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Kokkuvõtte

Visuaalne kujundlikkuse funktsionaal süsteemi uurimus erineva ajupiirkondade rTMSi  

kasutades

Visuaalse vaimse kujundlikkuse loomus ja selle närvialus on keeruline ning ei ole lõplikult 

mõistetud. Vaimse kujundlikkuse närvialus tundub olema piisavalt hästi selgitatud (pakkub 

rohkem teadmisi selle filosoofiseks ja fenomenaalseks arusaamiseks), kuid osalised sarnasused 

visuaalse tajuga tegelikult teevad taju ja kujundlikkuse aju mehhanismide eristamist keeruliseks. 

Erinevus visuaalse koore rolli mõistmises on oluline ja peab olema õigesti mõistetud. Kui 

visuaalne koor mängib sama rolli nagu taju – kujundlikkus võib olla muudetud selle üheks 

vormiks ja erineda ainult aste, kuid mitte liigi poolest. Kui visuaalne koor funktsioneerib 

erinevalt ja mängib teistsugust rolli, siis kujundlikkus võib olla nähtud kui rohkem iseseisev 

fenomeen, mis jagab mõningaid sarnasusi aste, vaid mitte liigi poolest. Korduv transkraniaal 

magnetstimulatsioon (rTMS) on sobiv viis uurida kausaalne roll valitud aju piirkonnad 

viauaalses vaimses kujundlikuses ja seepärast käesolevas uurimistöös tehti ettepanek, et rTMS 

võub modifitseerida kuhäirib kujundlikkust.

Experimentaalsed tulemused näitavad et statistiliselt olulisis käitumuslikke tulemusi pole nii 

korrektses ülesanne soorituses kui ka visuaalsuse hinnangus. Selline situatsioon võib olla ka 

valimi suuruse kui ka suhteliselt nõrga rTMS intensiivsuse tõttu. Kuna palju uurimused 

kasutavad 1Hz rTMS stimulatsioon ja nende tulemused on signifikantsed, selline uurimus ei leia 

mingi effekti cognitiivse ülesanne jõudluses seotud kujundlikkuse pilte manipulatsiooniga. Üks 

võimalik seletus on seotud  liiga vähe rTMS impulssid. 

300 impulssi iga piirkonna jaoks kasutamine on selles uurimuses põhjustatud selles et kui teha 

rohkem, üldine stimulatsiooni arv ja aeg  ühel  katsepäeval võib väsitama katseisikud, mida 

mõjutab tulemused. Suhteliselt nõrk intensiivsus, mis oli 65% fosfeeni lävest oli kasutatud 

seepärast et tugevam intensiivsus võib fosfäänid tekkima, mida interfereerib kujundlikkuse 

ülesannega.  

Sellise katse peatulemus näitab et selline rTMS protokool ei mõjuta aju piisavalt viisil, mida 

tähendab vajadust uus katseprotokooli kasutada teiste stimulatsiooni reziimidega visuaalse 

vaimse kujundlikkuse fenomeeni uurimises.
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Abstract

The nature of visual mental imagery and its neural basis is complicated and not conclusively 

understood. Neural basis of mental imagery seems to be quite well clarified in general (providing 

more knowledge for its philosophical and phenomenal understanding), but partial similarities 

with the visual perception actually make it complicated to differentiate brain mechanisms of 

perception and imagery.

The specification of the role of visual cortex is essential and its function in relation to imagery 

must be correctly understood. If the visual cortex plays the same role as in perception – imagery 

may be reduced to one of its forms and differ only in degree, not in kind. If the visual cortex 

functions differently and plays a different role, then imagery may be seen as a more independent 

phenomenon, which only shares some similarities in degree, but differs in kind. Transcranial 

magnetic stimulation (TMS) is a proper means to study the causal role of selected cortical areas 

in mental functions and we capitalize on this possibility in the present thesis.

