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1. INTRODUCTION 

The goal of this doctorial theses is to provide a comprehensive guide on deter-
mining limit of detection (LoD) for analysis methods using mass spectrometry 
(MS), clarify important aspects of LoD determination and to give suggestions 
for practitioners on this topic.  

A very large number of articles reporting new MS methods, especially liquid 
chromatography mass spectrometry (LC-MS) methods, are submitted for publi-
cation each year and method validation is an intrinsic part of such articles. How-
ever, in spite of the number of articles published, miscalculation and misinter-
pretation of validation parameters is still common due to complexity of the 
methods and some ambiguity in the definitions of some of the validation para-
meters [1]. LoD is one of these important method performance parameter that is 
used both for characterizing the analytical method as well as interpreting the 
analysis results.  

There are several method validation guidelines published by prominent 
international organisations, which often have contrasting views on the ways of 
estimating (and even the meaning of) LoD. As a result, there exists a number of 
guidelines with diverse approaches and recommendations that, when applied in 
practice, lead to significantly different LoD estimates. Often standards and 
guidelines can leave decision on how to estimate LoD to the analyst in which 
case he/she needs further information. Moreover, analysts are often under the 
pressure from legislation, journals, community, etc. to produce as low as pos-
sible LoD estimates. This leaves room for miscommunication about the realistic 
capabilities of the analytical methods. In addition, sophisticated statistics must 
be used if LoD is to be estimated without making any assumptions. In order to 
be feasible for practitioners, all approaches suggested in the guidelines make 
some assumptions about the analytical system. It is therefore important to 
understand which assumptions significantly influence the LoD estimate. There-
fore, for both fundamental and practical reasons, determining LoD is a complex 
topic. 

The focus of this work was to provide a comprehensive comparative experi-
mental evaluation on different approaches of determining LoD in MS and give 
recommendations to practitioners on choosing LoD determination approach.   

The LoD estimation for MS analysis methods is of great importance for two 
reasons: (1) MS analysis methods enable detecting analytes at very low levels 
and are therefore widely used for trace analysis where LoD is an important 
parameter and (2) the LoD estimation is somewhat dependant on the analytical 
method being used and therefore the same suggestions might not be appropriate 
for different analysis methods. 

In this work two MS techniques are used to estimate LoD: LC-MS, and 
paper spray ionization (PSI) mass spectrometry. Various approaches and impor-
tant aspects of LoD estimation are considered on the basis of examples of LC-
MS and PSI/MS methods. Data from these experiments were suitably analysed 
e.g. to study between-days LoD and to study subjectivity of some approaches to 
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estimate LoD. Differences in estimating LoD are emphasized when a simple 
LoD value for characterization of the analysis method is needed or when it is 
more appropriate to use complex LoD estimation approaches that make less 
assumptions (e.g. using decision limit (CCα) and detection capability (CCβ) 
estimates). The LoD estimates found by different approaches are compared. 
Also simulations were made to estimate the influence of experimental design on 
LoD result and experiments were carried out to estimate subjectivity of data 
analysis. 
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2. REVIEW OF LITERATURE 

2.1. Limit of detection 
2.1.1. Definitions and use 

Limit of detection (LoD, detection limit) is in most cases defined as the smallest 
amount or concentration of analyte in the test sample that can be reliably dis-
tinguished from zero [2]. 

LoD is used to make a binary decision: whether the analyte is detected in 
the sample or not. Therefore there is a possibility of both false positive and 
false negative results. A false positive result means that the analyte level in 
the sample is wrongly said to exceed LoD. A false negative result means that 
the analyte level in the sample is wrongly said to be below LoD [3]. The 
reliability of this decision depends on the likelihood of making a false positive 
and false negative decisions. However, the general definition of LoD does not 
specifically define whether and how these errors must be taken into account. 
This ambiguity problem of the LoD definition is solved by two method 
characteristics that have been suggested to be used in place of LoD: decision 
limit (CCα) and detection capability (CCβ) [3]. CCα is generally defined as the 
analyte concentration (or intensity) level found in a sample by the analytical 
method under question above which we can state that the probability of the 
signal being caused solely by noise is below α. This means that a signal above 
CCα is with high probability caused by analyte and not by noise. CCβ is the 
concentration level of analyte present in a sample at which we can say with 
probability 1-β that the analytical method under question will not give false 
negative results (meaning results below CCα) [3]. Graphical explanation of 
CCα and CCβ can be found in Figure 1. The values for α and β are usually 
chosen so that the reliability (1 –  or 1 – , respectively) is 95% or higher.  
Thus, CCα takes into account the probability of false positive results and CCβ 
the probability of false negative results. However, as CCβ is calculated by 
using CCα both types of errors are accounted for. 

CCα and CCβ can be called differently in different guidelines and articles. 
For example CCα is called critical value of the net state variable [4], critical 
level or critical value [5], or decision limit [3,6] and CCβ is called minimum 
detectable value of the net state variable [4], detection limit [3,5,7], minimum 
(detectable) true value [5], limit of detection [7] or detection capability [6]. CCα 
and CCβ are discussed in more detail in chapter 2.3. 
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Figure 1. Graphical explanation of CCα and CCβ. A calibration graph is shown. The 
dashed blue lines indicate the standard deviation of the signal multiplied by the 
respective one-sided quantile at 95% probability (1.64). The normal distribution curves 
show the distribution of values obtained from a blank sample and a sample fortified at 
CCβ concentration, respectively. Note that the CCα can also be found in intensity scale 
from the dashed red line parallel to the concentration scale. 
 
 
When analysing the different equations of different approaches to estimate LoD 
(see Table 1) it can be seen that in most cases when the general definition of 
LoD is used then it is interpreted to be equivalent to CCβ. For this reason it can 
be seen that in some cases the name “detection limit” is used for both LoD and 
CCβ. However, this is not always the case. Early in the development of the LoD 
concept there was a disagreement whether LoD should take into account the 
possibility of only false positive results or both false positive and false negative 
results [8]. As a result there are cases where LoD is rather considered as CCα. 
However, as probability of false negative results at CCα is 50% (half the mea-
surements made at CCα concentration level would give results below CCα) 
making reliable decisions is not possible. Therefore, at CCα false negative 
results are not taken into account and we recommend that LoD should always 
be considered equal to CCβ. However, care must be taken, when working with 
literature, to make sure what is exactly meant when using LoD. 

LoD, CCα and CCβ are used for two purposes: (1) for characterization of the 
method (e.g. for comparison of two different methods or different laboratories 
or for comparison with limits set for the method) and (2) for the interpretation 
of unknown sample results. For the first purpose it is more appropriate to use 
LoD or CCβ because samples precisely at CCα are falsely interpreted and 
therefore this level does not describe the general capability of the analysis 
method. It should be noted here that in this work the term “method” is used with 
the same meaning and instead of the VIM term “procedure”, because this usage 
is in line with the common language of the analytical community. 

Interpretation of results is somewhat different when LoD is used (as opposed 
to CCα and CCβ). The following rules should be followed when using LoD [9]: 



13 

(1)  If a measurement result below LoD is obtained then it should be stated that the 
analyte content in the sample is below LoD (it cannot be stated that the analyte 
is not present) and the LoD value should also be given. 

(2)  In case the result is above LoD but below Limit of Quantitation (LoQ) then it 
can be stated that the analyte is present in the sample at trace level and the LoD 
value should again be given. 

(3)  In case the result is above LoQ then the determined analyte content is pre-
sented together with its uncertainty. 

 
If only the result “below LoD” is given then information about the numerical 
result of the analysis will be lost [10]. However, this information can be 
necessary for the end user (e.g. to calculate mean and standard deviation of 
many samples). Therefore, it has been recommended that the result with its 
uncertainty should be reported irrespective whether the result is above or below 
LoD although the uncertainty in that region can be close to the result itself or 
even higher [5,11]. Giving a value with its uncertainty is necessary for further 
use and statistical analysis of the results.  

In case of CCα and CCβ the interpretation of the result of a particular sample 
should be done as follows: 

 
(1) If the result is below CCα then it can be stated that the concentration of the 

analyte is below CCβ (or that the analyte is not detected). By quoting CCβ here 
instead of CCα the possibility of false negative results is taken into account. 

(2) If the result is above CCα then it can be stated that the concentration of the 
result is above CCα (or that the analyte is detected). 

 
As with LoD, when CCα and CCβ are used for interpretation of data, the mea-
sured result with its uncertainty should also be stated.  

If LoD is estimated with an approach where it is viewed as CCβ then inter-
preting the result of a sample using LoD instead of CC (i.e. for deciding 
whether the analyte is present in a specific sample or not) can give false 
negative results. In these cases there is a possibility that the obtained analyte 
concentration value from the measurement is by accident below LoD although 
the true analyte concentration value is above LoD. In the case of result equal to 
LoD the probability of this error is 50% and it is not taken into account. 

If LoD is interpreted as CCα (e.g. in the case of group 2 approaches in Table 1) 
a problem arises when using LoD value for characterizing the analysis method. In 
this case the LoD overestimates the capabilities of the analysis method because 
the possibility of false negative results is not taken into account. 

For many analytes the maximum allowed concentrations, often called the 
maximum residue limits (MRL), in specific matrices have been set. To take into 
account the possibility of false positive and false negative errors when inter-
preting whether the sample is over or under MRL CCα and CCβ values can be 
estimated at this level. It should be noted that for example in 96/23/EC CCα and 
CCβ are defined so that in case the MRL has been set they should be found only 
for the MRL and not for the blank value [6]. The difference in this case is that 
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the signal should be significantly different from a sample with analyte content at 
MRL level instead of the background. In other words, CCα is the analyte level 
detected in the sample above which there is α probability that the signal is 
caused by a sample with analyte concentration below MRL. To take into 
account the possibility of false negative results CCβ is also found as the level at 
which there is β probability of obtaining a result lower than CCα. The inter-
pretation of the results if the MRL has been set can be done as follows: if the 
obtained value is over CCα we can state that the sample contains the analyte 
over MRL, and if the obtained result is under CCα we can state with confidence 
that the analyte content is below CCβ [6]. The measurement result with its un-
certainty must be reported as well.  

