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INTRODUCTION 

DNA methylation, histone modifications, gene expression regulation mediated 
by non-coding RNAs and chromatin remodeling are the classic epigenetic mec-
hanisms. During the last decade, there has been a growing interest in various 
chemical modifications to both coding and noncoding RNAs. Such modifica-
tions with different functional groups have emerged as key mechanisms in the 
body to control gene expression. This area of research is called epitranscrip-
tomics. The most common RNA modification is the methylation at the sixth 
position of adenosine, N6-methyladenosine (m6A). It affects splicing, intra-
cellular distribution, translation, and cytoplasmic degradation of RNA. Hence, 
m6A plays a crucial role in regulating cell differentiation, neuronal signaling, 
immune tolerance, carcinogenesis and other, both physiological and pathologi-
cal, conditions. The proteins that regulate the abundance and downstream 
effects of RNA m6A are known as RNA m6A methyltransferases, RNA m6A 
demethylases and RNA m6A reader proteins. The m6A methyltransferases and 
demethylases are enzymes that catalyze the transfer or removal of the methyl 
group from the 6th position of adenosine and are therefore viable to the rever-
sible regulation by small-molecule inhibitors and/or activators. Development of 
new drugs based on identification of first lead candidates holds great potential 
for treatment of various pathologies. As a therapeutic approach, this has at-
tracted great interest but depends on the type of disruption in m6A homeostasis. 

The aim of this study was to carry out computational molecular design of 
small-molecule inhibitors and activators of enzymes involved in the regulation 
of RNA m6A methylation and demethylation. Specifically, those included the 
RNA m6A methyltransferase complex METTL3/METTL14/ WTAP and 
the RNA m6A demethylases FTO and ALKBH5. The inhibitory or acti-
vating activity of the compounds was tested experimentally using the relevant 
enzymatic assays. Furthermore, the activity of these compounds was studied in 
various in vitro models related to different pathologies such as neurodegenera-
tion, cancer and human immunodeficiency virus type 1 (HIV-1) virus infection. 
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1. LITERATURE OVERVIEW 

1.1. RNA m6A regulation 
Today, regenerative therapies are expected to deliver their promise of fully 
functional tissue repair through reversible epigenetic regulation of gene expres-
sion in tissues. Epigenetics is a field of research that investigates how changes 
in gene expression are passed on to progeny without alterations in the DNA se-
quence. Epigenetic modifications include DNA methylation, histone modifica-
tion, chromatin modification, and regulation of non-coding RNA. [1] The field 
of the study of the chemically modified RNAs and their role in physiological 
and pathological processes is called epitranscriptomics.  Presently, more than 
160 different post-transcriptional chemical modifications have been identified 
in RNA molecules [2]. The most common RNA modification is N6-methyl-
adenosine (m6A). In different types of RNAs, for example messenger RNAs 
(mRNAs), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), m6A is one of 
the most important post-transcriptional regulatory markers. Additionally, RNA 
m6A modifications have an important role in the regulation of RNA splicing, 
translation, stability and translocation. [1, 3–5] The m6A modifications account 
for about 50% of the total number of methylated ribonucleotides, and 0.1-0.4% 
of all adenosines in cellular RNA are methylated at the sixth position of nitro-
gen atoms [2]. 

The homeostasis of RNA m6A modifications in cells is affected by various 
enzymes. RNA adenosine methylation is carried out by enzymes called m6A 
methyltransferases and demethylation is performed by m6A demethylases. 
Therefore, m6A is considered to be a reversible RNA modification [6–8]. In 
addition, the fate of the m6A modified RNAs in the cell is controlled by specific 
m6A-binding proteins called m6A readers. [1, 4, 9]  

 
 

1.2. RNA m6A methylation 
As described above, the methylation of RNA at the sixth position of adenosine 
is performed by enzymes or enzyme complexes called RNA m6A methyl-
transferases, also known as writers [9]. In cells, the methyl group is added to 
adenosine mainly by the methyltransferase complex involving methyltrans-
ferase-like protein 3 (METTL3) and methyltransferase-like protein 14 
(METTL14). This METTL3/METTL14 complex is generally bound to auxiliary 
proteins such as the Wilms’ tumor 1-associating protein (WTAP) [10–12], 
protein virilizer homolog  (KIAA1429 or VIRMA) [13], RNA-binding motif 
protein 15 (RBM15) [14] or zinc finger CCCH domain-containing protein 13 
(ZC3H13) [15]. Another m6A methylating enzyme in cells is the methyl-
transferase-like protein 16 (METTL16) [16]. Of all these proteins, the 3D 
crystal structure is known only for METTL3/METTL14 [17–20] heterodimer 
and METTL16 [21–24] enzyme. These methyltransferases are predominantly 



11 

located in the cell nucleus where the methylation is also performed [25]. 
Chemically, RNA m6A methyltransferases catalyze the methyl group transition 
from S-adenosyl-L-methionine (SAM) molecule to adenosine in RNAs (Figure 
1).   
 
 

 
 

Figure 1. Reversible m6A methylation in RNA [26]. 
 
 
The products of this enzymatic reaction are m6A-methylated RNA and S-
adenosyl-L-homocysteine (SAH). [20, 26] 

The RNA methyltransferase METTL3/METTL14/WTAP complex is one of 
the most common RNA m6A methyltransferases and therefore we chose it as the 
object of study in this work. METTL3 is highly conserved in indigenous orga-
nisms from yeast to humans [10]. Another component of the complex is 
METTL3 protein homologue METTL14 that co-localizes with METTL3 as a 
stable heterocomplex [11, 27]. The METTL3 and METTL14 enzymes have a 
main catalytic role in the addition of methyl group to RNA adenosine. The 
catalytic center is localized in METTL3 enzyme, while METTL14 enzyme 
assists METTL3 to recognize the substrate RNA and provides structural support 
for stabilizing the methylation complex [1, 13]. The WTAP protein binds to the 
METTL3 and METTL14 enzymes and is required for localization of the 
complex to nuclear speckles [28]. The function of the WTAP protein is to 
control the methylation process [20].  Recently, the 3D crystal structure of 
another RNA methyltransferase was identified. This enzyme is METTL16 [23], 
which is a homologue of METTL3. METTL16 methylates two substrates: U6 
spliceosomal RNA (U6 snRNA) and methionine adenosyltransferase 2A 
(MAT2A) gene of mRNA [16, 29, 30].  

