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INTRODUCTION 

The Na,K-ATPase (sodium pump, NAKA (EC 3.6.3.9)) is an integral plasma 
membrane protein and its main task is active transport of Na+ and K+ across the 
cell membrane (CM) using energy released from the hydrolysis of ATP (Skou 
1965). A number of essential processes in the organism are based on the func-
tion of active transport, including conduction of nerve impulses, muscle 
activity, maintenance of intracellular pH and cell volume, transport of glucose 
and amino acids, and protein synthesis. In conjunction with other proteins of the 
CM and cytosol the NAKA also participates in signal transduction by trans-
mitting the signal to the cell organelles (Xie and Askari 2002). Alteration in the 
enzyme function causes changes in Na+ and K+ gradients which serve as basis 
for development of various disturbances.  

 NAKA activity depends on several physical CM properties, including 
membrane thickness/fluidity (Johannsson et al. 1981), phospholipid com-
position (Vemuri and Philipson 1989), fatty acyl chain length (Marcus et al. 
1986), and membrane fluidity (Kimelberg and Papahadjopoulos 1974). Mem-
brane fluidity is one of the most important parameters that are affected by the 
lipid status of CM. The function of proteins is also substantially influenced by 
the status of membrane lipids. In general, alterations in the lipid environment 
that increase membrane fluidity also tend to increase NAKA activity (Kimel-
berg and Papahadjopulus 1972; 1974). Membrane lipid status and compositions 
play an important structural and functional role for plasma membrane enzymes. 
They have an effect on the conformation, function and regulation of CM 
enzymes and receptors (Cornelius 2001, Cornelius et al. 2003; Harikumar et al. 
2005). The complete removal of lipids surrounding the NAKA rapidly inac-
tivates it and activity is restored by restoring proper lipid environment 
(Stekhoven and Bonting 1981). The large variability and flexible changes in the 
composition of the CM lipids enable the cell to easily adapt to changes in 
intracellular and extracellular environments. It has been shown that changes in 
the composition and condition of CM lipids have an important role in the 
etiology of several diseases, including hypertension, cardiac hypertrophy, 
Alzheimer’s disease, schizophrenia, and tumors (Maxfield and Tabas 2005). 

Study of sodium pump function at different temperatures (the Arrhenius 
plot) is accepted and used for estimation of CM lipid status and CM lipid-
protein interaction (Priestland and Whittam 1972; Boldyrev 1980, 1988; 
Esmann and Skou 1988). Regarding the latter, it is known that the nonlinear 
Arrhenius plot (the breakpoint at 19–22°C) is typical for the NAKA in animal 
tissue, reflecting sensitivity of the enzyme to the phase reconstructions of CM 
lipids (Boldyrev 1988). Graphical Arrhenius method is used to study the fluidity 
that is conditioned by the lipid status and composition of the CM. It means that 
CM enzyme activity is measured at different temperatures and the relationship 
between temperature and activity is plotted on a graph. The phase of the CM 
lipids (more fluid or more solid) is altered at a certain temperature and, 
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therefore, the dots on a graph are not placed on a straight line and a so-called 
breakpoint appears on the graph. This typically occurs between the temperatures 
19–22°C for the enzyme preparation isolated from the nervous tissue. Under the 
influence of different factors (e.g. prostaglandins) and in the case of patho-
logical conditions the classical breakpoint can be shifted (Karelson et al. 1985). 

The present study is focused on the next aspects: a) to measure temperature-
dependence of nervous tissue NAKA in the case of different pathological and 
aberrant conditions; b) to analyze this information for the established nature 
(similarity or non-similarity) of changes in lipid status and cationic coopera-
tivity in the case of different pathological and aberrant conditions in the brain 
(brain tumor, Alzheimer’s disease, genetic invalidation of CCK2 receptors) and 
to analyze the possible reasons underlying such changes. We hypothesize that 
one of the common unique phenomena of these pathologies and aberrant 
conditions is a change in sodium pump lipid environment status which, there-
fore, results in a change of sodium pump functioning. Thus, in this work for the 
first time the data collected from experiments involving different brain 
pathologies and aberrant conditions are compiled. The data obtained from 
experiments have fundamental value for understanding basic relationships in 
sodium pump regulation and may have practical value for the development of 
new diagnostic or therapeutic strategies and tools for management of neuro-
pathologies.  
 
 
 
 

3
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REVIEW OF LITERATURE 

functioning of Na-pump 

The NAKA protein complex consists of α, β and γ subunits in multiple isoforms 
and the minimal functional unit consists of non-covalently linked α and β 
subunits.  

The expression of each subunit is controlled by its own gene, which is 
expressed in a tissue- and cell-specific manner. The concentration of NAKA in 
tissues varies largely with around a 160,000 fold difference between the lowest 
(erythrocytes) (Wiley and Shaller 1977) and the highest (brain cortex) (Schmidt 
et al. 1996) concentrations. Cellular regulation of the pump expression can be 
controlled by the rate of synthesis of the pump subunits and delivery to the CM. 
The studies showed that α and β subunits assemble during or very soon after 
synthesis in the ER (Geering et al. 1996) and both of the subunits are mutually 
dependent on each other to be transported out of the ER (Ackermann and 
Geering 1990). Environmental and hormonal factors can increase the sodium 
pump activity per cell by increasing the turnover of pumps that are already 
present in the CM (short term regulation), insertion of more pumps into the CM 
and increasing the synthesis of pump subunits (long term regulation), resulting 
in an increased number of pump sites in the CM (Nemoto et al. 1997; Songu-
Mize et al. 1996). 

The α subunit of NAKA (an integral protein with about 1018 residues, 100–
113 kDa) is ubiquitously expressed in all tissues and has four isoforms in 
mammalian cells that are expressed in a cell type- and tissue-dependent manner. 
Its chain traverses the membrane 10 times, forming the domains M1 to M10 and 
2 large intracellular loops (Fig. 1). α1 and α2 are expressed in glial cells and 
neurons may express α1, α2, α3 or any combination of these isoforms (McGrail 
et al. 1991). The larger cytoplasmic loop is the site for ATP binding (Lingrel 
and Kuntzweiler 1994) and phosphorylation (an aspartate residue, D369) 
(Ohtsubo et al. 1990). The N- and C- ends of the chain are located on the 
cytosol side. The crystal structures of the NAKA show two potassium ions 
coordinated between transmembrane helices 4, 5, and 6 (Morth et al. 2007; 
Shinoda et al. 2009). These ion-binding residues will rearrange to coordinate 
two sodium ions, whereas other residues in M5, M8 and M9 have been pro-
posed to bind the third sodium ion (Ogawa and Toyoshima 2002; Li et al. 
2006).  

Knockout of two of the isoforms of the catalytic α subunit of NAKA has 
been reported to be lethal (James et al. 1999). The α subunit C terminus of 
NAKA controls Na+ affinity on both sides of the membrane through Arg935. 

The β subunit is located close to the transmembrane domain M7/M10 (Fig. 
1) of the α subunit (Morth et al. 2007). The β subunits (about 300 residues, 
about 36–38 kDa proteinic part and about 60 kDa in glycosylated form) of 

1. General molecular structure and  
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NAKA are glycoproteins with a single transmembrane segment, a short 
cytoplasmic tail (N-terminus), and a large extracellular domain (ectodomain), 
with three conserved S-S bridges and conserved glycosylation sites (Skou and 
Esmann 1992). These three 3 S-S bridges and 3 to 7 N-linked sugar chains on 
extracellular domain are necessary for the proper folding and functioning of β 
subunits as well as their interaction with the α subunit (Beggah et al. 1997). 
Beta 1 is expressed in all tissues; in the brain the β1 subunits are found in 
neurons, β2 predominantly in glial cells (Watts et al. 1991), and β3 in oligo-
dendrocytes (Martin-Vasallo et al. 2000). The different isoforms of the β 
subunit have been found with moderate differential effects on NAKA activity 
(Geering 2001). 

The β SU has an essential function as a molecular chaperone. Association of 
the β subunit, mediated by multiple interaction sites, facilitates the correct CM 
integration and packing of the newly synthesized catalytic α subunit, which is 
necessary for its protection against cellular degradation, acquisition of functio-
nal properties, and routing to the plasma membrane (Geering 2001). In addition 
to its chaperone function, β subunit influences the transport properties of mature 
NAKA. Alpha subunits associated with different β isoforms exhibit different 
apparent potassium affinities and the β structure influences the apparent sodium 
affinity of NAKA (Geering 2001). A conformational rearrangement observed 
between α and β subunits during the catalytic cycle (Dempski et al. 2005) is 
consistent with the coupling of the β subunit to the function of NAKA. In 
addition, the β subunit influences the K+ activation kinetics and may be required 
for stabilization of the K+ transporting conformations of mature NAKA 
(Geering 2001; 2008). Normal glycosylation of the β1 subunit also appears to 
play an important role in cell-cell contacts (Vagin et al. 2006; 2008). Beta 1 
subunit mediates cell-cell contacts directly or via interactions with other 
proteins (Shoshani et al. 2005; Vagin et al. 2006). The β2 isoform has long been 
known to act as a cell adhesion molecule between astrocytes and neurons in the 
brain (Gloor et al. 1990). However, the mechanism of β-mediated cell adhesion 
or specific protein partners of β are not known.  

