
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Elkhan Shahverdi

Comparative Evaluation for the Performance of Big

Stream Processing Systems

Master’s Thesis (30 ECTS)

Supervisor: Sherif Sakr

Tartu 2018

2

Comparative Evaluation for the Performance of Big Stream Processing

Systems

Abstract:

Nowadays data is growing with tremendous acceleration, and this growing data must be

processed properly if we want to have control over it. It pushes us to think about data

stream processing. Most of the time, a data-intensive fraud detecting, trading,

manufacturing, military and intelligence systems require processing data immediately

(real-time). These kinds of systems need considerably ssophisticated pattern matching and

correlations. However, other uses of stream processing have also emerged over time. In

this thesis, we will benchmark to compare and contrast Apache Flink, Apache Storm,

Heron, Kafka an Apache Spark stream processing engines. In these applications and

domains, there is a crucial requirement to collect, process, and analyze significant streams

of data to extract valuable information. This thesis aims to conduct an empirical evaluation

and benchmarking of the state-of-the-art of big stream processing systems.

Keywords:

Stream Processing, Batch Processing, Benchmark, Apache Flink, Apache Spark, Apache

Storm, Apache Heron, Apache Kafka, Kafka Stream

CERCS:

P170 Computer Science, Numerical Analysis, Systems, Control

3

Big Stream'i Töötlemissüsteemide Toimivuse Võrdlev Hindamine

Luhikokkuvõte:

Andmete hulk kasvab tänapäeval meeletu kiirusega ning seda andmete hulka tuleb

korrektselt töödelda, et saavutada kontroll andmete üle. Antud olukord sunnib meid

mõtlema andmevoo töötlemise peale. Enamasti nõuavad andmemahuline pettuse

tuvastus-, kaubandus-, tootmis-, sõjanduse ja luure süsteemid pidevat andmete analüüsi

(reaalajas). Sellist tüüpi süsteemid nõuavad kõrgetasemel ist mustrite sobitamist ja

korrelatsioone. Aja jooksul on ilmnenud erinevaid andmevoo töötlemise võimalusi. Antud

teesis tehakse jõudlustest Apache Flink, Apache Storm, Heron, Kafka ja Apache Spark

andmevoo töötlemismootoritega ning tulemusi võrreldakse ja vastandatakse omavahel.

Nendes rakendustes ja domeenides on väga oluline nõue koguda, menetleda ning

analüüsida olulisi andmevooge, et eraldada sealt väärtusliku informatsiooni. Antud teesi

eesmärk on läbi viia empiiriline hindamine ning võrdlemine kõrgtasemel andmevoo

töötlemissüsteemide vahel.

Võtmesõnad:

Andmevoo töötlemine, Partii töölemine , Jõudlustest, Apache Flink, Apache Spark, Apache

Storm, Apache Heron, Apache Kafka, Kafka Stream

CERCS:

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)

4

Table of Contents

1 Introduction ... 6

1.1 Scope ... 7

1.2 Motivation ... 7

1.3 Research Problem.. 8

1.4 Structure .. 9

2 Background ... 10

2.1 Streaming .. 10

2.1.1 Use case ... 10

2.2 Apache Flink ... 11

2.2.1 Architecture ... 11

2.2.2 Flink APIs ... 12

2.3 Apache Storm .. 13

2.3.1 Architecture ... 13

2.4 Apache Spark .. 14

2.4.1 Programming Model ... 15

2.4.2 Spark Streaming .. 16

2.4.3 Spark Structured Streaming .. 16

2.5 Apache Heron.. 17

2.5.1 Architecture ... 17

2.6 Apache Kafka .. 18

2.6.1 Producers and Consumers ... 19

2.6.2 Kafka Streams ... 20

2.7 Hazelcast Jet .. 21

2.8 Apache Zookeeper .. 23

2.9 Redis .. 24

3 Related Work .. 25

3.1 StreamBench ... 28

3.2 Yahoo Stream Benchmark .. 30

4 Contribution .. 33

4.1 Environment .. 33

4.2 Benchmark Architecture ... 34

4.3 Environment Setup .. 35

4.4 Benchmark Execution ... 36

4.5 Implementations .. 37

5

5 Experiment .. 41

5.1 Experimental Design ... 41

5.2 Stream Experimental Result .. 42

5.2.1 Latency and Throughput ... 42

5.2.2 Comparative Latency .. 48

5.2.3 Resource Consumption ... 50

6 Conclusions ... 53

7 Future Work .. 54

8 References ... 55

Appendix ... 57

I. Abbreviation .. 57

II. Benchmark Result Charts .. 58

III. Source Code .. 59

IV. License .. 60

6

1 Introduction

New technologies are changing the world faster than one can imagine. These changes can

be found in every field, and each of them brings tons of new data to us and most of the

time the information we retrieve is not self-explanatory. At this point, the importance of

Big Data and its process in a productive way emerge. It is not a coincidence that data is

defined as 'the petrol of the economy' nowadays. Thus, big companies and institutions are

very interested in investigating on Big Data, and they all realize that whoever takes the

lead in this sector, will have a significant role in the market control.

Big Data challenges include capturing data, data storage, data analysis, search, sharing,

transfer, visualization, querying, updating, information privacy and data source. To ease

the management of Big Data challenges are mostly grouped in two main aspects by

engineers: Data Storage and Data Process. In this master thesis, we will mainly concentrate

on Data Process. A proper Data Process management can optimize the amount of the data

to be stored as well, by reducing repeated or unnecessary information. However, today's

good algorithms or methods for Data Process can easily be stale tomorrow.

Before [1] getting started with Big Data Process, it is essential to have a look at the so-

called '3V of Big Data': Volume, Velocity, Variety. Volume problem can be easily

understood by the fact that 9/10 part of the data currently existing on the Internet, was

created in the last two and half years [2, 3]. Velocity is mostly about the amount of data

going through the Internet in a single time unit. Because of the inevitable increment of

internet users, we know that this number increases radically every day. Regarding Variety,

we must consider that there are billions of video, audio and text files generated by

different devices, and even each kind may contain variations in the file formats.

Figure 1. Big Data 3Vs

Data

Volume

Data

 Variety

Data

Velocity

YB

ZB

TB
EB

MB

KB

PB

GB

Real Time

Interval

Sparse

Batch

RD BMS

Unstructed Video

SMS

XML

cvs

TEXT

7

With this research document, we will try to provide some information about the Data

Process on different frameworks. In the following sections of this document, you will find

information about the purpose of the benchmark, how it is exactly done, previous works

in this specific topic, as well as some useful results regarding choosing the adequate

framework for users' needs.

1.1 Scope

As we already mentioned, Data Process contains various steps. In this master thesis, we

will mostly focus on Batch and Stream Processes and behaviors of different frameworks

regarding them. To obtain more meaningful results, we chose the most well-known

frameworks such as Flink, Spark, Storm, Heron, and Kafka. The streaming benchmark

simulated an advertisement analytics pipeline, and the job of the benchmark was to read

advertising log events and process them in the shortest potential time. The same amount

of data- from 10K to 100K advertisement log events per second have been utilized for all

frameworks, and results were evaluated concerning latency, throughput, and resource

consumption. All the implementation process was done on CPU optimized Ubuntu1

running servers of DigitalOcean2.

We ran a specific algorithm to implement streaming machine learning algorithms such as

regression, classification, and clustering on Big Stream processing environments. The data

that was used for this research was similar to real-world advertisement log events, and the

amount of the data was close to our servers’ capacity. Although we acknowledge that

another implementation of this benchmark with a more extensive dataset could provide

more trustful results, we are confident that all the tests we have accomplished gave us a

bright idea about the performance of the mentioned frameworks.

1.2 Motivation

In the Big Data world, what is important is not the amount of the data are worked with,

but how that data is handled. Processing Data means manipulating all of it in a way to

produce useful information depending on own purposes. Combining big data with high-

powered analyses, business-related tasks such as customer-based content management,

risk management, fraud and real-time failure detection, etc. can efficiently be

accomplished. Thus, the most challenging and critical part is not just about if you can

extract the information that your analytics will use, also if you do it efficiently. The term

'Derived Data' is what you will have at the end of the day [4].

There are many derived data processing types. Batch Processing and Stream Processing

are the most valuable types, and our benchmark is focused on them. Below in Figure 2,

you can find brief definitions of the two processes that we are going to talk about:

1 https://www.ubuntu.com/
2 https://www.digitalocean.com/

https://www.ubuntu.com/
https://www.digitalocean.com/

8

Batch Processing: Batch processing loads a significant amount of data, runs specific jobs

and algorithms on it, generates output data. The most relevant performance measures are

the throughput and latency. Batch Process is useful for long-term strategies, and the

process itself requires a considerable amount of time comparing with stream processing.

Since this process is based on one (or several but not too many) huge file/record, the need

for Map Reducer tools is expected.

Stream Processing: Stream processing is an online data [4] processing which runs jobs on

flooding data. The stream processors consume the input and produce an output.

Furthermore, the analyses are done for each event or small event groups in real time. Due

to the I/O bottlenecks of Distributed File Systems, Map Reduce is not preferred in this

process. Moreover, since records per unit are not big at all, you will most likely want to

keep them in memory. Running micro/macro batch processes during stream processing is

also probable.

Existing engines behave differently in each step of the data processing because of the way

they are designed. To choose the most convenient framework; the user should define the

problem clearly and consider the engines' performance in that specific case. With this

paper, we aim to show the performance evaluation of previously mentioned engines based

on three main characteristics of Big Data: Volume, Velocity, and Variety. We hope that

after reading our research paper, readers will get some ideas about Big Data Streaming

process, the main features of each engine that have been used, and finally their more and

less powerful sides.

1.3 Research Problem

The main purpose of this master thesis is to find the proper engines for users' needs. To

achieve it, we had to have an idea about behaves of different frameworks, how they are

affected by their configuration, which of '3V' aspects they have a better performance, etc.

To put all these notions together and also have a structured research path, we came up

with the following questions which we believe that describes the principal goal of this

thesis:

Figure 2. Stream and Batch Processing

9

1) Which Big Data Benchmarking standard is more suitable for Big Data Stream

Processing?

2) What is the most effective configuration of Apache Flink, Spark, Storm, and Kafka?

3) What is the volume, velocity and variety capacity on fixed clustered

implementation of these stream processor?

4) Which stream processors are more efficient for clustered deployment?

We hope readers will find answers to these questions after studying this paper. However,

in future works part, you can see that we are not going to stop searching and we will always

try to reach the most satisfying answers for Big Data Process users.

1.4 Structure

This document contains six chapters. First of all, we begin with giving some general

formation about the scope and the purpose of this master thesis, and the methods we

have followed to achieve the final results. In the following section, we provide the

necessary background knowledge every reader should have before reading this document.

Most of them are about the frameworks and the environment that was used during the

research. Even though we believe that we shared enough resources for the users to

understand the concept of each framework, it is not reasonable to expect that the readers

will become an expert on these technologies.

Later on, in the third section, a reader can find previous works related to our research area.

Although the benchmarks are not the same, just close to each other, those papers and

research works were very enlightening for us, and we think they can be very useful for the

reader as well. Contribution section is where we talk about our work and benchmark, its

environment, implementation, configuration and management of each framework for our

requirements, and other small improvements we have accomplished. Since the

frameworks are kind of similar at some point and share identical terminology, to avoid

confusions, we separated that section into subsections. In Section 5.2, we evaluate the

results obtained from the benchmarking and efficiently share them with the reader. We

discuss the results and interpret the possible reasons for the expected and unexpected

figures at the end of the research.

Finally, we conclude the achieved results, gains and the aim of this master thesis, and add

some words about future works can be done in the related area.

10

2 Background

Before getting started with research details, we would like to let readers fulfill their

knowledge about the technology we have used. In this section, first we will provide some

middle-level terminologies that have been mentioned in this paper, and then we will talk

about the technologies which were mostly used to achieve our goals.

