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Information sheet 

Characterization of the 16p11.2 600 kb BP4-BP5 CNVs in adult population 

cohort 

The 16p11.2 BP4-BP5 600 kb deletion and duplication carriers from clinical cohorts 

result in syndromes that affect neurodevelopment and anthropometric traits, but are 

also characterized by variable expressivity of associated phenotypic outcomes. The 

phenotype analysis showed that the 16p11.2 CNV carriers in the EGC UT adult 

population have characteristic features of 16p11.2 600 kb syndromes. Additionally, 

the adult cohort has common features, which are significantly recurrent comparing to 

EGC UT general population. Also, a new approach was used for finding genetic 

modifiers contributing to the variability of genomic disorders phenotypes. The whole-

exome analysis found potential modifying substitutions for 4 adult 16p11.2 CNV 

carriers’ specific features. According to our phenotypic and genotypic findings, it is 

important to conduct a detailed phenotypic assessment of individuals with particular 

genetic disorder and further investigate the exome or genome of the carriers to more 

precisely predict the severity and diverse outcomes of disease.  

Keywords: CNV, 16p11.2, EGC UT, phenotype analysis, genetic modifiers 

CERCS ERIALA: B220 Geneetika, tsütogeneetika 

 

Kromosoomi piirkonna 16p11.2 BP4-BP5 600 kb koopiaarvu variatsioonide 

iseloomustus täiskasvanute populatsioonis 

Strukturaalsed muutused 16p11.2 BP4-BP5 genoomi piirkonnas väljenduvad  16p11.2 

deletsiooni või duplikatsiooni sündroomina. Antud töö keskendus TÜ EGV 

täiskasvanute populatsiooni kohordist välja tulnud 600 kb koopiaarvu kandjatele. Läbi 

viidud põhjalikul fenotüübi analüüsil kinnitati 600 kb sündroomile iseloomulike 

sümptomite esinemise ka popuatsiooni kohordi kandjatel ning kirjeldati esmakordselt 

üldiste tervisehäirete sageduse tõusu (hüpotensiooni, psoriaas, funktsionaalset 

düspepsiat). Lisaks, viidi läbi üle-eksoomne analüüs, et leida võimalikke geneetilisi 

modifikaatoreid, mis vastutaks kandjate fenotüüpide varieeruvuse. Teostatud eksoomi 

uuringute andmetel leiti neljale 16p11.2 kandjale populatsioonist tema spetsiifilist 

fenotüüpi modifitseeriv geneetiline põhjendus. 

 

Märksõnad: koopiaarvu variatsioonid, 16p11.2, Tartu Ülikool Eesti Geenivaramu, 

fenotüübi analüüs, geneetilised modifitseerijad 

 

CERCS: B220 Genetic Engineering, Cytogenetics 
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Abbreviations for genes described in this thesis are presented in the Supplementary 
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INTRODUCTION 

 

The DNA copy number variations (CNVs) are major source for variation in humans 

and diseases. The rare intermediate-size and large non-recurrent and recurrent 

syndromic CNVs are frequent in the general population (10.5%). At the same time, 

they are also recognized to be one of the most typical causes of human disease.  

This study focuses on the 600 kb deletions and duplications at the chromosome region 

16p11.2, with observed frequencies 0.05% and 0.23% in population, respectively. 

These deletions and duplications result in mirroring phenotypes - autism spectrum 

disorders (ASD) vs. schizophrenia, obesity vs. underweight, macrocephaly vs. 

microcephaly, respectively. The 16p11.2 CNV carriers have also a broad range of 

features and the features vary widely in their expressivity and severity, the 600 kb 

CNVs are presented even in individuals with normal phenotypes. The clinical cohort’s 

characteristics have been studied intensely, but the adult carriers phenotypes from 

general population have not been investigated before. At the moment, only a little is 

known, which secondary genetic factors influence the phenotypic variability linked to 

the pathogenic CNV.  

In the current work, we aimed to analyze the 16p11.2 BP4-BP5 600 kb deletion and 

duplication carriers from EG CUT population cohort, whose phenotypes are highly 

variable and somewhat milder than in clinical cohort carriers. We conducted a 

detailed phenotypical analysis for the carriers’ clinical information, to characterize the 

adult population features. In the second part of the study, we used exome-wide 

approach to find modifiers that contribute to the phenotypic variability in these 

disorders.  
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1 OVERVIEW OF LITERATURE 

Chromosome structural variation (SV) is a common part of variation in the human 

genome and refers to abnormalities in chromosome structure (Weckselblatt and Rudd, 

2015), that involves segments of DNA that are larger than 1 kilobase (kb) (Feuk et al., 

2006) and are collectively termed as copy number variations. CNV refers to deletions 

or duplications; deletions are genomic losses and duplications are gains (Zarrei et al., 

2015). Additionally, structural variants include inversions, alteration of the orientation 

of a specific genomic sequence (Alves et al., 2012), and translocations, exchanges of 

genomic material between two different chromosomes (Feuk et al., 2006; Scherer et 

al., 2007, Weckselblatt and Rudd, 2015). CNVs, inversions and translocations all 

result in changes in the physical arrangement of genes on chromosomes, but there are 

conceptual differences between the SVs; copy-neutral SV-like inversions and 

balanced translocations do not lead to changes in gene dosage.  

CNVs are the most frequent structural variations in the human genome and they 

contribute significantly to inter-individual genetic heterogeneity. It is identified that 

some CNVs have also an impact on human diseases. According to DECIPHER 

database (https://www.decipher.sanger.ac.uk/), as many as 70 recurrent syndromic 

CNVs have been linked with genomic disorders. Genomic disorders are caused by a 

structural alteration in the genome that might result in the complete loss or gain of a 

gene(s) sensitive to a dosage effect or, on the other hand, might disrupt the structural 

integrity of a gene (Lupski, 1998). For example, CNVs in chromosomal regions 

1q21.1, 3q29, 15q11.2, 16p11.2, 16p13.1, 17q12 and 22q11.2 explain a significant 

proportion of risk for intellectual disability (ID; Girirajan et al., 2011), autism 

spectrum disorders (ASD) (Mefford et al., 2010), schizophrenia (McCarthy et al. 

2009), epilepsy (Mefford et al., 2010), bipolar disease (Craddock et al., 2010; 

Grozeva et al., 2010) and attention deficit and hyperactivity disorder (ADHD) 

(Williams et al., 2010; Elia et al., 2010). Furthermore, CNV has been implicated in 

congenital birth defects (Mefford et al., 2007; Greenway et al., 2009) and common 

traits, such as cardiovascular diseases (Prakash et al., 2010; Norton et al., 2011), 

coronary artery disease, Crohn's disease, hypertension, rheumatoid arthritis, type 1 

diabetes and type 2 diabetes Xianfeng et al., 2010; The Wellcome Trust Case Control 

Consortium, 2010). 
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1.1 Formation mechanisms of genomic rearrangements of CNVs  

Currently, four major mechanisms are known to be responsible for genomic 

rearrangements and CNV formation in humans i) Non-Allelic Homologous 

Recombination (NAHR) ii) Non-Homologous End-Joining (NHEJ) iii) Fork Stalling 

and Template Switching (FoSTeS) iiii) L1-mediated retrotransposition. NAHR is 

unequal homologous recombination between regions with high sequence resemblance 

but different genomic positions (Figure 1; Weckselblatt and Rudd, 2015). NAHR is a 

mechanism that leads to gross genome rearrangements (Parks et al., 2015). It occurs 

between two blocks of low-copy repeats (LCRs) (Bailey et al. 2002). LCR blocks are 

the typical substrates for NAHR because of their high level of sequence identity 

≥97%, length ≥1 kb (Stankiewicz   and Lupski, 2002). The products arising from 

these rearrangements can be duplication, deletion or inversion (Lupski, 1998; 

Stankiewicz   and Lupski, 2002). In the human genome, there are many regions with 

high frequency of interspersed LCRs, which are possible places for NAHR-mediated 

rearrangements and are linked to genomic disorders (Stankiewicz   and Lupski, 

2002). One of the regions where NAHR-mediated CNV recurrently occurs is the 

16p11.2 chromosome interval, which the current work concentrates on. 

 

 

 

 

 

 

 

 

Figure 1. Mechanism of non-allelic homologous recombination (NAHR). If a direct 

repeat (x) is used as homology (upper panel) in a recombination repair event, NAHR 

will take place by uneven crossing over. In these circumstances the sequence between 

the repeats (y) will be reciprocally duplicated and deleted as a result of a crossover. 

When these products segregate from one another at the following cell division, both 

daughter cells have an alteration in the copy number (adapted from Hastings et al., 

2009).  
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1.2 Structure of the human 16p11.2 interval  

 

Short arm of human chromosome 16 has a complex genomic structure enriched in 

highly homologous and repetitive sequence blocks (LCRs). This region has been one 

of the most actively duplicated parts in human autosomes. The blocks act as a 

substrate for intra-chromosomal NAHR and make the part susceptible to recurrent 

structural rearrangements in several loci (Loftus et al., 1999; Martin et al., 2004; 

Johnson et al., 2006).  

Five regions (breakpoint (BP) 1–5) on the short arm have been defined as „hotspots“ 

to genomic imbalances of clinical significance and are linked to neuropsychiatric 

phenotypes (Zufferey et al., 2012). BP4 and BP5 flank proximal 600 kb region in the 

16p11.2 (Figure 2) which as a result of NAHR might be either deleted or duplicated 

(Zufferey et al., 2012) 

 

 

 

Figure 2. The human 16p11.2 BP4-BP5 600 kb chromosome region. Above is the 

short arm of chromosome 16. Highlighted by the red box is the 600 kb region flanked 

by BP4 and BP5 which is a study subject of the current work. In the middle are the 

unique genes encompassed by the imbalanced region. The colored scale shows the 

haploinsufficienies. Genomic coordinates are given according to the human genome 

build GRCh37/hg19.   (DECIPHER database; https://www.decipher.sanger.ac.uk/) 
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1.2.1 The 16p11.2 BP4-BP5 600 kb CNV syndromes 

 

The 16p11.2 600 kb between (29.5–30.1 Mb; GRCh37/hg19) deletion (MIM 

#611913) and duplication (MIM #614671) are two different conditions. Deletion and 

duplication in this region are associated with mirror phenotypes on body mass index 

(BMI) (Jacquemont et al., 2011; Zufferey et al., 2012), head circumference 

(Jacquemont et al., 2011) and brain volume (Qureshi et al., 2014; Maillard et al., 

2014). Both 16p11.2 deletion and duplication are among the most frequent genetic 

causes of neurodevelopmental disorders (Cooper et al., 2011; Kaminsky et al., 2011; 

Hanson et al., 2015) and have been associated with ASD (Weiss et al., 2008), while 

only the duplication has been shown to be enriched in schizophrenia cohorts 

(McCarthy et al., 2009). In clinical ASD cohort, 16p11.2 600 kb CNVs account for 

approximately 1% of the cases (Weiss et al., 2008), and in schizophrenia cohort, 

16p11.2 600 kb microduplication ranges from 0.2% to 0.6% (Giarolia et al., 2014).  

16p11.2 deletion and duplication syndromes are considered to have an autosomal 

dominant inheritance pattern because a CNV in one copy of chromosome 16 is 

enough to cause the disorder. This type of CNVs occur mainly as random events 

during the formation of mature germ cells or in early fetal development and typically, 

affected people have no history of the disorder in their family (Fernandez, 2010; 

Rosenfeld, 2010). In approximately 80% of reported probands the 16p11.2 recurrent 

microdeletion is de novo (Fernandez, 2010). However, carriers can transmit the CNV 

to their children with a 50% of chance. So far, studies suggested that most of the 

duplications are inherited from one of the parents (Fernandez, 2010; Rosenfeld, 

2010). Contrary to this, Duyzen et al. showed recently that maternal bias for de novo 

16p11.2 600 kb deletion carriers is almost 90%. Furthermore, they observed that 

probands get considerably larger number of secondary deletions from mothers than 

from fathers. Although, there was no transmission bias observed for inherited 16p11.2 

CNVs (Duyzend et al., 2016). There might be some differences in severity of the 

phenotype whether the CNV is inherited or is it de novo (newly arising in proband). 

Duyzend and Eichler have showed different impact on full scale intelligence quotient 

(FSIQ) - an inherited deletion carriers (and their family controls) have 8.33 points 

lower IQ than de novo carriers (Duyzend and Eichler, 2015). Also, families with 

inherited deletions have extra familial factors (environmental and genetic), which may 

have an impact on cognition (D'Angelo et al., 2015).   



 11 

1.2.1.1 16p11.2 deletion syndrome 

The recurrent 16p11.2 microdeletion is rare, occurring in 1/2000 people in the general 

population; 1 in 100 people with autism (Weiss et al., 2008); and in around 1 out of 

1000 people with a language delay or psychiatric disorder (Weiss et al., 2008; Bijlsma 

et al., 2009). 

The most penetrant trait in deletion carriers is increased BMI (Figure 3). This feature 

is age-dependent – by the age of 7 years about 50% of the carries are obese (Zufferey 

et al., 2012). Among adult 16p11.2 deletion carriers obesity occurs with a penetrance 

of >70% (Zufferey et al., 2012). The deletion carriers explain 0.7% of all morbid 

obesity cases (BMI ≥40; p= 6.4 x 10-8; OR= 43.0) (Walters et al., 2010).  

 

Figure 3. BMI (left) and HC (right) Z score density plots for duplication carriers, 

deletion carriers and for intra-familial controls. Blue line represents deletion carriers, 

yellow line duplication carries and black line is for intra-familial controls. BMI- body 

mass index; HC- head circumference. Adapted from D'Angelo et al., 2016. 

The other characteristic traits of 16p11.2 microdeletion syndrome phenotype are 

developmental delay or learning difficulties, especially delay in speech and language 

development, which affects particularly expressive language, with relatively 

preserved receptive language (Miller et al., 2015). 

Subset of 16p11.2 deletion carriers may have neurologic and motor impairments (e.g., 

epilepsy and paroxysmal dyskinesia syndrome). Babies may have low muscle tone, 

-4 -2 0 2 4 -4 -2 0 2 4 

BMI HC 
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and seizures are observed in approximately 20% of individuals with the microdeletion 

(Weiss et al., 2008; McCarthy et al., 2009; Shinawi et al., 2010).  

Deletion carriers have tendency to increased head circumference (HC) (Figure 3; 

Shinawi et al., 2010; Walters et al., 2010; Maillard et al., 2015) as HC is highly 

correlated with brain volume (Qureshi et al., 2014; Maillard et al., 2014). Qureshi et 

al., suggested, that brain structure is influenced by 16p11.2 CNVs deletion is linked to 

unusually large brain volume (∼9%; Qureshi et al., 2014). The observed association 

between the 16p11.2 microdeletion and increased head circumference is remarkable 

due to the fact that the deletion is linked also to ASD and developmental delay. 

Several studies have found increased head circumference in patients with autism 

(Butler et al., 2005; Dementieva et al., 2005; Lainhart et al., 2006; Fukumoto et al., 

2008) leading to the implication that brain overgrowth in early life may be a key 

neurobiological mechanism in the disorder (McCarthy et al., 2009; Zufferey et al., 

2012).  

People with the 16p11.2 microdeletion should not be regarded primarily as a 

malformation syndrome since most of the people with this CNV do not have major 

birth defects and (Miller et al., 2015). However, more careful examination of deletion 

patients has revealed association with congenital abnormalities, for example scoliosis 

and other vertebral anomalies affect ∼20% of carriers (Zufferey et al., 2012; Al-Kateb 

et al., 2014). Also, Müllerian duct anomalies are recurrently reported in the deletion 

carriers (Nik-Zainal et al., 2011; Sandbacka, et al., 2013).  

Additionally, it is showed that 48% deletion carriers are described to be dominance of 

either left-hand or mixed-hand compared with 14% of non-carrier family members 

(Miller, et al. 2015; Hanson et al. 2015). 

1.2.1.2 16p11.2 duplication syndrome 

16p11.2 microduplications have been estimated to occur in general population with a 

frequency of 0.09% (Männik., 2015). 

While 12% of duplication probands had a relative risk of being underweight 

(BMI<18.5; Figure 3), only 4.6% (p= 0.010) of the carriers’ relatives were clinically 

underweight (D'Angelo et al., 2016).  
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Microduplication is associated with multiple psychiatric phenotypes, including 

schizophrenia with 14.5-fold increased risk (McCarthy et al., 2009; Crespi et al., 

2010), anxiety, depression, attention deficit, hyperactivity disorder (McCarthy et al., 

2009), and autism (Crespi et al., 2010). Also, compared to non-carriers duplication 

probands have decreased HC; z-score average 1.2 points lower (p<0.001; Figure 3) 

and about 22.3% of the carriers are present with microcephaly. This change in HC is 

also associated with lower non-verbal IQ (D'Angelo et al., 2016). 