The experimental results reported in this study showed no statistically significant effect of 

correct task performance and vividness ratings as dependent on rTMS conditions. In fact, this 

situation may be due to both small sample size and/or relatively weak rTMS intensity. Although 

many studies using 1-Hz rTMS stimulation have shown behavioral effects, this study failed to 

find significant effects on performance in the cognitive task based on covert manipulation with 

mental images. One possible reason for the absence of effects could be not too many rTMS 

pulses. The use of 300 stimuli for each condition in this study had a reason that overall time of 

one experimental day for each participant would be too long and make them tired, possibly 

jeopardizing the imagery task performance. The relatively small intensity of 65% of phosphene 

threshold was applied because with higher intensities, phosphenes would interfere with imagery-

task performance.

The main result of the present study showing a negative experimental effect is that this rTMS 

design does not affect brain in a proper and/or strong enough manner, which means a necessity 

of new experimental design with different stimulation regimens to be chosen for further 

investigations of mental imagery aiming at exploring the relative roles of the selected cortical 

areas in mental imagery.
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Introduction

The nature of visual mental imagery and its neural basis is complicated and not conclusively 

understood. To put it simply, visual mental imagery is an ability to experience something 

visually without using the eyes. Yet this concept has not been too often within the scope of 

scientific interest. General philosophical problems concerning the nature and scientific relevance 

of the problem of imagery are related to its very existence and its distinction from perception (for 

example, see Finke, 1989; Thomas, 1989; Wittgenstein, 1967; Kosslyn, 1980). These 

controversial issues can be presented as questions:  

1. Does imagery exist as a phenomenon, or is it just seems like one?

2. Does imagery differ from perception in kind or just in degree?

3. Is visual mental imagery truly “visual” (and to what extent)? 

4. Is mental imagery a grounding basis for semantics, or opposite to it?

In the research below I rely on the assumption that imagery is indeed a form of experience. If so, 

it has to be explained, like other scientific concepts (such as electrons, etc.). Referring to 

perception, imagery is a distinct phenomenon, yet sharing many common processes and 

outcomes with perception. However, at least phenomenologically these states are not equivalent. 

Not only the differences appear in vividness and transperancy, but when we experience mental 

imagery, we know it is different  from visual perception. There is also a well known 

philosophical argument defending the phenomonological independance of imagery: its content is 

controlled and/or modulated by our will, compared to what we can do with perception 

(Wittgenstein, 1967; MacGinn, 2004). 

Neural basis of mental imagery seems to be quite well clarified (providing more knowledge for 

its philosophical and phenomenal understanding), but partial similarities with the visual 

perception actually make it complicated to differentiate brain mechanisms of perception and 

imagery. Furthermore, there is evidence of functional, anatomical and phenomenal overlap 

between mental imagery and other cognitive functions as well: such as attention and working 

memory. The idea of this research is to shed some more light on the functional system 

subserving imagery.
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It can be said that mental imagery and perception share internal similarities in their functioning. 

Ganis et al. (2004) summarized several of these findings: 

   1. The interference of visual imagery selectively with visual perception is greater than that with 

auditory perception (Craver-Lemley and Reeves, 1992). 

   2. Scanning greater distances across visualized objects requires more time (Denis and Kosslyn,

1999).

   3. Eye movements made during imagery are similar to those made during perception (Laeng,

Teodorescu, 2002; Ganis et al., 2004).

   4. Both images and percepts encode spatial dimensions and spatial relations among objects 

(Pinker and Finke, 1980). 

   5. Closer visual inspection of an object from different points of view reveals its previously 

unrecognized properties. There is some evidence that manipulation of mental images can also 

reveal patterns in the image that were not apparent when the image was initially visualized 

(e.g., Brandimonte et al., 1992; Chambers and Reisberg, 1985).

  6. Mental imagery and perception share intentionality (Harman, 1998), which may be assumed 

as one of the core properties.   

History knows at least two main types of approaches to the imagery-perception problem: 

“analog” approach, which postulates similarities in visual mental imagery and visual perception 

in terms of their sensory “fabric” and “difference” approach, which emphasizes separate ways of 

functioning and anatomical-physiological distinctions of the two systems. Such dichotomy can 

be explained by the nature of imagery itself and its position, thus this approach is not surprising 

and not confronting. The first one of the above approaches is more widespread. For example, 

some researchers (Finke and Slayton, 1988; Intraub and Hoffman, 1992; Johnson and Raye,

1981) have demonstrated that subjects may confuse between actual visualization of a stimulus 

and mere imagination of having seen it.