In this work consideration is given only to the estimation of CCα and CCβ 
that indicate whether the analyte is detected in the sample or not, because only 
in this case CCα and CCβ are related to the topic of LoD. 

Distinction is often made between two types of LoD – method LoD and 
instrumental LoD. Method LoD shows the detection limit of the whole method 
taking into account all aspects that can influence the signal strength (e.g. sample 
preparation, matrix effects, etc.) and cause variance in the result, and therefore 
influence LoD of the whole method. The samples that are used to evaluate 
method LoD must be matrix-matched and must go through the whole measure-
ment procedure [2,12] which includes all the subsampling (taking sample(s) of 
suitable size from the initial sample), sample preparation and analysis steps. 
This is necessary to take into account all the sources of variability [12]. The 
LoD of an analytical method can be different for different matrices. It has been 
suggested that the matrix used to estimate the LoD should be reported with the 
estimated LoD value [13]. Instrumental LoD is estimated for an instrument 
using analyte solutions in solvent. Instrumental LoD is usually significantly 
lower than the method LoD, and is meant only for assessing instrument’s 
capabilities and cannot be assigned to an analytical method [2]. In this work 
LoD always means method LoD. 

 
 

2.1.2. LoD estimation approaches 

There are many LoD estimation approaches and they are conceptually different. 
This work addresses the approaches that are included in validation guidelines 
and are most widely used by practitioners. There have been additionally many 
other approaches (that are often again conceptually different) suggested in the 
literature. Although some have been discussed and reviewed in somewhat more 
depth [14] many others have not found much use [15–18] and are therefore not 
considered here. It can be noted, however, that because of the variability (e.g. 
between days) of LoD the highly sophisticated approaches do not necessarily 
give more reliable LoD estimates [19]. 

In general the approaches can be divided into 3 categories: (1) approaches 
that need only the measurement of the sample to evaluate whether the analyte is 
present (e.g. visual evaluation and using signal-to-noise ratio (S/N)), (2) using 
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standard deviation at a single concentration, and (3) using standard deviation 
found from calibration data.  

The first category is quite different from the other two – it is possible to use 
S/N and visual evaluation to interpret samples without estimating LoD. The 
limit set by these approaches (e.g. S/N ≥ 3) can be taken as CCα when inter-
preting analysis results (this is because similar to CCα the decision of “detected” 
or “not detected” is made at S/N = 3). However, when used in this way it is not 
possible to characterize the analysis method and compare different methods. For 
this multiple measurement results must be obtained to take into account both the 
false positive and false negative results (see Table 1, group 5). Therefore to 
obtain reliable results with these approaches the following cut-off approach has 
been suggested: multiple series of samples (whereby the analyte concentration 
in each series is different) are measured. Usually analysing 10 samples per 
series is recommended [20,21]. The lowest concentration level where the 
analyte is detected for all (or a high percentage e.g. 95%) the repeated sample 
measurements is taken as LoD. This approach takes into account the possibility 
of false positive results as all (or a certain pre-defined majority) of the samples 
must be over the limit where it is decided that the analyte is detected. Therefore 
this LoD estimate is more reliable to use for interpretation than the simple use 
of S/N or visual evaluation. Another advantage of this approach is its robust 
nature – no assumptions are made concerning the distribution of the results. On 
the other hand, this approach demands high number of replicate measurements 
[12] especially if LoD must be estimated on more than one day (see chapter 
2.1.5). This approach is often recommended for qualitative methods [20] with 
binary measurement results where the decision of detected vs not detected is 
made (instead of reporting a continuous measurement result). However, in case 
of continuous results the use of binary reporting alone causes loss of 
information [22]. To avoid this it is possible to plot the portion of positive 
results against the measured concentrations. From this plot the lowest concent-
ration at which the required amount of samples give a positive result can be 
taken as LoD [21]. 

In this work it is also suggested that results of automatic integration (the 
software automatically integrates the peak and also decides whether to integrate 
or not) can be used to decide whether the analyte is present in the sample. Auto-
matic integration systems identify peaks by monitoring the baseline slope (the 
slope of baseline is over a predetermined value). However, it has been shown 
that automatic integration results of peaks with lower S/N can be unreliable 
[23,24]. Therefore all software integration results should be reviewed by the 
analyst in order to prevent gross errors in peak detection and integration [23]. 

In conclusion, these approaches are not recommended for estimating LoD in 
case of LC-MS/MS as large number of measurements are necessary. In case 
S/N or visual evaluation must be used the cut-off approach together with the 
S/N values is recommended. However, these approaches can still be used for 
quick and rough estimation of whether the analyte is present in the chromato-
gram. For example S/N can be used to find the lowest fortified sample con-
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centration where the analyte can be seen in the sample for estimating LoD. As 
seen in following experiments (see chapter 4.3) knowing the approximate LoD 
can be useful before doing extensive measurement series for estimating LoD 
[Paper IV and V]. 

The second and third category of approaches to estimate LoD are similar to 
the ones used to define CCα and CCβ. This general equation can be therefore 
given: 

 

s
IYSkYLoD 


))((

     (1) 

 
where Y  is the mean intensity value of blank samples, S(Y) is standard 
deviation of results, I is intercept of the calibration function (CF) and s is the 
slope of the CF, and k is a coefficient similar to the Student’s t coefficient. 
Usually k is double the value of t to account for both false positive and false 
negative results at the same time. Also the S(Y) value is assumed to be same for 
blank samples and samples with concentration at CCβ. In some cases it is 
assumed that Y and I are equal and therefore they cancel out (e.g. group 4, 
Table 1). It is also possible to first calculate the concentration values 
corresponding to each measurement and then estimate LoD from these results. 
The difference between the second and third category of LoD approaches comes 
from the choice of how the standard deviation is estimated: the second group 
uses standard deviation at a single concentration (e.g. blank or concentration 
close to LoD) and the third group uses standard deviation estimated from 
calibration data (e.g. standard deviation of intercept or residuals). In both cases 
a calibration function must be made to estimate the concentration value of LoD 
and therefore the third group needs somewhat less measurements (replicate 
measurements at a single concentration are not always necessary). However, in 
both cases still homoscedasticity and linearity are assumed. These characteris-
tics are discussed in chapter 2.1.3. 

CCα and CCβ can be found with similar equation as equation (1). This 
general equation however does not take into account the fact that slope and 
intercept are also estimated from randomly varying measurements. This variabi-
lity is not taken into account when using the equation (1). More sophisticated 
approaches have been suggested that use the prediction interval to estimate LoD 
(or CCα and CCβ) [4] (also discussed in more detail in chapter 2.1.3).  

It can be seen here that many assumptions and simplifications are made in 
most of the approaches. These are outlined in Table 1. In most cases when 
guidelines use CCα and CCβ definitions the approaches make less assumptions 
than when estimating LoD [4,5]. However, in some cases the same assumptions 
are still made [6] (see Table 1). The approaches that make less assumptions 
demand more complex calculations, better understanding of the properties of 
the analysis method (e.g. scedasticity), and generally a larger number of re-
peated measurements. However, even the most sophisticated approaches sug-
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gested in guidelines make statistical assumptions resulting in biased values. For 
example it has been shown that the approaches suggested by ISO give CCα and 
CCβ estimates that are negatively biased in the case of heteroscedastic data [9]. 

One of the goals of this work was to study whether the results of these ap-
proaches also differ significantly from each other due to their conceptual diffe-
rences. Therefore, whenever LoD (or CCα and CCβ) value is stated the approach 
used to estimate it must also be stated. 

Note that not all regulatory bodies have accepted the use of CCα and CCβ 
and suggest approaches that do not consider the reliability problem of the LoD 
definition (see Table 1). The reasons why not to use CCα and CCβ are that their 
estimation can be too complex [9,20] at routine laboratory level and in fact not 
always necessary. 

It must be noted here also that LoD (as well as CCβ) estimate is only 
meaningful in the concentration scale – signal intensity scale (which is different 
in every instrument) is not appropriate for characterizing a method. CCα (which 
intrinsically also refers to concentration), on the other hand, is generally used 
for interpretation of results obtained with the same instrument in the same 
laboratory and therefore using it in concentration scale is not strictly necessary 
[22]. In fact, if the CCα value is estimated on the signal intensity scale from 
blank sample signals (e.g. as in 2002/657/EC [6]) then converting its value into 
the concentration scale by using a CF will introduce errors from slope and 
intercept (see chapter 2.1.3 on how errors in slope and intercept affect LoD). 
Therefore, when working with real samples it is often impractical to convert 
CCα from signal units to concentration units. 
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en

ds
 

on
 c

ho
ic

e 
of

 t)
 

)
(

0
y

S
t

y
Lo

D





0y
 is 

m
ea

n 
va

lu
e 

of
 b

la
nk

 
sa

m
pl

es
 o

r 0
; t

 is
 S

tu
de

nt
’s

 
Co

ef
fic

ie
nt

; S
(y

) i
s s

ta
nd

ar
d 

de
vi

at
io

n 
of

 b
la

nk
 o

r 
fo

rti
fie

d 
sa

m
pl

es
. 

Eq
ua

tio
n 

gi
ve

s L
oD

 in
 

in
te

ns
ity

 sc
al

e.
 

