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ABSTRACT

It was Claude Shannon who started the whole area of information theory back in
1948. His fundamental result was as follows: whatever bad channel you have,
there is always a way to send information reliably (i.e. with vanishing probabil-
ity of error) if you encode large enough blocks of information together. In this
thesis, we consider linear codes (which are in fact linear subspaces) over the bin-
ary erasure channel (BEC). This channel allows only one kind of error: a bit can
be erased. Otherwise the correct value of the bit is received.

In the early 1960s Robert Gallager suggested new linear codes named low-
density parity-check (LDPC) codes. They allow for fast iterative (more precisely,
message-passing) decoding. However, the performance of short and medium-
length codes is suboptimal. On the BEC, it is known that the parity-check matrix
used for message-passing decoding can be extended by adjoining redundant rows
in order to improve decoding performance. Chapter 2 is dedicated to improvement
of upper bounds on the number of these redundant rows (so-called stopping re-
dundancy). We improve the best-known bounds and also generalise the concept of
stopping redundancy. The chapter also includes extensive numerical experiments
to support the theoretical material.

Another problem, known as compressed sensing, started from works of Em-
manuel Candès and Terence Tao, and independently David Donoho. It was ob-
served that many important signals can be represented as sparse vectors. The au-
thors suggested to compress such signals on-the-fly, implicitly multiplying them
by a measurement matrix. However, the problem of reconstructing the original
signal is proven to be NP-hard. Thus, many alternative suboptimal algorithms
were suggested. One of them, the interval-passing algorithm (IPA), is the cent-
ral for the second half of the thesis. More precisely, we ask a question what are
the conditions for the algorithm to fail or to succeed. In Chapter 3, we give a
complete graph-theoretic criterion of failures. As a case study, we analyse parity-
check matrices of array LDPC codes and obtain many results on their failures
when used as measurement matrices for the IPA.

In this thesis, we consider failures of both message-passing decoding of LDPC
codes and the IPA for compressed sensing. We find many similarities between
these two problems and techniques used for their analysis.
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1. INTRODUCTION

The only excuse for making a useless thing is that one
admires it intensely.

—Oscar Wilde, The Picture of Dorian Gray

In this chapter, we introduce the required concepts and notation, as well as give
an overview of the existing results.

We start with basic definitions and then review some of the standard concepts
and facts about channel coding. Next, we discuss main decoding principles and
algorithms and introduce the concept that is central for Chapter 2, stopping re-
dundancy of a linear code.

After that, we compile some basic facts from the field of compressed sensing
in Section 1.3. We look more closely at the interval-passing algorithm (IPA).

We accompany the material with detailed examples.
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1.1. Basic definitions

Consider a finite field F and let x = (x1, x2, . . . , xn) be a vector1 of length nwith
entries from F. A support of a vector is the set of indices of non-zero entries in
the vector:

supp(x) = {i : xi 6= 0}.

The Hamming weight of a vector is the cardinality of its support:

w(x) = | supp(x)|.

For two vectors x and y, we define the Hamming distance as the number of
positions they are different in. In other words,

d(x,y) = w(x− y).

For a positive integer n, we denote [n] , {1, 2, . . . , n}.
Let H = (hji) be an m× n matrix. We associate with H the bipartite Tanner

graph G = (V ∪ C,E), where V = {v1, v2, . . . , vn} is a set of nodes corres-
ponding to columns of H , C = {c1, c2, . . . , cm} is a set of nodes corresponding
to rows of H , and E is a set of edges between C and V . We will often associate
V with [n] and C with [m]. There is an edge in E between c ∈ C and v ∈ V if
and only if hcv 6= 0.

We also denote the set of neighbours for each node v ∈ V and c ∈ C as
follows:

N (v) = {c ∈ C : (c, v) ∈ E} , (1.1)

N (c) = {v ∈ V : (c, v) ∈ E} . (1.2)

Furthermore, if T ⊂ V or T ⊂ C and w ∈ V ∪ C, then define

N (T ) =
⋃
t∈T
N (t) and NT (w) = N (w) ∩ T .

1.2. Stopping redundancy hierarchy

1.2.1. Communication problem

In his groundbreaking paper [47], Shannon suggested separating the general com-
munication problem into source coding and channel coding. The source encoder
converts a source message—which can be a text, multimedia, or other kinds of
data—into a stream of symbols from some alphabet. In most of the cases, this
alphabet is a field, and in particular the binary finite field F2, i.e. the symbols are
bits. The source encoder also attempts to remove as much redundancy as possible
from the original message, e.g. by applying some compression algorithm. At the

1Throughout the thesis, we use the terms “vector” and “word” interchangeably.
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Encoder Channel

Noise

Decoder
u x y x̂

Figure 1. Noisy channel transmission.

next, separate stage, the channel encoder transforms this stream of symbols by
judiciously adding redundancy in order to overcome the noise arising from the
channel.

In this thesis, we consider only the channel coding problem. That is, we have a
sequence of symbols as an input. Fig. 1 schematically describes a general setting
of transmission over a noisy channel. Due to noise, the channel output y is in gen-
eral different from the channel input c but stochastically depends on it. The time
is usually discrete (and synchronised) and we can denote the channel input and
output at time t as xt and yt, respectively. The channel is said to be memoryless,
that is, the output at time t depends only on the input xt, and the conditional prob-
ability distribution P {yt | xt} does not change with time. Namely, for mutually
independent x1, x2, . . . , xT ,

P {y1, y2, . . . , yT | x1, x2, . . . , xT } =
T∏
t=1

P {yt | xt} .

If the output alphabet is continuous, P {· | ·} should be understood as probab-
ility density function instead. However, in this work, we only consider discrete-
output channels unless opposite stated explicitly.

According to Shannon’s channel coding theorem, for each channel—i.e. for
each distribution P {yt | xt}—there exists a supremumC of achievable rates,C ∈
[0, 1], called the capacity of the channel. More precisely, for each R < C, there
is a way to encode and decode the input symbols in such a way that the ratio of
information in the transmission is R (in other words, the ratio of redundancy is
1−R) and decoding error probability vanishes when large enough blocks of data
are encoded together.

Elias introduced a model of the erasure channel in 1954 as a toy example (cf.
[12]). In spite of that, with the expansion of computer networks and, substantially,
Internet, this channel attracted much of attention in “real world”. It can be seen
as a model for the network with packets that can either arrive unchanged or be
lost completely—for instance, if time limit exceeded. Besides, many properties
and results obtained in an easier way for erasure channel further remain valid in a
much broader context—which is rather unforeseen.

The main setting we are interested in is the binary erasure channel (BEC).
Definition 1. The binary erasure channel (BEC) with erasure probability p is a
discrete memoryless channel with input xt ∈ F2 and output yt ∈ F2 ∪{?} (where

3
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1

xt

0

?

1
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1− p

p

p

1− p

Figure 2. Binary erasure channel.

? denotes erasure) with conditional probability distribution

P {yt | xt} =


p for yt =? and xt ∈ F2,

1− p for xt = yt ∈ F2,

0 otherwise.

The bits are transmitted over the BEC one by one. Each bit xt is erased with
the probability p and remains unchanged with probability 1− p, independently of
other bits (see Fig. 2). The capacity of the BEC is 1− p (cf. [40, Sec. 3.1]).

1.2.2. Codes and ensembles

As it was stated above, it is beneficial to encode data in larger blocks. A block
code over the finite field F is defined as any non-empty subset of Fn, the set of
length-n vectors with entries from F. However, we restrict ourselves to linear
codes only and we consider Fn as a vector space.
Definition 2. Let F be a finite field. The linear (block) code of length n is any
(non-degenerate) subspace C of the vector space Fn.

We interpret elements of C as row vectors and call them codewords of C. Di-
mension k of C as a vector space is called the dimension of the code. From the
definition it follows that |C| = |F|k. The ratio R = k/n is called the rate of the
code.

Fix some k codewords from C that form a basis and write them as rows of a
k × n matrix G. Then G has the rank k and it holds that

C =
{
x ∈ Fn : x = uG,u ∈ Fk

}
.

Such G is called the generator matrix as it generates all the codewords when u
iterates through Fk. We note that different generator matrices can describe the
same code C.

The general setting is the following (cf. Fig. 1). The information one wants to
transmit is split into blocks of k symbols and each block u ∈ Fk is then mapped
by the encoder to a codeword x = uG, of length n. Therefore, each codeword
intrinsically carries k information symbols and r , n−k symbols of redundancy.
Next, x is sent over the channel. The decoder receives a distorted version of the

4



codeword, y, and tries to reconstruct the original codeword. Its estimate of the
codeword is usually denoted x̂. Since the correspondence between the message u
and the codeword x is deterministic and bijective, correct estimate (i.e. x̂ = x) is
considered as the success of decoding.

Particular type of distortions/noise depend on the channel—for example, eras-
ure channel erases some of the symbols:

yi =

{
xi, if i-th symbol arrives unchanged,
?, if i-th symbol arrives erased.

The minimum distance of a code C is defined as the minimum of distances
between non-equal codewords:

d = min{d(x1,x2) : x1,x2 ∈ C,x1 6= x2}.

It can be easily shown that for linear codes this definition is equivalent to the
following:

d = min{w(x) : x ∈ C \ {0}}.

A linear code of length n with dimension k and minimum distance d is denoted
as [n, k, d].

Another way to describe a code is via its parity-check matrix (PCM). PCM of
a code C is any matrix H such that the following holds:

x ∈ C if and only if Hxᵀ = 0ᵀ .

In other words, H is any matrix such that C is its kernel. It follows from the
definition that H is m × n matrix of rank r for some m ≥ r. We note that
a parity-check matrix—and number of its rows—is not uniquely defined for the
given code. In fact, it is very common to define a code via its parity-check matrix.
In this thesis, this will be a convention.

For the binary case, it is not difficult to see that x is a codeword of C with the
parity-check matrix H if and only if the columns of H indexed by elements of
supp(x) sum up to the all-zero column vector.

For the fixed parity-check matrix H of a code C, we often consider the Tanner
graph of H and conventionally call it simply the Tanner graph of C. We note that
a Tanner graph is not uniquely defined for the code. But of course it is unique for
a chosen parity-check matrix H .
Example 3 ([7, 4, 3] Hamming code). Consider as an example the [7, 4, 3] Ham-
ming code. The code is defined by its parity-check matrix:

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .

5
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Figure 3. Tanner graph of the [7, 4, 3] Hamming code.

Columns of H are all the binary 3-tuples except the all-zero tuple. The last
three columns form the 3 × 3 unity matrix. Therefore, rankH = 3 and the
dimension of the code is k = n− r = n− rankH = 7− 3 = 4.

Further, let us show why the minimum distance of the code is indeed 3. As it
was noted above, each codeword corresponds to the subset of columns in H that
sum up to the all-zero column. There is neither the all-zero column nor two equal
columns in H . Hence, the minimum distance of the code is at least 3. On the
other hand, the first three columns sum up to the all-zero column and therefore
(1, 1, 1, 0, 0, 0, 0) is a codeword.

Fig. 3 depicts the Tanner graph corresponding to H . The variable nodes on the
left correspond to the columns, and check nodes on the right match the rows of
H .

An example of a generator matrix for the Hamming code can be the following:

G =


1 0 0 1 0 0 1
0 1 0 1 0 1 0
1 1 0 1 1 0 0
1 1 1 0 0 0 0

 .

One can easily verify that each row of G is orthogonal to each row of H . 4
Together with a code C, we consider its dual code C⊥, defined as follows:

C⊥ = {h ∈ Fn : h · x = 0 , ∀x ∈ C}.

That is, the dual code C⊥ consists of all vectors from Fn that are orthogonal to all
codewords of C.

All rows of the generator matrix of C are codewords of C and all rows of its
parity-check matrix are codewords of C⊥. It is easy to show that if the parity-
check matrix H of C has exactly r rows (that is, there are no redundant rows),
it is then at the same time a generator matrix of C⊥. The matrix G is always a
parity-check matrix of C⊥.

In what follows, we will consider only binary codes, i.e. codes over the field
F2 = {0, 1} (with operators “+” and “·”).

6



A common method of code analysis is based on code ensembles. In general,
an ensemble is simply a set of codes together with some probability distribution
on this set. A typical approach is to define an ensemble by a uniformly random set
of parity-check matrices. In that way, different parity-check matrices can define
the same code. However, it is customary to say that one picks a code uniformly at
random from an ensemble, while in actual fact, it is a parity-check matrix that is
picked uniformly at random. As a result, the probability distribution on the set of
codes is not necessarily uniform.
Example 4 (standard random ensemble). The standard random ensemble (SRE)
S(n,m) is defined by means of its m × n parity-check matrices H , where each
entry of H is an independent and identically distributed (i.i.d.) Bernoulli random
variable with parameter 1/2.

There are 2mn different parity-check matrices in the ensemble, and every linear
code C of the length n and the dimension k ≥ n −m is present in the ensemble.
For C, fix some (n− k)× n parity-check matrix H0 of full row rank (i.e. without
redundant rows). Then all m × n parity-check matrices of C are generated by
matrices of coefficients A ∈ Fm×(n−k)

2 of rank n− k:

H = AH0,

and there is a bijection between H and A. Therefore, the number of different
m×n parity-check matrices defining C is equal to the number of binarym×(n−k)
matrices of rank n−k with m ≥ n−k. The latter is known to be (cf. Lemma 47)

M(m,n− k) =
n−k−1∏
i=0

(2m − 2i).

In other words, each linear code of rank k ≥ n−m has in S(n,m) the probability

2−mn
n−k−1∏
i=0

(2m − 2i). 4

It is often the case that all parity-check matrices defining ensemble have the
same size, and thus the codes have the same length. However, this is not true
for a code dimension or rate, as we do not usually guarantee that the rows in a
considered parity-check matrix are linearly independent. The ratio (n−m)/m is
called a design rate of a code and the real rate is at least the design rate.

In general, arguing about an ensemble can be easier than proving facts about
individual codes. And in many cases, a random code from the ensemble behaves
similarly to a typical code.

1.2.3. Low-density parity-check codes

Low-density parity-check (LDPC) codes were first introduced by Gallager in his
groundbreaking thesis [16, 17] but then nearly forgotten for several decades. To
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π1

π2

...

πJ−1

Figure 4. Schematic sketch of a random parity-check matrix from Gal(n, J,K). Grey
squares denote ones. The column permutations π1, π2, . . . , πJ−1 are applied to the initial
strip.

put it briefly, an LDPC code is a linear code with a sparse parity-check matrix
(or, equivalently, a sparse Tanner graph). Gallager himself defined regular LDPC
codes, such that a Tanner graph is both left- and right-regular. In other words, a
parity-check matrix of a (J,K)-regular code has J ones in each column and K
ones in each row. Irregular LDPC codes were introduced in the series of papers
[34, 31, 32, 33]. Below we describe three particular kinds of LDPC codes.

The Gallager ensemble Gal(n, J,K) of (J,K)-regular LDPC codes of length
n [16, 17] is defined by parity-check matrices of a special form. An (nJ/K) × n
parity-check matrix consists of J strips of widthM = n/K rows each. In the first
strip, the jth row containK ones in positions (j−1)K+1, (j−1)K+2, . . . , jK
for j = 1, 2, . . . ,M . And each of the other strips is a random column permutation
πi, i = 1, 2, . . . , J − 1, of the first strip. See Fig. 4 for schematic sketch.

The design rate of each code in the ensemble is 1 − J/K. Yet the rank of a
parity-check matrix in Gal(n, J,K) cannot be more than

rmax =
nJ

K
− (J − 1)

due to the presence of redundant rows in any such matrix. Therefore, the actual
rate of each code in the ensemble is at least

1− J

K
+
J − 1

n
,

although for large values of n the last term is insignificant.
The next ensemble of regular LDPC codes we consider is a special case of [40,

Def. 3.15]. We refer to the ensemble as the Richardson-Urbanke (RU) ensemble.
For a ∈ {1, 2, ...} denote by at the sequence (a, a, ..., a) of t identical symbols

a. In order to construct an m × n parity-check matrix H of an LDPC code from
the RU ensemble, one does the following:

• construct the sequence a = (1J , 2J , ..., nJ);
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• randomly permute a to obtain a sequence b = (b1, ..., bN ), where N =
Km = Jn;

• set to one the entries in the first row ofH in columns b1, ..., bK , the entries in
the second row of H in columns bK+1, ..., b2K , etc. The remaining entries
of H are zeroes.

In fact, an LDPC code from the RU ensemble is (J,K)-regular if for given
permutations all elements in each of the subsequences (biK−K+1, ..., biK), i =
1, 2, . . . ,m, are different. It is shown in [28] that the fraction of regular codes
among the RU LDPC codes is roughly

e
(K−1)(J−1)/2.

In other words, most of the RU codes are irregular. In what follows, we ignore this
fact and interpret them as (J,K)-regular codes, and call them “almost regular”.
Example 5. Assume we want to generate a (3, 4) (almost) regular parity-check
matrix from the RU ensemble of length n = 36. We start with constructing the
sequence:

a = (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9,

10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15,

16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21,

22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27,

28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33,

34, 34, 34, 35, 35, 35, 36, 36, 36).

By applying a random permutation to it, we obtain:

b = (28, 35, 7, 5, 30, 23, 23, 31, 14, 13, 20, 26, 7, 28, 35, 8,

11, 21, 3, 14, 22, 34, 31, 33, 16, 11, 27, 1, 16, 10, 4, 31,

17, 2, 6, 18, 29, 6, 3, 35, 26, 24, 33, 10, 27, 3, 20, 9,

13, 12, 30, 9, 2, 17, 23, 34, 11, 26, 15, 15, 2, 29, 21, 36,

20, 5, 19, 30, 22, 12, 27, 13, 33, 22, 32, 29, 7, 34, 6, 24,

16, 14, 36, 8, 4, 4, 19, 19, 12, 17, 5, 21, 1, 24, 25, 1,
25, 18, 32, 8, 36, 28, 10, 18, 9, 15, 32, 25).

The numbers in bold repeat in their respective groups of four. The corresponding
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rows have weights less than four. The resulting parity-check matrix is

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0


and it defines a [36, 9, 8] code. 4

The quasi-cyclic (QC) LDPC codes represent a class of LDPC codes that is
intensively used in communication standards. A rate R = b/c QC LDPC code
is determined by the (c − b) × c polynomial parity-check matrix of its parent
convolutional code [27]

H(D) =


h11(D) h12(D) . . . h1c(D)
h21(D) h22(D) . . . h2c(D)

...
...

. . .
...

h(c−b)1(D) h(c−b)2(D) . . . h(c−b)c(D)

 .

Here hij(D) is either zero or a monomial entry in a formal variable D, that is,
hij(D) ∈ {0, Dwij} with wij being a non-negative integer, wij ≤ µ, and µ =
maxi,j{wij} is called a syndrome memory.

The polynomial matrix H(D) determines an [Mc,Mb] QC LDPC block code
using a set of polynomials moduloDM −1. By tailbiting the parent convolutional
code to length M > µ, we obtain the binary parity-check matrix

HTB =



H0 H1 . . . Hµ−1 Hµ O . . . O
O H0 H1 . . . Hµ−1 Hµ . . . O
...

. . .
...

...
...

. . .
Hµ O . . . O H0 H1 . . . Hµ−1

...
. . .

...
...

...
...

...
...

H1 . . . Hµ O . . . O . . . H0


of an equivalent (in the sense of column permutation) tailbiting code (see [27,
Ch. 2]), where Hi, i = 0, 1, . . . , µ, are binary (c − b) × c matrices in the series
expansion

H(D) = H0 +H1D + · · ·+HµD
µ,
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and O is the all-zero matrix of size (c− b)× c. If each column of H(D) contains
J non-zero elements, and each row contains K non-zero elements, the QC LDPC
block code is (J,K)-regular. It is irregular otherwise.

Another form of an equivalent [Mc,Mb] binary QC LDPC block code can be
obtained by replacing the non-zero monomial elements of H(D) by the powers
of the circulant M ×M permutation matrix P defined as follows:

P =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .

The polynomial parity-check matrix H(D) can be interpreted as a (c− b)× c
binary base matrix B labelled by monomials, where the entry in B is one if and
only if the corresponding entry of H(D) is non-zero:

B = H(D)|D=1.

All three matrices B, H(D), and H can be interpreted as bi-adjacency matrices
of the corresponding Tanner graphs.
Example 6. Consider the following 3× 4 polynomial matrix:

H(D) =

D0 D0 D0 D0

D0 D1 D4 D6

D0 D5 D2 D3

 .

Using tailbiting length M = 9, we obtain the following (3, 4)-regular parity-
check matrix:

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


with each block being a power of P . The parity-check matrix defines a [36, 11, 6]
code. 4
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1.2.4. Decoding of linear codes

As it was mentioned before, the decoding process is a reconstruction of the ori-
ginal codeword. We start with two most generic decoders, maximum a posteriori
(MAP) and maximum-likelihood (ML). In fact, these decoders describe only the
objective of decoding, while particular implementations depend on the channels
under consideration.2

Consider a discrete memoryless channel with input in F and output in Y , where
Y is different from F in general case. The transmitter chooses a codeword x
from a code C with probability P {x} and sends it over the channel. Let y be an
output of the channel and its conditional distribution P {y | x}. The MAP decoder
chooses an estimate x̂ = x̂MAP(y) that maximises a posteriori probability

P
{
x̂MAP(y) = x

}
.

The corresponding probability for the decoder to reconstruct the original code-
word incorrectly is

P
{
x̂MAP(y) 6= x

}
= 1− P

{
x̂MAP(y) = x

}
.

This kind of error is called block or frame error, as we check only whether the
decoder has correctly reconstructed the whole codeword (i.e. block). We expand:

P
{
x̂MAP(y) = x

}
=
∑
b∈Yn

P
{
x = x̂MAP(b),y = b

}
=
∑
b∈Yn

P {y = b}P
{
x = x̂MAP(b) | y = b

}
.

Hence, we can do maximisation for each b separately. Moreover, each term
P {y = b} is invariant of choice of function x̂MAP(·). Therefore, we simplify the
optimisation problem to maximisation for a fixed b ∈ Yn. In other words,

x̂MAP(b) = arg max
a∈C

P {x = a | y = b}

= arg max
a∈C

P {y = b | x = a} P {x = a}
P {y = b}

= arg max
a∈C

P {y = b | x = a}P {x = a} .

This is the MAP decoding rule.
Further, it is often the case that all codewords are equally likely on the channel

input:

P {x = a} =
1

|C|
.