Epilepsy occurs in 19.4% of the clinical duplication probands and is found to 2.2% of 

their carrier relatives (D'Angelo et al., 2016). Reinthale et al. showed 25-fold 

enrichment of Rolandic and atypical Rolandic epilepsy in duplication carriers 

comparing to the prevalence in the general population (0.05%; Jacquemont et al., 

2011; Reinthale et al., 2014) 

Besides variable psychiatric phenotypes and anthropometric differences, duplication 

carriers may have malformations, present in 16.7% of duplication probands 

(D'Angelo et al., 2016).  Scoliosis, genital and cardiac malformations and are the most 

frequent malformation conditions in duplication carriers (D'Angelo et al., 2016). 

Like in case of deletion, no characteristic facial dysmorphism are occurring in 

duplication carriers (D'Angelo et al., 2016).  

1.2.1.3 Phenotypic variability  

  

The evidence from several studies (McCarthy et al. 2009; Qureshi et al., 2014; 

Maillard et al., 2014; D'Angelo et al., 2016; Duyzend et al., 2016) indicates that 

recurrent 16p11.2 deletions and duplications are associated with variable clinical 

outcomes and the deletion and duplication syndromes share same features with 

different prevalence (Table 1). 
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Table 1. Frequencies of different clinical traits among the 16p11.2 deletion and 

duplication carriers. 

 

 

Many people with the duplication are never diagnosed because some have no related 

health problems, the phenotype spectrum is very wide and characteristic features have 

many other causes. Also, the features may differ between members of the same family 

and some people are apparently unaffected by their 16p11.2 CNV. Phenotypic 

heterogeneity is associated with not only 16p11.2 syndromes, but with many genomic 

disorders, e.g. 15q13 deletion syndrome (MIM #612001), 1q21 recurrent deletion 

(MIM #612474) and recurrent duplication syndrome (MIM #612475), and 16p13 

deletion (MIM #610543) and duplication (MIM# 613458) syndromes (DECIPHER 

database; https://www.decipher.sanger.ac.uk/). Variability of the disorders may have 

many explanations, for example the deletion unmasking a mutation or functional 

polymorphism in a recessive gene on the non-deleted homolog allele and thus cause a 

more severe phenotype (Pebrel-Richard et al., 2014) and additional CNVs and single 

nucleotide genetics modifiers of multiple functionally relevant genes (Wu et al., 2015; 

Duyzend et al., 2016). 

16p11.2 syndromes cognitive phenotypes may vary form overall normal cognition or 

some speech problems to severe developmental delay and intellectual disability 

(Bijlsma   et al., 2009). FSIQ is significantly decreased in both deletion (22.2 points) 

and duplication (26.3 points) carriers comparing to intra-familial controls (Figure 4; 

D'Angelo et al., 2016). FSIQ is a figure, which varied largely on duplication carriers 

and has a significantly high difference comparing to deletion carriers (Figure 4; 

D'Angelo et al., 2016).  

Traits Deletion 

(Prevalence) 

Reference Duplication Reference 

Autism spectrum 

disorder 

15% Zufferey 

et al., 2012 

20.1% D'Angelo 

et al., 2016 

Intellectual  

disability 

37.6% Zufferey 

et al., 2012 

30.5% D'Angelo 

et al., 2016 

Epilepsy 24% Zufferey 

et al., 2012 

21.8% D'Angelo 

et al., 2016 

Major 

malformations 

21.1% D'Angelo 

et al., 2016 

16.7% D'Angelo 

et al., 2016 
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Figure 4. Distribution of FSIQ measures in clinical duplication carriers, deletion 

carriers and in intrafamilial non-carrier controls. Blue line represents the duplication 

carriers (n=154), yellow line represents deletions carriers (n=200) and black line 

represents familial controls (n=342). FSIQ- full scale intelligence quotient. Adapted 

from D'Angelo et al., 2016. 

 

Duyzend et al. showed deletion and duplication carriers having similar percentage 

carrying an additional CNV (69% and 69.5%, respectively). By using FSIQ, they 

examined the connection between secondary-CNV burden and acuteness of 

phenotype. They found probands with extra CNVs tend to have (p= 0.03) lower FSIQ, 

comparing to probands with no other CNVs. The discovery is one explanation for the 

broad variation in IQ (Duyzend et al., 2016).   

Also, Zufferey et al. tested the correlation between obesity and FSIQ and any 

behavioral trait, but no significant association was found (Zufferey et al., 2012). 

The prevalence of congenital scoliosis in 16p11.2 deletion carriers is 7.5% (Wu et al., 

2015). Development of scoliosis in individuals with 16p11.2 deletion is also described 

with additional genetic modifiers. For instance, 16p11.2 deletion, which removes one 

allele of the T-Box 6 gene (TBX6; MIM# 602427), in conjunction with a common 

hypomorphic allele of TBX6 making up a risk haplotype for scoliosis. The effect of 

diminished TBX6 dosage and an additional TBX6 hypomorphic allele causes a further 

decrement in expression and will lead to congenital scoliosis.  

In summary, the phenotypic spectrum of 16p11.2 CNVs remains to be fully 

characterized. Since different studies has shown that additional genetics factors play a 

FSIQ 
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role in the observed severity and variability of the phenotype, further studies of 

additional genes and patients with a more severe phenotype than their transmitting 

parent are needed.  

1.2.2 Potential candidate genes for 16p11.2 syndromes   

 

Accodring to Decipher database, the BP4-BP5 CNV interval contains 32 genes 

(https://decipher.sanger.ac.uk/), but little is known about the role of most of these 

genes in the 16p11.2 syndrome formation. Genes, such as potassium channel 

tetramerization domain containing 13 (KCTD13; MIM# 608947), mitogen-activated 

protein kinase 3 (MAPK3; MIM# 601795), proline-rich transmembrane protein 2 

(PRRT2; MIM #614386) and TBX6 are well investigated and have demonstrated an 

association with the 16p11.2 syndromes.  

KCTD13 is a major leader of mirrored neuroanatomical phenotypes. In zebrafish 

embryos, the under-expression of the gene causes macrocephaly whereas the 

overexpression of human transcript in zebrafish embryos, the KCTD13 influences 

microcephalic feature (Golzio et al., 2012). Furthermore, Golzio et al. conducted a 

pairwise over-expression of KCTD13 with 16p11.2 region transcripts. They observed 

that KCTD13 alone increases the expressivity of the head size 18%, but with MVP 

and MAPK3 transcripts, the expressivity grows to 22% and 24%, respectively. The 

observation speculates that CNV carries have more acute phenotype, comparing to 

people with only heterozygous loss of function at KCTD13 (Golzio et al., 2012). 

It is considered that features, such as epilepsy, cognitive functioning, BMI, and HC 

are related to haploinsufficiency of distinct genes (Zufferey et al., 2012). For instance, 

mutations in PRRT2 coding gene, which is mapping to the deleted interval, were 

identified in patients diagnosed with epilepsy and paroxysmal dyskinesia (Chen et al., 

201; Crepel et al., 2011).  

TBX6, that is located in 600 kb interval, is a candidate gene for vertebral 

malformations. For example, homozygous mutation in TBX6 in mice showed rib and 

vertebral body anomalies (Watabe-Rudolph et al., 2002). Additionally, TBX6 

polymorphisms have been associated with congenital scoliosis in the Han population 

(Fei et al., 2010). Recently, Wu et al., (2015) found that 11% of congenital scoliosis 
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cases are explained by compound inheritance of a rare null mutation (mostly 16p11.2 

deletion) and a common haplotype of T-C-A (rs3809624 (T/C), rs3809627 (C/A) and 

rs2289292) of TBX6 (Wu et al., 2015). 

Additionally, the pathways affected by the 600 kb BP4-BP5 16p11.2 deletions and 

duplications genome-wide are possibly linked to ciliary dysfunction (Migliavacca et 

al., 2015). 

 

1.3 The Aim of the study 

 

The purpose of this work is to characterize the 16p11.2 600kb BP4-BP5 carriers 

phenotype in adult general population and identify potential genetic modifiers 

contributing to the variable phenotypes using the Estonian population biobank 

samples. 
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2 METHODS 

2.1 EGC UT population cohort characteristics 

 

We used The Estonian Genome Center, the University of Tartu cohort (EGC UT; 

http://www.geenivaramu.ee/en) for the population-based study of 16p11.2 600kb 

CNV carriers. The current number of participants in the biobank is 51 880, which 

makes approximately 5% of the Estonian adult population (Leitsalu et al., 2015). 

From all donors, around 16 145 people have been genotyped.  

For analyzing the common phenotypes, we compared deletion (n=6) and duplication 

(n=9) carriers to the EGC UT cohort (n=51 880). In both groups, the clinical data is 

assembled from the questionnaires and from national health registers. The baseline 

questionnaire of 16-modules covers more than 1 000 health- and lifestyle-related 

questions, and a uniformed report of clinical diagnoses according to the World Health 

Organization international classification of diseases (WHO ICD-10, 

http://www.who.int/classifications/icd). The data in the EGC UT database is 

continuously updated through follow-up interviews, as well as national electronic 

health databases and citizen registries.  

Information modules we used from EGC UT questionnaire for common phenotype 

analysis included genealogy, education, diseases, health status of women 

(menstruation start/stop age, pregnancies, live births, miscarriages, abortions) 

objective data (age, height, weight, systole/diastole pressure), and disease code. 

Disease information extracted from the national electronic health registers and 

databases includes Estonian Causes of Death Registry, Estonian Cancer Registry, 

Database of the Tartu University Hospital, Database of the North Estonia Medical 

Centre in Tallinn, Estonian eHealth Foundation, as of 17th of September in 2015. 

Also, we used additional data collected at the recruitment visit of 16p11.2 CNV 

carriers.  

Education levels were coded according to the Estonian education curriculum: 1 - less 

than primary; 2 - primary (currently 3 years); 3 – basic (currently 9 years, includes 

basic education for children with special needs); 4 – secondary (currently 12 years, 

includes vocational secondary); 5 – professional higher/college; 6 – 

university/academic degree; 7 – scientific degree (MD and PhD). 

http://www.geenivaramu.ee/en
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2.2 Phenotype analyses of the 16p11.2 CNV carriers 

 

For conducting the phenotypic analysis, exactly the same data sources (above) were 

used for 16p11.2 carriers. 

Two control cohorts were used in the phenotypic analyses, which differed in the 

number of individuals. First, the cohort of general population individuals used in 

analyzing the common phenotypes included EGC UT donors (n=51 880). Cohort 

contained 17 826 (34%) males and 34 054 (66%) females and age ranges from 18–

103 years. The age, gender and education distributions of the EGC UT (n=51 880) 

cohort correspond to the Estonian general population. For analyzing the general 

characteristics (age, BMI, height, weight, education level), we used a randomly 

selected control cohort of fully genotyped EGC UT* donors (n=6 807). The EGC 

UT* cohort has the whole genotypic information and the cohort size is sufficient for 

analyzing the general parameters. The number of males in the cohort was 3 317 (49%) 

and females 3 490 (51%); the age range was 18–100 years and cohort’s average 

educational level was 4.1 (range from 1–7; Männik et al., 2015). 

The BP4-BP5 16p11.2 CNV carriers group consists of 15 individuals - deletion 

carriers (n=6) and duplication carriers (n=9). Carriers’ cohort had 6 males and 9 

females; the age range was 22–70 years; deletion carriers’ mean educational level was 

3.24 (range from 2–4) and the duplication carriers’ 3.89 (range from 2–6). Further, we 

investigated if any of the 15 CNV carriers had immediate relatives (children, mother, 

father, siblings) who were also donors in the biobank. This resulted with 5 relatives as 

intra-familial controls from duplication carriers’ families and 3 of deletion carriers’ 

families. Among the family members, 4 individuals had already been on the SNP 

genotyping arrays and 4 had not been on one.  

In the phenotypic analysis, we used R software for statistical analysis (https://www.r-

project.org). From statistical tests, we used Student’s t-test and Fisher's Exact Test 

(two-tailed) to compare the prevalence of different features in EGC UT CNV carriers 

to EGC UT controls.  

2.3 Detection of the 16p11.2 CNV carriers by SNP genotyping arrays 

 

The 16 145 individuals have been genotyped (passing QC) using three Illumina® 

SNP genotyping arrays i) Infinium Human 370CNV BeadChip ii) Infinium 
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HumanOmniExpress BeadChip (Illumina Inc., San Diego, CA; USA) and iii) 

HumanCore-24 BeadChip (Illumina Inc., San Diego, CA; USA). All genotyped 

samples were processed and the assay was performed according to a routine protocol 

provided by the manufacturer (Illumina Inc, http://www.illumina.com). Human 

370CNV BeadChip is a genome-wide array designed especially for CNV detection 

studies. The total number of markers is 353 202 SNPs, which allows a median spacing 

of 5 kb. HumanOmniExpress BeadChip is a genome-wide platform with the total 

number of 713 014 markers and an advanced median spacing of 2.2 kb. HumanCore-

24 BeadChip’s (including PsychArray information) total number of markers is 306 

670 genome-wide and the median spacing is 5.7 kb. The main difference from 

genome-wide platforms is that HumanCore chip contains exome-specific markers as 

well (240 000 markers).  

2.4 Detection of CNVs 

 

The generation of CNV calls from BeadChips was done by using PennCNV software 

(ver. June 2011). PennCNV is a method, based on Hidden Markov Model (HMM; 

Wang et al., 2007). The parameters for PennCNV are log R ratio (LRR) and B allele 

frequency (BAF). Beadstudio software (Illumina, San Diego, USA) was used for the 

genotype calling, signal intensity data normalization, and creating BAF and LRR at 

every SNP according to standard Illumina protocols. A standard SNP-based quality 

control was conducted for all the samples (SNP call rate >0.98). Quality control to the 

CNV calls removed calls with low confidence score (LOD <10, size < 20kb, or 

spanning < 10 probes). PennCNV inferred the copy number at every marker – CNV 

was called when 3 or more consecutive markers were changed. CNVs with copy 

number <2 were interpreted as deletions and CNVs with copy number >2 were 

defined as duplications. All detected 16p11.2 deletions and duplications were 

confirmed by quantitative PCR.  

2.5 Confirmation of the CNV carrier status in identified 16p11.2 individuals 

and their immediate family members by Quantitative Polymerase Chain 

Reaction (qPCR) 

 

All identified 16p11.2 BP4-BP5 CNV carriers were confirmed by quantitative 

polymerase chain reaction (qPCR). The quantitative PCR analysis consists of two 

steps: i) the empirical validation of assays and ii) the quantitative PCR analysis using 
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investigated samples. In empirical validation of primers amplification the efficiencies 

were measured based upon the generation of standard curves using genomic DNA 

(gDNA) dilution series. Melting curve analysis was used to check the specificity of 

the PCR reactions. 14 primer pairs (2 reference primers) were designed for the 

16p11.2 600kb region according to the stringent parameters (primers pairs used are 

shown in Supplementary Material Table S2). Tools, used for primer design were 

Primer3 (http://www.bioinfo.ut.ee/primer3-0.4.0/) and Genometester 

(http://www.bioinfo.ut.ee/genometester/). 

Reactions were set up in triplicate using 2.5 ng of genomic DNA. PCR reaction mix 

contained 2 µl qPCR mix (Solis BioDyne 5x HOT FirePol® EvaGreen®); 0.5 µl 

forward primer (10 pmol); 0.5 µl reverse primer (10 pmol); 4.5 µl nuclease-free 

water. 

The experimetal test was followed by DNA copy number estimation with Biogazelle 

qBasePlus (https://www.biogazelle.com/qbaseplus). The analyze uses calibrator 

samples with known copy number and samples of interest with unknown copy 

number. For normal diploid copy (CN=2), there are assigned the lower boundary 

threshold and the upper boundary threshold. These thresholds are used for detecting 

deletions and duplications and are by default arranged to 1.414 (average of 1 and 2 

copies) and 2.449 (average of 2 and 3 copies).  