2.1 Streaming

Nowadays, everything we see on the internet or in the technology world is data, and that

data is being transmitted from one point to another one without cease. Transactions we

do through our bank’s mobile app, ‘likes’ and ‘comments’ of our social media accounts,

messages and millions of other things are examples of the data being generated as a

stream. There are two types of streaming; Bounded and Unbounded. An unbounded

stream is a stream, which never ends (or we do not know when it will), and event data is

being processed continuously, which means future events are not important for the events

that are being handled now. In this case, all events are similar, and the only way to

differentiate them is their creation or received time. In contrast, start and end times are

defined in bounded streams. Data is handled in batches, and thus, this kind of streams are

also called batch processing. Below. in Figure 3, you can find an illustration of two

mentioned types of streams:

2.1.1 Use case

Users can easily develop and run diverse types of applications with stream processors. We

can group those applications into three main categories.

First of them would be event-driven applications which are considered as a derivative of

traditional transactional applications. The main difference between these two is that

event-drive applications have separated compute and storage layers, and they also have

forever running event listeners. Instead of connecting to a remote Database, this kind of

applications use their local data which causes a better performance regarding throughput

and latency. Social media websites, business process monitoring systems can be good

examples of event-driven applications. The bottleneck of this kind of applications is how

time and state are handled by the stream processors. Streaming engines provide event-

Figure 3. Streaming Types [5]

11

time, customizable window logic, as well as save points. Savepoints are externally stored

checkpoints that are used to stop, resume, and update the application.

The second type of applications is mostly used is Data-Analytics Applications. These

applications’ job is to extract or produce useful information from the stream’s raw data.

Most of the time results are emitted as reports or written to a storage system. Streaming

analytical applications have more advantages over batch analytical applications. Customer

interaction, Internet/Web Search applications are some examples of Data Analytics

Applications.

Data Pipeline Applications is the last type we are going to talk about the use of Streaming.

In this case, applications are responsible for transforming, enrich and re-locate it from one

storage to another one. They must be able to read continuously read the date from a

source and move it to the destination storage with the possible latency. Data Pipeline

Applications provides larger use cases and more useful data than other applications. The

most of stream engines have a SQL Interface for this kind of applications which also

supports user-defined functions. Most of the e-commerce applications are Data Pipeline

Applications.

2.2 Apache Flink

Apache Flink is one of the most popular distributed processing engines which can be run

in all common cluster environments. What makes Flink so famous is that it is computation

speed is very close to memory-speed [5]. It is an open-source software which the license

is held by ‘The Apache Software Foundation3.’ Flink is a powerful alternate of MapReduce

and is very well paired with HDFS4. Applications which are meant to use Flink Streaming

can be programmed with Java5, Scala6, Python7 via using DataStream or DataSet APIs.

2.2.1 Architecture

Flink has a famous master and slaves’ structure where the master is the center of the

Flink’s component stack. Master is the owner of JobManager which comes up when Flink

file system is started. JobManager is the coordinator, and it controls the data flow which

is used by one or more TaskManagers on slaves.

Apache Flink clustered [5], distributed and fault-tolerate infrastructure implemented

minimum three different type of processes.

The Client: The Client transforms program code to a data flow graph and submits it to the

Job Manager

3 https://www.apache.org/
4 https://hadoop.apache.org/
5 https://java.com/
6 https://www.scala-lang.org/
7 https://www.python.org/

https://www.apache.org/
https://hadoop.apache.org/
https://java.com/
https://www.scala-lang.org/
https://www.python.org/

12

Job Manager: Job Manager is the coordinator of the distributed execution.

Task Manager: Task Manager executes operators that produce streams, deliver their

status to Job Manager, and exchange the data streams between operators.

Flink is also a layered system, and its architecture contains various components which are

built on top of each other. For example, the runtime layer is responsible for receiving

JobGraphs which is a generic parallel data flow with arbitrary tasks that consume and

produce data streams [5]. JobGraphs are generated in the API layer and are executed

according to available deployment options. The following figure which can be found in

Flink’s official documentation [5] understandably illustrates the components:

2.2.2 Flink APIs

Most of the developer-friendly features of Flink come with its APIs. As a layer, APIs are on

top of the Core tier [5].

DataSet API: Processes text or CSV files that have been generated on different sources, as

well as the data that retrieved from a local collection, and lets the user do several

operations on it, such as mapping, filtering, joining and grouping. Mostly used for

distributed tasks and runs the batch process in streaming runtime.

DataStream API: To achieve real-time batch data processing, does the filtering, updates,

defining windows, joins, etc. Can receive any kind of data from message queues, sockets,

file systems.

Table API: The main concept of Table is to let the user write simple SQL queries in high

layers of Flink instead of complex SQL Queries to process the data. Tables can be created

with DataStream and DataSet APIs by using Table Environments. Registered tables can be

retrieved by simple SQL queries.

Figure 4. Flink Architecture [5]

13

Gelly: Is a motor which lets users create, transform and process graphs. Graphs are

represented by DataSets. Those DataSets are made of vertices and edges. The API itself

contains several functions as well as graph algorithms, and also supports iterative

processing.

FlinkML: Machine Learning library for Flink users. It currently contains Supervised Learning

algorithms such as SVM, Multiple Linear Regression, Optimization Framework, as well as

k-Nearest Neighbours join from Unsupervised Learning.

FlinkCEP: Complex Event Processing library on top of Flink. It lets users catch event

patterns within unbounded streams, as well as filtering and combining them.

2.3 Apache Storm

Storm [6, 7]is a distributed, fault-tolerance computing system supporting streaming data

processing. By replaying data that wasn’t successfully processed previously, Storm

provides guaranteed data processing. The main difference of this engine is that it runs own

‘topologies’ instead of traditional MapReduce tasks. We talk about topologies in the next

section. The Storm is scalable, compatible with many programming languages, no data

loss, and noticeable fast for processing large data sets. Twitter, Yahoo, Spotify, Yelp are

some of Apache Storm’s famous users.

2.3.1 Architecture

When talking about Storm’s architecture [6], first of all, we should mention that although

it is very similar to Hadoop’s, they are not the same. Instead of jobs of Hadoop, there are

topologies in Storm which run forever (until killed by a user) to process messages

continuously, unlikely the Hadoop worker tasks.

Storm [6, 8] also has master-worker node structure, where the master is called Nimbus

and workers are called Supervisors. The master node is responsible for assigning tasks to

different machines, codes amongst clusters, as well as monitoring failures. To monitor the

message processing tasks, Nimbus uses Apache ZooKeeper services. Workers of Storm

clusters are used to run daemons called Supervisors. These nodes listen to Nimbus’s

messaged to assign a job to own machine or to stop them if necessary. All the messaging

between Nimbus and Supervisors are handled through Apache ZooKeeper cluster.

Another important point of Storm architecture is about its topology. A topology is what

has to be created for real-time computation. The processing logic of topologies are called

‘Bolt’s which receive data from ‘Spouts’ that are entry points of the topologies:

Spouts are responsible for reading data as tuples, from different storages such as

databases, distributed file systems, messaging frameworks and emit it to Bolts for actual

runs. Depending on the ability to replay the data, Spouts are classified into two groups:

Reliable and Unreliable. In the first case, when there is a failure in the process of the data,

tuples are recovered from the source and processed again.

14

All the real job including filtering, aggregation and joins, inside topologies are done on

Bolts. Generally, in cases when a topology has to do complex work, it is divided into

multiple Bolts which communicates amongst each other as shown in Figure 5.

In Storm, topologies are always submitted to clusters and run inside them. For running

topologies, there are mainly three types of entities:

Worker Process: Belongs to a specific topology and runs executors inside its topology. In

most cases, one topology contains more than one worker process.

Executor: Is a thread that has been generated by s Worker Process. Executor processes run

tasks for Bolts and Spouts.

Task: Is the entity which processes data and is created by executors. Thus, in Storm

applications, a number of tasks are always equal (by default one task per executor) or

greater than the number of executors.

2.4 Apache Spark

Spark is one of the biggest alternatives to Hadoop, and there are quite big communities

which prefers Spark over Hadoop. Spark is open-source, and it is developed in Scala. When

talking about this framework, the first thing to mention is that coding with Spark is a way

easier than comparing other frameworks we have talked about. Besides development, the

runtime of Spark is quite fast as well. On its website [9], developers claim that sometimes

it is 100 times faster than Hadoop’s MapReduce regarding memory processes. This lets us

say that users can use Hadoop (HDFS) as storage of old data but processing them via Spark

will be easier and faster. Overall, we can say that Spark’s simple programming model

captures batch, streaming and interactive workloads.

Figure 5. Storm Architecture [6]

15

2.4.1 Programming Model

Another advantage of Spark is that you can use it with traditional programming languages

such as Scala, Java, and Python. If you have already existing project, transforming it into a

Spark [10, 9] runnable doesn’t require too much work-around either. You only have to

decide which parts must be parallelized and apply the logic only to this part. Spark also has

some libraries which are frequently used by developers. The key point of Spark

programming is Resilient Distributed Dataset (RDD). RDDs are fault tolerant and

partitioned across a cluster, and that is why they can be handled in parallel. While

programming, users can create RDDs using some operations which are called

transformations, and later they will contain a collection of objects. Below you can find a

piece of code to estimate Pi value by ‘throwing darts’ method implemented in Python using

Spark:

In this example, RDD will contain a number range and then will filter them by checking if

they are inside the circle or no. Here, as we mentioned before, no calculation will be done

until the ‘count’ action is called. Once it is called, RDD will be created, filtered, and ‘count’

action will be performed.

RDDs are lazily evaluated, and it lets Spark to find an efficient plan for computations. Since

results of RDD operations are RDDs too, these transformations are not computed

immediately. Instead, when an action is being performed, Spark checks all the

transformations introduced and creates an optimized execution plan which sometimes

builds up better modularity than the programmer thought of. The execution is performed

only once for the whole graph of transformations. It is worthy to emphasize that RDDs

shares the data amongst computation nodes and they are only called when there is an

action taking place. However, as programmer’s wish, RDDs can be persisted in the memory

for rapid use (if data is too big for the memory, Spark will locate it on the disk as well).

Besides sharing and parallelizing data options, another powerful point of RDDs is

automatically recovering from failures. Instead of the traditional way of fault tolerance

where computing systems had replication or checkpoints, Spark provides a different

approach- Lineage [10, 9]. This process is done by saving a track of transformation graphs

and rerunning these operations on base data. This strategy is more efficient regarding

running time and storage, in data-intensive workloads. The reason is very clear, writing

data into RAM is significantly faster than the writing it over the network, and the recovery

process is done in parallel on different nodes.

Figure 6. Spark Programming Model [9]

16

2.4.2 Spark Streaming

We know that modern distributed stream processors take three sequential steps for

execution. First receiving the data, then process it, and finally emit the output. In the case

of Spark Streaming, it is a bit different. Instead of retrieving the data one by one, Spark

splits it into batches (RDDs). In other words, receivers accept the data in parallel and locate

it in the nodes. Then Spark assigned tasks dynamically to these nodes depending on the

required data of each task. It allows applications to perform better load-balancing and fast

fault-recovery.

In practice, regarding throughput, Apache Spark has noticeable higher performance

compared with other frameworks. Talking about the latency, Spark’s speed is at a few

hundreds of milliseconds which is quite low and does not make Spark less-used as a batch

processor over end-to-end processors.

DStream API is a Spark abstraction over RDDs. When we check beyond of the Dstream, we

will definitely see DStream is the sequence of some amount of RDDs. As you see it from

Figure 7, RDDs in a DStream contains data a given batch interval. An operation which is

applying to DStream same time applying to sub RDDs in DStream. This applied RDD

transformation handling by Spark Engine. That is why we can tell that DStream is Spark

abstraction over RDDs.