No active inhibitors have yet been found for most RNA m6A methyltrans-
ferases. Two papers describing METTL3 enzyme inhibitors have recently been 
published. Yankova et al. describe the best inhibitor with the half maximal 
inhibitory concentration (IC50) of 16.9 nM and the activity of inhibitors 
described by Bedi et al. remain on the micromolar scale. [18, 19] 
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1.3. RNA m6A demethylation 
Proteins involved in the demethylation of RNA N6-methyladenosine are called 
RNA m6A demethylases or erasers [9]. The two best known demethylases are 
the fat mass and obesity-associate protein (FTO) and α-ketoglutarate-dependent 
dioxygenase AlkB Homolog protein 5 (ALKBH5) [31, 32]. 3D crystal struc-
tures are also known for both proteins [32–41]. Recently, the α-ketoglutarate-
dependent dioxygenase AlkB Homolog protein 3 (ALKBH3) has been dis-
covered to bind to m6A of tRNA and the activity of other proteins of the AlkB 
family are also expected to behave like demethylases [42]. Similar to methyl-
transferases, demethylase proteins are located both in the cell nucleus [25] and 
cytoplasm [43].The RNA m6A demethylation reaction is performed in the 
presence of Fe(II+) ion and α-ketoglutarate (Figure 1) [20].  

The most investigated RNA m6A demethylase is the FTO enzyme. FTO has 
been also identified as α-ketoglutarate-dependent dioxygenase AlkB Homolog 
protein 9 (ALKBH9) [44]. The FTO enzyme can demethylate single-stranded 
DNA and RNA at m6A. In addition, FTO can demethylate N6,2’-O-dimethyl-
adenosine (m6Am), N1-methyladenosine (m1A) and 3-methyluracil (m3U) and/or 
3-methylthymidine (m3T) but enzymatic activity in these processes is signi-
ficantly less efficient than the demethylation of m6A [45–48]. Another RNA 
m6A demethylase, ALKBH5, has also been studied extensively. Like FTO 
enzyme, the ALKBH5 enzyme demethylates single-stranded DNA and RNA at 
m6A. It has been suggested that ALKBH5 enzyme is more specific for m6A than 
FTO [46]. Some non-specific FTO inhibitors have been reported in the litera-
ture, with their IC50 values in the micromolar range [32, 34, 49–52]. The best 
known FTO inhibitor is the cancer drug candidate Bisantrene with activity at 
the high nanomolar to low micromolar range [53]. Recently, an inhibitor of the 
ALKBH5 with IC50 approximately at 25 μM has been identified [54]. 
 

 
1.4. RNA m6A reader proteins 

In addition to methyltransferases and demethylases, another type of proteins is 
related to RNA m6A modification, the RNA m6A readers. Readers are proteins 
that recognize a m6A modification in mRNA and regulate gene expression in 
several ways depending on the presence and location of it in the RNA [55, 56]. 
A group of RNA m6A reader proteins belong to the members of the YTH 
domain family. These include YTH N6-methyladenosine RNA binding proteins 
(YTHDF1, YTHDF2, YTHDF3) [57] and YTH domain-containing proteins 
(YTHDC1, YTHDC2) [58]. In addition, insulin like growth factor 2 mRNA 
binding proteins (IGF2BP1, IGF2BP2 and IGF2BP3) [59] and heterogeneous 
nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) [60] are considered also as 
m6A readers. The reader proteins are located in both the nucleus and the cyto-
plasm [1]. The 3D crystal structures for all proteins in the YTH domain family 
and other reader proteins have been reported [61–76]. Nevertheless, no inhi-
bitors have yet been found for any of the reader proteins. 
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1.5. The role of RNA m6A modification  
in physiology and pathology 

RNA m6A methylation and demethylation are reversible processes [8]. The 
dynamic homeostasis of m6A methylation in critical for cellular physiological 
processes including cell proliferation, differentiation, metabolism, and death 
[7]. The abundance of RNA m6A modification is associated with the control of 
cell fate decisions of stem cells and also somatic cells [77–81]. The m6A modi-
fication of RNA is critical for the development and functions of several tissues 
like brain, liver or kidney. In addition to physiological processes, the RNA m6A 
modification has also been associated with a number of pathologies such as 
developmental disorders, immunological disorders, diabetes, different types of 
cancer, cardiovascular diseases, neuronal diseases and infectious diseases [79]. 

The m6A modifications in both the viral RNA and host cell mRNAs play 
critical role in virus genome transcription and virus replication. The presence of 
m6A modifications in viral RNA has been observed in many viruses such as 
HIV, herpes simplex virus, hepatitis B virus, Zika virus, influenza A virus and 
other RNA viruses. [82–90] The occurrence of m6A in viral RNA regulates 
virus replication and gene expression as demonstrated in the case of HIV-1 
virus [57, 91, 92]. Depletion of RNA m6A methyltransferases METTL3 or 
METTL14 using the respective targeting shRNAs decreases viral RNA methy-
lation and suppresses viral transcription and replication. On the contrary, the 
knockdown of the RNA m6A demethylase ALKBH5 leads to the increase of the 
viral replication. [91] Notably, the HIV-1 viral infection itself leads to the 
enhancement of m6A modification in the host cell RNA. A major problem in the 
contemporary HIV-1 virology is the latency of the virus. Therefore, it is highly 
important to find agents reversing or suppressing the latent virus. [93, 94] 

Research carried out during the recent years has demonstrated that RNA 
m6A methylation and demethylation modify embryonic brain development, 
neurogenesis in the mammalian midbrain, neuronal signaling, memory, and 
disease [1, 95–97]. It has been shown that genes associated with RNA m6A 
control may play a role in conferring risk of dementia [98]. Recently, it was 
demonstrated that the RNA m6A demethylase FTO has important functions in 
the dopaminergic midbrain circuitry, which is the vital pathway in Parkinson's 
disease pathogenesis [95]. Consequently, by modifying the RNA m6A methy-
lation using m6A demethylase FTO or ALKBH5 inhibitors, it is also possible to 
monitor the course of neurodegenerative diseases. 