 

2.6 Whole-exome sequencing for detection of modifying variants 

 

Whole-exome sequencing (WES) of 23 individuals from the 16p11.2 families was 

performed in the Center for Integrative Genomics (CIG) Genotyping Core Facility 

using the SureSelect Exome V5 kit (Agilent Technologies Inc., Santa Clara, CA, 

USA) and Illumina HiSeq2000 platform (Illumina Inc.). Genomic DNA was extracted 

from whole-blood according to the manufacturer’s protocol (Gentra® Puregene® 

Handbook; Third Edition; 2011; Germany), using the Gentra Puregene Blood Kit 

(Gentra® Puregene®, Hilden, Germany). Evaluation of the purity of DNA extraction 

was assessed with The NanoDrop® ND-1000 Spectrophotometers (Thermo 

Scientific), Qubit 2.0 fluorometer (Invitrogen, Life technologies) and by gel 

electrophoresis. Sequencing libraries were constructed from 3 μg high quality 

genomic DNA. 
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2.6.1 Variant calling and quality control 

 

The Genome Analysis Toolkit (GATK; https://www.broadinstitute.org/gatk/) was 

used following the GATK Best Practices protocol 

(https://www.broadinstitute.org/gatk/guide/best-practices.php) to carry out variant 

detection analysis and quality control (QC) on high-throughput sequencing data. 

Shortly, for the raw data analysis, the following pipeline was used. Sequence reads 

cleaning was done with Fastq-mcf (https://www.broadinstitute.org/gatk/guide/best-

practices; Finseth and Harrison, 2014) 100 bp paired-end reads were aligned to the 

human reference genome version GRCh37/hg19 using Burrows–Wheeler Aligner 

(BWA) program (BWA-MEM algorithm: 

https://www.broadinstitute.org/gatk/guide/best-practices; Li and Durdin, 2009). 

Duplicate reads were removed using Picard (Picard MarkDuplicates; 

https://www.broadinstitute.org/gatk/guide/best-practices; Xu et al., 2012) and base 

quality score recalibration performed using GATK software. Single nucleotide 

variants (SNVs) and indels were identified using the GATK Unified Genotyper 

(https://www.broadinstitute.org/gatk/guide/best-practices; DePristo et al., 2011) and 

base quality score recalibration (BQSR; 

https://www.broadinstitute.org/gatk/guide/best-practices; Li et al., 2004). GATK 

Haplotype Caller (https://www.broadinstitute.org/gatk/guide/best-practices; Logan et 

al., 2015) to generate multi-sample genomic VCFs (gVCFs) files. From the gVCF 

cohort file, GATK Genotype gVCFs walker 

(https://www.broadinstitute.org/gatk/guide/best-practices) generates a group of indel 

calls and raw SNP. The latter will go through a variant quality score recalibration 

GATK VariantRecalibrator (VQSR; https://www.broadinstitute.org/gatk/guide/best-

practices; Pirooznia et al., 2014). 

The raw data analysis and variant calling used in this work was done with the support 

of Swiss Institute of Bioinformatics Vital-IT platform (http://www.vital-it.ch).  

2.6.2 Variant annotation and interpretation 

 

All 23 sequenced samples met established QC parameters and were used for further 

analysis. Average mean bait coverage of the samples was 136.6 (range from 107.88–

167.95), and the percentage of all target bases with coverage greater than 30x was 

97% (min: 95.15%, max: 98.03%). 
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Kinship analysis was done by computing correlation between samples and plotting a 

correlation plot using heterogenity variance function. First, variants with “PASS” and 

dbSNP ID were selected. Among the latter, only heterozygous variants were kept 

(variants are alt/ref or ref/ref for all samples in VCFs). Multi-allelic, homozygous and 

variants with missing calls were removed. That gave 102 000 variants for the dataset. 

From this set, correlation matrix was computed and clusterings were plotted. In the 

EGC UT cohort (carriers, intra-familial controls) all the family members grouped as 

the relationship expected.   

For variant annotation and interpretation three different platforms were used:  

i) Custom EGC UT annotation tool for diagnostic exome-sequencing. A Perl based 

custom script for diagnostic exome-sequencing (Kals et al., unpublished). The 

platform uses multi-sample vcf as an input file. The annotation information consist of 

variant parameters (e.g. chrom nr, posititsion, variant ID, reference, alternative, 

GeneID), pathogenicity scores (e.g. C-score; phyloP score; SIFT; PolyPhen), 

individual characteristics (e.g. genotype, count of reference/non-reference allele; read 

depth), population frequency parameters for identified alleles (1000G; count of 

population specific genotypes, based on 162 whole-exome and 96 whole-genome EST 

samples; ExAC data set; NHLBI ESP). The tool encompasses the GenomeTrax 

datasets, which show variant or gene associations with different diseases and 

phenotypes (e.g. HGMD inherited disease mutations, 

http://www.hgmd.cf.ac.uk/ac/index.php; COSMIC somatic disease mutations, 

http://www.cancer.sanger.ac.uk/cosmic; ClinVar, 

https://www.clinicalgenome.org/data-sharing/clinvar/; GWAS Catalogue 

https://www.ebi.ac.uk/gwas/; OMIM, http://www.omim.org). 

 

(ii) Saphetor Web Portal (Saphetor AS, Lausanne, Switzerland; 

http://www.saphetor.com) is a genome-scale genetic variant analyzing tool, which 

uses single-sample vcf as an input file. The annotation and interpretation platform has 

combined over 20 leading databases (e.g. HGMD, ClinVar, ExAC, 1000 Genomes, 

dbSNP, Mutation Taster, SIFT, Pubmed, RefSeq, Unigene, Clinical Trials, HPO, 

Orphanet). Saphetor gives a possibility to make filter sets choosing from allele 

frequencies, predicted pathogenicity scores (SIFT score range, SIFT score assessment, 

http://www.hgmd.cf.ac.uk/ac/index.php
http://www.ncbi.nlm.nih.gov/clinvar/
http://exac.broadinstitute.org/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.mutationtaster.org/
http://sift.jcvi.org/
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/refseq/
http://www.ncbi.nlm.nih.gov/unigene
https://clinicaltrials.gov/
http://human-phenotype-ontology.github.io/
http://www.orpha.net/consor/cgi-bin/index.php
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PolyPhen HVAR score assessment, PolyPhen HDIV score assessment), dbSNP 

database version, ClinVar class, disease associations, chromosome region, 

pathogenicity class, zygosity, function, call status, variant type or gene list. The Gene 

lists are possible to make by yourself (list of new genes) or use already existing gene 

list from phenotype. The candidate gene lists, used in the current work with 

aforementioned tools are found in the Supplementary. 

 

(iii)Varapp Browser is a web-based tool for diagnostic WES analysis developed for 

the Lausanne University Hospital (CHUV) clinical research platform (Pradervand and 

Delafontaine, unpublished; https://www.github.com/varapp). The platform uses vcf as 

an input file. For data analyzing, the browser contains filter categories, such as 

scenario (variant is dominant; recessive; de novo; compound heterozygous; x linked), 

allele frequency, quality parameters (e.g. quality filter: PASS, quality score range), 

impact factors (substitution impact in the protein, such as high, medium and low) and 

predicted pathogenicity of a variant (PolyPhen; SIFT; CADD score predictions). 
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2.6.2.1 Used pathogenicity prediction score levels  

Pathogenicity prediction tools used in exome analysis were i) scaled the combined 

annotation dependent depletion (CADD) score, ii) sorting intolerant from tolerant 

(SIFT) score and iii) polymorphism phenotyping (PolyPhen). 

i) The principle of scaled CADD score was, presented as a “meta-annotation” tool, 

which sorts and aggregates the information from other tools and produces a scaled 

score that reflects the deleteriousness of a particular variant (Kircher et al. 2014; 

Bandaru et al., 2015). A scaled CADD score values ≥10 are predicted to be the 10% 

most deleterious substitutions and score of 20 means that a variant is amongst the top 

1% of deleterious variants in the human genome and so on 

(http://www.cadd.gs.washington.edu/info).  

ii) The SIFT program gives scores that evaluate tolerance of amino-acid changes in 

protein function. SIFT scores range from 0 to 1. SIFT p-values below 0.05 indicate 

that the change is likely deleterious and scores closer to 0 show more damaging effect 

(Ng and Henikoffa, 2003). 

iii) PolyPhen predicts the possible impact of an amino-acid substitution on the 

structure and function of a human protein using physical and comparative 

considerations, comprising interference with ligand binding sites (Adzhubei et al., 

2010). It provides one of three predictions for non-synonymous variants - benign, 

possibly damaging, or probably damaging. PolyPhen score is from 0 (tolerated) – 1 

(damaging). Scores, starting from 0.15, show possibly damaging effect (Adzhubei et 

al., 2010). 

2.6.2.2 Impact filters used in the current work 

 

The EGC UT annotation tool we used for loss-of-function variant detection and the 

count of Estonian population specific genotypes, based on 162 whole-exome and 96 

whole-genome Estonian samples. 

The basic filters used in the current work using VarApp tool were quality filter 

“PASS”, ExAC allele frequency (<5%), high impact and pathogenicity filters (scaled 

CADD score; PolyPhen; SIFT), zygosity filter (homozygous; heterozygous) When 

one of the observed scores had damaging prediction (scaled CADD score was ≥ 10, 

PolyPhen score 0.15–1.0 or SIFT scores 0–0.05), we considered the variants to start 
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having modifying effects on the phenotype. Used high impact factors are assumed to 

have a disruptive impact in the protein, probably causing protein truncation, loss of 

function or triggering nonsense mediated decay. This category includes variants such 

as frame-shift, splice acceptor, splice-donor, start-lost, stop-gained, and stop-lost. 

(http://www.varapp.vital-it.ch/#/) 

In the Saphetor platform, we used ExAC frequency <5%, SIFT damaging assessment, 

PolyPhen HDIV (evaluating rare alleles at loci; 

http://www.annovar.openbioinformatics.org) and HVAR (used for diagnostics of 

Mendelian diseases; http://www.annovar.openbioinformatics.org/) database 

assessments, ClinVar class (likely pathogenic; pathogenic; other) prediction tool, 

coding impact factors (such as exon deletion; frame-shift; missense and stop-loss) and 

zygosity filter (homozygous; heterozygous). Analyzing the ciliopathy-associated 

genes and differentially expressed genes with Saphetor, we concentered on the 

variants without assigned rs number and no carriers in ExAC, dbSNP or 1000G 

databases. 
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3 RESULTS 

 

In the genotyped EGC UT sample of 16 145 individuals, we identified 6 carriers of 

the 16p11.2 BP4-BP5 deletion and 9 carriers of reciprocal duplications. Showing 

respective prevalence of 1/2690 and 1/1794 in Estonian population. Except for one 

father and daughter pair with the duplication, all other analyzed family members 

(n=8) were non-carriers of the 16p11.2 CNVs. Altogether, we had 23 individuals from 

14 families. The characteristic phenotype information of all analyzed individuals is 

represented in the Supplementary Materials Table S3. 

3.1 Phenotype traits of the EGC UT 16p11.2 600kb BP4-BP5 CNV carriers  

 

Table 2 provides summary statistics of gender, age, height, weight, BMI for the EGC 

UT 16p11.2 CNV carriers and their family members.   

Table 2. General information of the carrier’s cohort. 

M=male; F=females; y=years; cm=centimeter; kg=kilogram; m2=square meter  

 

Intellectual disability had been diagnosed in 1 EGC UT duplication carrier (EX99) 

and three deletion carriers (EX107; EX110; EX119) (50%; p= 3.105e-06; OR= 

184.3). In 16p11.2 clinical cohort, ID frequency has been shown to be 30.5% 

(D'Angelo et al., 2016) and 20.1% (Zufferey et al., 2012), respectively.  

EGC UT* mean educational degree was 4.1 (18.7%, 1 275/6 807 of the carriers were 

General information Gender Mean age Mean height 

(cm) 

Mean weight 

(kg) 

Mean BMI 

(kg/m2) 

Deletions 

(n=6) 

3M/3F 39.3 

(22–57y) 

166.2 

(154.0–182.0) 

M:172 

(163–182) 

F:159.7 

(158–162) 

M: 88.3 

(80–105) 

F: 98.7 

(87–115) 

37.1  

(24.2–51.9) 

Duplications 

 (n=9) 

3M/6F 44.2 

(22–70y) 

170.8 

(158.0–186.0) 

M:181.3 

(176–186) 

F:165.5 

(158–174) 

M: 83.3 (80–90) 

F: 56.3 (49–65) 

22.8  

(18.6–25.5) 

Controls (n=8) 4M/4F 49.1 

(22–72y) 

M: 177.8 

(173.0–184.0) 

F:165,5 

(154.0–172.0) 

M: 81 

(73.0–110) 

F: 73.8  

(61–92) 

M: 25.8  

(19.5–35.9) 

F: 27.4  

(20.6–38.8) 
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with basic or lower education level). Intra-familial controls mean education level was 

3.6 (50%, 4 out of 8 carriers were with basic or lower education level). When we 

examined duplication (n=5) and deletion (n=3) intra-familial controls separately, we 

observed mean education of 4 for duplication controls and 3 for deletion controls. 

Conducting a statistical test for intra-familial controls and EGC UT cohort, we 

observed a significant difference between the cohorts (p= 0.04556; OR= 4.34). 

Deletion carriers’ mean education was 3.24 (66.7%, 4/6 carriers were with basic or 

lower education level) and a significant difference occurred between deletion carriers 

and EGC UT* cohort educational level (p= 0.01343; OR= 8.67). Duplication carriers’ 

mean education was 3.89 (33.3%, 3/9 carriers were with basic or lower education 

level). Due to small sample size, we did not compare gender differences in ID 

prevalence and educational levels. 

EGC UT 16p11.2 CNV carriers had typical characteristics to 600 kb pathologies, like 

obesity and underweight. Among randomly selected population individuals (n=6 807) 

mean BMI was 26.7 and among intra-familial controls 26.6. Deletion carriers mean 

BMI was 37.1 (ranging from 24.15 to 51.9; p=0.0493) and duplication 22.8 (ranging 

from 18.6 to 25.5; p=0.0259). Five out of 6 deletion carriers (83%) were obese - 

significantly more frequent than in EGC UT* cohort (1 620 out of 6 807) (p= 0.003; 

OR= 16.0) but not in deletion carriers’ intra-familial controls (1 out of 3; p= 0.226; 

OR= 7.11). All duplication carriers were under the population average BMI but none 

of them underweight BMI ≤18. EGC UT* controls had 81 out of 6 807 individuals 

(1.2%) with BMI ≤18 (Figure 5).  
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Figure 5. A scatterplot representing Estonian population BMI against age. Red dots 

represent the deletion, blue dots the duplication carriers and green dots are the intra-

familial controls. The black line shows the EGC UT cohort average BMI (26.7); BMI 

≥30 is defined as obesity (red line) and BMI ≤18 (blue line) is defined as clinical 

underweight according to the WHO 

(http://www.who.int/mediacentre/factsheets/fs311/en/). 

  

EGC UT male population mean was 177.5cm (154–206) female population mean 

164.4cm (140–194). Height of intra-familial males was average 177.8cm (173–184) 

and females 165.5cm (154–172), which corresponded to EGC UT* mean heights. 

Comparison of the height in Estonian population cohort (EGC UT*) versus 16p11.2 

CNV carriers (Figure 6) showed that male duplication carriers were not taller (mean 

181.3cm; range 176–186; p= 0.367) and female deletion carriers were not 

significantly shorter than non-carriers (mean 159.7cm; range 158–162; p=0.2184). 

Although the heights comparison between carriers and EGC UT* controls did not 

observe statistically significant difference, this is something to look in a bigger 

carriers’ cohort. So far, no information has been published on the correlation between 

the 16p11.2 CNVs and height. Since the EGC UT 16p11.2 cohort was too small to 

make conclusion, we analyzed the adult data from the European 16p11.2 clinical 

cohort (deletion carriers n=78, duplication carriers n=79). The mean height of intra-

familial female deletion controls were 164cm (150–176) and intra-familial male 

deletion controls 175.1cm (159–185.6). Mean height among deletion carriers was 

http://www.who.int/mediacentre/factsheets/fs311/en/
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159.1cm for females (149–170; p=0.002) and 171cm (155–200; p=0.129) for males. 

Mean height of intra-familial controls (n=57) of female duplication carriers was 

165.5cm (154–167.5) and males 174.7 in males (178–182.8). The mean height in 

female duplication carriers was 165.3cm (150–179; p=0.923) and in male duplication 

177.7cm (159–193: p= 0.304). We observe a significant difference between clinical 

female deletion carriers and the intra-familial controls; females in deletion carriers’ 

clinical cohort tend to be shorter than the intra-familial deletion controls. 

Figure 6. Comparison of the height in Estonian population cohort (EGC UT*) versus 

16p11.2 CNV carriers. On the left are presented the 16p11.2 deletion carriers from the 

population cohort (red stars are male deletion carriers; red squares are female deletion 

carriers). On the right are presented the 16p11.2 duplication carriers from the 

population cohort (blue stars are male duplication carriers; blue squares are female 

duplication carriers). Green stars and squares are showing intra-familial male and 

female controls, respectively (on the left are deletion carriers intra-familial controls; 

on the right are duplication carriers’ intra-familial controls). The yellow lines show 

Estonian male population mean height (177.5cm) and the pink lines show Estonian 

female mean height (164.4cm).  