2.4.3 Spark Structured Streaming

Structured Streaming [9] is the new high-level API in Spark Engine which started implement

from version 2.2.0. It is using Spark SQL for processing data. It creates an opportunity for

process data with a basic streaming function like a filter, group, aggregate, event-time

windows and stream to batch join. Internally Structured Streaming using micro-batches for

processing data like Spark Streaming. However, from version 2.3.0 Structured streaming

support Continuous Processing with low latency. It means a new version of Spark is using

real-time processing like a Flink, Storm, etc. You could process your data in 1ms end-to-

end latency with structured streaming. Spark Structured Steaming behave stream like a

Figure 7. Spark Streaming [25]

17

table which data appended to this table continuously. Figure 8. That is why the

programming interfaces of Structured Steaming look like batch processing. You can create

your streaming calculation as a batch processing, but Spark run it on continuous streaming.

Spark Structured streaming provide DataFrame and Datasets API for accessing and

calculation batch bounded data and streaming unbounded data.

2.5 Apache Heron

Heron [11] is a fault-tolerance streaming engine released by Twitter8 in 2016 and has been

used actively by the providers for over three years. Different parts of Storm are written in

different programming languages such as Java, Scala, Python, and C++. It is a successor to

Storm; thus, users can use any API of it on Heron as well. The main difference between

Heron and Storm is, on Heron, there are more functionalities that are not implemented on

Storm, such as job schedulers. Same as many other frameworks, Heron was also thought

to be easy-to-develop, handle a big amount of data, increase developer’s productivity, and

have more efficient performance.

2.5.1 Architecture

Developers [11] can compose DAGs of real-time query execution logic which are called

topologies. Later these topologies are submitted to the job scheduling system to be

executed. Same as the Storm, Heron clusters also contain Spouts and Bolts, where Spouts

are connected to the data source and responsible for injecting it into the topology, and

Bolts are where the data is processed. For example, in the case of Twitter's word counter

in tweets, there is one Spout which receives the tweets from tweet sources. After that

received tweet is transferred to the first bolt, where it is split into words. Moreover, finally,

counter Bolts counts the words and returns the final number. We can say that all topology

logic is very similar to the Storm’s topology.

It is also possible that some Bolts inside a topology will receive more data than it can

handle. For example, in our tweet counter case, the Spout can accept more data than

parser Bolt can process since the latter does more computation than the Spout. For this

8 https://about.twitter.com/en_us/company.html

Figure 8. Structured Streaming [25]

https://about.twitter.com/en_us/company.html

18

kind of cases, it is possible to define parallelism capacity for each node in Heron topologies.

These numbers are associated with nodes, and they specify the number of instances

required the CPU in parallel. Moreover, at that point, another issue is about transferring

data amongst instances. Let's say Spout knows that the data should be transferred to the

next Bolt, but if it does not send the data to the proper instance, it would be chaos. Heron

solves this problem with the strategy called Grouping. There are several types of grouping

which are listed below:

All: Data is transferred from an instance to all instances of the downstream bolt.

Shuffle: In this case, all instances of any node, can send data to any of instances of the next

node.

Direct: In this case, the sender decides itself to which instance the data should be

transferred.

Fields: Decisions are based on some field values. Predefined values are hashed, and when

the data is ready, specific field value 's hash is computed and sent to the downstream

node's proper instance based on that hash value.

Global: Each instance is assigned to one another instance, and it only sends the data to it.

Heron also takes advantages of ZooKeeper State Manager for the coordination of the tasks

on clusters. We talk about it in the following paragraph of this section.

Although beside being reliable Heron also has proved that it reduces the hardware

resources significantly and processing latency, increase throughput, the main known

disadvantage of this engine is that it is dependent on Mesos9. If a user does not already

have a Meson infrastructure installed, it is not easy to handle this requirement. That is why

it is recommended that, if you have Storm system already in use, you can easily stick to it,

unless you have a huge demand as Twitter does, of stream processing.

2.6 Apache Kafka

Kafka [12] is also a distributed system used by many companies in production that handle

petabytes of data every day because it is fault-tolerant and entirely scalable. It has been

created and open-sourced by Linkedin in 2011 as a messaging queue. Since that time, Kafka

evolved significantly, and nowadays it provides low-latency, high-throughput publish and

subscribe pipelines. Kafka is mostly used for the applications that transform or react to the

data streams, or applications that need real-time, reliable data pipelines to transfer the

data between other applications.

Before diving in, it is essential to mention a few things from Kafka's architecture. First of

all, same as some other engines, it is run on clusters on multiple servers, and these clusters

contain records which are grouped into categories called topics. Inside topics, each record

9 http://mesos.apache.org/

http://mesos.apache.org/

19

has three fields such as key, value, and timestamp. Topics usually have more than one

subscriber meaning that the data written to it will be read by multiple consumers.

Apache Kafka also has several APIs:

Producer API: Applications send (publish) data to topics in the Kafka cluster using this API.

Consumer API: By using this API, applications can subscribe to several topics and process

the records that are produced to them.

Streams API: Applications can have a stream processor using this API. It receives streams

of input topics and emits output topics.

Connector API: Allows applications to connect the data source to Kafka topics. The

connection is bidirectional.

2.6.1 Producers and Consumers

The data on Kafka [12] topics are written and read by the producers and the consumers

accordingly. Besides publishing the data on the topics depending on their choice,

producers are also responsible for choosing the correct partition inside the topic.

Consumers' structure is a bit more complicated than that. They can be assorted into

different Consumer Groups and data from one producer is received by only one member

of the group. Consumer instances do not have to be on the same server. In the case that

there is only one consumer group for the whole system, then records will be handled by a

different instance every time, and in this way, it will be an effective load-balancer.

However, if each instance has a diverse consumer group, then each record will be

transferred from all producers to all instances.

Just writing, reading, and storing data is not makes Kafka one of the most used streaming

engines, but how it handles it in real-time. In Kafka world, anything from reading input and

emitting an output topic is the job of the streaming processor. The basic Kafka streaming

processor applications can easily be implemented only by using Producer and Consumer

APIs of it. For more complicated cases, fully integrated Streams API can be used, in order

to join the streams or compute aggregation of them.

Figure 9. Kafka cluster [12]

20

Kafka is a combination of a distributed system like HDFS which allows batch processing

with static files, and traditional enterprise messaging system that processes future

messages you are subscribed to. Past and future data are both handled in the same way in

Kafka. This combination brings low-latency and reliability which the stream processors will

transform the data as it arrives.

Pros of the Apache Kafka is the:

• It is the fast, scalable partitioned, replicated messaging system which can be scale-

out easily.

• It is offering high throughput and low latency for producer and consumer.

• It is supporting multi-producer and fault tolerance for consumers.

• It is store messages on disk that is why memory consumption is so less and can be

useful for batch processing.

2.6.2 Kafka Streams

Kafka Streams [12] is one of the most powerful components of Kafka, and it is used for

building applications which transforms Kafka input topics to Kafka output topics in a

distributed and fault-tolerant way. There are some key characteristics that make Kafka an

adequate option for stream processing applications.

First of them is its performance and power. It is highly scalable, fault-tolerant, and it

supports windowing, joins and aggregation operations on event-time processing. These

being said, it is necessary to mention that Kafka Streams is not a framework, but a library

and that is why it does not have any external dependency and doesn’t require dedicated

clustering or such a thing. For this reason, it is considered as the best alternative of Apache

Storm. Although Kafka Streams is a new library comparing it with Apache Kafka itself, it has

no integration problem with Kafka, nor with existing applications, and deployments can be

managed without applying an artificial rule. Moreover, Kafka Streams provides low

processing latency, and it never creates micro batches while processing a stream.

Furthermore, Kafka Streams offers good usability for developers. It is possible to use the

library with a high-level DSL, as well as with a low-level API depending on the programmer's

needs. In the first case, users can use basic operations provided by the library such as map,

filter, join, etc., where they can have maximum control and more flexibility in the second

case. Even beginners can easily write a basic application and run it on a single machine

without installing or understanding distributed stream processing clustering.

In summary, we can say that Kafka Streams is a lightweight, real-time, scalable library that

simplifies working with stream processing applications. It can easily be embedded or

integrated into any application, which is more difficult with framework-based stream

processing tools.

21

2.7 Hazelcast Jet

Jet is Hazelcast’s [13] first and a very successful open-sourced third generation big data

processing engine. It is built on top of another open-source Hazelcast product IMDG [14].

Because it is just a lightweight library, Jet can be embedded in any application to manage a

data processing microservice. The library provides APIs containing several Transforms

which cover some useful data operations such as filter, group, map, etc.

As some other stream processing engines, in its core Jet also uses Directed Acyclic Graphs.

Nodes or vertices as it is called in the Jet system, represent computation steps. These

computations can be done in parallel by more than one instances of the streaming

processor. Then, vertices are connected with each other via edges. Edges represent the

flow of the data, how it is routed from the source vertex to the downstream node. They

are implemented in a way to buffer the data produced by an upstream node and then let

the downstream vertex to pull it. It means there are always concurrent queues running

amongst processor instances and they are completely wait-free.

Hazelcast Jet’s first goal is to achieve high performance, and this is managed by the use of

cooperative multithreading. The main idea behind it is that, instead of the Operating

System, Jet engine is the one who decides how many tasks or threads to run depending on

available cores during runtime. Basic processing units are called tasklets, and before they

are run, their data is always available in the queue.

Currently Hazelcast Jet is available for Stream and Batch processing applications. For

upcoming releases, it is expected [14] that Hazelcast will provide more features for Stream

processing. Regarding connectors, for now, it only supports Hazelcast IMDG, where HDFS

and Kafka libraries are being actively developed.

22

Table 1. Comparison of Stream Processing Systems

Stream
Processing

Systems

Flink Storm Spark
Stream

Spark
Structured

Stream

Kafka
Stream

Heron Hazelcast
Jet

Year 2015 2011 2013 2016 2016 2015 2017

Creator DFG BackType AMPLab,
UC

Berkeley

 Confluent Twitter Hazelcast

Processing
Model real-time Real-time Micro-

batches
Real-time,

micro
batches

Real-time Real-time Real-time

Programming
Model Dataflow DAG Monad DAG DAG DAG DAG

Stream
Partitioning Yes Yes Yes Yes Yes Yes Yes

Distributed
Cluster Yes Yes Yes Yes Yes Yes Yes

Resource
Management Standalone,

Docker,
Mesos,
YARN

Standalone,
YARN,
Mesos

Standalone,
YARN,
Mesos

Standalone,
YARN,
Mesos

Standalone, Standalone,
Aurora,
Mesos,
YARN

Standalone

Coordination
Built-In,

Zookeeper
Zookeeper Built-In,

ZooKeeper
Built-In,

ZooKeeper
Zookeeper Local File

System,
Zookeeper

Built-In,
Zookeeper

Programming
Language Java, Scala,

Python,
SQL

Java, over
Thrift

Scala, Java,
Python

Scala, Java,
Python, R

Java, Scala Java,
Python

Java

Implementation
Language Java, Scala Java,

Clojure
Scala, Java Scala, Java Java, Scala Java Java

Fault Tolerance
Yes Yes Yes Yes Yes Yes Yes

23

2.8 Apache Zookeeper

Although Apache ZooKeeper [8] was developed at Yahoo as a sub-project of Hadoop for

streaming the processes of big data on clusters, nowadays it is one of the leading Apache

software by own. ZooKeeper can be defined as a centralized coordination service which

allows development of distributed systems. This software can be used to maintain

different parts of a distributed system such as configuration and location information,

synchronization, hierarchical naming, etc. ZooKeeper is compatible with Java and C by

using its native interfaces, as well as there is a variety of client bindings with Python, Ruby10

and Go11.

ZooKeeper’s namespace is very similar to standard file storage systems. Names are

sequences of path values which are separated from each other by a slash ('/'). Node names

are unique in this system. However, in ZooKeeper each node can contain some data

associated with itself, which in this case the whole structure can be thought as a file system

where directories can act as files as well. Nodes of ZooKeeper are called znodes. Data read

and write operations are allowed and done automatically on znodes. These operation

permissions are controlled by Access Control Lists (ACL) that is stored on the znode.

