven applications which are considered as a derivative of 

traditional transactional applications. The main difference between these two is that 

event-drive applications have separated compute and storage layers, and they also have 

forever running event listeners. Instead of connecting to a remote Database, this kind of 

applications use their local data which causes a better performance regarding throughput 

and latency. Social media websites, business process monitoring systems can be good 

examples of event-driven applications. The bottleneck of this kind of applications is how 

time and state are handled by the stream processors. Streaming engines provide event-

 

Figure 3. Streaming Types [5] 
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time, customizable window logic, as well as save points. Savepoints are externally stored 

checkpoints that are used to stop, resume, and update the application.  

The second type of applications is mostly used is Data-Analytics Applications. These 

applications’ job is to extract or produce useful information from the stream’s raw data. 

Most of the time results are emitted as reports or written to a storage system. Streaming 

analytical applications have more advantages over batch analytical applications. Customer 

interaction, Internet/Web Search applications are some examples of Data Analytics 

Applications. 

Data Pipeline Applications is the last type we are going to talk about the use of Streaming. 

In this case, applications are responsible for transforming, enrich and re-locate it from one 

storage to another one. They must be able to read continuously read the date from a 

source and move it to the destination storage with the possible latency. Data Pipeline 

Applications provides larger use cases and more useful data than other applications. The 

most of stream engines have a SQL Interface for this kind of applications which also 

supports user-defined functions. Most of the e-commerce applications are Data Pipeline 

Applications. 

2.2 Apache Flink 

Apache Flink is one of the most popular distributed processing engines which can be run 

in all common cluster environments. What makes Flink so famous is that it is computation 

speed is very close to memory-speed [5]. It is an open-source software which the license 

is held by ‘The Apache Software Foundation3.’ Flink is a powerful alternate of MapReduce 

and is very well paired with HDFS4. Applications which are meant to use Flink Streaming 

can be programmed with Java5, Scala6, Python7 via using DataStream or DataSet APIs. 

2.2.1 Architecture 

Flink has a famous master and slaves’ structure where the master is the center of the 

Flink’s component stack. Master is the owner of JobManager which comes up when Flink 

file system is started. JobManager is the coordinator, and it controls the data flow which 

is used by one or more TaskManagers on slaves.  

Apache Flink clustered [5], distributed and fault-tolerate infrastructure implemented 

minimum three different type of processes. 

The Client: The Client transforms program code to a data flow graph and submits it to the 

Job Manager 

                                                 
3 https://www.apache.org/ 
4 https://hadoop.apache.org/ 
5 https://java.com/ 
6 https://www.scala-lang.org/ 
7 https://www.python.org/ 

https://www.apache.org/
https://hadoop.apache.org/
https://java.com/
https://www.scala-lang.org/
https://www.python.org/
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Job Manager:  Job Manager is the coordinator of the distributed execution. 

Task Manager: Task Manager executes operators that produce streams, deliver their 

status to Job Manager, and exchange the data streams between operators. 

Flink is also a layered system, and its architecture contains various components which are 

built on top of each other. For example, the runtime layer is responsible for receiving 

JobGraphs which is a generic parallel data flow with arbitrary tasks that consume and 

produce data streams [5]. JobGraphs are generated in the API layer and are executed 

according to available deployment options. The following figure which can be found in 

Flink’s official documentation [5] understandably illustrates the components: 

2.2.2 Flink APIs 

Most of the developer-friendly features of Flink come with its APIs. As a layer, APIs are on 

top of the Core tier [5]. 

DataSet API: Processes text or CSV files that have been generated on different sources, as 

well as the data that retrieved from a local collection, and lets the user do several 

operations on it, such as mapping, filtering, joining and grouping. Mostly used for 

distributed tasks and runs the batch process in streaming runtime. 

DataStream API: To achieve real-time batch data processing, does the filtering, updates, 

defining windows, joins, etc. Can receive any kind of data from message queues, sockets, 

file systems. 

Table API: The main concept of Table is to let the user write simple SQL queries in high 

layers of Flink instead of complex SQL Queries to process the data. Tables can be created 

with DataStream and DataSet APIs by using Table Environments. Registered tables can be 

retrieved by simple SQL queries. 

 

Figure 4. Flink Architecture [5] 
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Gelly: Is a motor which lets users create, transform and process graphs. Graphs are 

represented by DataSets. Those DataSets are made of vertices and edges. The API itself 

contains several functions as well as graph algorithms, and also supports iterative 

processing. 

FlinkML: Machine Learning library for Flink users. It currently contains Supervised Learning 

algorithms such as SVM, Multiple Linear Regression, Optimization Framework, as well as 

k-Nearest Neighbours join from Unsupervised Learning. 

FlinkCEP: Complex Event Processing library on top of Flink. It lets users catch event 

patterns within unbounded streams, as well as filtering and combining them. 

2.3 Apache Storm 

Storm [6, 7]is a distributed, fault-tolerance computing system supporting streaming data 

processing. By replaying data that wasn’t successfully processed previously, Storm 

provides guaranteed data processing. The main difference of this engine is that it runs own 

‘topologies’ instead of traditional MapReduce tasks. We talk about topologies in the next 

section. The Storm is scalable, compatible with many programming languages, no data 

loss, and noticeable fast for processing large data sets. Twitter, Yahoo, Spotify, Yelp are 

some of Apache Storm’s famous users. 

2.3.1 Architecture 

When talking about Storm’s architecture [6], first of all, we should mention that although 

it is very similar to Hadoop’s, they are not the same. Instead of jobs of Hadoop, there are 

topologies in Storm which run forever (until killed by a user) to process messages 

continuously, unlikely the Hadoop worker tasks. 

Storm [6, 8] also has master-worker node structure, where the master is called Nimbus 

and workers are called Supervisors. The master node is responsible for assigning tasks to 

different machines, codes amongst clusters, as well as monitoring failures. To monitor the 

message processing tasks, Nimbus uses Apache ZooKeeper services. Workers of Storm 

clusters are used to run daemons called Supervisors. These nodes listen to Nimbus’s 

messaged to assign a job to own machine or to stop them if necessary. All the messaging 

between Nimbus and Supervisors are handled through Apache ZooKeeper cluster. 

Another important point of Storm architecture is about its topology. A topology is what 

has to be created for real-time computation. The processing logic of topologies are called 

‘Bolt’s which receive data from ‘Spouts’ that are entry points of the topologies: 

Spouts are responsible for reading data as tuples, from different storages such as 

databases, distributed file systems, messaging frameworks and emit it to Bolts for actual 

runs. Depending on the ability to replay the data, Spouts are classified into two groups: 

Reliable and Unreliable. In the first case, when there is a failure in the process of the data, 

tuples are recovered from the source and processed again. 
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All the real job including filtering, aggregation and joins, inside topologies are done on 

Bolts. Generally, in cases when a topology has to do complex work, it is divided into 

multiple Bolts which communicates amongst each other as shown in Figure 5. 

In Storm, topologies are always submitted to clusters and run inside them. For running 

topologies, there are mainly three types of entities: 

Worker Process: Belongs to a specific topology and runs executors inside its topology. In 

most cases, one topology contains more than one worker process. 

Executor: Is a thread that has been generated by s Worker Process. Executor processes run 

tasks for Bolts and Spouts. 

Task: Is the entity which processes data and is created by executors. Thus, in Storm 

applications, a number of tasks are always equal (by default one task per executor) or 

greater than the number of executors. 

2.4 Apache Spark 

Spark is one of the biggest alternatives to Hadoop, and there are quite big communities 

which prefers Spark over Hadoop. Spark is open-source, and it is developed in Scala. When 

talking about this framework, the first thing to mention is that coding with Spark is a way 

easier than comparing other frameworks we have talked about. Besides development, the 

runtime of Spark is quite fast as well. On its website [9], developers claim that sometimes 

it is 100 times faster than Hadoop’s MapReduce regarding memory processes. This lets us 

say that users can use Hadoop (HDFS) as storage of old data but processing them via Spark 

will be easier and faster. Overall, we can say that Spark’s simple programming model 

captures batch, streaming and interactive workloads. 

 

Figure 5. Storm Architecture [6] 
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2.4.1 Programming Model 

Another advantage of Spark is that you can use it with traditional programming languages 

such as Scala, Java, and Python. If you have already existing project, transforming it into a 

Spark [10, 9] runnable doesn’t require too much work-around either. You only have to 

decide which parts must be parallelized and apply the logic only to this part. Spark also has 

some libraries which are frequently used by developers. The key point of Spark 

programming is Resilient Distributed Dataset (RDD). RDDs are fault tolerant and 

partitioned across a cluster, and that is why they can be handled in parallel. While 

programming, users can create RDDs using some operations which are called 

transformations, and later they will contain a collection of objects. Below you can find a 

piece of code to estimate Pi value by ‘throwing darts’ method implemented in Python using 

Spark: 

In this example, RDD will contain a number range and then will filter them by checking if 

they are inside the circle or no. Here, as we mentioned before, no calculation will be done 

until the ‘count’ action is called. Once it is called, RDD will be created, filtered, and ‘count’ 

action will be performed. 

RDDs are lazily evaluated, and it lets Spark to find an efficient plan for computations. Since 

results of RDD operations are RDDs too, these transformations are not computed 

immediately. Instead, when an action is being performed, Spark checks all the 

transformations introduced and creates an optimized execution plan which sometimes 

builds up better modularity than the programmer thought of. The execution is performed 

only once for the whole graph of transformations. It is worthy to emphasize that RDDs 

shares the data amongst computation nodes and they are only called when there is an 

action taking place. However, as programmer’s wish, RDDs can be persisted in the memory 

for rapid use (if data is too big for the memory, Spark will locate it on the disk as well). 

Besides sharing and parallelizing data options, another powerful point of RDDs is 

automatically recovering from failures. Instead of the traditional way of fault tolerance 

where computing systems had replication or checkpoints, Spark provides a different 

approach- Lineage [10, 9]. This process is done by saving a track of transformation graphs 

and rerunning these operations on base data. This strategy is more efficient regarding 

running time and storage, in data-intensive workloads. The reason is very clear, writing 

data into RAM is significantly faster than the writing it over the network, and the recovery 

process is done in parallel on different nodes. 