2However, one can also use a very straightforward decoding approach: check all the codewords
of the code and choose one of them that fits the decoding objective best. Although in all the cases
except trivial this approach is dramatically inefficient.
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In this situation, we can simplify to the ML decoding rule:

x̂MAP(b) = arg max
a∈C

P {y = b | x = a}P {x = a}

= arg max
a∈C

P {y = b | x = a} = x̂ML(b).

That is, for uniform distribution of channel input vector x, the MAP and ML
decoders coincide.

For the BEC, ML decoding is equivalent to solving a system of linear equa-
tions. More precisely, assume that we have a code with a parity-check matrix H ,
and that the received word is y. Let the positions of erasures be E ⊆ [n]. Denote
by HE the matrix formed from the columns of H indexed by E , and by yE , the
vector formed by the entries of y indexed by E . Denote Ē = [n]\E and, similarly,
define HĒ and yĒ . Then the parity-check equations can be written as

HEy
ᵀ
E +HĒy

ᵀ
Ē = 0ᵀ,

where 0 is the all-zero vector of the corresponding length. Since yĒ , HĒ , and HE
are known, we can rewrite the equations in the following form

HEy
ᵀ
E = HĒy

ᵀ
Ē . (1.3)

It is a system of linear equations with a vector of unknowns yE and a matrix
of coefficients HE . This system always has at least one solution, the originally
transmitted codeword. If this solution is not unique, we say that the ML decoder
fails.

It is not difficult to see that the ML decoder fails if and only if E contains a
support of some non-zero codeword c. Indeed, the columns indexed by supp(c)
sum up to the all-zero column. Therefore, the matrixHE does not have full column
rank, and (1.3) has multiple solutions.

1.2.5. Belief-propagation decoding

The next decoding method is central for this thesis. It is known by the names it-
erative, message-passing (MP), or belief-propagation (BP). However, an iterative
algorithm is any algorithm that consists of iterations. Similarly, an MP algorithm
is an iterative algorithm that passes messages (e.g. the IPA is a message-passing
algorithm, cf. Section 1.3.1). Finally, BP is an MP algorithm with messages being
beliefs about a value of an incident variable node. It is the narrowest name for this
decoding algorithm and therefore we favour it.

The BP decoder can be defined for rather general channels. But to avoid unne-
cessary intricacy, we formulate the algorithm for a particular case of the BEC, as
it is precisely what we need in the thesis. We refer an interested reader to a book
[40], which discusses different aspects of BP in depth.
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Figure 5. Message processing in BP decoding.

We next describe the BP decoder on the BEC in detail. Assume that a word
x ∈ Fn2 is sent and y ∈ {0, 1, ?}n is received. We remind that due to nature
of BEC, x and y agree in non-erased positions. The algorithm operates on the
Tanner graph of a code in rounds by exchanging messages between variable and
check nodes over the edges. Each message is from {0, 1, ?} and it is a local belief
about what the value of an incident variable node is. On the BEC, these beliefs
are rather polarised; we either know for sure the value of a bit (0 or 1) or both 0
and 1 are equally likely.

In a variable-to-check message round, each variable node sends messages to
each of the check nodes it neighbours. In a variable node v, the message sent
over the edge e is a function of the bit yv received from the channel and the
incoming messages over all the edges except the edge e. If the degree of v is dv
and m1,m2, . . . ,mdv−1 ∈ {0, 1, ?} are the incoming messages (see Fig. 5a), the
outgoing message is defined as follows:

Ψv(yv,m1,m2, . . . ,mdv−1) =

{
b if any of yv,m1, . . . ,mdv−1 equals b ∈ F2,
? if yv = m1 = · · · = mdv−1 =?

That is, if any of the check nodes has recovered the value of xv (or yv = xv 6=?),
this value is further propagated to other check nodes (but not directly back to
itself).

At the very first iteration of the algorithm, each variable node v simply sends
the bit it received from the channel, yv.

In a check-to-variable round, similar processing happens. However, the nature
of parity (sum of all incoming bits should be zero) is exploited. Namely, if the
check node c of degree dc receives messages m1,m2, . . . ,mdc−1 ∈ {0, 1, ?} (see
Fig. 5b), the message sent over the remaining edge is defined as follows:

Ψc(m1,m2, . . . ,mdc−1) =

{∑dc−1
i=1 mi if every mi ∈ F2,

? if any of m1, . . . ,mdc−1 equals ?

Indeed, if all the variable nodes incident to c except one have their values re-
covered, the value of the remaining incident variable node equals to the sum (over
F2) of the others.
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Contrary to the message rules, the current global estimate on the value of a
variable node is based on the bit received from the channel and all the incoming
messages. BP decoding stops when either all the bits of the codeword have been
recovered, or the algorithm is ‘stuck’ and no new bits are being recovered.

At first sight, it might seem that using all dv incoming messages might be be-
neficial (as we use more information already available). However, one can prove
that this does not give any additional decoding power. On the other hand, the
fact that a new outgoing message uses only extrinsic information is crucial for
proving many fundamental facts about BP decoding over BEC. Again, we refer
an interested reader to [40] for much broader and detailed picture.

A good example is worth a thousand words. Therefore, let us follow a partic-
ular instance of BP decoding step by step.
Example 7 ([40, Sec. 3.5]). Consider the [7, 4, 3] Hamming code again. We use
the Tanner graph from Fig. 3. Assume the word received from the channel is
y = (0, ?, ?, 1, 0, ?, 0). Fig. 6 illustrates iterations of BP decoding. The vector
x̂ indicates the current global estimate of the transmitted word x. Note that x̂i is
based on yi and all incoming messages to vi and it is not used to calculate next
messages.

For example, consider the check-to-variable message sent from c1 to v2 at
iteration 1. It is the sum of the incoming messages 0, 1, and 0 modulo 2, received
from v1, v4, and v5, respectively.

After iteration 1, the value x2 = 1 is recovered. This further allows to recover
of x3 = 0 after iteration 2. And that consequently leads to recovery of x6 = 1
after iteration 3. Iteration 4 is not in fact needed, as all the bits have already been
recovered. We only show it to illustrate what the further messages would be. 4

The following concept of stopping sets was first proposed by Richardson and
Urbanke [39] in connection with efficient encoding of LDPC codes. Yet for BP
decoding over the BEC, they play similar role as codewords for ML decoding in
the sense that they are the core reason for a decoding algorithm to fail.

The definition of a stopping set can be given in either terms of a Tanner graph
or a parity-check matrix.
Definition 8. A stopping set S in a Tanner graph is a subset of variable nodes
such that all check nodes that are connected to S, connected to S at least twice.
Definition 9. Let H be an m × n parity-check matrix of a binary linear code C.
A set S ⊆ [n] is called a stopping set if HS contains no row of Hamming weight
one.

The following is important for understanding the role of stopping sets for BP
decoding over the BEC.
Proposition 10. If the received word has erasures in positions indexed by a set
E ⊂ [n] and E contains as a subset a non-empty stopping set S, then the BP
decoder fails.

By convention, an empty set is also considered as a stopping set. It is important
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Figure 6. BP decoding of the [7, 4, 3] Hamming code with the received word y =
(0, ?, ?, 1, 0, ?, 0). A dotted arrow indicates a message ?, a thin arrow indicates a mes-
sage 0, and a thick arrow indicates a message 1. We recover x2 = 1 after the first iter-
ation, x3 = 0 after the second, and x6 = 1 after the third. The recovered codeword is
x = (0, 1, 0, 1, 0, 1, 0).
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Figure 7. Example of a stopping set T = {v1, v2, v3} in the Tanner graph of the [8, 4, 4]
extended Hamming code. Each of the neighbouring check nodes c1, c2, c3, c4 is connected
to T at least twice.

to stress that stopping sets are structures in a particular parity-check matrix (or,
equivalently, in a particular Tanner graph) and not in the code. We note also that
support of every codeword is a stopping set.
Example 11. Consider the parity-check matrix of the [8, 4, 4] extended Hamming
code:

H =


1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1

 . (1.4)

The set of positions T = {1, 2, 3} forms a stopping set (the columns are in bold
in (1.4)). By exhaustive checking, one can see that this parity-check matrix has
in total 125 stopping sets of size up to four, 16 of which are also supports of
codewords. 4

1.2.6. Stopping redundancy

Following terminology of [46], we formulate the next definition.
Definition 12. A binary vector h covers a stopping set (or any subset of columns)
S if supp(h) intersects with S in exactly one position. Consequently, a matrix
covers S if any of its rows cover S.

We note that if S is a stopping set in a parity-check matrix H and h covers
S, then, after adjoining h as a row to H , S is not a stopping set in the obtained
extended matrix. With some abuse of notation, we say that a stopping set S is
covered in that extended matrix.3

Definition 13. A stopping set S is coverable (by a code C), if there exists a (pos-
sibly extended) parity-check matrix of C that covers S.

3That is to say, we will use “a stopping set S is covered by a matrix” and “S is not a stopping
set in a matrix” interchangeably.
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The definition is equivalent to the following statement. If we denote by H(2r)

the parity-check matrix of C consisting of all the dual codewords, then a stopping
set S is coverable by C if and only if S is covered by H(2r).

In order to reduce the failure probability of BP decoding algorithm over the
BEC, it was proposed in [46] to add redundant rows, which are exactly the code-
words of C⊥, to a parity-check matrix in such a way that the resulting matrix has
no stopping sets of small size. Specifically, we are interested in constructing a
parity-check matrix consisting of the minimum number of rows from C⊥ so that
all the stopping sets of size less than d are covered. It was shown in [46] that it is
always possible, i.e. all stopping sets of size less than d are coverable.

In this work, we build on the approach in [46], namely we extend a parity-
check matrix by choosing codewords from C⊥ and adjoining them as redundant
rows. An extended matrix is constructed so that it does not contain stopping sets of
small size. In the sequel, we provide a detailed analysis of the minimum number
of additional rows in order to achieve this goal. In what follows, we use the terms
“row of a parity-check matrix” and “codeword from C⊥” interchangeably. We
also note that a particular order of rows in a parity-check matrix is not important.
Definition 14 ([46]). The size of the smallest stopping set of a parity-check matrix
H , denoted by s(H) (or smin(H)), is called the stopping distance of the matrix.

It is known that a maximal parity-check matrixH(2r) consisting of all 2r code-
words of C⊥ is an orthogonal array of strength d − 1 (cf. [35, Ch. 5, Thm. 8]).
This means that for any S ⊆ [n] of size i, 1 ≤ i ≤ d − 1, H(2r)

S contains each
i-tuple as its row exactly 2r−i times and, hence, S is covered by exactly i · 2r−i
rows of H(2r).
Example 15. Consider the parity-check matrix of the [8, 4, 4] extended Hamming
code from (1.4). Fig. 8 shows all codewords of its dual code. In particular, there
are six dual codewords (i.e. redundant rows) that cover the stopping set {1, 2, 3}.

4
The following definition was introduced in [46].

Definition 16. The stopping redundancy of C, denoted by ρ(C), is the smallest
number of rows in any (rank-r) parity-check matrix of C, such that the corres-
ponding stopping distance is d.

It was shown in [46, Thm. 3], that any parity-check matrixH of a binary linear
code C with the minimum distance d ≤ 3 already has s(H) = d. In what follows,
we are mostly interested in the case d > 3.

1.3. Compressed sensing

The reconstruction of a (mathematical) object from a partial set of observations
in an efficient and reliable manner is of fundamental importance. Compressed
sensing, motivated by the ground-breaking work of Candès and Tao [6, 7], and
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1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 1
0 0 1 1 1 0 0 1
0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 1
1 0 0 1 0 0 1 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 1 1 1 0
1 1 0 0 0 1 1 0
1 0 1 0 1 0 1 0
0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0

Figure 8. Codewords of the code dual to the [8, 4, 4] extended Hamming code. The
solid rectangle denote the original parity-check matrix in (1.4). The dotted rectangle is an
orthogonal array. Each of six dashed codewords cover the stopping set {1, 2, 3}.

independently by Donoho [9], is a research area in which the object to be recon-
structed is a k-sparse signal vector (there are at most k non-zero entries in the
vector) over the real numbers. The partial information provided is a linear trans-
formation of the signal vector, the measurement vector, and the objective is to
reconstruct the object from a small number of measurements.

Compressed sensing provides a mathematical framework which shows that,
under some conditions, signals can be recovered from far fewer measurements
than with conventional signal acquisition methods. The main idea in compressed
sensing is to exploit the property that most of the interesting signals have an inher-
ent structure or contain redundancy. The compressed sensing problem is described
in more details below.

Let x ∈ Rn be an n-dimensional k-sparse signal (i.e. it has at most k non-zero
entries), and letA = (aji) be anm×n real measurement matrix. We consider the
recovery of x from measurements yᵀ = Axᵀ ∈ Rm, where m < n and k < n.

The reconstruction problem of compressed sensing is to find the sparsest x (i.e.
the one that minimizes the `0-norm) under the constraint yᵀ = Axᵀ, which in gen-
eral is an NP-hard problem. Basis pursuit is an algorithm which reconstructs x by
minimizing its `1-norm under the constraint yᵀ = Axᵀ (see [6]). This is a linear
program, and thus it can be solved in polynomial time. The algorithm has a re-
markable performance, but its complexity is high, making it impractical for many
applications that require fast reconstruction. A fast reconstruction algorithm for
non-negative real signals and measurement matrices is the IPA which is described
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below in Section 1.3.1.

1.3.1. Interval-passing algorithm

Iterative reconstruction algorithms for compressed sensing have received consid-
erable interest recently. See, for instance, [57, 38, 8, 45, 37, 10, 11] and references
therein. The IPA for reconstruction of non-negative sparse signals was introduced
by Chandar et al. in [8] for binary measurement matrices. The algorithm was
further generalized to non-negative real measurement matrices in [38].

An improvement to the IPA using the principle of verification was proposed
recently in [51]. The proposed algorithm performs better than the plain IPA and
also better than the plain verification algorithm, first introduced in [45], for meas-
urement matrices equal to parity-check matrices of LDPC codes.

Note that there is a clear connection between the IPA and the iterative message-
passing algorithm proposed for counter braids in [30] (see also [42]) in the sense
that the algorithm for counter braids is a special case of the IPA (see Section 1.3.1
below). Thus, the results derived in this work apply immediately also to iterative
decoding of counter braids as described in [30].

Recall that we want to reconstruct the signal vector x ∈ Rn≥0 from the linear
requirement

yᵀ = Axᵀ,

where both the measurement matrix A = (aji) ∈ Rm×n≥0 and the measurement
vector y ∈ Rm≥0 are known. Together with A, we consider its Tanner graph (cf.
Section 1.1). Let V be the set of variable nodes corresponding to columns of A,
and C the set of measurement nodes4 corresponding to rows of A. As previously,
N (·) denotes the set of neighbours.

The IPA is based on the following idea. Consider one measurement c ∈ C:∑
v∈N(c)

acvxv = yc

and express the value for one of the variable nodes, v ∈ V :

xv =
1

acv

yc − ∑
v′∈N(c)
v′ 6=v

acv′xv′

 . (1.5)

Assume we have upper bounds xv′ ≤ Mv′ for all v′ ∈ N (c) \ {v}. Then from
(1.5) and non-negativity of A, we obtain a lower bound on xv:

xv ≥
1

acv

yc − ∑
v′∈N(c)
v′ 6=v

acv′Mv′

 . (1.6)

4Note the difference in terminology of Tanner graph from that in the context of linear codes.
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In much the same fashion, if we have lower bounds xv′ ≥ µv′ , we can express an
upper bound on xv:

xv ≤
1

acv

yc − ∑
v′∈N(c)
v′ 6=v

acv′µv′

 . (1.7)

For each pair (c, v) ∈ C×V of connected check and variable nodes (i.e. acv > 0),
we obtain a pair of new bounds (1.6) and (1.7) that are based on the previously
known bounds.

Briefly, the IPA establishes some initial trivial bounds on the values of xv,
v ∈ V , and further tries to improve these bounds in an iterative manner using
(1.6) and (1.7). The hope here is that at some iteration upper and lower bounds
coincide thus recovering the true value of (unknown) xv.

To be more specific, the IPA iteratively sends messages between variable and
measurement nodes. Each message contains two real numbers, a lower bound
and an upper bound on the value of the variable node to which it is affiliated.
Let µ(`)

v→c (resp. µ(`)
c→v) denote the lower bound of the message from variable node

v (resp. measurement node c) to measurement node c (resp. variable node v) at
iteration `. The corresponding upper bound of the message is denoted by M (`)

v→c

(resp. M (`)
c→v). It is a distinct property of the algorithm that at any iteration `,

µ
(`)
v→c ≤ xv ≤ M

(`)
v→c and µ(`)

c→v ≤ xv ≤ M
(`)
c→v, for all v ∈ V and c ∈ N (v). We

omit rather straightforward proof of this fact (e.g. by induction).
The detailed steps of the IPA are shown in Algorithm 1 below. The lower

bounds are initialised with zeroes, and these values are implied in corresponding
initial upper bounds. Iterations continue while there is some progress, i.e. at least
one of the bounds for some variable node changes between iterations. Since we
expect that the signal x is sparse, the output of the IPA is the lower bounds on the
corresponding values of variable nodes, thus gravitating to output zeroes.

From Lines 4, 14, and 15 in Algorithm 1, one can see that both µ(`)
v→c and

M
(`)
v→c are independent of c ∈ N (v). Thus, we will often denote µ(`)

v→c by µ(`)
v→·

and M (`)
v→c by M (`)

v→·.
Note that in the special case when setting M (0)

v→· = ∞ for all v ∈ V , the
algorithm reduces to the iterative decoding algorithm outlined in [30] for counter
braids. In fact, due to this initialization, only upper bounds need to be computed
for odd iterations and only lower bounds for even iterations (for both variables
nodes and measurement/counter nodes).
Example 17. Suppose we have the following measurement matrix:

A =


1 2 1 0 0 0
3 0 0 1 3 0
0 1 0 1 0 3
0 0 4 0 3 2


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and the signal vector is x = (1, 8, 3, 0, 0, 0). Measurement vector is then y =
xAᵀ = (20, 3, 8, 12). Fig. 9 illustrates iterations of the IPA. 4

Algorithm 1: Interval-passing algorithm (cf. [38, Alg. 1])

1 Function IPA(y, A):
Input: vector of measurements y, measurement matrix A
Output: estimate of the original signal, x̂

2 forall v ∈ V do /* initialisation */
3 µ

(0)
v→· ← 0

4 M
(0)
v→· ← minc∈N(v) (yc/acv)

5 `← 0
6 repeat /* iterations */
7 `← `+ 1
8 forall c ∈ C, v ∈ N (c) do

9 µ(`)
c→v ←

1

acv

yc − ∑
v′∈N(c)
v′ 6=v

acv′M
(`−1)
v′→·


10 if µ(`)

c→v < 0 then /* ensure non-negativity */
11 µ

(`)
c→v ← 0

12 M (`)
c→v ←

1

acv

yc − ∑
v′∈N(c)
v′ 6=v

acv′µ
(`−1)
v′→·


13 forall v ∈ V do

14 µ
(`)
v→· ← max

c∈N(v)
µ(`)
c→v

15 M
(`)
v→· ← min

c∈N(v)
M (`)
c→v

16 until µ(`)
v→· = µ

(`−1)
v→· and M (`)

v→· = M
(`−1)
v→· forall v ∈ V

17 x̂ = (x̂v)v∈V ← (µ
(`)
v→·)v∈V /* result */

18 return x̂
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Figure 9. IPA reconstruction example. The original signal vector is x = (1, 8, 3, 0, 0, 0)
and the measurement vector is y = (20, 3, 8, 12). Numbers in bold correspond to exact
bounds. The last iteration is omitted because the signal has already been reconstructed.





2. STOPPING REDUNDANCY HIERARCHY BEYOND
THE MINIMUM DISTANCE

Even things that are true can be proved.
—Oscar Wilde, The Picture of Dorian Gray

The main focus of this chapter is obtaining upper bounds on the minimum
amount of rows in a (redundant) parity-check matrix of a fixed code, under some
condition on presence of stopping sets in a parity-check matrix.

First, we present existing bounds on the stopping redundancy, as well as our
modifications to these bounds. The latter give the tightest bounds for general
codes, to the best of our knowledge. Next, we examine stopping redundancy
hierarchy, which is a generalisation of the stopping redundancy concept. We also
briefly analyse the choice of initial matrix which is important for our methods.
Further, we suggest how to approach the ML decoding performance by using
redundant parity-check matrices. As the presented bounds strongly depend on the
knowledge of stopping sets spectra—which is often an intractable problem—we
suggest different approaches to tackle this. The chapter concludes with extensive
numerical results, for both particular codes and ensemble-average values.

The contents of this chapter are based on [54] and its further extension in [55].
Results in Section 2.3.3 are from [3].
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2.1. Upper bounds on stopping redundancy

In this section, we present several upper bounds on the stopping redundancy of
a linear code. Specifically, Section 2.1.1 provides an overview of existing results
and the proof of a bound modified from the best one known. In Section 2.1.2, we
generalise the concept of stopping redundancy by introducing stopping redund-
ancy hierarchy. Section 2.1.3 is devoted to the discussion of ways to choose the
initial rows in a parity-check matrix, which is important for the presented bound.

2.1.1. Upper bounds for general codes

In [46], Schwartz and Vardy presented an upper bound on the stopping redundancy
of a general binary linear [n, k, d] code C:

ρ(C) ≤
(
r

1

)
+

(
r

2

)
+ · · ·+

(
r

d− 2

)
. (2.1)

This bound is constructive. More precisely, the authors adjoin all linear combina-
tions of up to d− 2 rows from the original parity-check matrix and prove that the
resulting matrix has the stopping distance d.

The other related works are [50, 23, 22, 24, 25, 13, 19, 21], which present other
constructive upper bounds—for general linear codes, for some specific families or
for particular codes.

On the other hand, probabilistic arguments gave a rise to better bounds [22,
25, 19, 20, 54], yet these bounds are non-constructive. The main probabilistic
technique in this thesis dates back to the work of Han and Siegel [19]. They
established the following bound:

ρ(C) ≤ min{t ∈ N : En,d(t) < 1}+ (r − d+ 1), (2.2)

where

En,d(t) ,
d−1∑
i=1

(
n

i

)(
1− i

2i

)t
.

Briefly, En,d(t) is the average number of stopping sets of size at most d− 1 in
a parity-check matrix formed from t dual codewords chosen randomly with repe-
tition from C⊥. Therefore, if for some t we have En,d(t) < 1, there is a realisation
(i.e. choice of t dual codewords) when the obtained parity-check matrix has no
stopping sets of size less than d. The term (r − d + 1) is added to guarantee the
correct rank of the obtained parity-check matrix.