Besides that, znodes also have watches which are triggered to inform a client about the

changes on the znodes.

Since one of the main ideas of ZooKeeper [8] is providing an easy-to-implement interface

for developers, there are only a few operations that are available:

• Create: creates a node in the tree

• Delete: deletes a node from the tree

• Exists: checks if a node already exists in the tree

• Get Data: reads the node’s data

• Set Data: writes data to a node

• Get children: returns list of child nodes of a node

• Sync: waits for data to be reproduced

ZooKeeper is replicated, and the database that contains the entire tree data is in-memory

as well. Changes and writes are saved into a disk for recoverability before they appear in

the in-memory Database. Moreover, all the requests from clients are forwards to the single

server which is called the leader. Rest of the servers are the followers, and they are

responsible for delivering messages from the leader and agree upon message delivery.

Replacement of leaders in case of failure and synchronization of followers are handled by

the messaging layer.

Finally, we can say that ZooKeeper is being successfully used by many big companies, and

it is known as reliable, simple, ordered and fast engine.

10 https://www.ruby-lang.org/en/
11 https://golang.org/

https://www.ruby-lang.org/en/
https://golang.org/

24

2.9 Redis

Redis [15] is mostly known as a Database or a Message Broker by developers, which is

actually an open-source, in-memory data storage system. Many modern programming

languages support Redis bindings such as Java, Python, C, Ruby, Scala, etc. Redis [15]

working with data structures as lists, hashes, sets, sorted sets with range queries,

hyperlogs, bitmaps, etc. Operations that are supported by Redis- intersection, union, etc.,

are available depending on the data type it will take place on. Redis is implemented in C,

and it is available on Linux available servers, where there are also some possible ways to

run it on Windows.

Redis is also most-known NoSQL Database amongst developers. Data is stored in the key-

value structure on Redis, where keys are unique, and no value can be accessed without

specifying its key. Regarding replication, it is possible to create a master and have several

slaves on Redis system, where a slave can be master of another slave. Redis commands are

considered simple, and this software is used by Microsoft in Azure12, and it is available in

the Amazon Web Services13 portfolio. In this research, we took advantage of Redis in the

enrichment process of our data, for data lookup and as well as saved the final results.

12 https://azure.microsoft.com/
13 https://aws.amazon.com/

https://azure.microsoft.com/
https://aws.amazon.com/

25

3 Related Work

When organizations would like to implement a Big Data processing solution they have too

many technology options to use which all have common functionalities. Before choosing

technologies, they need to know the feature, performance, risks, and functionalities of

them. These factors depend on the business case which one they would like to implement

on these technologies. Choosing the right solution is the most important thing. At these

moments a standardized benchmark can help them out to evaluate these technologies

then can build the right solution with the adequate one. The standardized benchmarks

help us to understand the performance of a particular software stack on specific hardware

configurations. Academia and Big Data industry are developing new benchmark in the

particular technology. Many standard performance organizations like a TPC, SPEC, SPC and

specific companies IBM, Yahoo, Google, Twitter, Facebook follow the same approach for

developing benchmarks. Their benchmark strategy is targeted to acceptance of their

benchmark across many software and hardware vendors.

Before checking details of the benchmark, we need to understand what the primary

requirement of stream processing engines is. There are so many different benchmarks, and

all of them evaluate stream processing engines from various aspects. According to

Stonebraker [16], there are eight different characteristics and requirements of stream

processing engines:

Keep the Data Moving

That is the primary essential requirement of stream processing. How efficient stream

engines keep data moving? How much latency they proceed? How often costly storage

operation they are processing?

Query using SQL on Streams (StreamSQL)

The streaming engine must provide a query mechanism to retrieve data from the

streaming pipeline. Most of the streaming processing engines developed in low-level

programming languages. While using low-level programming languages for querying data,

it makes the system more complicated and greater the high value on development and

maintenance.

SQL is the most common language that for traditional DBMS. It would be better to run a

query on the streaming pipeline which looks like SQL, with some kind of an API.

Handle Stream Imperfections (Delayed, Missing and Out-of-Order Data)

The traditional storage engines run queries on last isolated snapshot of the data, but in

streaming engines, it does not work in this way. While querying data, it is possible, but in

the stream, processing queries are running on flooding data, and it is possible that queries

can affect the entire system.

26

In a stream processing system, letting a program wait infinitely is never a good idea. For

this reason, every calculation timeout should be allowed, so the application may continue

to be partial. Any stream processing system must have such time intervals for all blocking

operation.

Usually, a time window closes the window when a message received with a greater

timestamp of window close time. Dealing with out-of-order mechanism must act that the

data with greater timestamp may not a reason for closing windows.

Generate Predictable Outcomes

Streaming processing systems must produce predictable outcomes. This requirement is

essential for fault-tolerance and recovery. Streaming processing systems need avoiding

reprocessing of the data.

Integrate Stored and Streaming Data

Stream processing engines must not be valid to process data only on a streaming pipeline.

It can enrich data with historical data as well. That is why accessing data from integrated

storage is also a primary requirement of streaming processing engines.

Guarantee Data Safety and Availability

High Availability is a significant critical requirement for stream processing systems. The

system has to work in a replicated way in order to avoid unpredictable hardware errors.

Partition and Scale Applications Automatically

Streaming processing system must be compatible to deploy multi-processor and multiple

machines service environments. Streaming must handle load balancing amongst servers.

Partition of the streaming pipeline should never generate a high latency.

Process and Respond Instantaneously

What this last requirement says is that the stream processing system must have a well-

optimized mechanism with minimal execution time to provide a real-time response for

applications with large volumes.

BigBench [17, 18, 19] is the Benchmarking standard which one produced by Transaction

Processing Performance Council (TPC). The main difference between BigBench 1.0 and

BigBench 2.0 is the coverage. BigBench 1.0 is the only Big Data analytic benchmark

standard, but BigBench 2.0 is covering the all big data pipeline like stream processing, key-

value processing, graph processing, ETL and Big Data analytics. Here we will concentrate

on BigBench 2.0. The BigBench 2.0 is benchmarking Big Data system and observes the

system's volume, velocity and variety characteristics. It includes a data generator for

structured, semi-structured, and unstructured data. The BigBench 2.0 data volumes can

dynamically vary based on a scale factor. The simulated workload of BigBench 2.0 has

covered 30 queries to scale the Big Data analytics from the different aspect. The BigBench

consists of four steps:

27

• System setup

• Data generation

• Data load

• Execute application workload

TPC committee still is working towards standardizing it as the most common TPC Big Data

benchmark

BigFrame [20] is a benchmark generator offering a benchmarking solution for Big Data

analytics. It consists of structured data adapted from the TPC-DS benchmark (retail

business model) and unstructured data. The benchmark divided into two different

sections:

• Offline

• Real-Time

With offline analytic section BigFrame benchmarks historical data and continuous query.

Historical workflow is processed at a scheduled time.

Real-time workflow is processing in real-time. It allows near real-time decision making

based on instant sales. BigFrame is more suitable for benchmarking Lambda Architecture.

It scales Batch and Streams processing at the same time.

TPC have so many different benchmarks, but there are two benchmarks which impress us

more than others. That is the StreamBench and Yahoo's streaming benchmark which is

benchmarking engines with real-world applications. In Table 2. comparison of those

benchmarks attached. We will go to the deep in these benchmarks. Because in the future

we will going to perform more alike benchmark.

Table 2. Comparison of Existing Benchmark

Benchmark Real World
Applications

Micro
Benchmarks

Criteria Engines

StreamBench
(2016)

-

3

Throughput,

Latency

Storm,

Spark,

Flink

Yahoo Streaming
Benchmark

1

-

Throughput,
Latency

Storm,

Spark,

Flink,

Apex

28

3.1 StreamBench

Yangjun Wang [21] simulated Advertisement Click, Word Count and K-Means algorithm on

Spark, Storm, Flink engines. The architecture of StreamBench is illustrated in Figure 10.

StreamBench Architecture [20]. Wang created core java application by using related

engines API.

The Benchmark contains three micro-benchmarks. In AdsClick benchmark Wang simulated

view and click of advertisement events. Wang's implementation analysis relation between

view and click events. In both Wang's declared id field for the advertisement event. Both

streams have joined by using advertisement id. The advertisement appears in both stream

in the close time frame he marked that advertisement as a valid click. Thus, he counted

valid clicks for billing customer of those advertisements.

Wang's [21] another micro-benchmark implementation is called WordCount. In that

implementation, generated data is aggregated in a specific time window. While computing

the curve, the computation node that counts the word with the highest frequency may be

the bottleneck. Inspired by MapReduce Defragmenter, he designed another WordCount

version of the streaming processor along with the window operator. Windows are usually

event groups at a specific period. During the reduction phase of Windowed WordCount,

the first words are grouped and re-clustered. At a given time, local pre-collection results

are stored in calculation nodes. When windows closed, the word counts are keyed reduced

to calculate the final results. For last micro-benchmarks, her run the K-means clustering

algorithm for points.

Wang's implemented all this infrastructure on virtual servers which run with Ubuntu 14.04

LTS. His implementation contains eight slave nodes and one master nodes for running

stream processors. As a messaging queue, he installed five Kafka brokers. During his

benchmark, he uses Spark-1.5.1, Storm-0.10.0 and Flink-0.10.1 specific version of stream

processing engines.

Figure 10. StreamBench Architecture [20]

29

With Wang's WordCount example it is clear to compare the throughput and latency of Flink

And Storm. For a precise result, Wang has run 2 type of WordCount benchmarks; one is

Offline and another one Online. Wang designed Offline WordCount benchmark for testing

both system's throughput. Before running stream processors, he had generated and stored

some amount of data in Kafka and then started the processors to process data. In this way,

he compares the throughput of Flink and Storm. He runs the same WordCount benchmark

with ack and without ack on Storm. Storm performs more efficient performance while

disabled ack. It is clear from the Figure 11. Flink throughput was ten times higher than

Storm throughput in this benchmark. Wang did not involve Spark to this benchmark

because due to spark's micro batch structure there are a lot of benchmarks scenarios with

the same structure.

During Online WordCount benchmark Stream processors have been started before

generator's start and Kafka was cleaned up. With this benchmark latency of Storm and

Flink have been traced. While running Spark benchmark default configuration for the

micro-batch interval (1 seconds) and checkpoint intervals (10 seconds) didn't change. The

Figure 11. Throughput of Offline WordCount [20]

Figure 12. Latency of Online WordCount [20]

30

result of the Online benchmark is shown in Figure 12. Because of checkpointing latency

result of spark is bumpy. Every 10 seconds spark tried to write information to the storage

to achieve fault-tolerance. These operations in the Spark engine consume significant

resources. The throughput of data which latency was in Figure 12b is the 1.4M word/s.

Figure 12a shows us median latency for Storm (ack enabled) was ten milliseconds,

meantime the same metrics for Flink was 39 milliseconds. The 95th percentile latency was

201 milliseconds meantime for spark same metric result was 217.

In AdsClick benchmark click events occur within 20 seconds after the corresponding view

event. Kafka [12] doesn't keep the order of messages in the partitioned topic that is why 5

seconds window time set. It means when a click event happens it can join a view event in

the future. Below in Table 3, you can find Advertisement click performance table. From

Wang's AdsClick benchmark results show us, Flink is working with higher throughput and

lower latency. 90% percentile Flink was 637ms meantime Storm was 2116ms.

3.2 Yahoo Stream Benchmark

At Yahoo, [7, 22] they had implemented Apache Storm before developing this benchmark.

Their benchmark scenario and infrastructure are the same for Storm, Spark, Flink, and

since they tested them with a real-world application, they got realistic results.