 

Figure 6. Spark Programming Model [9] 
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2.4.2 Spark Streaming 

We know that modern distributed stream processors take three sequential steps for 

execution. First receiving the data, then process it, and finally emit the output. In the case 

of Spark Streaming, it is a bit different. Instead of retrieving the data one by one, Spark 

splits it into batches (RDDs). In other words, receivers accept the data in parallel and locate 

it in the nodes. Then Spark assigned tasks dynamically to these nodes depending on the 

required data of each task. It allows applications to perform better load-balancing and fast 

fault-recovery. 

In practice, regarding throughput, Apache Spark has noticeable higher performance 

compared with other frameworks. Talking about the latency, Spark’s speed is at a few 

hundreds of milliseconds which is quite low and does not make Spark less-used as a batch 

processor over end-to-end processors. 

DStream API is a Spark abstraction over RDDs. When we check beyond of the Dstream, we 

will definitely see DStream is the sequence of some amount of RDDs. As you see it from 

Figure 7, RDDs in a DStream contains data a given batch interval. An operation which is 

applying to DStream same time applying to sub RDDs in DStream. This applied RDD 

transformation handling by Spark Engine. That is why we can tell that DStream is Spark 

abstraction over RDDs. 

2.4.3 Spark Structured Streaming 

Structured Streaming [9] is the new high-level API in Spark Engine which started implement 

from version 2.2.0.  It is using Spark SQL for processing data. It creates an opportunity for 

process data with a basic streaming function like a filter, group, aggregate, event-time 

windows and stream to batch join. Internally Structured Streaming using micro-batches for 

processing data like Spark Streaming. However, from version 2.3.0 Structured streaming 

support Continuous Processing with low latency. It means a new version of Spark is using 

real-time processing like a Flink, Storm, etc. You could process your data in 1ms end-to-

end latency with structured streaming. Spark Structured Steaming behave stream like a 

 

Figure 7. Spark Streaming [25] 
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table which data appended to this table continuously. Figure 8. That is why the 

programming interfaces of Structured Steaming look like batch processing. You can create 

your streaming calculation as a batch processing, but Spark run it on continuous streaming. 

Spark Structured streaming provide DataFrame and Datasets API for accessing and 

calculation batch bounded data and streaming unbounded data. 

2.5 Apache Heron 

Heron [11] is a fault-tolerance streaming engine released by Twitter8 in 2016 and has been 

used actively by the providers for over three years. Different parts of Storm are written in 

different programming languages such as Java, Scala, Python, and C++. It is a successor to 

Storm; thus, users can use any API of it on Heron as well. The main difference between 

Heron and Storm is, on Heron, there are more functionalities that are not implemented on 

Storm, such as job schedulers. Same as many other frameworks, Heron was also thought 

to be easy-to-develop, handle a big amount of data, increase developer’s productivity, and 

have more efficient performance. 

2.5.1 Architecture 

Developers [11] can compose DAGs of real-time query execution logic which are called 

topologies. Later these topologies are submitted to the job scheduling system to be 

executed. Same as the Storm, Heron clusters also contain Spouts and Bolts, where Spouts 

are connected to the data source and responsible for injecting it into the topology, and 

Bolts are where the data is processed. For example, in the case of Twitter's word counter 

in tweets, there is one Spout which receives the tweets from tweet sources. After that 

received tweet is transferred to the first bolt, where it is split into words. Moreover, finally, 

counter Bolts counts the words and returns the final number. We can say that all topology 

logic is very similar to the Storm’s topology. 

It is also possible that some Bolts inside a topology will receive more data than it can 

handle. For example, in our tweet counter case, the Spout can accept more data than 

parser Bolt can process since the latter does more computation than the Spout. For this 

                                                 
8 https://about.twitter.com/en_us/company.html 

 

Figure 8. Structured Streaming [25] 

 

https://about.twitter.com/en_us/company.html
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kind of cases, it is possible to define parallelism capacity for each node in Heron topologies. 

These numbers are associated with nodes, and they specify the number of instances 

required the CPU in parallel. Moreover, at that point, another issue is about transferring 

data amongst instances. Let's say Spout knows that the data should be transferred to the 

next Bolt, but if it does not send the data to the proper instance, it would be chaos. Heron 

solves this problem with the strategy called Grouping. There are several types of grouping 

which are listed below: 

All: Data is transferred from an instance to all instances of the downstream bolt. 

Shuffle: In this case, all instances of any node, can send data to any of instances of the next 

node. 

Direct: In this case, the sender decides itself to which instance the data should be 

transferred. 

Fields: Decisions are based on some field values. Predefined values are hashed, and when 

the data is ready, specific field value 's hash is computed and sent to the downstream 

node's proper instance based on that hash value. 

Global: Each instance is assigned to one another instance, and it only sends the data to it. 

Heron also takes advantages of ZooKeeper State Manager for the coordination of the tasks 

on clusters. We talk about it in the following paragraph of this section. 

Although beside being reliable Heron also has proved that it reduces the hardware 

resources significantly and processing latency, increase throughput, the main known 

disadvantage of this engine is that it is dependent on Mesos9. If a user does not already 

have a Meson infrastructure installed, it is not easy to handle this requirement. That is why 

it is recommended that, if you have Storm system already in use, you can easily stick to it, 

unless you have a huge demand as Twitter does, of stream processing. 

2.6 Apache Kafka 

Kafka [12] is also a distributed system used by many companies in production that handle 

petabytes of data every day because it is fault-tolerant and entirely scalable. It has been 

created and open-sourced by Linkedin in 2011 as a messaging queue. Since that time, Kafka 

evolved significantly, and nowadays it provides low-latency, high-throughput publish and 

subscribe pipelines. Kafka is mostly used for the applications that transform or react to the 

data streams, or applications that need real-time, reliable data pipelines to transfer the 

data between other applications. 

Before diving in, it is essential to mention a few things from Kafka's architecture. First of 

all, same as some other engines, it is run on clusters on multiple servers, and these clusters 

contain records which are grouped into categories called topics. Inside topics, each record 

                                                 
9 http://mesos.apache.org/ 

http://mesos.apache.org/
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has three fields such as key, value, and timestamp. Topics usually have more than one 

subscriber meaning that the data written to it will be read by multiple consumers. 

Apache Kafka also has several APIs: 

Producer API: Applications send (publish) data to topics in the Kafka cluster using this API. 

Consumer API: By using this API, applications can subscribe to several topics and process 

the records that are produced to them. 

Streams API: Applications can have a stream processor using this API. It receives streams 

of input topics and emits output topics. 

Connector API: Allows applications to connect the data source to Kafka topics. The 

connection is bidirectional. 

2.6.1 Producers and Consumers 

The data on Kafka [12] topics are written and read by the producers and the consumers 

accordingly. Besides publishing the data on the topics depending on their choice, 

producers are also responsible for choosing the correct partition inside the topic. 

Consumers' structure is a bit more complicated than that. They can be assorted into 

different Consumer Groups and data from one producer is received by only one member 

of the group. Consumer instances do not have to be on the same server. In the case that 

there is only one consumer group for the whole system, then records will be handled by a 

different instance every time, and in this way, it will be an effective load-balancer. 

However, if each instance has a diverse consumer group, then each record will be 

transferred from all producers to all instances. 

Just writing, reading, and storing data is not makes Kafka one of the most used streaming 

engines, but how it handles it in real-time. In Kafka world, anything from reading input and 

emitting an output topic is the job of the streaming processor. The basic Kafka streaming 

processor applications can easily be implemented only by using Producer and Consumer 

APIs of it. For more complicated cases, fully integrated Streams API can be used, in order 

to join the streams or compute aggregation of them. 

 

Figure 9. Kafka cluster [12] 
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Kafka is a combination of a distributed system like HDFS which allows batch processing 

with static files, and traditional enterprise messaging system that processes future 

messages you are subscribed to. Past and future data are both handled in the same way in 

Kafka. This combination brings low-latency and reliability which the stream processors will 

transform the data as it arrives. 

Pros of the Apache Kafka is the: 

• It is the fast, scalable partitioned, replicated messaging system which can be scale-

out easily. 

• It is offering high throughput and low latency for producer and consumer.  

• It is supporting multi-producer and fault tolerance for consumers. 

• It is store messages on disk that is why memory consumption is so less and can be 

useful for batch processing. 

2.6.2 Kafka Streams 

Kafka Streams [12] is one of the most powerful components of Kafka, and it is used for 

building applications which transforms Kafka input topics to Kafka output topics in a 

distributed and fault-tolerant way. There are some key characteristics that make Kafka an 

adequate option for stream processing applications. 

First of them is its performance and power. It is highly scalable, fault-tolerant, and it 

supports windowing, joins and aggregation operations on event-time processing. These 

being said, it is necessary to mention that Kafka Streams is not a framework, but a library 

and that is why it does not have any external dependency and doesn’t require dedicated 

clustering or such a thing. For this reason, it is considered as the best alternative of Apache 

Storm. Although Kafka Streams is a new library comparing it with Apache Kafka itself, it has 

no integration problem with Kafka, nor with existing applications, and deployments can be 

managed without applying an artificial rule. Moreover, Kafka Streams provides low 

processing latency, and it never creates micro batches while processing a stream. 

Furthermore, Kafka Streams offers good usability for developers. It is possible to use the 

library with a high-level DSL, as well as with a low-level API depending on the programmer's 

needs. In the first case, users can use basic operations provided by the library such as map, 

filter, join, etc., where they can have maximum control and more flexibility in the second 

case. Even beginners can easily write a basic application and run it on a single machine 

without installing or understanding distributed stream processing clustering. 

In summary, we can say that Kafka Streams is a lightweight, real-time, scalable library that 

simplifies working with stream processing applications. It can easily be embedded or 

integrated into any application, which is more difficult with framework-based stream 

processing tools. 
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2.7 Hazelcast Jet 

Jet is Hazelcast’s [13] first and a very successful open-sourced third generation big data 

processing engine. It is built on top of another open-source Hazelcast product IMDG [14]. 