The bound (2.2) has been improved by Han, Siegel, and Vardy in [20] by
calculating probabilities in a more precise fashion and introducing one more stage
of the probabilistic construction algorithm. At that stage, new rows are chosen
one by one. We further refined this bound in [54] by carefully selecting the first
non-random rows. This gives the smallest known values for most codes (to the
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best of our knowledge). A slightly modified version of the bound is presented in
Theorem 19, which is the main result of this chapter.

Before proceeding, we prove the following technical result, which will be used
further.
Lemma 18. For any integers i, j, r ≥ 1, and j < 2r, define

π(r, i, j) , 1− i · 2r−i

2r − j
.

Then, for any integer r ≤ r′, and i ≤ i′, we have π(r, i, j) ≤ π(r′, i, j) and
π(r, i, j) ≤ π(r, i′, j). In other words, π(r, i, j) is monotonically non-decreasing
in integer variables r and i.

Proof. The statement of the lemma follows easily if we rewrite:

π(r, i, j) = 1− i

2i
· 1

1− j · 2−r
.

Below we present a bound modified from [54, Thm. 1]. More precisely, we
drop the burdensome requirement

(r − 1)(d− 1) ≤ 2d−1 (2.3)

thus making the bound applicable to all the binary linear codes. On the other
hand, we need to add the rank deficiency term ∆ to ensure that the constructed
parity-check matrix has the required rank. However, for medium and long codes,
this term is negligible in comparison with the stopping redundancy.
Theorem 19. For an [n, k, d] linear binary code C let H(τ) be any τ × n matrix
consisting of τ different codewords of the dual code C⊥ and let ui denote the num-
ber of stopping sets of size i, i = 1, 2, . . . , d−1, inH(τ). For t = 0, 1, · · · , 2r−τ ,
we introduce the following notations:

Dt =
d−1∑
i=1

ui

τ+t∏
j=τ+1

π(r, i, j) ,

Pt,0 = bDtc ,

Pt,j =
⌊
π(r, d− 1, τ + t+ j)Pt,j−1

⌋
, j = 1, 2, . . .

∆ = r −max{rankH(τ), d− 1} ,

and let κt be the smallest integer such that Pt,κt = 0. Then

ρ ≤ τ + min
0≤t<2r−τ

{t+ κt}+ ∆ . (2.4)
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Proof. We prove the theorem in two steps. First, we show the existence of a
(τ + t) × n matrix with a number of stopping sets less or equal to Pt,0. Second,
we show that this number further decreases when we add carefully selected rows
one by one. Finally, after adding a sufficient number of rows, we obtain a matrix
with no stopping sets of size less than d.

Step 1. By orthogonal array property, for any subset of columns S ⊆ [n] of
size i, i = 1, 2, . . . , d − 1, there are exactly i · 2r−i codewords in C⊥0 , that cover
S . If S is not covered by H(τ), none of these i · 2r−i codewords is present among
the rows of H(τ).

Fix a stopping set S in H(τ). Next, draw t codewords from the set C⊥0 \
{rows of H(τ)} at random without repetition. There are(

2r − τ − 1

t

)
ways to do this, provided the order of selection does not matter. On the other hand,
in the same set C⊥0 \ {rows of H(τ)}, there are (2r − τ − 1)− i · 2r−i codewords
that do not cover S and there are(

(2r − τ − 1)− i · 2r−i

t

)
ways to draw t codewords out of them. Therefore, if we draw t codewords from
the set C⊥0 \ {rows of H(τ)} at random without repetition, the probability not to
cover S by any one of them is(

(2r − τ − 1)− i · 2r−i

t

)/(
2r − τ − 1

t

)
=

τ+t∏
j=τ+1

π(r, i, j) .

This holds for each S that was not originally covered by H(τ). Since the num-
bers of the stopping sets of sizes 1, 2, . . . , d−1 are u1, u2, . . . , ud−1, respectively,
the average1 number of the stopping sets of size less than d that are left after
adjoining t random rows to H(τ) is

d−1∑
i=1

ui

τ+t∏
j=τ+1

π(r, i, j) , Dt .

Furthermore, since the above expression is an expected value of an integer
random variable, there exists its realisation (i.e. choice of t rows), such that the
number of stopping sets left is not more than bDtc , Pt,0. Fix these t rows and
further assume that we have a (τ + t)× n matrix H(τ+t) with not more than Pt,0
stopping sets of size less than d.

1Averaging is by the choice of t rows.
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Step 2. Adjoin to H(τ+t) a random codeword from C⊥0 \ {rows of H(τ+t)}. If
some stopping set S of size i, 1 ≤ i ≤ d− 1, has not been covered by H(τ+t) yet,
there are exactly i · 2r−i codewords in C⊥0 \ {rows of H(τ+t)} that cover S and,
thus, the probability that S stays non-covered after adjoining this new row is

1− i · 2r−i

2r − (τ + t+ j)
= π(r, i, τ + t+ 1)

Lemma 18
≤ π(r, d− 1, τ + t+ 1).

This holds for any stopping set S of size i. Then, there exists a codeword in
C⊥0 \ {rows of H(τ+t)} such that after adjoining it as a row to H(τ+t), the number
of non-covered stopping sets becomes less or equal to⌊

π(r, d− 1, τ + t+ 1)Pt,0

⌋
, Pt,1.

To this end, we fix this new row and further assume that we have a (τ+t+1)×n
matrix H(τ+t+1) with the number of the stopping sets of size smaller than d less
or equal to Pt,1. After that, we iteratively repeat Step 2. We stop when the number
of non-covered stopping sets is equal to zero.

Finally, we need to ensure that the rank of the resulting matrix is indeed r.
We already know that it is not less than rankH(τ). On the other hand, since we
covered all the stopping sets of size less than d, the rank is at least d− 1. Hence it
is enough to add ∆ additional rows to ensure the correct rank of the parity-check
matrix.

Note. The expression in (2.4) is monotonically non-decreasing in ui. Often, the
exact values of ui are difficult to find and in that case upper bounds are used
instead.
Note. By applying Lemma 18 to the expressions for Dt and Pt,j , we obtain that
(2.4) is also monotonically non-decreasing in r. Sometimes, a parity-check mat-
rix is redundant2 and the number of rows m is larger than r. It might be more
convenient to use m instead of r and the bound (2.4) still holds.

To give a flavour of differences between the existing bounds on stopping re-
dundancy, we calculate the bounds (2.1) in [46], (2.2) in [19], the bound in [20,
Thm. 7], the bound in [54, Thm. 1], and the bound in Theorem 19. The two last
bounds are calculated in two modes. First, we use τ = 1 and H(τ) consists of the
first row of the parity-check matrix of the corresponding code. Next, we use whole
parity-check matrices of the codes as H(τ) (in Table 1, m denotes the number of
rows in a parity-check matrix used).

We calculate the aforementioned bounds for the following codes:
• the [24, 12, 8] extended Golay self-dual code (cf. Section 2.3.1);
• the [48, 24, 12] extended quadratic residue (QR) self-dual code (cf. [35,

Sec. 16]);
2For instance, recall Gallager (J,K)-regular codes (cf. Section 1.2.3).
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Table 1. Comparison of upper bounds on the stopping redundancy of different codes.

[24, 12, 8]

Golay
[48, 24, 12]

QR
[155, 64, 20]

Tanner

(2.1) 2509 4 540 385 6.2 · 1018

(2.2) 232 4440 1 526 972
[20, Thm. 7] 182 3564 1 260 673
[54, Thm. 1], τ = 1 180 3538 1 247 888
Theorem 19, τ = 1 185 3562 1 247 960
[54, Thm. 1], τ = m 168 2543 2573
Theorem 19, τ = m 168 2543 2573

• the (3, 5)-regular [155, 64, 20] Tanner code in [49].
Table 1 presents numerical results. The original bound by Schwartz and Vardy

(2.1) is the only constructive bound here, but it is by far the worst. Note that the
bound in Theorem 19 is only slightly worse than [54, Thm. 1] but it is applicable to
any code. Often, a code that do not satisfy (2.3) has its stopping distance equal to
the minimum distance. Yet the new bound is useful for calculation of the stopping
redundancy hierarchy (see Section 2.1.2).

The bounds in [54, Thm. 1] and Theorem 19 with τ = m give the tight-
est results. However, they require knowledge of the stopping set spectrum of a
parity-check matrix. For the Golay and the QR codes, we calculate their spectra
by exhaustive brute-force checking. For the Tanner code, we use the spectrum
obtained in [43, Tab. 1]. For longer codes, calculating a stopping sets spectrum
can be infeasible even for the method in [43] and similar works. We suggest a
way to overcome this obstacle in Section 2.2.3.

2.1.2. Stopping redundancy hierarchy

In Definition 16, it is required that the stopping distance of a parity-check matrix
is exactly d. However, a more general requirement can be imposed. Thus, in [21],
it was required that the parity-check matrix does not contain stopping sets of size
up to `, for some ` < d. This can be achieved by adjoining a smaller number of
rows to a parity-check matrix.

The following definition is according to [21, Def. 2.4].
Definition 20. The `-th stopping redundancy of C, 1 ≤ ` ≤ d− 1, is the smallest
non-negative integer ρ`(C) such that there exists a (possibly redundant) parity-
check matrix of C with ρ`(C) rows and the stopping distance ` + 1 (equivalently,
with no stopping sets of size less than or equal to `). The ordered set of integers
(ρ1(C), ρ2(C), . . . , ρd−1(C)) is called the stopping redundancy hierarchy of C.

From Definition 20, we have that ρ(C) = ρd−1(C).
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Note. For ` ≤ d − 1, an upper bound on the `-th stopping redundancy can be
formulated as in Theorem 19, where d is replaced by `+ 1. We omit the details.

It is important to notice that stopping sets of size d or larger can also cause
failures of the BP decoder on the BEC (see, for example, [50]). Thus, in order to
approach the ML performance with the BP decoder, we should also cover stopping
sets of size d or larger, at least those that, if erased, can be still decoded by the ML
decoder. In fact, we show in Section 2.2.1 that it is always possible to achieve ML
decoding performance by adjoining sufficiently large number of redundant rows.
We will generalise Definition 20 accordingly (see Definition 24).

2.1.3. Choice of initial matrix

Theorem 19 does not suggest how one should choose the initial τ × n matrix.
In general, it is a difficult question, as it strongly depends on the particular code.
Below, we propose some simple heuristics.

Fix τ = 1. Then, Lemma 46 in Appendix A gives two values for a weight w
of the row of H(τ), one of which is guaranteed to cover the maximum number of
stopping sets of size not more than `:

wopt ∈
{⌊

n+ 1

`

⌋
,
⌈n
`

⌉}
.

However, a codeword of such weight does not necessarily exist in C⊥. Hence
one needs to consider the closest alternatives. After a dual codeword of weight w
is fixed, the number of stopping sets of size less than d in H(τ) is expressed as

ui =

(
n

i

)
− w

(
n− w
i− 1

)
,

and these values can be further used with the bound in Theorem 19.
The situation becomes more complicated for τ = 2, as in that case the optimal

choice depends not only on the weights of the first two rows of H(τ), but also
on the size of the intersection of their supports. For simplicity, we can take two
different rows of the same weight and obtain the corresponding estimate on the
number of stopping sets. More precisely, if τ = 2, H(τ) consists of two dual
codewords h1 and h2 of weight w each with an intersection of supports of size
| supp(h1) ∩ supp(h2)| = δ, then the total number of stopping sets of size less
than d in H(τ) equals (cf. [54, Cor. 2])

ui =

(
n

i

)
− 2w

(
n− w
i− 1

)
+ δ

(
n− 2w + δ

i− 1

)
+ (w − δ)2

(
n− 2w + δ

i− 2

)
.

We can generalize this approach for τ > 2 rows in H(τ) by using the principle
of inclusion-exclusion. However, this leads to explosion of terms in the formula
for ui. We do not continue in that direction.
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2.2. Achieving maximum-likelihood performance

The ML decoder provides the best decoding error performance for a variety of
memoryless channels. As it was mentioned in Section 1.2.4, for the BEC, ML
decoding is equivalent to solving a system of linear equations.

The reason for the difference in performance of the ML and the BP decoders
is existence of (coverable) stopping sets in a parity-check matrix used for BP
decoding. In the following sections, we aim at making BP decoding performance
closer to that of ML performance.

2.2.1. ML-decodable stopping sets

In Section 2.1, we analysed techniques for removal of all stopping sets of size up
to d − 1. However, as it has been mentioned above, in order to approach the ML
performance with BP decoding, one should aim at covering stopping sets of size
equal to or larger than d too. This can be achieved by adjoining redundant rows
to a parity-check matrix. The following two lemmas will be instrumental in the
analysis that follows.

As before, let H be a parity-check matrix of a code C. By H(2r) we denote
the matrix whose rows are all 2r codewords of C⊥, and H(2r)

E denotes the matrix
formed by columns of H(2r) indexed by E .
Lemma 21. The following statements are equivalent:

1. columns of HE are linearly dependent;
2. there exists a non-zero codeword c, such that supp(c) ⊆ E;
3. if all positions in E have been erased then the ML decoder fails.

Proof. First, we show that 1) and 2) are equivalent. A set of columns of HE is
linearly dependent if and only if it has a non-empty subset of columns which sums
up to an all-zero column. This subset of columns corresponds to a support of a
non-zero codeword c. Hence 1) and 2) are equivalent indeed.

Next, we show that 2) and 3) are equivalent. If a support of a non-zero code-
word c has been erased, decoding fails due to the fact that both c and all-zero
codeword are two different solutions to the linear system (1.3). Vice versa, if after
erasing positions in E there are at least two solutions of (1.3), these two solutions
are correct codewords of C with their supports differing on some subset of E only.
Sum of these codewords is another codeword c with supp(c) ⊆ E .

Next, consider the case when the columns of HE are linearly independent.
Lemma 22. The following statements are equivalent:

1. columns of HE are linearly independent;

2. H(2r)
E is an orthogonal array of strength |E|.

And if any of them holds then
3. E is not a stopping set in H(2r).
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Proof. Both statements 1) and 3) follow from 2) in a straightforward manner.
We prove next that 2) follows from 1). First of all, if there are redundant rows

in H , we can ignore them and assume that m = r. Owing to the fact that columns
of HE are linearly independent, there exist |E| rows in HE that form a full-rank
square matrix. Then, each of the remaining r−|E| rows of HE can be represented
as a linear combination of these |E| rows. Without loss of generality assume that

HE =

(
B

TB

)
,

where B is an |E| × |E| full-rank matrix, and T is a (r − |E|) × |E| matrix of
coefficients.

Each row of H(2r)
E is bijectively mapped onto r coefficients of linear combin-

ation α = (α′ | α′′), where α′ ∈ F|E|2 , and α′′ ∈ Fr−|E|2 , as follows:

α

(
B

TB

)
= α′B +α′′TB = (α′ +α′′T )B .

Fix the vector α′′ (and therefore the vector α′′T of size |E| is fixed). Then, the
transformation

α′ 7→ α′ +α′′T

is a bijection of F|E|2 . Since B is a full-rank matrix, the transformation

α′ 7→ (α′ +α′′T )B

is a bijection too. Hence, for a fixed α′′, if we iterate over all α′, each of the rows
in F|E|2 is generated exactly once.

This holds for each of 2r−|E| possible choices for α′′. Hence, each vector of
F|E|2 appears as a row in H(2r)

E exactly 2r−|E| times. Thus, H(2r)
E is an orthogonal

array of strength |E|.

We can summarise the results of Lemmas 21 and 22. Assume that S is a
stopping set in a parity-check matrix of a code C and, during transmission of a
codeword, the positions indexed by S have been erased. We have two cases. If
the columns of HS are linearly independent (and therefore there is no codeword
c ∈ C with supp(c) ⊆ S), then the ML decoder can decode this erasure pattern.
Also, S is a coverable stopping set and there exists a parity-check matrix (possibly,
with redundant rows) that allows the BP decoder to decode this erasure pattern.
Alternatively, if the columns of HS are linearly dependent (and therefore there
exists a codeword c ∈ C with supp(c) ⊆ S), the ML decoder fails and, therefore,
the BP decoder fails too.

This leads us to the following definition.
Definition 23. Let H be a parity-check matrix (of rank r) of a code C. We say
that a stopping set S in H is ML-decodable (with respect to C) if columns of HS
are linearly independent.
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A stopping set S is ML-decodable if and only if no codeword c ∈ C has
supp(c) ⊆ S. Note that this definition is independent of a particular parity-check
matrix of the code C, as the columns indexed by S are linearly-independent in any
parity-check matrix (of rank r) of C. Obviously, each ML-decodable stopping set
is coverable.

We can now generalise Definition 20.
Definition 24. The `-th stopping redundancy of C, 1 ≤ ` ≤ r, is the smallest
non-negative integer ρ`(C) such that there exists a (possibly redundant) parity-
check matrix of C with ρ`(C) rows and no ML-decodable stopping sets of size
1, 2, . . . , `. The ordered set of integers (ρ1(C), ρ2(C), . . . , ρr(C)) is called the
stopping redundancy hierarchy of C.

The difference from Definition 20 (and, equivalently, [21, Def. 2.4]) is that, in
Definition 24, ` can be as large as r (while in [21], ` ≤ d − 1, which is a more
limiting condition). Additionally, in Definition 24, only ML-decodable stopping
sets are eliminated. However, all the stopping sets of size ` ≤ d − 1 are of full
column rank, and therefore Definition 24 contains [21, Def. 2.4] as a special case.

As we see, ML-decodable stopping sets are exactly those stopping sets that,
if erased, can be decoded by the ML decoder (that is why their name). On the
other hand, all of them are coverable. Therefore, our techniques for calculating
probability of being covered in the proof of Theorem 19 are still valid. In the
sequel, we re-formulate the upper bound.

We note that the r-th stopping redundancy ρr(C) of C is the smallest number
of rows in a parity-check matrix of C such that the BP decoder achieves the ML
decoding performance, as no erasure pattern of size more than r can be decoded
even by the ML decoder.
Definition 25. We call ρr(C) a maximum-likelihood (ML) stopping redundancy
of C.

Next, we formulate an upper bound on the `-th stopping redundancy, as defined
in Definition 24, for ` ≤ r, r = n− k.
Theorem 26. For an [n, k, d] linear code C let H(τ) be any τ × n matrix con-
sisting of τ different non-zero codewords of the dual code C⊥ and let ui denote
the number of not covered ML-decodable stopping sets of size i, i = 1, 2, . . . , `
(` ≤ r), in H(τ). Then the `-th stopping redundancy is

ρ`(C) ≤ Ξ
(I)
` (u1, u2, . . . , u`) , τ + min

0≤t<2r−τ
{t+ κt}+ ∆ ,

where

Dt =
∑̀
i=1

ui

τ+t∏
j=τ+1

π(r, i, j) ,

Pt,0 = bDtc ,

Pt,j =
⌊
π(r, `, τ + t+ j)Pt,j−1

⌋
, j = 1, 2, . . .
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∆ = r −max
{

rankH(τ), `
}
,

and κt is the smallest j such that Pt,j = 0.
We remark that the difference between the statements of Theorem 26 and

of Theorem 19 is that the value d− 1 is replaced by `.

Proof. The proof follows the lines of that in Theorem 19 with the only difference
that now for each ML-decodable stopping set S, the corresponding matrix H(2r)

S
contains all the tuples of size |S| equal number of times, as it was shown above.

Next, we analyze the rank deficiency. Let us denote by H(τ+t+κt) the parity-
check matrix we obtain by adding t+κt rows toH(τ) analogously to the procedure
in the proof of Theorem 19. Note that if there is a stopping set S in H(τ+t+κt) of
size |S| ≤ `, then it is not ML-decodable and, consequently, there is a codeword
c ∈ C with supp(c) ⊆ S.

Now, recall that H(2r) is of rank r ≥ `. Thus, there is a subset I ⊆ [n] of size
|I| = ` so that the columns of H(2r)

I are linearly independent. In particular, this
means that there is no codeword c ∈ C with supp(c) ⊆ I. Consider H(τ+t+κt)

I .
If its columns are linearly independent then rankH(τ+t+κt) ≥ `.

Assume now to the contrary, that columns ofH(τ+t+κt)
I are linearly dependent.

This means there is a subset of columns S ⊆ I that sum up to the all-zero column.
Hence, the Hamming weight of each row ofH(τ+t+κt)

S is even and S is a stopping
set in H(τ+t+κt). As it was mentioned above, this means there is a codeword
c ∈ C with supp(c) ⊆ S ⊆ I. This is a contradiction, and thus columns of
H

(τ+t+κt)
I are linearly independent. This in turn means that rankH(τ+t+κt) ≥ `.
On the other hand, rankH(τ+t+κt) ≥ rankH(τ). Therefore, it is enough to

add ∆ additional redundant rows to H(τ+t+κt) to ensure the resulting rank to be
r, as required for a parity-check matrix of C.

Corollary 27. There exists an extended parity-check matrix with no more than
Ξ

(I)
r (u1, u2, . . . , ur) rows, such that the BP decoder with this matrix fails if and

only if the ML decoder fails. It follows that the decoding error probability of these
two decoders is equal.

Computing the number ui of ML-decodable stopping sets of size i—or even
finding the corresponding upper bound—might be a difficult task for general
codes, except for trivial cases. In what follows, we suggest two approaches:

• ensemble-average approach (see Section 2.2.2);
• finding estimates on ui numerically (see Section 2.2.3).

2.2.2. Exact ensemble-average maximum-likelihood stopping
redundancy

In order to apply the upper bounds on the stopping redundancy to ensemble-
average values, we formulate a weaker bound inspired by [20].
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Theorem 28. Assume that C is a linear [n, k]-code andH is a parity-check matrix
consisting of m different rows being codewords of the dual code C⊥, such that
there are ui ML-decodable stopping sets of size i = 1, 2, . . . , ` (` ≤ r), in H .
Then the `-th stopping redundancy is bounded from above as follows:

ρ`(C) ≤ Ξ
(II)
` (u1, u2, . . . , u`)

, m+ min
0≤t<2m−m

t+
∑̀
i=1

ui

m+t∏
j=m+1

π(m, i, j)

 .

Proof. Analogous to Step 1 in Theorem 19, we again choose t codewords from
C⊥0 \ {rows of H} uniformly at random without repetitions and adjoin them to H .
The average number of not covered ML-decodable stopping sets in this extended
matrix becomes equal to

∑̀
i=1

ui

m+t∏
j=m+1

π(r, i, j).

For each of these stopping sets, we add at most one row from C⊥0 to cover it,
and thus the total number of rows in the parity-check matrix becomes

m+ t+
∑̀
i=1

ui

m+t∏
j=m+1

π(r, i, j) ≤ m+ t+
∑̀
i=1

ui

m+t∏
j=m+1

π(m, i, j) .