The m6A modification of RNA has been shown to be strongly related to 
tumorigenesis [99–105]. It has been shown that the m6A methyltransferases are 
mostly upregulated in cancer cells and tissues and act as oncogenes by regu-
lating various signaling pathways in various types of cancers, including acute 
myeloid leukemia (AML) [5, 106–108], hepatocellular carcinoma [109–111], 
colorectal cancer [112], gastric cancer [101], lung cancer [113], bladder cancer 
[114], renal cell carcinoma [115], and melanoma [116]. In contrast, the over-
expression of METTL3 or inhibition of the RNA demethylase FTO suppresses 
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glioblastoma stem cell growth and self-renewal [117]. The other RNA m6A 
demethylase, ALKBH5, also promotes glioblastoma stem cells proliferation in 
vitro and tumorigenesis in vivo by enhancing the transcription factor Forkhead 
Box Protein M1 (FOXM1) expression that has been associated with cancer 
progression and pathogenesis [118]. Both FTO and ALKBH5 have been shown 
to be oncogenes in the case of breast cancer tissues and cell lines [119]. The 
RNA m6A demethylases also enhance AML cell proliferation in vitro and 
promote leukemogenesis in vivo. [52, 120] Interestingly, the same overall effect 
has been observed in the case of the m6A methyltransferase proteins METTL3 
and METTL14 [107, 121]. 
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2. AIM OF THE STUDY 

The main aim of this thesis was to find inhibitors and activators for enzymes 
involved in methylation and demethylation of RNA m6A using molecular 
modelling and verify their activity in biological experiments. This work focused 
on the development and search for new compounds against diseases associated 
with RNA m6A regulation. 
 
Paper I. The aim of this paper was to find novel small-molecule ligands for 

RNA m6A methyltransferase METTL3/METTL14/WTAP complex 
using a molecular modelling. 

Paper II. The aim of this paper was to find better inhibitors for RNA m6A 
demethylase FTO using a molecular modelling and to investigate the 
effects of these compounds on neurons. 

Paper III. The aim of this paper was to find novel inhibitors for RNA m6A 
demethylase ALKBH5 using virtual high-throughput screening and 
to investigate the anti-cancer effects of these compounds on 
leukemia cells. 

Paper IV. The aim of this paper was to investigate the effects of RNA m6A 
methyltransferase METTL3/METTL14/WTAP complex activators 
on the replication of HIV-1 virus. 
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3. EXPERIMENTAL SECTION 

3.1. Molecular docking 
Molecular docking is a common method in drug design, in which various low-
molecular compounds are matched to the 3D structure of a biological target, 
usually a protein or nucleic acid. In the case of molecular docking, the energetic 
effect of ligand-protein binding is studied. 

The raw crystal structures of proteins targeted in this work were available 
from Protein Data Bank (PDB) [122]. Before docking, all crystal structures of 
proteins were pre-treated using Schrödinger Protein Preparation Wizard [123]. 
This involved the removal of co-crystallized water, ions and products of the 
methylation or demethylation reaction from protein 3D structure. Also missing 
hydrogen atoms were added to the proteins. The geometrical structure of all 
ligand molecules were optimized using the density functional theory Becke, 3-
parameter, Lee–Yang–Parr (B3LYP) method[124] with 6-31G basis set. 

In Papers I and II, the molecular docking was carried out using AutoDock 
4.2 software. [125] The numbers of rotatable bonds of the ligand were set as 
default values within the AutoDock Tools 1.5.6 program [125]. The active site 
was surrounded with a grid-box sized 65×65×65 (in the case of Paper I) or 
80×80×80 (in the case of Paper II) points with spacing of 0.375 Å. The ligand 
efficiencies (LE) were calculated as follows: 

 𝐿𝐸 = −                                                (1) 
 
where ΔGdock is the docking free energy calculated using semi-empirical  free 
energy force field [125] for interatomic interactions and N is the number of 
heavy atoms (non-hydrogen atoms) in the ligand molecule. The higher the LE 
value, the better is the binding between the ligand molecule and the protein. The 
compounds with the highest docking-free energies and/or ligand efficiencies 
were selected for the studies on the interactions between ligand compounds and 
proteins in detail. 
 
 

3.2. High-throughput virtual screening  
of compound libraries 

High-throughput virtual screening (HTVS) methods play an increasingly more 
important role in the drug development. HTVS provides processing through 
millions of compounds to find the most suitable ligands for a particular protein. 
The screening results help to study the interaction between a compound and 
biochemical target. It also helps to provide initial ideas for rational drug design. 
In the case of HTVS, the preparation of the protein is carried out as described 
above (Section 3.1). In Paper III, a set of compounds from the Functional 
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molecular IMMunology (FIMM) database was used as ligands. The FIMM 
compound library (HTB, 2018) [126] contains approximately 144,000 com-
pounds. The geometric 3D structures of the ligands were optimized using the 
LigPrep procedure from the Schrödinger Suite [127]. 

The HTVS was carried out using the Glide virtual screening workflow 
module of the Schrödinger Suite [128, 129] that applies a series of filters to 
search for the position of the ligand in the active site of the target protein that 
corresponds to the energy minimum. Glide is a force-field based docking 
program that uses an optimized interatomic interaction potential (OPLS) [130, 
131] for liquid simulations. The Glide HTVS procedure includes three steps: 
docking with HTVS precision level; docking with standard precision level; 
docking with an extra precision. All small-molecule ligands were docked 
flexibly with five docking poses generated for each ligand. Only the best 
scoring pose was kept for the next step. After each step, the top 30% of ligands 
with the best docking score were automatically selected for the next step. In this 
way, a set of compounds for each target was obtained.  

The predicted physical interactions between the ligand compounds and 
protein were further analyzed for compounds with the highest docking-free 
energies and/or ligand efficiencies. 

 
 

3.3. Molecular dynamics 
Currently, molecular dynamics is routinely used to understand ligand-protein or 
protein-protein interactions. In Papers I–III, the molecular dynamics simula-
tions were used to understand the binding of small molecules to the target 
proteins in detail. 

All molecular dynamics simulations that were done in the Papers I–III were 
carried out using the Desmond simulation package [132] of the Schrödinger 
Suite [133]. Default parameters were used for all molecular dynamics’ simula-
tions. The system total charge was neutralized with sodium or chloride ions 
before starting the simulations. The simulation lengths were 10 ns or 25 ns and 
50 ns with relaxation time 1 ps for all studied protein conformations. The 
interactions and behavior between the ligands and enzymes were analyzed using 
the Simulation Interaction Diagram tool implemented in the Desmond mole-
cular dynamics package.  

The stability of molecular dynamics simulations was monitored by looking 
on the root mean square deviation (RMSD) of the ligand and protein atom 
positions in time. RMSD is used to calculate the average change in movement 
of a atoms for a particular frame with respect to a reference frame for all frames 
in the trajectory. The RMSD is calculated as follows: 

 𝑅𝑀𝑆𝐷 =  ∑ 𝑟´ (𝑡 ) − 𝑟 (𝑡 ))                      (2) 
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where N is the number of atoms, tref is the reference time, tx is recording time, r' 
is the position of the selected atoms in frame x after superimposing on the 
reference frame. 