 

Among other clinical traits previously linked to the 16p11.2 CNVs, neuropsychiatric 

phenotypes were occurring in 7 (46.7%) EG CUT 16p11.2 CNV carriers. More 

specifically in duplication carriers, there were 5 (55.6%) individuals with 

neuropsychiatric phenotypes: schizophrenia (EX118), epilepsy (EX100), neurotic 

disorder (EX105), and anxiety disorder (EX99; EX113). In deletion carriers, there 



 31 

were 2 individuals (2 out of 6; 33.3%): 1 with epilepsy (EX101) and 1 with neurotic 

disorder (EX110).  

We evaluated the significances of neuropsychiatric, mental and behavioral disorders 

in EGC UT carriers’ cohort (Table 3). Epilepsy and schizophrenia - although 

recurrent among 16p11.2 600kb CNV carriers - did not show higher prevalence in the 

EGC UT 16p11.2 CNV carriers. ID presented in 3 deletion (50%; p= 3.105e-06; OR= 

184.3) and in 1 duplication carrier (p= 0.047; OR= 23.18) showed significant 

difference comparing to the EGC UT controls. 

 

Table 3. Frequency of neuropsychiatric, mental and behavioral disorders in the EGC 

UT 16p11.2 deletion and duplication carriers. 

  

Fisher’s Exact Test; p value: 0.05 = *, 0.01 = **, 0.001 = *** 

 

The results on anthropometric and cognitive measures confirmed that the phenotypes 

of Estonian adult 16p11.2 CNV carriers were in agreement with the characteristics 

seen before in the 16p11.2 clinical studies (see Literature overview for more details). 

The 16p11.2 rearrangements have also been associated with specific congenital 

abnormalities (Sampson et al., 2010; Wu et al., 2015). Similarly to observations in the 

16p11.2 clinical cohorts, three deletion carriers (50%) were identified to have 

congenital vertebral malformations – scoliosis (EX110) or otseochondrosis (EX101; 

EX102). Additionally, cohort included two individuals (EX100, EX119) with 

TRAITS 

(WHO  

ICD-10 code) 

DEL 

(n=6) 

DUP 

(n=9) 

EGC UT 

cohort 

(n= 51 880) 

P value 

DEL 

OR 

(Cl95%) 

DEL 

P value 

DUP 

OR 

(Cl95%) 

DUP 

Epilepsy 

(G40) 

n=1 

16.7% 

n=1 

11.1% 

n=1 448 

2.7% 

0.156 6.96 

(0.15– 

62.32) 

 

0.225 4.35 

(0.1–

32.52) 

Schizophrenia, 

schizotypal 

and delusional 

disorders 

(F20-F29) 

n=0 n=1 

11.1% 

n=783 

0.15% 

 

 

- - 0.128 8.16 

(0.18–

60.97) 

Intellectual 

disability  

(F70-F79) 

n=3 

50% 

n=1 

11.1% 

n=278 

0.5% 

3.105e-

06*** 

184.30 

(24.70– 

1408.51) 

0.047* 

 

23.18 

(0.52–

174.18) 

Mental and 

behavioral 

Disorders  

(F00-F99) 

n=3 

50% 

n=5 

55.6% 

n=25 461 

49% 

1 

 

1.04 

(0.14– 

7.75) 

0.749 1.30 

(0.28–

6.54) 
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malformations of female genital organs originating from the Müllerian duct and one 

of them had also cardiac septa malformation (EX100). All malformations occurring in 

the EGC UT 16p11.2 CNV cohort corresponds to the ones described in the 16p11.2 

clinical cohorts.   

In addition to analysis of already known phenotype traits, the study aimed to uncover 

new traits in adult 16p11.2 CNV carriers that have so far remained unrecognized due 

to their common nature or age-dependent onset. 

Common features such as hypotension, psoriasis, diseases of oesophagus, stomach 

and duodenum, and functional dyspepsia were significant in comparison with EGC 

UT controls: hypotension in duplication carriers (p= 0.008; OR= 18.52), psoriasis in 

deletion (p= 0.033; OR= 35.36) and duplication carriers (p= 0.047; OR=23.18) and 

functional dyspepsia among deletion carriers (p= 0.036; OR= 6.41). Numbers of 

diagnosed individuals and prevalence in the 16p11.2 CNV carriers group and the 

EGC UT cohort are given in the Table 4. 

 

Table 4. Common features recurrent in EGC UT carriers’ cohort.  

Fisher’s Exact Test; p value: 0.05 = *, 0.01 = **, 0.001 = *** 

  

We also looked at the female specific phenotypes and found traits, which tend to have 

higher prevalence in the 16p11.2 CNV carriers compared to controls. Due to the small 

sample size after gender separation we analyzed female 16p11.2 CNV carriers as one 

group. The recurrent traits of 16p11.2 600 kb CNV female cohort were absent, scanty 

and rare menstruation (p= 0.037; OR= 5.24), infertility (p= 0.067; OR= 5.77), non-

TRAITS 

(WHO  

ICD-10 code) 

DEL 

(n=6) 

DUP 

(n=9) 

EGC UT  

cohort 

(n= 51 880) 

 P value 

DEL 

 

OR 

(Cl95%) 

 P value 

DUP 

OR 

(Cl95%) 

Hypotension 

(I95) 

n=0 n=2 

22.2% 

n=788 

1.5% 

- - 0.008** 18.52 

(1.87– 

97.30) 

Psoriasis 

(L40) 

n=1 

16.7% 

n=1 

11.1% 

n=278 

0.5% 

0.033* 35.36 

(0.75– 

315.03) 

0.047* 23.18  

(0.52– 

174.18) 

Diseases of 

oesophagus, 

stomach and 

duodenum 

(K20-K31) 

n=5 

83.3% 

n=5 

55.6% 

n=23 934 

46% 

 

0.110 5.49 

(0.61–  

259.25) 

0.745 

 

 

 

 

1.37 

(0.30– 

6.92) 

Functional 

dyspepsia 

(K30) 

n=3 

50% 

n=2 

22.2% 

n=7 004 

13.5% 

0.036* 6.41  

(0.86–  

47.80) 

0.348 1.83 

(0.19– 

9.62) 
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inflammatory disorders of ovary, fallopian tube and broad ligament (p= 0.046; OR= 

4.81), and cystitis (p= 0.039; OR= 5.0). Infections with a predominantly sexual mode 

of transmission had not significant trend, with an increased risk (p= 0.084; OR= 3.32). 

Numbers of diagnosed individuals and prevalence in the 16p11.2 CNV carriers group 

and the EGC UT cohort are given in the Table 5. 

Table 5. Female specific features in deletion and duplication carriers and in Estonian 

female population cohort. 

Fisher’s Exact Test; p value: 0.05 = *, 0.01 = **, 0.001 = *** 

 

TRAITS  

(WHO  

ICD-10 code) 

DEL 

(n=3) 

DUP 

(n=6) 

EGC UT  

female 

cohort 

(n=34 

054) 

P 

value 

 

DEL 

 

OR 

(Cl95%) 

P 

value 

 

DUP 

OR 

(Cl95%) 

P 

value 

 

DUP& 

DEL 

OR 

(Cl95%) 

Absent, scanty 

and rare 

menstruation 

(N91) 

 

n=1 

33.3% 

n=2 

33.3% 

n=2966 

8.7% 

0.239 5.24 

(0.09- 

100.73) 

0.090 5.24 

(0.47- 

36.58) 

0.037* 5.24 

(0.85- 

24.55) 

 

Infertility 

(N97) 

n=1 

33.3% 

n=1 

16.7% 

n=1 861 

5.5% 

 

 

0.155 8.65 

(0.15- 

166.42) 

0.286 3.46 

(0.07-

30.94) 

0.067 5.77 

(0.57- 

32.28) 

Infections with a 

predominantly 

sexual mode of 

transmission 

(A50-A64) 

n=1 

33.3% 

n=3 

50% 

n=6 763 

19.9% 

0.485 2.02 

(0.03- 

38.72) 

0.100 4.04 

(0.54-

30.14) 

0.084 3.23 

(0.64- 

15.0) 

Non-

inflammatory 

disorders of 

ovary, fallopian 

tube and broad 

ligament 

(N83) 

n=1 

33.3% 

n=2 

33.3% 

n=3 207 

9.4% 

 

0.257 4.81 

(0.08- 

92.56) 

0.103 4.81 

(0.43-

33.56) 

0.046* 4.81 

(0.78- 

22.53 

Cystitis 

(N30) 

n=1 

33.3% 

n=3 

50% 

n=14 077 

41.3% 

 

1 0.71 

(0.01- 

13.63) 

0.696 1.42 

(0.19- 

10.59) 

0.039* 5.0 

(0.95- 

49.0) 
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3.2 Whole-exome sequencing in a cohort of 16p11.2 families 

3.2.1 Quality control and variant calling 

In exome sequencing, the observed average transition-transversion ratio (Ti/Tv) in 

SNPs was 2.37 (range 2.33–2.4), sample contamination values were average 0.0369 

(range 0.018–0.154). The mean number of novel variants was 1621.4 per individual 

(range 1504–1881). Ti/Tv shows the number of transition mutations (pyrimidine-

pyrimidine or purine-purine) divided by transversion mutations (pyrimidine to a 

purine or purine to a pyrimidine) and transitions are present at a higher rate. The 

expected Ti/Tv value for SNPs in exome sequencing is expected to situate between 

2.0 and 3.0 (Guo et al., 2014). Sample contamination values show the level of 

accidentally mixed DNA from two or more individuals and moderate contamination 

levels stay within 5%–20% (Flickinge et al., 2015). Our observed scores stay within 

the expected values. 

Considering the mean bait coverage and the percentage of all targeted bases, the 

sequencing quality achieved in this work is very high for all tested samples (see 

Methods and Materials for more details).  

 

3.2.2 Exome-wide variant burden in the 600kb BP4-BP5 16p11.2 CNV carriers 

 

The approach of identifying genetic modifiers is different from search for causal 

mutations in case of Mendelian diseases, especially in population cohort, where full 

trios are not available. This approach is emerging and no established standards for this 

type of analysis are available.  

The total number of different exome-wide variants in the cohort of EGC UT 16p11.2 

CNV carriers and their intra-familial members was 226 782 with average 87 266.5 per 

person. Deletion carriers had altogether 170 699 different alterations with 86 626–88 

778 variants per person and duplication carriers had 188 026 with 85 971–88 411 

variants per person, while intra-familial controls had 198 319 variants with 86 125–87 

819 variants per person. When we limited from all the variants to protein disrupting 

variants, deletion carriers had 1 255, duplications 1 412 and controls 1 747 different 

variants. We observed that deletion carriers tend to have less protein disrupting 

variants than controls. Deletion carriers’ genetic background contains less severe 

variants, otherwise the phenotype maybe lethal 
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3.2.2.1 Variant burden in the 16p11.2 600kb BP4-BP5 genomic interval 

 

16p11.2 600kb interval consists of 32 genes (SPN, QPRT, C16orf54, ZG16, KIF22, 

MAZ, PRRT2, PAGR1 (C16orf53), MVP, CDIPT, CDIPT-AS, SEZ6L2, ASPHD1, 

KCTD13, TMEM219, TAOK2, HIRIP3, INO80E, DOC2A, C16orf92, FAM57B, 

ALDOA, PP4C, TBX6, YPEL3, GDPD3, MAPK3, CORO1A, PPP4C, RN7SKP127, 

SLC7A5P1, MIR3680-2) (https://www.decipher.sanger.ac.uk/). In total, we found 

different 126 variants in this interval. None of them were deleterious loss-of-function 

variants.  

Deletion carriers had an average of 32 (ranging from 23 to 45; p=0.01) variants per 

individual; duplication carriers had 51 (range 39–59; p=0.09) and controls 46 (range 

40–56) variants per person. After filtering for coding impact (exon deletion, frame-

shift, missense or stop-loss substitutions) an average of 5.8 variants (range 5–7; 

p=0.02) per deletion carrier, 7.3 (range 6–9; p=0.94) per duplication carrier was 

identified and an average of 7.4 variants (range 6–10) intra-familial controls. We 

observe that deletion carriers have significantly less variants and coding impact 

variants in the 600kb region. 

Genes C16orf54, CDIPT-AS1, MIR3680-2, RN7SKP127, SLC7A5P1 and YPEL3 

(MIM #609724) did not have any protein truncating variants present in carriers or 

intra-familial members. HIRIP3 (MIM #603365) had one heterozygous variant in 

control. Additionally, genes FAM57B (MIM #615175) and ALDOA (MIM #103850) 

had heterozygous variants, but none of them were homozygous among the 16p11.2 

CNV carriers. Next we focused on particular genes in the 16p11.2 that have been 

associated with the phenotypes - MAPK3, MVP, KCTD13 (Golzio et al., 2012; 

Migliavacca et al., 2015), PRRT2 (Barge-Schaapveld et al., 2011; Crepel et al., 2011) 

and TBX6 (Wu et al., 2015). MAPK3, MVP, KCTD13 nor PRRT2 genes contained 

substitutions which would have causative effect on the EGC UT carriers’ phenotypes. 

 

Search for variants in the TBX6 gene resulted a total of 6 different variants in 23 

carriers (deletion n=5 variants, duplication n=3 variants, controls n=3 variants). From 

these, 2 were intronic variants (rs3833842 and c.1098-19G>T), one was missense 

(rs56098093), one in splice region (rs112565029; and two were synonymous 

(c.864C>A and rs2289292) (Table 6). The synonymous variant rs2289292 in the last 
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exon of TBX6, along with SNPs rs3809624 (T/C) and rs3809627 (C/A) in the 5′ 

noncoding region, is part of the risk haplotype for congenital scoliosis identified by 

Wu et al. The three SNPs are tagging together a haploblock. Unfortunately the 

variants in non-coding region were not captured, and we do not know are these 

present in our carriers of the rs2289292. However, using this SNP we can at least tag a 

part of risk haplotype for vertebral malformations and we analyzed segregation of this 

variant together with spinal phenotypes in the 16p11.2 deletion carriers. Out of six 

deletion carriers one was with scoliosis (EX110) and two with osteochondrosis 

(EX101; EX102). Two deletion carriers (EX110, EX102) with congenital spinal 

defects indeed had the same rs2289292 tag-SNP. Third individual with congenital 

spinal defect (EX101) had a hemizygous variant c.864C>A (CADD= 9.6, SIFT= NA, 

ExAC= 2.6*e-04, ClinVar= NA).  

 

Table 6. The variants in TBX6 gene, which were occurring in EGC UT 16p11.2 CNV 

carriers’ cohort.  

ExAC allele frequencies (n= 60706 unrelated individuals); EST- allele frequencies based on 162 

whole-exomes. 

 

The latter observation suggested that combination of TBX6 null allele and suggestive 

hypomorphic risk haplotype might explained the scoliosis phenotype in the EGC UT 

16p11.2 deletion carrier with scoliosis and be linked also to other vertebrae 

malformations, for example, osteochondrosis.  

 

 

 

Variants 

in TBX6 

gene 

rs2289292 rs3833842 c.1098-

19G>T 

 

c.864C>A 

 

rs112565029 rs56098093 

c.484G>A 

 

Position 

start 

30097630 30098189 30097778 30098148 30102391 30100401 

Impact Synonymous Intron Intron Synonymous Splice 

region 

Missense 

ExAC 0.322 0.352 3.7*e-05 2.6*e-04 0.06 0.00454 

CADD 

(scaled) 

2.0 NA 0.03 9.6 7.23 36 

Samples DEL (n=2) 

DUP (n=6) 

DEL (n=2) 

DUP (n=9) 

DEL (n=1) 

 

DEL (n=1) 

 

DUP (n=2) 

 

DEL (n=1) 
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3.2.2.2 Variants associated with cardiac septa defect in the 16p11.2 CNV 

carrier with congenital malformations of heart and Müllerian duct 

anomalies (EX100) 

 

 

We filtered the list of 59 genes associated with atrioventricular septal defect (AVSD; 

in Supplementary Material Table S4) (D’Alessandro et al., 2015) against the 

duplication carrier EX100, with cardiac developmental disorder and congenital 

Müllerian duct anomaly. The total number of different variants in these candidate 

genes in the carriers (EX100) was 510. Using coding impact factors, number of 

variants was reduced to 87, of which 40 were homozygous. None of the homozygous 

variants showed significant causative effect on the phenotypes.  

Analyzing the 87 variants further, we identified two missense mutations in EX100 

(rs667782; p.Ile56Thr), which evaluation was either probably damaging or damaging. 