By minimizing this expression over the choice of t, we obtain the required upper
bound. We note that minimizing over t up to 2m −m is just a matter of further
convenience, as the true minimum value is obtained for t < 2r−m ≤ 2m−m.

Now we can formulate the ensemble-average result.
Corollary 29. Consider an ensemble C of codes, where the probability distribu-
tion of the codes is determined by the probability distribution on m × n parity-
check matrices. Moreover, assume that the parity-check matrix H of rank r =

n − k corresponding to the [n, k] code C ∈ C has u(H)
i ML-decodable stopping

sets of size i, where i = 1, 2, · · · , `. Denote the ensemble-average number of such
stopping sets:

ūi = EC

{
u

(H)
i

}
.

Then, the average `-th stopping redundancy over the ensemble C is bounded
from above as follows:

EC {ρ`(C)} ≤ Ξ
(II)
` (ū1, ū2, . . . , ū`).
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Proof. First, we observe that Theorem 28 yields an upper bound on ρ`(C) for
every integer 0 ≤ t < 2m −m:

ρ`(C) ≤ m+ t+
∑̀
i=1

ui

m+t∏
j=m+1

π(m, i, j).

Then, Ξ
(II)
` is a minimum of these upper bounds over the values of t.

Fix some integer 0 ≤ t < 2m −m and take the average over C:

EC {ρ`(C)} ≤ m+ t+
∑̀
i=1

ūi

m+t∏
j=m+1

π(m, i, j).

As it holds for each t, it should also hold for their minimum:

EC {ρ`(C)} ≤ m+ min
0≤t<2r−m

t+
∑̀
i=1

ūi

m+t∏
j=m+1

π(m, i, j)

 .

2.2.3. Statistical estimation of the number of ML-decodable stopping
sets

In this section, we aim at finding statistical estimates on the number of ML-
decodable stopping sets and further use them in the upper bounds on the stopping
redundancy hierarchy.
Lemma 30. Consider a parity-check matrixH of an [n, k]-code C. For 1 ≤ i ≤ r,
fix a numberNi and generateNi random subsets of [n] uniformly at random (with
repetitions), namely S(i)

1 ,S(i)
2 , . . . ,S(i)

Ni
, each subset consisting of i elements. For

j = 1, 2, . . . , Ni, we define the following events:

x
(i)
j =

{
1, if S(i)

j is an ML-decodable stopping set in H ,
0, otherwise.

If ui is a number of ML-decodable stopping sets of size i in H , and εi is some
small fixed number then3

P {ui < ûi} = 1− εi,

where

ûi =

(
n

i

)x̃(i) + κ

√
V̂

Ni
+
γ1V̂ + γ2

N2
i

 , (2.5)

3We note that in fact this probability is approximate but it becomes exact forNi →∞. We refer
interested reader to [5] and the references therein for more details.
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κ = Φ−1(1− εi), η = κ2/3 + 1/6, (2.6)

x̄(i) =

∑Ni
j=1 x

(i)
j

Ni
, x̃(i) =

Nix̄
(i) + η

Ni + 2η
, (2.7)

γ1 = −13

18
κ2 − 17

18
, γ2 =

κ2

18
+

7

36
, (2.8)

V̂ = x̄(i)(1− x̄(i)) . (2.9)

Proof. Random variables
{
x

(i)
j

}
are independent and identically distributed ac-

cording to the Bernoulli distribution with success probability

θi =
ui(
n
i

) .
Here θi is unknown because ui is unknown.

We further apply the 1− εi upper limit second-order corrected one-sided con-
fidence interval constructed in [5, (10)] and based on Edgeworth expansion. In
our notation, it states that

P

θi < x̃(i) + κ

√
V̂

Ni
+
γ1V̂ + γ2

N2
i

 = 1− εi. (2.10)

From this we obtain the required result.

This estimate can be used in conjunction with the upper bounds in Theorem 26
and Theorem 28. More specifically, we fixN1, N2, . . . , N`, and ε1, ε2, . . . , ε`, and
then we obtain that

ρ`(C) ≤ Ξ
(I)
` (û1, û2, . . . , û`) ,

which holds with probability ∏̀
i=1

(1− εi) .

Furthermore, this approach can be extended to estimating the ensemble-average
`-th stopping redundancy, EC {ρ`(C)}, as follows.
Lemma 31. In the settings of Corollary 29, for 1 ≤ i ≤ m, fix a number Ni and
generate Ni random pairs

(
H

(i)
j ,S(i)

j

)
, j = 1, 2, . . . , Ni, where H(i)

j is a parity-

check matrix of a code from C, and S(i)
j is a random subset of [n] consisting of i

elements, H(i)
j and S(i)

j being independent.
For j = 1, 2, . . . , Ni, we define the following events:

y
(i)
j =

{
1, if S(i)

j is an ML-decodable stopping set in H(i)
j ,

0, otherwise.

38



For a fixed small εi,
P
{
ūi < ˆ̄ui

}
= 1− εi,

where ˆ̄ui is defined similar to ûi in (2.5) to (2.9) with x(i)
j , x̄(i) and x̃(i) replaced

by y(i)
j , ȳ(i) and ỹ(i), respectively.

Proof. Analogous to the proof of Lemma 30.

If we fix N1, N2, . . . , N` and ε1, ε2, . . . , ε`, we obtain that

EC {ρ`(C)} ≤ Ξ
(II)
` (ˆ̄u1, ˆ̄u2, . . . , ˆ̄u`) (2.11)

with probability
∏`
i=1(1− εi).

2.2.4. Case study: standard random ensemble

In this section, we demonstrate application of the aforementioned bounds to the
standard random ensemble S(n,m) defined in Example 4.

As it is shown in Appendix B, for i ≤ m, the number of full-rank m × i
matrices with no rows of weight one is equal to N (m, i) defined in (B.1). Fix
some subset of columns S of size i, and choose a random parity-check matrix H
from the ensemble S(n,m). The probability that there is an ML-decodable (but
not covered) stopping set in the columns indicated by S, is as follows:

N (m, i)

2mi
. (2.12)

We used here the fact that HS , the submatrix of H consisting of columns indexed
by S, is equal to every m× i matrix equiprobably. Therefore, the average number
of not covered ML-decodable stopping sets of size i in H is

ūi = ES(n,m)

{
u

(H)
i

}
=

(
n

i

)
N (m, i)

2mi
.

Next, we can apply Corollary 29 to obtain the upper bound on the ensemble-
average `-th stopping redundancy.

We illustrate the behaviour of the obtained bound in Fig. 10. It can be observed
empirically that the bound grows exponentially. We remark that the presented
values of the upper bound on the maximal stopping redundancy (Fig. 10, Table 5,
Fig. 15) in some cases can take on very large values. In this work, we only show
consistency of the obtained numerical results and the theoretical bounds. How-
ever, our experiments with short to moderate length codes [3, 4] show that decod-
ing with redundant parity-check matrices can be a practical near-ML decoding
technique in some cases.
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2.3. Numerical results

2.3.1. [24, 12, 8] extended Golay code

Consider the [24, 12, 8] extended Golay code. We use the systematic double-
circulant parity-check matrix H given in [35, p. 65] as a means to define the
code (see Table 2). The matrix has the stopping distance s(H) = 4.

Due to the small size of the parity-check matrix, we are able to calculate the
values u1, u2, . . . , u12 by exhaustive checking of all the subsets of {1, 2, . . . , 24}
of size up to 12. We use these values to calculate the upper bounds in Theorems 26
and 28.

Next, we generate Ni = 1000 (1 ≤ i ≤ 12) random subsets of {1, 2, · · · , 24}
and register the events according to Lemma 30. The following sequence of fre-
quencies of ML-decodable stopping sets (as defined in Lemma 30) was obtained:{

x̄(i)
}12

i=1
= {0, 0, 0, 0.01, 0.039, 0.122, 0.219, 0.345,

0.487, 0.621, 0.652, 0.463} .

We repeat the experiments with a different value Ni = 106 (1 ≤ i ≤ 12), and
obtain the following sequence of frequencies:{

x̄(i)
}12

i=1
= {0, 0, 0, 0.010314, 0.042985, 0.109956, 0.214436,

0.350958, 0.496478, 0.616122, 0.635654, 0.440123} .

By setting εi = 0.001 for all i (therefore,
∏12
i=1(1 − εi) = 0.988066), we

employ both sets of values in Lemma 30 and, further, in Theorems 26 and 28. The
results are presented in Table 3. We observe consistency between the theoretical
and the empirical results presented therein.
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Table 3. Stopping redundancy hierarchies of the [24, 12, 8] extended Golay code.

ML-decodable
stopping sets

Theorem 26 Theorem 28

Exact ui

u1 0 ρ1 12 ρ1 12
u2 0 ρ2 12 ρ2 12
u3 0 ρ3 12 ρ3 12
u4 110 ρ4 25 ρ4 27
u5 1837 ρ5 49 ρ5 51
u6 14 795 ρ6 91 ρ6 95
u7 74 349 ρ7 168 ρ7 174
u8 257 796 ρ8 304 ρ8 316
u9 649 275 ρ9 540 ρ9 560
u10 1 206 755 ρ10 927 ρ10 960
u11 1 585 794 ρ11 1507 ρ11 1558
u12 1 189 574 ρ12 2241 ρ12 2309

Estimates ûi
(Ni = 103)

û1 0 ρ1 12 ρ1 12
û2 1 ρ2 13 ρ2 13
û3 12 ρ3 17 ρ3 17
û4 247 ρ4 28 ρ4 30
û5 2596 ρ5 51 ρ5 53
û6 21 061 ρ6 94 ρ6 98
û7 90 406 ρ7 171 ρ7 178
û8 288 582 ρ8 307 ρ8 319
û9 700 573 ρ9 544 ρ9 564
û10 1 309 119 ρ10 933 ρ10 967
û11 1 740 882 ρ11 1519 ρ11 1570
û12 1 384 130 ρ12 2265 ρ12 2333

Estimates ûi
(Ni = 106)

û1 0 ρ1 12 ρ1 12
û2 0 ρ2 12 ρ2 12
û3 0 ρ3 12 ρ3 12
û4 112 ρ4 25 ρ4 27
û5 1853 ρ5 49 ρ5 51
û6 14 930 ρ6 91 ρ6 95
û7 74 656 ρ7 168 ρ7 174
û8 259 204 ρ8 304 ρ8 316
û9 651 167 ρ9 540 ρ9 561
û10 1 211 318 ρ10 927 ρ10 961
û11 1 590 393 ρ11 1508 ρ11 1559
û12 1 194 310 ρ12 2241 ρ12 2310



2.3.2. Greedy heuristics for a redundant parity-check matrix

In [46], the authors suggest a greedy (lexicographic) algorithm to search for re-
dundant rows in order to remove all stopping sets of size up to 7. The algorithm
requires the full list of stopping sets, as well as the full list of dual codewords. We
note that this straightforward approach is applicable to the Golay code due to its
short length.

Based on the ideas discussed in Section 2.2, we can apply the algorithm akin
to that of Schwartz and Vardy beyond the code minimum distance. In that case,
the algorithm works with the full list of ML-decodable stopping sets of the code.
We now describe the algorithm in more detail.

Fix `, 4 ≤ ` ≤ 12, and generate the list

L = {S ⊆ [n] : |S| ≤ `, rankHS = |S|} ,

i.e. the list of ML-decodable stopping sets of size up to ` (including) (with respect
to the Golay code) in an “empty” parity-check matrix (before putting any rows).
Next, we iteratively construct a parity-check matrix. At each iteration, we find
one of the 4095 non-zero dual codewords4 with the highest score. The score is of
heuristic nature and for a dual codeword h it is calculated as follows:

score(h) =
∑
S∈L
|S| · I{h covers S}.

The row h∗ with the maximum score is added to the matrix we build, and the
stopping sets covered by h∗ are removed from L. Iterations continue until L
is empty. As we have only ML-decodable stopping sets in L (all of them are
coverable), the algorithm stops before we add all the 4095 rows. To this end, we
verify that the obtained parity-check matrix has rank 12.

A small difference with [46] in the proposed approach is a random choice of
h∗ when several dual codewords have the same score. In that case, we run the al-
gorithm several times and choose the matrix with the least number of rows. Fig. 11
illustrates the number of rows in the best obtained matrices for ` = 4, 5, . . . , 12.
We further refer to these matrices as H(12), H(16), H(23), H(34), H(54), H(86),
H(139), H(232), and H(370), according to the number of rows they have.

Table 4 shows the numbers of undecodable patterns for the aforementioned
extended parity-check matrices. The notation Ψ is used to denote the number of
such patterns in a parity-check matrix. Note that the number of such patterns for
the BP decoder with H(370) is exactly the same as for the ML decoder. This is in
accordance with the discussion in Section 2.2.

Further, let Ψ(w) be a number of erasure patterns of weight w, 0 ≤ w ≤ n,
in a code of length n, that cannot be decoded by some decoding method over the

4Recall that the [24, 12, 8] extended Golay code is self-dual.
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Figure 11. Upper bound on the stopping redundancy hierarchy of the [24, 12, 8] extended
Golay code obtained by greedy search.

BEC. Then, the frame error rate (also known as the block error rate) is a function
of the bit erasure probability p, as follows:

FER(p) =
n∑

w=0

Ψ(w)pw(1− p)n−w .

Based on the number of undecodable erasure patterns, we plot the performance
curves in Fig. 12. We note that plots for H(54) and larger matrices are almost
visually indistinguishable from the plot for H(370).

2.3.3. [48, 24] low-density parity-check codes

In this section, we consider four different LDPC codes of length 48 and dimension
24 (see Table 6).

[48, 24]-spBL denotes the best (linear) [48, 24] code with a sparse parity-check
matrix with the lowest possible correlation between its rows. Its minimum dis-
tance is 12.

(4, 8)-RU is a code chosen from 100 000 randomly-generated codes from RU
ensemble. The code was chosen based on minimum distance, dmin, and the first
non-zero weight spectrum coefficient, Admin

(i.e. the number of codewords of
weight dmin).

(3, 6)-QC is a QC LDPC code obtained by optimisation of lifting degrees for a
constructed base matrix in order to guarantee the best possible minimum distance
under a given restriction on the girth value of the Tanner graph of the code.

Finally, (3, 6)-NB denotes a binary image of non-binary code constructed by
the standard two-stage procedure. It consists of labelling a proper binary base
parity-check matrix by random non-zero elements of the extension of the binary
field F2. Here, we select a parity-check matrix of a binary LDPC code from the
RU ensemble.
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We simulate the BP and ML decoding over the BEC channel for the four LDPC
codes whose parameters are presented in Table 6. In Fig. 13, the FER performance
of the BP and ML decoding over the BEC is compared. It is easy to see that the
best BP decoding performance (and at the same time the worse ML decoding
performance) is shown by the QC LDPC code with the most sparse parity-check
matrix. We remark that [48, 24]-spBL, as expected, has the best ML decoding
performance. Its BP decoding performance is worse than that of the selected
LDPC codes except for the binary image of non-binary LDPC code.

Fig. 14 shows the BP decoding performance over the BEC of the codes (3, 6)-
QC and [48, 24]-spBL from Table 6 when their parity-check matrices are exten-
ded. We call the corresponding decoding technique redundant parity check (RPC)
decoding. The number next to “RPC” in Fig. 14 indicates the number of redundant
rows that was added. The best convergence of FER performance of BP decoding
to that of ML decoding is demonstrated by the QC LDPC code, while the best
linear code has the slowest convergence. We observe that the obtained simulation
results are consistent with the estimates on the stopping redundancy hierarchy
given in Table 6.

2.3.4. Standard random ensemble

In this section, we apply the results of Lemma 31 to the standard random ensemble
S(n,m) (cf. Example 4). We calculate estimates on ES(n,m) {ρ`(C)} for differ-
ent n and m = (1 − R)n for design code rates R ∈ {1/3, 1/2, 2/3}. For each pair
(n,m) and each size i = 1, 2, . . . ,m, we generate N = 107 pairs

(
H(i),S(i)

)
and register the frequencies of S(i) being an ML-decodable stopping set in H(i).

Based on the frequencies, we obtain estimates ˆ̄ui on the ensemble-average
sizes ūi. For each size of the stopping sets i, we use εi = 1 − 0.951/m, which
gives a confidence of 95% that the estimates on ūi hold.

After that, we apply Corollary 29 in order to obtain bounds on EC {ρm(C)}
for selected values of m. These bounds are denoted by ρ̂m. Table 5 presents the
resulting values. They are compared to the values Ξ

(II)
` (ū1, ū2, . . . , ū`) (obtained

analytically, and denoted by ρm). We observe that the numerical results are a very
good approximation to the theoretical values.

2.3.5. Gallager ensemble

We repeat the experiments of the previous subsection on the Gallager ensemble
Gal(n, J,K) (cf. Section 1.2.3) for different values of (J,K) and different lengths
n. As it was mentioned earlier, the rank of each parity-check matrix in the en-
semble is at most rmax = nJ/K − (J − 1). Therefore, the ML decoding perform-
ance is achieved when all the ML-decodable stopping sets of size up to rmax are
covered. Fig. 15 demonstrates the values of the ML stopping redundancy, ρrmax ,
for different lengths and different choices of J and K. We observe three clusters
of plots according to the design rates of the codes.
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3. FAILURE ANALYSIS OF THE INTERVAL-PASSING
ALGORITHM FOR COMPRESSED SENSING

Ambition is the last refuge of the failure.
—Oscar Wilde, Phrases and Philosophies for the Use

of the Young

This chapter explores failures of the interval-passing algorithm. We start with
a basic simplification, reducing the problem to the case of zeroes and ones (but the
binary elements of F2). This reduction allows for introduction of termatiko sets,
which are combinatorial structures in a Tanner graph corresponding to a meas-
urement matrix. The concept of termatiko sets is central to this chapter because
they are the solely cause of the IPA failures to correctly reconstruct the original
signal. The size of the smallest termatiko set in a measurement matrix, termatiko
distance, plays an important role in reconstruction abilities of the matrix under the
IPA.

We formulate a criterion of the IPA failure, suggest some heuristics to find
termatiko sets of a matrix, and examine some ideas how to improve reconstruction
performance of the IPA, e.g. by increasing the termatiko distance of a particular
matrix. After that, we study in great detail column-regular measurement matrices.
In particular, we obtain some upper bounds and exact results on termatiko dis-
tance of array LDPC codes. The chapter concludes with a comprehensive set of
numerical results.

The contents of this chapter are based on original conference publication [52]
which was further extended to [53].
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3.1. Failing sets of the interval-passing algorithm

In this section, we present several results related to failures of the IPA. In particu-
lar, in Section 3.1.1, we show that the IPA fails to recover x from y if and only if
it fails to recover a corresponding binary vector of the same support, and also that
only positions of non-zero values in the matrix A are of importance for success of
recovery (see Lemma 32 below). Based on Lemma 32, we introduce the concept
of termatiko sets in Section 3.1.2 and give a complete (graph-theoretic) description
of the failing sets of the IPA in Section 3.1.3. In Section 3.1.4, a counter-example
to [38, Thm. 2] is provided. Finally, two heuristic approaches to locate small-size
termatiko sets from a list of stopping sets are outlined in Section 3.1.5.

3.1.1. Signal support recovery

Consider two related problems IPA(y, A) and IPA(s, B), where sᵀ = Bzᵀ and
z ∈ {0, 1}n has support supp(z) = supp(x), i.e. x and z have the same support.
The binary matrix B contains ones exactly in the positions where A has non-zero
values. We show below in Lemma 32 that these two problems behave identically,
namely that they recover exactly the same positions ofx and z. However, note that
this is true if the identical algorithm (Algorithm 1) is applied to both problems,
i.e. the binary nature of z is not exploited.
Lemma 32. Let A = (aji) ∈ Rm×n≥0 , x ∈ Rn≥0, B = (bji) ∈ {0, 1}m×n, and
z ∈ {0, 1}n, where supp(z) = supp(x) and

bji =

{
0 , if aji = 0 ,

1 , otherwise .

Further, denote yᵀ = Axᵀ, sᵀ = Bzᵀ, x̂ = IPA(y, A), and ẑ = IPA(s, B).
Then, for all v ∈ V ,

x̂v = xv if and only if ẑv = zv .

Proof. Define subsets of V in which either the lower or the upper bound of a
variable-to-measurement message, at a given iteration `, is equal to xv or zv as
follows:

γ(`)
x =

{
v ∈ V : µ

(`)
v→· = xv

}
, Γ(`)

x =
{
v ∈ V : M

(`)
v→· = xv

}
,

γ(`)
z =

{
v ∈ V : λ

(`)
v→· = zv

}
, Γ(`)

z =
{
v ∈ V : Λ

(`)
v→· = zv

}
,

where λ(`)
v→· and Λ

(`)
v→· denote, respectively, the lower and the upper bound of a

message from variable node v to any measurement node c ∈ N (v) at iteration `
for IPA(s, B) (analogously to µ(`)

v→· and M (`)
v→· for IPA(y, A)).

To prove the lemma, it is enough to show that at each iteration `, γ(`)
x = γ

(`)
z

and Γ
(`)
x = Γ

(`)
z . We demonstrate this by induction on `.
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Base case.

γ(0)
x = {v ∈ V : xv = 0} = {v ∈ V : zv = 0} = γ(0)

z ,

Γ(0)
x = {v ∈ V : ∃c ∈ N (v) s.t. yc = acvxv}

= {v ∈ V : ∃c ∈ N (v) s.t. sc = zv} = Γ(0)
z .

Inductive step. Consider iteration ` ≥ 1. First note that all v ∈ V with xv = 0

(and hence zv = 0) belong to both γ(`)
x and γ(`)

z .
If xv > 0 (and hence zv = 1) then from Line 14 of Algorithm 1 and the

definition of γ(`)
x , we have v ∈ γ(`)

x if and only if there exists c ∈ N (v) such that
µ

(`)
c→v = xv. More precisely:

acvxv = yc −
∑

v′∈N(c)
v′ 6=v

acv′M
(`−1)
v′→·

= acvxv +
∑

v′∈N(c)
v′ 6=v

acv′
(
xv′ −M

(`−1)
v′→·

)
≤ acvxv .

Equality holds if and only if M (`−1)
v′→· = xv′ for all v′ ∈ N (c) \ {v} or, in

our notation, N (c) \ {v} ⊂ Γ
(`−1)
x . However, from the inductive assumption,

Γ
(`−1)
z = Γ

(`−1)
x and hence Λ

(`−1)
v′→· = zv′ for all v′ ∈ N (c)\{v}. This is equivalent

to λ(`)
c→v = zv and thus v ∈ γ(`)

z . Therefore, for all v ∈ V , v either belongs to both
γ

(`)
x and γ(`)

z , or to none of them.
Analogously, we can show that Γ

(`)
x = Γ

(`)
z . Details are omitted for brevity.