Figure 2A is an exemplary graph showing the progression of the protein 
RMSD (blue line) and the red line describes how stable the ligand is at the 
protein binding center (ligand RMSD).  

 
 

 
 
Figure 2. (A) The protein and ligand position root mean square deviation (RMSD) plot 
against time. (B) Normalized stacked bar chart of interactions and contacts between the 
protein and ligand over the course of trajectory. (C) A schematic of detailed ligand atom 
interactions with the protein residues. 
 
 
The simulation allows visualization of the interactions between the ligand and 
the protein. It is possible to distinguish four types of interactions between the 
ligand and protein, i.e. hydrogen bonds, hydrophobic, ionic and water bridges. 
On Figure 2B, the value of interaction fraction shows how much of the 
simulation time the given interaction is maintained (1.0 is equal to 100% of the 
simulation time). If any of the residues bind to the ligand at multiple sites 
during the simulation, the interaction fraction value may exceed 1.0. An 
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example in Figure 2C shows in detail which amino acid residue interacts to 
ligand atom. 
 
 

3.4. Enzymatic activity assays 
In Papers I-III, the effect of the best binding ligands predicted by computational 
modeling on the enzymatic activity of m6A regulating enzymes was measured 
using the respective assays.  

In Paper I, the activity of the selected ligands for METTL3/METTL14/ 
WTAP complex was evaluated using Radioactivity-Based Assay [134]. The 
change in the m6A methylation of the substrate RNA by ligand compounds was 
measured using 2450 MicroBeta® liquid scintillation counter. The scintillation 
counts were proportional to amount of methylated RNA. The values of the half 
maximal effective concentration (EC50) were calculated using Graph-Pad Prism 
7.0 software. 

Regarding Papers II and III, the enzymatic inhibitory activities of the 
ligands were measured using commercially available EpiQuik ELISA kit (Epi-
gentek, Farmingdale, NY, USA) employing a m6A effective antibody. To deter-
mine the enzyme activities of the ligands for FTO and ALKBH5 enzymes, an 
enzymatic reaction was first performed according to the procedure described by 
Huang et al [34]. Thereafter, the amount of m6A that was measured using 
EpiQuik m6A RNA Methylation Quantification Colorimetric Kit. Absorbance 
measurements at 450 nm were used to determine enzymatic activity (Epoch™ 
Microplate Spectrophotometer, BioTek). The IC50 values for ligands were 
calculated using Quest Graph™ IC50 Calculator (v.1, AAT Bioquest, Inc., 
Sunnyvale, CA). 

 
 

3.5. Binding experiments 
The binding of the ligand to the protein was measured in Papers I–III using 
different binding assay tools available at research partners.  

In Paper I, the surface plasmon resonance (SPR) method was used to 
describe the binding between ligand and protein. SPR enables real-time non-
labeled detection of biomolecular interactions. It is an optical method that 
detects changes in the refractive index caused by mass changes at the receptor 
surface. [135, 136] All the SPR measurements were performed with a Biacore 
T100 instrument (GE Healthcare Life Sciences, Chicago, IL, USA). 

In Paper I, also the binding of compound and protein was carried out using 
bio-layer interferometry (BLI) method. BLI, like SPR, enables real-time label-
free detection of biomolecular interactions [137]. The working principle of BLI 
is similar to the SPR method. In Paper I, Bio-Layer Interferometry instrument 
Octet K2 with Streptavidin sensors was used (Pall ForteBio LLC, Fremont, CA, 
USA). 
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The binding of ligands to the FTO protein (Paper II) was determined by the 
microscale thermophoresis (MST) method. Microscale thermophoresis is based 
on the detection of a change in the temperature caused by the fluorescence of a 
target depending on the concentration of non-fluorescent ligand [138]. The 
MST experiments were performed using Monolith NT.115 instrument (Nano-
Temper Technologies GmbH, Munich, Germany). 

In Paper III, Drug affinity responsive target stability (DARTS) measure-
ments of ligand binding was used. Binding of ligand is expected to stabilize or 
destabilize target proteins, in a specific conformation or by simply masking 
protease recognition sites, thereby changing protease sensitivity of the target 
protein [139]. In Paper III, the DARTS experiment was modified from Pai et al. 
2016 [140]. 

 
 

3.6. Cell viability measurements 
The effect of ligands on cells was also examined in each Paper. The research 
presented in Paper I did not focus so much on the effect of the compounds in 
cells, but on finding active ligands for the METTL3/METTL14/WTAP enzyme 
complex. Thus, in this article, only the cytotoxicity of the compounds on HEK-
293 cells was tested. For the analysis of cell cycle stages, the HEK-293 cells 
were treated for 24h with activators of METTL3/METTL14/WTAP complex. 
The treated cells were collected, washed, and stained with propidium iodide. 
The number of intact cells was measured using a flow cytometric analysis with 
the BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA). 

In Paper II, the effect of the inhibitors of the m6A demethylases FTO and 
ALKBH5 on the dopamine neurons were studied. The cultured neurons were 
confronted with neuronal suppressor 6-hydroxydopamine (6-OHDA) for 72 
hours. The FTO and ALKBH5 inhibitors were thereafter applied on these 
neurons. After growing 5 days, the neuronal cultures were fixed and stained 
with anti-tyrosine hydroxylase antibody. Images were acquired by CellInsight 
high content imaging equipment (ThermoFisher Scientific Inc, Waltham, MA, 
USA). Immunopositive neurons were counted by CellProfiler software, and the 
data was analyzed by CellProfiler analyst software [141]. The results are 
expressed as % of cell survival compared to glial cell line-derived neurotrophic 
factor (GDNF)-maintained neurons. [142] 

In the case of Paper III, the effect of the developed ALKBH5 inhibitors on 
cancer cells was studied for four leukemia cell lines (HL-60, CCRF-CEM, K-
562 and Jurkat) and one glioblastoma cell line (A-172). Suspended leukemia 
cells were grown up to 48 h with added compounds and the cells were counted 
at the time points 0, 4, 8, 24 and 48 hours. The cell viabilities were measured 
using Countess Automated Cell Counter (ThermoFisher Scientific Inc). HEK-
293T and glioblastoma cells are adherent cells. These cells were seeded on a E-
plate. Cells were grown for 48 h with added compounds and cell viability was 
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measured real-time using the xCELLigence machine (Agilent Technologies Inc, 
Santa Clara, CA, USA).  