Basically, all general ideas of “analog” approaches can be summarized in a cognitive model of 

visualization (Kosslyn, 1980) which puts forward a single visual buffer as being used in a 

‘bottom-up’ manner to “display” visual percepts and a ‘top-down’ manner to “display” visual 

mental images. Mentioned approach also predicts neural and cortical structures of mental 

imagery functional system and propose visual buffer for its performance in the same 

retinotopically organized visual areas of the cortex that are essential for processing vision from 
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external stimuli in case of visual perception (Kosslyn, 1994; Kosslyn et al., 1995; Tanaka et al.,

1991). Along this line, several researchers hold the position that primary visual cortex is 

actively involved in generation of visual mental images in the same functional manner as it 

works during perception and plays an essential role in mental imagery (Douglas, Rockland,

1992; Miyashita, Chang, 1988; Kosslyn, Thompson, 2003; Kosslyn et al., 1996; Kosslyn et al.,

1999; Sereno et al., 2001; Rockland et al., 1992). 

Another but perhaps less popular approach – the ‘difference’ theory -- stands for functional 

separation between perception and imagery. In other words: it pays attention on differences, 

some of which may be critical for strict distinguishing of visualization and visual perception. The 

results mentioned earlier suggest that a functioning visual system may be necessary for 

visualization. However, the nature of activation of the visual system in this condition is not 

similar to perception (for example: Ganis, Shendan, 2008), as well as the role it plays. 

Brain mechanisms of imagery are often studied with fMRI. The fact that a visual area is active at 

some point during a lengthy fMRI scanning period does not necessarily imply that neural activity 

during visual mental imagery is the same as the activity during visual perception. Some 

researchers suggest that visual mental imagery implicates visual processes at higher levels of 

integration than those performed by primary visual cortex (Bartolomeo, 2002), which also 

explains the data from reports of patients with occipital damage and perceptual deficits who 

nevertheless show preserved visual mental imagery (VMI). This point of view can be 

summarized with a following statement: The visual cortex activation may alternatively be 

explained as a type of feedback from higher cognitive areas and/or as a form of 

maintenance for some of the mental imagery properties.

The difference in understanding the role of visual cortex is essential and must be correctly 

understood. If the visual cortex plays the same role as in perception – imagery may be reduced to 

one of its forms and differ only in degree, not in kind. If the visual cortex functions differently 

and plays a different role, then imagery may be seen as a more independent phenomenon, which 

only shares some similarities in degree, but differs in kind.   
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Research question

The main idea of this research is to investigate complex relationship between frontal brain 

regions, which are meant to execute, support and coordinate behavior in a top-down manner 

(including deliberate manipulations of mental imagery), temporal areas, which are connected to 

long term memory (LTM) and thus provide stored information for imagery, and primary 

occipital cortex, which activates during mental image construction and perhaps makes it 

“visible”, including activity necessary for representing features of the imagined objects. In the 

present thesis I take the position of the “difference” approach, which considers imagery as an 

individual phenomenon, with similarities to perception, but not equivalent to it. 

The role of cortical frontal regions, occipital cortex and temporal-occipital junction can be 

investigated and checked with the help of transcranial magnetic stimulation (TMS) technique, 

which perturbs the normal perfomance of the cortical area where it is applied. Typically, 

perturbation by high-frequency repetitive TMS (rTMS) leads to facilitation of function and slow 

rate rTMS (e.g., 1-Hz) causes inhibition. Both imagery vividness and objective imagery task 

performance and its development can be measured in different conditions of targeting rTMS to 

different locations. In what follows I will describe the functional properties of cortical areas 

selected for experimental study and put forward what are the expected outcomes of rTMS 

stimulation of these selected areas.