The γ subunit has a certain importance in the enzyme function. It has 7 
isoforms and has been identified primarily in renal tissue and is mainly respon-
sible for the regulation of the enzyme activity, stabilization, and interaction with 
Na+ and K+ ions (Geering 2005). It is exclusively expressed in the brain both in 
neurons and glial cells and it decreases the apparent affinity for extracellular K+ 
which may be essential for proper neuronal excitability (Beguin et al. 2002).  
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Figure 1. Architecture of the Na+,K+-ATPase α β γ complex and the K+/Rb+ sites. The 
α, β and γ subunits are coloured blue, wheat and red, respectively. The transmembrane 
segments of the α subunit are numbered (yellow) starting with the most N-terminal. The 
small C-terminal helix (S, for switch) is light red. Mg2+ and Rb+ ions are grey and pink, 
respectively (Morth et al. 2007).  
 
 
The crystal structures which have been published over the last few years of  
P-type ATPases in different conformational states ( Morth et al. 2007; Pedersen 
et al. 2007; Toyoshima 2008) provide undisputable evidence for an ion trans-
location pathway through the centre of a single catalytic unit of α-subunit of 
NAKA. Therefore, there is no structural reason for P-type ion pumps to 
necessarily aggregate into dimers or higher oligomers in order to translocate 
ions. Concerning ion transportation function the first basic information was 
given by the pioneering work of Albers (Albers 1967) and Post (Hegyvary and 
Post 1971; Post et al. 1972) that presented the most widely accepted working 
hypothesis of the reaction cycle of P-type ATPases which is the Albers–Post or 
E1–E2 model. During the working cycle there are generally two conformational 
states E1 and E2 (Fig. 2). In the first step of the reaction sequence, Na+ and ATP 
bind with very high affinity to the E1 conformation of the enzyme, during which 
phosphorylation at an aspartate residue occurs via the transfer of the γ –
phosphate of ATP (Fig. 2, step 2). Magnesium is essential for this reaction. 
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Thereafter, three Na+ ions are occluded while the enzyme remains in a phos-
phorylated condition. After the E2-P3 Na+ conformation is attained, the enzyme 
loses its affinity for Na+ and the affinity for K+ is increased. Thus, three Na+ 
ions are released to the extracellular medium (Fig. 2, step 3) and K+ ions are 
taken up (Fig. 2, step 4). The binding of K+ to the enzyme induces a sponta-
neous dephosphorylation of the E2-P conformation. The dephosphorylation of 
E2-P leads to the occlusion of two K+ ions, leading to E2(2K+) (Fig. 2, step 5). 
Intracellular ATP increases the extent of the release of K+ from the E2 (2K+) 
conformation (Fig. 2, step 6) and thereby also induces the return of the E2(2K+) 
conformation to the E1ATPNa+ conformation. The affinity of the E2(2K+) 
conformation for ATP is very low (Skou 1988).  
 

 
 
Figure 2. Kinetic scheme for the active transport of Na+ and K+ by Na,K-ATPase 
 
 
These signal transduction functions of NAKA are mediated by the interactions 
between NAKA and other signaling proteins – intracellular soluble enzymes 
and other CM proteins. Pump inhibition causes an increase in the cellular Na+ 
concentration, which can lead to changes in intracellular pH (via the Na/H 
exchange system) or intracellular Ca2+ (via the Na/Ca exchange system) and 
such changes could obviously produce their own consequences to cell physio-
logy. Several functional domains are involved in the binding of the enzyme to 
protein kinases and cytoskeletal proteins. The central loop CD3 of the α subunit 
contains the highly conserved P (phosphorylation) domain and the nucleotide-
binding domain (N). The P domain is buried close to the CM whereas the N 
domain is highly exposed and has been shown to interact with other proteins. 
The NAKA serves as a native negative Src regulator (Liang et al. 2006). This 

4
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interaction forms a functional receptor complex for cardiotonic steroids (CTS) 
(Li and Xie 2009).  

Binding of CTS to the receptor complex activates the NAKA associated Src 
and other tyrosine kinases which results in the activation of protein kinase 
cascades and the generation of second messengers (Liang et al. 2006; Li and 
Xie 2009). Subpopulation of NAKA needed for signaling is proposed to be 
colocalized with caveolin 1 and concentrated in caveolae (Liu et al. 2003; 2004; 
Wang et al. 2004). The α1 isoform contains two conserved caveolin-binding 
motifs and in vitro assays have shown that the purified NAKA can bind to the 
amino-terminus of caveolin 1. CM lipid status has probably a significant influ-
ence on NAKA receptor functioning. In astrocytes the α2 is structurally 
(Lencesova et al. 2004) and functionally (Golovina et al. 2003) linked to the 
Na+/Ca2+ exchanger and thereby helps to modulate Ca2+ transport and Ca2+ 
signaling. In neurons, the α3 likely plays a similar role (Lencesova et al. 2004).  

Cardiotonic steroids are modulators of all molecular forms of the NAKA 
expression and activity. Complexes containing α2 and α3 are more sensitive and 
those involving α1 are less sensitive to cardiac glycosides (Urayama and 
Sweadner 1988; Munzer et al. 1994). Several studies have suggested their 
possible use in oncology (Haux 1999; Stenkvist 2001). Novel cardenolide 
UNBS1450 displays an increased affinity and improved anti-tumor activity for 
overexpressed α1 in non-small cell lung cancers (Mijatovic et al. 2007; 2009) 
and gliomas (Lefranc et al. 2008).  
   
 

2. Cell membrane lipid status and functioning  
of sodium pump under normal conditions 

Since the original formulation of the mosaic fluid model by Singer and Nicol-
son (Singer and Nicolson 1972), it has become evident that the role of 
membrane lipids is not just to provide a bidimensional solvent for membrane 
proteins: they are also involved in key biofunctions linked to the spatial 
organization of the cells, e.g. cellular adhesion (Hakomori 2002), toxin and 
pathogen attachment (Taieb et al. 2004), signal transduction (Berridge 1984), or 
protein trafficking (Anderson and Jacobson 2002)  

Wide heterogeneity and variety of membrane lipids (more than 2000 
different lipids in mammalian cell membranes) suggest that the lipid bilayer 
existence must have functional consequences. One of them is non-random 
mixing of lipid molecules in a bilayer, resulting in phase separation and 
formation of lipid domains. The lipid bilayer is an active factor in the formation 
of the membrane structure and the lipid composition is responsible for the 
presence of domains in the membrane. PUFAs are not randomly distributed 
within CM. The external and cytoplasmic leaflets of the CM differ in the 
phospholipids headgroup composition, cholesterol content, as well as fatty acid 
composition, and this non-symmetric composition results in a transbilayer 
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fluidity gradient regulated by unsaturated fatty acids (increase fluidity) (Kier et 
al.1986), in particular the amount of docosahexaenoic acid (DHA; 22:6 n-3) 
(Else and Hulbert 2003; Cornelius et al. 2003) and cholesterol (reduces fluidity 
at higher temperatures and maintains it at lower temperatures). In order to 
function, a lipid bilayer must maintain its fluidity. At lower temperatures, orga-
nisms use phospholipids containing increasing degrees of unsaturation in their 
fatty acids. At higher temperatures cholesterol serves to impede phospholipid 
fluidity and at lower temperatures cholesterol interferes with solidification of 
membranes (e.g. in the latter case, cholesterol functions similarly to the effect of 
unsaturated fatty acids on lipid-bilayer fluidity). Alterations in membrane 
fluidity usually reflect changes in its lipid composition or phospholipid distri-
bution (Zachowski 1993), which are often dependent on nutrition and meta-
bolism. Membrane fluidity can also be influenced by redox status, phosphory-
lation state of membrane components, local pH, calcium concentration, or 
cytoskeleton proteins. The CM also contains lateral domains (lipid rafts/ 
caveolae as well as non-raft domains), which differ in their lipid and cholesterol 
composition and protein distribution (Pike et al. 2002; Pike 2003).  

Lipids are the most abundant organic compounds found in the brain, accoun-
ting for up to 50% of its dry weight (Woods and Jackson 2006). As in other 
mammalian tissues, brain lipids consist mainly of three major categories: 
phospholipids, sphingolipids, and cholesterol (a lipid-like compound). Nervous 
tissue CM have a high concentration of PUFAs, especially n-3.  

Cholesterol is an essential membrane component and is abundantly present 
in the nervous tissue, where it is involved in signal transduction, synapse 
formation, and neurotransmitter release (Dietschy and Turley 2004). Caveolin 1 
(CAV1) is a cholesterol-binding integral CM protein with an important role in 
cholesterol transport and homeostasis (Frank et al. 2006). Low-density and 
detergent-resistant microdomains of the CM are particularly rich in cholesterol 
and CAV1 (Wang and Paller 2006), which are critical to the formation and 
stabilization of membrane lipid rafts (Silvius 2003). 