Because it is just a lightweight library, Jet can be embedded in any application to manage a 

data processing microservice. The library provides APIs containing several Transforms 

which cover some useful data operations such as filter, group, map, etc. 

As some other stream processing engines, in its core Jet also uses Directed Acyclic Graphs. 

Nodes or vertices as it is called in the Jet system, represent computation steps. These 

computations can be done in parallel by more than one instances of the streaming 

processor. Then, vertices are connected with each other via edges. Edges represent the 

flow of the data, how it is routed from the source vertex to the downstream node. They 

are implemented in a way to buffer the data produced by an upstream node and then let 

the downstream vertex to pull it. It means there are always concurrent queues running 

amongst processor instances and they are completely wait-free. 

Hazelcast Jet’s first goal is to achieve high performance, and this is managed by the use of 

cooperative multithreading. The main idea behind it is that, instead of the Operating 

System, Jet engine is the one who decides how many tasks or threads to run depending on 

available cores during runtime. Basic processing units are called tasklets, and before they 

are run, their data is always available in the queue. 

Currently Hazelcast Jet is available for Stream and Batch processing applications. For 

upcoming releases, it is expected [14] that Hazelcast will provide more features for Stream 

processing. Regarding connectors, for now, it only supports Hazelcast IMDG, where HDFS 

and Kafka libraries are being actively developed. 
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Table 1.  Comparison of Stream Processing Systems 

Stream 
Processing 

Systems 

Flink Storm Spark 
Stream 

Spark 
Structured 

Stream 

Kafka 
Stream 

Heron Hazelcast 
Jet 

Year 2015 2011 2013 2016 2016 2015 2017 

Creator DFG BackType AMPLab, 
UC 

Berkeley 

 Confluent Twitter Hazelcast 

Processing 
Model real-time Real-time Micro-

batches 
Real-time, 

micro 
batches 

Real-time Real-time Real-time 

Programming 
Model Dataflow DAG Monad DAG DAG DAG DAG 

Stream 
Partitioning Yes Yes Yes Yes Yes Yes Yes 

Distributed 
Cluster Yes Yes Yes Yes Yes Yes Yes 

Resource 
Management Standalone, 

Docker, 
Mesos, 
YARN 

Standalone, 
YARN, 
Mesos 

Standalone, 
YARN, 
Mesos 

Standalone, 
YARN, 
Mesos 

Standalone, Standalone, 
Aurora, 
Mesos, 
YARN 

Standalone 

Coordination 
Built-In, 

Zookeeper 
Zookeeper Built-In, 

ZooKeeper 
Built-In, 

ZooKeeper 
Zookeeper Local File 

System, 
Zookeeper 

Built-In, 
Zookeeper 

Programming 
Language Java, Scala, 

Python, 
SQL 

Java, over 
Thrift 

Scala, Java, 
Python 

Scala, Java, 
Python, R 

Java, Scala Java, 
Python 

Java 

Implementation 
Language Java, Scala Java, 

Clojure 
Scala, Java Scala, Java Java, Scala Java Java 

Fault Tolerance 
Yes Yes Yes Yes Yes Yes Yes 
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2.8 Apache Zookeeper 

Although Apache ZooKeeper [8] was developed at Yahoo as a sub-project of Hadoop for 

streaming the processes of big data on clusters, nowadays it is one of the leading Apache 

software by own. ZooKeeper can be defined as a centralized coordination service which 

allows development of distributed systems. This software can be used to maintain 

different parts of a distributed system such as configuration and location information, 

synchronization, hierarchical naming, etc. ZooKeeper is compatible with Java and C by 

using its native interfaces, as well as there is a variety of client bindings with Python, Ruby10 

and Go11. 

ZooKeeper’s namespace is very similar to standard file storage systems. Names are 

sequences of path values which are separated from each other by a slash ('/'). Node names 

are unique in this system. However, in ZooKeeper each node can contain some data 

associated with itself, which in this case the whole structure can be thought as a file system 

where directories can act as files as well. Nodes of ZooKeeper are called znodes. Data read 

and write operations are allowed and done automatically on znodes. These operation 

permissions are controlled by Access Control Lists (ACL) that is stored on the znode. 

Besides that, znodes also have watches which are triggered to inform a client about the 

changes on the znodes. 

Since one of the main ideas of ZooKeeper [8] is providing an easy-to-implement interface 

for developers, there are only a few operations that are available:  

• Create: creates a node in the tree 

• Delete: deletes a node from the tree 

• Exists: checks if a node already exists in the tree 

• Get Data: reads the node’s data 

• Set Data: writes data to a node 

• Get children: returns list of child nodes of a node 

• Sync: waits for data to be reproduced 

ZooKeeper is replicated, and the database that contains the entire tree data is in-memory 

as well. Changes and writes are saved into a disk for recoverability before they appear in 

the in-memory Database. Moreover, all the requests from clients are forwards to the single 

server which is called the leader. Rest of the servers are the followers, and they are 

responsible for delivering messages from the leader and agree upon message delivery. 

Replacement of leaders in case of failure and synchronization of followers are handled by 

the messaging layer.  

Finally, we can say that ZooKeeper is being successfully used by many big companies, and 

it is known as reliable, simple, ordered and fast engine. 

                                                 
10 https://www.ruby-lang.org/en/ 
11 https://golang.org/ 

https://www.ruby-lang.org/en/
https://golang.org/
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2.9 Redis 

Redis [15] is mostly known as a Database or a Message Broker by developers, which is 

actually an open-source, in-memory data storage system. Many modern programming 

languages support Redis bindings such as Java, Python, C, Ruby, Scala, etc. Redis [15] 

working with data structures as lists, hashes, sets, sorted sets with range queries, 

hyperlogs, bitmaps, etc. Operations that are supported by Redis- intersection, union, etc., 

are available depending on the data type it will take place on. Redis is implemented in C, 

and it is available on Linux available servers, where there are also some possible ways to 

run it on Windows. 

Redis is also most-known NoSQL Database amongst developers. Data is stored in the key-

value structure on Redis, where keys are unique, and no value can be accessed without 

specifying its key. Regarding replication, it is possible to create a master and have several 

slaves on Redis system, where a slave can be master of another slave. Redis commands are 

considered simple, and this software is used by Microsoft in Azure12, and it is available in 

the Amazon Web Services13 portfolio. In this research, we took advantage of Redis in the 

enrichment process of our data, for data lookup and as well as saved the final results. 

 

                                                 
12 https://azure.microsoft.com/ 
13 https://aws.amazon.com/ 

https://azure.microsoft.com/
https://aws.amazon.com/
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3 Related Work 

When organizations would like to implement a Big Data processing solution they have too 

many technology options to use which all have common functionalities. Before choosing 

technologies, they need to know the feature, performance, risks, and functionalities of 

them. These factors depend on the business case which one they would like to implement 

on these technologies. Choosing the right solution is the most important thing. At these 

moments a standardized benchmark can help them out to evaluate these technologies 

then can build the right solution with the adequate one. The standardized benchmarks 

help us to understand the performance of a particular software stack on specific hardware 

configurations. Academia and Big Data industry are developing new benchmark in the 

particular technology. Many standard performance organizations like a TPC, SPEC, SPC and 

specific companies IBM, Yahoo, Google, Twitter, Facebook follow the same approach for 

developing benchmarks. Their benchmark strategy is targeted to acceptance of their 

benchmark across many software and hardware vendors.   

Before checking details of the benchmark, we need to understand what the primary 

requirement of stream processing engines is. There are so many different benchmarks, and 

all of them evaluate stream processing engines from various aspects. According to 

Stonebraker [16], there are eight different characteristics and requirements of stream 

processing engines: 

Keep the Data Moving 

That is the primary essential requirement of stream processing. How efficient stream 

engines keep data moving? How much latency they proceed? How often costly storage 

operation they are processing?  

Query using SQL on Streams (StreamSQL) 

The streaming engine must provide a query mechanism to retrieve data from the 

streaming pipeline. Most of the streaming processing engines developed in low-level 

programming languages. While using low-level programming languages for querying data, 

it makes the system more complicated and greater the high value on development and 

maintenance.  

SQL is the most common language that for traditional DBMS. It would be better to run a 

query on the streaming pipeline which looks like SQL, with some kind of an API.  

Handle Stream Imperfections (Delayed, Missing and Out-of-Order Data) 

The traditional storage engines run queries on last isolated snapshot of the data, but in 

streaming engines, it does not work in this way. While querying data, it is possible, but in 

the stream, processing queries are running on flooding data, and it is possible that queries 

can affect the entire system. 
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In a stream processing system, letting a program wait infinitely is never a good idea. For 

this reason, every calculation timeout should be allowed, so the application may continue 

to be partial. Any stream processing system must have such time intervals for all blocking 

operation. 

Usually, a time window closes the window when a message received with a greater 

timestamp of window close time.  Dealing with out-of-order mechanism must act that the 

data with greater timestamp may not a reason for closing windows. 

Generate Predictable Outcomes 

Streaming processing systems must produce predictable outcomes. This requirement is 

essential for fault-tolerance and recovery. Streaming processing systems need avoiding 

reprocessing of the data. 

Integrate Stored and Streaming Data 

Stream processing engines must not be valid to process data only on a streaming pipeline. 

It can enrich data with historical data as well. That is why accessing data from integrated 

storage is also a primary requirement of streaming processing engines.  

Guarantee Data Safety and Availability 

High Availability is a significant critical requirement for stream processing systems. The 

system has to work in a replicated way in order to avoid unpredictable hardware errors. 

Partition and Scale Applications Automatically 

Streaming processing system must be compatible to deploy multi-processor and multiple 

machines service environments. Streaming must handle load balancing amongst servers. 

Partition of the streaming pipeline should never generate a high latency. 

Process and Respond Instantaneously 

What this last requirement says is that the stream processing system must have a well-

optimized mechanism with minimal execution time to provide a real-time response for 

applications with large volumes. 