The rs667782 (CADD= 18.54, SIFT= 0.14, ExAC= 0.362, PolyPhen= 0.869) in gene 

hydrolethalus syndrome 1 (HYLS1; MIM #610693) was recurrent. Heterozygous 

mutation p.Ile56Thr (CADD= 23.9, SIFT= 0, ExAC= 0.00431, PolyPhen=0.968) in 

protein tyrosine phosphatase, non-receptor type 11 (PTPN11; MIM #176876) had 

predicted damaging effect and the variant is not present in ExAC, dbSNP or 1000G 

databases. Heterozygous dominant missense mutations in PTPN11 gene result in 

Noonan syndrome (MIM #163950) and other rasopathies (http://www.omim.org). 

16p11.2 duplication carrier (EX100) severe phenotypic features (heart defect and 

urogenital malformations) are probably caused by the p.Ile56Thr in PTPN11 + 

16p11.2 600 kb duplication.  

 

3.2.2.3 Variant burden in the 16p11.2 BP2-BP3 220kb genomic interval 

 

Besides 16p11.2 BP4-BP5 600kb CNV, the proximal short arm of chromosome 16 

includes a distal BP2-BP3 220kb region (Itsara et al., 2009), which microdeletion is 

associated with obesity and developmental delay (Bijlsma et al., 2009, Bachmann-

Gagescu et al., 2010; Barge-Schaapveld et al., 2011). 220kb region 2 encompasses 9 

genes: ATXN2L (MIM #607931), TUFM (MIM #602389), SH2B1 (MIM #608937), 

ATP2A1 (MIM #108730), RABEP2 MIM #611869), CD19 (MIM #107265), 

NFATC2IP (MIM #614525), SPNS1 (MIM #612583), LAT (MIM #602354). We 

filtered the data against the genes and further used scaled CADD score and ExAC 



 38 

frequency to identify potentially causative alterations. A deletion carrier EX102 in the 

EGC UT cohort, with the highest BMI 51.9 in the sample set, had 5 different 

alterations in the SH2B adaptor protein 1 gene (SH2B1; MIM #608937) – 5’ UTR 

variant rs7198606; two intronic variants rs28433345 and rs386493443; splice region 

variant rs117918991; missense rs7498665. Different studies have presented SH2B1 

important role in obesity (Willer et al., 2009; Thorleifsson et al., 2009; Bochukova et 

al., 2010; Beckers et al., 2011; Tang et al., 2014). EX102 had a homozygous missense 

variant rs7498665 (c.1450A>G; CADD= 4.1, SIFT= 1, ExAC= 0.34, PolyPhen= 0) 

that has previously been described to be associated with obesity (Tang et al., 2014). In 

addition, EX102 had a heterozygous splice region variant rs117918991 (CADD= 

10.56, SIFT= NA, ExAC= 0.01, PolyPhen= NA). The splice region variant 

rs117918991 and missense variant rs7498665 might have an impact on the phenotype 

of EX102. In the EGC UT carriers’ cohort, this SNP is only present in EX102.  

 

3.2.2.4 Variant burden in the ciliopathy-associated genes  

 

 Ciliary dysfunction has previously shown to be affected by the 16p11.2 CNVs and 

some of the ciliopathy-associated genes (e.g. CEP290, BBS6) were shown to rescue 

the 16p11.2 triggered phenotype in zebrafish (Migliavacca et al., 2015). We analysed 

173 ciliary genes (Migliavacca et al., 2015; gene list in Supplementary Material Table 

S5). In the latter, 16p11.2 deletion probands carried 1089.5 substitutions per 

individual, of which average 26 per individual were predicted to be damaging by 

SIFT score and approximately 5 of the damaging were in homozygote state. EX119 

had a homozygous missense variant rs61734902 (CADD= 28.7, SIFT= 0, ExAC= 

NA, PolyPhen= 0.874) in katanin-interacting protein (KIAA0556; MIM #616650) and 

a homozygous missense variant rs4762 (CADD= 11.57, SIFT= 0.01, ExAC= 0.12, 

PolyPhen= 1) in angiotensinogen gene (AGT; MIM #106150). In addition, the EX119 

had a heterozygous missense variant rs137853921 (CADD= 28.7, SIFT= 0, ExAC= 

0.0043, PolyPhen= 0.954) in Bardet-Biedl syndrome gene (BBS5; MIM #615983). 

The mentioned variants are possible modifiers of the severe phenotype of EX119 

(phenotypic features: mild mental retardation, cardiomyopathy, congenital 

malformations of uterus and cervix, female infertility). Variants in BBS5 have been 

associated with Bardet-Biedl syndrome (Yadav et al., 2013) and EX119 have 

characteristic features to the disease.  
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Duplication carriers had total of 1097.8 variants per person (range from 1033–1170). 

The number of variants predicted to be damaging by SIFT was an average of 27.1 

(range from 22–30) and homozygous damaging variants 5.8 (range from 3–9) per 

individual. Intra-familial controls had average 1105 substitutions per individual, of 

which 27.6 were with damaging assessment and 6.6 were homozygous damaging 

variants. The number of variants between carriers and intra-familial controls were 

similar. 

From the aforementioned probably deleterious substitutions, we looked for variants 

not presented in dbSNP database and not in ExAC (the variants we analyzed here 

were in heterozygote state). We did not observe causative variants in the genes, which 

effect could affirm the carriers’ specific features. 

3.2.2.5 Variant burden in the differentially expressed genes (DEG) associated 

with the 16p11.2 CNVs 

 

Using the gene dosage model, 1 188 differentially expressed genes (DEGs) were 

previously identified in association with the 16p11.2 deletions and duplications 

(Migliavacca et al., 2015). From 1 188 DEG, we analyzed 1088 genes with Saphetor 

platform (Saphetor did not identify 100 genes from the list). The full list of 16p11.2 

DEGs is provided in the Supplementary Material Table S6.  

EGC UT 16p11.2 deletion individuals carried 4 860 (range from 4 739–4 978) 

substitutions per individual in the DEGs, from which homozygous were 1 927 

variants (range from 1 815–1 927) and of these 13 variants (range from 10–18) per 

individual had damaging prediction. Heterozygous variants with damaging prediction 

in deletion carriers were 66.5 (range from 61–75) per individual. Duplication carriers 

had total of 4 816 variants per person (range from 4 719–4 898) and homozygous 

were 1 892 (range from 1 753–2 011) variants, from which 13 (range from 9–16) had 

damaging prediction. In case of duplication carriers, 65 (range from 57–75) 

heterozygous variants were predicated to be damaging. Intra-familial controls had 

average 4 751 variants (range from 4 663–4 803) in DEG set; homozygous were 1 

974 (range from 1 813–2 087) variants and 16 (range from 11–22) had damaging 

prediction and heterozygous damaging variants occurred average 64 (range from 58–

68). All the aforementioned variant quantities were similar between duplication 

carriers, deletion carriers and intra-familial controls. We did not observe any 
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significant variants, except the one, p.Ile56Thr in PTPN11, which was already 

described before in the current work (see above). This observation gives meaningful 

significance to the mutation (p.Ile56Thr) in PTPN11 gene in the current analyze. 
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4 DISCUSSION  

 

The 16p11.2 600 kb BP4-BP5 CNVs are among frequent genetic contributors to 

obesity and underweight (Jacquemont et al., 2011), and neuropsychiatric and 

neurodevelopmental disorders, such as intellectual disability (D'Angelo et al., 2016), 

language disorder (Shinawi, et al., 2010), and autism, (Weiss et al., 2008; Kumar et 

al., 2008). The reciprocal 600 kb deletion and duplication prevalence in general 

population is ~0.04% (Stefansson et al., 2014; Kirov et al., 2014). The current study 

focused on the carriers of the 16p11.2 600 kb CNVs in an adult population cohort 

from Estonia.  

Adult CNV carriers had typical characteristics to the 16p11.2 pathology, like obesity 

and underweight. In the EGC UT cohort, 83% of the deletion carriers were obese and 

only one del carrier had BMI 24.15, which fits into normal range. Similarly the 

obesity penetrance among 600 kb deletion carriers was reported as 70% in a large 

16p11.2 clinical cohort with a few individuals with normal BMI (Zufferey et al., 

2012). The 16p11.2 duplication carriers were all between the population mean BMI 

(BMI 26.7) and underweight level (BMI <18.50). None of the duplication carriers 

were underweight, but 2 were close to the threshold (BMI 18.6 and 18.8). The 

frequency of underweight in the 16p11.2 clinical duplication cohort is around 12% 

(D’Angelo et al., 2016) hence the difference in population cohort is presumable, also 

showing the milder end of the syndrome’s phenotype. Conclusively, these outcomes 

assured the earlier studies (Walters, et al., 2010; D’Angelo et al., 2016). Unlike BMI, 

16p11.2 CNVs do not have conclusive implications on the carriers’ height. 

Comparison of the height in Estonian population cohort versus 16p11.2 CNV carriers 

did not show significant difference between duplication males and controls 

(duplication male carriers being taller than non-carriers), and deletions females and 

controls (deletion female carriers being shorter than non-carriers). This could be 

explained by the small cohort size of the carriers. We analyzed the heights from the 

European 16p11.2 clinical adult cohort and we observed that female deletion carriers 

were significantly shorter than controls (female carriers’ mean height was 159.1cm 

vs. deletion intra-familial controls 164cm). Analyzing the clinical male duplication 

carriers, we did not observe significant difference  (male duplication carriers 177.7cm 

vs. male duplication controls 174.7cm). 
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In the current study’s cohort schizophrenia, different neurodevelopmental disorders, 

and epilepsy were present, but had insignificant relationship with the 16p11.2 CNV 

carrier status. In clinical cohorts the frequencies are relevant. For example, frequency 

of epilepsy is 24% in deletion cohort (Zufferey et al., 2012) and 21.8% in duplication 

cohort (D’Angelo et al., 2016) and ASD frequencies are 15% for deletion (Zufferey et 

al., 2012) and 20.1% for duplication carriers (D’Angelo et al., 2016). Thus, likely 

reason might be the size of the current cohort. The second explanation would be that it 

is a general population cohort the individuals are with milder neuropsychiatric 

features whereas 16p11.2 clinical cohort contains the severe cases of the 

characteristics.  

The average educational level in the EGC UT cohort has shown to be 4.1, which 

shows that most individuals in this group have completed at least the secondary 

school (Männik et al., 2015). EGC UT 16p11.2 CNV carrier cohort mean education 

was under the population average - deletion carriers 3.24 and duplication carriers 

3.89. None of the deletion carriers were with higher education than secondary, 

whereas two out of 9 duplication carriers were with college/university degree. In 

clinical cohort, the mean effect of the reciprocal deletion and duplication on cognition 

is similarly decreasing, and the variation among duplication carriers is significantly 

greater with distinctive severe and mild subgroups (D'Angelo et al., 2016). A 

significant difference between intra-familial and EGC UT control groups were 

observed, but this observation is probably random. Although the 16p11.2 are known 

for their association with ASD, we did not find any CNV carriers with autism 

diagnosis in the EGC UT cohort. The explanation might be that people with autism 

have not become gene donors and they belong to the clinical cohort. For example, 

duplication carriers with ASD have more severe phenotype (FISQ decrease is 

impaired significantly; D’Angelo et al., 2016) and it has been previously shown that 

15% of children carrying the reciprocal deletion had ASD and none of the fully 

assessed adult deletion carriers met the criteria for ASD (Zufferey et al. 2012). 

Current study’s cohort had deletion and duplication carriers with different 

malformations of spine, heart, uterus and cervix. Previous studies in clinical 16p11.2 

cohorts showed that the same set of malformations, vertebral (3.8% for deletion and 

0.7% for duplication) genital (3.1% and 5.9%) and cardiac (4.6% and 4.4%), 

described in he current study, are the most frequent congenital defects in clinical 

carriers’ cohort (Zufferey et al., 2012; D’Angelo et al. 2016). In the population 
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carriers’ cohort, both cardiac malformation and genitalia deformity frequencies were 

16.7% in deletion and 11.1% in duplication carriers, and vertebral malformation 

occurred in 50% of the deletion carriers (duplication carriers were without spinal 

malformations). In spite of the fact, that clinical carriers cohort had generally more 

severe phenotype than EG CUT population cohort, these malformations were 

presented more recurrently. 

The novel part of the current study was the analysis of common phenotypes. No 

previously published study has investigated the genomic disorders relationship to 

common features. We had the access to accurate clinical data, to conduct this kind of 

analysis (detailed clinical information on the CNV carriers and EGC UT population 

cohort). This kind of study is important for clinical practice, because common 

characteristics influence the course and severity of the disease and this gives 

opportunity to prepare a proper treatment plan. With the phenotypic analysis, we 

found three significantly recurrent disease categories compared to controls - 

hypotension in the duplication carriers, psoriasis in both CNV carriers and functional 

dyspepsia in deletion carriers. Diseases of oesophagus, stomach and duodenum 

showed non-significant trend with increased risk.  

Previous information from literature shows that women with the 600kb deletion have 

problems with reproductive system (Sandbacka et al., 2013; Tewes et al., 2015). We 

found absent, scanty and rare menstruation, non- inflammatory disorders of ovary, 

fallopian tube, broad ligament, and cystitis occurring significantly more often in 

female 16p11.2 CNV carriers than with controls. Due to small sample size and rarity, 

infertility and infections with a predominantly sexual mode of transmission showed 

non-significant trend with increased risk. 

From the results of this study, we have evidence that 16p11.2 600kb carriers have 

problems with digestive system and psoriasis. Moreover, there is a clear significance 

of difficulties in female health features in the 16p11.2 CNV cohort. We researched the 

16p11.2 CNV phenotypes describing articles by Shinaw et al., Zufferey et al., and 

D’Angelo et al., whether they had reported aforementioned common traits occurring 

in the carriers. These studies have so far excluded common features from the analysis 

and their association has not been investigated in the 16p11.2 CNV carriers (Shinaw 

et al. 2010; Zufferey et al., 2012; D’Angelo et al., 2016). However, gastrointestinal 

disorders are known significant comorbid conditions of ASD (reviewed in Hsiao et 

al., 2013) and patients with ID have also higher rates of gastrointestinal disorders 
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(Krahn and Fox, 2013). Studies conducted to investigate the link between obesity and 

functional gastrointestinal disorders, such as functional dyspepsia, did not show a 

consistent connection (Ho and Spiegel, 2008).  

In summary, the phenotype analysis of this study confirmed the characteristic features 

of 16p11.2 pathologies and identified new potential associations with height and 

common disease features.  

Phenotypic variability in 16p11.2 deletion and duplication carriers is wide and studies 

have been performed on the importance of secondary mutational hits at other loci, 

among 16p11.2 CNV carriers, affecting phenotype severity (Girirajan and Eichler, 

2010; Girirajan et al., 2010; Girirajan et al., 2012). In the clinical cases (more severe 

phenotypes compared to carriers from population cohort), approximately 70% of the 

deletion and duplication carriers had a secondary CNV and 35% had two or more 

CNVs (Duyzend et al., 2016). Several of the secondary CNVs have already been 

implicated as risk factors for autism and developmental delay, for example 2x40 kb 

deletion of the TOP3B locus on chromosome 22q11.22 (Stoll et al., 2013). Duyzend 

et al. (2016) reported that 16p11.2 CNV carriers who carry other CNVs have lower 

IQs compared to those without extra CNVs (Duyzend et al., 2016). In general, 

deletion carriers have significantly diminished rate of second pathogenic CNVs 

compared to the duplication carriers (D’Angelo et al., 2016). However, these 

examples might explain only a small part of the variable expressivity in 16p11.2 

syndromes. Therefore, we conducted whole-exome sequencing to 15 CNV carriers 

and their 8 intra-familial members to find genetic factors modulating the variability 

and explain the co-morbidities.  

This type of research is the first to investigate the genetic background of the genomic 

disorder. We were not expecting to identify rare loss-of-function variants, instead 

slightly deleterious mutations. We were analyzing the adult carriers set from 

population cohort with “milder” phenotype. If they contain rare causative loss-of-

function variants additionally to the deleterious CNV, they probably would not be in 

the population cohort. Also, we searched for variants in genes, which were associated 

with the 600 kb interval. In conjunction with 16p11.2 CNVs, the modifying variants 

could be common and do not have to be rare deleterious mutation. 

We compared the amount of the protein disrupting variants between deletion carriers, 



 45 

duplication carriers and controls, the deletion carriers tend to have slightly decreased 

rate of deleterious variants in contrast to controls. This observation was expected, 

because otherwise the high amount of mutations in carriers would result in critical 

condition and not in population cohort.  