Prefrontal cortex

Higher cognitive functions are all associated with consciousness and share a property of “being 

held in mind” for a period of time. Several neuroimaging studies indicate that it is associated 

with activity in a system involving both prefrontal cortex and posterior areas, determined by the 

nature and type of cognitive function (Frith, Dolan, 1996). Several studies propose that cognitive 

control and properties of working memory are connected with active maintenance of patterns of 

activity in the prefrontal cortex (Miller, Cohen, 2001), which seems to be extremely flexible and 

can be rapidly and reversibly increased or decreased by molecular signaling events (Arnsten et 

al, 2010).
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Some researches showed that the amount of overlap in activation between imagery and 

perception varied across the brain, and was maximal in frontal cortex (Kosslyn, 2004), which can 

explain the earlier mentioned phenomenological similarities of imagery and perception in a way 

that subject performs similar (executive, exploratory) behavior with regard to the both 

phenomena. In this experiment it can be expected that frontal rTMS will disturb these properties 

so as overall mental imagery development.

Occipital cortex

As it was mentioned earlier, visual cortex is activated during mental imagery (Kosslyn et al., 

1995) and some studies show that functional deactivation of visual cortex can alter the quality of 

such internally generated images (Kosslyn et al., 1999). 

Yet the relationship between prefrontal and occipital cortex is not understood clearly. If we 

accept possible differences in occipital functioning during mental imagery and perception, then 

we nevertheless must give a theoretical explanation to the possible role of the occipital areas. 

Relying on previous knowledge and logic, it can be assumed that occipital cortex makes images 

“visible” and more “perception-like”. In this case, higher occipital activity can lead to increasing 

vividness, but may at the same time also impair executive function (such as imagery task 

performance). One of the main assumptions is that when imagery becomes more perception-like 

(vivid and colored), the brain begins additionally process it in the way as it processes perception, 

which makes imagery less susceptible to the top-down control. In the present research I suggest 

that occipital rTMS will disturb imagery vividness, yet may preserve or even facilitate executive 

control over mental manipulations with imagery, which altogether must lead to decreased ratings 

of imagery vividness after rTMS (compared to sham) combined with unchanging or even 

improving task performance.

Temporal-parietal-occipital junction 

Sevral studies of imagery showed that imagery requires information retrieved from long-term 

memory as well as participation of attention (Kosslyn, Thompson, and Ganis, 2006;  Pearson, 

2001; Pearson, Logie, and Green, 1996). It seems that temporal-parietal junction is also involved 

in processing in a manner of identification and evaluation of salient or unexpected sensory events 

(Corbetta et al., 2000; Arrington, Carr, Mayer, & Rao, 2000; Serences et al., 2005). Another 
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interesting fact is that lesions of the temporal-parietal junction, mainly located in right 

hemisphere, may lead to deficits in the conscious perception of sensory stimuli (Friedrich, Egly, 

Rafal, & Beck, 1998). The junction has been proposed by some authors as interrupter of ongoing 

processes for the analysis of potentially relevant novel visual stimuli (Corbetta & Shulman, 

2002). Several researches also propose that a putative fronto-parietal network may modulate 

visual processing via back projection influences (Ruff & Driver, 2006; Serences & Yantis, 2006; 

Miller & D’Esposito, 2005). In the context of mental imagery it may act as a modulator of 

attention and also may serve as a factor which can influence imagery task performance: it can 

alter accuracy, but preserve or facilitate vividness. 

Because our knowledge in this domain is scarce, the present study can be regarded as an 

exploratory one aiming at getting firsthand knowledge on the relative roles of the 

aforementioned brain areas in mental imagery and its voluntary control. I will use 1-Hz rTMS 

for suppressing the functionality of the selected cortical areas. As a task where measurable 

cognitive performance essentially is based on manipulations within mental imagery I use the 

‘moving spot task’ (Attneave and Curlee, 1983).

Theoretical premises and hypotheses

Consciousness and higher cortical integration levels, such as frontal lobes, play general role in 

mental imagery control and development, but occipital cortex plays the role of additional support 

system and makes imagery more vivid and detailed. More specifically:

1. More expressed frontal activity may facilitate executive functions and performance on mental 

imagery related tasks, but make it less perception-like (less vivid and colored). 

2. Stronger occipital activity can lead to increasing vividness, but lowering executive function 

(such as imagery related task performance) by making imagery less controlled and more 

perception-like (vivid and colored) or leaving it unchanged.