BigBench [17, 18, 19] is the Benchmarking standard which one produced by Transaction 

Processing Performance Council (TPC). The main difference between BigBench 1.0 and 

BigBench 2.0 is the coverage. BigBench 1.0 is the only Big Data analytic benchmark 

standard, but BigBench 2.0 is covering the all big data pipeline like stream processing, key-

value processing, graph processing, ETL and Big Data analytics. Here we will concentrate 

on BigBench 2.0. The BigBench 2.0 is benchmarking Big Data system and observes the 

system's volume, velocity and variety characteristics. It includes a data generator for 

structured, semi-structured, and unstructured data. The BigBench 2.0 data volumes can 

dynamically vary based on a scale factor. The simulated workload of BigBench 2.0 has 

covered 30 queries to scale the Big Data analytics from the different aspect. The BigBench 

consists of four steps: 



27 

 

• System setup 

• Data generation 

• Data load 

• Execute application workload 

TPC committee still is working towards standardizing it as the most common TPC Big Data 

benchmark 

BigFrame [20] is a benchmark generator offering a benchmarking solution for Big Data 

analytics. It consists of structured data adapted from the TPC-DS benchmark (retail 

business model) and unstructured data. The benchmark divided into two different 

sections: 

• Offline 

• Real-Time  

With offline analytic section BigFrame benchmarks historical data and continuous query. 

Historical workflow is processed at a scheduled time. 

Real-time workflow is processing in real-time. It allows near real-time decision making 

based on instant sales. BigFrame is more suitable for benchmarking Lambda Architecture. 

It scales Batch and Streams processing at the same time. 

TPC have so many different benchmarks, but there are two benchmarks which impress us 

more than others. That is the StreamBench and Yahoo's streaming benchmark which is 

benchmarking engines with real-world applications. In Table 2. comparison of those 

benchmarks attached. We will go to the deep in these benchmarks. Because in the future 

we will going to perform more alike benchmark. 

Table 2.  Comparison of Existing Benchmark 

Benchmark Real World 
Applications 

Micro 
Benchmarks 

Criteria Engines 

StreamBench 
(2016) 

 

- 

 

3 

Throughput,  

Latency 

Storm,  

Spark,  

Flink 

Yahoo Streaming 
Benchmark 

 

1 

 

- 

Throughput, 
Latency 

Storm,  

Spark,  

Flink, 

Apex 
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3.1 StreamBench 

Yangjun Wang [21] simulated Advertisement Click, Word Count and K-Means algorithm on 

Spark, Storm, Flink engines. The architecture of StreamBench is illustrated in Figure 10. 

StreamBench Architecture [20]. Wang created core java application by using related 

engines API.   

The Benchmark contains three micro-benchmarks. In AdsClick benchmark Wang simulated 

view and click of advertisement events. Wang's implementation analysis relation between 

view and click events. In both Wang's declared id field for the advertisement event. Both 

streams have joined by using advertisement id. The advertisement appears in both stream 

in the close time frame he marked that advertisement as a valid click. Thus, he counted 

valid clicks for billing customer of those advertisements. 

Wang's [21] another micro-benchmark implementation is called WordCount. In that 

implementation, generated data is aggregated in a specific time window.  While computing 

the curve, the computation node that counts the word with the highest frequency may be 

the bottleneck. Inspired by MapReduce Defragmenter, he designed another WordCount 

version of the streaming processor along with the window operator. Windows are usually 

event groups at a specific period. During the reduction phase of Windowed WordCount, 

the first words are grouped and re-clustered. At a given time, local pre-collection results 

are stored in calculation nodes. When windows closed, the word counts are keyed reduced 

to calculate the final results. For last micro-benchmarks, her run the K-means clustering 

algorithm for points.   

Wang's implemented all this infrastructure on virtual servers which run with Ubuntu 14.04 

LTS.  His implementation contains eight slave nodes and one master nodes for running 

stream processors. As a messaging queue, he installed five Kafka brokers. During his 

benchmark, he uses Spark-1.5.1, Storm-0.10.0 and Flink-0.10.1 specific version of stream 

processing engines. 

 

Figure 10. StreamBench Architecture [20] 
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With Wang's WordCount example it is clear to compare the throughput and latency of Flink 

And Storm. For a precise result, Wang has run 2 type of WordCount benchmarks; one is 

Offline and another one Online. Wang designed Offline WordCount benchmark for testing 

both system's throughput. Before running stream processors, he had generated and stored 

some amount of data in Kafka and then started the processors to process data. In this way, 

he compares the throughput of Flink and Storm. He runs the same WordCount benchmark 

with ack and without ack on Storm. Storm performs more efficient performance while 

disabled ack. It is clear from the Figure 11. Flink throughput was ten times higher than 

Storm throughput in this benchmark.  Wang did not involve Spark to this benchmark 

because due to spark's micro batch structure there are a lot of benchmarks scenarios with 

the same structure.  

During Online WordCount benchmark Stream processors have been started before 

generator's start and Kafka was cleaned up. With this benchmark latency of Storm and 

Flink have been traced. While running Spark benchmark default configuration for the 

micro-batch interval (1 seconds) and checkpoint intervals (10 seconds) didn't change. The 

 

Figure 11. Throughput of Offline WordCount [20] 

 

 

Figure 12. Latency of Online WordCount [20] 
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result of the Online benchmark is shown in Figure 12. Because of checkpointing latency 

result of spark is bumpy. Every 10 seconds spark tried to write information to the storage 

to achieve fault-tolerance. These operations in the Spark engine consume significant 

resources. The throughput of data which latency was in Figure 12b is the 1.4M word/s. 

Figure 12a shows us median latency for Storm (ack enabled) was ten milliseconds, 

meantime the same metrics for Flink was 39 milliseconds. The 95th percentile latency was 

201 milliseconds meantime for spark same metric result was 217. 

In AdsClick benchmark click events occur within 20 seconds after the corresponding view 

event. Kafka [12] doesn't keep the order of messages in the partitioned topic that is why 5 

seconds window time set. It means when a click event happens it can join a view event in 

the future. Below in Table 3, you can find Advertisement click performance table. From 

Wang's AdsClick benchmark results show us, Flink is working with higher throughput and 

lower latency. 90% percentile Flink was 637ms meantime Storm was 2116ms. 

 

3.2 Yahoo Stream Benchmark   

At Yahoo, [7, 22] they had implemented Apache Storm before developing this benchmark. 

Their benchmark scenario and infrastructure are the same for Storm, Spark, Flink, and 

since they tested them with a real-world application, they got realistic results. 

Yahoo [22] has implemented benchmarking with Apache Kafka14 and Redis15. They have 

simulated advertisement analytics pipeline, where there was IDs for campaigns and 

advertisements in pipeline data. Then benchmark consumed data from Kafka servers in 

JSON format and merged it to Redis in-memory storage. During these processes, system 

aggregated and stored relevant events in Redis in-memory as well. Subprocesses that has 

been completed during the benchmark scenario are shown below: 

• Consume events from the Kafka topic 

• Deserialize the JSON data. 

                                                 
14 https://kafka.apache.org/  
15 https://redis.io/  

Table 3.  AdsClick Performance 

 

https://kafka.apache.org/
https://redis.io/
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• Filter out irrelevant events 

• Take a projection of the relevant fields 

• Merge each event with the covalent row in Redis in-memory store 

• Take the window count of the events group by the campaign and store it in Redis 

in-memory store by their campaign id and timestamp. 

Yahoo [22] benchmarked multi-node infrastructure. Each node processors were Intel 

E5530, 2.4GHz, 16 cores (8 physical) and 24 GB memory, and in total, 30 nodes have been 

used. They [7] distributed 30 nodes amongst Spark, Storm, and Flink, and have configured 

5 Kafka nodes with 5 data partitions, 1 Redis, and 3 ZooKeeper16. In that infrastructure, 

they run 100 campaigns, with ten ads per campaigns. Kafka producers were able to 

produce 17,000 events per second. In the beginning, they have cleaned all Kafka topics and 

loaded initial data to Redis. Later on, they have started stream engines and producers, and 

after half an hour, producers were stopped. When all Kafka topics were consumed and all 

stream pipeline processes, the system was shut down.  

Apache Flink [22] benchmark was developed in Java using DataStream API. In Flink 

benchmark Kafka event consume rate changed between 50000 events/sec and 170000 

events/sec. For each emits rate, events processing latency of Flink is visualized in Figure 

13. We can understand that until around 99% event processing latency increases linearly.  

                                                 
16 https://zookeeper.apache.org/  

 

Figure 13. Flink Performance [7] 

https://zookeeper.apache.org/
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Apache Spark [22] benchmark was developed in Scala17. Micro-batch structure of Apache 

Spark is making it different from Flink. While Flink benchmark was updating the Redis 

database in every second, in Spark it was benchmarked with 3 and 10 seconds frames. 

Kafka event consume rate was 100000 events/sec. They have got two different 

performance results for 3 and 10 seconds Micro-batch processing. As Figure 15. Shows us, 

10 seconds version 90% events have been processed in the first batch. However, they got 

better results by reducing the batch size, and they have divided it into 3, four sub-batches. 

Full results are illustrated in Figure 15.    

                                                 
17 https://www.scala-lang.org/  

 

Figure 14. 3 Second batch duration Spark Streaming Performance [7] 

 

Figure 15. 10 Second batch duration Spark Streaming Performance [7] 

 

https://www.scala-lang.org/
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4 Contribution 

First of all, we would like to share how we prepared our environment for achieving the 

benchmark of this master thesis. In this section, we will provide some information about 

the installation process of required software, their configuration, benchmark 

implementations and how we optimized these steps. Repository of source code has been 

attached in Appendix III. 

As we have previously mentioned, this research benchmark got its main concept from 

Yahoo!’s benchmarking work from 2015 [7]. However, we didn’t want to make a new 

replicate of the same benchmark, as well as extend it by using some other technologies. 

Some of the engines, frameworks, and libraries that we worked with are the same as the 

mentioned benchmark’s, where some of them are more modern tools which even didn’t 

exist 2-3 years and are included into our tests. Moreover, for the engines that were also 

tested by Yahoo!, we used their newer versions. We acknowledge that three years is a long 

time regarding today’s technologies development. There were noticeable improvements 

and changes in the more recent releases of those engines which we could not skip. 