We also looked at genes in the 16p11.2 600 kb locus. Among the 32 genes, the TBX6 

(transcription factor that functions in early embryogenesiss) was the most significant 

candidate to explain specific phenotypes. TBX6 belongs into phylogenetically well-

conserved T-box gene family (Yi et al., 1999). It consists of 8 exons, the transcript is 

1806 bp long and the protein size is 436 amino acids. An abnormal function or 

expression of various T-box genes has been associated with congenital malformations 

in humans (Naiche et al., 2005; Plageman and Yutzey, 2005). TBX6 expression has 

shown to be essential for normal vertebral formation (Watabe-Rudolph et al., 2002; 

White et al., 2003). Although TBX6 was the main candidate for congenital vertebral 

defects seen in 16p11.2 deletion carriers, the exact mechanism why scoliosis and 

hemivertebra are present only in a subset of 16p11.2 deletion carriers was not 

explained until recently. The effect of diminished TBX6 dosage and an additional 

TBX6 hypomorphic allele causes a further decrement in expression and will lead to 

congenital scoliosis.  

In our 16p11.2 CNV carriers’ data set, we had three deletion carriers with 

developmental spine disorders. All the latter deletion carriers had the tag-SNP 

rs3809624 that describes the risk haplotype for scoliosis. The capture kit used in the 

exome analysis catches only variants from protein coding regions, therefore only this 

tag-SNP from described risk haplotype was described. Although the other two SNPs 

were located in the 5′ noncoding region we were assuming that the two deletion 

carriers have the described risk haplotype. Additional deletion carrier with 

osteochondrosis and without this tag-SNP was the only individual who had a 

homozygous variant c.864C>A in the TBX6 gene, which possibly contributes to the 

phenotype. Based on that we might have explained the scoliosis phenotype in our 

cohort’s deletion carrier and, furthermore, could suggest that this genetic combination 

might be responsible also for other spinal malformations, for example 

osteochondrosis. Hence, it would be useful for clinicians to conduct more profound 
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assessment of vertebral conditions of the 16p11.2 600kb CNV carriers and carry out 

targeted genetic testing for risk variants in the TBX6. 

In addition to vertebral disorders, TBX6 has also been associated with disorder of the 

Müllerian duct (Sandbacka et al., 2013; Tewes et al., 2015), and cardiac defects 

(Gavrilov et al., 2013) as TBX6 is a general developmental regulator (Callery et al., 

2010). We analyzed whether variants in this gene might be associated with mentioned 

congenital defects. In this cohort, 1 female duplication (EX100) and 1 deletion carrier 

(EX119) had Müllerian duct malformation. Duplication carrier (EX100) had also 

cardiac developmental disorder. None of the two were carriers of a significant finding 

in the TBX6. We analyzed other candidate genes for the malformations. PTPN11 was 

associated with AVSD and also belonged to differentially expressed genes set in 

16p11.2 CNV carriers. The duplication carrier with cardiac and urogenital 

malformations was the only carrier to have the missense mutation p.Ile56Thr in 

PTPN11. ExAC database shows that mutations in PTPN11 gene are rare and LoF 

variants are not tolerated (observed number of LoF variants 0). Gene PTPN11 has 

been associated with Noonan syndrome and congenital heart defects. Carrier’s 

(EX100) features - the atrial septal defect and urogenital malformations – are also the 

characteristic features of Noonan syndrome. According to the described case, EX100 

severe phenotype is probably explained by pathogenic missense mutation p.Ile56Thr 

in PTPN11 + 16p11.2 duplication. While analyzing possibly causative variants in the 

other individual with urogenital malformation (EX119), we found a heterozygous 

variant rs137853921 in BBS5 gene related to Bardet-Biedl syndrome. BBS5 also 

belongs into ciliopathy-associated genes. The same variant (rs137853921) has also 

been mentioned before as being possibly pathogenic (Filges et al., 2013). Bardet-

Biedl syndrome characteristic features are cardiomyopathy (Yadav et al., 2013), 

genital abnormalities (Forsythe and Beales, 2013), different neuropsychiatric 

impairments and mental retardation (Baker et al., 2011), which are also represented in 

our 16p11.2 duplication carrier (EX119). The other two homozygous missense 

variants (rs61734902 in KIAA0556 and rs4762 in AGT) in ciliary associated genes 

might also have a modifying effect on the EX119 phenotype. 

From differentially expressed genes associated with the 16p11.2 deletions and 

duplications, we filtered out probably damaging variants without assigned rs number 

and no carriers in ExAC, dbSNP or 1000G databases. The filtered variants were 

compared to specific features of the carriers. With this analyze, we re-identified the 
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variant p.Ile56Thr in PTPN11, which was described above. This observation confirms 

the effect of the missense mutation on the duplication carrier (EX100). According to 

used filter criteria, no other substitutions were associated with carriers’ characteristic 

phenotypes, but further detailed analyze is necessary for the DE genes. 

 

In addition to the 600 kb CNV, the 16p11.2 chromosome interval harbors also a distal 

BP2-BP3 220kb CNV, which has been shown to interact with the 600 kb CNVs on 

the chromatin level (Loviglio et al., Mol Psych in press). The 220 kb deletion (MIM 

#613444) has been associated with developmental delay, behavioral problems, and 

extreme childhood obesity (Bochukova et al., 2010; Barge-Schaapveld et al., 2011). 

SH2B Adaptor Protein 1 (SH2B1) encoded protein is involved in leptin (Duan et al., 

2004; Li et al., 2007) and insulin signaling in lipid metabolism (Morris et al., 2009). 

SH2B1 is one of the most significant genes in 220kb interval. GWAS studies have 

showed SH2B1 gene as susceptibility locus for obesity (Willer et al., 2009; 

Thorleifsson et al., 2009) and both GWAS studies identified SNP rs7498665 in 

association with obesity. In addition a meta-analysis conducted by Tang et al. also 

identified a significant association with overweight/obesity (Tang et al., 2014). In EG 

CUT carriers’ cohort, the deletion carrier EX102, who had the highest BMI of 51.9, 

had 5 alterations in SH2B1 gene, of which one is the same described missense variant 

rs7498665. The SNP was homozygous in only EX102 among all CNV carriers and 

might be a modifier in the EX102’s extremely high BMI. Also, the heterozygous 

splice region variant rs117918991 in SH2B1 gene in EX102 may have an impact on 

the phenotype. 

Knowing a little about the mechanisms involved in a disease helps to orientate exome 

analysis to corresponding pathways. 16p11.2 CNV syndromes, for instance, are 

known to be caused by the 600 kb deletion or duplication, but exact molecular 

mechanisms behind the disease warrant further investigation. The 16p11.2 600kb 

interval comprises 32 genes and the CNVs perturb the localized genes and genes on 

its flanks (Migliavacca et al., 2015). In the current work, exome analysis was directed 

to the aforementioned genes, differentially expressed genes associated with 16p11.2 

CNVs (Migliavacca et al., 2015), interaction partners of genes involved in the 600kb 

interval (MetaCore, GeneCards, STRING) and genes, which were linked to the 

features of the 16p11.2 syndromes (Sampson et al., 2010; Nik-Zainal et al., 2011; 

Sandbacka, et al. 2013; Wu et al., 2015; D'Alessandro et al., 2016). 
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In conclusion, our results have described 5 of the population 16p11.2 600 kb carrier’s 

specific phenotypes and have shown the importance of analyzing the genomic 

background, despite knowing the genetic cause of a disease. 
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CONCLUSION 

The 16p11.2 BP4-BP5 region is predisposed to rearrangements and diseases. The 

structural variations in this genomic position result in 16p11.2 deletion or duplication 

syndrome. In the current work, we aimed to characterize the genotypic and 

phenotypic features in 16p11.2 600kb BP4-BP5 CNV carriers in EGC UT adult 

population cohort. 

We confirmed the frequent characteristic features of 16p11.2 600 kb syndromes, such 

as high vs. low BMI, neuropsychiatric disorders (schizophrenia, epilepsy, neurotic 

disorder, anxiety disorder), intellectual disability, and malformations of vertebrae, 

heart and genitalia. The current work is first to describe common features 

significantly recurrent in EGC UT 16p11.2 CNV carriers’ cohort. Hypotension 

frequency was higher among duplication carriers, psoriasis in deletion and duplication 

carriers, and functional dyspepsia in deletion cohort. Additionally, several female 

health specific traits were significantly more presented in the female CNV carriers’ 

cohort. We used an exome-wide approach to find genetic modifiers resulting in the 

variability of genomic disorders’ phenotypes. We might have explained 4 16p11.2 

CNV carriers’ specific features with genetic substitutions found by exome analysis. 

First, a common haplotype of TBX6 in case of scoliosis and osteochondrosis. 

Secondly a missense mutation in PTPN11 resulting in severe duplication phenotype 

with atrial septal defect and urogenital malformation. Thirdly, a missense variant in 

gene BBS5, explaining Bardet-Biedl syndrome-like characteristics in 16p11.2 deletion 

carrier and finally, variants in SH2B1 modifying the extreme obesity in a deletion 

carrier. The observed alterations identified in the study need further functional studies 

and confirmation. 

According to our phenotypic and genotypic findings, we conclude that it is important 

to conduct a detailed phenotypic assessment of individuals with particular genetic 

alterations (e.g. 16p11.2 600 kb deletion and duplication) and further investigate the 

exome (or genome) of the carriers to more precisely predict the severity and diverse 

outcomes of disease. The secondary hits may be necessary for a clinically 

ascertainable phenotype and therefore are important to take into account in genetic 

counseling. 
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Kromosoomi piirkonna 16p11.2 BP4-BP5 600 kb koopiaarvu variatsioonide 

iseloomustus täiskasvanute populatsioonis 

Berit Kolk 

Kokkuvõte 

 

Kromosoomi piirkond 16p11.2 BP4-BP5 on disponeeritud ümberkorraldustele ja 

muutustest tingitud haigustele. Strukturaalsed muutused antud genoomi piirkonnas 

väljenduvad  16p11.2 deletsiooni või duplikatsiooni sündroomina. Käesoleva 

uurimuse eesmärgiks on välja tuua 16p11.2 600kb BP4-BP5 koopiaarvu kandjate 

genotüübi ja fenotüübi iseloomustus TÜ EGV täiskasvanute populatsiooni andmete 

alusel. Meie tulemused tõendavad, et 16p11.2 600 kb sündroomile on iseloomulikud 

ja sageli esinevad järgmised sümptoomid: kõrge või madal KMI, psühhiaatrilised 

häired (skisofreenia, neuroos, ärevushäired), epilepsia, vaimse arengu mahajäämus, 

samuti lülisamba, südame ja genitaalide anomaaliad. Antud töö kirjeldab 

esmakordselt olulisi sagedasi haiguslikke tunnuseid EGV koopiaarvu kandjate 

kohordis. Nii esines hüpotensiooni sagedamini duplikatsiooni kandjatel, psoriaasi 

esines nii deletsiooni kui duplikatsiooni kandjatel ja funktsionaalset düspepsiat enam 

deletsiooni kohordis. Lisaks olid naiste tervisehäiretega seotud kõrvalekalded oluliselt 

enam väljendunud koopia arvu variatsioonidega naistel.  

Kasutasime üle-eksoomset analüüsi, et leida võimalikke geneetilisi modifikaatoreid, 

mis vastutaksid kohordis esinevate fenotüüpide mitmekesisuse eest.  Teostatud 

eksoomi uuringute andmetel on 16p11.2 kandjatel võimalik kirjeldada 4 erinevat 

fenotüüpi. Esiteks levinud TBX6 haplotüüp, millega seostub skolioos ja 

osteokondroos. Teiseks missense mutatsioon PTPN11 geenis, mille korral lisandub 

duplikatsiooni raskele fenotüübile kodade vaheseina defekt ja urogenitaaltrakti 

anomaalia. Kolmandaks BBS5 geenis missense variant, mis võib põhjustada 16p11.2 

deletsiooni kandjatel Bardet-Biedl sündroomiga sarnaseid tunnuseid. Neljandaks 

SH2B1 geeni variant, mis mõjutab äärmusliku rasvumise kujunemist deletsiooni 

kandjatel. Kinnitamaks töös tuvastatud variantide olulisust fenotüüpide 

modifitseerimisel, vajavad need variandid jätkuvat uurimist ning nende kahjuliku 

mõju kinnitamist. 
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Toetudes fenotüübi ja genotüübi vaheliste seoste uurimistulemustele saame väita, et 

detailne fenotüübi kirjeldamine isikutel, kellel esineb geneetiline muutus (16p11.2 

600 kb deletsioon või duplikatsioon), on väga oluline. Edasine täpne geneetilise tausta 

(eksoomi või genoomi) uurimine kandjatel annab võimaluse prognoosida haiguse 

raskust ja kliiniliste sümptomite varieeruvust. Teiseks annab täpsuselt kirjeldatud 

fenotüüp olulise aluse kliinilises praktikas ja on kasutatav geneetilise konsultatsiooni 

läbiviimisel. 
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6 SUPPLEMENTARY MATERIALS 
 

Table S1: Abbreviations for genes described in this thesis 
 

GENE 

symbol 

Gene Name Entrez 

Gene 

(GeneID) 

Chromosomal 

location 

ACVR2B Activin A Receptor, Type IIB 93 3p22 

AGT Angiotensinogen 183 1q42.2 

ALDOA Aldolase, Fructose-Bisphosphate Ap 226 16p11.2 

AMH Anti-Mullerian Hormone 268 19p13.3 

AMHR2 Anti-Mullerian Hormone Type 2 Receptor 110542 15 F3 

ASPHD1 Aspartate Beta-Hydroxylase Domain 253982 16p11.2 

ATP2A1 ATPase sarcoplasmic/endoplasmic reticulum Ca2+ 

transporting 1 

487 16p12.1 

ATXN2L ataxin 2 like 11273 16p11 

BBS5 Bardet-Biedl syndrome 5 129880 2q31.1 

BBS9 Bardet-Biedl syndrome 9 27241 7p14 

BMPR1a bone morphogenetic protein receptor type 1A 657 10q22.3 

BOLA2/2B bolA family member 2 552900 16p11.2 

C16orf54 chromosome 16 open reading frame 54 283897 16p11.2 

C16orf92 chromosome 16 open reading frame 92 146378 16p11.2 

C16orf53 chromosome 16 open reading frame 92 79447 16p11.2 

CC2D2A coiled-coil and C2 domain containing 2A 57545 4p15.32 

CCDC40 coiled-coil domain containing 40 55036 17q25.3 

CD19 CD19 molecule 930 16p11.2 

CDH5 cadherin 5 1003 16p11.2 

CDIPT CDP-diacylglycerol--inositol 3-phosphatidyltransferase 10423 16p11.2 

CEP120 centrosomal protein 120 153241 5q23.2 

CEP152 centrosomal protein 152 22995 15q21.1 

CFC1 cripto, FRL-1, cryptic family 1 55997 2q21.1 

CHD7 chromodomain helicase DNA binding protein 7 55636 8q12.2 

CLNK cytokine dependent hematopoietic cell linker 116449 4p16.1 

CORO1A coronin 1A 11151 16p11.2 

CRELD1 cysteine rich with EGF like domains 1 78987 3p25.3 

DOC2A double C2 domain alpha 8448 16p11.2 

ECI1 enoyl-CoA delta isomerase 1 1632 16p13.3 

ESR1 estrogen receptor 1 2099 6q25.1 

F5 coagulation factor V 2153 1q23 

FAM57B family with sequence similarity 57 member B 83723 16p11.2 

FOXH1 forkhead box H1 8928 8q24.3 

GATA4 GATA binding protein 4 2626 8p23.1-p22 

GDF1 growth differentiation factor 1 2657 19p12 

GDPD3 glycerophosphodiester phosphodiesterase domain 

containing 3 

79153 16p11.2 

HIRIP3 HIRA interacting protein 3 8479 16p11.2 

HNF1B HNF1 homeobox B 6928 17q12 

HOXA5 homeobox A5 3202 7p15.2 

HOXA9 homeobox A9 3205 7p15.2 

IGF2 insulin like growth factor 2 3481 11p15.5 

INO80E INO80 complex subunit E 283899 16p11.2 

IRS1 insulin receptor substrate 1 3667 2q36 

IRS2 insulin receptor substrate 2 8660 13q34 

KAT6B lysine acetyltransferase 6B 23522 10q22.2 

KCTD13 potassium channel tetramerization domain containing 13 253980 16p11.2 

KIF22 kinesin family member 22 3835 16p11.2 

LAT linker for activation of T-cells 27040 16p11.2 

KIAA0556 KIAA0556 23247 16p12.1 
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LHX1 LIM homeobox 1 3975 17q12 

MAPK3 mitogen-activated protein kinase 3 5595 16p11.2 

MAPT microtubule associated protein tau 4137 17q21.1 

MAZ MYC associated zinc finger protein 4150 16p11.2 

MDM4 MDM4, p53 regulator 4194 1q32 

MVP major vault protein 9961  

NFATC2IP nuclear factor of activated T-cells 2 interacting protein 84901 16p11.2 

NIPBL NIPBL, cohesin loading factor 25836 5p13.2 

NKX2-5 NK2 homeobox 5 1482 5q34 

NODAL nodal growth differentiation factor 4838 10q22.1 

NPIP nuclear pore complex interacting protein family member 

A1 pseudogen 

730153 16p11.2 

NR2F2 nuclear receptor subfamily 2 group F member 2 7026 15q26 

PAGR1 PAXIP1 associated glutamate rich protein 1 79447 16p11.2 

PGR progesterone receptor 5241 11q22-q23 

PPP4C protein phosphatase 4 catalytic subuni 5531 16p11.2 

PRRT2 proline rich transmembrane protein 2 112476 16p11.2 

PTPN11 protein tyrosine phosphatase, non-receptor type 11 5781 12q24 

QPRT quinolinate phosphoribosyltransferase 23475 16p11.2 

RABEP2 rabaptin, RAB GTPase binding effector protein 2 79874 16p11.2 

SEZ6L2 seizure related 6 homolog like 2 26470 16p11.2 

SH2B1 SH2B adaptor protein 1 25970 16p11.2 

SLX1A SLX1 homolog A, structure-specific endonuclease subunit 548593 16p11.2 

SLX1B SLX1 homolog B, structure-specific endonuclease subunit 79008 16p11.2 

SPN sialophorin 6693 16p11.2 

SPNS1 SPNS sphingolipid transporter 1 (putative) 83985 16p11.2 

SULT1A3/4 sulfotransferase family 1A member 1??   