Lemma 32 gives a powerful tool for analysis of IPA performance. Instead of
considering A ∈ Rm×n≥0 and x ∈ Rn≥0 we need to work only with binary A and x
(although all operations are still performed over R). Because of that, we assume
that A is binary in the rest of the paper.
Example 33. Recall Example 17. The corresponding binary matrix is

B =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


and the corresponding signal vector is z = (1, 1, 1, 0, 0, 0). Then the measure-
ment vector is s = zBᵀ = (3, 1, 1, 1). Fig. 16 illustrates iterations of the IPA.
See the similarities with Example 17.

4
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Figure 16. Example of IPA reconstruction with a 0/1 matrix. The original signal vector
is z = (1, 1, 1, 0, 0, 0) and the measurement vector is s = (3, 1, 1, 1). Numbers in bold
correspond to exact bounds. The last iteration is omitted because the signal has already
been reconstructed. Compare the reconstruction process with Fig. 9.



3.1.2. Termatiko sets

We have shown in the previous section that IPA failures depend only on values
being zero/non-zero. Therefore, for a particular measurement matrix A, we can
speak about failure sets—analogous to stopping sets for BP decoding over the
BEC. From Line 17 of Algorithm 1, we see that outputting zeroes is “default”
behaviour of IPA, i.e. a zero will be output if the IPA has not advanced with a
particular position reconstruction.1

We define termatiko sets through the complete failures of the IPA, i.e. when no
non-zero positions have been reconstructed and the output is the all-zero vector.
Definition 34. We call T ⊂ V a termatiko set if and only if IPA(xTA

ᵀ, A) = 0,
where xT is a binary vector with support supp(xT ) = T .

From Lemma 32, it follows that the IPA completely fails to recover x ∈ Rn≥0

if and only if supp(x) = T , where T is a non-empty termatiko set.
Definition 34 is, in some sense, indirect. The following theorem gives a cri-

terion of a termatiko set, in terms of a Tanner graph of a measurement matrix.
Theorem 35. Let T be a subset of the variable nodes set V . We denote by N =
N (T ) the set of measurement nodes connected to T and by S, the other variable
nodes connected only to N , as follows:

S = {v ∈ V \ T : NN (v) = N (v)} .

Then, T is a termatiko set if and only if for each c ∈ N one of the following two
conditions holds (cf. Figs. 18 and 19):

• c is connected to S (this implies S 6= ∅);
• c is not connected to S and∣∣∣ {v ∈ NT (c) : ∀c′ ∈ N (v) , |NT

(
c′
)
| ≥ 2

} ∣∣∣ ≥ 2 .

Proof. Consider the problem IPA(xTA
ᵀ, A), where xT is a binary vector with

support supp(xT ) = T and T satisfies the conditions of the theorem.
We first note that measurement nodes in C \N have value zero and hence all

variable nodes connected to them (i.e. v ∈ V \ (T ∪ S)) are recovered as zeroes
at the initialisation step of Algorithm 1. As a consequence, they can be safely
pruned and w.l.o.g. we can assume that C = N and V = T ∪ S.

We show by induction that for all v ∈ T ∪S at each iteration ` ≥ 0 it holds that
µ

(`)
v→· = 0 and M (`)

v→· ≥ 1. Moreover, each measurement node c ∈ N that is not
connected to S has at least two different neighbours v1, v2 ∈ T with M (`)

v1→· ≥ 2

and M (`)
v2→· ≥ 2.

We will use the fact that

xv =

{
1 , if v ∈ T ,
0 , if v ∈ S .

1Yet it can also be the case that the true value at the position is zero indeed.
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Also we note that yc = |NT (c) | for all c ∈ N .
Base case. For ` = 0 we immediately obtain from Algorithm 1 that µ(0)

v→· = 0

and, as each c ∈ N has at least one non-zero neighbour, M (0)
v→· ≥ 1. In addition,

consider c ∈ N that is not connected to S. It has at least two different neighbours
v1, v2 ∈ T , each connected only to measurement nodes with not less than two
neighbours in T . Therefore, Mv1→· ≥ 2 and Mv2→· ≥ 2.

Inductive step. Consider ` ≥ 1. For all c ∈ N and all v ∈ N (c),

M (`)
c→v = yc −

∑
v′∈N(c) ,v′ 6=v

µ
(`−1)
v′→· = yc .

Hence, upper bounds are exactly the same as for ` = 0 and the same inequalities
hold for them.

In order to find lower bounds, we consider two cases for c ∈ N . If c is con-
nected to S, then

yc −
∑

v′∈N(c)
v′ 6=v

M
(`−1)
v′→· ≤ (|N (c) | − 1)−

∑
v′∈N(c)
v′ 6=v

1 = 0

and therefore µ(`)
c→v = 0. If c is connected to T only, then

yc −
∑

v′∈N(c)
v′ 6=v

M
(`−1)
v′→· ≤ |NT (c) | −

(
1 +

∑
v′∈NT (c)
v′ 6=v

1

)
= 0

and again µ(`)
c→v = 0. Here, the extra 1 inside the parenthesis indicates the fact

that for at least one v′ we have M (`−1)
v′→· ≥ 2. Thus, at each iteration of the IPA for

each v ∈ V the lower bound is equal to zero, and the algorithm will return x̂ = 0.
We have demonstrated that if T satisfies the conditions of the theorem, it is a

termatiko set. What remains to be proven is that if T does not satisfy the condi-
tions of the theorem, the IPA can recover at least some of the non-zero values.

Assume that there exists c∗ ∈ N connected to T only (i.e. NT (c∗) = N (c∗))
and such that∣∣∣ {v ∈ NT (c∗) : ∀c′ ∈ N (v) , |NT

(
c′
)
| ≥ 2

} ∣∣∣ ≤ 1 .

If this set has one element, denote it by v∗. If it is empty, let v∗ be any element of
NT (c∗).

A special case when |NT (c∗) | = 1 is trivial. Otherwise, for any v ∈ NT (c∗)\
{v∗}, there exists c′v ∈ N (v) such that |NT (c′v) | ≤ 1, which in truth means that
NT (c′v) = {v}.
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c ∗
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Figure 17. Exact bounds propagation in a non-termatiko set. Here [µ,M ] denotes sending
a lower bound of µ and an upper bound of M in the direction given by the corresponding
arrow. Numbers in bold are the exact bounds.

v0 v1

v2 v3v4 v5v6

c0 c1 c2

T

N :

S :

Figure 18. Example of a termatiko set T with all measurement nodes in N connected to
both T and S (cf. Theorem 35). The rest of the Tanner graph is drawn dotted.

Hence, at the initialization step of the IPA, for all v ∈ NT (c∗) \ {v∗} we will
have µ(0)

v→· = 0 and M (0)
v→· = 1. Therefore, at iteration ` = 1:

µ
(1)
c∗→v∗ ← yc∗ −

∑
v∈NT (c∗)
v 6=v∗

M
(0)
v→· = yc∗ −

∑
v∈NT (c∗)
v 6=v∗

1 = 1 .

Thus, the IPA will output 1 for position v∗ ∈ T , which means that T is not a
termatiko set. See Fig. 17 for illustration.

Theorem 35 gives a precise graph-theoretic description of termatiko sets. In
fact, it defines two important subclasses of termatiko sets; stopping sets and sets

v0

v5v1

v3 v4

v2

v6

c0 c1 c2

T :

N :

S :

Figure 19. Example of a termatiko set T with a measurement node c1 connected to T
only (cf. Theorem 35). Highlighted is the connection to a measurement node c0, which is
connected to T only once.
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with all c ∈ N connected to both T and S (these classes have non-empty inter-
section). Also, it is worth noting that T ∪ S is a stopping set. Thus, a termatiko
set is always a subset of some stopping set.
Definition 36. The size of the smallest non-empty termatiko set in a measurement
matrix A is called the termatiko distance and denoted by hmin(A).

3.1.3. General failing sets

In Section 3.1.2, we defined termatiko sets as supports of binary vectors that avert
the IPA from recovering any of the ones. However, the algorithm can fail partially,
i.e. recover only some of the positions of ones.

Before proceeding further, we prove the following lemma.
Lemma 37. Let x,x′ ∈ {0, 1}n be two vectors such that supp(x) ⊂ supp(x′)
and denoteD = supp(x′)\ supp(x). Let µ(`) andM (`) be respectively the lower
and the upper bounds at the `-th step of Algorithm 1 on input (xAᵀ, A). Also, let
λ(`) and Λ(`) be respectively the lower and the upper bounds at the `-th step of
Algorithm 1 on input (x′Aᵀ, A). Then, the following holds:

λ
(`)
v→· ≤ µ(`)

v→· ≤M (`)
v→· ≤ Λ

(`)
v→· , ∀v /∈ D ,

λ
(`)
v→· ≤ µ(`)

v→· + 1 ≤M (`)
v→· + 1 ≤ Λ

(`)
v→· , ∀v ∈ D .

Proof. Denote y = xAᵀ and y′ = x′Aᵀ. Obviously, for any c ∈ C, y′c =
yc + |N (c) ∩D| ≥ yc. In particular, for any c ∈ N (D), y′c ≥ yc + 1, and for all
c /∈ N (D), y′c = yc.

We prove the lemma by induction.
Base case. Obviously, λ(0)

v→· = µ
(0)
v→· = 0 for all v ∈ V . For v ∈ D, c ∈

N (v) implies c ∈ N (D) and hence Λ
(0)
v→· ≥ minc∈N(v)(yc + 1) = M

(0)
v→· + 1.

Analogously, for v /∈ D, Λ
(0)
v→· ≥Mv→·.

Inductive step. Consider step ` ≥ 1. From Line 9 of Algorithm 1 we have:

λ(`)
c→v = y′c −

∑
v′∈N(c)
v′ 6=v

Λ
(`−1)
v′→·

= yc + |N (c) ∩D| −
∑

v′∈N(c)∩D
v′ 6=v

Λ
(`−1)
v′→· −

∑
v′∈N(c)\D

v′ 6=v

Λ
(`−1)
v′→·

≤ yc + |N (c) ∩D| −
∑

v′∈N(c)∩D
v′ 6=v

(
M

(`−1)
v′→· + 1

)
−

∑
v′∈N(c)\D

v′ 6=v

M
(`−1)
v′→·

=

{
µ

(`)
c→v , v /∈ D ,

µ
(`)
c→v + 1 , v ∈ D .

One can show in a similar manner that Λ
(`)
c→v ≥M (`)

c→v+1 for v ∈ D and Λ
(`)
c→v ≥

M
(`)
c→v for v /∈ D.
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Finally, from Lines 14 and 15 of Algorithm 1 we obtain

λ
(`)
v→· = max

c′∈N(v)
λ

(`)
c′→v ≤ max

c′∈N(v)
µ

(`)
c′→v = µ

(`)
v→·, for v /∈ D,

λ
(`)
v→· = max

c′∈N(v)
λ

(`)
c′→v ≤ µ

(`)
v→· + 1 , for v ∈ D,

Λ
(`)
v→· = max

c′∈N(v)
Λ

(`)
c′→v ≥M

(`)
v→· , for v /∈ D,

Λ
(`)
v→· = max

c′∈N(v)
Λ

(`)
c′→v ≥M

(`)
v→· + 1 , for v ∈ D.

The next theorem presents a connection between (partial) failures of the IPA
and termatiko sets. In particular, it shows that the IPA fails on a signal in Rn≥0 if
and only if its support contains a non-empty termatiko set.
Theorem 38. The IPA fails to recover a non-negative real signal x′ ∈ Rn≥0 (i.e.
IPA(x′Aᵀ, A) 6= x′) if and only if the support of x′ contains a non-empty term-
atiko set.

Proof. According to Lemma 32, without loss of generality we can assume that
x′ ∈ {0, 1}n is a binary signal and A is a matrix with its entries being 0 or 1.

Assume T is a non-empty termatiko set such that T ⊂ supp(x′). We also
consider a binary x ∈ {0, 1}n with supp(x) = T . Since T is a termatiko set,
lower bounds on variable nodes in T will be zeroes on each step of IPA(xAᵀ, A).
Further application of Lemma 37 to x and x′ shows that lower bounds on variable
nodes in T will be zeroes also on each step of IPA(x′Aᵀ, A) and therefore these
positions will be incorrectly recovered as zeroes.

To prove the converse direction, assume that x̂′ = IPA(x′Aᵀ, A) 6= x′. Since
zero entries are always correctly recovered by the IPA, the only mistakes are ones
being incorrectly recovered as zeroes. Let us define T as the corresponding posi-
tions:

T = {v ∈ V : x′v = 1 and x̂′v = 0}.

And let us define the vector x ∈ {0, 1}n as follows:

xv =

{
1, if v ∈ T,
0, otherwise.

Obviously, supp(x) = T ⊆ supp(x′). Moreover, IPA(xAᵀ,x) = 0. Therefore,
by the definition, T is a termatiko set.

3.1.4. Counterexample to [38, Thm. 2]

In [38, Thm. 2], a condition for full recovery of x is stated. However, we show
that the theorem in not completely correct. We repeat the statement here (with a
slightly adapted notation).
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Figure 20. Counter-example to [38, Thm. 2]. The set of variable nodes is V =
{v1, . . . , v6} (circles) and the set of measurement nodes is C = {c1, . . . , c4} (squares).
The integer attached to a node is its corresponding value (xvi for variable node vi and yci
for measurement node ci). VS = {v1, v2, v3, v4} ⊂ V (shaded in grey) is the minimal
stopping set and c1 is a zero-valued (yc1 = 0) measurement node connected to VS . Note
that v5 is not in VS , but exactly because of it, the IPA cannot correctly recover v4.
Theorem 39 ([38, Thm. 2], incorrect). Let A ∈ Rm×n be a binary measurement
matrix and VS = {v1, v2, . . . , vk} be a subset of variable nodes forming a minimal
stopping set.2 Let x = (x1, x2, . . . , xn) ∈ Rn≥0 be a signal with at most k−2 non-
zero values, i.e. ‖x‖0 ≤ k − 2, such that the set of non-zero variables is a subset
of VS . Then, the IPA can recover x if there exists at least one zero measurement
node among the neighbours of VS .

Fig. 20 illustrates a counterexample to the theorem. Note that the Tanner graph
in Fig. 20 is (2, 3)-regular (only regular Tanner graphs with variable node degree
at least two were considered in [38]) and satisfies the conditions of [38, Thm. 2].
In particular, there are at most |VS |−2 = 2 non-zero-valued variable nodes which
are both in VS (VS is a minimal stopping set contained in V ); and there is at least
one zero-valued measurement node among the neighbours of VS . However, it can
be readily seen that the IPA outputs x̂ = (0, 0, 1, 0, 0, 0), i.e. it recovers only
one non-zero variable node (v4 and v5 are both connected to c2 and c4 and thus
indistinguishable; hence, the IPA will definitely fail).

We believe that the main problematic issue in the proof given in [38, Thm. 2]
is that variable nodes outside of the minimal stopping set VS are not considered.
Despite the fact that such nodes will be recovered as zeroes (because of the spe-
cific implementation of the IPA, see Line 17 of Algorithm 1), during iterations
they still can “disturb” the values inside of the stopping set.

Finally, we remark that since the statement of [38, Thm. 2] is used in the proof
of [38, Thm. 3], the latter should be further verified.

3.1.5. Heuristics to find small-size termatiko sets

It has been shown above that stopping sets may contain termatiko sets as proper
subsets (and every stopping set is a termatiko set itself). Thus, one way to locate
termatiko sets is to first enumerate all stopping sets of size at most τ (for a given
binary measurement matrix and threshold τ ) and then look for subsets that are

2A stopping set is minimal if it does not contain a smaller stopping set.
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termatiko sets. For a given binary measurement matrix A, small-size stopping
sets can be identified using the algorithm from [44, 43].

Next, we present another heuristic approach that targets the subclass of term-
atiko sets mentioned in Section 3.1.2, namely the case when all c ∈ N are con-
nected to both T and S. This symmetry leads to the observation that both T and
S are termatiko sets. Therefore, we can try to split a stopping set into two disjoint
termatiko sets, T and S. We call stopping sets that allow such a split splittable.

Consider a stopping set D ⊂ V . Our goal is to split the variable nodes from
D into two disjoint sets T and S such that D = T ∪ S and each c ∈ N = N (D)
is connected to both T and S. The heuristic greedy Algorithm 2 tries to find such
a split by painting (green or red) the variable nodes in D. The whole algorithm
is based on the following idea. If there is c ∈ N such that all its neighbours
in D except exactly one have already been painted to the same colour, then the
remaining node should be painted the colour opposite to other neighbours of c.
In the algorithm, the colour of variable node v ∈ D is denoted by colv. It starts
with a random node, paints it green (Line 5), and puts it into a working set Q
of “freshly-painted” nodes. Further, at each iteration, it takes a random variable
node v from Q and constructs the set of variable nodes Opp. A node u ∈ D is
included inOpp if it is not coloured and also connected via some c to v and all the
neighbours of c in D except u have the same colour (Line 13). By our heuristic
assumption, we paint all the variable nodes in Opp the colour opposite to the
colour of v (Line 14). Further, all the elements of Opp are added to Q for further
processing (Line 15). If at some point Q becomes empty but not all variable
nodes from D have been painted yet, the algorithm has nothing better to do than
just randomly guess a colour of some variable node that has not been painted yet
(Lines 17 to 19). Algorithm 2 finishes whenQ becomes empty and all the variable
nodes from D have been painted. After that, in Line 20, the algorithm verifies the
obtained solution for correctness, i.e. whether each c ∈ N is connected both to
T and to S. In turn, it follows that both T and S are termatiko sets. If so, the
algorithm returns the pair (T, S). Otherwise it returns FAIL.

We remark that by changing the randomized steps of Algorithm 2 into branch-
ing steps, one can get an exhaustive search algorithm that outputs all the splits
(T, S) with the stated property (each c ∈ N is connected to both T and S).

3.2. Column-regular measurement matrices

In this section, we present results for column a-regular measurement matrices, i.e.
matrices with a non-zero entries in each column. The first result is a lower bound
on the termatiko distance hmin.
Theorem 40. The termatiko distance of a column a-regular measurement matrix
with no cycles of length 4 is at least a.

Proof. Assume to the contrary that we have a termatiko set T = {v1, v2, . . . , vt}
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Algorithm 2: SPLIT algorithm

1 Function SPLIT(D):
Input: subset of variable nodes D ⊂ V
Output: split of D into two termatiko sets, or FAIL

2 N ← N (D) /* initialisation */
3 colv ← ? forall v ∈ V
4 v

rnd←−− D
5 colv ← GREEN
6 Q← {v}
7 while Q 6= ∅ do /* iterations */

8 v
rnd pop←−−−− Q

9 if colv = GREEN then
10 OppCol← RED
11 else
12 OppCol← GREEN

13
Opp← {u ∈ D : colu = ? and ∃c ∈ N (u) ∩N (v)

s.t. ∀v′ ∈ ND (c) \ {u}, colv′ = colv}

14 colu ← OppCol forall u ∈ Opp
15 Q← Q ∪Opp
16 if Q = ∅ and {u ∈ D : colu = ?} 6= ∅ then
17 v

rnd←−− {u ∈ D : colu = ?}
18 colv

rnd←−− {GREEN,RED} /* random guess */
19 Q← {v}

20 if ∃c ∈ N s.t. |{colv : v ∈ ND (c)}| = 1 then /* correct? */
21 return FAIL
22 else
23 T ← {v ∈ D : colv = GREEN} /* result */
24 S ← {v ∈ D : colv = RED}
25 return (T, S)



of size t ≤ a− 1. Define N and S as in Theorem 35.
First assume that S 6= ∅. Take any u ∈ S. Also split N into t non-intersecting

subsets N1, . . . , Nt such that N = N1 ∪N2 ∪ · · · ∪Nt, where

N1 = N (v1) ,

N2 = N (v2) \N1 = N (v2) \ N (v1) ,

N3 = N (v3) \N2 = N (v3) \ (N (v2) ∪N (v1)) ,

. . .

Nt = N (vt) \Nt−1 = N (vt) \ (N (vt−1) ∪N (vt−2) ∪ · · · ∪ N (v1)) .

As the measurement matrix has no cycles of length 4, no two variable nodes
can share more than one measurement node. In particular, u cannot share more
than one measurement node with any of v1, v2, . . . , vt. Therefore, u is connected
not more than once to each of the sets N1, N2, . . . , Nt, and thus |N (u) | ≤ t ≤
a − 1, which contradicts the fact that the degree of each variable node is a. It
follows that S = ∅.

Since S = ∅, each measurement node in N should be connected to T at least
twice. Furthermore, since the degree of each variable node is a, we have |N | ≤ at

2 .
On the other hand, by definition, |N (vj) | = a and N (vj) shares not more than
one element with each of N (vj−1) ,N (vj−2) , . . . ,N (v1). Therefore,

|Nj | =
∣∣∣N (vj) \ (N (vj−1) ∪N (vj−2) ∪ · · · ∪ N (v1))

∣∣∣ ≥ a− j + 1 ,

and we obtain

|N | =

∣∣∣∣∣∣
t⋃

j=1

Nj

∣∣∣∣∣∣ ≥ at− t(t− 1)

2
.

It follows that

at− t(t− 1)

2
≤ |N | ≤ at

2
,

from which we get that t ≥ a+ 1. This is a contradiction, since we have assumed
t ≤ a− 1.

As each stopping set is a termatiko set and each codeword support is a stopping
set, we have that hmin ≤ smin ≤ dmin. Hence, the following result can be seen a
corollary of Theorem 40.
Corollary 41. For a column a-regular parity-check matrix, dmin ≥ smin ≥ a.

3.2.1. Measurement matrices from array low-density parity-check
codes

A particular case of column a-regular measurement matrices are the parity-check
matrices of array LDPC codes [14]. For a prime q > 2 and an integer a < q the
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array LDPC code C(q, a) has length q2 and can be defined by the parity-check
matrix

H(q, a) =


I I I · · · I
I P P 2 · · · P q−1

I P 2 P 4 · · · P 2(q−1)

...
...

...
. . .

...
I P a−1 P 2(a−1) · · · P (a−1)(q−1)

 ,

where I is the q × q identity matrix and P is a q × q permutation matrix defined
by3

P =


0 0 · · · 0 1
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

It is easy to see that C(q, a) is an (a, q)-regular code of dimension q2−qa+a−1.
Its minimum distance will be denoted by d(q, a) and stopping distance by h(q, a).