Co
nc

en
tra

tio
n 

of
 fo

rti
fie

d 
sa

m
pl

es
 in

 L
oD

 ra
ng

e 
(e

.g
. 

lo
w

es
t l

ev
el

 w
he

re
 S

/N
 >

 
3)

 o
r a

t M
RL

; 
t i

s t
ak

en
 3

 o
r 4

.6
5;

 
6 

to
 1

0 
re

pe
at

ed
 

m
ea

su
re

m
en

ts 
fo

r b
la

nk
 

an
d 

fo
rti

fie
d 

sa
m

pl
es

; 
al

l s
ig

na
l i

nt
en

sit
ie

s a
nd

 
sta

nd
ar

d 
de

vi
at

io
ns

 h
av

e 
to

 
be

 o
ve

r 0
; 

H
om

os
ce

da
sti

ci
ty

; 
no

rm
al

 d
ist

rib
ut

io
n 

of
 

re
pl

ic
at

es
;  

va
ria

bi
lit

y 
of

 sl
op

e 
an

d 
in

te
rc

ep
t a

re
 n

ot
 ta

ke
n 

in
to

 
ac

co
un

t; 
lin

ea
rit

y 
of

 c
al

ib
ra

tio
n 

da
ta

; 
t v

al
ue

 is
 ro

un
de

d 
an

d 
do

es
 

no
t t

ak
e 

in
to

 a
cc

ou
nt

 th
e 

de
gr

ee
s o

f f
re

ed
om

;  
O

nl
y 

fo
r s

in
gl

e 
sa

m
pl

e 
m

ea
su

re
m

en
t r

es
ul

ts.

Ca
re

 m
us

t b
e 

ta
ke

n 
w

he
n 

in
te

gr
at

in
g 

bl
an

k 
sa

m
pl

es
; 

Er
ro

ne
ou

s C
F 

ca
n 

le
ad

 to
 

ne
ga

tiv
e 

Lo
D

 re
su

lts
; 

N
ot

e 
th

at
 

0y
 is 

no
t 

ne
ce

ss
ar

y 
(ta

ke
n 

as
 0

) i
f 

su
bt

ra
ct

io
n 

w
ith

 in
te

rc
ep

t 
(o

r w
ith

0y
) i

s d
on

e 
to

 a
ll 

re
su

lts
. 

2 
[1

3]
 

Lo
D

 e
ss

en
tia

lly
 

eq
ui

va
le

nt
 to

 C
C α

 
(c

on
sid

er
s o

nl
y 

fa
lse

 
po

sit
iv

e 
re

su
lts

) 

)
(xS

t
Lo

D



 

S(
x)

 is
 th

e 
sta

nd
ar

d 
de

vi
at

io
n 

or
 p

oo
le

d 
sta

nd
ar

d 
de

vi
at

io
n 

of
 a

na
ly

te
 c

on
ce

nt
ra

tio
ns

 
fro

m
 re

pl
ic

at
e 

m
ea

su
re

m
en

ts.
 

A
 d

et
ai

le
d 

pr
oc

ed
ur

e 
is 

gi
ve

n 
to

 c
ho

os
e 

fo
rti

fie
d 

sa
m

pl
e 

co
nc

en
tra

tio
n 

(in
cl

. 
es

tim
at

in
g 

an
 a

pp
ro

xi
m

at
e 

Lo
D

 fi
rs

t, 
m

ea
su

rin
g 

on
ly

 2
 

of
 th

e 
ne

ed
ed

 re
pe

at
ed

 
sa

m
pl

es
 b

ef
or

e 
m

ea
su

rin
g 

th
e 

re
st 

of
 th

e 
7 

sa
m

pl
es

); 
t i

s t
ak

en
 d

ep
en

di
ng

 o
n 

de
gr

ee
s o

f f
re

ed
om

; 
Re

co
m

m
en

de
d 

an
al

yt
e 

co
nc

en
tra

tio
n 

ra
ng

e 
in

 
fo

rti
fie

d 
sa

m
pl

es
 is

 1
–5

 
tim

es
 L

oD
. 

N
or

m
al

 d
ist

rib
ut

io
n 

of
 

re
pl

ic
at

es
;  

va
ria

bi
lit

y 
of

 sl
op

e 
an

d 
in

te
rc

ep
t a

re
 n

ot
 ta

ke
n 

in
to

 
ac

co
un

t; 
lin

ea
rit

y 
of

 c
al

ib
ra

tio
n 

da
ta

; 
H

et
er

os
ce

da
sti

ci
ty

 is
 

so
m

ew
ha

t c
on

sid
er

ed
 b

y 
ca

re
fu

l c
ho

ic
e 

of
 

fo
rti

fic
at

io
n 

co
nc

en
tra

tio
n;

 
O

nl
y 

fo
r s

in
gl

e 
sa

m
pl

e 
m

ea
su

re
m

en
t r

es
ul

ts.
 

 

Lo
D

 a
s e

qu
iv

al
en

t t
o 

CC
α 

(fa
lse

 n
eg

at
iv

e 
re

su
lts

 a
re

 
no

t a
cc

ou
nt

ed
 fo

r);
 

Th
e 

ba
ck

gr
ou

nd
 (m

ea
n 

of
 

bl
an

k 
va

lu
es

 o
r t

he
 in

te
r-

ce
pt

 v
al

ue
) i

s s
ub

tra
ct

ed
 

fro
m

 a
ll 

ot
he

r r
es

ul
ts.

 
It 

is 
th

en
 su

gg
es

te
d 

to
 

ite
ra

tiv
el

y 
ch

ec
k 

th
e 

Lo
D

 
by

 e
sti

m
at

in
g 

it 
ag

ai
n.
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G
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Re
f. 

W
ha

t i
s o

bt
ai

ne
d?

 
Eq

ua
tio

n 
D

es
cr

ip
tio

n 
A

ss
um

pt
io

ns
, 

sim
pl

ifi
ca

tio
ns

 
N

ot
es

 

3 
[2

0]
 

Lo
D

 (c
on

sid
er

s f
al

se
 

po
sit

iv
e 

an
d 

ne
ga

tiv
e 

re
su

lts
 –

 th
e 

pr
ob

ab
ili

ty
 

of
 fa

lse
 p

os
iti

ve
 a

nd
 

ne
ga

tiv
e 

va
lu

es
 d

ep
en

ds
 

on
 c

ho
ic

e 
of

 t)
 

ny
S

t
a

Lo
D

)
(






bn
n

y
S

t
Lo

D
1

1
)

(






 

w
he

re
 n

 is
 th

e 
nu

m
be

r o
f 

re
pe

at
ed

 m
ea

su
re

m
en

ts 
of

 
th

e 
sa

m
pl

e;
 

S(
y)

 is
 st

an
da

rd
 d

ev
ia

tio
n 

of
 

bl
an

k 
or

 fo
rti

fie
d 

sa
m

pl
es

; 
n b

 is
 th

e 
nu

m
be

r o
f r

ep
ea

te
d 

m
ea

su
re

m
en

ts 
of

 b
la

nk
 

sa
m

pl
es

. 
Eq

ua
tio

ns
 g

iv
e 

Lo
D

 in
 

in
te

ns
ity

 sc
al

e.
 

Se
co

nd
 e

qu
at

io
n 

is 
us

ed
 if

 
Lo

D
 is

 e
sti

m
at

ed
 fr

om
 

sin
gl

e 
da

y 
m

ea
su

re
m

en
t 

re
su

lts
 a

nd
 b

la
nk

 v
al

ue
s a

re
 

us
ed

 fo
r c

or
re

ct
io

n;
 

t i
s t

ak
en

 a
s 3

. 

H
om

os
ce

da
sti

ci
ty

;  
no

rm
al

 d
ist

rib
ut

io
n 

of
 

re
pl

ic
at

es
;  

lin
ea

rit
y 

of
 c

al
ib

ra
tio

n 
da

ta
; 

va
ria

bi
lit

y 
of

 sl
op

e 
an

d 
in

te
rc

ep
t a

re
 n

ot
 ta

ke
n 

in
to

 
ac

co
un

t. 
t v

al
ue

 is
 ro

un
de

d 
an

d 
do

es
 

no
t t

ak
e 

in
to

 a
cc

ou
nt

 th
e 

de
gr

ee
s o

f f
re

ed
om

. 
A

llo
w

s t
ak

in
g 

in
to

 a
cc

ou
nt

 
th

e 
av

er
ag

in
g 

of
 sa

m
pl

e 
m

ea
su

re
m

en
t r

es
ul

ts.
 

 

U
sin

g 
in

te
rm

ed
ia

te
 

pr
ec

isi
on

 (n
ot

 
re

pe
at

ab
ili

ty
 st

an
da

rd
 

de
vi

at
io

n)
 to

 e
sti

m
at

e 
Lo

D
 is

 su
gg

es
te

d.
 

M
on

ito
rin

g 
of

 p
re

ci
sio

n 
an

d 
re

gu
la

r r
ec

al
cu

la
tio

n 
of

 L
oD

 v
al

ue
s i

s 
su

gg
es

te
d 

if 
Lo

D
 is

 u
se

d 
fo

r m
ak

in
g 

de
ci

sio
ns

. 

4 
[2

7]
 

Lo
D

 (c
on

sid
er

s f
al

se
 

po
sit

iv
e 

an
d 

ne
ga

tiv
e 

re
su

lts
) 

bS
Lo

D
d




3.3
 

b 
is 

th
e 

slo
pe

 o
f t

he
 C

F,
 S

d 
ca

n 
be

 c
ho

se
n 

as
 st

an
da

rd
 

de
vi

at
io

n 
of

 b
la

nk
 sa

m
pl

es
, 

re
sid

ua
ls 

(S
y.

x) 
or

 in
te

rc
ep

t. 
 