TAOK2 TAO kinase 2 9344 16p11.2 

TBX20 T-box 20 57057 7p14.3 

TBX5 T-box 5 6910 12q24.1 

TBX6 T-box 6 6911 16p11.2 

TLL1 tolloid like 1 7092 4q32.3 

TMEM219 transmembrane protein 219 124446 16p11.2 

TUFM Tu translation elongation factor, mitochondrial 7284 16p11.2 

WISP2 WNT1 inducible signaling pathway protein 2 8839 20q13.12 

WT1 Wilms tumor 1 7490 11p13 

YPEL3 yippee like 3 83719 16p11.2 

ZFPM2 zinc finger protein, FOG family member 2 23414 8q23 

ZG16 zymogen granule protein 16 653808 16p11.2 

ZIC3 Zic family member 3 7547 Xq26.2 
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Table S2. Primer pairs designed for copy number profiling using real-time 

quantitative PCR. 
 

Oligo name Sequence 5’-3’ Product 

lenght 

Position on genome 

Primer pair 

I 

CCATGGACAAATATTGCCAGCC 141bp chr16:29337336 

TTTCCGACGTGGAATGCAGA chr16:29337476 

Primer pair 

II 

AAGCCATTGTTGCGCTCATTC 121bp chr16:29646308 

TTGCTTGTAATCGCACACCCA chr16:29646428 

Primer pair 

III 

TGAGTGCCCCATCAGTTGTTCA 110bp chr16:29653173 

TAGCAGCCATCACAGGTTTCCA chr16:29653282 

Primer pair 

IV 

TTCCATAAGAACTCAGCCCGCA 60bp chr16:29855950 

TTCCGAGGTCTCAAAGCCAAAGA chr16:29856009 

Primer pair 

V 

TGCTGTGCCATGGACTGTGATT 95bp chr16:29991079 

TGCCTGCCTGGTTTCCCTAAAT chr16:29991173 

Primer pair 

VI 

TTGGCCAGCTTTGAATCCCA 61bp chr16:30014875 

AAATGACAACGCTGAGGTCGCA chr16:30014935 

Primer pair 

VII 

TTCATGTCGGCAGCCTGAAACT 126bp chr16:30117626 

AGGGTGGTGCTGTTAAGTGGTCAA chr16:30117751 

Primer pair 

VIII 

CGTCGTCGCATATTCGAAAGGA 98bp chr16:30177171 

TCCTGGTCATCAAATCAGGCAA chr16:30177268 

Primer pair 

IX 

TGAGCCAACTGCAGGATGAAGA 56bp chr16:30179542 

CTGGGATGCTGACACTTTCCAA chr16:30179597 

Primer pair 

X 

TTTCACAGCAGCTCCAAGGTGA 95bp chr16:30191225 

TGTGCTTCCCAACCAAAGCA chr16:30191319 

Primer pair 

XI 

TTTTCCTCAAACGCCCACTTCC 110bp chr16:30593784 

TGATGGCGTTCACACAAACTGG chr16:30593883 

Primer pair 

XII 

ACACAGCGCAACAAACAGCCTT 74bp chr16:30722099 

TGACCTTCCTCTTCGTTGGCAGTA chr16:30722172 

Reference 

primer pair I 

TGCGAAACTGCGTGGACATT 70bp chr1:28661159 

ATGCGGAAGCCCATTTCCAT chr16:28661228 

Reference 

primer pair 

II 

CTGTGACCTGCAGCTCATCCT 120bp chr3:113954875 

TAAGTTCTCTGACGTTGACTGATGTG chr16:113954994 

 

 

 

 



Family V code Exom ID 

 

16p11.2 

CNV 

Sex Age BMI Characteristic features to the 16p11.2 del/dup 

syndrome 

Other features  

1 V09503 EX99 DUP F 24 18.6 Mild mental retardation, significant 

impairment of behavior requiring attention or 

treatment; Recurrent depressive disorder, 

current episode moderate; Dysthymia; 

Anxiety disorder, unspecified; Obsessive-

compulsive disorder; Adjustment disorders; 

Intentional self-harm 

Cerebral palsy; Hypotension; Cystitis; Non-inflammatory disorders of 

ovary, fallopian tube and broad ligament; Absent, scanty and rare 

menstruation; Excessive, frequent and irregular menstruation; 

Congenital malformations of ovaries, fallopian tubes and broad 

ligaments; Congenital obstructive defects of renal pelvis and 

congenital malformations of ureter; Functional dyspepsia 

2 V09186 EX100 DUP F 20 23.7 Epilepsy: Localization-related (focal)(partial) 

symptomatic epilepsy and epileptic 

syndromes with simple partial seizures; Petit 

mal status epilepticus; Congenital 

malformations of cardiac septa: Atrial septal 

defect; Congenital malformations of uterus 

and cervix: Doubling of uterus with doubling 

of cervix and vagina 

Disorders of thyroid gland; Angina pectoris; Atrioventricular and left 

bundle-branch block; Other cardiac arrhythmias; Asthma; Seropositive 

rheumatoid arthritis; Dorsalgia; Cystitis; Inflammatory diseases of 

female pelvic organs; Absent, scanty and rare menstruation; Acute 

bronchitis; Hypertensive heart disease;  Tension-type headache 

3 V21252 EX101 DEL F 50 43.8 Obesity Gastritis and duodenitis; Psoriasis; Seropositive rheumatoid arthritis; 

Deforming dorsopathies; Dorsalgia;Spinal osteochondrosis; Cystitis; 

Acute bronhities; Type 2 diabetes mellitus; Essential (primary) 

hypertension;  Hypercholesterolemia 

4 V02715 EX102 DEL M 67 51.9 Depressive episode; Specified forms of 

tremor; Unspecified epilepsy; Obesity: due to 

excess calories 

Malignant neoplasm of breast; Malignant neoplasm of corpus uteri; 

Other extrapyramidal and movement disorders; Oesophagitis; Gastro-

oesophageal reflux disease; Dermatitis and eczema; Deforming 

dorsopathies; Dorsalgia; Spinal osteochondrosis; Congenital 

leukonychia; Acute bronhities; Essential (primary) hypertension; 

Chronic ischaemic heart disease 

5 V22648 EX103 

(father) 

DUP 

 

M 67 26.0  Conductive and sensorineural hearing loss; Other rheumatic heart 

diseases; Other cardiac arrhythmias; Vasomotor and allergic rhinitis; 

Asthma; Duodenal ulcer; Psoriasis; Dorsalgia; Acute bronhities; 

Dyslipidemi; Mixed hyperlipidaemia; Essential (primary) 

hypertension; Chronic ischaemic heart disease 

 V22673 EX104 

(child) 

Control  NA NA 26.2 Mild depressive episode Allergic contact dermatitis; Dorsalgia 

6 V28938 EX105 

(mother) 

DUP 

 

F 42 19.8 Post-traumatic stress disorder; Neurotic 

disorder, unspecified 

Leiomyoma of uterus; Hypotension; Vasomotor and allergic rhinitis; 

Oesophagitis; Gastritis and duodenitis; Duodenal ulcer; Gastro-
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oesophageal reflux disease; Dorsalgia; Other inflammation of vagina 

and vulva; Non-inflammatory disorders of ovary, fallopian tube and 

broad ligament; Syncope and collapse; Acute bronchitis; Transient 

cerebral ischaemic attacks and related syndromes 

 V44037 EX106 

(child) 

Control M 22 22.8  Dorsalgia 

 

7 V33975 EX107 DEL M  24.15 Mild mental retardation; Significant 

impairment of behavior requiring attention or 

treatment; Persistent delusional disorders 

Functional dyspepsia; Duodenal ulcer; Gout; Hypertensive heart 

disease; Hypertensive heart and renal disease; Angina pectoris 

8 V35427 EX108 DUP M 37 24.2  Conductive and sensorineural hearing loss; Functional dyspepsia; 

Essential (primary) hypertension 

 V35633 EX109 

(father) 

Control M 72 25.1  Dorsalgia; Conductive and sensorineural hearing loss; Transient 

cerebral ischaemic attacks and related syndromes:  Vertebro-basilar 

artery syndroms; Hypertensive heart disease; Gastro-oesophageal 

reflux disease; Gout; Syncope and collapse 

9 V43909 EX110 DEL M 32 30.1 Neurotic disorder; Moderate mental 

retardation; Mild mental retardation, 

Significant impairment of behavior requiring 

attention or treatment; Scoliosis 

Functional dyspepsia; Acute bronhities 

10 V13801 EX111 

(father) 

DUP M 59 25.5  Melanocytic naevi; Vasomotor and allergic rhinitis; Gastritis and 

duodenitis; Other dermatitis; Dorsalgia; Acute bronchitis; Essential 

(primary) hypertension; Angina pectoris 

 V26590 EX112 

(mother) 

Control NA NA 24.1 Other mood (affective) disorders; Other 

anxiety disorders 

Dorsalgia; Nonorganic sleep disorders; Other headache syndromes; 

Transient cerebral ischaemic attacks and related syndromes; Angina 

pectoris; Other cardiac arrhythmias; Complications and ill-defined 

descriptions of heart disease; 

Gastro-oesophageal reflux disease; 

Gastritis and duodenitis; 

Psoriasis; Other dermatitis; Other arthritis; 

Cystitis 

 V13124 EX113 

(proband) 

DUP  F 37 18.8 Moderate depressive episode; Other anxiety 

disorders; Ovarian dysfunction 

Dorsalgia; Cystitis; Inflammatory diseases of female pelvic organs; 

Endometriosis of uterus; Female infertility; Excessive, frequent and 

irregular menstruation; Acute bronhities; Somatoform autonomic 

dysfunction; Essential (primary) hypertension 

 V11819 EX114 

(sibling) 

Control M 35 19.5 Depressive episode Dorsalgia; Allergic contact dermatitis; Other arthritis; Other 

inflammation of vagina and vulva 

 

11 V11257 EX115 

(proband) 

DEL F 40 37.2  Allergic contact dermatitis; Dorsalgia; Inflammatory disease of cervix 

uteri; Acute bronchitis; Other headache syndromes 
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Table S3. EGC UT cohort carriers and intra-familial controls detailed clinical information.  

 V12736 EX116 

(mother) 

Control F 67 38.8  Dorsalgia; Nonorganic sleep disorders; Hypertensive heart disease 

 V40443 EX117 

(mat 

uncle) 

Control NA NA 35.9  Mononeuropathies of upper limb; Dorsalgia; Hypertensive heart 

disease with (congestive) heart failure; Essential (primary) 

hypertension 

12 V14358 EX118 DUP F 43 26.0 Undifferentiated schizophrenia: Paranoid 

schizophrenia, Hebephrenic schizophrenia; 

Delusional disorder; Acute and transient 

psychotic disorders: Acute polymorphic 

psychotic disorder with symptoms of 

schizophrenia, Acute and transient psychotic 

disorder, unspecified; Moderate depressive 

episode; Recurrent depressive disorder 

 

13 V12867 EX119 

(proband) 

DEL F 35 35.2 Reaction to severe stress, and adjustment 

disorders; Adjustment disorders; Mild mental 

retardation -> With the statement of no, or 

minimal, impairment of behavior; Congenital 

malformations of uterus and cervix-> Other 

doubling of uterus, Bicornate uterus; Obesity; 

Ovarian dysfunction 

Leiomyoma of uterus; Benign neoplasm of ovary; Ovarian 

dysfunction; Other rheumatic heart diseases; Cardiomyopathy; 

Paroxysmal tachycardia; Functional dyspepsia; Seborrhoeic 

dermatitis; Vulvovaginal ulceration and inflammation in diseases 

classified elsewhere; Other inflammation of vagina and vulva; Non-

inflammatory disorders of ovary, fallopian tube and broad ligament; 

Absent, scanty and rare menstruation; Female infertility; Excessive, 

frequent and irregular menstruation; Essential (primary) hypertension 

 V38423 EX120 

(sibling) 

Control F  20.6 Recurrent depressive disorder, current 

episode moderate, current episode severe 

without psychotic symptoms; Neurotic 

disorder, unspecified; Scoliosis 

Trichomoniasis; 

Dorsalgia; Cystitis; Inflammatory diseases of female pelvic organs 

14 V03575 EX121 DUP F 70 22.7 Other specified congenital malformations of 

integument; Chronic ischaemic heart disease 

Malignant neoplasm of breast; Malignant neoplasm of corpus uteri; 

Oesophagitis; 

Dermatitis and eczema; Acute bronhities; 

Infections with a predominantly sexual mode of transmission 



 

 

 

Table S4. A list of genes underlying syndromes associated with AVSD. 

AVSD: an atrioventricular septal defect 

 

Table S5. A list of ciliopathy-associated genes used in the exome analysis in Saphetor 

platform. 

 

 

 

 

 

 

 

 

 

 

 

Genes associated with AVSD 

 

(D'Alessandro et al., 2016) 

ANKRD11 ARL6 ATR BBS1 BBS10 BBS12 BBS2 BBS4 BBS5 BBS7 BBS9 BRAF CDKN1C CENPJ 

CEP152 CEP290 CEP63 CHD7 COL1A1 COL1A2 COL2A1 COL5A1 COL5A2 DHCR7 DOK7 ELN 

EVC EVC2 GDF6 GLI3 HYLS1 IRF6 KRAS MAP2K1 MDM4 MKKS MKS1 NIPBL NPHP4 NRAS 

OFD1 PTPN11 RAF1 RAPSN RBBP8 RECQL4 SETBP1 SMC1A SMC3 SOS1 TBX1 TBX5 TFAP2A 

TRIM32 TTC8 WNK1 WNK4 ZFPM2 ZIC3 

Ciliopathy-associated genes 

(van Dam et al., 2013) 

 

ACE AGT AGTR1 AHI1 AIPL1 ALMS1 ANKS6 APC2 ARL13B ARL6 ARMC4 ARVCF B9D1 B9D2 

BAZ1B BBIP1 BBS1 BBS10 BBS12 BBS2 BBS4 BBS5 BBS7 BBS9 BMPER C21orf59 C2CD3 C5orf42 

CC2D2A CCDC103 CCDC114 CCDC151 CCDC28B CCDC39 CCDC40 CCDC65 CCNO CDC73 

CDKN1C CENPF CEP120 CEP164 CEP290 CEP41 CLIP2 COMT CPT2 CRB1 CRX CSPP1 

DNAAF1 DNAAF2 DNAAF3 DNAAF5 DNAH11 DNAH5 DNAI1 DNAI2 DNAL1 DRC1 DYNC2H1 

DYX1C1 ELN ESCO2 ETFA ETFB ETFDH EYA1 FLNB GDF6 GLIS2 GP1BB GTF2I GTF2IRD1 

GUCY2D H19 HIRA HYDIN IFT140 IFT172 IFT27 IFT80 IMPDH1 INPP5E INVS IQCB1 KAT6B 

KCNJ13 KCNQ1OT1 KIAA0556 KIAA0586 KIF7 LCA5 LIMK1 LRAT LRP5 LRRC6 LZTFL1 MKKS 

MKS1 NEK1 NEK8 NME8 NMNAT1 NOTCH2 NPHP1 NPHP3 NPHP4 NSD1 OCRL OFD1 PEX1 

PEX10 PEX11B PEX12 PEX13 PEX14 PEX16 PEX19 PEX2 PEX26 PEX3 PEX5 PEX6 PKD1 PKD2 

PKHD1 PRKCSH RD3 RDH12 REN RFC2 RPE65 RPGR RPGRIP1 RPGRIP1L RSPH1 RSPH3 

RSPH4A RSPH9 SDCCAG8 SEC63 SETD2 SHANK3 SIX1 SIX5 SPAG1 SPATA7 TBL2 TBX1 TCTN1 

TCTN2 TCTN3 TMEM138 TMEM216 TMEM231 TMEM237 TMEM67 TRIM32 TSC1 TSC2 TTC21B 

TTC8 TULP1 UFD1L VHL WDPCP WDR19 WDR34 WDR35 WDR60 ZMYND10 ZNF423 
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Table S6. 16p11.2 dosage-dependently differently expressed genes in human 

transcriptome used in the exome-analysis in Saphetor platform. 