In [56], a new representation of H(q, a) was introduced. In particular, since
each column of the parity-check matrix H(q, a) has a blocks and each block is
a permutation of (1, 0, 0, . . . , 0)ᵀ, we can represent each column as a length-a
column vector of elements from Fq, the field of integers modulo q. More precisely,
i ∈ Fq is bijectively mapped to a vector i︷ ︸︸ ︷

0, . . . , 0, 1,

q−i−1︷ ︸︸ ︷
0, . . . , 0

ᵀ

,

and any column in H(q, a) is of the form

(i, i+ j, i+ 2j, . . . , i+ (a− 1)j)ᵀ (mod q) (3.1)

for some i, j ∈ Fq. Note that in (3.1) the field elements i and j are considered as
integers and the operations (addition and multiplication) are standard integer oper-
ations, while (mod q) denotes integer reduction modulo q. In the following, with
some abuse of notation, a field element from Fq and its integer representation in
the range {0, 1, . . . , q − 1} are used interchangeably. Furthermore, addition, sub-
traction, and multiplication might be either standard integer addition, subtraction,
and multiplication, or denote field operations. However, this will be clear from
the context. Also, note that since there are q2 distinct columns in H(q, a), any
pair (i, j) ∈ F2

q specifies a valid column. Therefore, the columns of H(q, a) (or
variable nodes V ) can be identified with pairs (i, j) ∈ F2

q .

3Note that here P shifts the elements in the direction opposite to that defined in Section 1.2.3.
However, the results are equivalent up to column reordering.
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Further, as rows of the matrix can be split into a blocks of q rows each, it is
convenient to identify rows of H(q, a) (or measurement nodes C) with pairs in
Za × Fq, so that the j-th row (1 ≤ j ≤ aq) is identified (or indexed) by4

〈b(j − 1)/qc , (j − 1) (mod q)〉 .

In other words, row 1 is indexed by 〈0, 0〉, row 2 by 〈0, 1〉, up to row q which is
indexed by 〈0, q − 1〉, row q + 1 by 〈1, 0〉, and so on. With this notation, variable
node (i, j) ∈ V = F2

q is connected to measurement nodes {〈0, i〉, 〈1, i+j〉, 〈2, i+
2j〉, . . . , 〈q − 1, i+ (q − 1)j〉} = {〈s, i+ sj〉 | s ∈ Za}.

For s ∈ Za, we call the q consecutive rows 〈s, 0〉, 〈s, 1〉, . . . , 〈s, q − 1〉 (or
corresponding measurement nodes) the s-th strip. We will extensively use the
fact that every variable node has exactly one neighbouring measurement node in
each of the strips.

Define the permutations ϕ : F2
q 7→ F2

q and ψ : Za × Fq 7→ Za × Fq, with
parameters α ∈ Fq \ {0}, β1, β2 ∈ Fq, by5

ϕ(i, j) = (αi+ β1, αj + β2) ,

ψ(s, t) = 〈s, αt+ (β1 + sβ2)〉 .

It is well-known (cf. [56, Lem. 2]) that C(q, a) is invariant under the doubly
transitive group of “affine” permutations defined above. In other words, such
a pair of transformations is an automorphism on the Tanner graph of an array
LDPC code, i.e. 〈s, t〉 ∈ N ((i, j)) if and only if ψ(s, t) ∈ N (ϕ(i, j)) for all
choices of α, β1, β2. In particular, T = {v1, v2, . . . , v|T |} is a termatiko set if
and only if {ϕ(v1), ϕ(v2), . . . , ϕ(v|T |)} is a termatiko set. The number of choices
for α, β1, β2 is q2(q − 1) and this is the number of different automorphisms of
this particular type, one of them being the identity (when α = 1, β1 = β2 = 0).
Furthermore, it is also well-known that there are no cycles of length 4 in Tanner
graph corresponding to the parity-check matrix of an array LDPC code [14].

In the following, the support matrix of a subset of variable nodes, U ⊂ V , will
be the submatrix of H(q, a) consisting of the columns indexed by U . Further-
more, the support matrix of a codeword is the support matrix of the support of the
codeword. We will mostly write the support matrix in a compact form using the
representation in (3.1), i.e. as an a × |U | matrix over Fq. For example, the sup-
port matrix of the subset {(i1, j1), (i2, j2), (i3, j3)} ⊂ V of three variable nodes

4Za denotes the ring of integers modulo a, and we use angular brackets for measurement nodes
to clearly differentiate between C and V .

5ϕ(i, j) and ψ(s, t) are shorthand notations for ϕ((i, j)) and ψ(〈s, t〉), respectively.
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v1 v4 v6

v2 v3 v5

c1 c2 c3 c4 c5 c6 c7 c8 c9

T :

N :

S :

Figure 21. Termatiko set of size 3 in H(q, 3). Measurement nodes c1, c2, . . . , c9 are
grouped according to being in the first, the second, and the third strips in H(q, 3).

is written as6 
i1 i2 i3

i1 + j1 i2 + j2 i3 + j3
i1 + 2j1 i2 + 2j2 i3 + 2j3
· · · · · · · · ·

i1 + (a− 1)j1 i2 + (a− 1)j2 i3 + (a− 1)j3

 .

3.2.2. Termatiko distance multiplicity of H(q, 3)

Consider the array LDPC code C(q, 3). It is (3, q)-reqular and each column of its
parity-check matrix H(q, 3) can be represented by the vector (i, i+ j, i+ 2j)ᵀ ∈
F3
q , from which it follows that if v ∈ V is connected to c1 = 〈0, s1〉, c2 =
〈1, s2〉, and c3 = 〈2, s3〉, then 2s2 = s1 + s3 (i.e. s1, s2, s3 form an arithmetic
progression).
Theorem 42. There are q2(q − 1)(q − 2)/3 termatiko sets of minimum size 3 in
H(q, 3) for any q ≥ 5 and their support matrices have (up to automorphisms) one
of the forms 0 2 −2− 2j

0 2 + j 1
0 2 + 2j 4 + 2j

 or

0 2 4 + 2j
0 2 + j 1 + j
0 2 + 2j −2

 ,
for any j ∈ Fq \ {q − 1, q − 2}.

Proof. See Appendix C.

We remark that this formula is similar to the formula for the number of weight-
6 codewords in C(q, 3) provided in [29, Thm. 2]. In fact, the number of termatiko
sets of size 3 is twice the number of codewords of weight 6. Fig. 21 provides an
illustration of a termatiko set of size 3 in H(q, 3).

6Recall that we associate V with F2
q .
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3.2.3. Upper bounds on the termatiko distance of H(q, a)

It follows from Theorem 40 that the termatiko distance of H(q, a) is hmin ≥ a,
and from Theorem 42 it follows that the bound is indeed tight for a = 3. In this
subsection, we derive upper bounds on the termatiko distance when 4 ≤ a ≤ 7.
The approach is inspired by the following observation.

It was shown in [36] that d(q, 3) = 6, and in [56] the authors derived the
explicit support matrix0 0 2i− 2j 2i− 2j −2i −2i

0 −2i+ j 0 −i −i −2i+ j
0 −4i+ 2j −2i+ 2j −4i+ 2j 0 −2i+ 2j


(up to equivalence under the aforementioned automorphisms) for codewords of
weight 6, where i ∈ Fq \ {0} and j ∈ Fq with j 6= i, 2i. It is worth noting
that the columns 1, 4, and 6 (marked in bold) of the support matrix above form a
termatiko set. The same is true for the columns 2, 3, and 5. Hence, the support of
each minimum-weight codeword in H(q, 3) can be split into two size-3 termatiko
sets.

Deriving upper bounds on the minimum distance of array LDPC codes has
attracted some attention, and tight bounds have been derived for 4 ≤ a ≤ 7
in [48, 41]. In these works, explicit support matrices of codewords have been
tabulated. A further exploration of these support matrices shows that a half-and-
half split into two termatiko sets is possible; the connected measurement nodes
are connected to both termatiko sets. We can now successfully apply Algorithm 2
to some known cases.

Matrix H(q, 3). By applying Algorithm 2 to the aforementioned support mat-
rix we obtain the (correct) split 0 2i− 2j −2i 0 2i− 2j −2i

0 −i j − 2i j − 2i 0 −i
0 2j − 4i 2j − 2i 2j − 4i 2j − 2i 0

 , (3.2)

where the vertical line indicates the actual split. Note that the columns are re-
ordered so that both the first three and the last three form termatiko sets.

If we set i = −1, then we obtain the first general form in Theorem 42 (with
columns reordered) in the left part of (3.2). To get the second termatiko set in
(3.2), we also set i = −1 but then also apply an automorphism with α = 1,
β1 = 0, β2 = −2 − j, and substitute j 7→ −3 − j. The resulting support matrix
is of the second general form from Theorem 42 (with columns reordered).

Matrix H(q, 4). In [48, Fig. 3], the authors present the support matrix of a
weight-10 codeword for H(q, 4) for q > 7. Since α = 12 is co-prime with any
prime q > 4, each entry in the matrix in [48] can be multiplied by α = 12, which
is equivalent to applying a doubly transitive automorphism. The resulting matrix
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becomes [
0 0 −12 −24 −6 −6 −24 −12 −30 −30
0 3 0 −12 −4 3 −13 −4 −13 −12
0 6 12 0 −2 12 −2 4 4 6
0 9 24 12 0 21 9 12 21 24

]
.

Application of Algorithm 2 gives the split indicated in Table 7 where the columns
have been re-ordered. For q = 11, we exhaustively checked all 4-subsets of F2

q

and did not find any termatiko sets among them, therefore h(11, 4) = 5. For
the special cases H(5, 4) and H(7, 4), weight-8 codeword support matrices were
presented in [56, Thm. 7 and 8]. These can be split too, and the results of the splits
are shown in Table 7.

Matrix H(q, 5). In [48, Fig. 4], an explicit support matrix of weight-12 code-
words fromH(q, 5) is presented7 for q 6= 11. Multiplying each entry of the matrix
by α = 6, which is co-prime with q > 5, and applying Algorithm 2 to the res-
ulting matrix results in a half-and-half split (see Table 7). For q = 7, we verified
exhaustively that the bound is tight, i.e. h(7, 5) = 6. Furthermore, for q = 11,
there exists a weight-10 codeword and the result of its split is shown in Table 7.

Matrix H(q, 6). In [41, (13)], the authors presented a support matrix of code-
words of weight 20 for H(q, 6). We multiply its entries by α = 2 and apply
Algorithm 2 to the resulting matrix. The algorithm succeeds to create a half-and-
half split and the result is presented in Table 8. The authors prove in [41] that
there are no repetitive columns in the matrix for q > 11. For the special cases
H(7, 6) and H(11, 6), they provide particular support matrices which we are also
able to split half-and-half with Algorithm 2 (see Table 8).

Matrix H(q, 7). In [41, (17)], the authors present a support matrix for code-
words of weight 24 forH(q, 7). We multiply its entries by α = 4 and successfully
split it using Algorithm 2 (see Table 8).

Matrix H(q, a > 7). From the previous subsections it appears that the term-
atiko distance is a half of the minimum distance for array LDPC codes. However,
proving this in general might be difficult as not all codewords can be split half-
and-half. For instance, for q = 7 and a = 4 we have found a (minimal) codeword
of weight 20 that cannot be split into two termatiko sets each of size 10 (proved
by exhaustive search) . The support matrix of the codeword is[

2 3 4 1 2 3 5 6 0 1 2 5 6 5 4 5 5 0 2 5
2 3 4 2 3 4 6 0 2 3 4 0 1 1 1 2 3 6 1 4
2 3 4 3 4 5 0 1 4 5 6 2 3 4 5 6 1 5 0 3
2 3 4 4 5 6 1 2 6 0 1 4 5 0 2 3 6 4 6 2

]
.

We gather the results for the termatiko distances of array LDPC codes in
Table 9. We additionally put results for measurement matricesH(5, 5) andH(7, 7),
although usually a < q is required for array LDPC codes.8 The exact termatiko
distances for these two cases are obtained by splitting small-size stopping sets

7It seems the authors did not verify that the columns of the support matrix are different. How-
ever, for q = 11, two columns are identical. Therefore, we treat H(11, 5) as a special case.

8Having a = q still gives array LDPC codes of strictly positive rate sinceH(q, a) has redundant
rows.
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using Algorithm 2. This procedure produces termatiko sets of size 5 and 7, re-
spectively. From Theorem 40 it follows that these values give the exact termatiko
distance in these two cases. Alternatively, for a = 5, one can remove the 5-th and
the last column from the matrix in Table 7 (they are identical for q = 5) and obtain
a valid codeword support matrix of a weight-10 codeword that is also splittable in
two termatiko sets of size 5.

3.2.4. Decreasing termatiko distance by adjoining redundant rows to
a measurement matrix

As it was discussed in Chapter 2, for BP decoding over the BEC one can add re-
dundant rows to a parity-check matrix in order to decrease the number of stopping
sets [46]. This is also the case for relaxed linear programming decoding of binary
linear codes on any symmetric channel [15]. In this section, we aim to improve the
recovery performance of the IPA by adding redundant rows to a measurement mat-
rix, inspired by success on the BEC. However, there is one fundamental difference
in the sense that the real linear combinations that are added to the measurement
matrix should contain non-negative entries only. Furthermore, we would like to
stress that redundant rows that we add to the measurement matrix are not used to
provide new measurements, but rather used in the recovery process, which means
that also measurements need to be linearly combined at the receiver. Thus, this
procedure does not make the compression rate of the scheme worse, but rather
potentially improve the recovery performance.

The following lemma shows that adding redundant rows to the measurement
matrix does not harm IPA reconstruction performance, namely that it does not
create new termatiko sets.
Lemma 43. Adding redundant measurements does not create new termatiko sets.

Proof. Let the original measurement matrix be denoted byA. Its extended version
with non-negative redundant rows is denoted by A′. The matrix A′ is constructed
such that the first rows of A′ are exactly the rows of A and the remaining rows are
real-valued linear combinations of the rows of A with non-negative entries.9

Denote also the Tanner graph corresponding toA′ by (V ′∪C ′, E′), and letN ′,
N ′T be the notation for neighbours in this Tanner graph (analogously to (1.1)).
Consider some signal vector x and two problems, IPA(y, A) and IPA(y′, A),
where y = xAᵀ and y′ = xA′ᵀ.

The set of variable nodes is the same, i.e. V = V ′, but the set of measurement
nodes is now a superset of the original set, i.e. C ⊂ C ′. The same is true for the
set of edges, E ⊂ E′. It holds for all v ∈ V that N ′(v) = N ′C(v) ∪ N ′C′\C(v) =

N (v) ∪ N ′C′\C(v). For all c ∈ C, we have N ′(c) = N (c). This in turn means
that yc = y′c for c ∈ C.

9Non-negativity of matrix entries is important for the correctness of the IPA.

71



Ta
bl

e
7.

C
od

ew
or

d
su

pp
or

tm
at

ri
ce

s
sp

lit
in

to
te

rm
at

ik
o

se
ts

.V
er

tic
al

lin
es

ill
us

tr
at

e
ho

w
to

sp
lit

th
e

co
de

w
or

ds
in

to
pa

ir
s

of
di

st
in

ct
te

rm
at

ik
o

se
ts

ea
ch

of
ha

lf
th

e
si

ze
.

M
at

ri
x

C
od

ew
or

d
w

ei
gh

t
C

od
ew

or
d

su
pp

or
tm

at
ri

x
sp

lit

H
(q
,4

)
q
≥

1
1

10

[ 0−
6
−
2
4
−
1
2
−
3
0

0
−
1
2
−
2
4
−
6
−
3
0

0
3
−
1
3
−
4
−
1
2

3
0
−
1
2
−
4
−
1
3

0
1
2
−
2

4
6

6
1
2

0
−
2

4
0

2
1

9
1
2

2
4

9
2
4

1
2

0
2
1

]

H
(5
,4

)
z
∈
F 5
\
{0
}

k
∈
{0
,2
z
}

8

[ 03
k
+

3
z

2
k
+

4
z

2
z

0
3
k
+

3
z

2
k
+

4
z

2
z

0
3
z

k
+

4
z

k
+

2
z

k
+

4
z

0
k
+

2
z

3
z

0
2
k
+

3
z

4
z

2
k
+

2
z

2
k
+

3
z

2
k
+

2
z

0
4
z

0
4
k
+

3
z

4
k
+

4
z

3
k
+

2
z

3
k
+

2
z

4
k
+

4
z

4
k
+

3
z

0

]

H
(7
,4

)
z
∈
F 7
\
{0
}

k
∈
{0
,2
z
,4
z
,6
z
}

8

[ 02
k
+

5
z

2
k
+
z

4
z

0
2
k
+

5
z

2
k
+
z

4
z

0
k
+

2
z

5
z

k
+

4
z

k
+

2
z

0
k
+

4
z

5
z

0
6
z

5
k
+

2
z

2
k
+

4
z

2
k
+

4
z

5
k
+

2
z

0
6
z

0
6
k
+

3
z

3
k
+

6
z

3
k
+

4
z

3
k
+

6
z

3
k
+

4
z

6
k
+

3
z

0

]

H
(q
,5

)
q
6=

11
12

 0
−
4
−
1
8
−
2
2
−
6
−
1
6

0
−
6
−
2
2
−
1
8
−
4
−
1
6

0
1
−
8
−
1
2
−
3
−
1
1

1
0
−
1
1
−
1
2
−
3
−
8

0
6

2
−
2

0
−
6

2
6

0
−
6
−
2

0
0

1
1

1
2

8
3
−
1

3
1
2

1
1

0
−
1

8
0

1
6

2
2

1
8

6
4

4
1
8

2
2

6
0

1
6

 

H
(1

1
,5

)
10

 0
5

4
7

6
7

4
0

5
6

1
0

1
0

8
3

1
3

1
0

8
0

2
6

5
9

0
6

2
9

0
5

3
1

0
1
0

8
0

1
8

3
1
0

4
7

6
0

5
5

0
7

6
4

 



Ta
bl

e
8.

C
od

ew
or

d
su

pp
or

tm
at

ri
ce

s
sp

lit
in

to
te

rm
at

ik
o

se
ts

(c
on

tin
ue

d)
.

V
er

tic
al

lin
es

ill
us

tr
at

e
ho

w
to

sp
lit

th
e

co
de

w
or

ds
in

to
pa

ir
s

of
di

st
in

ct
te

rm
at

ik
o

se
ts

ea
ch

of
ha

lf
th

e
si

ze
.

M
at

ri
x

C
od

ew
or

d
w

ei
gh

t
C

od
ew

or
d

su
pp

or
tm

at
ri

x
sp

lit

H
(7
,6

)
12

  0
3

6
2

5
4

2
6

5
4

0
3

0
6

5
4

3
1

3
0

6
5

1
4

0
2

4
6

1
5

4
1

0
6

2
5

0
5

3
1

6
2

5
2

1
0

3
6

0
1

2
3

4
6

6
3

2
1

4
0

0
4

1
5

2
3

0
4

3
2

5
1

  

H
(1

1,
6
)

16

  0
1
0

1
5

7
6

6
0

6
1
0

5
1

0
7

0
6

0
4

7
1
0

2
6

9
8

7
0

8
9

1
0

6
2

4
0

9
2

4
8

6
1

5
8

1
0

6
9

5
4

2
0

3
8

9
3

6
4

2
9

2
3

3
8

4
6

0
0

8
3

3
9

6
7

1
0

1
0

3
6

0
7

3
8

9
0

2
9

8
4

6
1
0

7
0

4
9

8
6

2
1
0

7

  

H
(q
,6

)
q
>

1
1

20

  0
−
2
2
−
2
−
2
0

1
0
−
8

1
2
−
1
0
−
3
2

2
2
−
1
0
−
2

1
0
−
3
2

2
2
−
2
0

0
−
8
−
2
2

1
2

0
−
1
6

8
−
8

9
−
7

1
7

1
−
1
5

1
6
−
8

0
1
6
−
1
6

1
7
−
1
5

9
1
−
7

8
0
−
1
0

1
8

4
8
−
6

2
2

1
2

2
1
0
−
6

2
2
2

0
1
2
−
1
0

1
8

1
0

8
4

0
−
4

2
8

1
6

7
−
5

2
7

2
3

1
9

4
−
4

4
2
8

1
6

7
−
5

2
7

1
9

2
3

0
0

2
3
8

2
8

6
−
4

3
2

3
4

3
6
−
2
−
2

6
3
4

3
2

2
0

3
6

2
8

3
8
−
4

0
8

4
8

4
0

5
−
3

3
7

4
5

5
3
−
8

0
8

4
0

4
8
−
3

5
4
5

3
7

5
3
−
8

  

H
(q
,7

)
24

    0
−
1
8
−
1
4
−
2
0
−
8
−
4

8
2

6
−
1
2

1
0
−
2
2

6
0
−
4
−
2
2

8
−
2
0

1
0
−
1
2
−
8
−
1
8

2
−
1
4

0
−
1
4
−
1
0
−
1
2
−
7

1
6

4
8
−
6

9
−
1
5

6
4

0
−
1
4

9
−
1
5

8
−
1
0
−
6
−
1
2

1
−
7

0
−
1
0
−
6
−
4
−
6

6
4

6
1
0

0
8
−
8

6
8

4
−
6

1
0
−
1
0

6
−
8
−
4
−
6

0
0

0
−
6
−
2

4
−
5

1
1

2
8

1
2

6
7
−
1

6
1
2

8
2

1
1
−
5

4
−
6
−
2

0
−
1

7
0
−
2

2
1
2
−
4

1
6

0
1
0

1
4

1
2

6
6

6
1
6

1
2

1
0

1
2

0
2
−
4

0
6
−
2

1
4

0
2

6
2
0
−
3

2
1
−
2

1
2

1
6

1
8

5
1
3

6
2
0

1
6

1
8

1
3

5
0
−
2

2
1
2
−
3

2
1

0
6

1
0

2
8
−
2

2
6
−
4

1
4

1
8

2
4

4
2
0

6
2
4

2
0

2
6

1
4

1
0
−
2

0
4

1
8
−
4

2
8

    



Table 9. Termatiko distances of array LDPC code matrices H(q, a).

a = 3 a = 4 a = 5 a = 6 a = 7

q = 5 3 4 5 – –
q = 7 3 4 6 6 7
q = 11 3 5 5 6..8 7..12
q ≥ 13 3 4 or 5 5 or 6 6..10 7..12

Let µ′ and M ′ (with corresponding indices) be bounds in the iterations of
IPA(y′, A′). In order to prove the statement of the lemma, it is enough to show
that for all iterations ` ≥ 0, µ′(`)v→· ≥ µ

(`)
v→· and M ′(`)v→· ≤ M

(`)
v→·. In other words,

we show that the intervals [µ′,M ′] are at least as tight as [µ,M ]. We show this by
induction on `.