4.1 Environment 

After deciding which engines, we would use, we continued with looking for servers that 

suit best for our needs. We ended up with using Digital Ocean’s CPU optimized droplets 

Table 4.  Comparison Engines with Yahoo’s Benchmark 

Tool 
Name 

Yahoo! 
Version 

Our Version Important Changes 

Flink 1.1.3 1.5.0 
Dynamic Scaling / Key Groups; Kafka Producer 
Flushes on Checkpoint; Table API and Streaming SQL 
Enhancements; Async I/O, etc. 

Spark 1.6.2 2.3.0 
API Stability; Unifying DataFrame and Dataset; New 
user-defined Functions; Scalable Partition Handling; 
Continuous Processing, Structured Streaming and 
etc. 

Storm 0.9.7 1.2.1 
Simple KafkaSpout Configuration; Support for 
bolt+spout memory configuration; Miscellaneous 
bugs fixes and improvements. 

Redis 3.0.5 4.0.8 
A new replication engine; Native data types RDB 
format changes; Many other bug fixes and 
performance improvements. 

Kafka 
Broker 

0.8.2.1 0.11.0.2 Support for Kafka Stream; Several bug fixes and 
performance enhancements. 

Kafka 
Stream 

not 
tested 

1.1.0 ~ 
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which perform much better results for CPU intensive projects- such as in our case, than 

regular droplets. All the droplets had 64-bit Ubuntu 16.04.4 as an Operating System 

running on them. One of the advantages of using these droplets was that configuration of 

the servers was easy-to-change. For example, during the time that benchmarks were 

running, we kept the droplets’ RAM and CPU values at the highest. However, when hard 

processes finished, and we did not need any high performance from the droplets, we 

decreased them. On Digital Ocean’s CPU optimized droplets, these operations can be done 

through URL’s, unless you want to change the disk size- which we did not have to regulate 

anyway. The script doing this task is provided within the benchmark repository18 as well. 

Afterward, choosing an adequate number of droplets and their distribution was the next 

step. In order to get more trustful results and to generate more real-world events, we 

decided to use several droplets as data loaders. Besides that, we also had to reserve some 

droplets for message brokers. You can find the full list of the node groups, their purpose 

of use, and characteristics at the highest performance mode in Table 5. 

In the next sub-section, we are providing more information about the installation process 

of necessary software, their configuration, and how we optimized these steps in order to 

have a half-automated structure to run benchmarks faster. 

4.2 Benchmark Architecture 

While checking the benchmark-repository users will find some bash scripts which are very 

useful for them to achieve fast, easy-configurable benchmarks. The very first of them is 

‘initialSetup.sh’ which sets up the necessary dependencies as it is understood from its 

name. After dependencies, when users have to install the tools they want to do tests with, 

another script called ‘stream-bench.sh’ can be used. It will download compressed files of 

the introduced engines, decompress and install them without a user interrupt. 

                                                 
18 https://github.com/elkhan-shahverdi/streaming-benchmarks 

Table 5.  DigitalOcena Droplets 

Node Group Count Characteristics Purpose 

Load 10 2 vCPU, 
4 GB Memory 

Generating real-world ads events 

Stream 10 16 vCPU,  
32 GB Memory 

Stream processors 

Message Broker 5 16 vCPU, 
32 GB Memory 

Host of Kafka 

Zookeepers 3 4 vCPU,  
8 GB Memory 

Host of ZooKeeper & Manager Server 

Redis 1 4 vCPU,  
8 GB Memory 

Host of Redis Database 

 

https://github.com/elkhan-shahverdi/streaming-benchmarks
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In our case, we wanted to build an architecture where events that are generated on loader 

droplets would be sent to Kafka’s message broker in the first hand. Once messages are in 

the queue, consumer nodes- which are stream processors, in this case, starts to read them 

in parallel. In the end, the results are saved on Redis Database. As we mentioned previously, 

service management was done by Apache ZooKeeper. In the following Figure 16, the 

benchmark architecture is illustrated to make it more understandable for readers. 

At this point, we had all the necessary programs installed on different droplets, and it was 

time to configure them for our needs and run. Since in the beginning, we were not sure 

how many different combinations we would try of configurations, we decided to ease this 

process by writing more scripts. 

4.3 Environment Setup 

To begin with, we created two scripts where one of them would set the initial 

configurations of each engine, framework or library, and the second one could run the 

benchmark with different arguments. In the remote repository, ‘setup.sh’ can be found 

under the root directory. 

Setup script starts with bash commands of Apache Flink and sets some required variables 

of it. Later, we define ten nodes to be used by Flink where nine of them would be slaves, 

and one would behave as the master. Later, we continue with Apache Spark and apply the 

same amount of master and slaves. Other execution flags of Spark engine such as executor 

core, executor memory, etc. are also defined and set in this section. Moving on, we added 

 

Figure 16. Benchmark Architecture 
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commands for Storm and Kafka setup. It is important to notice that inside these two 

sections we configure ZooKeeper and its connection with the stream processors as well. 

The script continues with ‘start’ and ‘stop’ operations of the engines and their 

dependencies. Without going deep to these commands, we would like to emphasize that 

content of the setup script is quite easy to understand and update if needed. If in the future 

any researcher wants to develop this benchmark with some more engines or just with 

newer releases of the current frameworks or libraries, it can be achieved just by modifying 

existing variables or adding a few more similar lines in case of new tools. Until now we 

have talked about automatization of the installation process of our engines and getting 

them ready to run. In the next section, we share our work regarding running another script, 

which allowed us to execute different tools with, several arguments and an easy 

configuration. 

4.4 Benchmark Execution 

Knowing that we have all the pieces of the puzzle in the place, we moved on by finding a 

way to start running the benchmark step. We realized that we might need to run 

benchmarks more than once and it could require some small changes on every run. Thus, 

we decided to write a script where we could have all the commands together, with 

parametric functions that we can change some runtime arguments, etc. The script can be 

found under the root directory of the benchmark repository as well (‘remote.sh’). 

First of all, we started by defining the most frequently used variables such as emit rate 

parameters, sleep time intervals, SSH credentials, etc. We thought that having these 

parameters at the beginning of the file could help us with changing them easily when 

needed. Then, we listed our engines and prepared their possible commands that would be 

used during benchmarking. Although in most of the time it was engines’ ‘start’ and ‘stop’ 

commands, in some special cases they required more specific commands as well, such as 

creating a temporary directory and removing it when the program stops, etc. 

Once we had all the necessary commands, we started to group them in logically related 

functions. For example, we added a function to start all the tools to run sequentially for a 

pre-defined time, but in an infinite loop. It would require stopping command afterward 

when satisfactory results are obtained. There are also more functions for running droplets, 

shutting them down, starting and stopping each engine, monitoring, collecting results, etc. 

Before listing the full command list of the script, we would like to emphasize that, it is a 

script containing more than six hundred lines of bash commands, and it was written with 

the only purpose; benchmark of stream engines must be as easy as configuring them on 

existing bash files, running, monitoring and retrieving the results by less than 10 

commands in total. Now let’s have a look at the full list of arguments that can be called 

with ‘remote.sh’ script. 

As it is provided in Table 6, to run a benchmark all is missing is a program that implements 

a good algorithm for tests. We believe that we made it easy for anyone who wants to run 
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a benchmark on stream processing area. Next, we are sharing our basic program that was 

used for this research. 

4.5 Implementations 

Let’s have a deeper look on Benchmark implementations. For running Benchmark, first of 

all, we need to start the Redis, and after starting it, we have to run Clojure script with -n 

parameter for setting up Redis for the new real-time simulation. This step must run on only 

one node, only once before starting multiple data loaders (-r) on multiple nodes. Once we 

have these steps done, we can start ZooKeeper and then Kafka.  If Kafka and Zookeeper 

are running, then it is time for creating advertisement events topics on Kafka. Later on, 

benchmark scenarios have been submitted to the stream processing systems. When all 

these steps are completed, we will be ready for the start of the streaming engines and the 

data generators. What that Clojure script is doing that it will populate Redis with the 

generated campaign which in the future will be used by data loaders while creating 

advertisement events. In other words, the data loader will load data to Kafka by checking 

Table 6.  Command descriptions 

Command Description 

<tool_name> Starts a benchmark for the introduced stream engine including its 
monitoring. Possible values are flink, spark, storm, kafka, heron, all. 

start 
<tool_name> 

Starts only the tool, engine, library, or program itself with introduced 
name. Possible values are all tool names, redis, zoo, prepare, load. 

stop 
<tool_name> 

Starts only the tool, engine, library, or program itself with introduced 
name. Possible values are all of the ones for start and stopAll. 

result Collects results from Streaming, Kafka and Redis servers respectively. 

load Starts data loading. 

push Pushes git changes to the remote servers and runs all of them. 

report Collects the results and draws meaningful charts on PDFs. 

build In case of changes in the code, this command can be run to re-build 
maven projects in the remote servers. 

clean Clean the last obtained results. 

test Runs basic tests for the benchmark. 

resize up Increases capacity of available Remote Droplets. 

resize down Decreases capacity of available Remote Droplets. 

power off Turns off the remote droplets. 

power on Turns on the remote droplets. 

reboot Reboots remote droplets. 

shutdown Runs a command to shut down all the Servers from Digital Ocean. 

 



38 

 

convenient campaign from Redis. After starting all the environments and data loaders, 

submitted scenarios on Stream Processing engines will start to process data which had 

been loading to advertisement topic on Kafka Servers.  Next question can be like that how 

we are processing data how we are calculating Throughput, Latency, and Resource 

Consumption over this scenario.  

Yahoo simulated processing of advertisement clickstream.  During reading the explanation, 

the structure can be followed up over Figure 17.  

The First processing unit of our clickstream scenario is consuming advertisement event 

clickstream topic from Kafka. After consuming row data from Kafka, we are parsing it to 

Java POJO, json or tuple.   

The Second processing unit of our clickstream scenario is filtering data by event_type. 

While data generator generates an event, it is assigning event type randomly among this 

list (view, click, purchase). In our scenario, we are filtering, and processing only views 

events.  

The Third processing unit of our clickstream scenario is the projection of the event's useful 

attributes. Because there is additional information like user id, page id, ad type, IP address 

and event type which will not need any more in our scenario. In this step, we will eliminate 

such kind of useless attributes. 