Yahoo [22] has implemented benchmarking with Apache Kafka14 and Redis15. They have

simulated advertisement analytics pipeline, where there was IDs for campaigns and

advertisements in pipeline data. Then benchmark consumed data from Kafka servers in

JSON format and merged it to Redis in-memory storage. During these processes, system

aggregated and stored relevant events in Redis in-memory as well. Subprocesses that has

been completed during the benchmark scenario are shown below:

• Consume events from the Kafka topic

• Deserialize the JSON data.

14 https://kafka.apache.org/
15 https://redis.io/

Table 3. AdsClick Performance

https://kafka.apache.org/
https://redis.io/

31

• Filter out irrelevant events

• Take a projection of the relevant fields

• Merge each event with the covalent row in Redis in-memory store

• Take the window count of the events group by the campaign and store it in Redis

in-memory store by their campaign id and timestamp.

Yahoo [22] benchmarked multi-node infrastructure. Each node processors were Intel

E5530, 2.4GHz, 16 cores (8 physical) and 24 GB memory, and in total, 30 nodes have been

used. They [7] distributed 30 nodes amongst Spark, Storm, and Flink, and have configured

5 Kafka nodes with 5 data partitions, 1 Redis, and 3 ZooKeeper16. In that infrastructure,

they run 100 campaigns, with ten ads per campaigns. Kafka producers were able to

produce 17,000 events per second. In the beginning, they have cleaned all Kafka topics and

loaded initial data to Redis. Later on, they have started stream engines and producers, and

after half an hour, producers were stopped. When all Kafka topics were consumed and all

stream pipeline processes, the system was shut down.

Apache Flink [22] benchmark was developed in Java using DataStream API. In Flink

benchmark Kafka event consume rate changed between 50000 events/sec and 170000

events/sec. For each emits rate, events processing latency of Flink is visualized in Figure

13. We can understand that until around 99% event processing latency increases linearly.

16 https://zookeeper.apache.org/

Figure 13. Flink Performance [7]

https://zookeeper.apache.org/

32

Apache Spark [22] benchmark was developed in Scala17. Micro-batch structure of Apache

Spark is making it different from Flink. While Flink benchmark was updating the Redis

database in every second, in Spark it was benchmarked with 3 and 10 seconds frames.

Kafka event consume rate was 100000 events/sec. They have got two different

performance results for 3 and 10 seconds Micro-batch processing. As Figure 15. Shows us,

10 seconds version 90% events have been processed in the first batch. However, they got

better results by reducing the batch size, and they have divided it into 3, four sub-batches.

Full results are illustrated in Figure 15.

17 https://www.scala-lang.org/

Figure 14. 3 Second batch duration Spark Streaming Performance [7]

Figure 15. 10 Second batch duration Spark Streaming Performance [7]

https://www.scala-lang.org/

33

4 Contribution

First of all, we would like to share how we prepared our environment for achieving the

benchmark of this master thesis. In this section, we will provide some information about

the installation process of required software, their configuration, benchmark

implementations and how we optimized these steps. Repository of source code has been

attached in Appendix III.

As we have previously mentioned, this research benchmark got its main concept from

Yahoo!’s benchmarking work from 2015 [7]. However, we didn’t want to make a new

replicate of the same benchmark, as well as extend it by using some other technologies.

Some of the engines, frameworks, and libraries that we worked with are the same as the

mentioned benchmark’s, where some of them are more modern tools which even didn’t

exist 2-3 years and are included into our tests. Moreover, for the engines that were also

tested by Yahoo!, we used their newer versions. We acknowledge that three years is a long

time regarding today’s technologies development. There were noticeable improvements

and changes in the more recent releases of those engines which we could not skip.

4.1 Environment

After deciding which engines, we would use, we continued with looking for servers that

suit best for our needs. We ended up with using Digital Ocean’s CPU optimized droplets

Table 4. Comparison Engines with Yahoo’s Benchmark

Tool
Name

Yahoo!
Version

Our Version Important Changes

Flink 1.1.3 1.5.0
Dynamic Scaling / Key Groups; Kafka Producer
Flushes on Checkpoint; Table API and Streaming SQL
Enhancements; Async I/O, etc.

Spark 1.6.2 2.3.0
API Stability; Unifying DataFrame and Dataset; New
user-defined Functions; Scalable Partition Handling;
Continuous Processing, Structured Streaming and
etc.

Storm 0.9.7 1.2.1
Simple KafkaSpout Configuration; Support for
bolt+spout memory configuration; Miscellaneous
bugs fixes and improvements.

Redis 3.0.5 4.0.8
A new replication engine; Native data types RDB
format changes; Many other bug fixes and
performance improvements.

Kafka
Broker

0.8.2.1 0.11.0.2 Support for Kafka Stream; Several bug fixes and
performance enhancements.

Kafka
Stream

not
tested

1.1.0 ~

34

which perform much better results for CPU intensive projects- such as in our case, than

regular droplets. All the droplets had 64-bit Ubuntu 16.04.4 as an Operating System

running on them. One of the advantages of using these droplets was that configuration of

the servers was easy-to-change. For example, during the time that benchmarks were

running, we kept the droplets’ RAM and CPU values at the highest. However, when hard

processes finished, and we did not need any high performance from the droplets, we

decreased them. On Digital Ocean’s CPU optimized droplets, these operations can be done

through URL’s, unless you want to change the disk size- which we did not have to regulate

anyway. The script doing this task is provided within the benchmark repository18 as well.

Afterward, choosing an adequate number of droplets and their distribution was the next

step. In order to get more trustful results and to generate more real-world events, we

decided to use several droplets as data loaders. Besides that, we also had to reserve some

droplets for message brokers. You can find the full list of the node groups, their purpose

of use, and characteristics at the highest performance mode in Table 5.

In the next sub-section, we are providing more information about the installation process

of necessary software, their configuration, and how we optimized these steps in order to

have a half-automated structure to run benchmarks faster.

4.2 Benchmark Architecture

While checking the benchmark-repository users will find some bash scripts which are very

useful for them to achieve fast, easy-configurable benchmarks. The very first of them is

‘initialSetup.sh’ which sets up the necessary dependencies as it is understood from its

name. After dependencies, when users have to install the tools they want to do tests with,

another script called ‘stream-bench.sh’ can be used. It will download compressed files of

the introduced engines, decompress and install them without a user interrupt.

18 https://github.com/elkhan-shahverdi/streaming-benchmarks

Table 5. DigitalOcena Droplets

Node Group Count Characteristics Purpose

Load 10 2 vCPU,
4 GB Memory

Generating real-world ads events

Stream 10 16 vCPU,
32 GB Memory

Stream processors

Message Broker 5 16 vCPU,
32 GB Memory

Host of Kafka

Zookeepers 3 4 vCPU,
8 GB Memory

Host of ZooKeeper & Manager Server

Redis 1 4 vCPU,
8 GB Memory

Host of Redis Database

https://github.com/elkhan-shahverdi/streaming-benchmarks

35

In our case, we wanted to build an architecture where events that are generated on loader

droplets would be sent to Kafka’s message broker in the first hand. Once messages are in

the queue, consumer nodes- which are stream processors, in this case, starts to read them

in parallel. In the end, the results are saved on Redis Database. As we mentioned previously,

service management was done by Apache ZooKeeper. In the following Figure 16, the

benchmark architecture is illustrated to make it more understandable for readers.

At this point, we had all the necessary programs installed on different droplets, and it was

time to configure them for our needs and run. Since in the beginning, we were not sure

how many different combinations we would try of configurations, we decided to ease this

process by writing more scripts.

4.3 Environment Setup

To begin with, we created two scripts where one of them would set the initial

configurations of each engine, framework or library, and the second one could run the

benchmark with different arguments. In the remote repository, ‘setup.sh’ can be found

under the root directory.

Setup script starts with bash commands of Apache Flink and sets some required variables

of it. Later, we define ten nodes to be used by Flink where nine of them would be slaves,

and one would behave as the master. Later, we continue with Apache Spark and apply the

same amount of master and slaves. Other execution flags of Spark engine such as executor

core, executor memory, etc. are also defined and set in this section. Moving on, we added

Figure 16. Benchmark Architecture

Kafka Broker

KAFKA

PRODUCERS

Stream Processing

Node 1

Node 2

Node 3

Redis

Node 4

Node 5

Node N

36

commands for Storm and Kafka setup. It is important to notice that inside these two

sections we configure ZooKeeper and its connection with the stream processors as well.

The script continues with ‘start’ and ‘stop’ operations of the engines and their

dependencies. Without going deep to these commands, we would like to emphasize that

content of the setup script is quite easy to understand and update if needed. If in the future

any researcher wants to develop this benchmark with some more engines or just with

newer releases of the current frameworks or libraries, it can be achieved just by modifying

existing variables or adding a few more similar lines in case of new tools. Until now we

have talked about automatization of the installation process of our engines and getting

them ready to run. In the next section, we share our work regarding running another script,

which allowed us to execute different tools with, several arguments and an easy

configuration.

4.4 Benchmark Execution

Knowing that we have all the pieces of the puzzle in the place, we moved on by finding a

way to start running the benchmark step. We realized that we might need to run

benchmarks more than once and it could require some small changes on every run. Thus,

we decided to write a script where we could have all the commands together, with

parametric functions that we can change some runtime arguments, etc. The script can be

found under the root directory of the benchmark repository as well (‘remote.sh’).

First of all, we started by defining the most frequently used variables such as emit rate

parameters, sleep time intervals, SSH credentials, etc. We thought that having these

parameters at the beginning of the file could help us with changing them easily when

needed. Then, we listed our engines and prepared their possible commands that would be

used during benchmarking. Although in most of the time it was engines’ ‘start’ and ‘stop’

commands, in some special cases they required more specific commands as well, such as

creating a temporary directory and removing it when the program stops, etc.

Once we had all the necessary commands, we started to group them in logically related

functions. For example, we added a function to start all the tools to run sequentially for a

pre-defined time, but in an infinite loop. It would require stopping command afterward

when satisfactory results are obtained. There are also more functions for running droplets,

shutting them down, starting and stopping each engine, monitoring, collecting results, etc.

Before listing the full command list of the script, we would like to emphasize that, it is a

script containing more than six hundred lines of bash commands, and it was written with

the only purpose; benchmark of stream engines must be as easy as configuring them on

existing bash files, running, monitoring and retrieving the results by less than 10

commands in total. Now let’s have a look at the full list of arguments that can be called

with ‘remote.sh’ script.

As it is provided in Table 6, to run a benchmark all is missing is a program that implements

a good algorithm for tests. We believe that we made it easy for anyone who wants to run

37

a benchmark on stream processing area. Next, we are sharing our basic program that was

used for this research.

4.5 Implementations

Let’s have a deeper look on Benchmark implementations. For running Benchmark, first of

all, we need to start the Redis, and after starting it, we have to run Clojure script with -n

parameter for setting up Redis for the new real-time simulation. This step must run on only

one node, only once before starting multiple data loaders (-r) on multiple nodes. Once we

have these steps done, we can start ZooKeeper and then Kafka. If Kafka and Zookeeper

are running, then it is time for creating advertisement events topics on Kafka. Later on,

benchmark scenarios have been submitted to the stream processing systems. When all

these steps are completed, we will be ready for the start of the streaming engines and the

data generators. What that Clojure script is doing that it will populate Redis with the

generated campaign which in the future will be used by data loaders while creating

advertisement events. In other words, the data loader will load data to Kafka by checking

Table 6. Command descriptions

Command Description

<tool_name> Starts a benchmark for the introduced stream engine including its
monitoring. Possible values are flink, spark, storm, kafka, heron, all.

start
<tool_name>

Starts only the tool, engine, library, or program itself with introduced
name. Possible values are all tool names, redis, zoo, prepare, load.

stop
<tool_name>

Starts only the tool, engine, library, or program itself with introduced
name. Possible values are all of the ones for start and stopAll.

result Collects results from Streaming, Kafka and Redis servers respectively.

load Starts data loading.

push Pushes git changes to the remote servers and runs all of them.

report Collects the results and draws meaningful charts on PDFs.

build In case of changes in the code, this command can be run to re-build
maven projects in the remote servers.

clean Clean the last obtained results.

test Runs basic tests for the benchmark.

resize up Increases capacity of available Remote Droplets.

resize down Decreases capacity of available Remote Droplets.

power off Turns off the remote droplets.

power on Turns on the remote droplets.

reboot Reboots remote droplets.

shutdown Runs a command to shut down all the Servers from Digital Ocean.