Base Case. µ′(0)
v→· = 0 = µ

(0)
v→· and

M
′(0)
v→· = min

c∈N ′(v)
(y′c/a

′
cv) ≤ min

c∈N(v)
(y′c/a

′
cv) = min

c∈N(v)
(yc/acv) = M

(0)
v→· .

Inductive Step. Consider iteration ` ≥ 1. At each step ` of the IPA and for all
c ∈ C and v ∈ N ′(c) = N (c), we have

µ′(`)c→v =
1

a′cv

y′c − ∑
v′∈N ′(c)
v′ 6=v

a′cv′M
′(`−1)
v′→·

 =
1

acv

yc − ∑
v′∈N(c)
v′ 6=v

acv′M
′(`−1)
v′→·



≥ 1

acv

yc − ∑
v′∈N(c)
v′ 6=v

acv′M
(`−1)
v′→·

 = µ(`)
c→v .

In the same manner, we have that for all c ∈ C, M ′(`)c→v ≤ M
(`)
c→v. We further

apply these inequalities to Lines 14 and 15 in Algorithm 1 and, using properties
of the functions min(·) and max(·), we obtain the desired result.

From Lemma 43 it follows that adding redundant rows to the measurement
matrix cannot harm the IPA. The following example shows that adding such rows
can indeed improve the performance of the IPA by removing termatiko sets.
Example 44. Consider the binary measurement matrix

A =



v1 v2 v3 v4 v5

c1 1 0 0 1 0
c2 1 0 1 1 0
c3 1 0 0 0 1
c4 0 1 1 0 0
c5 0 1 1 0 1

 .
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v1 v2

v3 v4 v5

c1 c2 c3 c4 c5

T :

N :

S:

(a) T = {v1, v2}, S = {v3, v4, v5},
and N = {c1, c2, c3, c4, c5} are the
sets defined in Theorem 35. T is a
termatiko set.

v1 v2

v3 v4 v5

c∗ c1 c2 c3 c4 c5

:T

:N

:S′

(b) S′ = {v4, v5} 6= S because of the new
measurement node c∗. T is not a termatiko
set any more.

Figure 22. Adding a redundant measurement c∗ corresponding to the difference of rows
c2 and c1 of the matrix in Example 44.

The corresponding Tanner graph is shown in Fig. 22a. Note that the set {v1, v2}
is a termatiko set for this matrix. However, if we add a redundant row c∗ equal to
the difference of rows c2 and c1, {v1, v2} is not a termatiko set for the extended
matrix10

A′ =



v1 v2 v3 v4 v5

c1 1 0 0 1 0
c2 1 0 1 1 0
c3 1 0 0 0 1
c4 0 1 1 0 0
c5 0 1 1 0 1
c∗ 0 0 1 0 0

 ,

since c4 violates conditions in Theorem 35:
• c4 is not connected to S′, and
• NT (c4) = {v2}, N (v2) = {c4, c5}, and each of c4, c5 is connected to T

only once; therefore∣∣∣{v ∈ NT (c4) : ∀c′ ∈ N (v) , |NT
(
c′
)
| ≥ 2}

∣∣∣ = 0 .

Fig. 22b illustrates the differences. 4
The following question arises: which redundant rows do we need to add in

order to remove the largest number of harmful small-size termatiko sets. We pro-
pose the following heuristic approach. First, fix some list of small-size termatiko
sets for the original measurement matrix A and generate a pool of redundant rows
which (hopefully) help to remove at least one termatiko set from the list as fol-
lows.

Consider a termatiko set T from the list and its corresponding set S. A re-
dundant row r = (r1, r2, . . . , rn) for the measurement matrix A can be uniquely

10Recall that operations are performed over R.
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defined by coefficients α1, α2, . . . , αm ∈ R in a linear combination

rv =
∑
c∈C

acvαc.

However, since in the real calculations floating-point numbers are effectively ra-
tional numbers, by multiplying all α’s by some common multiplier of their de-
nominators, we can make them all integer, and they still produce a redundant row
r with the same support. Therefore, with no loss of generality, we assume that α’s
are integers. If original matrixA has integer entries, the resulting extended matrix
has integer entries as well, which allows for a faster IPA in applications where the
signal x is integer.

There are two types of redundant rows that will be collected in the pool. The
first type “breaks” the termatiko set T for sure. It has one non-zero entry in the
positions in T and zeroes in entries indexed by S. The other entries of r can be
chosen arbitrarily. More precisely, for a fixed v0 ∈ T we solve the (integer) linear
programming problem

minimize
∑

v∈V \{T∪S}

rv =
∑

v∈V \{T∪S}

∑
c∈C

acvαc

s.t. rv


≥ 0 , v /∈ T ∪ S ,
= 0 , v ∈ T ∪ S \ {v0} ,
≥ 1 , v = v0 ,

where α1, α2, . . . , αm are integer variables. Minimization here is not essential
and is used to obtain smaller coefficients in a redundant row. In fact, for any
feasible solution, the corresponding redundant row eliminates the termatiko set
T . A redundant row can potentially be obtained for each v0 ∈ T . As a final
remark, relaxing the α’s to be real numbers turns the program into a standard
linear program that can be solved using the simplex method. However, as noted
above, having integers (of moderate size) in the measurement matrix has some
potential benefits. Thus, when the size of the program is not too large and can
be solved using a standard solver in a reasonable time (which is the case in our
examples), we keep the integer constraint on the α’s.

Redundant rows of the second type do not necessarily “break” T , but they
have good chances for doing that. The basic idea is to make variable nodes in S
to not satisfy Theorem 35. Hence, they are not included in S for the extended
matrix. Hopefully, this eliminates T as a termatiko set for the extended matrix.
Note that having several non-zero entries in positions in S is better, since all of
them disappear from S (and we do not add new ones to S). This have a greater
chance of removing T . The corresponding (integer) linear program is

rv


≥ 0 , v /∈ T ,
≤ 1000 , v /∈ T ,
= 0 , v ∈ T ,
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∑
v∈S

rv ≥ 10|S|,

where the constants 10 and 1000 are chosen rather arbitrarily; 10 is used in order
to make non-zero entries in rS more likely, and the upper bounds of 1000 make
sure the entries in r are of limited size. Note that no objective function is spe-
cified, since any feasible solution will do. For each termatiko set T , this approach
produces at most one redundant row.

Finally, after constructing the pool of redundant rows as described above, we
start adjoining them to the matrix A one by one in a greedy manner as follows.
Let the list of termatiko sets be denoted by LIST and the pool of redundant rows
by POOL. For each row r ∈ POOL, we calculate the score

score(r) =
∑

T∈RMV(LIST,r)

|T | ,

where RMV(LIST, r) is a subset of LIST consisting of termatiko sets that are not
termatiko sets after adjoining row r to the current measurement matrix. The row
r∗ with the maximum score is adjoined to the measurement matrix, the termatiko
sets in RMV(LIST, r) are removed from LIST, and the scores are re-calculated
for the updated LIST and measurement matrix. The procedure is continued until
LIST is empty or all scores are zero (which means that no additional termatiko
sets can be removed).

3.3. Numerical results

In this section, we present numerical results for different specific measurement
matrices and for ensembles of measurement matrices, as well as simulation results
of the IPA performance.

3.3.1. Termatiko distance estimates of specific matrices

For all considered matrices, by using the algorithm in [43, 44], we first find all
stopping sets of size less than some threshold . Then, we exhaustively search for
termatiko sets as subsets of these stopping sets, as it is explained in Section 3.1.5.
The results are tabulated in Table 10 for five different measurement matrices, de-
noted by A(1), A(2), A(3), A(4), and A(5), respectively. Due to the heuristic nature
of the approach, the estimated termatiko distance is a true upper bound on the
actual termatiko distance, while the estimated multiplicities are true lower bounds
on the actual multiplicities.

Measurement matrix A(1) is the 33 × 121 parity-check matrix H(11, 3) of
the array-based LDPC code C(11, 3) of column-weight 3 and row-weight 11 de-
scribed in Section 3.2.1,A(2) is the parity-check matrix of the [155, 64, 20] Tanner
code from [49] (cf. Section 2.1.1), A(3) is taken from the IEEE802.16e standard
[26] (it is the parity-check matrix of a rate-3/4, length-1824 LDPC code; using
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base model matrix A and the alternative construction, see [44, (1)]), A(4) is a
276×552 parity-check matrix of an irregular LDPC code, whileA(5) is a 159×265
parity-check matrix of a (3, 5)-regular LDPC code built from arrays of permuta-
tion matrices from Latin squares.

For the matrix A(1), we have also compared the results with an exact enumer-
ation of all termatiko sets of size at most 5. When considering all stopping sets
of size at most 11, the heuristic approach finds the exact multiplicities for sizes 3
and 4, but it underestimates the number of termatiko sets of size 5 by about 7.5%
(the missing ones are the subsets of the stopping sets of size 12 to 14). This indic-
ates that higher order terms (for all tabulated matrices) are most likely strict lower
bounds on the exact multiplicities.

As it can be seen from Table 10, for all matrices except for A(3), the estimated
termatiko distance is about half the stopping distance. The smallest-size termatiko
sets all correspond to termatiko sets with all measurement nodes in N connected
to both T and S (cf. Theorem 35).

3.3.2. Termatiko distance estimates of protograph-based matrix
ensembles

Consider the protograph-based (3, 6)-regular LDPC code ensemble defined by
the protomatrix H = (3, 3). We randomly generate 200 parity-check matrices
from this ensemble using a lifting factor of 100 (the two non-zero entries in the
protomatrix are replaced by 100× 100 binary matrices of row weight 3 in which
all right-shifts of the first row—picked at random—occur in some order).

For each lifted matrix, we first find all stopping sets of size at most 16 by using
the algorithm in [43, 44]. Then, the termatiko distance is estimated for each matrix
as explained above. The results are depicted in Fig. 23 as a function of the code
index (the blue curve shows the minimum distance dmin, the red curve shows the
minimum size of a non-codeword stopping set, denoted by s̃min, while the green
curve shows the estimated termatiko distance ĥmin). The average dmin, smin, and
ĥmin (over the 200 matrices) are 6.84, 5.92, and 3.90, respectively.11 We repeat
a similar experiment using a lifting factor of 200, and average dmin, smin, and
ĥmin (again over 200 randomly generated matrices) become 9.21, 7.75, and 5.80,
respectively.

Next, we repeat the same calculations for 200 randomly generated parity-check
matrices from the protograph-based (4, 8)-regular LDPC code ensemble. For each
parity-check matrix, we consider all stopping sets of size up to 14. For some
matrices, the minimum distances of the corresponding codes are larger than 14,
thus we calculate them separately. Fig. 24 presents the results of the calculations.
The average dmin, smin, and ĥmin are 12.53, 9.75, and 8.41, respectively.

11Note that here the second average value is of stopping distances, and not the sizes of the smallest
non-codeword stopping sets.
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3.3.3. Performance of SPLIT algorithm

In order to see how Algorithm 2 performs, we apply it to the stopping sets of
size at most 14 for the protograph-based matrices described in Section 3.3.2 (both
(3, 6) and (4, 8)-regular).

Table 11 shows the average number of stopping sets of sizew,w = 1, 2, . . . , 14,
for the 200 randomly generated (3, 6)-regular matrices (the numbers are exact).
It also presents the fraction of the matrices that have stopping sets of size w. In
particular, all the 200 matrices have stopping sets of size w = 13 and w = 14.
For a fixed w, we also consider the total multiset of all stopping sets from all the
matrices together and calculate the fraction of them that are splittable in their cor-
responding matrix. The last column of Table 11 displays these numbers. Next,
we build the total multiset of all splittable stopping sets from all the matrices to-
gether and repeatedly run Algorithm 2 to estimate the average success probability
across the multiset. The resulting frequencies are depicted in Fig. 25. The afore-
mentioned calculations are repeated for the 200 randomly generated (4, 8)-regular
matrices. The results are presented in Table 12 and Fig. 26.

3.3.4. Adding redundant rows

To illustrate the efficiency of the heuristic algorithm from Section 3.2.4 in re-
moving small-size termatiko sets, we choose three out of the 200 (3, 6)-regular
matrices (with a lifting factor of 100) in Section 3.3.2 as example matrices. More
precisely, the matrices with indices 20, 72, and 172, denoted by A

(20)
PG , A(72)

PG ,

and A(172)
PG , respectively, are selected. These matrices are chosen to demonstrate

different behaviour patterns.
For all three matrices, we apply the algorithm from Section 3.2.4 in order to

remove termatiko sets by adding redundant rows. The algorithm adds 30 redund-
ant rows to A(20)

PG , 55 rows to A(72)
PG , and 68 rows to A(172)

PG . Due to computational

limitations, we are able to tackle only a limited number of termatiko sets. A(20)
PG

originally had the highest number of termatiko sets, and because of that we only
process all termatiko sets of size up to 5 (including). For A(72)

PG , we process all

termatiko sets of size up to 7, and for A(172)
PG , sizes up to 8. Accordingly, we oc-

casionally denote the extended matrices by A(20)

EPG(5) , A
(72)

EPG(7) , and A(172)

EPG(8) . The

numbers of termatiko sets decrease for all matrices, however, forA(72)
PG andA(172)

PG
we are also able to increase their termatiko distances. Table 13 shows the estim-
ated termatiko set size spectra (initial part) for the original and extended matrices.

In order to see how changes in the termatiko set size spectra influence perform-
ance under the IPA, we perform simulations to estimate the frame-error rate, i.e.
the probability of failure to recover an original signal correctly for different values
of its Hamming weight w. The results are presented in Fig. 28a. We remark that
the performance of the IPA and its comparison with other algorithms for efficient
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Table 11. Stopping sets (including codewords) distribution over 200 randomly generated
matrices from the protograph-based (3, 6)-regular LDPC code ensemble. The numbers
are exact.

w
average number of

size-w stopping sets
fraction of codes having

size-w stopping sets

fraction of size-w
stopping sets

allowing a (T, S)-split

1 0.000 0.000 -
2 0.080 0.075 1.000
3 0.010 0.010 0.000
4 0.150 0.125 0.267
5 0.320 0.215 0.094
6 1.350 0.485 0.222
7 5.365 0.690 0.070
8 10.860 0.925 0.174
9 33.695 0.995 0.083
10 105.935 1.000 0.099
11 298.085 1.000 0.079
12 953.220 1.000 0.082
13 3029.230 1.000 0.070
14 9887.395 1.000 0.076

w
2 3 4 5 6 7 8 9 10 11 12 13 14

0.0

0.2

0.4

0.6

0.8

1.0

Figure 25. Average success rate of Algorithm 2 on stopping sets that allow a (T, S)-split
for the 200 randomly generated matrices from the protograph-based (3, 6)-regular LDPC
code ensemble. Note that there are no splittable stopping sets of size w = 3.



Table 12. Stopping sets (including codewords) distribution over 200 randomly generated
matrices from the protograph-based (4, 8)-regular LDPC code ensemble. The numbers
are exact.

w
average number of

size-w stopping sets
fraction of codes having

size-w stopping sets

fraction of size-w
stopping sets

allowing a (T, S)-split

1 0.000 0.000 -
2 0.010 0.010 1.000
3 0.000 0.000 -
4 0.125 0.005 0.000
5 0.210 0.020 0.000
6 0.295 0.045 0.051
7 0.185 0.085 0.243
8 3.415 0.190 0.013
9 4.720 0.335 0.010
10 20.525 0.545 0.014
11 70.705 0.720 0.012
12 305.780 0.910 0.029
13 827.665 1.000 0.064
14 2219.780 1.000 0.128

w
2 3 4 5 6 7 8 9 10 11 12 13 14

0.0

0.2

0.4

0.6

0.8

1.0

Figure 26. Average success rate of Algorithm 2 on stopping sets that allow a (T, S)-split
for the 200 randomly generated matrices from the protograph-based (4, 8)-regular LDPC
code ensemble. Note that there are no splittable stopping sets of sizes w = 3, 4, 5.



Table 13. Estimated termatiko set size spectra (initial part) for three protograph-based
matrices from Fig. 23 before and after adding redundant rows. Numbers in angle brackets
stand for termatiko distance hmin, size of the smallest non-codeword stopping set s̃min,
and minimum distance dmin, respectively, for the original non-extended measurement
matrices. Numbers in bold are exact. We tried to “remove” termatiko sets of size up to `
(including).

A
(20)
PG 〈1, 4, 2〉 A

(72)
PG 〈3, 7, 10〉 A

(172)
PG 〈6, 8, 6〉

w
original
(` = 0)

extended
(` = 5)

original
(` = 0)

extended
(` = 7)

original
(` = 0)

extended
(` = 8)

1 2 2 0 0 0 0
2 4 1 0 0 0 0
3 11 0 1 0 0 0
4 82 0 3 0 0 0
5 837 16 19 2 0 0
6 7860 265 83 0 23 0
7 84 059 5214 794 0 263 0
8 670 146 61 519 5204 98 1780 5
9 1 885 358 182 366 6904 109 2134 10
10 2 859 840 182 366 4806 68 1295 9
11 3 371 631 306 240 5124 18 1538 8
12 3 489 631 324 033 6717 35 2225 17
13 3 177 444 351 216 10 483 151 3819 36

v19

v130

c13 c30 c88

Figure 27. {v19} and {v130} are both size-1 termatiko sets in A(20)
PG .
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reconstruction of sparse signals have been investigated in [38] (see Figs. 4 and 8).
We refer an interested reader to that work.

To better understand the curves, we also add lower bounds based on the prin-
ciple of inclusion-exclusion. The following is a well-known result (see, e.g. [2,
Ch. 1]).
Lemma 45 (principle of inclusion-exclusion (PIE)). Assume that A1, A2, . . . ,
AM are some arbitrary events. Then

P

{
M⋃
i=1

Ai

}
=

M∑
k=1

(−1)k−1

 ∑
I⊂[M ]
|I|=k

P

{⋂
i∈I
Ai

} .

More precisely, we take into consideration only the 30–50 smallest termatiko
sets of a matrix. Then we build a theoretical curve as if the matrix would contain
only these termatiko sets. Hence, reconstruction fails if and only if the support of
a signal contains any of these 30–50 termatiko sets as a subset.

Assume that the termatiko sets of the matrix are T1, T2, . . . , and let Ai denote
the event that a weight-w subset of [n] chosen uniformly at random is a superset
of Ti. We remark that if Ti ⊂ Tj , then Ai ⊃ Aj and Ai ∪Aj = Ai. Therefore, if
we include Ti into the list of consideration, then there is no point to also include
Tj . This pre-filtering can save computation time, as many termatiko sets are in
fact subsets of other termatiko sets. Next, we consider only M termatiko sets
which we denote by T1, T2, . . . , TM . Note that it is not required that the chosen
termatiko sets are the M smallest; any M termatiko sets can be chosen and the
result below will still be a correct lower bound. However, in the simulations,
we take the M smallest ones, for some integer M > 0. This is because we are
particularly interested in a negative effect of the smallest termatiko sets.

With the aforementioned notation, the true FER is lower-bounded as

FER(w) = P

{⋃
i

Ai

}
≥ P

{
M⋃
i=1

Ai

}
PIE
=

M∑
k=1

(−1)k−1

 ∑
I⊂[M ]
|I|=k

P

{⋂
i∈I
Ai

}

=
1(
n
w

) M∑
k=1

(−1)k−1

 ∑
I⊂[M ]
|I|=k

(
n−

∣∣⋃
i∈I Ti

∣∣
w −

∣∣⋃
i∈I Ti

∣∣
) .

If the number of terms in the sum becomes too large, then we can use the

87



truncated lower bound

FER(w) ≥ 1(
n
w

) 2L∑
k=1

(−1)k−1

 ∑
I⊂[M ]
|I|=k

(
n−

∣∣⋃
i∈I Ti

∣∣
w −

∣∣⋃
i∈I Ti

∣∣
)

for some 2L < M (the so-called Bonferroni inequality). This truncated ex-
pression becomes equal to the full inclusion-exclusion formula for weight w if∣∣⋃

i∈I Ti
∣∣ > w for all I ⊂ [M ], |I| > 2L. This simple fact allows for faster cal-

culation of better FER lower bounds for sparse signals. The FER curves together
with the lower bounds are depicted in Figs. 28b to 28d.

The three matrices A(20)
PG , A(72)

PG , and A(172)
PG represent different behaviour after

adding redundant rows. A
(20)
PG is intrinsically bad and cannot be fixed as illus-

trated in Fig. 27. In particular, since both {v19} and {v130} are connected only to
{c13, c30, c88}, their values cannot be recovered. The reason being that if v19 = α,
v130 = β, and α + β > 0, each of c13, c30, c88 keeps only the sum α + β, and
there are infinitely many solutions for α and β. It is worth noting that this is not
a failure of the IPA, since, strictly speaking, the information has been lost in the
compression process (even an optimal recovery algorithm would fail here).

On the other hand, bothA(72)

EPG(7) andA(172)

EPG(8) increase termatiko distance (com-

pared to A(72)
PG and A(172)

PG , respectively), and show a significant improvement in
the sparse region which shows the importance of designing measurement matrices
with a high termatiko distance.
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4. CONCLUSION

The good ended happily, and the bad unhappily. That
is what Fiction means.

—Oscar Wilde, The Importance of Being Earnest

In this thesis, we studied the failure events of two iterative message-passing
algorithms, namely the belief-propagation for LDPC decoding over the binary
erasure channel and the interval passing algorithm for compressed sensing. Des-
pite the fact that the algorithms appeared in rather different study domains, we
were able to find many similarities in both their nature and the research methods
we used.

In particular, for the case of the belief propagation decoder, we improved ex-
isting bounds on the stopping redundancy hierarchy of linear codes. We also
generalised the concept to the case of stopping sets having size more than the
minimum distance of a code. This gave a partial answer to the question how to
achieve maximum-likelihood decoding performance with the belief propagation
decoder.

For the interval-passing algorithm, we formulated and proved the precise cri-
terion for the algorithm to fail. For that, we introduced termatiko sets as the core
failure structures of the algorithm. We also suggested some heuristic methods to
improve reconstruction performance of the interval-passing algorithm by methods
borrowed from the belief propagation decoder. Besides that, we presented extens-
ive numerical experiments, in particular, for measurement matrices from the array
LDPC codes.

There are still many open questions left. One of the main problems of stopping
redundancy hierarchy is whether it is possible to construct a family of linear codes
with its stopping redundancy growing polynomially with the length of a code. We
conjecture that for a rather general family of codes, stopping redundancy grows
exponentially.

