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Abbreviations 

 

A-site - Aminoacyl site of the ribosome 

ACT - Aspartokinase, Chorismate mutase and TyrA domain 

AMP – ampicillin 

ATP – Adenosine triphosphate 

aa-tRNA – Aminoacylated tRNA 

CAM – Chloramphenicol 

CC - Conserved cysteines domain 

CFU – Cloning-forming unit 

CTD - Carboxy-terminal domain 

DNA - Deoxyribonucleic acid 

EF - Elongation factor 

EF-G - Elongation Factor G 

EF-Tu - Elongation Factor Tu 

GDP - Guanosine diphosphate 

GPP - 5’phosphorylase 

GTP - Guanosine triphosphate 

HD – Hydrolyze domain  

HPLC - High pressure liquid chromatography 

IF - Initiation factor 

MOPS - (3-N-morpholino) propanesulfonic acid 

MUP – Mupirocin 

NTD - N-terminal domain 

NTP - Nucleoside triphosphate 

ppGpp - guanosine tetraphosphate 

pppGpp - guanosine pentaphosphate 

PTC - Peptidyl transferase centre 

RNA - Ribonucleic acid  

RNAP – RNA polymerase  

rRNA – ribosomal RNA 
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RSHs - RelA/SpoT homologue proteins 

SAH - Small Alarmone Hydrolases 

SAS - Small Alarmone Synthases 

SYNTH – Synthetase 

TGS - ThrRS, GTPase and SpoT domain  

tRNA – Transfer RNA 

TA - Toxin – antitoxin  

TET- Tetracycline 

THIO – Thiostrepton 

TRIM – Trimethoprim 
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Introduction 

 

1. The Stringent Response 

 

Bacterial cells face rapidly changing environmental conditions. In order to survive, they have to 

sense and adapt to the harsh conditions, and to that end they have evolved multiple survival 

mechanisms that modulate bacterial physiology in response to stress.  The so-called the stringent 

response is one of such mechanisms (1). In Escherichia coli the stringent response is mediated by 

two enzymes – RelA and SpoT  – through the regulation of the intracellular levels of the alarmones 

guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred 

to as (p)ppGpp (2). The synthesis of the alormones by RelA activated by the binding of uncharged 

tRNA to the ribosomal acceptor site (A-site) (3, 4) (Figure 1A); GDP/GTP and ATP are used as 

substrates (Figure 1B). Increased levels of (p)ppGpp rewire bacterial physiology, affecting 

translation, transcription, replication, persistence, and virulence (5, 6).  

 

Figure 1 | Molecular mechanism of (p)ppGpp synthesis by E. coli RelA. (A) Amino acid starvation induces the 

synthesis of (p)ppGpp. As a consequence of amino acid starvation deacylated tRNA accumulates in the ribosomal A-

site. This ribosomal state is recognized by RelA, leading to the activation (p)ppGpp synthesis by the enzyme using 

ATP and GDP/GTP as substrates. (B) The RSH-catalyzed reaction of (p)ppGpp synthesis. The figure is adapted from 

(1). 
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1.1 RelA/SpoT Homologue (RSH) protein family 

 

In E. coli RelA/SpoT homologue proteins (RSHs) regulate the concentration of (p)ppGpp in 

response to several stress conditions (7, 8). The RSHs enzymes are classified in two types: ‘short’ 

enzymes that has a single domain and ‘long’ multi-domain RSH enzymes (2). The ‘long’ RHS 

proteins are represented in bacteria by either a combination of RelA and SpoT or by one protein, 

Rel. RelA and SpoT are found in γ- and β-proteobacteria and is has evolved via gene duplication 

and consequent diversification of Rel, an ancestral protein found in the vast majority of bacterial 

lineages (9) (Figure 2). Like SpoT, Rel is bifunctional with active SYNTH ((p)ppGpp synthesis) 

and HD ((p)ppGpp hydrolysis) domains. RelA also has present the HD but is not in an active state 

(2). The ‘short’ single-domain RSHs are specialized proteins that contain either SYNTH or the 

HD domain, Small Alarmone Synthases (SAS) and Small Alarmone Hydrolases (SAHs) (2).  

Under amino acid starvation, and consequent uncharged tRNA, RelA uses ATP and GDP (or GTP) 

to synthesize ppGpp (or pppGpp) in the SYNTH domain (2, 10) (Figures 1 & 2). SpoT enzymes 

are required to respond to a various stress conditions such as phosphate, carbon, iron or fatty acid 

starvation (11). pppGpp is rapidly hydrolyzed to ppGpp by guanosine pentaphosphate 

phosphohydrolase (gpp) (12).   

The HD and SYNTH domains are a part of the N-terminal domain (NTD) (Figure 2). The carboxy-

terminal (CTD) region of ‘long’ RSHs contains four domains:  ThrRS, GTPase and SpoT (TGS); 

helical; aspartokinase, chorismate mutase and TyrA (ACT), and conserved cysteines (CC) (2). 

CTD region of RSHs regulates the catalytic action of the NTD region (13).  
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Figure 2 | Domain structure of the long RSHs and their distribution in bacteria. The coloured boxes representing 

each domain. The HD and SYNTH domains comprise NTD, while the TGS, helical, CC and ACT domains together 

involve the CTD. SYNTH domain in SpoT has a weak synthetic activity, whereas HD domain has no hydrolytic 

activity in case of RelA. Rel has hydrolytic and synthesis domains. The phylogenetic tree that illustrates the 

evolutionary relationships among bacteria that contain RSHs. The arrow indicates the duplication event that led to the 

emergence of RelA and SpoT from an ancestral Rel protein in the lineage of the γ- and β-proteobacteria. The figure 

is adapted from (2).  

 

1.2 Regulation of transcription, translation and replication by (p)ppGpp 

 

Acute accumulation of nucleotide (p)ppGpp coordinates bacterial physiology through an array of 

mechanisms: it causes an abrupt cessation of stable RNA production (14) while inducing 

transcription of amino acid biosynthesis genes (15, 16) and affects transcription of a number of 

other genes (14). 

Regulation of transcription is achieved either directly or indirectly. In E. coli (p)ppGpp binds to to 

RNAP (RNA polymerase) (17, 18) and works together with a small protein DskA (DnaK 

suppressor A) that binds to the second channel of the RNAP (19) and amplifies the effect of the 

alormone (11). In Bacilus subtilis (p)ppGpp does bind to RNAP; instead it affects the balance of 

initiator nucleotides, iNTPs. The GTP pool is depleted via consumption of GTP for formation of 

pppGpp and via inhibition of IMP dehydrogenase, an enzyme that is crucial for GTP synthesis 

(20). The rRNA start with G nucleotide and are, therefore, downregulated by decrease of GTP 

levels.  Similar strategy is utilized in Thermus thermophiles (21) as well as in Firmicute bacteria 

such as Staphylococcus aureus (22), Streptococcus pyogenes (23), Streptococcus mutans (24) and 

Listeria monocytogenes (25).  

The alormone (p)ppGpp also regulates the translation  directly by inhibition GTPase translational 

factors IF2 (6, 26), EF-Tu and EF-G (6). It also inhibits ribosomal assembly by inhibiting GTPases 

involved in that process (27).   

The stringent response affects DNA replication as well in E. coli (6, 28-30) and Bacillus subtilis 

(28). Slow growth rates and nutritional downshifts inhibit replication initiation (28-30).  
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2. Antibiotics 

 

The discovery of antimicrobial agents was one of the greatest medical triumphs of the 20th century 

that revolutionized the treatment of bacterial infections. The antibiotics most used are natural 

products, they come from species of microbe: bacteria or fungi. Antibiotics affect important 

cellular functions by inhibiting drug-target interaction (31) (Appendix 1). Antimicrobial agents 

can be classified based on the cellular component or system they affect, in addition to whether 

bactericidal drugs, inducing cell death, or bacteriostatic that inhibit cell growth (31). However, the 

successful use of any therapeutic agent is compromised by the potential development of tolerance 

or resistance to that compound from the time it is first employed.  A wide range of biochemical 

and physiological mechanisms may be responsible for persistence and resistance. Resistance 

allows bacteria continue reproduce under stressful conditions. Persistence allows a small fraction 

of the population escape from stress in a non-replicative conditions, which can be classified as 

dose-dependent and time-dependent persistence. When the bacterial population is exposed to high 

concentrations of antibiotic and the capacity of the bigger part of the cells in the population is 

reached, but not for the subpopulation – dose-dependent persistence. Whereas a bacterial 

subpopulation has longer lag time or slower growth rate than the majority of the population are 

classified as time-dependent peristence. The difference between tolerance and persistence that in 

the latter it is only a subpopulation that is tolerant to antibiotic challenge, but not the whole 

microbial culture (32). 

 

2.1 Antibiotic tolerance and persister cells 

 

In 1944, Joseph Bigger, discovered bacterial tolerance when he was explored how bacteria were 

killed by penicillin (33). When genetically identical bacteria were exposed to bactericidal 

antibiotic, the bulk of the population was killed. However, after a few hours of treatment, the 

killing rate decreased, revealing the existence of cells which were less sensitive to the antibiotic 

(34). These cells drug-tolerant were dubbed ‘persisters’.   

In the recent years, virulence of pathogenic bacteria (35, 36), antibiotic resistance (18, 37) and 

persistence (38-42) were suggested to be under control of (p)ppGpp. At the same time (p)ppGpp 
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is also the key regulator of bacterial growth rate (43, 44), and the  growth per se is a major factor 

affecting antibiotic tolerance (Appendix 2). Slow growth explains bacterial drug tolerance since 

the cellular targets affected by antibiotics are much less susceptible in slow-growing than in fast-

growing cells (34, 45). In the case of the β-lactam, ampicillin, the killing efficiency is directly 

proportional to the rate of growth (45).  (p)ppGpp and DskA are global regulators of metabolism 

(15, 16) that are mediators of persister cells (38, 39, 41, 46-48). Initially (p)ppGpp was associated 

to the persistence through hipA7, a toxin mutant that required (p)ppGpp for high levels of persisters 

appears (48). Other works show that the native HipA has also shown that its impact on persistence 

requires (p)ppGpp (38-40). The alormone increase persistence levels through its inhibition of 

exopolyphosphatase (ppx), a modulator of the antitoxin degrading Lon (41).  