38

convenient campaign from Redis. After starting all the environments and data loaders,

submitted scenarios on Stream Processing engines will start to process data which had

been loading to advertisement topic on Kafka Servers. Next question can be like that how

we are processing data how we are calculating Throughput, Latency, and Resource

Consumption over this scenario.

Yahoo simulated processing of advertisement clickstream. During reading the explanation,

the structure can be followed up over Figure 17.

The First processing unit of our clickstream scenario is consuming advertisement event

clickstream topic from Kafka. After consuming row data from Kafka, we are parsing it to

Java POJO, json or tuple.

The Second processing unit of our clickstream scenario is filtering data by event_type.

While data generator generates an event, it is assigning event type randomly among this

list (view, click, purchase). In our scenario, we are filtering, and processing only views

events.

The Third processing unit of our clickstream scenario is the projection of the event's useful

attributes. Because there is additional information like user id, page id, ad type, IP address

and event type which will not need any more in our scenario. In this step, we will eliminate

such kind of useless attributes.

In the Forth processing unit, we enrich our events with its campaign id. After starting Redis,

we have run the setup script. It populated that campaign id which can be attached to our

events by ad id in our fourth step. In this step, we are creating a connection with Redis to

lookup the campaign id of our advertisement. If there is not appropriate campaign with

these ads, then we are going to eliminate this advertisements event.

Figure 17. Benchmark Design [7]

39

The fifth processing unit of our benchmark scenario is the aggregations. In our

benchmarks, there is a time-divisor property in our configuration file, which is defining the

size of the time window for aggregation. The processing unit is aggregating events by

campaign id and time window.

The sixth processing units of our benchmark scenario are the storing result. We are storing

all our aggregation results in Redis. After finishing Benchmark before stopping Redis, we

are loading this data into the file system.

Yahoo's [7] aggregation and storing technics doing its jobs in two ways. The first one of

them is the CampaignProcessorCommon class which has been created under benchmarks-

common projects. It is the common helper class which is handling fifth and 6th step by

itself. Talking about how it works, we can say that it contains a campaign_windows

LinkedHashMap and a need_flush Set local fields. After the 4th steps when we transmit

data to inside these classes, it will aggregate events and store result in campaign_windows

map and meantime local flusher thread will control the closed window for storing the

result of that windows in Redis.

The second way of aggregating data is using the native aggregate, groupBy, and

reduceByKey methods which Stream Engines provide with their APIs.

For the benchmarks of Flink, Kafka, Storm, and Heron, we have used the first

implementation. However, Spark DStream and Structured Streaming benchmarks used

Native Stream processing APIs. Let's go to deep with our Benchmark implementations with

the mentioned Engines. Before we forked the benchmark, Yahoo had implemented four

SPS; Flink, Storm, Spark DStream, and Apex19. You could check the version of engines from

the Table 4.

Before implementing new engine benchmarks, we were going to upgrade engines which

have been added by Yahoo. Upgrades of Kafka version has affected all benchmarks, and

we were gone to update all related dependency of existed projects. We exclude the Apex

from our benchmark. After running the Storm benchmark due to the low performance, we

decided not to compare it with our Engines benchmark.

Flink benchmark has been developed by Yahoo which we included it in our benchmarks as

well. When running Flink benchmark in our Environment, we set the parallelism to 144

(hosts * core). Because of the Kafka version upgrade, we changed Data source from

FlinkKafkaConsumer082 to FlinkKafkaConsumer011. In Flink Benchmark data has been

transmitted in Tuples.

Before choosing new Stream Processing engines, we had to decide amongst Kafka, Spark

Structured Streaming, Heron, and Hazecast Jet. Due to Hazelcast Jet’s recently developed

implementation and some missing features, we ended up with skipping it after some basic

tests.

19 https://apex.apache.org/

https://apex.apache.org/

40

Besides the fact that Kafka has been involved as a message broker, Kafka Stream was used

as a Stream processing engine as well. Thanks to its APIs, implementation did not require

too much work-around. Kafka Stream API provides us StreamsBuilder class to create

Stream processing bolts. While processing our advertisements stream, we have used

mapValues to parse our JSON strings to POJO object. We took advantage of Kafka’s filter

method and mapValues for projections for events’ properties. RedisJoinBolt class has been

created and extended Transformer abstract class. This class helped us to enrich the ads

events by campaign id retrieved from Redis. Kafka Stream gives us the opportunity to

create our custom Processors with AbstractProcessor abstract class. We have used this

class to construct our common aggregate class and invoke it for each incoming event.

After updating Spark to the latest version, we noticed the new Structured Streaming API,

and we decided to include Spark’s new concept in our benchmarks. We have implemented

it under the spark-cp-benchmark module.

One of the biggest advantages of Structured streaming is, processing units as known as

bolts, can be defined by using SQL. For example, we have used "CAST (value as string)"

query for parsing data into String when it is received from Kafka. Filtering methods of Bolts

were similar as SQL syntax too. In this implementation, we, have aggregate data stream by

Spark Structured APIs. For group operations, we called groupByKey by campaign_id and

window_time parameters, count method for counting advertisements of appropriate

windows, and finally as("count") method to attach count of advertisement to the

streaming again. By the end of this process, we save the results to Redis Database with

"update" output mode of the writeStream.

41

5 Experiment

After creating our Droplets in DigitalOcean, we were going to test our benchmark scenario

with several different configurations. One by one we installed and ran all clustered engines.

While running benchmark we did not use any resource management platform such as Yarn,

Mesos, etc. All engines have been installed in standalone mode. Let's talk about the details

of configurations of our implementations. You can check our configuration script (setup.sh)

from our repository.

5.1 Experimental Design

In our infrastructure, we have installed 3 Zookeeper and 5 Kafka servers. We used the same

Zookeeper instances as service managers for the Storm and Heron Engines. For Zookeeper

servers, we had a heap size of 7GB heaps in maximum.

Furthermore, we have used 5 Kafka Servers with 32G maximum heap size. To achieve

nearly the best performance of Kafka, we have changed the default properties of our Kafka

engines. We have tested large topic partitions in our benchmark, and that is why our

network thread size changed to 20 to receive and send more network requests

concurrently. Kafka's disk I/O thread count has been increased up to 8. Nevertheless, [12]

flushing data to the disk is more expensive to process. Kafka servers has enough memory

to keep and process messages in Memory, and because of that, we set a huge interval for

flushing data to the disk space. During benchmark, the flush interval of a number of

messages was 10 million, where of the time was 100 seconds. The same configuration has

been used for Kafka Streams as well except the Kafka Engine version which was 1.1.0. This

Kafka version could not be used for engines as message broker because of missing Kafka-

client support for consumers.

Flink was implemented in the master-slave model, where there were a single master and

nine slave nodes. Flink heap size of task managers has been set to 30GB and job managers

heap size has been set to 15GB. The number of task slots for slaves was set to 16 since all

of our stream servers have 16 vCPUs. Before installation, we have set public SSH keys

among all our benchmark servers with our installation scripts. That is why after listing all

our slave nodes to slaves and master node to masters file our installations for our Flink

stream processing environment have been finished.

Later, Spark was implemented with the same model- a single master and nine slave nodes.

As we mentioned before, we did not run Spark Streaming with the default configuration.

We have increased heap size and executor count and made it more compatible with our

benchmarks and environment. For our Spark engines, a number of cores for the executors

have been defined as 16 and memory per executor was of 30GB. On every slave, the total

number of cores to be used has been set to 16, and total memory to be used by executors

on workers was 30GB. The micro batch size- a vital parameter of Structured Streaming and

DStream with Spark, was set to 3 seconds same as in Yahoo’s benchmark. We have run our

42

benchmark with such properties on Spark Streaming Engines, and we believe that it was

the adequate configuration for our case.

Finally, Storm engine has been implemented and configured in standalone mode. As the

previous streaming engines, we also thought about optimizing configuration for this tool.

We tried to adopt Storm to our benchmark and servers. A single node allocated as a nimbus

for clustered Storm and 3 ZooKeeper servers were used as service managers. For childopts

of supervisors and workers 16GB memory has been allocated. However, 24GB memory has

been allocated for nimbus's childopts. We have tested our Strom benchmarks with

different combinations of worker count, Acker counts, and topic partitions. Comparing all

cases, we obtained the highest throughput and lowest latency with 36 workers, 9 ackers,

and 100 Kafka Topic partitions. This was the only case that we have set Kafka topic

partitions to 100. However, considering all the engines, we did not get a satisfactory result

for comparing it with Kafka, Flink, and Spark. Therefore, in the next chapter, we will

compare throughput, latency and resource consumption of Flink, Kafka and Spark Engines

in our benchmarks and talk about their performances regarding mentioned characteristics.

5.2 Stream Experimental Result

You can find all the metrics we obtained from our benchmark. The duration between start

and stop time of data loaders has been set to 600 seconds. However, after stopping data

loaders, we have waited 60 seconds all environment up and running for processing queued

event in the brokers. Data loaders emit rate has been varied between 10K TPS and 150K

TPS. Emit rate has been increased by the step of 10K transactions per seconds. All the chart

and graphs provided in the next sections were illustrated based on the experiments.

5.2.1 Latency and Throughput

In this section, we will evaluate the result of Benchmarks and will try to find bottleneck of

each stream processing engines.

Flink Benchmarks Results

TPS range for Flink benchmark was between 10K and 150K. In Figure 18, information about

Flink percentile of latency and windows latency can be found as a chart. From the figure,

we can conclude that below 75% percentile all benchmarks behaved similarly, regarding

latency was independent on emit rate. Above 75% percentile, the latency of each emits

rate between 100K - 150K, varied between 1 second and 2.5 seconds. However, latency

until 100K emit rate, increased linearly. In Figure 18b, we can see latencies of all windows.

Because of three facts, our windows count was approximately 6000. These reasons were;

a) we had defined window size as 10 seconds, b) the benchmark duration was 600 seconds

c) Total amount of campaigns was 100. We observe that Flink has the bottleneck when

TPS is 150K. Because when we check the chart, we will see that 150K TPS has been

increased latency more than others. In the percentile graph since after 140K emits rate

90% percentile of latency was more than two seconds.

43

Spark DStream Benchmarks Results

Data loader emit rate varied between 10K TPS and 150K TPS for Spark DStream Benchmark.

Three seconds micro-batch size has been defined for Spark DStream Streaming. From

Figure 19, we can check the percentile and regression latency of spark streaming. From

our benchmark, we can say that Spark DStream bottleneck was around 130K emit rate.

After 130K emit rate percentile latency radically increased. When we check, we observe

that after 130K emit rate, the latency of windows jumped around from 10 seconds to 40

(a) Percentile of latency

(b) Loess regression of latencies

Figure 18. Flink Benchmark latency reports

0

500

1000

1500

2000

2500

0 25 50 75 100

Percentage of Completed Tuple

L
a
te

n
c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

600

650

700

750

800

0 2000 4000 6000

Windows

L
a

te
n

c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

44

seconds. If we excluded the 140K and 150K emit rate, (Appendix II, Figure 25) latency of

emitting rate between 110K and 130K would be higher than the others. Thus, we can say

that Spark DStream had an excellent performance below 110K emit rate.