In the Forth processing unit, we enrich our events with its campaign id. After starting Redis, 

we have run the setup script. It populated that campaign id which can be attached to our 

events by ad id in our fourth step. In this step, we are creating a connection with Redis to 

lookup the campaign id of our advertisement. If there is not appropriate campaign with 

these ads, then we are going to eliminate this advertisements event.   

 

Figure 17. Benchmark Design [7] 
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The fifth processing unit of our benchmark scenario is the aggregations. In our 

benchmarks, there is a time-divisor property in our configuration file, which is defining the 

size of the time window for aggregation. The processing unit is aggregating events by 

campaign id and time window.  

The sixth processing units of our benchmark scenario are the storing result. We are storing 

all our aggregation results in Redis. After finishing Benchmark before stopping Redis, we 

are loading this data into the file system.  

Yahoo's [7] aggregation and storing technics doing its jobs in two ways. The first one of 

them is the CampaignProcessorCommon class which has been created under benchmarks-

common projects. It is the common helper class which is handling fifth and 6th step by 

itself. Talking about how it works, we can say that it contains a campaign_windows 

LinkedHashMap and a need_flush Set local fields. After the 4th steps when we transmit 

data to inside these classes, it will aggregate events and store result in campaign_windows 

map and meantime local flusher thread will control the closed window for storing the 

result of that windows in Redis. 

The second way of aggregating data is using the native aggregate, groupBy, and 

reduceByKey methods which Stream Engines provide with their APIs.  

For the benchmarks of Flink, Kafka, Storm, and Heron, we have used the first 

implementation. However, Spark DStream and Structured Streaming benchmarks used 

Native Stream processing APIs. Let's go to deep with our Benchmark implementations with 

the mentioned Engines. Before we forked the benchmark, Yahoo had implemented four 

SPS; Flink, Storm, Spark DStream, and Apex19. You could check the version of engines from 

the Table 4.  

Before implementing new engine benchmarks, we were going to upgrade engines which 

have been added by Yahoo. Upgrades of Kafka version has affected all benchmarks, and 

we were gone to update all related dependency of existed projects. We exclude the Apex 

from our benchmark. After running the Storm benchmark due to the low performance, we 

decided not to compare it with our Engines benchmark. 

Flink benchmark has been developed by Yahoo which we included it in our benchmarks as 

well. When running Flink benchmark in our Environment, we set the parallelism to 144 

(hosts * core). Because of the Kafka version upgrade, we changed Data source from 

FlinkKafkaConsumer082 to FlinkKafkaConsumer011. In Flink Benchmark data has been 

transmitted in Tuples. 

Before choosing new Stream Processing engines, we had to decide amongst Kafka, Spark 

Structured Streaming, Heron, and Hazecast Jet. Due to Hazelcast Jet’s recently developed 

implementation and some missing features, we ended up with skipping it after some basic 

tests.  

                                                 
19 https://apex.apache.org/ 

https://apex.apache.org/
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Besides the fact that Kafka has been involved as a message broker, Kafka Stream was used 

as a Stream processing engine as well. Thanks to its APIs, implementation did not require 

too much work-around. Kafka Stream API provides us StreamsBuilder class to create 

Stream processing bolts. While processing our advertisements stream, we have used 

mapValues to parse our JSON strings to POJO object. We took advantage of Kafka’s filter 

method and mapValues for projections for events’ properties. RedisJoinBolt class has been 

created and extended Transformer abstract class. This class helped us to enrich the ads 

events by campaign id retrieved from Redis. Kafka Stream gives us the opportunity to 

create our custom Processors with AbstractProcessor abstract class. We have used this 

class to construct our common aggregate class and invoke it for each incoming event.  

After updating Spark to the latest version, we noticed the new Structured Streaming API, 

and we decided to include Spark’s new concept in our benchmarks. We have implemented 

it under the spark-cp-benchmark module. 

One of the biggest advantages of Structured streaming is, processing units as known as 

bolts, can be defined by using SQL. For example, we have used "CAST (value as string)" 

query for parsing data into String when it is received from Kafka. Filtering methods of Bolts 

were similar as SQL syntax too. In this implementation, we, have aggregate data stream by 

Spark Structured APIs. For group operations, we called groupByKey by campaign_id and 

window_time parameters, count method for counting advertisements of appropriate 

windows, and finally as("count") method to attach count of advertisement to the 

streaming again. By the end of this process, we save the results to Redis Database with 

"update" output mode of the writeStream. 
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5 Experiment 

After creating our Droplets in DigitalOcean, we were going to test our benchmark scenario 

with several different configurations. One by one we installed and ran all clustered engines. 

While running benchmark we did not use any resource management platform such as Yarn, 

Mesos, etc. All engines have been installed in standalone mode. Let's talk about the details 

of configurations of our implementations. You can check our configuration script (setup.sh) 

from our repository. 

5.1 Experimental Design 

In our infrastructure, we have installed 3 Zookeeper and 5 Kafka servers. We used the same 

Zookeeper instances as service managers for the Storm and Heron Engines. For Zookeeper 

servers, we had a heap size of 7GB heaps in maximum. 

Furthermore, we have used 5 Kafka Servers with 32G maximum heap size. To achieve 

nearly the best performance of Kafka, we have changed the default properties of our Kafka 

engines.  We have tested large topic partitions in our benchmark, and that is why our 

network thread size changed to 20 to receive and send more network requests 

concurrently. Kafka's disk I/O thread count has been increased up to 8. Nevertheless, [12] 

flushing data to the disk is more expensive to process. Kafka servers has enough memory 

to keep and process messages in Memory, and because of that, we set a huge interval for 

flushing data to the disk space. During benchmark, the flush interval of a number of 

messages was 10 million, where of the time was 100 seconds. The same configuration has 

been used for Kafka Streams as well except the Kafka Engine version which was 1.1.0. This 

Kafka version could not be used for engines as message broker because of missing Kafka-

client support for consumers. 

Flink was implemented in the master-slave model, where there were a single master and 

nine slave nodes. Flink heap size of task managers has been set to 30GB and job managers 

heap size has been set to 15GB.  The number of task slots for slaves was set to 16 since all 

of our stream servers have 16 vCPUs. Before installation, we have set public SSH keys 

among all our benchmark servers with our installation scripts. That is why after listing all 

our slave nodes to slaves and master node to masters file our installations for our Flink 

stream processing environment have been finished. 

Later, Spark was implemented with the same model- a single master and nine slave nodes. 

As we mentioned before, we did not run Spark Streaming with the default configuration. 

We have increased heap size and executor count and made it more compatible with our 

benchmarks and environment. For our Spark engines, a number of cores for the executors 

have been defined as 16 and memory per executor was of 30GB. On every slave, the total 

number of cores to be used has been set to 16, and total memory to be used by executors 

on workers was 30GB. The micro batch size- a vital parameter of Structured Streaming and 

DStream with Spark, was set to 3 seconds same as in Yahoo’s benchmark. We have run our 
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benchmark with such properties on Spark Streaming Engines, and we believe that it was 

the adequate configuration for our case.  

Finally, Storm engine has been implemented and configured in standalone mode. As the 

previous streaming engines, we also thought about optimizing configuration for this tool. 

We tried to adopt Storm to our benchmark and servers. A single node allocated as a nimbus 

for clustered Storm and 3 ZooKeeper servers were used as service managers. For childopts 

of supervisors and workers 16GB memory has been allocated. However, 24GB memory has 

been allocated for nimbus's childopts.  We have tested our Strom benchmarks with 

different combinations of worker count, Acker counts, and topic partitions. Comparing all 

cases, we obtained the highest throughput and lowest latency with 36 workers, 9 ackers, 

and 100 Kafka Topic partitions. This was the only case that we have set Kafka topic 

partitions to 100. However, considering all the engines, we did not get a satisfactory result 

for comparing it with Kafka, Flink, and Spark. Therefore, in the next chapter, we will 

compare throughput, latency and resource consumption of Flink, Kafka and Spark Engines 

in our benchmarks and talk about their performances regarding mentioned characteristics.  

5.2 Stream Experimental Result 

You can find all the metrics we obtained from our benchmark. The duration between start 

and stop time of data loaders has been set to 600 seconds. However, after stopping data 

loaders, we have waited 60 seconds all environment up and running for processing queued 

event in the brokers. Data loaders emit rate has been varied between 10K TPS and 150K 

TPS. Emit rate has been increased by the step of 10K transactions per seconds. All the chart 

and graphs provided in the next sections were illustrated based on the experiments. 

5.2.1 Latency and Throughput  

In this section, we will evaluate the result of Benchmarks and will try to find bottleneck of 

each stream processing engines. 

Flink Benchmarks Results 

TPS range for Flink benchmark was between 10K and 150K. In Figure 18, information about 

Flink percentile of latency and windows latency can be found as a chart. From the figure, 

we can conclude that below 75% percentile all benchmarks behaved similarly, regarding 

latency was independent on emit rate. Above 75% percentile, the latency of each emits 

rate between 100K - 150K, varied between 1 second and 2.5 seconds. However, latency 

until 100K emit rate, increased linearly. In Figure 18b, we can see latencies of all windows. 

Because of three facts, our windows count was approximately 6000.  These reasons were; 

a) we had defined window size as 10 seconds, b) the benchmark duration was 600 seconds 

c) Total amount of campaigns was 100.  We observe that Flink has the bottleneck when 

TPS is 150K. Because when we check the chart, we will see that 150K TPS has been 

increased latency more than others. In the percentile graph since after 140K emits rate 

90% percentile of latency was more than two seconds. 
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Spark DStream Benchmarks Results 

Data loader emit rate varied between 10K TPS and 150K TPS for Spark DStream Benchmark. 

Three seconds micro-batch size has been defined for Spark DStream Streaming.  From 

Figure 19, we can check the percentile and regression latency of spark streaming.  From 

our benchmark, we can say that Spark DStream bottleneck was around 130K emit rate. 