 
 

3.7. Activation of the HIV-1 virus replication 
The effect of the compounds on the HIV-1 replication was studied using a HIV-
1 the viral capsid p24 protein-based assay. HIV-1 p24 protein is a component of 
virus particle capsid. p24 protein is necessary for HIV-1 viral replication and 
infectivity. HIV-1 p24 protein concentration in host plasma/ host cells super-
natant is commonly used as indicator of viral load. The effect of ligands on 
HIV-1 virus and host cells was also examined in Paper IV. The effect of the 
activators on the gene expression from HIV-1 provirus, creation, and release of 
HIV-1 virions in cells was measured. The virus host ACH-2 cells were seeded 
on plate and HIV-1 virion production was stimulated by the addition of 
phorbol-12-myristate-13-acetate (PMA). The cells were treated with METTL3/ 
METTL14/WTAP activators and incubated for 48 h. Afterwards, the super-
natant containing HIV-1 virions were collected and the amount of HIV-1 p24 
protein released into the supernatant was measured using an HIV1 p24 ELISA 
assay kit (ab218268, Abcam plc, Cambridge, United Kingdom). 

In order to find out whether METTL3/METTL14/WTAP enzyme complex 
activators increase not only the number of virions but also the infectivity, a 
subsequent infection test was carried out. TZM-bl cells were treated with the 
supernatant of the incubation media containing equal amount of virus treated 
with the activators in ACH-2 cells and polybrene. The cells were incubated for 
48 h. Subsequently, the supernatant was removed, and the lysis buffer was 
added. The virus titer was estimated by measuring luciferase activity in cell 
lysate using the Luciferase Assay System (Promega Corporation, Madison, WI, 
USA) and Glomax 20/20 Luminometer (Promega Corporation) instruments. 

 
 

3.8. m6A level measurements in cells 
The effect of the developed active compounds on the level of the m6A in cells 
was measured in the case of RNA m6A methyltransferase METTL3/ 
METTL14/WTAP activators. The change in the m6A levels relative to the non-
substituted adenosine due to activator compounds was measured in HEK-293 
and HIV-1 infected ACH-2 cell RNAs as well as in the HIV-1 RNA.  

In Paper I, HEK-293 cells were incubated with the METTL3/METTL14/ 
WTAP activators for 2 hours and the total RNA was extracted using the TRIzol 
reagent (ThermoFisher Scientific Inc) according to the manufacturer’s protocol. 
In the studies described in Paper IV, ACH-2 cells were treated with METTL3/ 
METTL14/WTAP protein complex activator and HIV-1 virion production was 
induced by the addition of PMA. After 48h, the media containing HIV-1 virions 
as well as the treated ACH-2 cells were collected. The viral RNA was allocated 
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using the TRIzol reagent and cells mRNA was obtained using the Dynabeads® 
mRNA DIRECT Micro Kit (ThermoFisher Scientific Inc). Total RNA, viral 
RNA and cellular mRNAs was digested enzymatically according to the Liu et al 
[143].  

The abundance of m6A relative to the adenosine in Paper I was measured 
with Nexera X2 UHPLC instrument with triple quadrupole (MS/MS) system 
8050 (Shimadzu Corporation, Kyoto, Japan). In Paper IV, the Agilent 1290 
UHPLC (Agilent Technologies Inc) and Agilent 6460 Triple Quadrupole MS 
(Agilent Technologies Inc) was used. 
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4. RESULTS AND DISCUSSION 

In this section, we present and discuss the results of both the computational 
modelling and experimental studies. In Table 1, the chemical structures and the 
docking results for all compounds studied in this Thesis are presented. 
 
 
Table 1. Summary table of docking results and structures of the ligands 

Comp. Structure ΔG 
(kcal/
mol) 

DE Paper Comp. 
in Paper 

1I -6.94 0.69 I/IV 1 

2I -6.97 0.50 I/IV 2 

3I -6.27 0.57 I/IV 3 

4I -5.34 0.53 I/IV 4 

1II -7.37 0.53 II 1 

2II -7.70 0.51 II 2 
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Comp. Structure ΔG 
(kcal/
mol)

DE Paper Comp. 
in Paper 

3II -7.03 0.50 II 3 

4II -8.78 0.49 II 4 

5II -7.17 0.48 II 5 

6II -9.45 0.47 II 6 

1III -8.70 0.51 III 1 

2III -8.13 0.21 III 2 

3III -6.53 0.44 III 3 
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Comp. Structure ΔG 
(kcal/
mol)

DE Paper Comp. 
in Paper 

4III -7.83 0.39 III 4 

5III -7.08 0.47 III 5 

6III -4.78 0.32 III 6 

5IV -5.44 0.45 IV 5 

 
 

4.1. METTL3/METTL14/WTAP activators 
The main aim of Paper I was to develop active ligands for RNA m6A methyl-
transferase METTL3/METTL14/WTAP complex by using rational molecular 
design. 

Based on METTL3/METTL14 protein complex 3D crystal structure (pdb: 
5K7W) [27] we proceeded with the search for effectively binding small mole-
cular fragments. A virtual screening on ZINC [144] and DrugBank 4.0 [145] 
databases was carried out based on the configuration of the METTL3 residues 
that are hydrogen bonded to the tail part of  the methylating agent SAM. Some 
of these amino acid residues (Lys513, Asp395 and Ile378) possess side groups 
potentially available for strong ligand binding. The docking results showed that 
the compounds with the piperidine or piperazine rings interacted with amino 
acid residues deeply embedded into the structure of METTL3/ METTL14 
protein. The docking free energies and docking efficiencies of the best ligands 
for METTL3/METTL14 protein complex are given in Table 1. 
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To further evaluate the docking calculation results, the molecular dynamics 
simulations were carried out with the compounds 1I and 4I. These compounds 
were selected because they belong to different chemical scaffolds (piperidine 
and piperazine derivatives, respectively). 

The results of molecular dynamics simulations showed that both compounds 
are bound to the same tight specific pocket at the SAM binding site. Similar to 
the docking results, the compound 1I provided more interactions with 
METTL3/METTL14 protein complex than compound 4I (Figure 3). 

 
 

 
 

Figure 3. (A) Interaction diagram between the compound 1I and METTL3/METTL14 
complex. (B) Interaction diagram between the compound 4I and METTL3/METTL14 
complex. (C) The position of the compound 4I the structure of METTL3 protein. 
 