 

2.2  RSH enzymes as targets for developing new antibacterials 

 

The stringent response has a role in bacterial virulence and tolerance, inhibitors of RSH enzymes 

such as RelA are potentially very promising tools for disarming pathogenic bacteria (49, 50).  

The frist approach to use inhibitors of translation. In the ribosome a deacylated tRNA at the A-site 

triggers the synthesis of (p)ppGpp (3, 4). Tetracycline (51-53) and thiostrepton both are A-site 

specific inhibiting the protein synthesis and inhibiting (p)ppGpp accumulation in bacteria. 

Tetracycline does so indirectly by preventing the stable binding of tRNA to the A-site of the 

ribosome (54). As the deacylated tRNA in the A-site of the ribosome is necessary for the stringent 

response and tetracycline prevents the binding of tRNA, leads to inhibition of (p)ppGpp 

production. Thiostrepton in other hand binds to the ribosome within the GTPase-associated center, 

in a cleft formed between the NTD of L11 and 23S rRNA – an important region for RelA binding 

and activation on the ribosome – and is suggested to inhibit RelA directly (55). Finally, any 

inhibitor of translation would inhibit consumption of aa-tRNA, resulting in increased acylation 

levels leading to an indirect inhibition of RelA. A prime example of this mechanism is 

chloramphenicol (56, 57).  

The second approach for targeting RSHs is development of mimics of (p)ppGpp that would bind 

to the enzyme direct and inhibit it (58, 59). The prime example is Relacin that compounds that 

inhibits RSHs in the test tube and decreases (p)ppGpp production in bacterial cultures (50). That 
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compound affects the production of multicellular biofilm communities, impedes bacterial long 

term survival pathways, being a promising compound to inhibit the effects of stringent response 

(50, 58).   

The third approach is to target (p)ppGpp itself rather than the enzymes that make it. A small 

cationic peptide called 1018 was proposed to do exactly that by degrading (p)ppGpp inside  the 

cells of Gram-positive and Gram-negative bacteria, acting as a broad-spectrum biofilm inhibitor 

(49). 

 

2.3 Cell wall synthesis as target for β-lactam antibiotics 

 

Cell wall peptidoglycan metabolism is inhibited during the stringent response (60, 61). The 

peptidoglycan succulus are made of peptidoglycan chains crosslinked by short peptides and it is 

essential to maintain the cell shape and integrity from the osmotic phenomena and degradation of 

the cell wall (62, 63). Peptidoglycan is located outside of the cytoplasmic membrane of almost all 

bacteria (63). It is involved in the processes of cell growth and cell division (62). One key site of 

inhibition in peptidoglycan synthesis was identified as the terminal step in peptidoglycan 

polymerization corresponding to the activities of the penicillin binding proteins (PBP) (62, 64). 

PBP It is well known that amino acid-deprived bacteria are penicillin tolerant (61, 65). DD-

transpeptidases generate crosslinks between D amino acids in peptidoglycan sacculus (62). The 

DD-transpeptidases belong to the PBP family and are inhibited by of β-lactam antibiotics (60, 62, 

64). A small proportion of the cross-links are unlikely to be generated by PBPs since they involve 

two meso-DAP residues (66). E. coli produces five LD-transpeptidases with two distinct functions: 

ErfK, YcfS, and YbiS anchor the Braun lipoprotein to the peptidoglycan, whereas YcbB and YnhG 

form the meso-DAP meso-DAP peptidoglycan cross-links (66) and are β-lactams insensitive (62). 

These crosslinks are responsible for natural resistance to β-lactams in E. faecium (67). 
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Aim of the project 
 

1) To characterize the connection between (p)ppGpp accumulation and abolishment and ampicillin 

tolerance in wild-type and ΔrelA E. coli. 
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Materials and Methods 

  

1. Growth measurements 

 

E. coli wild type BW25113 and ∆relA strains were grown at 37 ᵒC in MOPS (68) supplemented 

with 0.4% glucose and 25 µg/ml 20 amino acids. The process started with pre-warmed medium in 

a 500 ml flask. Cells were diluted 100-fold from an overnight culture. Then placed in a shaker at 

200 rpm. The cells grown until desired optical density at 600 nm (OD600) of 0.5. The volume of 

the flask was divided into 10 ml in 125 ml flasks. The consequent growth was measured every 

hour for 3 to 5 hours (69). The following antibiotic concentrations were added: 70 µM muporicin 

(MUP) (Applichem), 20 µM and 8 µM chloramphenicol (CAM) (Sigma), 2 µM and 0.75 µM 

tetracycline (TET) (Sigma) and 16 µM  and 19 µM trimethoprim (TRIM) (Sigma) and negative 

control where was no added.  

 

2. Persister measurements 

 

E. coli wild type BW25113 and ∆relA strains were also grown at 37 ᵒC in MOPS (68) 

supplemented with 0.4% glucose and 25 µg/ml 20 amino acids. The process started with pre-

warmed medium in a 500 ml flask, diluted 100-fold from an overnight culture. Then placed in a 

shaker at 200 rpm. The cells grown until desired optical density at OD600 of 0.5. The volume of 

the flask was divided into 10 ml in 125 ml flasks (69, 70). The following antibiotic concentrations 

were added: 70 µM MUP, 8 µM and 20 µM CAM, 0.75 µM and 2 µM TET, 16 µM and 19 µM 

TRIM. 

After 30 min was taken the time point where is no ampicillin (AMP) (Sandoz) and the Colony 

Forming Unit (CFU) were measured. Then 200 µg/ml of ampicillin was added to all flasks, 

including the negative control. The cells were incubated for 5 hours and the CFUs were measured 

every hour. The CFU measurements were done adding 10 µl of cells from each flask in a 96-well 

plate. Dilutions were made until 106. From every dilution 5 µl were tranfered to a Luria-Bertani 
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(LB) agar medium plate. The plates were incubated at 37ᵒC overnight. The CFU/mL were 

calculated.  

To see if the effect of ampicillin was specific was used the same conditions and E. coli strains as 

described above we substituted ampicillin for norfloxacin (NOR) (Sigma) with a concentration of 

5 µg/ml. However were only few antibiotic concentrations used.  

In order to test the effect of imipenem (IMP) (USP Rockville), that is a Ldt inhibitor, the cells were 

killed with 200 µg/ml AMP + 4 µg/ml IMP. The pretreatment antibiotics and respective 

concentration were: 16 µM TRIM + 70 µM of MUP and 16 µM TRIM + 8 µM CAM.  

Ampicillin killing was also performed with E. coli strain lacking functional Ldc genes ynhG and 

ycbB as described above. Except the pretreatment antibiotics were only: 16 µM trim + 70 µM of 

mup and 16 µM trim + 8 µM cam. 

E. coli (p)ppGpp0 cells were grown in MOPS (68) 0.4% glucose 400 µg/ml Serine 40 µg/ml 19 

amino acids (71) and LB medium, then diluted to OD600 of 0.1 in 50 ml of medium. Also the 

volume was divided into 10 ml to 125 ml flasks and incubated at 37 ᵒC. The ppGpp0 cells were 

challenged with 70 µM of MUP; 19 µM TRIM; 70 µM of MUP + 16 µM TRIM. After 30 min, 

200 µg/ml of ampicillin was added to all flasks, including the negative control. The CFUs 

measurements were taken and done as described above. This same set up also was performed for 

wild type BW25113 and ∆relA strains in defined medium to compare all the strains in the same 

conditions.  

 

3. Analysis of muropeptide composition 

 

From 1 ml of overnight culture the cells were grown in pre-warmed MOPS 0.4% glucose 25 µg/ml 

20 amino acids. In the morning, the cells were diluted 100-fold to a final volume of 600 ml. The 

cells were placed in a shaker at 200 rpm and at 37ᵒC and allowed to grow until OD600 of 0.5. For 

E. coli wild type BW25113 the antibiotic concentrations were 70 µM of MUP and the negative 

control (no antibiotics). ∆relA strain was treated with 70 µM of MUP; 70 µM of MUP + 2 µM 

TET; 70 µM of MUP + 16 µM TRIM; and the negative control. Followed by 30 minutes of 
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incubation, the cells were harvested by 10 min at 5000 g at room temperature, washed with 10 ml 

of phosphate buffered saline (PBS). Second wash was done and the pellet was frozen in liquid 

nitrogen. The UPLC analysis was done by Dr. Teresa Del Peso Santos in Felipe Cava lab at Umeå 

University following the protocol described by Cava and colleagues (2011) (72).  
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Results 

 

1. Effects of RelA functionality on ampicillin tolerance in E. coli 

 

(p)ppGpp  was proposed to be the main dreiver of bacterial persistence (38-41). We set out to 

characterize the survival of wild-type BW25113 and an isogenic knock-out delta ∆relA strain upon 

treatment with β-lactam ampicillin, either alone or combined with antibiotics targeting translation, 

cloramphenicol and tetracycline – and thus inhibiting (p)ppGpp production. As one control we 

used mupirocin (73-77) – an inhibitor of isoleucyl-tRNA synthetase (78)  that is inducing stringent 

response. DNA replication inhibitor, trimethoprim, was used as a negative contriol. All of the 

antibiotics were used in concentrations that cause 50% growth inhibition. 