After 130K emit rate percentile latency radically increased. When we check, we observe 

that after 130K emit rate, the latency of windows jumped around from 10 seconds to 40 

 

(a) Percentile of latency 

 

(b) Loess regression of latencies 

Figure 18. Flink Benchmark latency reports 
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seconds. If we excluded the 140K and 150K emit rate, (Appendix II, Figure 25) latency of 

emitting rate between 110K and 130K would be higher than the others. Thus, we can say 

that Spark DStream had an excellent performance below 110K emit rate. 

Spark Structured Streaming Benchmarks Results 

Data load emit rate varied between 10K TPS and 150K TPS for Spark Structured Streaming 

benchmark and 3 seconds micro-batch size has been defined for the benchmark. In Figure 

20, we can see the percentile latency and latency of windows of Spark structured 

 

(a)  Percentile of Latency 

 

(b) Loess regression of latencies 

Figure 19. Spark DStream Benchmark latency report 
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streaming. Spark Structured streaming throughput is higher than Spark DStream. While 

emit rate is above 140K, the latency of DStream is greater than Structured Streaming. 

However, having the latency more than 7 seconds is not good while micro-batch size has 

been chosen as 3 seconds. On the graph, we see that the latency is always above 7 seconds 

where the TPS is 150K.  

 

(a) Percentile of Latency 

 

(b) Loess regression of latencies 

Figure 20. Spark Structured Streaming Benchmark latency report 
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Kafka Stream Benchmarks Results 

Same as for the previous cases, data load emit rate was defined to change between 10K 

TPS and 150K TPS for Kafka Streaming benchmark as well. In Figure 21, percentile and 

window latencies values are illustrated. Before the evaluation and comparison of Kafka 

with other engines, there is a benefit to emphasize that we have created five partitions 

topic. Because only ten servers have been attached to the Kafka benchmark in total as 

 

(a) Percentile of latency 

 

(b) Loess regression of latencies 

Figure 21. Kafka Stream Benchmark latency report 
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stream and broker servers, where there were 15 of them in other benchmarks. From Figure 

21, we can easily observe that 150K emit rate is the bottleneck of Kafka. Same as the Flink, 

below 75% percentile latency increases linearly, where the benchmark is excluded by emit 

rate 150K. With our implementation, Kafka’s highest throughput with low latency was 

140K TPS, which means any value above that is a bottleneck. When Data loader emitting 

rate is 150K after 50% percentile latency radically increases.  

 

(a) Strom percentile of latency 

 

(b) Loess regression of latencies 

Figure 22. Storm Benchmark latency report 
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Storm Benchmarks Results 

From the Figure 22, we can see the low performance of Storm. Although, Storm’s 

performance below 60K TPS is comparable with Flink and (Appendix II, Figure 26), Storm 

was the engine which we caught the earliest bottleneck. If we take a look Figure 22b, we 

can see after 60K TPS latency increased over the 60 seconds and then Storm engine left 

unprocessed event behind it. When TPS was maximum Storm engine left unprocessed 

more than half of events.  

5.2.2 Comparative Latency 

In this section, we will compare performances of our streaming engines regarding latency 

on several emit rates. In Figure 23, you can see how the relationship between the latency 

of each stream depending on throughput for 90 and 99 percentiles. Although the general 

view is similar, for both cases, we would like to emphasize some points regarding the 

charts. Starting with 90%, we observe that Spark DStream has a drastically changed after 

100K emit rate where it keeps having increasing latency until 150K. Although Spark Dataset 

has more constant latency in most of the time, we see that DStream has at least two times 

better performance than it for the emit rates below 100K. We also observe a reduction in 

Spark’s Dataset with a larger amount of data which is even better than lower emit rates. 

Even though we realize that before interpreting it, it is important to test it with larger data 

emit rates, we think that Spark Dataset has more scalable performance independent of 

emitting rate. Another attention-grabbing point in this chart is about Flink’s almost-linear 

performance. It has the best performance regarding latency compared with any other tool, 

for any emit rate. We will talk about reasons underlying it at the end of this section after 

having a look at resource consumption results. Kafka is the only engine which competes 

with Flink for emitting rates below 120K. We see hyperbolic increment after that 

breakpoint. 

While reviewing results from 99% percentile graph, we obtain the same ideas from the 

previous comparison. Spark DStream starts with higher latency and continues very 

similarly and reaches to its point of failure at the same emit rate again. Spark Dataset 

follows the same shape as well, where we see that it reaches to its lowest at the ends of 

the chart. It lets us say that Spark Dataset should be tested at much larger emit rates to 

achieve better ideas about its performance. The most noticeable point between two charts 

of 90 and 99 % percentile is about Kafka’s latency. Although it was quite stable in the 

previous case, we see that in the second case it starts to increase close-to-linearly since 

the beginnings of the graph. Regarding this, we can say that 90% of the cases latency was 

low and didn’t vary a lot, but when it varied, the gap was too big that it affected the average 

latency of 99% percentile. Finally, we see that Flink has performed better than any other 

engine again, even though it has a small linear increase after 70K.  

Overall, we can inference that for the emit rates below 100K, Kafka and Flink has a good, 

and Spark DStream not bad performance, where Spark Dataset is approximately two times 
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slower than them. For higher emit rates, Kafka and Spark DStream are not performing 

trustful at all, where Flink has a linearly increasing and Spark Dataset has a linearly 

decreasing latency performance. 

 

(a) 90% percentile latency       

 

(b) 99% percentile latency 

Figure 23. Percentile latency report 
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5.2.3 Resource Consumption 

In this section, we want to share a comparison of the performance of the tools regarding 

resource- CPU and Memory usage, consumption. Figure 24, can give the reader a general 

idea about the resource usage of each engine. However, we want to talk about some 

interesting points in these charts. Please bear in mind that we reported these statistics for 

each server group separately. In the left side of the Figure, results of 10 Streaming servers 

are illustrated, where in the right side, they belong to the 5 Kafka servers that were used 

as message brokers. 

All of the Stream and Kafka servers have 16 cores CPU and 32 GB RAM. In Figure 24, 

average CPU and Memory usage of these servers are illustrated. Memory consumption 

usage percentage is evaluated out of 320 GB for stream servers and 160 GB for Kafka 

servers, where CPU usage percentage is based on total amount of 160 cores for stream 

servers and 80 cores for Kafka servers. To explain it more clearly with an example, we can 

think of the case where the chart indicates 6% of CPU usage and 10% Memory 

consumption. We can conclude from it that, at that particular time, the benchmark was 

consuming ten cores and 32GB of RAM respectively.   

First of all, we would like to start with CPU consumption of two different server groups by 

engines with emit rate at 90K. Talking about stream servers which we have installed 

streaming engines, we see that the highest average CPU use belongs to Flink. Although its 

CPU usage decreases considerably after 400 seconds, we see that at the beginning of the 

process it was two times higher than Spark tools and three times higher than Kafka 

Streaming. Another interesting point in the chart is about Spark Dataset’s performance. 

We can see that it starts with almost same as Flink- above 6 % and keeps decreasing 

constantly and reaches to its low by the end of the process. Kafka Streaming has an average 

and constant CPU consumption- approximately 3.5 %, since the beginning and slows down 

after 500 seconds. The best performance regarding CPU load of Stream Servers has been 

achieved by Spark DStream. We see that it starts at 3% and constantly decreases down to 

1.5 % during the first 200 seconds. Although it keeps increasing after this time, it never 

goes above 2% which is at least two times better performance than the other engines. 

From the right-upper chart, we can see that the CPU Load of Kafka message broker servers 

were a bit different than the Stream Servers. However, Apache Flink still has the highest 

CPU consumption compared with the other engines. We observe that it starts at 10 % and 

is always above 9% during the first 500 seconds of the benchmark. From the chart, we can 

see that Kafka Streaming has the lowest consumption of CPU resources. At this point, we 

want to point out the fact that, while running the benchmark for Kafka Streaming, although 

we reserved, 15 Servers in total, in most of the time not more than 10 of them were in use. 

Use of servers was managed by Kafka itself, and we did not add or remove more servers 

to the cluster manually. Since some droplets were not actively part of the benchmark, their 

average CPU consumption is lower with a big gap than the other engines. We can also 
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observe that Spark engines had very similar results in this case. They both start above 5% 

and then slow down after 500 seconds when the process is about to finish. 

The second term of resource consumption is about memory load of both- Stream and 

Kafka, servers during benchmarks. While checking the first chart, we see Flink’s remarkable 

low performance even from the first glance. It is observed that Flink had more than 50 % 

of the memory load after 300 seconds, which is six times of Kafka Stream’s memory load. 

Kafka Streams always performed below 10% of Memory load on Stream Servers, and it is 

also about the fact that some servers were not used all the time actively by Kafka. Spark 

Dataset performed the average Memory use which was around 17% in its peak. However, 

we can say that it loaded 15% of the Memory constantly during the last 500 seconds. The 

most scalable performance here is achieved by Spark DStream which increases the 

memory use with a very small percentage. Although it reached 8% of memory use in the 

100th seconds, we see that it never goes above 15% during the benchmark.  

 

(a) Stream Servers                                                      (b) Kafka Servers 

Figure 24. Resource Consumption for 90k TPS 
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Because Flink [5] uses on-heap memory as a memory segment and keeps the data 

processing on binary representation and off-heap, as well as reduces Garbage Collector's 

job to the minimum, the memory is loaded more than average during Flink benchmark 

comparing with the rest of the engines. On the other hand, this memory management 

helps Flink gain high throughput and low latency. Flink loads Garbage Collector of JVM in 

minimum levels and provides better performance in this way. However, Spark and Kafka 

applications rely on JVM GC for memory management. However, as Spark and Kafka [12, 

9] applications, JVM's garbage collector push the boundary of performance and creates 

low memory consumption for both systems. Because of the micro-batching process with 3 

seconds interval, Spark has a higher memory consumption compared with Kafka. 

The graph that Kafka Servers’ memory use is illustrated shows that engines loaded memory 

in different rates and in a different way. Kafka Streams is the only one which still has a very 

scalable performance where it does not load the memory more than 5% at any moment. 