16p11.2 dosage-dependently differently expressed genes in human transcriptome 

(Migliavacca et al., 2015) 

 

AAAS AAMP ABHD13 ABHD2 ABHD3 ABI1 ACADSB ACBD5 ACER3 ACSL4 ACTL6A ADAM10 

ADAM9 ADCY7 ADK AEBP2 AFF4 AGFG1 AGGF1 AGL AGTPBP1 AHNAK AHR AKIRIN1 ALAD 

ALDOA ALG10B ALKBH8 AMBRA1 AMY1A AMY1B AMY1C AMY2A ANAPC10 ANGEL2 ANKIB1 

ANKLE2 ANKRD13C ANKRD39 ANKRD52 ANXA11 AP1AR AP1S3 AP2S1 AP3D1 APC API5 

APOBEC3C APOOL APPL1 AQR ARF1 ARFIP2 ARID1B ARID2 ARID4B ARL13B ARL17A ARL2 

ARL5B ARL6IP6 ARMC8 ARMCX5 ARPC5 ARPC5L ARRB2 ASAP1 ASCC3 ASPM ASXL2 ATAD2 

ATF1 ATF2 ATG4B ATL2 ATL3 ATP11B ATP13A1 ATP13A3 ATP5S ATP6V0A2 ATP6V0E1 

ATP6V1G2 ATRN ATXN3 ATXN7 AURKAIP1 AURKB AZI2 AZIN1 B3GNT2 B4GALT4 BAZ1B BBS10 

BBS4 BBS7 BCAP31 BCL2 BCLAF1 BDP1 BHLHE22 BICD2 BIRC6 BIVM BLVRA BLZF1 BMP7 

BMPR2 BOLA2 BOLA2B BRAP BRD9 BRIP1 BRIX1 BSG BTAF1 C17orf75 C17orf80 C19orf12 

C19orf43 C1orf109 C1orf162 C2orf69 C3orf17 C3orf38 C4orf46 C5orf24 CALCOCO1 CALM3 

CAPN12 CAPNS1 CASC4 CASP6 CASZ1 CBL CBLL1 CBWD2 CBX3 CCAR1 CCDC18 CCDC24 

CCDC28B CCDC50 CCDC82 CCDC84 CCDC88A CCDC91 CCDC93 CCNI CCNJ CCNT2 CCT6B 

CD2AP CD44 CD58 CD63 CD79A CD84 CDC14A CDC73 CDIPT CDK12 CDK16 CDK8 CDV3 

CENPK CEP120 CEP170 CEP290 CEP350 CEP57 CGRRF1 CHCHD7 CHD4 CHD6 CHD7 CHD9 

CHMP5 CHRNB2 CHST11 CHUK CIB1 CIR1 CISD2 CLIP1 CLN5 CLN6 CMAS CMC1 CMIP 

CNNM3 CNOT7 CNOT8 CNST COG5 COMMD2 COPE CORO1A CORO7 CPEB4 CPSF2 CPSF3L 

CPSF6 CR1 CRCP CREB1 CREB5 CREBBP CREBL2 CSGALNACT2 CTH CTSS CTTNBP2NL 

CWF19L1 CXorf56 CYBRD1 CYFIP1 CYP1A2 CYP51A1 DAPP1 DARS DBR1 DBT DCAF10 

DCAF17 DCBLD2 DCTN4 DCUN1D1 DDHD1 DDX18 DDX20 DDX23 DDX27 DDX41 DDX59 

DEAF1 DENND4A DENND4B DENND4C DHFRL1 DHPS DHX32 DICER1 DLAT DLG1 DMXL1 

DNAJA3 DNAJB6 DNAJC1 DNAJC10 DNAJC16 DNAJC21 DNAJC27 DNAJC4 DPP8 DR1 DTX3 

DYNC1LI2 DYRK2 EBF1 EEF1A1 EEF1D EFCAB7 EFR3B EHBP1L1 EHHADH EID1 EIF1 EIF1AX 

EIF2AK1 EIF2AK2 EIF2S3 EIF3J EIF4E EIF4G1 EIF5 EIF5A ELF1 ELF2 EMILIN2 ENOX2 ENPP5 

ENTPD6 EP300 EP400 EPC2 EPRS EPS15 ERCC4 ERGIC1 ERGIC2 ERGIC3 ERI1 ERLIN1 ESF1 

ETNK1 EWSR1 EXOC5 EXOC8 F11R FAHD1 FAM73A FAM76A FAM76B FAM92A1 FAN1 

FBXO21 FBXO22 FBXO28 FBXO45 FBXW11 FBXW4 FCF1 FEM1B FGFR1OP2 FGFR2 FKBP1A 

FKBP4 FLI1 FLVCR2 FLYWCH1 FLYWCH2 FNBP4 FNDC3A FRS2 FSCN1 FUBP3 FXR1 FXYD5 

FYN FYTTD1 G2E3 G3BP1 GABPA GALNT1 GALNT6 GANC GBA2 GCA GCNT2 GCOM1 GDF11 

GDPD3 GET4 GFM1 GGA1 GGA3 GGACT GGPS1 GIGYF1 GINS2 GKAP1 GLG1 GLS GLYR1 

GNAI2 GNAS GNB1 GOLGA2 GON4L GOPC GPAA1 GPATCH8 GPR156 GPRASP2 GPX7 GSPT1 

GSS GTDC1 GTF2F2 GTSE1 GTSF1 H2AFY HACD3 HAUS2 HAUS6 HCFC2 HDGF HEATR3 

HELLS HELZ HEMK1 HERC1 HERC4 HEXA HIPK1 HIRIP3 HOXA7 HSF2 HSP90B1 HTATIP2 ICK 

IER5 IFIH1 IFRD1 IFT74 IKBIP IL10 IL10RB IL21R ILDR1 ILF3 ILK ILVBL INO80E INPPL1 

INSIG1 INTS4 IPMK IPP IRAK1BP1 IREB2 IRF3 IRF8 ITCH ITFG2 ITPR1 IWS1 JDP2 JMJD1C 

KBTBD2 KBTBD7 KCNQ1OT1 KCTD13 KCTD2 KCTD3 KDM1B KDM2A KDM4A KDM4B KDM5A 

KDM6A KIF21B KIF22 KLF7 KLHDC1 KLHDC4 KLHL20 KLHL23 KLHL5 KLHL9 KPNB1 KRAS 

KRIT1 LATS2 LGALS8 LGMN LIG4 LILRB3 LIMS1 LMF2 LRCH3 LRCH4 LRRC43 LRRC57 

LRRFIP1 LUZP1 LY75 LYN LYRM5 M6PR MALAT1 MAML2 MAP1LC3A MAP2K3 MAP3K11 

MAP3K13 MAP3K2 MAP3K8 MAPK1IP1L MAPK3 MARCKS MARK4 MASTL MATR3 MAZ MBIP 

MBNL1 MCFD2 MCL1 MDM4 MED1 MED23 MED30 MED4 MED7 MEX3C MGA MGEA5 MIER3 

MIR155HG MLEC MOCS2 MORC2 MORC3 MPHOSPH9 MRPL4 MRPL44 MRPL50 MRPS5 MTF1 

MTF2 MTM1 MTMR10 MVP MYO3B MYO9A N4BP1 NAA35 NAB1 NANOS1 NAP1L1 NAV1 NBPF1 

NCEH1 NCF4 NCOA2 NCOA3 NDUFA10 NDUFC2 NDUFV1 NEDD1 NEK1 NFATC3 NFIC 

NFKBIB NFXL1 NHLRC3 NIPBL NKIRAS1 NKTR NOL9 NPEPPS NPFF NR1D1 NR2C2 NR3C1 

NRBF2 NSF NUCKS1 NUDT19 NUDT21 NUP160 NUP50 NUS1 NUSAP1 ODF2L OGFOD1 OS9 

OTUD6B PACRGL PACS2 PAIP1 PAK1 PAK2 PANK2 PAPD4 PAPOLA PARD3 PARD6B PARG 

PARP11 PBRM1 PCBP2 PCGF5 PDE12 PDE7A PDLIM7 PDS5B PEX1 PEX13 PEX7 PGGT1B 

PGK1 PGM1 PGM2 PGPEP1 PGRMC2 PHAX PHF3 PHF6 PHYKPL PIAS1 PIAS2 PICALM PIF1 

PIGN PIKFYVE PJA1 PKP4 PLA2G12A PLAA PLCL2 PLEKHG4 PLOD3 PLXNC1 PMPCA 



 71 

 

 

 

 

 

 

 

PNPLA6 POC1B POLH POLK POLR2E POLR2K POLR3F POLRMT POM121 POM121C POMP 

POTEKP PPARD PPFIBP1 PPIG PPIL2 PPIL4 PPM1A PPM1B PPP1CB PPP1R10 PPP1R15B 

PPP1R3D PPP2R5E PPP4C PPP4R2 PPP4R3A PPP6C PREPL PRIM2 PRKAA1 PRKCI PRKD2 

PRKY PRMT6 PROSC PRPF39 PRPF40A PRRC2B PSMA2 PSMC2 PSMG4 PSPH PTGR1 PTK2 

PTP4A1 PTPN11 PTPN2 PTPN22 PURA PURB PWP1 PXDN PYHIN1 QARS QPRT RAB14 RAB18 

RAB1B RAB33B RAB39B RAB4A RAB4B RAB8B RABL2A RABL2B RAD18 RAD21 RAD23A RANBP9 

RAP2A RAP2C RASA2 RASGRP3 RASSF6 RB1CC1 RBBP4 RBL2 RBM12B RBM15 RBM17 RBM25 

RBM27 RBMS2 RCHY1 RDH11 REEP3 REST RFK RFXAP RHEB RICTOR RIOK3 RLIM RNF10 

RNF11 RNF115 RNF123 RNF13 RNF138 RNF213 RNFT1 RNMT ROBO1 RORA RP2 RPAIN 

RPL13P5 RPL14 RPL15 RPL18A RPL18AP3 RPL31 RPL38 RPL5 RPL7A RPLP2 RPS10 RPS10P7 

RPS17 RPS4X RPS4XP6 RRBP1 RREB1 RSF1 RSPH10B2 RSPRY1 RSRC1 RSRC2 RSU1 RUFY3 

RWDD3 SAMD4A SAMD9L SAP25 SART3 SBF1 SBF2 SBNO1 SCAMP2 SCAMP3 SCAP SCAPER 

SCD SCLT1 SCRN3 SDCCAG3 SDHAF3 SEC22B SEC23A SEC23B SEC24D SECISBP2L SEH1L 

SENP6 SEPSECS SEPW1 SERINC1 SERP1 SERPINB1 SFPQ SFXN1 SGSM2 SH3BGRL SH3RF1 

SIAE SIKE1 SIN3B SLAIN1 SLAIN2 SLC16A1 SLC16A7 SLC25A1 SLC30A5 SLC35D1 SLC37A3 

SLC38A10 SLC38A9 SLC39A6 SLC9A7 SLX1A SLX1B SMAD2 SMAD4 SMARCA2 SMARCC1 

SMARCE1 SMC6 SMCHD1 SMCR8 SMG1 SMG7 SNAP23 SNAPC3 SNRNP70 SNRPE SNRPN 

SNX19 SNX30 SOCS4 SOCS5 SOD2 SOX15 SP100 SPA17 SPAG1 SPECC1 SPHK2 SPICE1 SPN 

SPTAN1 SQLE SREBF2 SRPK2 SRRM2 SRSF1 SRSF10 SRSF3 SRSF4 SSB SSBP2 ST6GAL1 STAC2 

STAM2 STOML1 STRN STT3B STUB1 STX17 STXBP3 STYX SULT1A1 SULT1A2 SULT1A3 SULT1A4 

SUMO1 SUN1 SUPT3H SVIP SYPL1 TAB1 TAB2 TAF2 TANK TAOK2 TATDN3 TAX1BP1 TBCCD1 

TBCE TBL1XR1 TCEB1 TCEB3 TET2 TET3 TFCP2 TFIP11 TGFBRAP1 THAP5 THAP6 THOC5 

THOC7 THRA THRAP3 THUMPD3 TIA1 TIAL1 TLK1 TLR10 TM2D1 TMCC1 TMED3 TMED7 

TMEFF2 TMEM117 TMEM128 TMEM135 TMEM161B TMEM165 TMEM170A TMEM182 

TMEM209 TMEM219 TMEM222 TMEM231 TMEM5 TMEM55A TMEM64 TMEM69 TMEM87B 

TMEM97 TMOD3 TMX4 TNFAIP8 TNFSF11 TNRC6B TOMM22 TOP1 TPR TRAPPC2 TRAPPC9 

TRIM11 TRIM14 TRIM32 TRIM34 TRIM5 TRIM6-TRIM34 TRMT5 TSC22D2 TSPYL2 TSR1 TTC3 

TTC33 TTC37 TTC39C TTPAL TTYH3 TUBGCP2 TUBGCP6 TULP3 TWF1 TXLNG TXN TXN2 

UBA1 UBAP2 UBB UBE2D1 UBE2D3 UBE2Z UBE3A UBL3 UBN1 UBN2 UFM1 UGCG UPF1 

UQCRC1 USF2 USP11 USP14 USP28 USP32 USP38 USP42 USP46 UTP23 VAMP4 VCPIP1 

VDAC3 VEZT VGLL4 VPS13A VPS13B VPS28 VPS35 WASF2 WBP4 WBSCR16 WDR11 WDR43 

WDR53 WDR6 WDR76 WIPF1 WTAP WWP1 XPOT XRCC4 YEATS4 YIPF3 YIPF4 YPEL3 YTHDC1 

YTHDC2 YY1 ZBED4 ZBTB1 ZBTB10 ZBTB17 ZBTB21 ZBTB34 ZBTB6 ZDHHC21 ZDHHC3 ZEB1 

ZFP1 ZFP30 ZFP36L1 ZFP62 ZFP69 ZFX ZFY ZIK1 ZMYM2 ZMYM5 ZMYM6 ZNF10 ZNF117 

ZNF131 ZNF138 ZNF140 ZNF141 ZNF148 ZNF160 ZNF180 ZNF19 ZNF224 ZNF225 ZNF227 

ZNF230 ZNF234 ZNF253 ZNF254 ZNF256 ZNF257 ZNF260 ZNF264 ZNF267 ZNF268 ZNF273 

ZNF274 ZNF284 ZNF302 ZNF304 ZNF347 ZNF350 ZNF383 ZNF397 ZNF398 ZNF41 ZNF419 

ZNF430 ZNF432 ZNF439 ZNF440 ZNF442 ZNF45 ZNF496 ZNF510 ZNF542P ZNF544 ZNF546 

ZNF548 ZNF555 ZNF565 ZNF569 ZNF57 ZNF571 ZNF576 ZNF585A ZNF594 ZNF600 ZNF607 

ZNF614 ZNF616 ZNF623 ZNF624 ZNF625 ZNF644 ZNF649 ZNF654 ZNF655 ZNF658 ZNF658B 

ZNF664 ZNF665 ZNF670 ZNF675 ZNF680 ZNF7 ZNF700 ZNF701 ZNF708 ZNF709 ZNF763 

ZNF765 ZNF770 ZNF776 ZNF780A ZNF780B ZNF782 ZNF788 ZNF813 ZNF814 ZNF829 ZNF84 

ZNF846 ZNF850 ZNF93 ZSCAN12 ZSCAN30 

 