In the Figure 3A (wt) is observed that for almost all the cases that we  added pre-treatment 

antbiotics the cells are killied. However, when the cells are pre-treated with mupirocin is shown 

that this antibiotic protects the cells when we try to kill them with ampicillin. In the Figure 3D 

(∆relA) the same antibiotics and concentrations were apllied. In that graph we can see that all 

antibiotics killed the cells efficiently. This observation tells us that the persisters formation in wild 

type strain is dependent on strigent response, dependent on RelA. Then we tested the cells while 

are challeged to produce (p)ppGpp, with mupirocin, and at the same time inhibiting that production 

Figures 3B (wt) and 3E (∆relA). In the wild-type strain (Figure 3B) we got a strong antibiotic 

tolerance in all the experiments. Nonetheless, in ∆relA strain we obtained cell protection with 

combination of mupirocin with trimethoprim (Figure 3E), telling us that ampicillin tolerance is 

also related to RelA. Since mupirocin is a translation inhibitor and trimethoprim a DNA replication 

inhibitor, we tested trimethoprim in combination with the translational inhibitors, i.e., 

chloramphenicol and tetracycline (Figures 3C and 3D). In wild type strain these combinations 

give ampicillin tolerance to the cells. However, in the relaxed strain the combination of 

trimethoprim with tetracycline confer high levels of persistence, but for trimethoprim with 

chloramphenicol the ampicillin tolerance is not present. 
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Figure 3 | Effects of RelA functionality and antibiotic treatment on ampicillin tolerance in E. coli. The 

experiments were performed in BW25113 E. coli wild-type strain (wt, A-C) and in BW25113 E. coli relA knock-out 

(∆relA, D-F). Antibiotic concentrations are in μM, e.g. mup70 designates pre-treatment with 70 μM mupirocin. The 

bacteria grown in MOPS 0.4% glucose supplemented with 25 μg/ml at 37 ᵒC. Error bars indicate standard error. (A) 

Effects of pre-treatment with individual antibiotics on ampicillin tolerance of wild-type BW25113 E. coli. The 

antibiotics were used at certain concentrations causing 50% growth inhibition. (B) The antibiotics were added in 

concentrations that inhibit stringent response. Moderate effects of chloramphenicol, tetracycline and trimethoprim on 

ampicillin tolerance induced by mupirocin in wild type E. coli. (C) Effects of chloramphenicol, tetracycline and 

mupirocin combined with trimethoprim ampicillin tolerance of wild-type. (D) Absence of effects of pre-treatment 

with mupirocin, chloramphenicol, tetracycline and trimethoprim on ampicillin tolerance of ∆relA E. coli. (E) Induction 

of relA-independent ampicillin tolerance of ∆relA E. coli by the combination of mupirocin and trimethoprim.  (F) 

Effects of chloramphenicol, tetracycline and mupirocin combined with trimethoprim on ampicillin in wild type ∆relA 

E. coli. 
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1.1 Effects if combinations of antibiotics on E. coli growth 

 

Since bacterial slow growth is an important basis for antibiotic tolerance to β-lactam, ampicillin 

(34, 45), we tested the effects of same antibiotic combination on growth in stringent and relaxed 

E. coli (Figure 4). So, was expected that in wild type strain we see growth on the antibiotic 

combinations, in the cells that are treated only with mupirocin, and in the relaxed strain observe 

growth in mupirocin with trimethoprim and trimethoprim with tetracycline.  

The results of the growth measurements for all the combinations and single antibiotic do not show 

bacterial growth, neither in wild-type (Figures 4A and 4B) or in ∆relA (Figures 4C and 4D) 

strains. It is no significant difference between the combinations that we see high persiters levels 

from the combinations that we do not see any tolerance to ampicillin. We can say that the growth 

measurements are not associated to the tolerance to ampicillin that we go, not associated to the 

slow bacterial growth. 
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Figure 4 | Effects of antibiotic combinations on growth in E. coli. The experiments were done in BW25113 E. coli 

wild-type strain (wt, A and B) and in BW25113 E. coli relA knock-out (∆relA, C and D). Antibiotic concentrations 

are in μM. Error bars indicate standard error. (A and C) Antibiotic concentrations that inhibits stringent response. No 

significant bacterial growth in mupirocin induction combinations.  (B and D) Antibiotic concentrations that inhibits 

the growth 2 times combined with 16 µM of trimethoprim, concentration that inhibits stringent response. Here also 

no significant growth in any of the combinations that we can associate to the ampicillin tolerance observed in Figure 

3C and 3F. 

 

2. Effects of RelA functionality on norfloxacin tolerance 

 

Since we obtained a strong protection of the cells when challenged with ampicillin, and to 

comprehend if the sensitivity of the cells is there ampicillin we decided to test a fluoroquinolone, 

norfloxacin, bactericidal that affects DNA gyrase (79). The experiments were done with the 

exactly the same setup for stringent and relaxed E. coli of the killing experiments with ampicillin, 

the only difference was substituting ampicillin for norfloxacin. 

 



  

 20 

Figure 5 | Effects of RelA functionality on tolerance to norfloxacin. The cells grown in MOPS 0.4% glucose 25 

µg/ml 20 amino acids at 37 ᵒC for 5 hours upon adding norfloxacin. (A and C) Single antibiotics concentrations 

represent 50 growth inhibition of the bacteria. Mupirocin doesn’t protect dramatically the cells either in wild-type or 

relA knock-out. (B and D) Antibiotic combinations with trimethoprim. 16 µM of trimethoprim goes to the 

concentration that inhibits stringent response.  In both of the strains we do not have strong protection to norfloxacin 

killing as we saw for ampicillin tolerance experiments. 

When E. coli wild type is killed with norfloxacin with single antibiotics we do not see such a 

dramatic protection for mupirocin as we have when the cells are killed by ampicillin (Figure 5A). 

The antibiotic combinations the strong protection is not there either (Figure 5B). In relaxed strain 

(Figure 5C and 5D) the fluoroquinolone has a modest effect that lead us to assume that RelA is 

not crucial for norfloxacin tolerance either. This suggests a specific mode of action for ampicillin 

tolerance. 

 

3. Cell wall remodeling upon ampicillin treatment 

The high levels of tolerance in case of the cell wall inhibitor (Figure. 5), ampicillin, is not present 

when the cells are killed with inhibitor of DNA gyrase, norfloxacin (Figure 5). We can say that 

the effect of stringent response and its inhibition on antibiotic tolerance is antibiotic specific. The 

ampicillin tolerance can be originated from several mechanisms (80) and also was correlated to 

the growth (45). However, our growth rates measurements (Figure 4) are not correlated to the 

ampicillin tolerance observed (Figure 3). This suggests a specific mode of action for ampicillin 

tolerance. Ampicillin’s molecular target is PBPs (81), DD-transpeptidases generating crosslinks 

between D amino acids in peptidoglycan (62). So, was tested the possibility when the antibiotic 

challenging alters the peptidoglycan composition. The samples were sent to specialists in cell wall 

analysis – Dr. Teresa Del Peso Santos at Felipe Cava’s lab at, Umeå University – to test that 

possibility. An UPLC analysis of peptidoglycan composition was done, where the cells were 

exposed to either to mupirocin only or mupirocin together with trimethoprim. The results revealed 

that the percentage of crosslinks between DAP moieties in the third position - DAP-DAP, or 3→3 

crosslinks - are significantly high in both wild type and relaxed strains upon antibiotic treatment, 

especially in the case of mupirocin and trimethoprim combination (Figures 6A and 6B). Also was 

performed a kinetic analysis of DAP-DAP accumulation in relaxed strain (Figure 6C). In case of 
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mupirocin with trimethoprim combination the fraction of DAP-DAP crosslink increasing more 

than six times from 1.76 % prior to antibiotic challenge to 11 %. However, an expected result came 

out, since a significant increase in the DAP-DAP crosslink is observed upon mupirocin challenge 

only (non-tolerance condition), indicating that the relationship between peptidoglycan remodeling 

and ampicillin tolerance is not direct. 

 

Figure 6 | Cell wall remodeling and ampicillin tolerance. The experiments were performed using E. coli BW25113 

wild-type and ∆relA strains. Both strains were submitted to 70 µM mupirocin, single antibiotic, and ∆relA was also 

challenged with the combination of 70 µM mupirocin plus 16 µM of trimethoprim.  (A) Chromatogram where several 

dimers 70 µM mupirocin of the muropeptides are separated. D34 DAP-DAP dimer (red) was the one that was observed 

accumulation. The YcbB and YnhG LD-transpeptidases generate the meso-DAP3-meso-DAP3 peptidoglycan cross-

links. These enzymes cleave he meso-DAP3-D-Ala4 peptide bond of a donor muropeptide and link the carbonyl of 

meso-DAP3 with meso-DAP3 of the side chain amine in an acceptor muropeptide.  (B) The percentage of DAP-DAP 

crosslinked dimer is variable for between strains and between antibiotic pretreatments. The cells challenged with 

mupirocin, single antibiotic and through high levels of persiters dependent on RelA, in both strains is visible an 
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increase of the cross linked dimer. However, is not observed high persister levels when the cells are pretreated with 

mupirocin in ∆relA strain. In case of antibiotic combination mupirocin with trimethoprim (high ampicillin tolerance 

independent on RelA) is there a significant increase of the DAP-DAP dimer crosslinked. (C) The kinetics analysis of 

DAP-DAP accumulation in ∆relA strain indicates a difference of 9.24% DAP-DAP crosslinked dimer between the 

single antibiotic treatment and the combination of mupirocin and trimethoprim. 

 

3.1 RelA-dependent and RelA-independent tolerance to ampicillin and imipenem  

  

The DD-transpeptidases are inhibited by of β-lactam antibiotics and LD-transpeptidases are 

inhibited by imipenem (64). A combination of ampicillin and imipenem could be efficient in E. 

coli with the different modes of transpeptidation and lysate the cells. In accordance to that 

statement and the increase of DAP-DAP crosslinks (see section 3) come out the question if the LD 

crosslinks would be responsible for the high levels of ampicillin tolerance observed (Figure 3). 

To test that we used the usual E. coli strains, the combination of imipenem and ampicillin with our 

pretreatment combinations. In our case the effect of the killing in both strains show us that the LD 

crosslinks do not have a role in ampicillin tolerance. 