Flink’s performance is the same as of the Stream Servers with the only difference that the 

highest and average use is around 37%. The unexpected behavior for us was about Spark 

tools performance. Dataset and DStream both reach the 35% of the memory use in less 

than 200 seconds and after that keep constant use around 35%, which is the same as 

Flink’s. 
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6 Conclusions 

Finally, we will conclude the experiments and results we obtained regarding the thesis of 

this master research. First of all, we would like to emphasize that the results that are 

shared represent only some part of the benchmarks we ran. We have run more 

configuration versions for each engine, where 15 different emit rates were tested for each 

of them as well. In the contribution section, we only included the most meaningful results 

regarding the main concept. Besides the performance regarding latency, throughput and 

resource consumption, we would like to share that Heron and Hazelcast tools had the most 

complex setup configuration and maintenance feature to manage. 

Regarding the performance of the tools we have tested, we can say that each of them had 

pros and cons depending on the environment and other factors. We think that as real-time 

stream processors Flink and Kafka are most noticeable ones. We have already seen how 

low latency Flink provides for high emit rates comparing with the rest of the engines. 

However, we have also seen that it is because it exploits resources such as CPU and 

Memory use. Although Kafka did not load the servers as much Flink did, its latency was not 

far from the latter one. At this point, we can say that, if a user needs real-time processing, 

with low latency, Kafka is a very optimal choice. Moreover, for the cases where real-time 

is the most important factor-such of network monitoring systems, fraud detections, etc., 

and there are no resource limitations, Flink must be preferred over the rest. 

Spark tools had lower performance for real-time processing. Although DStream used fewer 

resource consumptions and performed well at the beginning of the process, it exhibited its 

bottleneck at emitting rate 90K which is low for real-time applications. Thus, we evaluate 

DStream with ‘failed’ in our benchmark. Talking about Structured Streaming of Spark, we 

should consider that we had micro batching for this engine. Batch size was 3 seconds, and 

thus, although 6 seconds of latency is above average compared with other engines, 

considering its throughput, we think this new tool performed well. It can be chosen for 

continuous processing because of its sustainability as well. 

Overall, it can be said that for real-time processing, depending on system requirements 

and hardware characteristics, Flink or Kafka can be used for large emit rates. For 

continuous processing, Spark’s Structured Streaming can be adequate because of its high 

throughput rate. 
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7 Future Work 

Although we believe that we have tested the most well-known stream processing tools, 

there are several engine or frameworks that deserves to be involved future replications of 

this master research. One of them is Heron which we have started and worked within the 

local, but we do not have remote results included to this master thesis. From our 

observations based on the local run, we truly believe that Heron can compete with today’s 

leader engines, and this master research can be extended by its tests. Another interesting 

framework to be added to this benchmark could be Hazelcast Jet which we talked about 

in this paper previously. Besides these two, new technologies can be followed, and a 

researcher can include more tools since the infrastructure is very convenient for it. The 

very first example of them can be Apache Samza because it has good bonds with Apache 

Kafka. Moreover, benchmarks with new versions of engines that have been used during 

this master thesis would be another interesting approach. For example, newer versions of 

Spark starting from v2.3.0, Structured Streaming supports continuous processing which is 

a must have for the future replications of this benchmark.  

As a part of future work, benchmarks of Flink and Kafka can be refactored by using native 

methods such as grupBy, reduceGroup, and groupByKey and be included to the 

benchmark. 

One of the most powerful sides of our research was that we compared the tools regarding 

latency, throughput and resource consumption, which are three main concepts in stream 

processing world. However, monitoring network usages of different engines, comparing 

their behavior amongst nodes and clusters can be a useful way to extend this research 

with. 

Another approach could be about the program that was used for the tests. As we have 

already mentioned our implementation did not have all the operations that are used very 

frequently in the big data world. One of them is ‘join’ operation, which can easily be added 

to this benchmark by dividing ‘click’ and ‘view’ events to be logged on two different stream 

pipelines. A ‘join’ operation can later be used to gather all information based on their 

‘advertisement_id.’ 

Finally, there are some requirements which we mentioned in the ‘Related Work’ section 

of this paper but didn’t refer to our master thesis. For example, scalability and rebalancing 

tests could also be very interesting for big data processors. It is possible that in the future 

improvements we increase the total amount of nodes in the system and more metrics to 

evaluate these two features of the tools we have used. 



55 

 

8 References 

 

[1]  H. Rui, K. J. Lizy ja Z. Jianfeng, „Benchmarking Big Data Systems: A Review,“ 

IEEE Transactions on Services Computing, kd. 11, nr 3, pp. 580-597, 2018.  

[2]  J. Waite, „10 Key Marketing Trends for 2017,“ IBM. 

[3]  L. Doug, „3D Data Management: Controlling Data Volume, Velocity, and Variety,“ 

META Group Inc, Stamford, 2001. 

[4]  M. Kleppmann, „Designing Data-Intensive Applications,“ %1 Designing Data-

Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable 

Systems, Sebastopol, O'Reilly Media Inc, 2017, pp. 383-239. 

[5]  "Apache Flink Project," [Online]. Available: https://flink.apache.org/. 

[6]  "Apache Storm Project," [Online]. Available: http://storm.apache.org/. 

[7]  C. Sanket, D. Derek, E. Bobby, F. Reza, G. Thomas, H. Mark, L. Zhuo, N. Kyle, P. 

Kishorkumar, J. P. Boyang ja P. Paul, „Benchmarking Streaming Computation 

Engines: Storm, Flink and Spark Streaming.,“ IEEE, 2016.  

[8]  "Apache Zookeeper Project," [Online]. Available: https://zookeeper.apache.org/. 

[9]  "Apache Spark Project," [Online]. Available: https://spark.apache.org/. 

[10]  Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, 

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica, "Resilient 

distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.," 

NSDI'12 Proceedings of the 9th USENIX conference on Networked Systems Design 

and Implementation table of contents, pp. 2-2, 25 04 2012.  

[11]  "Apache Heron Project," [Online]. Available: https://apache.github.io/incubator-

heron/. 

[12]  "Apache Kafka Project," [Online]. Available: https://kafka.apache.org/. 

[13]  Hazelcast, "Hazelcast Jet," [Online]. Available: https://jet.hazelcast.org/. 

[14]  G. Can, "Introducing Hazelcast Jet - DZone Java," 11 February 2017. [Online]. 

Available: https://dzone.com/articles/introducing-hazelcast-jet. 

[15]  "Redis Project," [Online]. Available: https://redis.io/. 

[16]  S. Michael, Ç. Uǧur ja Z. Stan, „The 8 Requirements of Real-Time Stream 

Processing,“ SIGMOD Rec., kd. 34, nr 4, pp. 42-47, 2005.  

[17]  R. Tilmann, F. Michael, D. Manuel, H.-A. Jacobsen and B. Gowda, "The Vision of 

BigBench 2.0," Proceedings of the Fourth Workshop on Data Analytics in the 

Cloud, p. 4, 31 05 2015.  

[18]  C. Paul, G. Bhaskar, L. Seetha, N. Chinmayi, N. Patrick, P. John and P. Meikel, 

"From BigBench to TPCx-BB: Standardization of a Big Data Benchmark," in 

Performance Evaluation and Benchmarking. Traditional - Big Data - Internet of 

Things, vol. 10080, New Delhi, Springer, Cham, 2017.  

[19]  "Transaction Processing Performance Council," [Online]. Available: 

http://www.tpc.org/. 

[20]  T. Ivanov, "Big Data Benchmark Compendium," in Performance Evaluation and 

Benchmarking: Traditional to Big Data to Internet of Things, Kohala Coast, HI: 

Springer International Publishing, 2016, pp. 137-146. 



56 

 

[21]  Y. Wang, „Stream Processing Systems Benchmark: StreamBench,“ Aalto 

University, Espoo, 2016. 

[22]  Yahoo, "Yahoo Streaming Benchmark," Yahoo, [Online]. Available: 

https://github.com/yahoo/streaming-benchmarks. 

[23]  C. Boden, A. Spina, T. Rabl and V. Markl, "Benchmarking Data Flow Systems for 

Scalable Machine Learning," Proceedings of the 4th ACM SIGMOD Workshop on 

Algorithms and Systems for MapReduce and Beyond, pp. 1-3, 2017.  

[24]  D. Tathagata, Z. Matei and W. Patrick, "Diving into Apache Spark Streaming’s 

Execution Model," 30 07 2015. [Online]. Available: 

https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-

execution-model.html. 

 

 



57 

 

Appendix 

I. Abbreviation 

SSH Secure Shell 

SPS Stream Processing Systems 

SPE Stream Processing Engines 

TPC Transaction Processing Performance Council 

TPS Transaction Per Seconds 

POJO Plain Old Java Object 

CPU Central Processing Unit 

RAM Random-access Memory 

JSON JavaScript Object Notation 

ML Machine Learning 

CEP Complex Event Processing 

HDFS Hadoop Distributed File System 

JVM Java Virtual Machine 

API Application Programming Interfaces 

RDD Resilient Distributed Dataset 

DAG Directed acyclic graph 

SPEC Standard Performance Evaluation Corporation 

SPC Storage Performance Council 

DBMS Database Management System 

ETL Extract Transform and Load 

SQL Structured Query Language 
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II. Benchmark Result Charts 

 

 

(a) 90% percentile latency       (b) 99% Latency of Windows 

Figure 26. Latency report of All Engines (Storm Included) 
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(a) 90% percentile latency       (b) 99% Latency of Windows 

Figure 25. Latency report of Spark DStream since 130K  
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III. Source Code 

The link to the GitHub Repository of the project is shown below: 

 https://github.com/elkhan-shahverdi/streaming-benchmarks 

• spark-benchmark: Contains Spark Dataset benchmark codebase. 

• spark-cp-benchmark: Contains Spark Structured Streaming benchmark codebase. 

• kafka-benchmark: Kafka Stream benchmark codebase. 

• heron-benchmark:  Heron benchmark codebase. 

• storm-benchmark:  Storm benchmark codebase. 

• hazelcast-benchmark: Hazelcast Jet benchmark code base 

• streaming-benchmark-common:  Common libraries codebase 

• conf: Contains local and remote benchmark configurations. 

• data: Contains data generator Clojure scripts. 

• reporting: Contains reporting R scripts. 

• result: Contains result of benchmarks and generated reports. 

https://github.com/elkhan-shahverdi/streaming-benchmarks
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