Re
gr

es
sio

n 
lin

e 
m

us
t b

e 
in

 
th

e 
ra

ng
e 

of
 L

oD
. 

CF
 is

 u
se

d 
to

 e
sti

m
at

e 
slo

pe
 a

nd
 st

an
da

rd
 

de
vi

at
io

n 
of

 re
sid

ua
ls 

an
d 

in
te

rc
ep

t. 
N

um
be

r o
f r

ep
ea

te
d 

m
ea

su
re

m
en

ts 
no

t 
sp

ec
ifi

ed
. 

H
om

os
ce

da
sti

ci
ty

; 
no

rm
al

 d
ist

rib
ut

io
n 

of
 

re
pl

ic
at

es
;  

lin
ea

rit
y 

of
 c

al
ib

ra
tio

n 
da

ta
; 

va
ria

bi
lit

y 
of

 sl
op

e 
an

d 
in

te
rc

ep
t a

re
 n

ot
 ta

ke
n 

in
to

 
ac

co
un

t. 
If 

re
pe

at
ed

 re
su

lts
 a

t e
ac

h 
ca

lib
ra

tio
n 

le
ve

l a
re

 a
ve

r-
ag

ed
 a

nd
 st

an
da

rd
 d

ev
ia

tio
n 

of
 re

sid
ua

ls 
is 

us
ed

 fo
r 

es
tim

at
e 

Lo
D

 th
en

 th
e 

nu
m

be
r o

f r
ep

ea
te

d 
m

ea
su

re
m

en
ts 

m
us

t b
e 

th
e 

sa
m

e 
as

 re
pe

at
ed

 m
ea

su
re

-
m

en
ts 

fo
r e

ac
h 

ca
lib

ra
tio

n 
le

ve
l. 

Th
e 

sta
nd

ar
d 

de
vi

at
io

n 
of

 
in

te
rc

ep
t u

nd
er

es
tim

at
es

 
th

e 
va

ria
nc

e 
of

 re
su

lts
 a

t 
0 

co
nc

en
tra

tio
n 

an
d 

sh
ou

ld
 n

ot
 b

e 
us

ed
.  

D
ue

 to
 c

on
se

rv
at

iv
e 

Lo
D

 
es

tim
at

es
, s

im
pl

e 
ca

lc
ul

at
io

n 
pr

oc
ed

ur
e 

an
d 

re
as

on
ab

le
 w

or
kl

oa
d 

(S
d 

is 
ta

ke
n 

fro
m

 re
sid

ua
l 

va
lu

es
), 

th
is 

is 
th

e 
su

gg
es

te
d 

ap
pr

oa
ch

 if
 a

 
rig

or
ou

s L
oD

 e
sti

m
at

e 
is 

no
t n

ee
de

d.
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5 
[2

0,
21

] 
Lo

D
 (c

on
sid

er
s f

al
se

 
po

sit
iv

e 
an

d 
ne

ga
tiv

e 
re

su
lts

) 

-  
Cu

t-o
ff 

ap
pr

oa
ch

; 
nu

m
be

r o
f r

ep
ea

te
d 

m
ea

su
re

m
en

ts 
(u

su
al

ly
 1

0)
 

ar
e 

m
ad

e 
at

 d
iff

er
en

t 
co

nc
en

tra
tio

ns
 n

ea
r L

oD
; 

Th
e 

lo
w

es
t c

on
ce

nt
ra

tio
n 

at
 

w
hi

ch
 a

ll 
th

e 
sa

m
pl

es
 a

re
 

„d
et

ec
te

d“
 is

 u
se

d 
as

 th
e 

Lo
D

; 
Th

e 
de

te
ct

io
n 

th
re

sh
ol

d 
ca

n 
be

 e
sta

bl
ish

ed
 fo

r e
xa

m
pl

e 
ba

se
d 

on
 S

/N
, v

isu
al

 
ev

al
ua

tio
n 

or
 a

ut
om

at
ic

 
in

te
gr

at
io

n 
fo

r 
ch

ro
m

at
og

ra
ph

ic
 m

et
ho

ds
. 

U
se

s r
ob

us
t s

ta
tis

tic
s. 

Th
is 

ap
pr

oa
ch

 d
oe

s n
ot

 
as

su
m

e 
no

rm
al

 d
ist

rib
ut

io
n 

[5
]. 

V
isu

al
 e

va
lu

at
io

n 
of

 
pr

es
en

ce
 o

f a
 p

ea
k 

de
pe

nd
s 

on
 th

e 
an

al
ys

t. 
 

Th
is 

ap
pr

oa
ch

 is
 v

er
y 

w
or

k-
in

te
ns

iv
e;

  
If 

re
pe

at
ed

 L
oD

 
es

tim
at

io
ns

 a
re

 n
ee

de
d 

th
en

 th
is 

ap
pr

oa
ch

 is
 n

ot
 

re
co

m
m

en
de

d 
fo

r L
C-

M
S/

M
S 

m
et

ho
ds

; 
It 

ha
s a

lso
 b

ee
n 

su
gg

es
te

d 
to

 p
lo

t t
he

 p
or

tio
n 

of
 

po
sit

iv
e 

re
sp

on
se

s a
ga

in
st 

co
nc

en
tra

tio
n 

to
 fi

nd
 th

e 
lo

w
es

t c
on

ce
nt

ra
tio

n 
at

 
w

hi
ch

 n
ec

es
sa

ry
 n

um
be

r 
of

 sa
m

pl
es

 g
iv

e 
th

e 
de

ci
sio

n 
„d

et
ec

te
d“

; 
Ea

ch
 sa

m
pl

e 
sh

ou
ld

 b
e 

in
de

pe
nd

en
t o

f t
he

 o
th

er
s. 

6 
[6

,2
1]

 
CC

α a
nd

 C
C β

 
CC

α: 
1.

 
la

b
S

a
C

C





33.2


 

a
 is

 th
e 

av
er

ag
e 

in
te

rc
ep

t a
nd

 S
la

b i
s t

he
 

w
ith

in
-la

bo
ra

to
ry

 
va

ria
bi

lit
y 

of
 th

e 
in

te
rc

ep
t (

fo
un

d 
fro

m
 

da
ta

 a
t a

nd
 a

bo
ve

 m
in

i-
m

um
 re

qu
ire

d 
lim

it)
 

2.
 

Bl
an

k 
m

at
ric

es
 a

re
 

an
al

yz
ed

 to
 es

tim
at

e 
no

ise
 in

 th
e a

na
ly

te
 ti

m
e 

w
in

do
w

. S
/N

 >
 3

 ca
n 

be
 

us
ed

 a
s C

C α
.  

So
m

e 
sim

pl
e 

ap
pr

oa
ch

es
 

su
gg

es
te

d 
to

 e
sti

m
at

e 
CC

α 
an

d 
CC

β; 
Si

m
ila

rly
 C

C α
 a

nd
 C

C β
 

es
tim

at
io

n 
ap

pr
oa

ch
es

 a
re

 
su

gg
es

te
d 

in
 c

as
e 

an
 M

RL
 

is 
se

t; 
A

fte
r e

sti
m

at
in

g 
th

e 
in

te
ns

ity
 v

al
ue

 
co

rre
sp

on
di

ng
 to

 C
C α

 a
nd

 
CC

β c
al

ib
ra

tio
n 

fu
nc

tio
n 

sh
ou

ld
 b

e 
us

ed
 to

 c
on

ve
rt 

th
em

 to
 th

e 
co

nc
en

tra
tio

n 
sc

al
e;

 
 

N
or

m
al

 d
ist

rib
ut

io
n 

of
 

re
pl

ic
at

es
; 

lin
ea

rit
y 

of
 c

al
ib

ra
tio

n 
da

ta
; 

va
ria

bi
lit

y 
of

 sl
op

e 
an

d 
in

te
rc

ep
t a

re
 n

ot
 ta

ke
n 

in
to

 
ac

co
un

t. 
Po

ss
ib

le
 h

et
er

os
ce

da
sti

ci
ty

 
is 

co
ns

id
er

ed
 to

 so
m

e 
ex

te
nt

: C
C α

 a
nd

 C
C β

 a
re

 n
ot

 
fo

un
d 

us
in

g 
th

e 
sa

m
e 

va
ria

nc
e.

 
In

 th
es

e 
ap

pr
oa

ch
es

 th
e 

α 
va

lu
e 

is 
1 

%
 a

nd
 th

e 
β 

va
lu

e 
is 

5 
%

. 
 

CC
α a

nd
 C

C β
 a

re
 fo

un
d 

fo
r m

in
im

um
 re

qu
ire

d 
pe

rfo
rm

an
ce

 le
ve

l o
r 

M
RL

. 
Id

en
tif

ic
at

io
n 

re
qu

ire
-

m
en

ts 
ha

ve
 to

 b
e 

fo
llo

w
ed

 (o
nl

y 
af

te
r 

id
en

tif
ic

at
io

n 
of

 th
e 

an
al

yt
e 

ca
n 

th
e 

sa
m

pl
e 

be
 

us
ed

 fo
r C

C α
 a

nd
 C

C β
 

ev
al

ua
tio

n)
. 
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CC
β: 

1.
 

la
b

S
C

C
C

C





64.1



 

S l
ab

 is
 th

e 
w

ith
in

-
la

bo
ra

to
ry
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2.1.3. Influence of calibration function on the LoD estimate 

CF can be used for several different purposes when determining LoD: (1) to 
convert the estimated LoD values from signal intensity scale to concentration 
scale, (2) to estimate the background intensity (from intercept), (3) to estimate 
the intensity variance over the CF via the standard deviation of residuals (Sy.x). 
LoD is therefore strongly affected by the correctness of constructing the CF. To 
simplify calculations most LoD estimation approaches assume homoscedasticity 
and all approaches assume linearity of the calibration data (see Table 1 in 
Chapter 2.1.2). Scedasticity is a property of an analytical method to give mea-
surement results with either constant variance within the used concentration 
range (homoscedasticity) or increasing variance with the increasing concent-
ration (heteroscedasticity) [28]. LC-MS/MS methods, as a rule, give nonlinear 
and heteroscedastic data [Paper III]. However, for such methods that give 
nonlinear and heteroscedastic data often a linear and homoscedastic range can 
be found in a narrower concentration range [11,28]. It must be noted here that in 
a narrow range the data is still heteroscedastic but the heteroscedasticity is not 
significant.  In order to estimate the appropriate range of data for estimating 
LoD the following chapters examine more thoroughly the testing of linearity 
(chapter 2.1.3.1) and homoscedasticity (chapter 2.1.3.2). 