The experiments were performed in E. coli wild type (Figure 7A) and relaxed strains (Figure 7B) 

with the combination of ampicillin and imipenem. Previously in ampicillin tolerance tests (Figure 

3) the pre-treatment combination of mupirocin and trimethoprim gave an independent protection 

of RelA. However, when the cells are killed with ampicillin plus imipenem in both strains the 

protection remains. Regarding the combination of chloramphenicol and trimethoprim protection 

to ampicillin tolerance the protection was not deal with the stringent response. When the cells are 

challenging the in this case with this pretreatment combination the cells are not harshly killed 

either in wild type or ∆relA (Figure 7). The results suggest that the increase of LD crosslinks levels 

are not the source of the effect. 
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Figure 7 | Effects of RelA functionality on E. coli killing kinetics by IMP and AMP combination. The cells were 

challenged with imipenem plus ampicillin, 4 µg/ml, 3 times MIC, and 200 µg/ml respectively. Same experimental 

conditions as the experiments of ampicillin tolerance. The bars represent the standard error. (A) The experiment was 

performed in BW25113 E. coli wild type. Even with the plus of imipenem the cells in case of the combination of 

trimethoprim and mupirocin is not noticeable cellular lysis. (B) E. coli relA knock-out was also used in that test. Also 

here with the combination of the ampicillin and imipenem we still observe a strong protection with trimethoprim and 

mupirocin when are combined. 

 

To further support this statement, we used an E. coli strain lacking functional Ldt genes c (ldtD) 

and ycbB (ldtE) and consequently unable to form 3-3 crosslinks (82). In that case with the same 

previous pretreatment antibiotics setup we obtained strong protection to ampicillin (Figure 8). 
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Therefore, we can settle that the accumulation of LD crosslinks are not linked to our ampicillin 

tolerance. 

 

Figure 8 | Ampicillin tolerance on E. coli ∆ldtE ∆ldtD. The experiment was performed in E. coli ∆ldtE ∆ldtD – 

∆ldtE goes to ycbB and ∆ldtD goes to ycbB, nomenclature for LD-transpeptidases in E. coli that is in accordance with 

other bacteria – the cells grew in MOPS 0.4% glucose 25 µg/ml amino acids at 37 ᵒC. The cells were pre-treated with 

the 16 µM trimethoprim combinations with 8 µM chloramphenicol and 70 µM mupirocin and challenged by 200 

µg/ml ampicillin. In both combinations is remarked high levels of ampicillin tolerance. The lacking of this two Ldt 

genes do not interfere with the ampicillin tolerance observed in E. coli wild-type. In our case infers that also LD 

crosslinks have no role in ampicillin tolerance. 

 

4. The role of SpoT on ampicillin tolerance 

 

The RSH family of proteins are the essential players on (p)ppGpp synthesis (see Introduction 

section 1.1). Since we discarded the potentials of the ampicillin tolerance be related to the 

functionality of RelA and either to LD crosslinks accumulation, one possibility left was to test if 

the bifunctional enzyme SpoT is the key of the ampicillin tolerance. We used a strain named 

ppGpp0 that is lacked of the genes relA and spoT, thus the strain do not produce (p)ppGpp. Came 

out that (p)ppGpp has no role in ampicillin tolerance observed previously (Figure 3). The single 

antibiotics added, mupirocin and trimethoprim, are not strongly killed. However, the combination 

mupirocin with trimethoprim has high levels of ampicillin tolerance (Figure 9). We can 
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accomplish that also SpoT is not responsible for the high levels of persistence that we observe 

when E. coli is challenge by ampicillin.   

 

Figure 9 | Ampicillin killing of E. coli ppGpp0 strain. This ampicillin tolerance test was performed in E. coli 

ppGpp0 lacking both genes relA and spoT. MOPS 0.4% glucose 400 µg/ml Serine 40 µg/ml amino acids at 37 ᵒC were 

the conditions used. The antibiotics applied in a single approach were 70 µM mupirocin and 16 µM trimethoprim, and 

also the combination of these two antibiotics. The cells were challenged with the usual 200 µg/ml ampicillin. The bars 

represent the standard error. Meant for the single pre-treatment antibiotics the killing was not as hard as for E.coli 

∆relA. Concerning the combination of mupirocin with trimethoprim the high levels of persister cells still being 

observed as for wild-type or knock-out relA strains. SpoT is not the key for ampicillin tolerance. 

The original discovery of mechanism connecting (p)ppGpp and antibiotic tolerance in E. coli 

reported increased ampicillin sensitivity for ppGpp0 cells (41, 83). We tried perform our 

experiments with that strain in defined medium, MOPS supplemented with 0.4% glucose and 25 

µg/ml amino acids, which was used to perform all the prior experiments. We failed using that 

medium for ppGpp0 strain, we observed restricted growth and for consequence high level of 

persistence (data not shown).  Increase the concentration of the amino acids especially the amino 

acid serine was an option. Since, serine might contain an inhibitor that prolongs the lag phase 

before growth resumes and a low concentration of the rest of amino acids also helps the growth 

yield be low (71). The minimal medium to perform the experiments with ppGpp0 strain was 

supplemented with 40 µg/ml 19 amino acids and 400 µg/ml of serine. However, persister 

experiments by Maisonneuve and colleagues were done originally in LB medium. It is a complex 

medium where bacteria can alter their physiology to several changes of limiting nutrients and affect 

the growth (84, 85). As was mention previously in case of persistence the growth conditions are 

crucial (45). Therefore, we have performed the following ampicillin killing experiments with 

ppGpp0 strain both in LB and MOPS media comparing the three E. coli used in the entire study.  

In the graph that shows the experiments that were perform in MOPS medium (Figure 10A) is 

observed that the surviving fraction of the three strains do not differ much after the usual 5 hours 

of killing with ampicillin. Thus, in the MOPS supplemented with high concentration of serine 

doesn’t affect differently the physiology of the E. coli strains. Regarding the test in LB medium 

also the cells of the all different strains are pretty much killed at the same order of magnitude 

(Figure 10B). Comparing the values of surviving fraction between MOPS and LB filtrated media 
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the difference of orders of magnitude after of the 5 hours killing by ampicillin is not significant. 

In our case the different medium affect similarly the physiology of the strains that we were working 

with.  

 

Figure 10 | Influence of growth medium on ampicillin killing of E. coli. Three E. coli strains – BW25113 wild-

type, ∆relA and ppGpp0 – were used in both experiments with MOPS 0.4% glucose 40 µg/ml 19 amino acids 400 

µg/ml Serine (A) and LB filtrated (B). No pre-treatment was applied, the cells were only treated with 200 µg/ml 

ampicillin for 5 hours. (A) The strains grown in MOPS 19 aa40 Ser400 are killed at the same level.  (B) In LB filtrated 

the cells are killed better than in MOPS 19 aa40 Ser400 medium (A). However, that difference is not significant. 

Comparing between the surviving fraction in LB filtrated medium the three strains have the same level of killing by 

ampicillin. 
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Discussion 

 

Persisters cells represent a small subpopulation of cells that enter a nondividing state and are 

tolerant to antibiotics. When a population is treated with a bactericidal antibiotic, regular cells die, 

whereas persisters survive. The cells reach this state without undergoing genetic change. The 

antibiotic tolerance to several types of bactericidal and their common incidence may contribute to 

the intractability of chronic and periodic infections. (p)ppGpp is a global regulator and mediator 

of antibiotic tolerance and acute accumulation of (p)ppGpp – the stringent response – was 

suggested to be the driver of persister cell formation. A well-known molecular model (41), where 

(p)ppGpp and TA system play an important role for antibiotic tolerance.  

When we induce the stringent response with mupirocin in E. coli wild-type and in the relA 

knockout strains protection against ampicillin is strictly dependent on RelA (Figures 3A and 3D). 

This suggests that the stringent response can, indeed, cause antibiotic tolerance. However, when 

we inhibit the stringent response by treating bacteria with antibiotics inhibiting translation – 

cloramphenicol and tetracycline – we do not eradicate the ampicillin tolerance (Figure 3B). The 

most surprisingly result when we use antibiotic trimethoprim, inhibitor of DNA synthesis, together 

with the stringent response inducer mupirocin we see potent and RelA-independent protection 

from ampicillin (Figure 3E). The effects described above are specific to E. coli tolerance to β-

lactam antibiotic ampicillin and were not observed in control experiments with another bactericidal 

antibiotic – fluoroquinolone norfloxacin (Figure 5).  

Next we attempted to figure out the molecular mechanism behind the RelA-independent ampicillin 

tolerance induced by antibiotic pretreatment. The main molecular target of ampicillin is PBPs 

enzymes forming crosslinks in cell wall peptidoglycan. We hypothesized that peptidoglycan may 

have undergone a remodeling when the cells are exposed to combinatorial pretreatments with 

antibiotics rendering cell-wall formation PBP-independent. While we did observe the remodeling 

of the cell wall i.e. accumulation of so-called DAP-DAP crosslinks (Figure 6), we showed that 

the said remodeling is not the causative agent of ampicillin tolerance since both genetic (via 

disruption of the Ldt enzymes forming DAP-DAP bridges) or chemicals (using antibiotic 

imipenem that inhibits the Ldt enzymes) did not eradicate the ampicillin tolerance (Figures 7 and 

8). Next we hypothesized that maybe (p)ppGpp is, after all, the key to observed tolerance – but it 
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is not RelA, but another RSH enzyme, SpoT, which is responsible for its production under our 

experimental conditions. We have tested a so-called ppGpp0 strain lacking both RelA and SpoT 

(Figure 9) and it still displayed ampicillin tolerance upon combined treatment of mupirocin and 

trimethoprim.  

Taken together, my data suggest that while (p)ppGpp is important for ampicillin tolerance, it is, 

first, not the only mechanism at play and, second,  the connection between (p)ppGpp and antibiotic 

tolerance is complex. Several studies connect tolerance is motivated by the slow growth (34, 45). 