3. Right parietal activation will affect vividness as it is likely to engage the system of attentional 

top-down control either leading to suppression of visual images or facilitation of them.

Thus, main experimental assumptions are:

   1. Occipital rTMS will lead to better imagery task performance, but lower vividness.

   2. Frontal rTMS will lead to poorer imagery task performance.

   3. Parietal rTMS may increase or decrease vividness.
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Method and experimental procedure

Participants 

At first, there were 15 healthy, right-handed individuals (age: 19 – 27 years) recruited for 

participation. The selection criteria included the necessary standardized requirements for subjects 

health and personal history accepted in the TMS research worldwide (e.g., absence of epilepsy,

surgical implants, no pregnance, no relatives in the risk groups, etc.) to provide safety for the 

participating subjects. Each participant signed the informed consent paper where experimental 

methods (such as TMS definitions) and participation criteria as well as possible treatment effects 

were described. It was also explained that if any participant would want to quit the experiment, 

(s)he could do it at once. Each participant was subjected to MRI scan and acquired a MRI image 

of his/her brain necessary for individualized neuronavigation of TMS. During experiment some 

subjects had to be excluded from the final sample. Several participants fell ill (for reasons 

different from the participation in the experiment) and had to quit; thus at the end there were 9

participants: 1 male and 8 females. 

Experimental  design 

For each participant the experimental procedure took two separate days, including 8 rTMS 

blocks and 8 corresponding Attneave and Curlee’s  Moving Spot Task test blocks. There were 4 

rTMS and Moving Spot Task blocks in one day. One rTMS block included 5 minute 1-Hz rTMS 

stimulation of the selected brain region. Stimulation was applied to the following areas: left and 

right dorsolateral prefrontal cortex (DLPFC), left and right occipital cortex (OCC, or V1), left 

and right occipito-temporal junction (Junction) and left and right sham conditions. The 

stimulation order was specially grouped to avoid repetitions and exclude the stimulation order 

artefacts on behavioral results. Each Moving Spot Task test was presented right after a rTMS 

block containing 10 imagery-task trials. No more imagery-task trials per block were used 

because the rTMS aftereffect can not last very long. Number of trials with correct responses, 

corresponding to each TMS condition were assessed. After each trial a subjective visibility scale 

with 4 gradations from complete invisibility to full visibility was presented where each

participant evaluated how clear and vivid his mental imagery was during the imagery test. 

Correct trials and vividness level were compared.
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Moving Spot Task

The Moving Spot Task was chosen because of its informational content: it gives both behavioral 

data of correct and wrong trials, which in turn can measure task perfomance and accuracy, and 

also allows for evaluation of subjective experience of vividness and clarity of the mental images 

underlying covert manipulations with an imagined object. For each participant a grid with 36 

cells (6x6) was presented on computer monitor, with a dot (spot) positioned in a randomly 

selected grid cell. The grid was presented and its presentation parameters controlled by a desktop 

computer. After 1500 milliseconds necessary for remembering spot position it disappeared and 

participants closed their eyes, imaging the grating with the spot. Thereafter, commands followed 

indicating the next position the spot had to be mentally moved within the grid, by steps of one 

grid cell at a time (“right”, “left”, “up” or “down”). Thus, the spot had to be mentally moved in 

the direction specified by the commands which were given ten times with 0.4 seconds interval 

between the commands. Subjects had to specify the final position the spot arrived and report it. 

Errors of performance were recorded. The inter-command interval was specially calculated 

before the main experiment in a pilot study so that in normal conditions people would make 

mistakes in about 40% of trials (for this calculation the person not included in participant list 

made several trials with different interval lengths). 

TMS

The format of repetitive transcranial stimulation (rTMS) was applied using the Nexstim OY 

stimulation and neuronavigation system equipped with a figure-of-eight coil for biphasic TMS-

stimuolation protocol. Navigation of TMS focus locations vis-à-vis the cortical areas was aided 

by the MRI based NBS visualization system that can be used online with experiment in real time. 

The rTMS target locations were indicated on individual MRI brain images, which can be 

“peeled” to different depths. Momentary locations of TMS focus were displayed on-line. 