If a linear CF is used for nonlinear data then the obtained results will be 
biased. A possible consequence of biased slope and intercept values is obtaining 
negative concentration values for low intensity signals [10]. In case of nonlinear 
CF the calculations to estimate the necessary parameters become more complex 
[11] and in general assuming linearity in a narrow concentration range can be 
considered safe especially in the low concentration range [28]. Therefore in 
order to estimate LoD a concentration range must be found where the response 
is linearly related to concentration so that a linear CF can be used. Testing 
linearity of data is discussed in chapter 2.1.3.1. 

Conversion of the analysis result of a sample from intensity scale to con-
centration scale is influenced by the inaccuracy of slope and intercept. More-
over, the variability of the measured intensity value for the sample affects the 
results [11,28]. The reliability of slope and intercept of the CF can be described 
by standard deviation values because they are estimated from calibration points 
that are affected by random variability. The accuracy of the predicted con-
centration along the CF can be described by the prediction band (prediction 
interval of all results in the CF range). The prediction band shape shows that the 
variance is smaller when working closer to the middle of the CF and wider at 
the edges (see Figure 2). The width of this band is also influenced by the total 
number of calibration measurements made (number of calibration levels and 
number of repeated measurements at each level) and the location of the calibra-
tion points [11,28]. Larger number of measurements leads to lower variation of 
slope and intercept and therefore lower variance of the concentration value. As 
the LoD estimate depends on the variance of the measurement results (and 
therefore can be calculated from the prediction band) lower variance leads to 
lower LoD values. These sources of error are usually not taken into account 
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when estimating LoD. However taking these sources of variance properly into 
account in the calculation of LoD (or CCα and CCβ) is very complex (e.g. see 
the approach suggested by ISO 11843-2 [4]). 

Replicate measurements of sample also reduce the width of prediction band 
as in this case multiple measurement results can be averaged and the standard 
deviation of the mean is found. As the number of measurements increases the 
standard deviation of the mean decreases and therefore the procedure that mea-
sures the sample large number of times will have a lower LoD. However, note 
that this is only the case when more than one measurement is made for the 
sample and the mean result from these measurements is used to interpret 
whether the signal is above or below LoD. This is because standard deviation of 
the mean must be used to describe the result and therefore the same parameter 
must be used to estimate LoD. 

Note that in case only one sample measurement is made the prediction inter-
val of a single measurement is used and in case more than one measurement is 
made (and therefore the mean value is used for further calculations) the pre-
diction interval of the mean is used [11].  

The use of the prediction interval is to be preferred over confidence interval, 
which does not adequately account for the random variability of a single future 
sample measurement. However, the prediction intervals do not take into account 
all sources of variance [29,30]. Even more accurate LoD estimation approaches, 
that use tolerance interval, have been suggested [30]. Tolerance interval takes 
into account the fact that the parameters that are used to calculate the prediction 
interval are only estimates. For example a standard deviation value calculated 
from replicate measurements of a sample is only an estimate because infor-
mation about the whole population is not collected. Tolerance interval takes this 
into account by setting a confidence level for limits within which a certain 
portion of the population falls. It must be noted that as the number of measure-
ments increases the difference between tolerance interval and prediction interval 
decreases. The approaches that use the tolerance interval to estimate LOD have 
not been used in guidelines and it has been shown that other statistical aspects 
are more important (e.g. scedasticity) when estimating LoD [30]. However, the 
importance of using the tolerance interval rather than the prediction interval to 
calculate LoD in analytical systems with different characteristics should be 
studied further. 

Another important aspect of calibration data that influences LoD is scedasti-
city. Many LoD approaches assume homoscedasticity (see Table 1). If this 
assumption does not hold then the obtained LoD estimate may be significantly 
erroneous [30,31]. Heteroscedasticity influences LoD estimation because: (1) 
slope and intercept given by ordinary least-squares regression (OLS) can have 
biased estimates if data are heteroscedastic, (2) if the LoD estimation approach 
takes into account the errors of slope and intercept (see discussion above) as in 
the case of CCα and CCβ estimation in ISO 11843-2 (see Table 1) then assuming 
homoscedasticity gives overestimated results, and (3) the LoD estimation 
approaches that use standard deviation at one specific concentration (or using 
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Sy.x) assume homoscedasticity and therefore the LoD is easily over- or under-
estimated. 

First let us consider the influence of scedasticity on slope and intercept 
values. If the analytical system yields homoscedastic data then OLS can be used 
to estimate the slope and intercept of the CF. If (1) the standard deviation at 
each calibration level is not constant (the data are heteroscedastic), (2) the 
calibration range is wide, (3) the calibration points are equally (as opposed to 
having calibration points more densely in the low concentration region) distri-
buted and (4) the measured sample concentration is in the lower end of the 
range, then the weighted least-squares regression (WLS) should be used to 
calculate the CF parameters [32]. If all these stipulations are true then it is likely 
that the CF will not fit the data accurately in the low concentration region when 
estimated with OLS. This is because the higher concentration levels “skew” the 
regression line so that it does not pass close to the lower concentration data. As 
the slope and intercept are used in LoD calculation the LoD estimate will be 
influenced as well.  

In WLS the weights are calculated for each calibration point so that higher 
variance leads to lower weights. These weights are then used to assign “impor-
tance” to the calibration points when calculating the CF parameters: the points 
with lower variance influence the CF more and the regression line moves closer 
to these points. WLS however requires more complex calculations and may 
require more measurements compared to OLS [28].  

In addition, different approaches have been proposed for calculating weights 
and it can be complicated to determine which approach should be used. For 
example the following equation can be used to calculate the weights: 
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where wi is the weight of the given concentration level, si is the variance of the 
concentration level i, n is the number of measurements at each concentration 
level, and p is the number of calibration levels [11,28]. The weights should not 
have units and therefore scaling is necessary (the si

-2 are divided by the average 
of all si

-2 values in the given equation). These approaches demand that more 
than one repeated measurement is made at each calibration level and can there-
fore be too demanding for everyday use. Often simpler approaches are used for 
calculating weights (e.g. 1/(xz) and 1/(yz) where x is concentration of the 
calibration level, y is the measured signal of the calibration level, and z can be 
chosen as 1, ½ or 2) where multiple measurements in each concentration are not 
necessary [33]. The assumption forming the basis of using these simplified 
weights is that it is previously known how the repeatability of calibration points 
depends on the concentration/signal. The choice of z depends on how fast the 
variance of results increases as concentration increases: the change in the 
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variance should correspond to the change in the weight meaning in case of 
faster increase of variance larger z value should be used. When using the 
simpler approaches for weighting then scaling of the weights is still necessary.  

To choose which weighting approach is best for use or if weighting is 
necessary at all (and therefore to test whether the data are heteroscedastic or 
not) it is possible to calculate the relative residual values for the different 
models. Although often relative residuals calculated from concentrations are 
suggested to be used for this purpose [33,34] the same conclusions can be made 
using the relative residuals calculated in intensity scale. Here it is suggested to 
use 1/x2 values as weights (normalisation of these weights is again necessary). 

Second, if WLS is used then the prediction interval for concentrations at the 
lower end of the calibration line becomes narrower (similar to the variance of 
intensity values in case of heteroscedastic data) [11,28]. It must be noted here 
that WLS itself does not change the scedasticity of the data or the prediction 
interval but using the appropriate approach to estimate the prediction interval 
that takes into account the weights at each concentration gives different pre-
diction intervals. This is because when weights are taken into account the narro-
west region of the prediction interval is not in the middle of the CF but is 
moved towards the lower concentrations (see Figure 2). Therefore this pre-
diction interval gives a more correct description of variability, especially in the 
lower concentration region, if the data are heteroscedastic. This in turn leads to 
a more correct LoD (or CCα and CCβ) estimate. However, it must be noted here 
that in most cases LoD approaches do not take this information into account. 

 
Figure 2. Simulations of data in R: the left figure shows prediction interval of the mean 
(in blue) in the case of homoscedastic data calculated with OLS (regression line is 
shown in red); the right figure shows prediction intervals of heteroscedastic data 
calculated with WLS, same legends are used as in both. In both cases the prediction 
interval is calculated for samples (sample data points shown as circles) that are simu-
lated separately of the calibration data. It can be seen from the figure with heteroscedas-
tic data that when a small number (in this case 5) of repeated measurements are made 
for each calibration level then the prediction interval width can change irregularly with 
concentration because of random variations in the data points. 
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Third, most of the LoD estimation approaches (except the ISO 11843-2 ap-
proach and the robust cut-off approach) in Table 1 either explicitly or implicitly 
assume homoscedasticity. A narrower range, in which the data are nearly homo-
scedastic (heteroscedasticity is not significant), can always be found [11] when 
estimating LoD to give an accurate estimate of the standard deviation of the 
result. When such a range is found then the use of WLS becomes unnecessary 
and therefore for LoD estimation only OLS is needed. 
 