Spark Structured Streaming Benchmarks Results

Data load emit rate varied between 10K TPS and 150K TPS for Spark Structured Streaming

benchmark and 3 seconds micro-batch size has been defined for the benchmark. In Figure

20, we can see the percentile latency and latency of windows of Spark structured

(a) Percentile of Latency

(b) Loess regression of latencies

Figure 19. Spark DStream Benchmark latency report

0

20000

40000

60000

80000

0 25 50 75 100

Percentage of Completed Tuple

L
a
te

n
c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0

10000

20000

30000

40000

0 2000 4000 6000

Windows

L
a

te
n

c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

45

streaming. Spark Structured streaming throughput is higher than Spark DStream. While

emit rate is above 140K, the latency of DStream is greater than Structured Streaming.

However, having the latency more than 7 seconds is not good while micro-batch size has

been chosen as 3 seconds. On the graph, we see that the latency is always above 7 seconds

where the TPS is 150K.

(a) Percentile of Latency

(b) Loess regression of latencies

Figure 20. Spark Structured Streaming Benchmark latency report

5000

10000

0 25 50 75 100

Percentage of Completed Tuple

L
a
te

n
c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

4000

5000

6000

7000

0 2000 4000 6000

Windows

L
a

te
n

c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

46

Kafka Stream Benchmarks Results

Same as for the previous cases, data load emit rate was defined to change between 10K

TPS and 150K TPS for Kafka Streaming benchmark as well. In Figure 21, percentile and

window latencies values are illustrated. Before the evaluation and comparison of Kafka

with other engines, there is a benefit to emphasize that we have created five partitions

topic. Because only ten servers have been attached to the Kafka benchmark in total as

(a) Percentile of latency

(b) Loess regression of latencies

Figure 21. Kafka Stream Benchmark latency report

0

5000

10000

15000

0 25 50 75 100

Percentage of Completed Tuple

L
a
te

n
c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

1000

2000

3000

4000

5000

0 2000 4000 6000

Windows

L
a

te
n

c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

47

stream and broker servers, where there were 15 of them in other benchmarks. From Figure

21, we can easily observe that 150K emit rate is the bottleneck of Kafka. Same as the Flink,

below 75% percentile latency increases linearly, where the benchmark is excluded by emit

rate 150K. With our implementation, Kafka’s highest throughput with low latency was

140K TPS, which means any value above that is a bottleneck. When Data loader emitting

rate is 150K after 50% percentile latency radically increases.

(a) Strom percentile of latency

(b) Loess regression of latencies

Figure 22. Storm Benchmark latency report

0

100000

200000

300000

400000

0 25 50 75 100

Percentage of Completed Tuple

L
a
te

n
c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0

50000

100000

150000

200000

250000

0 2000 4000 6000

Windows

L
a

te
n

c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

48

Storm Benchmarks Results

From the Figure 22, we can see the low performance of Storm. Although, Storm’s

performance below 60K TPS is comparable with Flink and (Appendix II, Figure 26), Storm

was the engine which we caught the earliest bottleneck. If we take a look Figure 22b, we

can see after 60K TPS latency increased over the 60 seconds and then Storm engine left

unprocessed event behind it. When TPS was maximum Storm engine left unprocessed

more than half of events.

5.2.2 Comparative Latency

In this section, we will compare performances of our streaming engines regarding latency

on several emit rates. In Figure 23, you can see how the relationship between the latency

of each stream depending on throughput for 90 and 99 percentiles. Although the general

view is similar, for both cases, we would like to emphasize some points regarding the

charts. Starting with 90%, we observe that Spark DStream has a drastically changed after

100K emit rate where it keeps having increasing latency until 150K. Although Spark Dataset

has more constant latency in most of the time, we see that DStream has at least two times

better performance than it for the emit rates below 100K. We also observe a reduction in

Spark’s Dataset with a larger amount of data which is even better than lower emit rates.

Even though we realize that before interpreting it, it is important to test it with larger data

emit rates, we think that Spark Dataset has more scalable performance independent of

emitting rate. Another attention-grabbing point in this chart is about Flink’s almost-linear

performance. It has the best performance regarding latency compared with any other tool,

for any emit rate. We will talk about reasons underlying it at the end of this section after

having a look at resource consumption results. Kafka is the only engine which competes

with Flink for emitting rates below 120K. We see hyperbolic increment after that

breakpoint.

While reviewing results from 99% percentile graph, we obtain the same ideas from the

previous comparison. Spark DStream starts with higher latency and continues very

similarly and reaches to its point of failure at the same emit rate again. Spark Dataset

follows the same shape as well, where we see that it reaches to its lowest at the ends of

the chart. It lets us say that Spark Dataset should be tested at much larger emit rates to

achieve better ideas about its performance. The most noticeable point between two charts

of 90 and 99 % percentile is about Kafka’s latency. Although it was quite stable in the

previous case, we see that in the second case it starts to increase close-to-linearly since

the beginnings of the graph. Regarding this, we can say that 90% of the cases latency was

low and didn’t vary a lot, but when it varied, the gap was too big that it affected the average

latency of 99% percentile. Finally, we see that Flink has performed better than any other

engine again, even though it has a small linear increase after 70K.

Overall, we can inference that for the emit rates below 100K, Kafka and Flink has a good,

and Spark DStream not bad performance, where Spark Dataset is approximately two times

49

slower than them. For higher emit rates, Kafka and Spark DStream are not performing

trustful at all, where Flink has a linearly increasing and Spark Dataset has a linearly

decreasing latency performance.

(a) 90% percentile latency

(b) 99% percentile latency

Figure 23. Percentile latency report

981

5981

10981

15981

20981

25981

30981

35981

40981

45981

50981

55981

60981

65981

70981

10000
20000

30000
40000

50000
60000

70000
80000

90000

100000

110000

120000

130000

140000

150000

Emit Rate (event/s)

L
a

te
n
c
y
 (

m
s
)

Engine

flink

spark_dataset

spark_dstream

kafka

1105

6105

11105

16105

21105

26105

31105

36105

41105

46105

51105

56105

61105

66105

71105

76105

10000
20000

30000
40000

50000
60000

70000
80000

90000

100000

110000

120000

130000

140000

150000

Emit Rate (event/s)

L
a

te
n
c
y
 (

m
s
)

Engine

flink

spark_dataset

spark_dstream

kafka

50

5.2.3 Resource Consumption

In this section, we want to share a comparison of the performance of the tools regarding

resource- CPU and Memory usage, consumption. Figure 24, can give the reader a general

idea about the resource usage of each engine. However, we want to talk about some

interesting points in these charts. Please bear in mind that we reported these statistics for

each server group separately. In the left side of the Figure, results of 10 Streaming servers

are illustrated, where in the right side, they belong to the 5 Kafka servers that were used

as message brokers.

All of the Stream and Kafka servers have 16 cores CPU and 32 GB RAM. In Figure 24,

average CPU and Memory usage of these servers are illustrated. Memory consumption

usage percentage is evaluated out of 320 GB for stream servers and 160 GB for Kafka

servers, where CPU usage percentage is based on total amount of 160 cores for stream

servers and 80 cores for Kafka servers. To explain it more clearly with an example, we can

think of the case where the chart indicates 6% of CPU usage and 10% Memory

consumption. We can conclude from it that, at that particular time, the benchmark was

consuming ten cores and 32GB of RAM respectively.

First of all, we would like to start with CPU consumption of two different server groups by

engines with emit rate at 90K. Talking about stream servers which we have installed

streaming engines, we see that the highest average CPU use belongs to Flink. Although its

CPU usage decreases considerably after 400 seconds, we see that at the beginning of the

process it was two times higher than Spark tools and three times higher than Kafka

Streaming. Another interesting point in the chart is about Spark Dataset’s performance.

We can see that it starts with almost same as Flink- above 6 % and keeps decreasing

constantly and reaches to its low by the end of the process. Kafka Streaming has an average

and constant CPU consumption- approximately 3.5 %, since the beginning and slows down

after 500 seconds. The best performance regarding CPU load of Stream Servers has been

achieved by Spark DStream. We see that it starts at 3% and constantly decreases down to

1.5 % during the first 200 seconds. Although it keeps increasing after this time, it never

goes above 2% which is at least two times better performance than the other engines.

From the right-upper chart, we can see that the CPU Load of Kafka message broker servers

were a bit different than the Stream Servers. However, Apache Flink still has the highest

CPU consumption compared with the other engines. We observe that it starts at 10 % and

is always above 9% during the first 500 seconds of the benchmark. From the chart, we can

see that Kafka Streaming has the lowest consumption of CPU resources. At this point, we

want to point out the fact that, while running the benchmark for Kafka Streaming, although

we reserved, 15 Servers in total, in most of the time not more than 10 of them were in use.

Use of servers was managed by Kafka itself, and we did not add or remove more servers

to the cluster manually. Since some droplets were not actively part of the benchmark, their

average CPU consumption is lower with a big gap than the other engines. We can also

51

observe that Spark engines had very similar results in this case. They both start above 5%

and then slow down after 500 seconds when the process is about to finish.

The second term of resource consumption is about memory load of both- Stream and

Kafka, servers during benchmarks. While checking the first chart, we see Flink’s remarkable

low performance even from the first glance. It is observed that Flink had more than 50 %

of the memory load after 300 seconds, which is six times of Kafka Stream’s memory load.

Kafka Streams always performed below 10% of Memory load on Stream Servers, and it is

also about the fact that some servers were not used all the time actively by Kafka. Spark

Dataset performed the average Memory use which was around 17% in its peak. However,

we can say that it loaded 15% of the Memory constantly during the last 500 seconds. The

most scalable performance here is achieved by Spark DStream which increases the

memory use with a very small percentage. Although it reached 8% of memory use in the

100th seconds, we see that it never goes above 15% during the benchmark.

(a) Stream Servers (b) Kafka Servers

Figure 24. Resource Consumption for 90k TPS

0

1

2

3

4

5

6

0 200 400 600

Time (seconds)

C
P

U
 l
o

a
d

 p
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

0 200 400 600

Time (seconds)

M
e
m

o
ry

 l
o

a
d

 p
e
rc

e
n

ta
g

e

0

2

4

6

8

10

0 200 400 600

Time (seconds)

C
P

U
 l
o

a
d

 p
e

rc
e

n
ta

g
e

0

10

20

30

0 200 400 600

Time (seconds)

M
e
m

o
ry

 l
o

a
d

 p
e
rc

e
n

ta
g

e

ENGINE

flink

spark_dataset

spark_dstream

kafka

52

Because Flink [5] uses on-heap memory as a memory segment and keeps the data

processing on binary representation and off-heap, as well as reduces Garbage Collector's

job to the minimum, the memory is loaded more than average during Flink benchmark

comparing with the rest of the engines. On the other hand, this memory management

helps Flink gain high throughput and low latency. Flink loads Garbage Collector of JVM in

minimum levels and provides better performance in this way. However, Spark and Kafka

applications rely on JVM GC for memory management. However, as Spark and Kafka [12,

9] applications, JVM's garbage collector push the boundary of performance and creates

low memory consumption for both systems. Because of the micro-batching process with 3

seconds interval, Spark has a higher memory consumption compared with Kafka.

The graph that Kafka Servers’ memory use is illustrated shows that engines loaded memory

in different rates and in a different way. Kafka Streams is the only one which still has a very

scalable performance where it does not load the memory more than 5% at any moment.

Flink’s performance is the same as of the Stream Servers with the only difference that the

highest and average use is around 37%. The unexpected behavior for us was about Spark

tools performance. Dataset and DStream both reach the 35% of the memory use in less

than 200 seconds and after that keep constant use around 35%, which is the same as

Flink’s.

53

6 Conclusions

Finally, we will conclude the experiments and results we obtained regarding the thesis of

this master research. First of all, we would like to emphasize that the results that are

shared represent only some part of the benchmarks we ran. We have run more

configuration versions for each engine, where 15 different emit rates were tested for each

of them as well. In the contribution section, we only included the most meaningful results

regarding the main concept. Besides the performance regarding latency, throughput and

resource consumption, we would like to share that Heron and Hazelcast tools had the most

complex setup configuration and maintenance feature to manage.