Mapping and navigation was aided by infrared stereo-camera which allows get 3D information 

from the special reflectors mounted on subjects’ head and TMS coil. Before the experiment, 

individual head size and reference point locations of that particular subject’s head-brain were 

entered to the system by the pencil with similar reflectors as used on TMS coil and subject’s 

spectacles. The rTMS trains were applied 4 times during first day of experimental procedure and 

4 times during second day – each time for each brain region. After application of rTMS the 

behavioral task began. Before the experiment, individual phosphene thresholds (PTs) of 
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stimulation were determined by stimulating the primary visual cortex. 

The stimulation intensity used during the experiment was set at 65% of each participant’s PT to 

avoid interference from phosphenes. During the experiment, rTMS was delivered with a 

frequency of 1Hz over 5 minutes which resulted in 300 stimuli for each condition. Participant 

also received TMS treatment in a sham regimen where the coil focus is drawn away from the 

critical location of the scalp and oriented parallel to the scalp. Frontal and occipital TMS 

conditions were compared.
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Behavioral results

Descriptive statistics 

Means of correct task performance and visibility ratings for all rTMS conditions and both sham

conditions are presented in Table 1. Mean visibility ratings of each participant for each rTMS 

condition are presented in Table 2 in Appendix.

           Table 1: Means of correct answers and vividness for all rTMS conditions and sham.        

     RPFC – right prefrontal cortex, LPFC – left prefrontal cortex, ROCC – right occipital cortex,         

      LOCC – left occipital cortex, RJUN – right temporal-occipital junction, LJUN -- left  

      temporal-occipital junction. LSHAM and RSHAM are left and right sham.

Correct task performance

The principal results of this experiment are as follows. As a statistical tool for effect assessment 

two-way repeated measures ANOVA was applied with rTMS conditions and laterality as factors. 

Analysis showed no significant effects in correct task performance between rTMS conditions 

condition Mean proportions 

for correct 

answers

Standard 

deviation

Means for 

vividness ratings

Standard 

deviations

RPFC 0.4778 0.50230 2.5222 0.85101

LPFC 0.5556 0.49969 2.5667 0.73515

ROCC 0.6000 0.49264 2.5444 0.76674

LOCC 0.5444 0.50081 2.3778 0.90663

RJUN 0.5444 0.50168 2.7111 0.96273

LJUN 0.4667 0.49023 2.5222 0.82418

RSHAM 0.6111 0.49831 2.6889 0.89499

LSHAM 0.4333 0.49950 2.6444 0.78341
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[F(3,24) = 0.580; p = 0.633]. For better visualization of results number of correct answers of all 

9 participants is presented in Figure 1. For exploration of possible tendencies, several post-hoc 

tests were applied, yet none of the possible effects exist on significant level. It appears that there 

is also no laterality effect [F(1,8) = 5.025; p = 0.055] for correct task performance. The p value at 

first sight indicative of a tendency may be accidental, caused by a strangely low level of the 

results with left-side sham stimulation.

Vividness 

According to repeated measures ANOVA, there is no statistical differences in visibility ratings 

both between rTMS conditions [F(3,24) = 1.188; p = 0.335] and for left-right hemisphere 

comparison [F(1,8) = 0.948; p = 0.359]. Figure 2 illustrates mean level of vividness ratings.   

Figure 1:Number of correct answers for each rTMS condition. RPFC – right prefrontal cortex, 

LPFC – left prefrontal cortex, ROCC – right occipital cortex, LOCC – left occipital cortex, 

RJUN – right temporal-occipital junction, LJUN -- left temporal-occipital junction.
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Figure 2: Vividness ratings for each rTMS condition. RPFC – right prefrontal cortex, LPFC –
left prefrontal cortex, ROCC – right occipital cortex, LOCC – left occipital cortex, RJUN – right 
temporal-occipital junction, LJUN -- left temporal-occipital junction.

Figure 3: mean vividness ratings in each rTMS   Figure 4: mean number of correct answers 
condition (varying lateraitly).                              as a function of subjective vividness ratings.
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Correct task performance in relation to vividness

There is a weak positive correlation between correct answers and vividness (r = 0.2111; p <

0.01). There is a possible tendency observed in Figure 4 that highest correct task performance is 

connected to vividness level above average (“almost visible”), yet a further increase in vividness 

may lead to accumulating mistakes would this result be supported by data from more extended 

studies. 