The activity of NAKA is sensitive to the composition of its surrounding CM 
environment. Less than 100 lipid molecules surrounding the pump and their 
cooperative action could be sufficient to result in significant conformational 
effects. The complete removal of lipid molecules inactivates NAKA, but 
activity is restored by reintroducing it to a proper membrane environment (Otto-
lenghi 1975; Steckhoven and Bonting 1981). NAKA activity has been corre-
lated to several physical membrane properties including membrane fluidity 
(Kimelberg and Papahadjopoulos 1974), membrane thickness (Johannsson et al. 
1981), phospholipid composition (Vemuri and Philipson 1989), fatty acyl chain 
length (Marcus et al. 1986), and the degree of saturation of fatty acids (Cor-
nelius 2001; Cornelius et al. 2003). CM proteins are more active in membranes 
that are more polyunsaturated. In general, lipids that promote bilayer formation 
of physiological thickness and increased fluidity tend to promote optimal 
NAKA activity (Kimelberg and Mayhew 1975; Johannsson et al. 1981; Marcus 
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et al. 1986), as do negatively charged lipids, such as phosphatidylserine and 
phosphatidylglycerol (Kimelberg and Papahadjopoulos 1972). In general, 
alterations in the lipid environment that increase membrane fluidity tend to also 
increase NAKA activity (Therien and Blostein 2000). Free fatty acids present in 
the membrane or as products of the phospholipase A2-dependent regulatory 
pathway tend to inhibit NAKA (Oishi et al. 1990). Certain composition of fatty 
acids (length of the chain, degree of saturation) and certain concentration of 
cholesterol are required for optimal catalytic function of the pump (Cornelius 
2001; Cornelius et al. 2003). 

Cholesterol affects both the pumping and signaling functions of NAKA 
(Yeagle 1983; Cornelius 1995; Wang et al. 2004; Liang et al. 2007). Several 
early studies have suggested that cholesterol directly interacts with NAKA in 
three potential binding sites, one at the first transmembrane domain and two at 
the last transmembrane domain. It has been demonstrated that a specific 
phospholipid acyl chain length and the presence of cholesterol (Johannson et al. 
1981; Yeagle et al. 1988; Cornelius 1995) are essential to support optimal 
hydrolytic activity of NAKA. Furthermore, cholesterol significantly increases 
the maximum steady-state phosphoenzyme level and decreases the apparent 
cytoplasmic Na+ affinity (Cornelius 1995). In conclusion, the lipid environment, 
including the cholesterol content, affects the hydrolytic activity of NAKA by 
affecting several of the reaction steps in the overall reaction mechanism of the 
NAKA and not just a few rate-determining steps. Indeed, both rate-limiting 
steps, the E2 → E1 and the E1 → E2-P reactions are accelerated by cholesterol. 
The E2 → E1 reaction includes binding of the cytoplasmic ligands ATP and Na+, 
as well as deocclusion of K+, the reactions which all seem to be affected by the 
lipid environment. The effect on the apparent affinities of ATP and Na+ may 
both be caused by the lipid effect on the E1/E2 equilibrium. It has been shown 
that the membrane phospholipid and cholesterol composition have an influence 
on Na+ binding to the enzyme but not on K+ binding (Giraud et al. 1981). The 
detailed molecular mechanisms of these effects are still largely unknown, but 
hydrophobic matching between the bilayer and the integral protein seems to be 
important. Furthermore, change in bilayer hydrophobic thickness induced by 
either increasing the phospholipid acyl chain length or by inclusion of 
cholesterol does not always affect the enzyme equivalently. Thus, effects on the 
conformational mobility of NAKA by the lipid status seem to be important as 
indicated by the effects on the activation energy of the reactions accompanying 
the conformational changes associated with the phosphorylation-dephosphory-
lation reactions. Such effects could be direct or induced by phospholipid and 
cholesterol effects on the intramembrane charge distribution or result from 
certain lipid combinations that stabilize oligomeric interactions of NAKA 
(Cornelius et al. 2003). Membrane proteins and lipids may both be subjected to 
regulatory processes in response to pathophysiological situations or nutritional-
pharmacological interventions which, in turn, may alter the activity and 
functions of the membrane.  
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Summarizing the aforementioned: there is no doubt that CM lipid status has 
an influence on NAKA functioning. A gold standard in studies of NAKA 
function dependency of CM lipid fluidity is the analysis of NAKA kinetic 
properties at different temperatures. Depending on the results at different tem-
peratures the Arrhenius plot is constructed. The graph is not linear and typically 
the breakpoint in the graph appears at temperature 20°C (Kimelberg and 
Papahadjopoulos 1974).  
 
 

3. Different neuropathologies and  
aberrant conditions and regulation of function  

of Na-pump by lipid status and cations 

Generally, various neuropathological processes have an influence on sodium 
pump function. A central role for NAKA in pathogenesis has been widely 
implicated, particularly in cardiovascular, neurological, renal, and metabolic 
diseases (Rose and Valdes 1994). Several regulators (sodium and potassium as 
the principal ones) can directly regulate the activity of NAKA, which satisfies 
the functional roles of the enzyme in different conditions and makes the pump 
protein vulnerable to pathogenic insults and a potential target for therapeutic 
treatments (Therien and Blostein 2000). Major regulators of the membrane 
architecture are lipid status, membrane potential, intracellular Ca2+ and pH, 
protein composition, cell-to-cell contact, and membrane coupling with the 
cytoskeleton or extracellular matrix. 

A number of studies have shown changes in sodium pump activity under 
different neuropathological processes. For example the NAKA activity was 
34% lower in ischemic brain cortex and 40% lower in ischemic basal ganglia 
after 30-min ischemia. After 60-min ischemia, both the NAKA activity and K+ 
concentration were decreased in the ischemic hemisphere (Jamme et al. 1997). 
It has been shown that NAKA molecules isolated from the ischemic brain lost 
their ability to interact with one another (the Hill coefficient fell to 1) (Dobrota 
et al. 1999). This is consistent with the observations that ischemia or hypoxia 
induce energy crisis, increase the production of ROS (Kako et al. 1988; Johnson 
and Weinberg 1993) and release endogenous inhibitors of NAKA (Hennings et 
al. 1983). The inhibition of NAKA secondary to cellular energy depletion might 
contribute to delayed membrane depolarization of cortical neurons after 
traumatic brain injury (Tavalin et al. 1997). The NAKA activity was reduced or 
insufficient to maintain ionic balances during and immediately after episodes of 
ischemia, hypoglycemia, epilepsy, and after administration of glutamate 
agonists. It has been proposed that the reduction and/or inhibition of NAKA 
contributed to the central neuropathy found in those disorders (Lees 1991). 
Inhibition of NAKA activity leads to neuronal death and is related to 
pathological conditions in the CNS (Hattori et al. 1998). In this context, it has 
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been demonstrated that cerebral edema and neuronal death associated with a 
decrease in NAKA activity are mediated by intracellular depletion of K+ and 
accumulation of Ca2+ and Na+ (Xiao et al. 2002). Decreased NAKA activity has 
been associated with excitotoxity. Thus, it has been demonstrated that striatal 
neurons are more vulnerable to glutamate neurotoxicity when the activity of this 
enzyme is reduced (Brines and Robbins 1992). In agreement with these 
findings, other studies indicated that NAKA inhibition, in the presence of a non-
lethal insult, activates the apoptotic cascade and neuronal injury probably by 
amplifying the disruption on K+ homeostasis (Wang et al. 2003). Dysfunction or 
deficiency of NAKA has been identified in chronic neurodegenerative diseases 
(Chauhan et al. 1997). The possibility that the deficiency in the NAKA activity 
might be a common mechanism in pathogenesis of central nervous system 
disorders has been tested in patients with CNS glioma, multiple sclerosis, 
systemic lupus erythematosus, subacute sclerosing panencephalitis, primary 
generalized epilepsy, Parkinson’s disease, Down syndrome, syndrome X with 
multiple lacunar state, and several other neurodegenerative disorders.  

Tumor growth in brain is accompanied with severe changes in brain tissue 
and metabolism which may have impact on alteration of the CM sodium pump 
function leading to changes in cell homeostasis. The largest group of primary 
brain tumors are gliomas. The growth of a glioma results in destruction of the 
normal brain parenchyma by the glioma cells. This is achieved by the cellular 
release of glutamate into the peritumoral space (Ye and Sontheimer 1999) in the 
absence of functional Na+ dependent glutamate transporters in glioma cells, 
resulting in consequent accumulation of excitotoxic glutamate in the extra-
cellular glial space (Takano et al. 2001). Signaling through the glutamate 
receptors is also involved in glioblastoma cell proliferation (Arcella et al. 2005). 
Glioma cells are self-propelled (Merzak et al. 1994) and are able to adjust their 
shape and volume rapidly as they invade the brain parenchyma. The activity of 
NAKA can be modulated by glutamate and its receptors (Munhoz et al. 2005). 
Several studies have reported changes in NAKA activity in the course of 
malignant transformation, with evidence that these changes occur at the very 
early stages of tumorigenesis (Kaplan 1978; Shen et al. 1978; Weidemann 
2005) . These may result from altered NAKA density in the plasma membrane 
of tumor cells, as well as differences in isozyme expression. NAKA is also 
directly involved in the migration of cancer cells in general (Mijatovic et al. 
2007) and glioma cells in particular (Lefranc et al. 2008).  

The downregulation of NAKA β subunit expression has been found in carci-
nomas of epithelial origin (Akopyanz et al. 1991; Blok et al. 1999; Rajasekaran 
et al.1999; Espineda et al. 2003; 2004), while α subunits seem to be up-
regulated in certain malignant cells (Sakai et al. 2004). This induces an increase 
in the expression of the transcription factor Snail, which is known to 
downregulate E-cadherin (Espineda et al. 2004) thereby facilitating the spread 
of cancer cells from the primary tumor (Barwe et al. 2005). The β2 isoform of 
the sodium pump is in fact a homolog of the adhesion molecule on glia 
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(AMOG) which is a recognition element for cell adhesion that subsequently 
links cell adhesion and ion transport (Gloor et al. 1990; Schmalzing et al. 1992; 
Senner et al. 2003). The AMOG/β2 and the α1 subunits of the sodium pump 
come together to form functional sodium pumps (Schmalzing et al. 1992). The 
AMOG is downregulated in human and mouse gliomas (Senner et al. 2003). It 
is found that the α1 subunit of the sodium pump is located at the lamellipodia of 
the human glioblastoma cell line U373-MG, where it colocalizes with CAV 1. 
Caveolae functions rely on CAV-1, their major protein, which drives the 
formation of plasma membrane caveolae and anchors them to the actin 
cytoskeleton. In addition, caveolin 1 modulates cell interaction with the extra-
cellular matrix and brings together and regulates the interaction of different 
signaling molecules, with significant roles in cell movement. Importantly, 
CAV 1 depletion results in the loss of focal adhesion sites and overall cell 
adhesion (Navarro et al. 2004).  