 
The binding between the predicted ligand compounds and RNA m6A methyl-
transferase METTL3/METTL14/WTAP complex was studied using the SPR 
measurements with a Biacore T100 instrument. The results showed that all four 
compounds were bound to the METTL3/METTL14/WTAP complex. The dis-
sociation constants of compounds were as follows: KD = 0.93 μM for compound 
1I, KD = 16.3 μM for compound 2I, KD = 0.05 nM for compound 3I and  
KD = 1.97 μM for compound 4I. The dissociation constant for SAM was  
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1.92 μM. Compounds 1I and 4I were selected to test the effect of these com-
pounds on SAM binding to the METTL3/METTL14/WTAP complex. It turned 
out that both compounds significantly increase SAM binding to the protein 
complex. The SAM dissociation constants in the presence of small compounds 
were respectively KD = 4.70 nM and KD = 13.7 nM for compound 3I and 
compound 4I, respectively.  

The METTL3 proteins with point mutations were used to localize the com-
pounds position at the active site of the protein. The binding of compound 4I to 
the METTL3 protein was thus studied using BLI technology with streptavidin 
sensors, the results consistent with those obtained with SPR method. The 
binding of compound 4I to the mutated proteins was not detectable within the 
sensitivity of the BLI instrument. Consequently, the compounds bind speci-
fically to the active site of the METTL3 protein.  

The effect of the METTL3/METTL14/WTAP enzyme complex activators on 
the RNA m6A methylation was measured using Radioactivity-Based Assay. All 
four compounds were not acting as METTL3/METTL14/WTAP complex inhi-
bitors, surprisingly all these compounds significantly increase enzyme complex 
activity. The effective concentration values of compounds were EC50 = 0.11 nM 
for compound 1I, EC50 = 3.16 μM for compound 2I, EC50 = 117.0 nM for 
compound 3I and EC50 = 12.5 nM for compound 4I.  

No cytotoxic effects on the HEK-293 cells were observed up to 100 μM 
concentrations for all four activators. To extend the results of an in vitro 
enzymatic assay to the cellular level, a quantification of m6A levels in total 
RNA after treatment with activators and without compound was carried out. 
Activators 1I, 2I and 3I increased the m6A amount relative to adenosine while 
activator 4I did not significantly affect the level of m6A in the total RNA 
sample. 

The m6A modifications in the viral and host cell RNAs play very important 
role in HIV-1 virus genome transcription and virus replication. Therefore, the 
aim of Paper IV was to study the effect of the discovered RNA m6A methyl-
transferase METTL3/METTL14/WTAP enzyme complex activators on the 
replication HIV-1 virus.  

The effect of the compounds on the HIV-1 replication was studied using the 
measurement of the HIV-1 p24 protein level that is proportional to the number 
of HIV-1 virions. The amount of HIV-1 p24 protein that was released into the 
supernatant from virus containing ACH-2 cells was measured using HIV-1 p24 
ELISA Kit. In the case of compounds 3I, 4I and 5IV, a significant con-
centration-dependent effect on virion production was observed (Figure 4). 
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Figure 4. Dependence of the amount HIV-1 p24 released to the growth medium after 
treatment of ACH-2 cells with the METTL3/METTL14/WTAP activators 3I, 4I and 
5IV at different concentrations. The results are shown as means ± standard deviation 
from three independent experiments (n =3); *p < 0.05, ** p < 0.01, ***p < 0.005.  
 
 

 
 

Figure 5. Increase of production of HIV-1 virions in TZM-bl cells infected with media 
collected from virus containing ACH-2 cells treated with METTL3/METTL14/WTAP 
activator compounds. The results are shown as means ± standard deviation from three 
independent experiments: *p < 0.05, ** p < 0.01 (n=3). 
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In addition, the effect of METTL3/METTL14/WTAP enzyme complex acti-
vators on the level of the m6A methylation in the viral RNA and in cellular 
mRNA was studied. ACH-2 cells containing HIV-1 provirus were treated with 
the METTL3/METTL14/WTAP activator 4I. As a result, activator 4I increased 
the mRNA m6A level in ACH-2 cells more than twice. In addition, a 18 % 
increase of the m6A methylation of the virus RNA genome itself was also 
noticed. This was the first demonstration that a small-molecule ligand can 
change the m6A methylation level of a viral RNA. 
 
 

4.2. FTO inhibitors 
The main objective of Paper II was to find new inhibitors for RNA m6A de-
methylase FTO using rational molecular design and study the effect of these 
compounds on dopamine neurons.  

The crystal structure of the FTO protein (pdb:4IE4) [32] was chosen for the 
molecular modelling by removing the native ligands from the 3D crystal 
structure. A virtual screening on ZINC compound database[144] was carried out 
using the best known FTO inhibitors as templates [32, 146, 147]. 

The enzyme inhibition measurements were carried out for six compounds 
that showed strong protein binding in molecular docking calculations (Table 1). 
A significant concentration-dependent inhibitory effect was observed for quino-
lone derivatives 2II and 3II. The inhibitory concentration values were measured 
as IC50 = 1.46 μM for compound 2II and IC50 = 28.9 μM for compound 3II, 
respectively. No inhibitory effect was registered for other compounds. 

The 10 ns length molecular dynamics simulations were carried out for two 
compounds (compound 2II and 3II), the compounds with the best enzymatic 
inhibition activity in m6A RNA enzymatic assay. The most important inter-
actions with the protein suggested for compound 2II are given in Figure 6A. 
Those involve hydrogen bonds between the ligand and residues Arg96, Glu234, 
Arg322 and Asp233 of FTO protein and hydrophobic interactions between 
compound and FTO protein. The results of the molecular dynamics simulations 
of compound 3II are summarized in Figure 6B. The results suggest the presence 
of hydrogen bonds between the carbonyl group of compound 3II and Glu234 
and Asp233 of the FTO protein. In addition, formation of a water bridge with 
Arg96 and salt bridge with Arg322 was predicted. The simulation interactions 
diagram reveals a very stable hydrogen bonding and several ionic bridges and 
water bridges between the compound 3II and FTO protein. 
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Figure 6. (A) Interaction diagram between the compound 2II and FTO protein. (B) 
Interaction diagram between the compound 3II and FTO protein.  
 
 
The binding of the compounds to the FTO protein was studied using the MST 
method. The results showed that both compounds are binding at sub-micro-
molar concentrations. The protein binding dissociation constant values are KD = 
185 ± 77 nM (2II) and KD = 337 ± 184 nM (3II).  