Effects of accumulating experience 

There is no significant effect of accumulating experience during two days of experiment neither 

in correct task performance [F(1,8) = 1.452; p = 0.262], nor in visibility ratings [F(1,10) = 0.214; 

p = 0.886]. 

Individual differences

There are statistically significant individual differences in mean levels of participants’ correct 

task performance during all rTMS conditions and sham. For testing the significance, one-way 

ANOVA was applied with participant numbers as factors and correct answers as dependent 

variable. The results are the following: [F(1, 8) = 15.154; p < 0.0001] for correct task 

performance and [F(1, 8) = 23.088; p = 0.0001] for vividness. This shows that subjects perform 

the moving spot task with different efficiency.

                                                            
1 In this case of two rank-variables both Spearman and Kendall’s correlation were used. Kendall’s tau coefficient 
was r = 0,197  
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Discussion

The lack of statistical significance both for behavioral results and visibility ratings questions the 

hypothesis and can not support it. There is no statistically significant effect of correct task 

performance or vividness ratings as dependent on rTMS conditions. In fact, this situation may be 

due to high individual differences in levels of correct task performance in concert with a 

relatively small sample size, or perhaps insufficient influence of rTMS, but it also may represent 

real situation as it is, indicating that the present experimental paradigm is not well suited for 

studying involvement of the selected cortical areas in executing covert mental operations 

necessary in imaging.  

It may seem that correct task performance should also be impaired by rTMS compared to sham. 

The absence of this effect can be alternatively explained not only by high individual differences 

in levels of correct task performance combined with a relatively small sample size, but may be 

also due to a considerably more substantial effect of the cognitive control mechanisms compared 

to the effects of rTMS. There may be two possible explanations of such results. First is that 

rTMS in this experiment made not enough effect. The second is concerning mental imagery 

itself. In general, it is widely accepted that high-frequency rTMS increases cortical excitability

and low-frequency stimulation produces the opposite effect (Chen and Seitz, 2001). In case of

this research, low-frequency stimulation (1Hz) was used to decrease cortical excitability, in order 

to interrupt places of rTMS application.  According to one recent review of rTMS influence 

(Fitzgerald et al., 2006) in 6 experiments using 1Hz stimulation, 5 have reported no change in 

cortical facilitation\inhibition effect and this could be the case why in the present study effects 

were absent. However, the cited review analyzed motor-cortex excitability, but our rTMS targets 

were in different locations for which disruptive effectiveness of 1-Hz rTMS has been repeatedly 

shown (for references see Karton & Bachmann, 2011; Murd, Einberg, Bachmann, 2012). 

Nevertheless, perhaps higher frequencies in contrast might have more significant impact, yet in 

this study higher frequency were not used. Thus, in future research this is one idea to be tested.

In some studies that report significant changes with 1-Hz stimulation (Trojano et al., 2006) 600 

TMS stimuli instead of 300 for each condition were used. The use of 300 stimuli in this study 

has a reason: overall time of one experimental day for each participant would be too long and 

make them tired. 
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Another aspect is connected to stimulation intensity. Some researchers report effects with 

intensity of 100% of subject’s motor threshold (Beaken et al., 2011), and here just 65% of 

phosphene threshold intensity was applied. The reason was occipital stimulation: with higher 

intensities, phosphenes would interfhere with visualization of imagery. 

In an experiment on top-down visuo-spatial processing functional anatomy Aleman et al. (2002) 

used rTMS protocols with much stronger rTMS treatment than in this experiment: 20 min 2-Hz 

stimulation with 90% of motor threshold intensity. For reasons mentioned, this experiment could 

not afford that. 

Alternative explanation of the lack of positive results may be the nature of mental imagery. For 

example, Kosslyn et al. (2002) used rTMS to test occipital cortex excitability during mental 

imagery and found positive results, but their experimental design proposed extremely high

frequency rTMS stimulation (300+ Hz) for a short period of time to obtain activation, not 

inhibition. It seems logical to assume, that centers responsible for visual perception are involved 

in imagery. One result in our study is consistent with the “analog” theory of visual imagery: 

there was a positive correlation between correct responses and vividness ratings.