That is connected with bacterial transition from dormancy in stationary phase to new growth (86) 

that process is affected by the production of (p)ppGpp in a media specific way  (69). A better 

covered studies regarding the role of RelA SpoT Homologue enzymes connecting the antibiotic 

tolerance and the transition from dormancy to new round of growth are necessary, then link to the 

establishment of the bacterial infection. This is the direction I am keen on following up during my 

PhD studies.  
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Conclusions 

 

1. High levels of (p)ppGpp induce ampicillin tolerance in RelA-dependent manner. 

2. However, pre-treatment of antibiotics can cause RelA-independent ampicillin tolerance. 

3. The exact mechanism of this tolerance is unclear. 
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Summary 

 

The stringent response is a near-universal bacterial adaptation system control mediated by 

accumulation of two guanine nucleotides ppGpp and pppGpp, collectively known as (p)ppGpp. 

The response monitors several environmental stress inputs, such as nutrient limitation and heat 

shock and remodels bacterial physiology in order to overcome the challenges. In Echerichia coli 

(p)ppGpp levels controlled by two enzymes – RelA and SpoT, the namesakes of RelA SpoT 

Homologue (RSH) protein family. The stringent response is associated to induction of virulence, 

antibiotic resistance and was recently suggested to be the driving force behind the formation of so-

called persister cells – antibiotic-tolerant phenotypic variants in antibiotic-sensitive population. 

Since drug resistance and tolerance constitute a significant public health threat, understanding the 

connection amongst (p)ppGpp, antibiotic treatment and persistence is of great importance.  

For this thesis I studied the role of presence and absence of accumulation of (p)ppGpp in antibiotic 

tolerance, especially in case of the β-lactam ampicillin that kills cell via inhibition of cell wall 

biosynthesis. The bacterial growth rate is a key factor affecting bacterial tolerance antibiotics, 

and in the case of ampicillin the killing efficiency is directly proportional to the rate of growth. 

(p)ppGpp is expected to contribute to ampicillin tolerance in several ways: first, is a key 

regulator of growth rate, second, third it regulates cell wall synthesis via direct effects on several 

key enzymes involved in the process, third, (p)ppGpp was proposed to induce persistence via 

activation of so-called toxin-antitoxin modules. By following ampicillin killing in E. coli strains 

either having active (wild-type) or inactive RelA (∆relA) under various conditions I have 

dissected RelA-dependent and RelA-independent aspects of ampicillin tolerance. I conclude 

that, first, while elevated (p)ppGpp does drive bacterial tolerance against ampicillin, the effect is 

specific to protection to this antibiotic as opposed to fluoroquinolone norfloxacin and, second, that 

challenging bacteria by antibiotics can cause RelA-independent ampicillin tolerance.   

 

Key words: stringent response, antibiotic tolerance, bacteria, RelA SpoT Homologue enzymes 

 



  

 31 

Resümee 

Poomisvastuse roll Escherichia coli antibiootikumide taluvuses 

Poomisvastus on bakterite seas laialt levinud kohanemismehhanism, mille puhul tõuseb rakus kahe 

guaniinnukleotiidi, ppGpp ja pppGpp ehk (p)ppGpp tase. Selle mehhanismi käivitavad muutused 

kasvukeskkonnas, nagu näiteks toitainete puudus ja kuumašokk; protsessi tulemusel seadistub 

rakufüsioloogia muutunud tingimustele vastupidavaks. Escherichia coli-s kontrollivad (p)ppGpp 

taset kaks ensüümi – RelA ja SpoT, mille järgi on nimetatud ka terve nende valguperekond: RelA 

ja SpoT-ga Homoloogsed (RSH) ensüümid. Poomisvastust seostatakse nii virulentsuse kui 

antibiootikumide resistentsusega. Lisaks on hiljuti pakutud välja, et poomisvastus võiks olla 

peamiseks käivitavaks jõuks nn persister-rakkude – antibiootikumi taluva (ehk tolerantse) 

fenotüübiga üksikrakud muidu antibiootikumi-tundlikkus rakupopulatsioonis – moodustumisel. 

Kuna nii antibiootikumide resistentsus kui tolerantsus kujutavad endast tõsist ohtu inimkonna 

tervishoiule, on äärmiselt oluline uurida (p)ppGpp ja antibiootikumi toime vahelisi seoseid. 

Käesoleva töö käigus uurisin (p)ppGpp akumuleerumise mõju antibiootikumi taluvusele peamiselt 

beetalaktaamse ampitsilliini näitel. Ampitsilliin tapab rakke, inhibeerides rakukesta biosünteesi. 

Bakteri kasvukiirus on tegur, mis määrab sageli antibiootikumide toime tõhususe; ampitsilliini 

põhjustatud tapmise efektiivsus on võrdelises seoses kasvukiirusega. Võib oletada, et (p)ppGpp 

mõjutab bakterirakkude ampitsilliini taluvust mitmel moel: (1) reguleerib rakkude kasvukiirust; 

(2) mõjutab rakukesta sünteesis osalevaid ensüüme; (3) käivitab persister-rakkude moodustumise, 

aktiveerides bakteris nn toksiin-antitoksiin süsteeme. Uurides E. coli metsik-tüüpi ja RelA-

deletsiooniga rakke (∆relA) erinevates kasvutingimustes, olen toonud selgust, millised 

ampitsilliini taluvuse ilmingud sõltuvad RelA-st ja millised mitte. Kokkuvõttes järeldan: (1) 

kuigi (p)ppGpp rakusisese taseme tõus tagab suurema ampitsilliini taluvuse, on tegemist 

spetsiifilise efektiga, mis ei taga kaitset näiteks fluorokinoloonse norfloksatsiini vastu; (2) 

teatud antibiootikumide eel-töötlus võib viia suurema ampitsilliini taluvuseni, mis ei sõltu 

RelA-st. 

 

Märksõnad: bakteriraku füsioloogia; poomisvastus; antibiootikumi taluvus; RelA ja SpoT-ga 
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Appendices 
 

Appendix 1 
 

 

 

Appendix 1 | Antibiotic targets in bacterial cell. The β-lactams antibiotics target the penicillin binding proteins 

blockading crossing enzymes in peptidoglycan layer of cell walls, e.g. ampicillin and imipenem. Vancomycin also 

targets cell wall at D-Ala-D-ala termini of peptidoglycan and lipid II. The quinolones interfere DNA replication by 

trapping a complex of DNA bound to the enzyme DNA Gyrase, a type II topoisomerase, e.g norfloxacin. Protein 

biosynthesis at the ribosome is targeted by several classes of antibiotics, including macrolides, tetracyclines, 

aminoglycosides and oxazolidinones, which block one or more steps involving rRNA and the proteins of the ribosome 

at the peptidyl transferase centre. Rifamycin inhibits DNA-dependent transcription by stable binding, with high 

affinity, to the subunit of a DNA-bound and actively-transcribing RNAP. Trimethoprim and sulphonamides act 

through folic acid metabolism to damage DNA. 
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Appendix 2 
 

 

 

 

Appendix 2 | Antibiotic tolerance induced by transition to stationary phase and by high (p)ppGpp levels.  

(A) At stationary phase cells arrest their growth when treated with ampicillin (red cells). Next the transfer to fresh 

medium cells turn to cells not ampicillin tolerant (grey cells). After an hour the few cells become tolerant to ampicillin, 

although non-tolerant still growing too. (B) The initial culture has levels of high (blue cells) and low (gray cells) levels 

of (p)ppGpp. When the cells are treated with an antibiotic the cells with high level of (p)ppGpp survives – persisters. 

Upon regrowth in a media with no antibiotic the culture gives a heterogenic population with the same antibiotic 

sensitivity as in the initial culture. This image is adapted from (5, 87). 
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Composition of the outgrowth 
medium modulates wake-up 
kinetics and ampicillin sensitivity of 
stringent and relaxed Escherichia 
coli
Vallo Varik1,2,3, Sofia Raquel Alves Oliveira1, Vasili Hauryliuk1,2,3 & Tanel Tenson1

The transition of Escherichia coli from the exponential into the stationary phase of growth induces the 
stringent response, which is mediated by the rapid accumulation of the alarmone nucleotide  
(p)ppGpp produced by the enzyme RelA. The significance of RelA’s functionality during the transition 
in the opposite direction, i.e. from the stationary phase into new exponential growth, is less well 
understood. Here we show that the relaxed strain, i.e. lacking the relA gene, displays a relative delay 
in regrowth during the new exponential growth phase in comparison with the isogenic wild type strain. 
The severity of the effect is a function of both the carbon source and amino acid composition of the 
outgrowth media. As a result, the loss of RelA functionality increases E. coli tolerance to the bactericidal 
antibiotic ampicillin during growth resumption in fresh media in a medium-specific way. Taken together, 
our data underscore the crucial role of medium composition and growth conditions for studies of the 
role of individual genes and regulatory networks in bacterial phenotypic tolerance to antibiotics.

Bacteria face rapid changes in nutrient availability to which they have to adapt: in periods of famine they need to 
slow down their metabolism and growth, and when the food source is abundant again they need to resume their 
rapid production of biomass. The simplest laboratory model of feast-to-famine transition is bacterial stationary 
phase liquid culture diluted into fresh media. The renewed availability of nutrients allows the starved bacteria to 
transition to exponential growth after an initial lag phase. To exercise this metabolic maneuver efficiently, both 
adequate responses to nutrient limitation during the stationary phase and to nutrient abundance upon re-dilution 
are of importance.