The m6A RNA modifications and their dynamics in the cell has been re-
cently related to neurogenesis and neuronal survival. Therefore, it was inte-
resting to assess the effects of the inhibitors of the FTO protein on the survival 
of dopamine neurons. The experiments using the in vitro model of Parkinson’s 
disease were carried out at the University of Helsinki for two RNA m6A 
demethylase FTO inhibitors developed in this study.  

The neuroprotective ability of FTO inhibitors at different concentrations was 
studied on cultured dopamine neurons treated with toxins. The treatment with 
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toxin 6-OHDA caused neurons cell death by 50-70 % in 5 days. Both FTO inhi-
bitors 2II and 3II dose-dependently protected embryonic midbrain dopamine 
neurons, similarly to the positive control (neurotrophic factor GDNF). A neuro-
protective effect can be seen already at 10 nM concentration of the FTO 
inhibitors (Figure 7).  

 
 

 
 

Figure 7. Effect of the FTO inhibitors 2II and 3II and ALKBH5 inhibitors 3III and 
6III on the survival of the dopamine neurons. The results are shown as means ± 
standard deviation from three independent experiments. * p < 0.05, ** p < 0.01, *** p < 
0.001, one-way ANOVA with Dunnett’s posthoc test. 
 
 
Hence, it was the first time demonstrated that the inhibition of the m6A de-
methylase FTO promotes on the survival of dopamine neurons and rescues them 
in the growth factor deprivation induced apoptosis in vitro model of Parkinson’s 
disease without any signs of toxicity of the tested compounds. This opens a 
whole new avenue in the development of neuroprotective and neuroregenerative 
medical drugs. 
 
 

4.3. ALKBH5 inhibitors 
The aim of Paper III was to develop novel inhibitors for RNA m6A demethy-
lase ALKBH5 by using high-throughput virtual screening. The ALKBH5 
enzyme has been shown to be oncogenic in several cancer types, including 
leukemia. Because of that, the effect of the inhibitors of ALKBH5 enzyme on 
leukemia cells was investigated also in Paper III. 

The 3D crystal structure of the ALKBH5 protein (pdb:4O61) [148] was 
chosen for the molecular modelling by removing the native ligands from the 3D 
crystal structure. A virtual screening on the FIMM compound library (HTB, 
2018) was carried out using the full collection of 144,000 compounds. 
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The enzyme inhibition measurements were carried out for six compounds 
that showed the best binding efficiencies in molecular docking calculations 
(Table 1). A concentration-dependent inhibitory effect was observed for com-
pounds 3III and 6III. The inhibitory concentration values were IC50 = 0.84 μM 
for compound 3III and IC50 = 1.79 μM for compound 6III. For the other four 
compounds the inhibitory effect was missing.  

For these two compounds the 10 ns length molecular dynamics simulations 
were carried out. The results indicated the presence of a quite strong hydrogen 
bond with His204 residue of the ALKBH5 protein for both compounds. In 
addition, the compounds had similar number of hydrophobic interactions and 
water bridges between the molecule and ALKBH5 protein (Figure 8).  

 
 

 
 
Figure 8. The results of the molecular dynamics simulations. (A) Interaction diagram 
between the compound 3III and ALKBH5 protein. (B) Interaction diagram between the 
compound 6III and ALKBH5 protein. 
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The binding of the compounds 3III and 6III to the ALKBH5 protein was 
measured by the DARTS method. The results showed that compound 3III signi-
ficantly affects the stability of the ALKBH5 protein and consequently binds to 
the protein. For compound 6III, this effect is much smaller. 

The compounds 3III and 6III were further used to study the effects of RNA 
m6A demethylase ALKBH5 inhibition on cell viability on cultures of several 
cancer cell lines. Four leukemia cell lines (HL-60, CCRF-CEM, K-562 and 
Jurkat) and one glioblastoma cell line (A-172) were chosen for this purpose. 
The human embryonic kidney HEK-293 cell line was used as a control. In the 
case of both ALKBH5 inhibitors, the viability of the HL-60, CCRF-CEM and 
K-562 leukemia cells was decreased by up to 60% already at low micromolar 
concentrations (Figure 9). A much smaller effect was registered in the case of 
Jurkat cells and some small effect at high micromolar concentrations was 
registered on A-172 and HEK-293T cells. Thus, these results indicate that the 
effect of the ALKBH5 inhibition on the viability of cancer cells may depend on 
the cancer type (subtype). 

 
 

 
 
Figure 9. Time dependence of cell viability at different concentrations of the ALKBH5 
inhibitors 3III and 6III. (A) 3III effect on HL-60 cells; (B) 3III effect on CCRF-CEM 
cells; (C) 3III effect on K-562 cell; (D) 6III effect on HL-60 cells; (E) 6III effect on 
CCRF-CEM cells; (F) 6III effect on K-562 cells. Data presented as means ± standard 
deviation *p < 0.05, **p < 0.01, ***p < 0.001, two-way analysis of variance (ANOVA) 
test. 
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In Paper II, the two inhibitors of RNA m6A demethylase ALKBH5 3III and 
6III were tested in the dopamine neurons. Notably, a similar yet smaller 
supportive effect on the survival of dopamine neurons was observed in the case 
of RNA m6A demethylase ALKBH5 inhibitors compared to FTO inhibitors 
(Figure 7). 
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SUMMARY 

The main objective of the present thesis was to develop a primary set of ligands 
that would inhibit or activate various proteins involved in RNA m6A methyla-
tion and demethylation. The first potentially active compounds were identified 
using complex molecular modelling methods (molecular docking, molecular 
dynamics and HTVS). The behavior of the compounds obtained as a result of 
molecular modelling was monitored by several experimental methods. In 
addition, the effect of the most active compounds was studied using in vitro 
models of various pathologies.  

The first part of this thesis describes the discovery of small-molecule acti-
vators for the RNA m6A methyltransferase METTL3/METTL14/WTAP comp-
lex. The compounds with the highest potential binding affinity to this complex 
were designed by using molecular docking and molecular dynamics simula-
tions. The binding of these compounds to METTL3 protein was thereafter mea-
sured experimentally by SPR method, showing the KD values in low nanomolar 
range for compounds 1I and 4I. The EC50 values obtained from the enzymatic 
assay experiments for these compounds, related to the activation of the 
METTL3/METTL14/WTAP complex, were EC50 = 0.11 nM for compound 1I, 
EC50 = 3.16 μM for compound 2I, EC50 = 117.0 nM for compound 3I and  
EC50 = 12.5 nM for compound 4I. In addition, these compounds were shown to 
increase m6A methylation in cellular RNA. The effect of RNA m6A methyl-
transferase activators on HIV-1 replication was also examined. All activators 
increased viral replication and viral infectivity, most notably the compounds 3I 
and 4I. The influence of the compound 4I on the methylation of RNA was 
studied using LC/MC measurements. The treatment with this compound caused 
an increase in the amount of sixth position methylated adenosines in both viral 
RNA and cellular mRNA.  