Cell membrane lipid/cholesterol composition, fluidity is changed and lipid 
peroxidation is increased in the brain tumor tissues (Hattori et al. 1987; 
Kokoglu et al. 1992; Martin et al. 1996; Cirak et al. 2003; Zajdel et al. 2007). 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, 
which affects higher cognitive functions, memory, and learning. In AD brains, 
there is an increased deposition of amyloid plaques together with the increased 
number of activated microglial cells in the parenchyma and monocytes in the 
vessel wall (McGeer et al. 1987; Maat-Schieman et al. 1997; Uchihara et al. 
1997; Dickson 1999). Amyloid-β peptide (Aβ) derived from the amyloidogenic 
pathway of amyloid precursor protein (APP) processing is the primary compo-
nent of amyloid plaques (Haass and Selkoe 1993; Selkoe 1997; 2000). Aβ 
monomers aggregate into oligomers, fibrils, and plaques which have different 
impacts on cellular functions (Cleary et al. 2005; Resende et al. 2008). 
Deposition of Aβ in AD brains and cerebral vessels results in neurovascular 
dysfunction and chronic neurodegeneration (Hardy and Higgins 1992). It is 
known that NAKA activity is decreased in the case of AD (Kairane et al. 2002). 
The decreased NAKA activity in AD brain is correlated with the specific 
reduction of the NAKA protein level (Liguri et al. 1990). The decrease in 
NAKA activity may result from the cytotoxic effects of Aβ proteins. Impaired 
NAKA activity reportedly results in an increase in Na+ influx, leading to 
membrane depolarization, and Ca2+ influx through voltage-dependent Ca2+ 
channels (Mark et al. 1995). Thus, impaired NAKA activity may also play an 
important role in the pathophysiology of neuronal excitotoxicity in AD. The 
reduction in NAKA activity in AD brain may cause excessive excitatory 
responses in neurons resulting in neuronal death. Aβ proteins can intercalate 
into the CM lipid bilayer, leading to protein, lipid, carbohydrate, and nucleic 
acid damage via different processes.  

The CCK2 receptor is a G-protein-coupled integral CM protein and one of 
the two receptors that bind cholecystokinin (CCK2 and CCK1). It is widely 
expressed in the gastrointestinal tract and central nervous system. The highest 
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densities of CCK2 receptors are found in the cerebral cortex, nucleus caudatus, 
and anterolateral part of nucleus accumbens (Noble et al. 1999). In the CNS it is 
associated with the control of pain and anxiety, nociception, and memory 
process (Crawley and Corwin 1994). Brain CCK2 receptor has a 447 amino 
acid sequence (P32239 7TM) and possesses seven transmembrane domains. 
The homozygous (–/–) CCK2 receptor deficient (CCK2R–/– ) mice were first 
generated in 1996 (Nagata et al. 1996). The mutant vector replaced a part of 
exon 2 and exons 3–5 of the CCK2R gene. This replacement deleted most of the 
seven membrane spanning CCK2 receptor except for the first 108 amino acids, 
containing the first membrane spanning region. Mice are viable, fertile, and 
appear to be grossly normal in the adulthood (Langhans et al. 1997). However, 
they display disturbances in the learning abilities and performance (Dauge et al. 
2001), as well as the altered function of the brain dopaminergic system (Kõks et 
al. 2001). 

If a question „what kind of lipid-related processes might underlie the 
alterated activity and regulation of NAKA in case of brain tumors, AD, and 
CCK2 receptor deficient animals?” should rise, there are following answers. 
CM lipids are known to play major structural and functional roles in the plasma 
membrane, where they can have potential effects on the conformation, function, 
and regulation of receptors and their signaling pathways. Most important 
components are cholesterol and sphingolipids, both relatively enriched in the 
plasma membrane and further concentrated in specialized domains called rafts. 
In a number of papers it has been shown that plasma membrane cholesterol, 
sphingolipids and other lipids can affect CCK receptor function (Harikumar et 
al. 2005). There are no data about membrane lipid status changes in case of 
brain tumors, AD, and CCK2 receptor deficiency animals. For example, it is 
remarkable that NAKA interacts with CAV 1 and knockdown of the NAKA α1 
SU likely redistributes cholesterol from the cell membrane to other cellular 
compartments (Chen et al. 2009; 2011). Next, integral CM proteins are 
especially sensitive to changes in lipid, cholesterol environment and lipid 
oxidative modification. Alterations in brain cholesterol and lipid homeostasis 
have been linked to neurodegenerative diseases, such as Niemann-Pick’s, AD, 
Parkinson’s, and Huntington’s disease (Simons and Ehehalt 2002; Valenza et al. 
2005).  

All these neuropathologies and aberrant conditions (brain tumor, AD, and 
CCK2 receptor deficiency) have a relation to quite easily vulnerable brain lipid 
status of CM. Aldehydic lipid peroxidation of cells in the brain appear to be at a 
particular risk from ROS damage, because of their high content of PUFAs and 
of their high metabolic activity. Neurons are non-replicating cells, characterized 
by a high ratio of CM surface area to cytoplasmic volume (Evans 1993). Neuro-
transmitters such as dopamine, glutamate, and nitric oxide represent a source of 
oxygen radical production. Moreover, neurons contain relatively low concen-
tration of CAT, SOD, GSH, and tocopherol, i.e. substances engaged in 
protection against ROS (Evans 1993). On the other hand, local PUFA defi-
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ciencies in glioma cells may limit tumor ROS generation. This deficiency may 
cause alterations in signal transduction and an interruption of normal cellular 
events (Martin et al. 1996). Recently, a ROS-based hypothesis has been pro-
posed, in which glioma cells resistance to radiation and other anticancer 
therapies is linked to a decreased ROS generation following treatment (Leaver 
et al. 2004). Next, it is well known that oligomeric Aβ protein can induce 
oxidative stress (OxS), abnormal calcium homeostasis, and long-term poten-
tiation and can self-assemble into large, voltage-independent, and nonselective 
ion channels at CM. In addition, several elevated indices of OxS, including 
protein carbonyls 3-nitrotyrosine (markers of protein oxidation), 4-hydroxy-2-
nonenal (HNE) (marker of lipid peroxidation) and 8-hydroxy-2-deoxyguanosine 
(marker of DNA oxidation) (Hensley et al. 1995; Aksenov et al. 2001; Castegna 
et al. 2003; Sultana et al. 2006) can induce dysfunctional proteins (Aksenov et 
al. 2001). HNE binds to proteins, including CM proteins, leading to altered 
structure and function of the target protein (Lauderback 2001; Sultana and 
Butterfield 2004; Butterfield et al. 2007). Aβ can also perturb the molecular 
packing of CM, resulting in subsequent alterations of biophysical properties of 
membranes, such as membrane microviscosity, membrane molecular order, 
membrane potential, and permeability. Altered membrane properties, in turn, 
may disrupt membrane functions, activities of membrane-related proteins, and 
many cellular pathways. 

In addition to atherosclerosis, OxS and inhibition of NAKA activity have 
been found in various neuropathological conditions, including cerebral ischemia 
(de Souza Wyse et al. 2000), epilepsy (Grisar 1984), and neurodegenerative 
disorders such as Parkinson’s disease, AD, multiple sclerosis, schizophrenia and 
amyotrophic lateral sclerosis (Hattori et al. 1998; Yu 2003; Pisani et al. 2006). 
Thus, the cell membrane NAKA is one of the cellular oxidative stress targets 
(Rose and Valdes, 1994) via lipid peroxidation and alterated redox status. ROS 
can directly damage cellular proteins, DNA, and lipids and thereby affect 
cellular functions (Cochrane 1991). The brain is especially vulnerable to free 
radical-induced damage because of its high oxygen consumption, abundant lipid 
content and relative paucity of antioxidant enzymes (Olanow 1992; Metodiewa 
and Koska 2000; Halliwell 2006). Inhibition of NAKA by ROS has been 
demonstrated in vitro by Thomas and Reed (1990), Kurella et al. 1999) and in 
vivo by Mintorovitch et al. (1994) and Andreoli et al. (1993). Simultaneous lipid 
peroxidation products increase lipid bilayer disordering and the suppression of 
NAKA activity is noted (Kako et al. 1988). Recent experiments have shown 
that membrane protection by hydrophobic antioxidants was accompanied by 
obligatory preservation of NAKA activity (Thomas and Reed 1990). 

Concerning OxS activity, NAKA is known to be affected by the redox state 
of the cell, and reduced antioxidants or antioxidant enzymes activities are 
related to reduced NAKA activity (Morel et al. 1998; Streck et al. 2001; 
Petrushanko et al. 2006; Wilhelm et al. 2009). Of all the brain cells, neurons are 
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particularly vulnerable to oxidative insults due to low levels of reduced 
glutathione (Dringen et al. 2000).  