2.1.3.1. Testing linearity 
Many different approaches can be used to evaluate the linearity of the data 
[11,28]. Here we discuss the following approaches: visual evaluation of the 
calibration graph and residuals, and Lack-of-Fit test [11,28,35]. 

First it is possible to evaluate whether the data is linear by constructing a 
calibration graph and fitting a linear CF to the data. If the data points scatter 
randomly around the CF the data can be assumed to be linear. However, this 
approach only gives a rough estimate and linearity cannot be confirmed because 
random scatter as such cannot be confirmed. Moreover, the evaluation of 
linearity is subjective as the results depend only on the evaluation of the analyst. 
Therefore, it is suggested here that absolute residuals or (if possible) some other 
approaches should be used to confirm linearity. 

Absolute residuals are calculated by the following equation:  
 

)(, axbye iiiabs          (3) 
 
The obtained residuals are plotted against their concentration values. The 
random scatter of residuals around 0 refers to the linearity of the data. Although 
this approach is simple it may not be entirely objective and the evaluation of the 
result can be difficult if the data are heteroscedastic or each calibration level is 
measured only once. Experiments were conducted to test the effect of this 
subjectivity (see Chapter 3.3 and 4.1). 

Another alternative to test linearity of data is the Wald-Wolfowitz runs test. 
In this test specific signs are given to data points that are above or below the 
calibration line. If there are many data points with the same sign in a row then 
the data can be said to be nonlinear. However, this test demands many data 
points to show that nonlinearity is significant and it cannot be used in this work 
[28]. 

SANCO also suggests using relative residuals (absolute residual values 
divided by the estimated signal at the given concentration) to estimate linearity 
and sets allowed limit of ± 20% for residuals [36]. However, high relative 
residual values will be obtained not only if linear model is used for nonlinear 
data but also if the data are heteroscedastic and OLS is used in place of WLS to 
estimate the CF parameters [34]. As WLS is complex and not often used it must 
be known that the range being tested for linearity with relative residuals is 
homoscedastic. Evaluation of scedasticity demands more than one replicate 
measurement at each concentration level (see Chapter 2.1.3) and therefore 
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compared to using absolute residuals more measurements must be made for 
using this approach. As with absolute residuals the final evaluation whether the 
data are linear is made subjectively by the analyst. OLS, WLS and testing 
heteroscedasticity of data are discussed in more detail in chapter 2.1.3. 

The other two approaches use the principles of Analysis of Variance 
(ANOVA) to estimate linearity. The linearity of data is tested by testing 
whether a linear calibration model fits the data. In ANOVA the F test (a simple 
division the two variances that are being compared) is used to compare the 
random variance of measurement result to the variance caused by systematic 
factors (such as nonlinearity). The result of the test therefore shows whether the 
variance of the analysis results caused by the change in the factor is signifi-
cantly different from the random variance of the measurement results. In other 
words it is possible to estimate whether the change in the factor has a significant 
influence on the result [28]. After the F value has been received from the 
equations it is compared to critical values in a table (the table can be found for 
example in [28]). If the F value surpasses the critical value (for chosen p value 
which shows significance) then the two variances are significantly different: the 
random variance is significantly smaller than variance of results when taking 
into account the change in the factor. This means that the change in the factor 
significantly changes results. Both of the tests discussed below should be 
interpreted as one-sided tests as the results show whether one variance is larger 
(not whether one is different than the other). 

In the Lack-of-Fit test the variance of mean values against estimated values 
of the model (error of the model) at each concentration level is compared to the 
random variance of measurement results. The equation for this test is therefore: 
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where ni is the number of measurements on each calibration level and n is the 
number of all measurements, p is number of calibration levels, yij is the result of 
the j-th measurement at the level i, iy  is the mean value of the measurement 
results on level i, and iŷ  is the measurement result estimate from the model for 
level i [11]. A CF where 2

).( xymeans is significantly larger than s2
y means that the 

variance of the calibration points around the proposed calibration model is 
larger than the variance of the measurement results of calibration points. 
Therefore, it can be concluded that the given model does not fit this data and 
some other model should be tested. If this model is a linear model then a 
conclusion can be made that the data is not linear (or that a simpler model 
should be used by e.g. removing the intercept value from the model). 

The second approach compares the variances of residuals given by two 
different models. In case simpler model (e.g. linear model) gives a significantly 
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greater variance the more complex model should be used (e.g. nonlinear model) 
and therefore nonlinearity of data can be assumed. However, if the variance 
does not change significantly the simpler model should be used [35]. For this 
test the following equations are used: 
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where ν is the degrees of freedom calculated by subtracting the number of 
parameters in the model from the number of measurements made. SS(simple) 
and SS(complex) are the sum squares of residuals of the simpler model and the 
more complex model respectively [35]. Therefore the F value is actually mea-
sured from the decrease in variances of the residuals when using a more 
complex model. If the improvement achieved with a more complex model for 
the explanation of data points is negligible (F value will be low) then the simple 
model should be used. If the variance of the residues for the complex model is 
significantly smaller than for a simple model then a large F value will be re-
ceived and the complex model should be used. This approach, however, 
demands that a nonlinear CF must be fitted for data. As choosing the correct 
nonlinear function is not always obvious and fitting it to the data can be 
complex and is rarely used in LC-MS this approach is not discussed further 
here. 

It must be mentioned here that the correlation coefficient (or its squared 
value) is not a good indicator of whether the data are linear or not [28] and 
therefore this statistic cannot be recommended for this purpose. 

More thorough discussion on the topic of linearity of data has been given in 
many statistics books (e.g. by Miller, Danzer, Mandel [11,28,35]). 
 
2.1.3.2. Testing scedasticity 
In this chapter different approaches are discussed that can be used to estimate 
whether the data are homo- or heteroscedastic and therefore to estimate the 
homoscedastic range if necessary. 

First, the simplest and often suggested approach is to visually evaluate 
whether the variability of the results increases with increasing concentration 
[4,11]. This is usually evaluated from a plot with absolute residuals against 
concentration. Although this approach is simple it is hypothesized that it can be 
somewhat subjective. In order to study this, different plots were simulated in R 
and 14 analysts were asked to evaluate whether a plot was homo- or hetero-
scedastic (see Chapter 3.3 for plots and 4.1 for results). As previously ex-
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plained, if the data are heteroscedastic then the CF estimated by using OLS can 
produce strongly biased concentration predictions at lower analyte levels. All 
the relative residuals at lower concentrations may therefore be significantly 
higher than at high concentrations (meaning that either positive or negative 
residuals strongly dominate) [34]. If WLS is used the data points at low con-
centrations have higher influence on the CF parameters and the CF will 
therefore be less biased. As a result the relative residuals also fall closer to 0. 
This effect on relative residuals can be used to estimate whether WLS should be 
used in place of OLS and also whether some WLS models using different 
weighting equations give significantly better fit to the data [34]. The CFs found 
with different approaches can also be compared by comparing the sum of 
squares of relative residuals – lower sum of squares means better fit to the data 
[33,34]. However, it can happen by random chance that the OLS CF will pass 
through the data points at low analyte levels, and therefore this cannot be 
considered a demonstration of homoscedasticity of data. Moreover, if the data 
are nonlinear and a linear model is used then the relative residuals will also have 
large relative residuals at low concentrations and therefore it cannot be 
distinguished whether the data is heteroscedastic or nonlinear. 

A more complex approach to estimate whether the data are heteroscedastic is 
to use the Hartley test (also called Fmax test) [11]. Fmax test is an F test where the 
measurement result of the concentration level with the largest variance is 
compared to the result of the level with the smallest variance. In the case of 
calibration the following equation can be used: 

 

2
min

2
max

max s
s

F         (8) 

 
where smax is the standard deviation of the calibration level with the highest 
variance and smin is the standard deviation of the calibration level with the 
lowest variance. The F value is then compared to a critical value from the table 
for Hartley test. Note that this test is not the same as the usual F test as not just 
the variance of two datasets is compared. As the number of levels increases the 
likelihood of the datasets with smallest and largest variance having values that 
are significantly different only by chance with the usual F test increases. This is 
taken into account by the critical values of the Hartley test. This test, however, 
requires that calibration levels have a number of repeated measurements (pre-
ferably at least 4). Other approaches are available to estimate heteroscedasticity 
but are more complex [11] and are therefore not discussed further here. 
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2.1.4. Experimental design 

To conclude the previous chapters it is now appropriate to ask how the para-
meters of the calibration data should be chosen for estimating the LoD and how 
they influence the LoD estimate: (1) including blank values in the calibration 
data; (2) concentration of the lowest calibration level used; (3) concentration of 
the highest calibration level used; (4) number of calibration levels and number 
of repeated measurements at each calibration level; (5) distribution of the 
calibration levels in the concentration range.  
(1) The use of blank values when estimating LoD (or CCα and CCβ) is a 

complex topic in general [37] especially when estimating LoD for an LC-
MS/MS method. For estimating LoD an estimate of mean and standard 
deviation of blank values must be made. In order to obtain comparable 
results from the chromatograms with peaks and blank samples the same 
integration approach should be used for both. The following is therefore 
suggested: the integration is done so that all the noise over the baseline (the 
mean value of noise around the peak area) is integrated meaning the 
“integration line” is drawn on the baseline. However, the data analysis 
software of the instrument used in this work does not take into account the 
data points that are below the integration line. As a result the integration 
result of a blank sample is always positive and with a lower standard 
deviation than the integration results from chromatograms with peaks 
(standard deviation decreases because the variance of points below the 
integration line are not taken into account for blank samples, but these 
points are above the baseline if a peak is present). However, if only 
chromatograms with visible peaks are integrated then the decision to 
integrate (or not to integrate) will be subjective as it depends on whether 
the analyst decides that the peak is present. Moreover, information about 
the analyte might already be present in a chromatogram where a peak could 
not be visibly seen by the analyst therefore leading to erroneous results. 
Also extrapolation is needed in this case (mean and standard deviation of 
blank samples must be found from data that contain the analyte). In 
conclusion direct estimation of standard deviation and mean of blank 
samples could not be done properly for the given data. Estimating these 
parameters from intercept and Sy.x has been suggested [37] but as discussed 
above is also not without assumptions.  