The second part of the thesis focuses on optimizing the structures of known 
RNA m6A demethylase FTO inhibitors by using molecular docking, virtual 
screening and molecular dynamics simulations. Six potential inhibitors were 
identified, two of these compounds showed activity in the enzymatic experi-
ments and binding measurements at micromolar level. The inhibitory con-
centration values were IC50 = 1.46 μM for compound 2II and IC50 = 28.9 μM 
for compound 3II. The effect of these inhibitors was studied in the in vitro 
Parkinsonʼs disease model, based on the growth factor deprivation induced 
apoptosis. A strong neuroprotective effect was seen already at low nanomolar 
concentrations of both studied FTO inhibitors. 

The third part of the thesis is devoted to finding inhibitors for another RNA 
m6A demethylase, the ALKBH5 enzyme. The HTVS was used to find potential 
inhibitors. Molecular dynamics simulations were additionally carried out in 
order to better understand the interactions between small-molecule ligands and 
the ALKBH5 protein. The enzymatic assay measurements gave the inhibitory 
concentration values for the most active compounds as IC50 = 0.84 μM for 
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compound 3III and IC50 = 1.79 μM for compound 6III. As the irregularities in 
the ALKBH5 enzyme expression have been closely associated with cancer, the 
effect of the developed ALKBH5 inhibitors on cancer cells were studied. In the 
case of both ALKBH5 inhibitors, the viability of the HL-60, CCRF-CEM and 
K-562 leukemia cells was decreased by up to 60% already at low micromolar 
inhibitor concentrations. 

In conclusion, three protein targets related to RNA m6A methylation and 
demethylation were studied in the present thesis. New active ligands on the 
nanomolar or low micromolar scale were found for each three targets. As a 
result of further optimization, these compounds may become attractive drug 
candidates against diseases associated with RNA m6A regulation. 
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SUMMARY IN ESTONIAN 

Epitranskriptoomiliste protsesside madalmolekulaarsete 
regulaatorite arendus 

Antud väitekirja põhieesmärk oli leida uudseid ühendeid, mis võimaldaks modi-
fitseerida RNA N6-metüüladenosiini (m6A) metüleerimist soovitud suunas, inhi-
beerides või aktiveerides RNA m6A modifitseerimisega tegelevaid ensüüme. 
Ühendite leidmiseks kasutati molekulaarse modelleerimise meetodeid ning 
ühendit aktiivsust kontrolliti erinevate eksperimentaalsete meetoditega. Pari-
mate ligandide toimet uuriti erinevate patoloogiate in vitro mudelites. 

Väitekirjas esimeses osas kirjeldatakse RNA m6A metüültransferaasi 
METTL3/METTL14/WTAP ensüümkompleksi madalmolekulaarsete aktivaa-
torite avastamist. Molekulaarsesildamise ning molekulaardünaamika simulat-
sioonide alusel leiti neli eriti kõrge sidumisafiinsusega ühendit, mis pinna    
plasma resonantsi (SPR) meetodiga mõõtes näitasid parimatel juhtudel valgule 
sidumise dissotsiatsioonikonstandi väärtuseid madalas nanomolaarses alas.  
Ensüümkatses mõõdetud EC50 väärtused näitasid, et ühendid aktiveerivad RNA 
metüleerimist METTL3/METTL14/WTAP ensüümkompleksi abil samuti nano-
molaarsete kontsentratsioonide juures. Avastatud RNA m6A metüleerimise akti-
vaatorite toimet uuriti HIV-1 viiruse replikatsioonile. Kõik aktivaatorid suuren-
dasid viiruse replikatsiooni, kõige suurem mõju oli aktivaatoril 4I. Antud ühend 
suurendas m6A taset nii rakkude mRNAs kui ka viiruse RNAs. 

Väitekirja teises osas keskenduti RNA m6A demetülaasi FTO kirjanduses 
teadaolevate inhibiitorite struktuuri optimeerimisele, kasutades molekulaarse 
modelleerimise meetodeid. Ennustati kuus uut potentsiaalset inhibiitorit, millest 
kaks ühendit näitasid eksperimentaalsetes katsetes aktiivsust mikromolaarsel 
tasemel. Inhibeerimise kontsentratsiooni väärtused olid vastavalt IC50 = 1,46 μM 
ühendi 2II puhul ja IC50 = 28,9 μM ühendi 3II korral. Nende FTO inhibiitorite 
mõju testiti in vitro Parkinsoni haiguse mudelil, mis põhineb kasvufaktori 
hülgamisest tingitud närvirakkude apoptoosil. Mõlemad FTO inhibiitorid oma-
sid silmapaistvalt tugevat neuroprotektiivset toimet juba madalate nanomolaar-
sete kontsentratsioonide korral. 

Väitekirja kolmandas osas tegeleti RNA m6A demetülaasi ALKBH5 uute 
inhibiitorite otsingutega. Inhibiitorite leidmiseks kasutati suure läbilaskevõime-
ga virtuaalset sõelumist ning lisaks molekulaardünaamika simulatsioone. 
Kuuest parima arvutuslikult ennustatud sidumisafiinsusega molekulist omasid 
eksperimentaalkatsetes aktiivsust ühendid 3III (IC50 = 0,84 μM) ja 6III (IC50 = 
1,79 μM). Kuna ALKBH5 ensüümi ekspressioon on tihedalt seotud erinevate 
vähivormide tekkega, siis vaadeldi leitud inhibiitorite mõju mitmetele leukee-
mia rakuliinidele. Mõlemad leitud ALKBH5 ensüümi inhibiitorid näitasid 
inhibeerivat toimet leukeemia rakuliinidele HL-60, CCRF-CEM ning K-562 
madalate mikromolekulaarsete kontsentratsioonide korral. 



50 

Kokkuvõtteks, antud väitekirjas uuriti kolme RNA m6A metüleerimisega 
seotud ensüümi. Kõigile uuritud ensüümidele leiti uued ligandid (aktivaatorid 
või inhibiitorid)  aktiivsusega nanomolaarsete või madalate mikromolaarsete 
kontsentratsioonide piirkonnas. Antud ühendeid edasi optimeerides on võimalik 
saada uusi sobivaid ravimikanditaate erinevate patoloogiate vastu.   
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