One of the key players coordinating bacterial metabolism is the intracellular alarmone (p)ppGpp (see several 
excellent recent reviews on the subject)1–3. In Escherichia coli two enzymes RelA and SpoT, the namesakes of the 
widely distributed RelA/SpoT Homolog (RSH) protein family4, control the intracellular concentration of this 
messenger nucleotide. RelA is a ribosome-associated factor that senses amino acid limitation by directly inspect-
ing the aminoacylation status of the A-site tRNA5. Deacylated tRNA activates RelA’s strong (p)ppGpp synthesis 
activity6, and increased (p)ppGpp levels initiate a multilayered adaptation program. On the transcriptional level 
production of ribosomes is halted7 while expression of amino acid biosynthesis genes is induced8–10. At the same 
time diverse molecular targets are directly engaged by (p)ppGpp11, affecting protein synthesis, DNA replication 
and nucleotide biosynthesis1. While RelA is a one-trick pony, SpoT is a bifunctional enzyme capable of both (p)
ppGpp synthesis12 and degradation13, which mediates (p)ppGpp accumulation during the response to various 
stimuli such as fatty acid14, iron15 and carbon source12 starvation. In addition to responding to nutritional down-
shifts, SpoT maintains basal (p)ppGpp levels during steady state growth16.
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Rapid RelA-dependent accumulation of ppGpp is dubbed the stringent response17 and leads to cessation 
of stable RNA synthesis, inhibition of translation and growth arrest18. Loss of function relA mutants display a 
so-called relaxed phenotype characterized by a waste of cellular resources on continuous production of stable 
RNA during amino acid starvation18, diminished antibiotic tolerance19, and reduced production of glycogen20.

The classical growth curve of bacteria in batch culture contains a lag phase, an exponential phase and a sta-
tionary phase21. RelA mediates rapid accumulation of (p)ppGpp during the exit from exponential phase to entry 
into the stationary phase22, preparing the bacteria for starvation and cessation of growth. Interest in the physiol-
ogy of relaxed (ΔrelA) strains has been reignited in the last decade, since the functionality of ribosome-dependent 
RSH enzymes i.e. RelA in Beta- and Gammaproteobacteria and Rel in the rest of bacterial clades4 has been linked 
to bacterial virulence23 and antibiotic tolerance19. Given the multiple roles played by (p)ppGpp during bacterial 
stationary phase physiology (for review see Navarro Llorens and colleagues24) we set out to systematically char-
acterize how RelA functionality affects re-growth of E. coli from an overnight stationary culture in fresh media, 
a step involved in virtually all microbiological experiments, specifically focusing on the role of amino acids and 
carbon source composition of the outgrowth media.

Results
The growth resumption delay of a ΔrelA strain is dependent on the outgrowth medium and can 
be abolished by the addition of the complete set of 20 amino acids. We used two standard types of 
microbiology media: chemically defined minimal medium M925 and complex Lysogeny Broth (LB) medium26. LB 
is based on a mixture of nutrients originating from a pancreatic digest of casein from cow’s milk and autodigest 
of Saccharomyces cerevisiae, and as different nutrients are sequentially consumed, E. coli cultures undergo a suc-
cession of diauxic shifts along the growth curve27. M9 in its simplest formulation consists of a buffering system, a 
mixture of essential inorganic salts and a carbon source – usually glucose, as is used here – and it satisfies minimal 
nutrient requirements for growth of E. coli, while supplements such as amino acids and vitamins can be added 
separately.

To test RelA’s role in growth resumption, K-12 E. coli wild type strain BW2511328 and isogenic relaxed ΔrelA 
were grown through exponential phase into stationary phase, kept in stationary phase (defined as less than 10% 
increase in OD600 within 1 hour) for 15 hours and diluted into fresh medium. The OD600 of cultures was followed 
throughout the time course. During the initial growth to stationary phase there is no substantial difference in 
the growth of the two strains, both in LB (designated with light beige shading) and M9 (designated with light 
blue shading) (Supplementary Figure 1), just as there is no difference in growth resumption of the wild type and 
the relaxed strain upon LB-to-LB transition (Fig. 1A, quantification of lag and doubling times is summarized in 
Table 1). At the same time, the ΔrelA strain showed a pronounced – around five hours – growth resumption delay 
during transition from LB to M9 medium supplemented with 0.4% glucose without additional supplements such 
as amino acids (Fig. 1D). As a simple numerical measure of the differences in growth resumption, we have plotted 
the ratio of OD600 for ΔrelA to wild type strain (Fig. 1A–F, red trace).

The growth resumption delay of the ΔrelA strain could, in principle, stem from lower effective inoculum size 
as measurements of colony forming units (CFU) do show slightly lower cell count of the ΔrelA strain compared 
to the wild type during the stationary phase (Supplementary Figure 2A). However, cross-inoculation experi-
ments LB-to-M9 and M9-to-LB show that the appearance of the growth resumption delay in the ΔrelA strain is 
specific to the nature of the outgrowth medium, specifically it is present in M9 but not LB (Fig. 1C,D), suggesting 
that reduction of the inoculum size is not the cause of the phenomenon. Washing the cells with M9 during the 
LB-to-M9 transition in order to remove traces of LB has a dramatic effect on the relative growth delay of ΔrelA 
strain: when this step is omitted the effect is considerably less pronounced (compare Fig. 1D,F). However, the 
wash per se is not responsible for the delay, since addition of the wash step during LB-to-LB transition, if anything, 
promotes an earlier regrowth of the ΔrelA strain (compare Fig. 1E,A).

Eventual regrowth of the ΔrelA strain in M9 medium could, in principle, be mediated by a sub-population 
harboring compensatory mutations – a well-documented phenomenon for E. coli strains unable to produce (p)
ppGpp due to a simultaneous disruption in both relA and spoT genes29. However, passage of the wild type and 
ΔrelA strain through a second regrowth phase faithfully replicated the growth delay effect (Fig. 2A), supporting 
the idea of composition of the outgrowth medium being responsible for the effect. Since the growth resumption 
lag was not apparent in LB medium, which has a high concentration of easily metabolizable amino acids27, we 
have tested whether amino acid supplementation of M9 rescues delayed outgrowth of the ΔrelA culture. Indeed, 
the growth resumption delay is rescued by addition of a full set of 20 amino acids (each at 100 μg/ml) to the out-
growth minimal medium (Fig. 2B), suggesting that amino acid limitation in M9 is, indeed, responsible for the 
effect. Measurements of CFUs are in good agreement with the OD600 trace (Supplementary Figure 2B).

Deprivation of methionine, valine and leucine in the outgrowth medium causes a relative delay 
in growth resumption of ΔrelA strain. To test whether any specific amino acid is the limiting factor 
responsible for the delay in the resumption of the ΔrelA strain we tested growth recovery in M9 minimal media 
supplemented with single amino acid drop out sets, M9 supplemented with 0.4% glucose and 19 individual amino 
acids added at final concentration of 100 μg/ml. Deprivation of methionine, lysine or any of the branched-chain 
amino acids (BCAA) – isoleucine, leucine and valine – resulted in a growth resumption delay in both strains, 
although to a somewhat different degree in each case (Fig. 3A,B). The effect, however, was substantially stronger 
in the case of the ΔrelA strain (compare Fig. 3A,B,C).

In order to separate amino acid dropout effects on bacterial growth per se from specific effects on growth 
resumption we have performed the same set of experiments using inoculum of E. coli cells from exponential, 
rather then stationary, phase – an approach that was used in the past to study auxotrophy of relA mutants30–32. 
When switched from minimal M9 medium lacking amino acid supplements into a 19 amino acid medium neither 
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the wild type nor the ΔrelA strain were able to resume growth in isoleucine dropout media for 24 hours of obser-
vation: a well-known phenotype of the K-12 strains33–35 (Fig. 4A,B). This is in stark contrast with the station-
ary phase cultures, which did start regrowth after 3.1 ±  0.1 (wt), 3.4 ±  0.3 (ΔrelA) hours (Fig. 3A,B, Table 1). 

Figure 1. The outgrowth medium defines the growth resumption delay in ΔrelA E. coli strain. The OD600 
values of a wild type BW25113 strain (filled circles) and an isogenic ΔrelA strain (empty circles) were followed 
in LB (A, C and E, light beige shading) or M9 medium supplemented with 0.4% glucose (hereafter M9, light 
blue shading) (B,D,F). The ratio of OD600 for ΔrelA to OD600 of wild type strain (red dotted line) serves as a 
numerical measure of the difference in growth resumption kinetics between the two. Prior to inoculation, the 
seeder culture was kept for 15 hours in stationary phase in either LB (light beige shading) (A,D,E,F) or M9 (B,C) 
media. Cross-inoculation experiments M9-to-LB (C) and LB-to-M9 (D) demonstrate that the growth defect of 
ΔrelA is specific to the outgrowth medium, i.e. present only in M9. During the LB-to-M9 transition (D), cells 
were washed with M9 (indicated by the red triangle on the x axis) to reduce carry-over of medium. The washing 
procedure itself had only mild effect on cells, and if anything, favored growth resumption of ΔrelA cells (E). 
Results are shown as mean values of biological replicates (n ≥  3) and error bars (too small to be seen for some of 
the points) indicate standard error of the mean.
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Additionally, the relaxed strain showed a specific growth delay when leucine is omitted. Tyrosine omission does 
not result in lower stationary phase OD600 when we use exponential phase culture inoculum, but does with the 
use of stationary phase inoculum (compare Fig. 3A,B and Fig. 4A,B).