In summary, a number of studies show that NAKA activity is altered in 
several neuropathological conditions. However, there is limited information 
regarding lipid status in AD. Furthemore, such information is absent regarding 
brain tumor tissue and CCK2 receptor deficient mice. A limited number of 
authors have investigated sodium regulation and its relations to temperature-
dependence of NAKA functionality in brain tumors or AD, whereas data about 
such relations in CCK2 receptor deficiency are absent. In 1989 we demon-
strated for the first time, using the Arrhenius plot method to study the sodium 
pump function, the shift of breakpoint in the Arrhenius plot for NAKA isolated 
from brain tumor. These findings lead us to use the Arrhenius plot method to 
investigate the NAKA properties in other neuropathologies and aberrant 
conditions like AD and CCK2 receptor deficient mice. The latter is regarded as 
a unique aberrant status and our study was focused on comparing the 
temperature-dependence of NAKA in CCK2 receptor deficient (homo- and 
heterozygous) and normal (wild type) mice brain cortex. Until now, there have 
been no studies concerning CM lipid status in the named neuropathologies and 
aberrant conditions. Therefore, it was an interesting task to study similar 
changes concerning NAKA function in such different neuropathologies and 
aberrant conditions like brain tumor, AD and genetic invalidation of CCK2 
receptors and also to establish possible reasons for these changes. 
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AIMS OF THE STUDY 

The general aim of the present study was to provide evidence of the brain 
sodium pump function and regulation dependency of membrane lipid status in 
normal, different neuropathologies and aberrant conditions. 
 
The specific aims of the study were as follows:  
 
1. To study the temperature-dependence of sodium pump isolated from human, 

rat and mouse normal brain cortex cell membrane. 
2. To study the temperature-dependence of sodium pump isolated from human 

brain tumorous tissue and CCK2 receptor deficiency mouse brain cortex cell 
membrane. 

3. To summarize and analyze information about sodium pump temperature-
dependence, cation cooperativity and CM lipid status, collected from experi-
ments of normal brain, different neuropathologies and aberrant conditions. 
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MATERIALS AND METHODS 

1. The origin of brain tissues 

The enzyme preparations were isolated from the Wistar rat brain cortex, normal 
human brain cortex and glioma tissue. The frontocortical tissues of AD 
postmortal human brain were obtained from Huddinge Brain Bank (Karolinska 
Institute, Stockholm, Sweden. The CCK2 receptor deficient mice were provided 
by T. Matsui from Kobe University School of Medicine, Japan. From the 
original background of 129Sv/C57/BL6 mice the CCK2 receptor deficient mice 
were generated by homologous recombination by replacing a part of exon 2 and 
exons 3–5 (Nagata 1996). Mutant mice were crossed twelve times to the 
C57/BL6 background to minimize the possible genetic effects from the 129Sv 
strain. Breeding and genotype analysis were performed in the Department of 
Physiology, University of Tartu. Male homozygous (–/–), heterozygous (+/–) 
receptor-deficient, and wild-type (+/+) mice (90 days old) brain cortex were 
used in experiments. Mice were kept in the animal house at 20±2°C under 
12:12h light/dark cycle (lights off at 19:00h). Tap water and food pellets were 
available ad libitum. All animal procedures were approved by the University of 
Tartu Animal Care Committee in accordance with the European Communities 
Directive of 24 November 1986 (85/609/EEC).  
 
 

2. Isolation of Na,K-ATPase preparations 

The NAKA membrane preparations were isolated from the brain tissue by the 
previously described method (Karelson 1985). The tissues were homogenized at 
4°C in a medium containing 0.32 M sucrose, 1 mM EDTA, 0.1% DOC 
(deoxycholate) and 37.5 mM imidazole–HCl (pH 7.4 at 8°C). The homogenate 
was centrifuged for 10 min at 10000 × g. The supernatant was removed and 
centrifuged for another 30 min at 24000 × g. The enzyme preparation was 
obtained by resuspension of the final sediment in the buffer described above 
(without DOC). The protein content of enzyme preparation was determined by 
Lowry, using bovine serum albumin as a standard (Lowry et al. 1951). The total 
NAKA activity was measured by incubation of membrane proteins (30–40 μg) 
in 280 μl of medium containing 100 mM NaCl, 20 mM KCl, 4 mM MgCl2, 
4 mM Tris–ATP and 25 mM imidazole–HCl (pH 7.4 at 37°C). The reaction was 
carried out for 10 min and terminated with 3.5% of SDS. The released inorganic 
phosphate (Pi) was determined as described earlier (Karelson et al.1985). The 
NAKA activity was established as a difference between the release of Pi from 
ATP with and without NaCl + KCl in the incubation medium. The specific 
activity of the enzyme was expressed as micromoles Pi/min/mg protein. Under 
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all experimental conditions, the activity of NAKA was linear as a function of 
incubation time and enzyme amount. 
 
 

3. Assay of Na,K-ATPase temperature-dependence 
(the Arrhenius plot) 

The temperature-dependence (the Arrhenius equation) of NAKA was studied 
between 11.5° and 37°C (an enzyme activity measurement) and the data were 
plotted as log v0 vs temperature as described earlier (Boldyrev 1988). 
 
 

4. The degree of Na+ and K+ cooperativity  
measurement 

 
The degree of Na+ or K+ cooperativity (the Hill coefficient, nH) for NAKA were 
determined as described earlier (Salum et al. 1988). The activity of NAKA 
measured at several concentrations of Na+ (the K+ concentration was constant) 
or K+ (the Na+ concentration was constant). The values on nH were established 
from the Hill plot: log(v/Vmax-v) vs log[Na+] or log[K+]. 
 
 

5. Oxidative stress index and the GSSG/GSH  
ratio measurement 

The markers of lipid peroxidation and antioxidant defence were measured in the 
brain tissue homogenates. To characterize the oxidative stress level the oxi-
dative stress index (OSI) was calculated. For calculation, two parameters, the 
total antioxidant response (TAR) and total peroxide (TPX) concentration were 
determined. The measurement of TAR was performed as decribed earlier (Erel 
2004). In this method the hydroxyl radical (OH•), the most potent biological 
radical was produced and the rates of the reactions were monitored by following 
the absorbance of colored dianisidyl radicals. Ortho-dianisidine (10 mM) and 
ferrous ammonium sulfate (45 µM) were dissolved in KCl/HCl solution (75 
mM, pH 1.8). This mixture was named as Reagent 1 and hydrogen peroxide 
solution (7.5 mM) as Reagent 2. The OH•, produced by mixing of reagent 1 and 
reagent 2, oxidized o-dianisidine molecules into dianisidyl radicals, leading to a 
bright yellow-brown color development within seconds. Antioxidants, present 
in the sample, suppressed the color formation to a degree that is proportional to 
their concentrations. The suppression of the color formation was calibrated with 
Trolox, which is widely used as a traditional standard for TAR measurement 
assays, so the results are expressed as in terms of millimolar Trolox equivalent 
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per liter. Total peroxide (TPX) concentrations of samples were determined 
using OxyStat Assay Kit Cat. No BI-5007 (Biomedica Gruppe, Biomedica 
Medizinprodukte GmbH & Co Kg, Wien). The kit detects peroxide 
concentrations based on reaction of the biological peroxides with peroxidase 
and a subsequent color-reaction using tetramethylbenzidine (TMB) as substrate. 
After addition of a stop solution, the coloured liquid is measured 
photometrically at 450 nm, using ELISA platereader Photometer Sunrise (Tecan 
Austria GmbH, Salzburg). For the assay a calibrator is used to calculate the 
concentration of biological peroxides in the sample. The concentration is stated 
as H2O2-equivalents (μmol/L). Percent ratio of the total peroxide concentration 
of plasma (TPX) to the total antioxidant responce of plasma (TAR) was 
accepted as oxidative stress index (OSI), an indicator of the degree of oxidative 
stress. OSI = [(TPX, µmol/L)/ (TAR, µmol Trolox/L) x 100)] (Horoz et al. 
2006) 

Concentrations of reduced and oxidized glutathione were assessed by an 
enzymatic method for GSH using manufacturer kit Glutathione Assay Kit 
(Cayman Chemical Company, Ann Arbor, Mich., USA). Briefly, the homoge-
nate was deproteinated by 10% solution of metaphosphoric acid (MPA, Sigma-
Aldrich) in water. The equal volume of the metaphosphoric acid was added to 
the sample and mixed vigorously. The mixture was allowed to stand at room 
temperature for 5 min and centrifuged at 3000 g for 5 min. In cases where the 
assay was not performed immediately, the supernatant was carefully collected 
and stored at –20°C. Glutathione content was measured by adding 0.05 ml of 
triethanolamine 4 M solution in water per ml of sample and vortexed 
immediately. The sample was divided into two parts. For assay of oxidized 
glutathione (GSSG), reduced glutathione (GSH) was derivatised by adding 10 
μl of 2-vinylpyridine 1 M solution in ethanol to the first part of the sample, 
mixing and incubating at room temperature for 1 h. 50 μl of standard or sample 
was added per well of the plate. The enzymatic reaction was initiated by the 
addition 150 μl of the freshly prepared assay cocktail, containing nicotinamide 
adenine dinucleotide phosphate (NADPH), glutathione reductase and 5,5´-
dithio-bis-2-nitrobenzoic acid in buffer (pH 6.0) containing EDTA. The change 
in optical density was measured spectrophotometrically after 25 min at 412 nm. 
The glutathione content was calculated on the basis of a standard curve. The 
amount of GSH was calculated as a difference between the total glutathione and 
GSSG. The glutathione content was expressed as the glutathione redox ratio 
(GSSG/GSH). 
 