In this work the following approach is used: the blank chromatograms are 
integrated and the obtained values used in the calibration data. Although, 
as explained above, this cannot be done in an ideal way, this is nevertheless 
better than leaving them completely out. This approach is used for several 
reasons. First, integration of blank chromatograms avoids loss of infor-
mation because integration of the chromatogram is always performed. In-
cluding blank measurements into the calibration data is suggested by ISO 
[4]. Moreover, this approach is found to be acceptable because using the 
estimated intercept or mean of blank values to estimate LoD does not give 
significantly different results (see chapter 4.3.2) and therefore the diffe-
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rence between the two approaches is not significant for the given data. The 
standard deviation of blank values is used to estimate LoD and the results 
are also compared to other approaches (see chapter 4.3.1). However, 
further discussion on whether to integrate blank samples and to include the 
results in the calibration data is necessary. 

Also it can be concluded here that statistical model with intercept taken as 0 (as 
simpler model can be preferable) cannot be used here. This is because the 
blank and intercept values do not have a mean value of 0, and the blank or 
intercept values are also not subtracted from the measurement results. 

(2) In order to choose the lowest concentrations, simulations of calibrations 
with different concentration levels were made to study the effect of using 
concentration levels below CCα and CCβ for estimating Sy.x and the slope 
for calculating LoD. Results of simulations can be found in chapter 4.2.  

(3) The highest concentration value that can be used in the CF depends on the 
linearity and heteroscedasticity of the analytical method. All suggested 
approaches that use CF to estimate LoD assume linearity and therefore the 
highest calibration level that can be used should still allow linear fit. At 
least 6 calibration levels have been suggested to be used for estimating 
linearity [Paper III] in addition to the blank values. However, when vali-
dating a method with unknown LoD or linear range more levels should be 
planned as many can fall below LoD (and give only noise) or above the 
linear range. If the used approach assumes homoscedasticity then the 
highest concentration level can be chosen so that (in addition to linearity) 
the data can be shown to be homoscedastic in that range (see chapter 
2.1.3.2 for testing scedasticity). If the results from linearity or scedasticity 
test shows that the current data are not consistent with our assumptions 
then the highest calibration level data can be removed and the tests 
repeated. It is therefore useful to know the approximate range in which 
LoD is in so that not too many calibration levels should be left out of the 
data due to nonlinearity or heteroscedasticity (see discussion in chapter 
2.1.3).  

(4) The number of calibration points and calibration levels should be chosen so 
that at least relevant tests can be made (e.g. test for homoscedasticity and 
linearity). For example at least 4 repeated measurements at each level are 
suggested when estimating homoscedasticity with the F test. More repli-
cates also increase the reliability of the results. Moreover, with a larger 
total number of calibration points LoD can be estimated more reliably 
(larger number of measurements leads to less uncertainty about the para-
meter we try to estimate, including LoD). Therefore this number also 
depends on the practical need of the LoD application. 

(5) It is suggested that the calibration points should be equally distributed 
when estimating linearity [Paper III]. However, for practical purposes it is 
advisable to choose the calibration points so that their concentration differs 
e.g. 3 times in case an approximate LOD value is not known beforehand.  
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The choice of calibration points influences the LoD estimate differently 
depending on the approach used and the scedasticity of the data and therefore 
different approaches are reviewed separately in the following discussion.  
In case of approaches that use the variance at only one concentration (e.g. blank 
or fortified samples, see Table 1 group 1) the slope and intercept influence the 
LoD estimate. The slope does not depend on the distribution of calibration 
points when the data are homoscedastic and linear. When the data are hetero-
scedastic the slope is strongly influenced by the choice of calibration levels only 
for some certain cases [32] in which case using WLS would be more appro-
priate but often not practical. If the LoD estimation approach uses also the 
variance found from the CF (e.g. the Sy.x, see Table 1 group 4) then it must also 
be considered how the choice of different calibration points influences this 
variance. For example if Sy.x is used and the data are homoscedastic then the 
distribution of calibration points has little influence on LoD. However, if the 
data are heteroscedastic then using more calibration points at higher con-
centration levels will increase the Sy.x and therefore increase LoD.  

For approaches that take into account the variance of CF-s parameters (e.g. 
ISO 11843-2, see Table 1 group 7) moving the mean concentration of the 
calibration points to a lower value (meaning using rather calibration points with 
lower concentrations) the LoD can decrease but only in the case of homo-
scedastic data. However, this change is insignificant (see chapter 4.2). In case 
the data are heteroscedastic and therefore WLS is used the weights associated 
with calibration levels influence the results so that LoD does not depend on the 
concentrations chosen for calibration levels. 

It is not advisable to prepare the calibration solutions with consecutive 
dilutions due to accumulation of error. Also the experiment should be planned 
so that the solutions would be measured in random order to so the instrumental 
drift could not influence the results in systematic way [Paper III]. 

Some important notes must be made about calculating the Sy.x from the mea-
sured calibration graph data. First if more than one replicate measurement is 
made at each calibration level and the results in each level is averaged before 
calculating the Sy.x then the same should be done to the future samples. For 
example 4 replicates must be made and averaged for all the future samples if 4 
repeated measurements are made at each calibration level and their results are 
averaged before estimating the Sy.x. Secondly it is important to note that the 
weighted Sy.x estimated when using WLS instead of OLS cannot be used 
similarly to the unweighted Sy.x, because it does not describe the standard 
deviation in any specific location in the calibration graph. 

 
 

2.1.5. Day-to-day variability of LoD 

LoD varies between days [2,20] and this variability can be more significant than 
with most other validation parameters (e.g. precision, trueness, sensitivity). The 
same holds for CCα and CCβ [19,38]. It has been shown that when estimating 
CCβ on only 3 separate days the obtained values can have a relative standard 



34 

deviation (RSD) of more than 50% [19]. The experiments made in the course of 
this work show that in case of LC-MS/MS LoD estimates of some approaches 
can differ by up to 10 (!) times between days [Paper IV and V]. 

The reason for the high variability of LoD values under the same conditions 
is that LoD is estimated from parameters that are random variables and are 
strongly dependent on the (sometimes subtle) variations in experimental para-
meters. This effect is amplified in the case of LC-MS (and also for MS alone), 
because it has a large number of adjustable parameters and some of them are not 
easy to control [Paper II]. Some of the sources of variability are reasonably 
constant within day and cause only day-to-day variability of LoD (e.g. clean-
liness of the MS system and ion optics, small differences between batches of 
chemicals, mobile phase pH). Most vary also within a day and cause both 
within-day and day-to-day variability of LoD (e.g. small fluctuations of tem-
perature and gas pressures). A well-known manifestation of between-days 
variability of parameters is the variability of the calibration graph slope, which 
should be remeasured for every day/sequence [Paper II and III]. As a result, the 
“true” LoD value can be significantly different on different days. Therefore, 
LoD estimated only once for a method with an MS detector can be used only if 
the LoD estimate is not used for any significant decision and the working range 
relevant for the samples under study starts more than an order of magnitude 
higher than the found LoD. 

In the course of this work we have suggested to divide the LoD values into 
the following categories: within-day LoD, between-days LoD and between-labs 
LoD. The differences between these LoD values are explained in Table 2. 

In most cases LoD value is not estimated every day. However, if it is known 
that the LoD significantly changes between days and if the LoD is critically 
important for the interpretation of the results then the safest approach is to 
estimate LoD every day. If the value of LoD is not critically important (e.g. 
LoD is known to be well below the analyte concentration in samples) then LoD 
determined on a single day is sufficient [20]. However, even in this case it is 
strongly advised to periodically re-evaluate LoD [20]. 

Although this topic has not been discussed in necessary detail in the lite-
rature some suggestions can be found in different guidelines about estimating 
the between-days LoD can be found in different guidelines.  It is recommended 
to estimate LoD on separate days using different batches of reagents and 
materials that normally change as the method is used [25] for a more reliable 
estimate. It has been suggested to evaluate the between-days LoD from single-
day LoD values by taking a median of the results [4], however, this would mean 
that in roughly 50% of the cases the laboratory is unable to detect the analyte at 
LoD level and cannot be therefore recommended. For this reason we have 
suggested a more reliable approach by using a quantile (e.g. 95% level). It has 
also been suggested that monitoring CCα and CCβ values between days via a 
control chart can be used for keeping the performance of the analytical method 
under control [38]. Eurachem has suggested using low concentration quality 
control results measured on different days (under intermediate precision condi-
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tions) to estimate LoD [20]. In this manner it is possible only to use some 
simpler LoD estimation approaches and only between-days LoD is estimated 
which might not be always fit for interpretation of the results. 