Earlier in the discussion, we tentatively attributed the lack of effect to the small sample size. Yet, 

Figure 1 and values of the individual results of the subjects (Tables 1 and 2) show that the 

directions of the differences between rTMS conditions and sham conditions are haphazard. This 

suggests that even with a larger sample, but preserving the present experimental protocol the 

results may nevertheless remain negative.
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Conclusion

The lack of behavioral results both for correct performance and vividness can not support nor 

decline the hypothesis. There is no statistically significant effect of correct task performance and 

vividness ratings as dependent on rTMS conditions. In fact, this situation may be due to both 

small sample size, unoptimal parameters of rTMS such as its intensity, number of pulses, etc.

Quite many studies have reported effects of 1Hz rTMS stimulation on cortical

activation/inhibition and related behavioral effects, including when moderate rTMS intensities 

have been used (e.g., Karton & Bachmann; Murd et al., 2012). It may be that while their tasks 

were different, imagery performance may need different protocols of rTMS esperimets. Higher 

frequencies could have more significant impact on brain, yet in this study higher frequency could 

not be used because it rather increases cortical excitability and activation (for example, of visual 

area) which was not desirable in the present study because of the nature of the hypotheses. The 

use of 300 stimuli for each condition (which is rather small amount) in this study had a reason 

that overall time of one experimental day for each participant would be too long and make them 

tired

In addition to the possible problems with rTMS protocol and sample size it could be assumed

that our rTMS design does not affect brain in a proper and strong enough manner, given the task 

of moving a spot mentally. Alternatively, it could be speculated that perhaps mental imagery 

itself is not affected by rTMS or even that aforementioned cortical structures do not play a role in 

this phenomenon. However, given the earlier fMRI and TMS research referred to in the 

introduction, this conclusion could not be logical and true. As demonstrated in numerous 

previous experiments, concerning functional anatomy of imagery, occipital cortex and frontal 

cortex in terms of its top-down regulation mechanisms definitely participates in fully functioning 

imagery. 

To conclude, with the lack of the significant rTMS effect on mental imagery functional system in 

the present experiment, a new experimental design with higher stimulation durations and/or 

intensities must be chosen for further investigations of this phenomenon.  
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             Appendix 1

  

Pt 1 Mean Pt 2 Mean Pt 3 MeanPt 4 Mean Pt 5 Mean Pt 6 Mean Pt 7 Mean Pt 8 Mean Pt 9 Mean

RPFC 3,3000 2,0000 3,9000 2,1000 2,2000 2,6000 3,0000 1,9000 1,7000

LPFC 2,8000 1,8000 3,9000 2,3000 3,1000 2,0000 3,0000 2,0000 2,2000

ROCC 2,9000 2,0000 3,7000 2,5000 2,5000 2,0000 3,5000 2,0000 1,8000

LOCC 2,9000 2,0000 4,0000 2,4000 1,0000 2,5000 3,0000 2,0000 1,6000

RJUN 2,7000 2,1000 3,8000 2,6000 4,0000 2,1000 3,6000 1,6000 1,9000

LJUN 2,8000 2,0000 3,7000 2,6000 2,4000 2,3000 3,1000 2,0000 1,8000

RSHAM 3,3000 2,0000 3,8000 2,6000 3,5000 2,4000 2,9000 2,0000 1,7000

LSHAM 2,6000 2,4000 3,8000 2,4000 2,7000 2,5000 3,6000 2,0000 1,8000

Total 2,9125 2,0375 3,8250 2,4375 2,6750 2,3000 3,2125 1,9375 1,8125

Table 2: mean visibility ratings of each participant (Pt) for each rTMS condition; RPFC – right 

prefrontal cortex, LPFC – left prefrontal cortex, ROCC – right occipital cortex, LOCC – left 

occipital cortex, RJUN – right temporal-occipital junction, LJUN -- left temporal-occipital 

junction.
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