Addition of individual amino acids does not rescue the growth resumption delay of the ΔrelA 
strain. Next, we set out to determine if the addition of any specific amino acid rescues the relative delay in 
growth resumption of the ΔrelA strain by testing the effects of addition of individual amino acids at final concen-
tration of 100 μg/ml. None of the amino acids reversed the defect; conversely, several amino acids exacerbated it 
for both strains (Fig. 3D–F). Addition of valine and cysteine strongly inhibited the regrowth of both wild type and 
relaxed strain; serine completely inhibited the regrowth of ΔrelA, but not wild type (Fig. 3D,E). Growth inhibition 

Figure

Initial Wash Outgrowth Doubling time, min Lag phase, h

medium step medium ΔrelA wt ΔrelA wt

S1A LB NA NA 26 ±  0.4 25 ±  0.3 NA NA

1A LB − LB 39 ±  0.1 40 ±  1 0.2 ±  0.1 0.4 ±  0.1

1E LB + LB 36 ±  1 40 ±  1 − 0.1 ±  0.01 0.2 ±  0.1

1C M9 − LB 37 ±  1 37 ±  2 0.03 ±  0.02 0.04 ±  0.05

S1B M9 NA NA 58 ±  1 67 ±  2 NA NA

1B M9 − M9 82 ±  7 70 ±  3 4.5 ±  0.2 1.1 ±  0.03

5A M9 + M9 102 ±  0.5 68 ±  0.5 4.3 ±  0.3 1.0 ±  0.5

1F LB − M9 91 ±  3 94 ±  7 3.6 ±  0.07 1.7 ±  0.3

1D LB + M9 82 ±  2 87 ±  6 9.1 ±  0.3 3.4 ±  0.5

2B M9 − M9 + AA 43 ±  0.3 44 ±  1 0.4 ±  0.1 0.6 ±  0.06

5B M9 + M9gly 109 ±  5 123 ±  3 3.8 ±  0.3 2.9 ±  0.2

S3 M9 − M9gly + AA 77 ±  3 73 ±  3 1.0 ±  0.2 1.2 ±  0.1

Table 1. Quantification of the growth kinetics data of wild type and relaxed BW25113 E. coli. Lag phase is 
estimated by fitting the data points used to estimate the doubling time to an exponential growth model as per 
Monod21. M9glc corresponds to M9 medium supplemented with 0.4% glucose; AA indicates to the addition 
of the 20 amino acids set; gly indicates substitution of glucose for glycerol. Detailed description of the media 
composition and growth conditions is provided in the corresponding Figure legends. Bold letters indicate the 
step for which the parameters are quantified. NA signifies that corresponding parameter is not applicable for 
the experiment. SEM is rounded up to one significant digit. Results are reported as mean values of biological 
replicates (n ≥  3), ±  standard error of the mean.

Figure 2. Eventual growth resumption of the ΔrelA strain in M9 is not due to compensatory mutations 
and its regrowth delay can be relieved by the addition of the full set of 20 amino acids. (A) After 15 hours 
in stationary phase in M9 supplemented with 0.4% glucose (hereafter M9), cells were diluted into fresh M9 and 
grown until the stationary phase. After 15 hours in the second stationary phase cells were diluted into fresh M9 
and the OD600 of the second growth resumption of wild type (filled circles) and isogenic relaxed strain (empty 
circles) was followed. (B) The growth resumption delay of the ΔrelA culture disappeared upon addition of 
the full set of 20 amino acids (each at 100 μg/ml) to the outgrowth M9 medium. The ratio of OD600 for ΔrelA 
to OD600 of the wild type strain (red dotted line) serves as a numerical measure of the difference in growth 
resumption kinetics between the two. Results are shown as mean values of biological replicates (A, n =  2; B, 
n =  3) and error bars (too small to be seen for some of the points) indicate standard error of the mean.
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Figure 3. The effects of amino acid composition on transition of wild type and relaxed BW25113 E. coli 
strains from stationary phase to new exponential growth. After 15 hours in the stationary phase in M9 
medium supplemented with 0.4% glucose, cells were gently pelleted, washed with M9 and diluted into fresh 
M9 medium supplemented with either 19 amino acids (A–C) or with one amino acid (D–F). Omitted (A–C) 
or added (D–F) amino acids are indicated by standard three-letter abbreviations with colours grouping amino 
acids to their biosynthesis pathways as per Keseler and colleagues55 with an exception of grey symbols for Arg, 
Pro and His which are synthesized via unrelated ad hoc pathways. Empty symbols designate the M9 medium 
without the addition of any amino acids. Growth resumption was followed for E. coli wild type (A,D) and ΔrelA 
(B,E) cultures. The ratio of OD600 for ΔrelA to OD600 of the wild type strain (C,F) serves as a numerical measure 
of the difference in growth resumption kinetics between the two. The results are shown as mean values of 
biological replicates (n ≥  3). The error bars (too small to be seen for some of the points) indicate standard error 
of the mean and for the sake of clarity are omitted on traces lacking specific effects.
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by valine and cysteine is present when we use exponentially growing inoculum, suggesting that the effect is not 
specific for growth resumption but rather bacterial growth per se (Fig. 4). While the addition of histidine, serine, 
threonine, isoleucine and leucine caused a prolonged lag phase after stationary phase in both of the two strains 
(Fig. 3D,E), the severity of the effect was somewhat different, with serine causing a more pronounced growth 
resumption delay in the relaxed strain (Fig. 3E). The inhibitory effect of serine was absent in the case of exponen-
tially growing cells (Fig. 4C,D).

Switching the carbon source of the outgrowth medium from glucose to glycerol abolishes the 
growth resumption delay of the relaxed strain. Rich LB and poor M9 minimal media dramatically 
differ in amino acid content: while in LB medium amino acids and peptides serve both as building blocks for pro-
tein as well as a source of carbon, ammonium and energy27, M9 usually lacks amino acids altogether and the most 
commonly used carbon source is glucose, as was used in the experiments described above (Figs 1–4). As we have 
shown, the addition of 20 amino acids set to M9 supplemented with 0.4% glucose abolishes the delay in growth 
resumption of the ΔrelA strain (Fig. 2). Importantly, addition of amino acids also decreases the doubling time of 
both the wild type and the relaxed strain almost twice (from 70 ±  3 to 44 ±  1 and from 82 ±  7 to 43 ±  0.3 minutes, 
respectively, Table 1). One could argue the relative growth delay of the relaxed strain in the absence of amino acids 
is merely a consequence of the necessity of relA functionality during slow growth per se, rather then a specific 
effect of the lack of amino acids.

To probe this conjecture, we have performed the regrowth experiments while reducing the growth rate in 
M9 lacking amino acids by substituting the glucose, a preferred carbon source for E. coli, for less optimal carbon 
source, glycerol. This further reduction of the growth rate can be counteracted by the addition of 20 amino acid 
set, which allows us to probe the connection amongst amino acid and carbon source composition, growth rate 
and growth resumption delay in the ΔrelA strain. While the doubling time increases to 109 ±  5 (ΔrelA) and 

Figure 4. The effects of amino acid composition on exponential growth of wild type and relaxed BW25113 
E. coli strains. Individual cultures in M9 medium were started from a single colony, grown up to OD600 of 0.8, 
diluted to OD600 of 0.1 and grown to 0.5. After that cells were gently pelleted, washed with M9 and resuspended 
in fresh M9 medium supplemented with either 19 amino acids (A,B) or with one amino acid (C,D). The results 
are shown as mean values of biological replicates (n =  2). The error bars (too small to be seen for some of the 
points) indicate standard error of the mean and for the sake of clarity are omitted on traces lacking specific 
effects.
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123 ±  3 minutes (wt) in M9 supplemented with glycerol instead of glucose, the relaxed cells initiate the regrowth 
almost early as the wild type (Fig. 5A,B, Table 1). Addition of the 20 amino acids set to M9 medium supplemented 
with glycerol increases the growth rates to the levels similar to that in M9 supplemented with glucose. However, 
the growth resumption kinetics of the relaxed and wild type strains remain unchanged, i.e. ΔrelA and the wild 
type regrow similarly (Supplementary Figure 3, Table 1). Taken together, these results demonstrate that the rel-
ative growth delay of the relaxed strain is modulated by both carbon source and amino acid composition of the 
outgrowth media.

Relaxed strain is killed by ampicillin considerably slower then the wild type during growth 
resumption in M9 supplemented with either glucose or glycerol. The bacterial growth rate is a key 
factor affecting antibiotic susceptibility. In the case of the antibiotic ampicillin the killing efficiency is believed 
to be directly proportional to the rate of growth36. Therefore, the effects of relA’s loss of functionality on growth 
resumption kinetics are expected to alter the antibiotic killing kinetics. To test this conjecture, we followed anti-
biotic killing by ampicillin after stationary phase cultures were diluted into M9 supplemented with either glucose 
(Fig. 5C) or glycerol (Fig. 5D). Surprisingly, the ΔrelA strain was killed considerably slower then the isogenic wild 
type under both conditions. In the case of the wild type strain there is a correlation between the regrowth and 
ampicillin killing kinetics, i.e. the earlier bacteria start regrowth, the more efficiently they are killed by ampicillin. 
At the same time the relaxed strain is killed by ampicillin considerably less efficient then the wild type even in 
if the growth kinetics are very similar in M9 supplemented with glycerol (compare Fig. 5B,D). As a result, the 
effect of relA disruption on ampicillin tolerance is heavily dependent on medium composition: while in the pres-
ence of glucose after 5 hours of incubation with ampicillin – time point that is often used for end-point persister 

Figure 5. The effects of the carbon source composition of the outgrowth media on regrowth kinetics and 
ampicillin sensitivity upon transition of wild type and relaxed BW25113 E. coli strains from stationary 
phase to fresh M9 media. After 15 hours in the stationary phase in M9 medium, cells were gently pelleted, 
washed with M9 and diluted into fresh M9 medium supplemented with 0.4% glucose (A) or glycerol (B), and 
the ratio of OD600 for ΔrelA to OD600 of wild type strain was plotted as a numerical measure of the differences 
in growth resumption between the two strains. To follow the ampicillin tolerance during E. coli regrowth in 
the presence of 0.4% glucose (C) or glycerol (D), the bacterial cultures were treated as described above but the 
regrowth medium was supplemented with ampicillin at 200 μg/ml and cell viability (colony forming units, CFU) 
was measured instead of OD600. Results are shown as mean values of biological replicates (n ≥  3) and error bars 
indicate standard error of the mean.
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measurements, e.g37,38. – the relaxed strain has approximately two orders of magnitude higher persister count, in 
M9 supplemented with glycerol persister frequencies for the two strains are nearly identical.