 

6. Statistics 

All experiments were repeated at least eight times and the results were 
expressed as mean values ± S.E.M.. Student`s t-test for independent samples 
was applied to establish the significant differences between two groups. 
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RESULTS AND DISCUSSION 

1. Sodium pump temperature-dependence and  
cationic regulation in normal brain tissue  

(in the example of different species) 

This part of the dissertation provides data on the sodium pump function 
dependence of temperature (the Arrhenius plot) and the Na+ and K+ binding to 
NAKA isolated from the normal brain cortex of rat, human, and mouse (Papers 
I-V). We found that the breakpoint in the Arrhenius plot was at 21.6 ± 0.6; 21.9 
± 0.2, and 20.3 ± 0.4°C in rat, human, and mouse brain cortex, respectively 
(Table 1). The cooperative binding character (the Hill coefficients of NAKA) 
for Na+ in normal rat, human, and CCK2R wild type mouse were 1.7 ± 0.10; 
1.5 ± 0.10 and 1.2 ± 0.06, respectively. In the case of K+ the corresponding 
values were 1.4 ± 0.10; 1.3 ± 0.10 and 1.3 ± 0.07, respectively (Table 1). We 
also established the cooperative effect of Na+ and K+ for NAKA in the 
temperature interval 27–29°C, isolated from normal brain cortex of human. The 
values were 1.3 ± 0.09 and 1.4 ± 0.06 respectively.  
 
Table 1. Breakpoint in the Arrhenius plot of sodium pump preparations isolated from 
rat, human, and mouse normal brain tissue and the Hill coefficients for Na+ and K+  
(n ≥ 8). 

Enzyme preparations 
Breakpoint  

in the Arrhenius plot (°C) 
The Hill coefficient  

for Na+ and K+ 

Normal rat brain (cerebral 
cortex) 

21.6 ± 0.6 1.7 ± 0.10 / 1.4 ± 0.10 

Normal human brain 
(cerebral cortex) 

21.9 ± 0.2 1.5 ± 0.10 / 1.3 ± 0.10 

Wild type mouse (cerebral 
cortex) 

20.3 ± 0.4 1.2 ± 0.06 / 1.3 ± 0.07 

 
Before our experiments it was known that the nonlinear Arrhenius plot (break-
point at 19–22°C) is typical for NAKA isolated from different tissues (brain, 
kidney) and inflection on graph reflects sensitivity of the enzyme to the phase 
reconstructions of CM lipids (Boldyrev 1988). Our study found the first 
evidence that in the case of NAKA isolated from brain cortex of different 
species (rat brain, human brain, mouse brain) average values of the breakpoint 
were between 20.3–21.9°C. Thus, all breakpoints were located in the typical/ 
classical region. Consequently, different species-specific lipid composition of 
CM do not have a crucial impact on the temperature-dependence (on the shape 
of the Arrhenius plot) of NAKA and the latter is more dependent on alterations 
in CM general lipid status if they occur in different pathologies.  
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All Hill coefficients for Na+ were above 1.2 (refers to cooperativity between at 
least two sites, the allosterical effects of Na+). However, the Na-cooperativity 
was lowest in the case of wild-type mice. Probably, the allosterical effect in the 
case of latter has not that kind of power compared to the results obtained from 
other NAKA preparations. The Hill coefficients for K+ were not significantly 
different. Thus, there were no differences in K+ allosteric effects power in the 
case of different species.  

Summarizing the aforementioned: our study found for the first time that in 
the case of NAKA isolated from brain cortex of different species all 
temperature-dependent breakpoints were located in the typical/classical region. 
Consequently, different species-specific lipid composition of CM do not have a 
crucial impact on the temperature-dependence (on the shape of Arrhenius plot) 
of NAKA, as well as on allosteric regulation by sodium and potassium, but is 
evidently more dependent on alterations in CM general lipid status. Thus, the 
results obtained from different control brain tissues guided us to investigate CM 
lipid status and NAKA function properties in case of different brain patholo-
gies. For these experiments NAKA preparations isolated from brain tumor 
tissue and Alzheimer diseased brain tissue were used. Third target used in our 
experiments were NAKA preparations isolated from the fronto-parietal cortex 
of CCK2R deficient mice.  
 
 

2. Sodium pump temperature-dependence  
and cationic regulation in different neuropathologies 

and aberrant conditions 

In the previous part of the results and discussion we established that the 
breakpoint in the Arrhenius plot and the Hill coefficients of Na+ and K+ for 
NAKA from different brain tissues does have a similar location area and there 
are no species-specific differences. This section of the results and discussion 
presents data about temperature-dependence of NAKA isolated from human 
tumorous brain tissue, human Alzheimer diseased brain tissue (AD), and 
CCK2R deficient (hetero- and homozygous) mouse brain cortex. We estab-
lished that in all abnormal cases the breakpoint is not in the interval 19–22°C 
(Fig. 3). At the same time we established that in the case of tumorous brain 
tissue and AD the new breakpoint in the Arrhenius plot was at 28.3 ± 0.4°C and 
28.0 ± 0.4°C, respectively (Figure 3) (Paper I). In the case of NAKA from brain 
CCK2 receptor deficient mice (hetero- and homozygous mutant mice) the new 
breakpoints were at 25.4 ± 0.4°C and 26.0 ± 1.1°C, respectively.  
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Figure 3. The temperature-dependence of NAKA activity (typical Arrhenius plots) in 
the different brain tissues.  
 
 
These changes of temperature-dependence were accompanied by alterations in 
cooperative effects of sodium as the Hill coefficients for Na+ were 0.9 ± 0.09, 
1.1 ± 0.1 and 1.0 ± 0.09 for human brain tumor tissue, AD brain tissue and 
CCK2R deficient mice (homozygous), respectively. Interestingly, the Hill 
coefficient of Na+ for CCK2R deficient (heterozygous, having 50 % of intact 
receptors present) was 1.3 ± 0.05. The Hill coefficients for potassium were not 
different from normal values given in Table 1.  

Summarizing the aforementioned: we established the shift of the breakpoint 
in the Arrhenius plot and lack of cooperativity for Na+ in case of NAKA 
preparation isolated from brain tumorous tissue (Papers IV; V). Next we 
showed that the same phenomenon regarding temperature-dependence and so-
dium cooperativity appears in the case of AD brain tissue as well as in the case 
of homozygous CCK2R deficient mice (Papers I; II; III).  

It is remarkable that with the appearance of breakpoint in Arrhenius plot at 
higher temperature area the cooperativity effect of Na+ is also changed (except 
in case of CCK2R heterozygous) but not of K+ for NAKA. Intact Na+ coopera-
tivity in case of CCK2R heterozygous indicates the dependence from the gene 
dose. Here we can point out that alterations in general CM lipid status evidently 
underlie the changes of shape of the Arrhenius plot. Quite similar changes in the 
Arrhenius plot (the breakpoint shift) at different abnormalities indicate ana-
logous changes in CM status and refer to the existence of a universal pheno-
menon apart from the actual cause of abnormality. Therefore, we decided to 
study at least one process/event that occurs in all the cases of abnormalities 
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(tumor, AD, CCK2R deficiency) and may underlie such a universal 
phenomenon (practically similarly alterated temperature-dependence of NAKA 
apart from the cause of abnormality).  
 
 

3. Some similar characteristics of altered function  
of the sodium pump in different neuropathologies  
and aberrant conditions and its possible reasons  

Several pathological processes have an effect on sodium pump functioning. In 
principle this may result in changes in the CM lipid status, oxidative damage of 
the enzyme, and changes in the enzyme SU expression and mutations.  

There are limited data on the changes in functioning of NAKA depending on 
CM lipid general status in the case of oxidative stress, lipid peroxidation, and 
altered redox ratio in different pathologies, especially in brain tumor, and no 
data in case of CCK2R deficiency. Moreover, there are no data about tempe-
rature-dependence of NAKA in the case of different brain abormalities. 
Therefore, our main interest was already in 1989 to establish the character of 
temperature-dependence in the case of brain tumor and then investigate whether 
such alterations in temperature-dependence of NAKA are also valid for AD as 
well as CCK2R deficiency. If such alterations had a universal character then we 
aimed to establish whether some common reasons underlie such similarities 
apart from the character of the disease or genetic abnormality.  

The Arrhenius plot method indicates the sensitivity of the reaction rate to 
temperature and, therefore, is the golden standard for investigation of CM lipid 
fluidity and CM lipid-protein interactions. The break area in the Arrhenius plot 
for NAKA isolated from human tumor brain tissue, Alzheimer’s disease brain 
tissue, and the fronto-parietal cortex of CCK2R deficient (homo- and 
heterozygous) mouse was detected at higher temperature area (25.4–30.5°C), 
but the typical breakpoint at 19–22°C common for normal brain tissue in all 
studied species was disappeared (Papers I;V) (Table 3). 

It is noteworthy that the cooperative binding of sodium show confidential 
change of sodium cooperativity (the Hill coefficients) in case of all species 
except in heterozygous CCK2R deficient mice (Table 3). This suggests that the 
gene dose effect between homo- and heterozygous mice does not appear in the 
Arrhenius plot. However, this effect appears as a difference between 
corresponding Hill coefficients. These results lead to the conclusion that the 
CM lipid status/composition is more sensitive to the gene dose effect than the 
cooperativity of the sodium pump for sodium. Summarizing the aforemen-
tioned: changes in the Arrhenius plot (shift of breakpoint) appear together in 
change of Na+ cooperativity with high probability. In other words, CM lipid 
general status has a crucial role in NAKA functioning. 
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Table 2. Changes in the Arrhenius plot and Na+ cooperativity of Na-pump in different 
pathological conditions.  