As to the interval-passing algorithm, we think that it is possible to improve its
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reconstruction abilities by judiciously choosing measurement matrices. While we
suggest one target characteristic in the search for good measurement matrices—
high termatiko distance—it is of interest to construct explicit matrices. The first
step in this direction have been already done, see for example [18].
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Appendix A. OPTIMAL PARITY-CHECK MATRIX
ROW WEIGHT

In this appendix, we aim to find a weight w of a row in a parity-check matrix,
which covers the maximum number of stopping sets of size up to `, provided that
n is fixed. It is easy to see that any row of length n and weight w covers exactly

w
∑̀
i=1

(
n− w
i− 1

)
stopping sets of weight up to `. Lemma 46 provides an answer to that maximiza-
tion question.
Lemma 46. Fix two positive integers n and 2 ≤ ` ≤ n and define a discrete
function F : {1, 2, . . . , n− `+ 1} → N in the following way:

F (w) = Fn,`(w) = w
`−1∑
i=0

(
n− w
i

)
.

Then

arg max
w

F (w) ∈
{⌊

n+ 1

`

⌋
,
⌈n
`

⌉}
.

Proof. First of all, it is easy to see that⌊
n+ 1

`

⌋
=
⌈n
`

⌉
or

⌊
n+ 1

`

⌋
+ 1 =

⌈n
`

⌉
.

Then, to prove the statement of the lemma, it is sufficient to show that F (w)
increases for w <

⌊
n+1
`

⌋
and decreases for w ≥

⌈
n
`

⌉
.

Consider a finite difference:

∆F (w) = F (w + 1)− F (w) .

It can be expanded as follows:

∆F (w) = F (w + 1)− F (w)

= (w + 1)
`−1∑
i=0

(
n− w − 1

i

)
− w

`−1∑
i=0

(
n− w
i

)

= (w + 1)
`−1∑
i=0

(
n− w − 1

i

)
− w

`−1∑
i=0

((
n− w − 1

i

)
+

(
n− w − 1

i− 1

))

=

`−1∑
i=0

(
n− w − 1

i

)
− w

`−1∑
i=0

(
n− w − 1

i− 1

)
.
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We have:

∆F (w) =

`−1∑
i=0

((
n− w − 1

i

)
− w

(
n− w − 1

i− 1

))

=
`−1∑
i=0

(n− w − 1)!

i!(n− w − i)!
(n− i− w(i+ 1)) .

If we require that

w ≤ n− `+ 1

`
,

then it follows also that

w <
n− i
i+ 1

for all i < `− 1 ;

hence, each of the terms (n− i−w(i+ 1)) is positive for i < `− 1 and (n− `+
1− w`) ≥ 0. Therefore,

F (1) < F (2) < · · · < F

(⌊
n+ 1

`
− 1

⌋)
< F

(⌊
n+ 1

`

⌋)
.

On the other hand, we can write:

∆F (w) =

`−1∑
i=0

(
n− w − 1

i

)
− w

`−1∑
i=0

(
n− w − 1

i− 1

)

=
`−1∑
i=0

(
n− w − 1

i

)
− w

`−2∑
i=0

(
n− w − 1

i

)

=

(
n− w − 1

`− 1

)
+ (1− w)

`−2∑
i=0

(
n− w − 1

i

)
.

And, if w > 1, we have:

∆F (w) <

(
n− w − 1

`− 1

)
+ (1− w)

(
n− w − 1

`− 2

)
=

(n− w − 1)!

(`− 1)!(n− `− w + 1)!
(n− w`) .

If we further require w ≥ n
` , then ∆F (w) < 0 and

F
(⌈n

`

⌉)
> F

(⌈n
`

⌉
+ 1
)
> · · · > F (n− `+ 1).
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Appendix B. FULL-RANK BINARY MATRICES WITH
NO ROWS OF HAMMING WEIGHT ONE

In this appendix, we compute the number of full-rank binary matrices with no
rows of weight one. The results in this appendix are based on [1].
Lemma 47. Let m ≥ i and denote by M(m, i) the number of full-rank binary
m× i matrices. Then

M(m, i) =
i−1∏
t=0

(2m − 2t).

Proof. As m ≥ i, all columns in such matrices are linearly independent. We have
2m − 1 choices for the first column (any non-zero vector in Fm2 ), 2m − 2 choices
for the second column (any vector in Fm2 except the all-zero vector and the first
column), 2m − 22 choices for the third column (any vector in Fm2 except for the
vectors in the subspace spanned by the first two columns), etc. Altogether, we
have

M(m, i) = (2m − 1)(2m − 2) · · · (2m − 2i−1) =
i−1∏
t=0

(2m − 2t).

Lemma 48. Let m ≥ i and denote by N (m, i) the number of full-rank binary
m× i matrices with no rows of Hamming weight one. Then

N (m, i) =
i∑

k=0

(
i

k

)
· k!

m∑
p=0

(−1)m−p ·
(
m

p

)

· 2kp · S(m− p, k)

i−k−1∏
t=0

(2p − 2t) ,

(B.1)

where S(x, y) is a Stirling number of the second kind:

S(x, y) ,
1

y!

y∑
j=0

(−1)y−j
(
y

j

)
jx.

Proof. Using the result of Lemma 47, the number of full-rankm×imatrices with
exactly z zero rows can be obtained by using the inclusion-exclusion principle, as
follows: (

m

z

)m−z∑
p=0

(−1)m−z−p
(
m− z
p

) i−1∏
t=0

(2p − 2t) . (B.2)

Now, let us consider the requirement not to have rows of weight one. We use
the inclusion-exclusion principle.
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Let Pι (ι = 1, 2, . . . , i) be the property that there is a row with a single 1 at ι’th
coordinate. Suppose that an m× i matrix satisfies properties with indices from a
set R ⊆ [i] with |R| = k. Then the set of row indices is partitioned as

[m] = J t J̄ ,

where J consists of indices corresponding to rows with a single 1 at a coordinate
from R, and J̄ = [m] \ J . Let |J | = j (we have j ≥ k).

To enumerate possible submatrices, whose rows are indexed by J and columns
by [i], we notice that their columns essentially define an ordered partition of their
rows into k non-empty sets. Hence, the number of such submatrices equals to
k!S(j, k).

The number of submatrices whose rows and columns are indexed by J̄ and
R̄, respectively, with exactly z zero rows can be calculated from (B.2). They can
be extended to all submatrices with rows indexed by J̄ in (2k − k)z(2k)m−j−z

ways because each zero row can be extended by anything except of k-vectors of
weight 1 (as we already collected them in rows J), and others can be extended by
anything.

Putting all together, we have

N (m, i) =

i∑
k=0

(−1)k
(
i

k

) m∑
j=k

(
m

j

)
k!S(j, k)

·
m−j∑
z=0

(
m− j
z

)
(2k − k)z(2k)m−j−z

·
m−j−z∑
p=0

(−1)m−j−z−p
(
m− j − z

p

) i−k−1∏
t=0

(2p − 2t)

=
i∑

k=0

(−1)k
(
i

k

) m∑
j=k

(
m

j

)
k!S(j, k)

·
m−j∑
p=0

(−1)m−j−p
(
m− j
p

)
2kpkm−j−p

i−k−1∏
t=0

(2p − 2t)

Here, we understand 00 = 1. For instance, km−j−p = 1 for the case k = m− j−
p = 0. Further, we expand S(j, k) according to the definition and get:

N (m, i) =

i∑
k=0

(
i

k

) m∑
j=k

(
m

j

) k∑
`=0

(−1)`
(
k

`

)
`j

·
m−j∑
p=0

(−1)m−j−p
(
m− j
p

)
2kpkm−j−p

i−k−1∏
t=0

(2p − 2t)
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=
i∑

k=0

(
i

k

) k∑
`=0

(−1)`
(
k

`

) m∑
j=k

m−j∑
p=0

(
m

j

)
`j

· (−1)m−j−p
(
m− j
p

)
2kpkm−j−p

i−k−1∏
t=0

(2p − 2t)

=

i∑
k=0

(
i

k

) k∑
`=0

(−1)k−`
(
k

`

) m∑
j=k

m−j∑
p=0

(
m

j

)
`j

· (−1)m−j−p+k
(
m− j
p

)
2kpkm−j−p

i−k−1∏
t=0

(2p − 2t)

We continue simplifications of the formula:

N (m, i) =
i∑

k=0

(
i

k

) k∑
`=0

(−1)k−`
(
k

`

)

·
m∑
p=0

(
m

p

)
2kp(−`)m−p

i−k−1∏
t=0

(2p − 2t)

=

i∑
k=0

(
i

k

)
k!

m∑
p=0

(−1)m−p
(
m

p

)
2kpS(m− p, k)

i−k−1∏
t=0

(2p − 2t) .

We note that for the medium and large values of m and i, the ratio of the
number of full-rank binary m × i matrices without rows of weight one to the
number of all full-rank binary matrices is quite close to 1, and hence the relative
error becomes close to 0. For example, for m = 50 and i = 30 we have

M(50, 30)−N (50, 30)

N (50, 30)
≈ 1.40 · 10−6.

Since obviouslyM(m, i) ≥ N (m, i), the former is a correct upper bound, which
is rather tight for the medium and large values of m and i. For practical purposes,
calculating and analysingM(m, i) is much easier than N (m, i).
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Appendix C. PROOF OF THEOREM 42

To prove Theorem 42, we need the following lemma.
Lemma 49. Assume T = {v1, v2, v3} is a termatiko set of size 3 in H(q, 3).
Define N and S analogously to Theorem 35. Then, S 6= ∅, and for each c ∈ N ,
it holds that |NT (c) | = 1 and |NS (c) | > 0.

Proof. Assume first that some c0 ∈ N is not connected to S (including the case
S = ∅). Then, from Theorem 35, c0 is connected to T at least twice (w.l.o.g.
let v1 and v2 be these two variable nodes) and for any c ∈ N (v1) ∪ N (v2)
(including c = c0) it holds that |NT (c) | ≥ 2. See Fig. 29a for illustration.
As any two variable nodes share not more than one measurement node, we have
N (v1) ∩ N (v2) = {c0}. Therefore, since |N (v1) | = |N (v2) | = 3, we have
|N (v1) ∪ N (v2) | = 5. Now, count number of edges between T and N . On the
one hand, it is |N (v1) | + |N (v2) | + |N (v3) | = 3 + 3 + 3 = 9. On the other
hand, it is not less than∑

c∈N(v1)∪N(v2)

|NT (c) | ≥ 2 |N (v1) ∪N (v2) | = 10 .

This contradiction shows that S 6= ∅ and that each c ∈ N is connected to both T
and S.

Next, we prove that each c ∈ N is connected to T only once. Again, assume
to the contrary that some c0 ∈ N is connected to T at least twice, w.l.o.g. to

v1 v2

c0

T :

N :

(a) Scenario under the assumption that there exists
a measurement node c0 ∈ N not connected to S

v1 v2 v3

u

c0
d1 d2 d3 d′1 d′2 d′3

T :

N :

S :

(b) Scenario under the assumption that there exists a measure-
ment node c0 ∈ N connected to T twice. The measurement
nodes are grouped according to the three different strips as {c0},
{d1, d2, d2}, and {d′1, d′2, d′3}

Figure 29. Illustration for Lemma 49.
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v1 and v2, and let u ∈ S be connected to c0 (as we have just shown, such u
exists). Recall that N (u) ⊂ N by definition of S from Theorem 35. Since v1

and v2 are both connected to c0, they do not share any other measurement node.
Additionally, recall that each variable node is connected to three measurement
nodes, each from a different strip. Hence, v1 and v2 are connected to different
measurement nodes d1, d2 ∈ N in another strip (different from the strip of c0),
and also to two different measurement nodes d′1, d

′
2 ∈ N in the remaining strip.

See Fig. 29b for illustration. Now, u cannot be connected to any of d1, d2, d
′
1, d
′
2

as it already shares one measurement node with each of v1 and v2. Therefore,
there exists a measurement node d3 ∈ N (u) in the same strip that contains d1

and d2. However, d3 should be also connected to T . Thus, the only possibility
left is that d3 is connected to v3. The same argument can be used for the strip
that contains d′1 and d′2; it contains a node d′3, and d′3 is connected to both u and
v3. We have a contradiction, as u and v3 share two different measurement nodes
(meaning that there should exist a cycle of length 4 in the corresponding Tanner
graph). Therefore, every c ∈ N is connected to T exactly once.

From Lemma 49 it follows that |N | = 9 and that v1, v2, v3 do not share any
measurement nodes. Next, we turn to the proof of Theorem 42.

Proof. From Theorem 40 we know that hmin ≥ 3; thus, we only need to prove the
multiplicity result. Assume we have a termatiko set T = {v1, v2, v2}, and denote
N (v1) = {c11, c21, c31}, where c11, c21, c31 belong to the first, the second, and
the third strips, respectively. Analogously, denote N (v2) = {c12, c22, c32} and
N (v3) = {c13, c23, c33}. As shown above, |N | = |{c11, . . . , c33}| = 9 (all these
measurement nodes are different). As usual, we define the set S as in Theorem 35.

In order not to share any two (or more) measurement nodes with any of v1, v2,
v3, each u ∈ S should be connected to c1π1 , c2π2 , and c3π3 , where π = π(u) =
(π1, π2, π3) is some permutation of {1, 2, 3}. Thus, we will denote candidates
for the set S as uπ1π2π3 . In other words, N (uπ1π2π3) = {c1π1 , c2π2 , c3π3}, from
which it follows that there are 6 candidates for S and |S| ≤ 6. Turn to Fig. 30 for
illustration.

v1 v2 v3

u213

c11 c12 c13 c21 c22 c23 c31 c32 c33

Figure 30. Illustration for the proof of Theorem 42 for π = (2, 1, 3) and hence u213.
Vertices c11, c12, . . . , c33 are grouped according to the three different strips.
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As each cxy ∈ N (for all x, y ∈ {1, 2, 3}) should be connected to S, S should
include some uπ with πx = y, for all choices of x and y. For example, c11 should
be connected to S, and thus either u123 or u132 (or both) should be present in S.

By applying the corresponding automorphism, we can set v1 = (0, 0) and
v2 = (2, j) for some j ∈ Fq.1 With this notation, the support matrix of T becomes0 2 ·

0 2 + j ·
0 2 + 2j ·

 ,
where the dots stand for entries which are currently unknown.

For the remainder of the proof, we exhaustively check all cases and sub-cases,
based on the assumption that some uπ1π2π3 ∈ S. As we noted before, since c11

should be connected to S, either u123 or u132 (or both) should be in S.
1. First, assume that u123 ∈ S, which means that c11, c22, and c33 are connec-

ted to the same variable node (u123), and thus the corresponding values in
the support matrix will form an arithmetic progression. More precisely, the
values {0, 2 + j, ·} should form an arithmetic progression, and we immedi-
ately obtain the support matrix0 2 ·

0 2 + j ·
0 2 + 2j 4 + 2j

 .
Further, c12 should also be connected to S, and thus either u213 or u231 (or
both) should be in S.

• By assuming that u213 ∈ S, we obtain that c12, c21, and c33 are
connected to the same variable node u213 ∈ S. Hence, the values
{2, 0, 4 + 2j} should form an arithmetic progression. From this we
get that 4 + 2j = −2 and then j = −3. The updated support matrix is0 2 ·

0 −1 ·
0 −4 −2

 .
• By assuming that u231 ∈ S, we have that {2, ·, 0} form an arithmetic

progression and then we can replace “·” by 1. However, the values
in the column of any support matrix should also form an arithmetic
progression. Hence, the support matrix becomes0 2 −2− 2j

0 2 + j 1
0 2 + 2j 4 + 2j

 .
1Note that we choose the integer 2 to make further numbers look “prettier”, although any non-

zero value from Fq would work here.
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Other sub-cases are omitted for brevity.
2. On the other hand, if we assume u132 ∈ S, then the values corresponding to
c11, c23, and c32 (i.e. {0, ·, 2 + 2j}) form an arithmetic progression. From
this we immediately obtain the updated support matrix0 2 ·

0 2 + j 1 + j
0 2 + 2j ·

 .
We again omit further sub-cases for brevity.

The different cases can be represented as nodes in a search tree (see Fig. 31).
Note that the branches in the tree are not mutually exclusive, but they cover all
cases. This means that the same termatiko set can be obtained more than once.
The two cases marked in bold in Fig. 31 are general cases. Moreover, by set-
ting j = 0 or j = −3, we can obtain other particular cases (these relations are
shown by dotted arrows). Note that branching stops at these general cases, as even
these general forms already ensure that {v1, v2, v3} is a valid termatiko set. Other
branches need to go one level deeper. Since the set of equations

−2− 2j = 4 + 2j ,

1 = 1 + j ,

4 + 2j = −2

do not have a solution for q ≥ 5, these two general cases do not intersect.
Nonetheless, we still need to check that the three columns are different in each

of these two cases. The corresponding requirement for the first bold case is

0 6= 2 + j,

0 6= 2 + 2j,

0 6= −2− 2j,

0 6= 4 + 2j,

2 6= −2− 2j,

2 + j 6= 1,

⇔

{
j 6= −2,

j 6= −1.

For the second bold case we obtain the condition

0 6= 2 + j ,

0 6= 2 + 2j ,

0 6= 4 + 2j ,

0 6= 1 + j ,

2 6= 4 + 2j ,

2 + 2j 6= −2 ,

⇔

{
j 6= −2 ,

j 6= −1 .
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[
0 2 ·
0 2+j ·
0 2+2j ·

]

[
0 2 ·
0 2+j ·
0 2+2j 4+2j

]
u
123 ∈

S

[
0 2 ·
0 2+j 1+j
0 2+2j ·

]

u1
32
∈ S

[
0 2 ·
0 −1 ·
0 −4 −2

]

u
213 ∈

S

[
0 2 4
0 −1 1
0 −4 −2

]

u
3
1
2
∈
S

[
0 2 −2
0 −1 −2
0 −4 −2

]

u3
21
∈ S[
0 2 −2−2j
0 2+j 1
0 2+2j 4+2j

]

u
2
3
1
∈
S

[
0 2 4+2j
0 2+j 1+j
0 2+2j −2

]

u
2
1
3
∈
S

[
0 2 ·
0 2 1
0 2 ·

]

u 2
31
∈
S

[
0 2 −2
0 2 1
0 2 4

]
u
312 ∈

S

[
0 2 4
0 2 1
0 2 −2

]

u
3
2
1
∈
S

j
=
−

3 j
=

0
j = −3

j
=

0

Figure 31. Different cases for the proof of Theorem 42. Dotted arrows show special cases
for particular values of the variable j.

Therefore, in total there are q − 2 choices for j in each of the cases. This means
that there are exactly 2(q − 2) termatiko sets with fixed v1 = (0, 0) and v2 =
(2, ·). Any other termatiko set of size 3 in H(q, 3) can be obtained by applying
an automorphism (there are q2(q − 1) such automorphisms). However, in this
manner, we count each termatiko set 3! = 6 times. Thus, the total number of
distinct size-3 termatiko sets in H(q, 3) is q2(q − 1)(q − 2)/3.
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SUMMARYI

Sõnumivahetusalgoritmide tõrgete struktuurid kustutuste
dekodeerimises ja hõredas signaalihõives

Esitatud tulemused on näiliselt kahest erinevast valdkonnast, nimelt käsitleme ite-
ratiivse kanali dekodeerimise ja hõreda signaalihõive (ingl k. compressed sensing)
meetodeid. Intervallivahetusalgoritmi (ingl k. interval-passing algorithm, IPA)
tõrkeid hõrendatud signaalihõives soovitati mul uurida viiekuulise uurimiskülas-
tuse jooksul Bergeni Ülikoolis. Leidsime palju sarnasusi nendes uurimisvaldkon-
dades kasutatavate meetodite ja uurimisvahendite vahel. Me esitasime IPA jaoks
termatiko hulgad (kreeka k. τερματικό ehk lõplik), mis käituvad täpselt samamoo-
di kui peatavad hulgad sõnumivahetusdekodeerimise korral üle kahendkustutus-
kanali (ingl k. binary erasure channel, BEC).

Shannon pani informatsiooniteooria uurimisele aluse juba 1948. aastal, jõudes
järeldusele, et ükskõik kui halva kanali korral on alati võimalik informatsiooni
veakindlalt edastada, kodeerides andmeid piisavalt suurel hulgal. Me käsitleme li-
neaarseid kodeerimise meetodeid kahendkustutuskanali kontekstis. Sellise kanali
puhul infoühik kas jõuab veatult kohale või kustub, kusjuures info kustumine on
vastuvõtjale tuvastatav.

1960ndatel pakkus Gallager välja lineaarsed hõredad paarsuskontrolli koodid
(ingl k. low-density parity-check, LDPC), mis võimaldasid kiiret sõnumivahetus-
dekodeerimist. Lühikese ja keskmise pikkusega koodide puhul ei ole aga LDPC
koodide jõudlus optimaalne. Kahendkustutuskanali korral on teada, et sõnumi-
vahetusdekodeerimiseks kasutatavat paarsuskontrollimaatriksit saab laiendada ri-
dadele liiasuse lisamisega. Käesoleva töö teine peatükk käsitleb lisatavate ridade
arvu ülemise tõkke täiustamist. Me parandasime seni parimat ülemist tõket ning
üldistasime nende kontseptsiooni. Antud peatükk hõlmab lisaks teoreetilisele ma-
terjalile ka hulgaliselt arvutuslikke katseid, mis teooriat kinnitavad.

Teine eelmainitud uurimisvaldkondadest, hõre signaalihõive, sai alguse Can-
dèse ja Tao, ning eraldiseisvalt Donoho, töödest. Mitmeid olulisi signaale saab esi-
tada hõredate vektoritena ja nemad pakkusid välja vastuvõetud signaalide jooks-
valt hõrendamise, korrutades neid kaudselt läbi mõõtemaatriksiga. Sellisel juhul
esialgse signaali taastamine on aga NP keerukusklassi kuuluv probleem. Keeru-
kusest tulenevalt on välja töötatud lihtsamaid alternatiivseid meetodeid, mille-
dest ühte, intervallivahetusalgoritmi, käsitleb käesoleva töö teine pool. Kolmandas
peatükis me uurime, millistel juhtudel antud algoritm annab tõrke. Me kirjeldame
täieliku graafiteoreetilise kriteeriumi, mille korral tõrked esinevad. Juhtumiuurin-
guna vaatlesime paarsuskontrollimaatrikseid LDPC koodides ja saime palju tule-
musi tõrgete kohta, kasutades neid mõõtemaatriksitena IPAs.

Me uurisime sõnumivahetusalgoritme kustutuste dekodeerimises ja hõredas
signaalihõives. See tõi nende algoritmide vahel esile mitmed sarnasused ja või-
maldab ühtlustada uurimisvahendeid nende analüüsiks.
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