Discussion
E. coli growth, nutrient availability and RelA functionality. We have systematically analyzed the 
effects of amino acid and carbon source availability, and RelA functionality in K-12 BW25113 E. coli strains 
during their transition from stationary phase to new exponential growth. The RelA-specific effects during this 
transition are confounded by two aspects that one has to consider. First are the defects in amino acid metabolism 
that are specific to K-12 E. coli strains, the workhorse of microbiology for almost a century39. Due to a frameshift 
mutation in one of the central isoenzymes of acetohydroxy acid synthase (AHAS)34, addition of valine to minimal 
medium leads to cessation of growth that can be rescued by the addition of isoleucine, although the exact mech-
anism behind it is still matter of debate8,9,33. We clearly see the valine effect in our experiments (Figs 3 and 4). 
Second is the role of RelA and (p)ppGpp in amino acid biosynthesis. (p)ppGpp is crucial for amino acid synthesis 
as evidenced by both ppGpp0 (i.e. completely lacking the alarmone) E. coli12 and B. subtilis40 being auxotrophic 
for several amino acids including methionine and branched chain amino acids leucine, isoleucine and valine. The 
knock out strain used in the current work, while lacking RelA does have an intact copy of the second enzyme 
synthesizing (p)ppGpp in E. coli – SpoT12. While not directly causing auxotrophy, disruption of relA does lead 
to perturbed regulation of amino acid biosynthesis. Simultaneous addition of “one-carbon” amino acids (serine, 
glycine and methionine, SMG) suppresses bacterial growth, but while the wild type can overcome it, the relaxed 
can not30; and the effect is counteracted by addition of isoleucine31,41. The difference in the behaviors of wild type 
and relaxed strains is likely due the stringent response promoting biosynthesis of branched chain amino acids 
(BCAA), such as isoleucine8,9. We clearly see that omission of one of the BCAA results in RelA-specific retar-
dation of growth resumption (Figs 3 and 4). Cysteine is known to cause transient amino acid starvation in the 
uropathogenic E. coli strain SP53642; the mechanism behind this phenomenon is not understood. We see man-
ifestations of cysteine-induced starvation in our background: while inhibition of wild-type growth is transient, 
growth inhibition is near-complete in the course of 24 hours of observation of the relaxed strain (Fig. 4).

While the effects of amino acid composition on regrowth of the ΔrelA strain were expected, the effects of 
substitution of the carbon source in M9 media from glucose to glycerol were surprising (Fig. 5). In the presence of 
glucose ΔrelA strain regrows with a delay in comparison to the wild type, and in the presence of glycerol the two 
strains regrow equally well. The cause of this is not obvious, connections between (p)ppGpp and carbon metab-
olism are known; for example expression of the receptor protein of the global catabolic modulator cAMP (CRP) 
is under direct negative control of (p)ppGpp43. There are parallels between the effects on re-growth observed in 
this study and previous observations of the differential requirements for RelA in glycogen accumulation during 
amino acid starvation in the presence of different carbon sources44,45. The relA gene is needed when glucose is the 
carbon source, while the high cellular levels of cyclic AMP relieve the requirement for relA when glycerol is the 
carbon source20,45. Moreover, branched-chain amino acid biosynthesis is promoted by cAMP46. Since (p)ppGpp 
and amino acid metabolism are interconnected with carbon metabolism via many other pathways, such as tricar-
boxylic acid cycle47 the connections among carbon source, RelA functionality and re-growth are far from simple.

Bacterial regrowth kinetics is intimately connected with bacterial sensitivity to bactericidal antibiotics: the 
frequency of persisters is reflecting the awakening kinetics48. Increased cellular (p)ppGpp level was suggested to 
be the ultimate driver of persister formation49, and is implicated in antibiotic-specific tolerance mechanisms, i.e. 
protection from ampicillin acting via inhibition of cell wall biosynthesis50. Therefore, one could naively assume 
that the loss of RelA would result in, if anything, lower persister count, which is evidently not the case. Clearly, 
persistence is a multifaceted phenomenon, with media composition and growth conditions playing a major role 
via effects on metabolism51 and growth rate52.

Methods
Bacterial strains and plasmids. The relA deletion strain was constructed from strain BW25113 
(lacIq rrnBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33 ΔrhaBADLD78) as described elsewhere28 using primers relAF 
(CGATTTCGGCAGGTCTGGTCCCTAAAGGAGAGGACGGTGTAGGCTGGAGCTGCTTC) and relAR 
(CAATCTACATTGTAGATACGAGCAAATTTCGGCCTAATTCCGGGGATCCGTCGACC) for tem-
plate PCR. Kanamycin resistance cassette was removed and ΔrelA phenotype was confirmed on SMG plates30 
(Supplementary Figure 4).

Media and growth conditions. Cells were grown with vigorous agitation (200–220 rpm) at 37 °C in LB 
(Becton, Dickinson and Company) and M9 minimal medium (48 mM Na2HPO4, 22 mM KH2PO4, 9 mM NaCl, 
19 mM NH4Cl, 0.1 mM CaCl2 and 2 mM MgSO4)25 or on LB agar plates (Becton, Dickinson and Company). M9 
was supplemented with 0.4% (w/v) carbon source, which was glucose or glycerol. Amino acids were used at a 
concentration of 100 μg/ml, kanamycin at 25 μg/ml and ampicillin at 200 μg/ml. The data presented on Figs 3 and 
4 were obtained using a 96-well plate reader Tecan Sunrise and the reset of the experiments were performed in 
flasks.

Growth recovery experiments. Bacterial cultures were started from single colonies on LB plate and 
grown until OD600 of 0.8. Resulting seeder culture was used to inoculate the experimental culture to start-
ing OD600 of 0.1, which was grown aerobically into stationary phase (20 ml of medium in 125 ml flasks), kept 
in stationary phase for 15 h and directly diluted into fresh medium to OD600 of 0.1 or, during shift from LB 
to M9, harvested by centrifugation and, washed with M9 before transfer into fresh medium. Experiments 
with inclusion of 1 or 19 amino acids were conducted as follows: after 15 h in stationary phase, cells were 
harvested by centrifugation (in carbon source experiments washed with carbon source depleted M9),  
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resuspended to OD600 of 0.1 and grown aerobically in fresh medium on 96-well plates in a volume of 80 μl per well. 
OD600 readings of the 96-well plates (plate reader Tecan Sunrise) were converted to values for 1 cm path length 
(spectrophotometer Thermo Helios β ) (Supplementary Figure 5). The length of the lag phase was determined by 
an intercept between the initial inoculum density (OD600 =  0.1) and the tangent of fastest exponential part of the 
growth curve that determines the doubling time. Lag and doubling times were calculated separately for individ-
ual growth curves (n ≥  3). Data analysis was performed in R53 and the code is provided in the Supplementary 
Information.

Antibiotic killing. 15 h stationary phase cultures were prepared as described above for growth recovery 
experiments. The cells were then collected 10 min at 5000 g at room temperature, washed with M9 0.4% glucose or 
M9 0.4% glycerol, collected and resuspended again and diluted to OD600 of 0.1 in 20 ml medium in 125 ml flasks. 
The following ampicillin killing assays were performed essentially as described in54. A 10 μl aliquot was used for 
a CFU count at the zero hour time point, and then ampicillin was added to the remaining culture at 200 μg/ml. 
During following time course of ampicillin killing, flasks were incubated at 37 °C 200 rpm. Colony forming units 
were determined by series of tenfold dilutions out of which 5 μl was spotted on an LB plate. After overnight incu-
bation of the plates at 37 °C, colonies were counted and CFU/ml was calculated.
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Information sheet 

 

Poomisvastuse roll Escherichia coli antibiootikumide taluvuses 

Poomisvastus on bakterite seas laialt levinud kohanemismehhanism, mille puhul tõuseb rakus kahe 

guaniinnukleotiidi, ppGpp ja pppGpp ehk (p)ppGpp tase. Selle mehhanismi käivitavad muutused 

kasvukeskkonnas, nagu näiteks toitainete puudus ja kuumašokk; protsessi tulemusel seadistub 

rakufüsioloogia muutunud tingimustele vastupidavaks. Escherichia coli-s kontrollivad (p)ppGpp taset 

kaks ensüümi – RelA ja SpoT, mille järgi on nimetatud ka terve nende valguperekond: RelA ja SpoT-

ga Homoloogsed (RSH) ensüümid. Poomisvastust seostatakse nii virulentsuse kui antibiootikumide 

resistentsusega. Lisaks on hiljuti pakutud välja, et poomisvastus võiks olla peamiseks käivitavaks jõuks 

nn persister-rakkude – antibiootikumi taluva (ehk tolerantse) fenotüübiga üksikrakud muidu 

antibiootikumi-tundlikkus rakupopulatsioonis – moodustumisel. Kuna nii antibiootikumide 

resistentsus kui tolerantsus kujutavad endast tõsist ohtu inimkonna tervishoiule, on äärmiselt oluline 

uurida (p)ppGpp ja antibiootikumi toime vahelisi seoseid. 

Märksõnad: bakteriraku füsioloogia; poomisvastus; antibiootikumi taluvus; RelA ja SpoT-ga 

 

Role of the stringent response in antibiotic tolerance of Escherichia coli 

The stringent response is a near-universal bacterial adaptation system control mediated by 

accumulation of two guanine nucleotides ppGpp and pppGpp, collectively known as (p)ppGpp. The 

response monitors several environmental stress inputs, such as nutrient limitation and heat shock and 

remodels bacterial physiology in order to overcome the challenges. In Echerichia coli (p)ppGpp levels 

controlled by two enzymes – RelA and SpoT, the namesakes of RelA SpoT Homologue (RSH) protein 

family. The stringent response is associated to induction of virulence, antibiotic resistance and was 

recently suggested to be the driving force behind the formation of so-called persister cells – antibiotic-

tolerant phenotypic variants in antibiotic-sensitive population. Since drug resistance and tolerance 

constitute a significant public health threat, understanding the connection amongst (p)ppGpp, antibiotic 

treatment and persistence is of great importance.  

Key words: stringent response, antibiotic tolerance, bacteria, RelA SpoT Homologue enzymes 
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