Enzyme preparations 
Breakpoint in the 

Arrhenius plot (°C) 
The Hill coefficient  

for Na+ and K+ 

Brain tumor tissue  
(cerebral cortex) 

28.3 ± 0.4** 0.9 ± 0.09*/1.3 ± 0.10 

Alzheimer’s disease brain 
sample (frontal cortex) 

28.0 ± 0.4** 1.1 ± 0.10*/1.4 ± 0.09 

CCK2R homozygous 
(cerebral cortex) 

26.0 ± 1.1** 1.0 ± 0.09*/1.5 ± 0.07 

CCK2R heterozygous 
(cerebral cortex) 

25.4 ± 0.4** 1.3 ± 0.05 /1.6 ± 0.08 

The cooperativity for potassium remained unchanged compared to control samples. 
* p < 0.05 values of control samples compared with the affected brain  
** p < 0.01 values compared with the wild-type mouse  
 
 
Summarizing all our data, our findings refer to a possibility that the change of 
the breakpoint in the Arrhenius plot may be a universal phenomenon concerning 
different neuropathological conditions. Interestingly, CCK2 receptor-deficient 
mice display reduced mechanical sensitivity by means of von Frey filaments 
and they do not develop neuropathic pain after peripheral nerve ligation (Kurri-
koff et al. 2004). This is an obvious declination from the response of wild-type 
mice and, therefore, could be stated as a pathological status. These similar 
findings on the Arrhenius plot and the Na+ cooperativity for NAKA at different 
pathological conditions could be explained with two types of identical changes 
in the enzyme surrounded by membrane lipids. 

First, changes in lipid microenvironment – phase transitions, and changes of 
the hydrophobic volume. Major lipid components of eukaryotic cell plasma 
membrane are glycerophospholipids, sphingolipids, and cholesterol. Lipids are 
asymmetrically distributed between and within leaflets, forming lipid 
microdomains. Glycerophospholipids and sphingolipids contribute to lipid 
asymmetry, cholesterol and sphingolipids form microdomains. Before our first 
paper (Paper V) there were no data about changes in the Arrhenius plot, but it 
was known that membrane phospholipid and cholesterol composition had an 
influence on Na+ binding to the enzyme but not on K+ (Giraud et al. 1981). This 
effect could be direct or induced by phospholipid and cholesterol effects on the 
intramembrane charge distribution or result from certain lipid combinations that 
stabilize oligomeric interactions of NAKA (Cornelius et al. 2003). The NAKA 
β1 and β2 subunit expression is downregulated in brain tumor (Espineda et al. 
2003; 2004; Senner et al. 2003) and, therefore, the α β formation is altered and 
also the NAKA density in the plasma membrane. It has been shown that NAKA 
interacts with CAV 1 and knockdown of the NAKA α1 subunit likely 
redistributes cholesterol from the plasma membrane to other cellular compart-
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ments (Chen et al. 2009). Obviously the NAKA subunit changes in brain tumor 
result in alteration in the cell membrane lipid/cholesterol composition and 
finally in functioning of NAKA. Genetic invalidation of CCK2R resulted in 
remarkable changes in receptor composition and structure and it is likely that 
the altered receptor structure has an influence on cell membrane structure as 
well. Amyloid β can perturb the molecular packing of CM, resulting in sub-
sequent alterations of biophysical properties of membranes, such as membrane 
microviscosity, membrane molecular order, membrane potential, and per-
meability. In several papers it has been shown that changing the membrane 
fluidity and lipid composition has a direct influence on NAKA activity and 
function (Johannson et al. 1981; Karelson et al. 2001; Horoz et al. 2006; 
Bystriansky and Ballantyne 2007; Cornelius 2008) and CCK2 receptor 
(Harikumar et al. 2005) 

Second, all these findings raise one general question concerning the reasons 
for similar changes in NAKA function in completely different conditions (brain 
tumor, AD brain, CCK2R deficiency). Possible causes for these changes are 
oxidative stress, altered lipid peroxidation and redox status. From literature and 
our original data, it is known that the sodium pump function is impaired by 
oxidative stress (Dobrota et al. 1999; Kurella et al. 1999; Yang et al. 2003; 
Valko et al. 2007). Cell membrane lipid/cholesterol composition and fluidity is 
changed and lipid peroxidation is increased in the brain tumor tissues (Hattori et 
al. 1987; Kokoglu et al. 1992; Martin et al. 1996; Cirak et al. 2003; Zajdel et al. 
2007) and it is known that oligomeric Aβ protein can induce oxidative stress 
(OxS) as well (Karelson et al. 2001). Overproduction of reactive oxygen species 
(ROS) under pathological conditions cause profound oxidative stress expressed 
as elevated lipid peroxidation, DNA oxidation, and carbonylation, leading to 
impairment of the function of lipids, DNA, and proteins (Marnett 2002). CM 
components arachidonic and linoleic acid are sensitive to ROS attack, which 
results in excessive production of fatty acid hydroperoxides and other lipid 
peroxidation products (Marnett 2002; Yang et al. 2003).  

We established for the first time a significant increase (p < 0.01) of oxidative 
stress index in the fronto-parietal cortex of CCK2R deficient homozygous mice 
(10.9 ± 2.6) compared to wild-type animals (7.7 ± 1.0; p < 0.01). Next, we 
showed for the first time that the redox ratio was altered as our last experiments 
showed the statistically significant increase of the GSSG/GSH ratio (1.12-fold 
elevation, p < 0.05) in the fronto-parietal cortex of CCK2 receptor deficient 
mice compared to their wild-type littermates (Fig. 4). 
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Figure 4. The GSSG/GSH ratio in the fronto-parietal cortex of CCK2 receptor-deficient 
mice (–/–) compared to their wild-type littermates (W).  
 
 
These findings were supported by our earlier studies using the human post-
mortem brain samples of Alzheimer disease where we established a similar 
change in the GSSG/GSH ratio (Karelson et al. 2001). Therefore, despite of 
different pathologies causing the conditions the similar oxidative stress-related 
changes in lipid peroxidation and redox status are probably the principal reasons 
for the underlying similarity in changes of temperature-dependence (CM lipid 
status) concerning functionality of NAKA. The existence of the breakpoint in 
the Arrhenius plot provides evidence that such kind of alterations in the NAKA 
temperature-dependence is likely the universal phenomenon for homeostatic 
adjustment of altered function of the sodium pump in different neuropathologies 
(brain tumor, Alzheimer’s disease, genetic invalidation of CCK2 receptors) and 
one possible universal factor changing the CM lipid status in different neuro-
pathologies is oxidative stress (Fig. 5).  
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Figure 5. Possible pathway causing changes in Na,K-ATPase regulation in different 
neuropathologies and aberrant conditions. 
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CONCLUSIONS 

1. It was demonstrated that for NAKA isolated from the normal brain cortex of 
different species (rat, human, mouse) the breakpoints in the Arrhenius plot 
were located in the same and typical/classical region. Thus, not the species-
specific lipid composition of CM but the general lipid status of CM has a 
crucial impact on the temperature-dependence (the shape of the Arrhenius 
plot) of NAKA. The Hill coefficients’ values showed cooperative effects 
both for Na+ and for K+ in the case of NAKA from brain of all different 
species.  

  
2. It was established that the temperature-dependence of NAKA isolated from 

human tumorous brain tissue, human AD brain tissue, and CCK2 receptor 
deficient (hetero- and homozygous) mice compared with the results obtained 
from normal brain tissues of different species has a new breakpoint on the 
Arrhenius plot that is significantly higher than the classical breakpoint. The 
alterations also occurred in the cationic regulation as the Hill coefficients for 
Na+ were decreased (lack of cooperativity) except in the case of CCK2 
receptor deficiency indicating the Na+ cooperativity dependence from the 
gene dose. The Hill coefficients for potassium were not altered compared to 
values in the case of normal tissues. Evidently the changes in general CM 
lipid status underlie the changes of the shape of the Arrhenius plot as well as 
sodium cooperativity. Similarity of changes of the Arrhenius plot (the 
breakpoint shift) in the case of different abnormalities reflects that the 
analogous changes occur supporting the role of CM lipid status and referring 
to the existence of an universal phenomenon apart from the nature of 
abnormalities. 