Regarding the performance of the tools we have tested, we can say that each of them had

pros and cons depending on the environment and other factors. We think that as real-time

stream processors Flink and Kafka are most noticeable ones. We have already seen how

low latency Flink provides for high emit rates comparing with the rest of the engines.

However, we have also seen that it is because it exploits resources such as CPU and

Memory use. Although Kafka did not load the servers as much Flink did, its latency was not

far from the latter one. At this point, we can say that, if a user needs real-time processing,

with low latency, Kafka is a very optimal choice. Moreover, for the cases where real-time

is the most important factor-such of network monitoring systems, fraud detections, etc.,

and there are no resource limitations, Flink must be preferred over the rest.

Spark tools had lower performance for real-time processing. Although DStream used fewer

resource consumptions and performed well at the beginning of the process, it exhibited its

bottleneck at emitting rate 90K which is low for real-time applications. Thus, we evaluate

DStream with ‘failed’ in our benchmark. Talking about Structured Streaming of Spark, we

should consider that we had micro batching for this engine. Batch size was 3 seconds, and

thus, although 6 seconds of latency is above average compared with other engines,

considering its throughput, we think this new tool performed well. It can be chosen for

continuous processing because of its sustainability as well.

Overall, it can be said that for real-time processing, depending on system requirements

and hardware characteristics, Flink or Kafka can be used for large emit rates. For

continuous processing, Spark’s Structured Streaming can be adequate because of its high

throughput rate.

54

7 Future Work

Although we believe that we have tested the most well-known stream processing tools,

there are several engine or frameworks that deserves to be involved future replications of

this master research. One of them is Heron which we have started and worked within the

local, but we do not have remote results included to this master thesis. From our

observations based on the local run, we truly believe that Heron can compete with today’s

leader engines, and this master research can be extended by its tests. Another interesting

framework to be added to this benchmark could be Hazelcast Jet which we talked about

in this paper previously. Besides these two, new technologies can be followed, and a

researcher can include more tools since the infrastructure is very convenient for it. The

very first example of them can be Apache Samza because it has good bonds with Apache

Kafka. Moreover, benchmarks with new versions of engines that have been used during

this master thesis would be another interesting approach. For example, newer versions of

Spark starting from v2.3.0, Structured Streaming supports continuous processing which is

a must have for the future replications of this benchmark.

As a part of future work, benchmarks of Flink and Kafka can be refactored by using native

methods such as grupBy, reduceGroup, and groupByKey and be included to the

benchmark.

One of the most powerful sides of our research was that we compared the tools regarding

latency, throughput and resource consumption, which are three main concepts in stream

processing world. However, monitoring network usages of different engines, comparing

their behavior amongst nodes and clusters can be a useful way to extend this research

with.

Another approach could be about the program that was used for the tests. As we have

already mentioned our implementation did not have all the operations that are used very

frequently in the big data world. One of them is ‘join’ operation, which can easily be added

to this benchmark by dividing ‘click’ and ‘view’ events to be logged on two different stream

pipelines. A ‘join’ operation can later be used to gather all information based on their

‘advertisement_id.’

Finally, there are some requirements which we mentioned in the ‘Related Work’ section

of this paper but didn’t refer to our master thesis. For example, scalability and rebalancing

tests could also be very interesting for big data processors. It is possible that in the future

improvements we increase the total amount of nodes in the system and more metrics to

evaluate these two features of the tools we have used.

55

8 References

[1] H. Rui, K. J. Lizy ja Z. Jianfeng, „Benchmarking Big Data Systems: A Review,“

IEEE Transactions on Services Computing, kd. 11, nr 3, pp. 580-597, 2018.

[2] J. Waite, „10 Key Marketing Trends for 2017,“ IBM.

[3] L. Doug, „3D Data Management: Controlling Data Volume, Velocity, and Variety,“

META Group Inc, Stamford, 2001.

[4] M. Kleppmann, „Designing Data-Intensive Applications,“ %1 Designing Data-

Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable

Systems, Sebastopol, O'Reilly Media Inc, 2017, pp. 383-239.

[5] "Apache Flink Project," [Online]. Available: https://flink.apache.org/.

[6] "Apache Storm Project," [Online]. Available: http://storm.apache.org/.

[7] C. Sanket, D. Derek, E. Bobby, F. Reza, G. Thomas, H. Mark, L. Zhuo, N. Kyle, P.

Kishorkumar, J. P. Boyang ja P. Paul, „Benchmarking Streaming Computation

Engines: Storm, Flink and Spark Streaming.,“ IEEE, 2016.

[8] "Apache Zookeeper Project," [Online]. Available: https://zookeeper.apache.org/.

[9] "Apache Spark Project," [Online]. Available: https://spark.apache.org/.

[10] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica, "Resilient

distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.,"

NSDI'12 Proceedings of the 9th USENIX conference on Networked Systems Design

and Implementation table of contents, pp. 2-2, 25 04 2012.

[11] "Apache Heron Project," [Online]. Available: https://apache.github.io/incubator-

heron/.

[12] "Apache Kafka Project," [Online]. Available: https://kafka.apache.org/.

[13] Hazelcast, "Hazelcast Jet," [Online]. Available: https://jet.hazelcast.org/.

[14] G. Can, "Introducing Hazelcast Jet - DZone Java," 11 February 2017. [Online].

Available: https://dzone.com/articles/introducing-hazelcast-jet.

[15] "Redis Project," [Online]. Available: https://redis.io/.

[16] S. Michael, Ç. Uǧur ja Z. Stan, „The 8 Requirements of Real-Time Stream

Processing,“ SIGMOD Rec., kd. 34, nr 4, pp. 42-47, 2005.

[17] R. Tilmann, F. Michael, D. Manuel, H.-A. Jacobsen and B. Gowda, "The Vision of

BigBench 2.0," Proceedings of the Fourth Workshop on Data Analytics in the

Cloud, p. 4, 31 05 2015.

[18] C. Paul, G. Bhaskar, L. Seetha, N. Chinmayi, N. Patrick, P. John and P. Meikel,

"From BigBench to TPCx-BB: Standardization of a Big Data Benchmark," in

Performance Evaluation and Benchmarking. Traditional - Big Data - Internet of

Things, vol. 10080, New Delhi, Springer, Cham, 2017.

[19] "Transaction Processing Performance Council," [Online]. Available:

http://www.tpc.org/.

[20] T. Ivanov, "Big Data Benchmark Compendium," in Performance Evaluation and

Benchmarking: Traditional to Big Data to Internet of Things, Kohala Coast, HI:

Springer International Publishing, 2016, pp. 137-146.

56

[21] Y. Wang, „Stream Processing Systems Benchmark: StreamBench,“ Aalto

University, Espoo, 2016.

[22] Yahoo, "Yahoo Streaming Benchmark," Yahoo, [Online]. Available:

https://github.com/yahoo/streaming-benchmarks.

[23] C. Boden, A. Spina, T. Rabl and V. Markl, "Benchmarking Data Flow Systems for

Scalable Machine Learning," Proceedings of the 4th ACM SIGMOD Workshop on

Algorithms and Systems for MapReduce and Beyond, pp. 1-3, 2017.

[24] D. Tathagata, Z. Matei and W. Patrick, "Diving into Apache Spark Streaming’s

Execution Model," 30 07 2015. [Online]. Available:

https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-

execution-model.html.

57

Appendix

I. Abbreviation

SSH Secure Shell

SPS Stream Processing Systems

SPE Stream Processing Engines

TPC Transaction Processing Performance Council

TPS Transaction Per Seconds

POJO Plain Old Java Object

CPU Central Processing Unit

RAM Random-access Memory

JSON JavaScript Object Notation

ML Machine Learning

CEP Complex Event Processing

HDFS Hadoop Distributed File System

JVM Java Virtual Machine

API Application Programming Interfaces

RDD Resilient Distributed Dataset

DAG Directed acyclic graph

SPEC Standard Performance Evaluation Corporation

SPC Storage Performance Council

DBMS Database Management System

ETL Extract Transform and Load

SQL Structured Query Language

58

II. Benchmark Result Charts

(a) 90% percentile latency (b) 99% Latency of Windows

Figure 26. Latency report of All Engines (Storm Included)

0

50000

100000

150000

200000

250000

300000

10000
20000

30000
40000

50000
60000

70000
80000

90000

100000

Througput (event/s)

L
a

te
n

c
y
 (

m
s
)

Engine

flink

spark_dataset

spark_dstream

kafka

storm

storm_no_ack

STORM_NO_ACK 90 % Percentile chart

0

50000

100000

150000

200000

250000

300000

10000
20000

30000
40000

50000
60000

70000
80000

90000

100000

Througput (event/s)

L
a

te
n

c
y
 (

m
s
)

Engine

flink

spark_dataset

spark_dstream

kafka

storm

storm_no_ack

STORM_NO_ACK 99 % Percentile chart

(a) 90% percentile latency (b) 99% Latency of Windows

Figure 25. Latency report of Spark DStream since 130K

0

5000

10000

15000

0 25 50 75 100

Percentage of Completed Tuple

L
a
te

n
c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

SPARK_DSTREAM Benchmark Percentile chart

2000

4000

6000

8000

10000

12000

0 2000 4000 6000

Windows

L
a

te
n

c
y
 (

m
s
)

TPS

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

SPARK_DSTREAM Benchmark average latency

59

III. Source Code

The link to the GitHub Repository of the project is shown below:

 https://github.com/elkhan-shahverdi/streaming-benchmarks

• spark-benchmark: Contains Spark Dataset benchmark codebase.

• spark-cp-benchmark: Contains Spark Structured Streaming benchmark codebase.

• kafka-benchmark: Kafka Stream benchmark codebase.

• heron-benchmark: Heron benchmark codebase.

• storm-benchmark: Storm benchmark codebase.

• hazelcast-benchmark: Hazelcast Jet benchmark code base

• streaming-benchmark-common: Common libraries codebase

• conf: Contains local and remote benchmark configurations.

• data: Contains data generator Clojure scripts.

• reporting: Contains reporting R scripts.

• result: Contains result of benchmarks and generated reports.

https://github.com/elkhan-shahverdi/streaming-benchmarks

60

IV. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Elkhan Shahverdi,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until the expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until the expiry of the term of validity of

the copyright,

of my thesis

Comparative Evaluation for the Performance of Big Stream Processing Systems,

supervised by Sherif Sakr,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 09.08.2018

	1 Introduction
	1.1 Scope
	1.2 Motivation
	1.3 Research Problem
	1.4 Structure

	2 Background
	2.1 Streaming
	2.1.1 Use case
	2.2 Apache Flink
	2.2.1 Architecture
	2.2.2 Flink APIs
	2.3 Apache Storm
	2.3.1 Architecture
	2.4 Apache Spark
	2.4.1 Programming Model
	2.4.2 Spark Streaming
	2.4.3 Spark Structured Streaming
	2.5 Apache Heron
	2.5.1 Architecture
	2.6 Apache Kafka
	2.6.1 Producers and Consumers
	2.6.2 Kafka Streams
	2.7 Hazelcast Jet
	2.8 Apache Zookeeper
	2.9 Redis

	3 Related Work
	3.1 StreamBench
	3.2 Yahoo Stream Benchmark

	4 Contribution
	4.1 Environment
	4.2 Benchmark Architecture
	4.3 Environment Setup
	4.4 Benchmark Execution
	4.5 Implementations

	5 Experiment
	5.1 Experimental Design
	5.2 Stream Experimental Result
	5.2.1 Latency and Throughput
	5.2.2 Comparative Latency
	5.2.3 Resource Consumption

	6 Conclusions
	7 Future Work
	8 References
	Appendix
	I. Abbreviation
	II. Benchmark Result Charts
	III. Source Code
	IV. License