 
3. The alteration in NAKA temperature-dependence (shift of breakpoint in the 

Arrhenius plot) as well as in Na+ cooperativity are evidently caused by uni-
versal changes in CM lipid status which is influenced by oxidative stress-
related changes in lipid peroxidation and redox status. We found a significant 
increase of oxidative stress index in the fronto-parietal cortex of homozygous 
mice CCK2 receptor deficient mice compared to their wild-type littermates. 
The redox ratio was altered (an increase of the GSSG/GSH ratio) in the 
fronto-parietal cortex of CCK2 receptor deficient mice compared to their 
wild-type littermates. The existence of the shifted breakpoint in the Arr-
henius plot provides evidence that such kind of alteration of NAKA tempe-
rature-dependence is likely the universal phenomenon for homeostatic 
adjustment of altered function of the sodium pump in different neuropatho-
logies and aberrant conditions (brain tumor, AD, genetic invalidation of 
CCK2 receptors) and one possible universal factor changing the CM lipid 
status in different neuropathologies and aberrant conditions is oxidative 
stress.  
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4. The alteration in NAKA temperature-dependence (shift of breakpoint in the 
Arrhenius plot) appears earlier than changes in Na+ cooperativity. In other 
words, the CM lipid status/composition is more sensitive to the gene dose 
effect than the cooperativity of the sodium pump for sodium. Genetic 
invalidation of CCK2 receptor in heterozygous mice (50% reduction in the 
number of intact receptors) results in change of NAKA temperature-
dependence but Na+ cooperative effect is unaffected. CCK2 receptor changes 
in homozygous mice (the first 108 amino acids from total of 447 are 
preserved) induce both the shift of breakpoint in the Arrhenius plot and lack 
of Na+ cooperativity for NAKA 
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SUMMARY IN ESTONIAN 

Normaalsest, patoloogilisest ja geneetilise mutatsiooniga  
ajukoest isoleeritud Na-pumba temperatuurisõltuvuse  

erinevus ja sarnasus ning selle võimalikud põhjused 

Na,K-ATPaas (Na-pump) on raku ja kogu organismi homöostaasi säilitamises 
hädavajalik integraalne transmembraanne ensüüm, mille põhiülesanne on Na+ ja 
K+ aktiivne transport läbi rakumembraani ATP hüdrolüüsienergia arvel. Pumba 
töö on aluseks üliolulistele protsessidele nagu närviimpulsi levik, lihastöö, raku-
sisese pH ja rakumahu säilitamine, glükoosi ja aminohapete transport jt. Koos-
töös teiste rakumembraani ja tsütosooli valkudega osaleb Na-pump signaali 
ülekandes rakuorganellidele. Ensüümi funktsioonihäired põhjustavad rakkudes 
Na+ ja K+ gradientide muutusi, mis on seotud mitmesuguste patoloogiliste 
protsesside tekke ja arenguga.  

Enamik Na-pumba teadusuuringuid käsitlevad ensüümi molekulaarset ehi-
tust. Mitmetes töödes on uuritud pumba ensüümreaktsiooni kineetikat erinevate 
patoloogiliste seisundite korral nagu Alzheimeri tõbi ja kasvaja, samuti muu-
tuste puhul membraani teistes valkudes ja retseptorites. Vähem on uuritud 
pumba talitluse regulatsiooni ja vaid üksikutes töödes on uuritud võimalikke 
regulatsioonilisi muutusi normi ja erinevate patoloogiate korral. Seetõttu pööra-
tigi antud töös tähelepanu Na,K-ATPaasi regulatsiooni teatud aspektidele ees-
märgiga saada teada, kas võib olla sarnaseid (universaalseid) muutusi regulat-
sioonis ajukoe erinevate patoloogiate ja geneetilise mutatsiooni puhul. 

Mõnedes 1980. aastatel avaldatud töödes väidetakse, et rakumembraani 
lipiidide koostis ja omadused mõjutavad nii Na-pumba kui ka teiste transmemb-
raansete valkude talitlust. Membraani lipiidide suur varieeruvus ja paindlik 
koostise muutlikkus võimaldavad rakul kohaneda rakusisese ja rakuvälise kesk-
konna muutustega. Üks olulisemaid membraani omadusi on voolavus, mida ühe 
tegurina mõjutavad muutused membraani valkudes. Selliste valkude (ensüü-
mide) tööd mõjutab suurel määral membraani lipiidide seisund, mille muutustel 
on ilmselt oluline roll mitmete haiguste nagu hüpertoonia, südame hüpertroofia, 
Alzheimeri tõve, skisofreenia ja kasvajate tekke- ja arengumehhanismis. Memb-
raani lipiidide seisund peaks mõjutama eelkõige integraalsete membraani-
valkude, nagu Na-pump, funktsiooni. Klassikalise meetodina membraani lipiidi-
de seisundi ja selle muutuste mõju uurimisel Na-pumba funktsioonile kasu-
tatakse Na,K-ATPaasi temperatuurisõltuvust (nn. Arrheniuse graafiline 
meetod). Teatud temperatuuril toimub membraani lipiidide faasilisuse (vede-
lam, tahkem) muutus, mistõttu pole graafik sirge, vaid murdepunktiga (Bol-
dõrev 1988). Katseloomade ajukoest saadud Na,K-ATPaasi puhul on murde-
punkt temperatuurivahemikus 19–22°C. Olime esimesed, kes kasutasid inim-
ajust isoleeritud ensüümpreparaati eesmärgiga tuvastada, kas sama leid esineb 
ka inimese normaalsest ajukoest isoleeritud ensüümi puhul.  
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Eksperimentide tulemused kinnitasid, et klassikaline murdepunkt esineb ka 
normaalsest inimajust isoleeritud ensüümi puhul. Järgnevalt leidsime esimes-
tena, et ajukasvajast isoleeritud ensüümpreparaadi korral puudub klassikaline 
murdepunkt, kuid on olemas uus murdepunkt kõrgemas temperatuurivahemikus 
(28–29° C). Saadud tulemuste põhjal esitasime järgmise küsimuse, kas avas-
tatud nn mitteklassikaline murdepunkt on olemas ka teiste ajukoe patoloogiliste 
seisundite korral? Selle hüpoteesi kontrollimiseks kasutasime Karolinska Üli-
kooli Haiglas Alzheimeri tõvega inimestelt surmajärgselt võetud ajukude, kuna 
nende proovide puhul oli Alzheimeri tõbi väga korrektselt sedastatud ja saime 
kasutada ka normaalset ajukude. Katsete tulemused kinnitasid, et normaalsest 
ajukoest isoleeritud ensüümpreparaadi Arrheniuse graafikul on murdepunkt 
klassikalises vahemikus, Alzheimeri tõve puhul on nihkunud kõrgemasse tem-
peratuurivahemikku. Geneetilise muundamise arenedes osutus võimalikuks läbi 
viia järgmised eksperimendid, kasutades selleks TÜ Füsioloogia Instituudis 
geneetiliselt muundatud CCK2 retseptoriga hiiri (hetero- ja homosügootseid). 
CCK2 retseptor on rakumembraanis paiknev integraalne valk, mis osaleb 
kesknärvisüsteemis valu-, ärevuse- ja mäluprotsessides. Retseptori geneetiline 
muundamine põhjustab muutusi retseptorvalgu primaarstruktuuris ja funkt-
siooni kadumise. Võrdlusena kasutasime sama liini muundamata hiiri (wild 
type). Leidsime, et geneetiliselt muundatud CCK2 retseptoriga ajukoe puhul on 
Na,K-ATPaasi Arrheniuse graafik muutunud ning murdepunkt asub tempera-
tuurivahemikus 25–27°C.  

Eksperimentide andmetest tulenevad järgmised järeldused. Kõikides meie 
poolt uuritud normaalsest ajukoest (inimene, rott, hiir) isoleeritud Na-pumba 
preparaatide korral ei esine liigilist erinevust klassikalise murdepunkti asukohas 
Arrheniuse graafikul. Järelikult ei oma teatud liigilised erinevused rakumeb-
raani lipiidide koostises olulist tähendust Na,K-ATPaasi talitluse regulatsioonis. 
Tõenäoliselt on olulisem rakumebraani lipiidse keskkonna üldisem seisund. 
Andmete analüüsist ilmnes kasvajakoest, Alzheimeri tõvest haaratud ajukoest ja 
CCK2 retseptori puudusega (hetero- ja homosügootne) ajukoest isoleeritud Na-
pumba temperatuurisõltuvuse graafikul murdepunkt ülalpool 25°C, mis viitab 
muutustele rakumembraani lipiidide seisundis. Sellest avastusest tulenes aga 
vajadus selgitada, mis võiks olla rakumembraani lipiidide seisundi muutuse 
selline põhjus, mis omab mõju kõigi kolme väga erineva ajukoe puhul. Vara-
semad meie grupi tööd (Karelson et al. 2001) on näidanud, et esinevad muu-
tused rakkude antioksüdantses seisundis ja oksüdatiivse stressi näitajates 
Alzheimeri tõve puhul, mida on näidatud ka kasvajalise protsessi puhul ajukoes 
(Zajdel et al. 2007). Seetõttu määrasime ka CCK2 retseptori puudusega ajukoest 
(homosügoot) oksüdatiivset stressi iseloomustavaid näitajaid nagu redoks-
seisund (GSSG/GSH redoksseisund) ja oksüdatiivse stressi indeks. Need näita-
jad on statistiliselt usaldusväärselt kõrgemad kui normaalse ajukoes. Saadud ja 
meie varasemate tööde tulemused lubavad järeldada, et sõltumata konkreetsest 
patoloogilisest protsessist närvikoes on üheks ühiseks membraani lipiidide 
staatust muutvaks teguriks high-grade oksüdatiivse stress mitmes avaldumis-

13
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vormis, mis oma universaalsuses põhjustab sarnaseid kõrvalekaldeid Na-pumba 
talitluses, mis on tõnäoliselt aluseks ka naatriumi kooperatiivse toime muutus-
tele. Geneetilise mutatsiooniga ajukoest tehtud uuringud võimaldavad teha veel 
ühe uudse järelduse, et rakumembraani lipiidse seisundi muutustest põhjustatud 
murdepunkti nihe Arrheniuse graafikul ei ole sõltuv CCK2 retseptori mutat-
siooni korral geenidoosist (homo- ja heterosügoot), küll aga naatriumi ioonide 
kooperatiivne toime.  
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