The between-days LoD should be used in two cases: (1) the LoD is first of 
all necessary for characterising the analytical method but not as much for 
interpreting results (for example, results in the LoD range are far below the 
MRL), or (2) LoD (or CCα and CCβ) is an important parameter that is used for 
critical interpretation of results but the random variation in determination of 
LoD is the main reason for difference between days (meaning the true LoD 
value itself does not change between days). In both cases LoD should at least be 
estimated on separate days while validating the method, or regularly over a 
longer time period and the data should be used to estimate between-days LoD. 
In the second case more frequent estimation of LoD is suggested as the 
between-days LoD becomes more reliable and therefore best for use. Moreover 
if the LoD (or CCα and CCβ) are critical for evaluation it should be evaluated 
whether the parameters that LoD is calculated from change significantly 
between days in order to estimate whether it is more correct to use within-day or 
between-days LoD. If yes then the variability does not stem from determination 
variability but the LoD is indeed different on different days. To test this it is 
possible to compare the within-day repeatability of LoD values and day-to-day 
variability of LoD values with F test [28]. If the latter is significantly larger, 
then it can be concluded that LoD varies significantly between days. For this 
test LoD should be estimated minimum on 3 separate days and twice per day. 

In conclusion between-days LoD is suggested for use instead of within-day 
LoD in most practical cases. As more data are collected over a longer period to 
estimate between-days LoD the estimate becomes more reliable. 

The between-labs LoD should only be used for characterization of the 
method. Therefore, between-labs LoD can be used to compare different analy-
tical methods and to determine whether they are fit for purpose. The between-
labs LoD can be evaluated from between-days LoD measurements with similar 
approaches as when estimating between-days LoD values from within-day LoD 
results (e.g. taking the median value of between-days LoD-s of different labs). It 
must be made sure that the approaches used to estimate LoD are the same as 
LoD estimates of different approaches are not comparable [31,39]. These 
experiments would be complicated and costly, and in many cases it is possible 
to compare the methods by experience. 

The LoD estimates can vary between labs not only due to random variability 
of uncontrolled conditions but also due to differences in e.g. equipment. For 
example, the same LC-MS/MS method with different MS instruments can have 
different LoD values. For this reason the between-labs LoD estimate should be 
accompanied with information about the minimum and maximum LoD 
estimates for this analytical method. Therefore, when comparing two different 
analytical methods boxplots (robust statistics) can be used where it can be seen 
for example that although the between-labs LoD is higher for one method but 
with appropriate measures similar or even lower LoD values can be achieved. 
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Only when comparing these parameters of different methods can it be stated 
with some reliability that it is possible to reach a lower LoD value with one of 
the methods. It can also be concluded from there that if a new analytical method 
with significantly lower LoD values is proposed it cannot be assumed that the 
between-labs LoD value will be significantly lower than for the other methods. 

 
 
Table 2. Appropriate uses of different proposed LoD values for interpretation of the 
analysis result and for characterizing the analytical method in different situations. 

 Within day LoD Between-days LoD Between-labs LoD 

For 
interpretation 
of results 

If LoD is an 
important parameter 

and the between-days 
variability is large; It 
is recommended to 
use CCα and CCβ 

Should be used if 
within-day 

experiments are not 
practical 

Should not be used 

For 
characterizatio
n of the 
method 

Should not be used 

Should be used for 
characterization of 

the methods 
performance within 

the lab 

Should be used for 
comparison 

between methods 
and evaluation of 
what LoD can be 

expected 
 
 

2.1.6. Qualitative and quantitative analysis 

Analysis methods can be divided into two groups: (1) methods that provide a 
discrete measurement result, and (2) methods that provide a continuous nume-
rical result (see Figure 3). The focus of this work is on MS methods, which 
produces continuous measurement results and therefore the suggestions in this 
work only apply for this group of methods. The continuous result given by the 
method however does not mean that the end result must also be presented as 
such. For example from the results of continuous methods information can be 
extracted about what compounds the sample contains (e.g. NMR or IR spectro-
scopy, or high resolution MS), or into which group the sample falls (e.g. based 
on principle component analysis of data, is the analyzed wine a Merlot and in 
which region is it produced), or binary information about whether the analyte is 
present in the sample or not. In fact it can be seen that the interpreted result 
around LoD is binary and therefore qualitative but the results that are given by 
the measurement can still be continuous. Only the interpretation gives the result 
a discrete value. 

Qualitative analysis methods are defined somewhat differently in different 
sources. Here the following definition is used: qualitative analysis methods are 
methods in which substances are identified or classified on the basis of their 
chemical or physical properties [20]. This also includes binary “yes” or “no” 
answers [20] and therefore analysis methods that give results that are interpreted 
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using LoD are qualitative methods. Further in depth discussion about analysis 
methods with binary responses (from both continuous or binary measurements 
results) and their quality assurance can be found can be found in the literature 
[22]. 

Quantitative analysis methods on the other hand are defined as method 
which determines the amount or mass fraction of a substance so that it may be 
expressed as a numerical value of appropriate units [6]. Therefore, if a sample 
concentration is high enough for quantitation the analysis method can be con-
sidered quantitative but it the concentration is near LoD the method can be 
considered qualitative. 

Another important definition for this work is the screening method which 
can be defined as methods that are used to detect the presence of a substance or 
class of substances at the level of interest [6]. The important aspects of 
screening methods are that they should be simple to use, have high throughput 
and be positively biased. After a sample is found to contain the substance at the 
level that is important then the sample can be analyzed again with a validated 
quantitative analysis method. Therefore only the samples that are more likely to 
contain the analyte in the range of interest go through the quantitative analysis. 
Therefore this allows laboratories to analyse more samples quickly and expand 
the analytical scope to analytes that are in most samples not likely to be present 
[6,36]. Because the screening method only has to say whether the analyte is 
detected in the range of interest LoD is an important parameter for these 
methods. Also as LC-MS/MS methods are complex, expensive and time 
demanding a screening method done prior to this analysis can be useful. 
Ambient ionization methods provide a good possibility to develop screening 
methods based on MS (see chapter 2.3). 

 
 
Figure 3. Classification of analysis methods based on the type of results. 
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Analysis 
method
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Binary 
(Qualitative)
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2.1.7. Bayes theorem and its use in estimating LOD 

Common statistical tests (including CCα and CCβ estimates) do not let the ana-
lyst take into account all sources of information. As an example let us consider 
a lab that measures a biomarker to identify the presence of a disease in patients 
of one hospital. The probability of a false positive result of the test is 5%. The 
hospital orders 200 tests in a year. On an average 10 of them are false positive. 
From previous years it is known that the probability of a true positive result is 
1/200. Therefore if 200 tests are carried out in one year and 11 positive results 
are discovered then it is possible that on an average only one of them is truly 
positive. In this example the probability of false positive test results is therefore 
10/11 which equals roughly 91% and not 5%. This a priori knowledge of the 
probabilities of true positives and true negatives can be taken into account by 
using the Bayesian statistics, which enables calculating the probability of a 
positive sample being truly positive. In general the true positive and true nega-
tive values can be viewed as different hypotheses. Although this example is for 
discrete measurements the same principles can be applied to continuous analysis 
results. 

Recently some possibilities to estimate LoD that take the prior knowledge 
into account have been suggested [40,41]. Moreover, an approach has been 
suggested on the basis of information theory, which takes prior knowledge (and 
non-normal distribution of noise, see chapter 2.4) into account [18]. These 
approaches are not widely used, however. The main difficulty when using 
Bayesian theorem is the numerical estimation of the prior probability of the 
result [42], which can be very difficult. Therefore we recommend to consider 
using Bayesian statistics to estimate LoD only when reliable prior knowledge is 
available. It is clear that this prior knowledge significantly influences the result, 
e.g. if the probability of obtaining a false positive result is high and the 
probability of the sample being truly positive is low. Further information on 
using the Bayes theorem can be found in review articles by Armstrong and 
Hibbert et al. [42,43]. 

 
 

2.1.8. Choosing LoD estimation approach 

In this section important practical considerations of which approach to use for 
the estimation are highlighted. 

First it should be considered if it is at all necessary to estimate LoD. For 
example LoD does not need to be estimated when it is known that the samples 
measured by the analytical method are always significantly higher than the 
methods LoD. 

If there is a requirement to estimate LoD with some specific approach then 
the approach must be followed. The regulatory bodies often make guidelines for 
specific applications (e.g. pesticide measurements) and take into account the 
suitability of the approach for that particular field. However, often standards 
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and guidelines can leave many decision on how to estimate LoD for the analyst 
in which case the suggestions in this work can still be useful. 

Before moving forward to LoD estimation the stability of the analyte should 
be considered. Stability of the analyte can influence the measurement results 
and therefore can influence the LoD estimate. If there is a good reason to be-
lieve that the analyte stability influences the measurement results significantly 
its impact should be estimated before validation of the method (including LoD 
estimation) and if necessary appropriate measured must be taken to account for 
this influence [Paper III]. 

As shown in previous works [31,39] different approaches give different LoD 
estimates. Moreover, it can be seen from the previous discussion that it is 
simple to “manipulate” with the LoD estimates (e.g. by using different experi-
mental design) and therefore the precise description of the approach used to 
estimate the LoD value must be given whenever the LoD value is reported. Also 
the units of the result should be presented together with LoD [12]. 

If it is possible to choose between different LoD estimation approaches then 
it should be first made clear, which approach is compatible with the characte-
ristics of the given analysis method. If LoD is estimated for characterizing the 
analysis method and the working range is significantly above the LoD then it 
should be estimated with a simple  and conservative approach (otherwise in-
appropriately large effort is spent for LOD estimation). Conservative LoD esti-
mates are suggested here to assure that the stated LoD can indeed be achieved 
when necessary. In case of LC-MS/MS we suggest using the ICH approach that 
uses a CF and Sy.x to estimate LoD (see Table 1, group 4). The CF should be 
determined in the LoD range and the data must be sufficiently linear to use a 
linear CF. If the data are heteroscedastic the LOD values will be overestimated. 
If a lower LOD value is needed for the analysis method then finding the narrow 
homoscedastic range for calculating LOD is possible. The reasons for sug-
gesting this approach and more detailed suggestions on the experimental design 
to estimate LoD are further discussed in Chapter 4.3 and 4.4.  

In some cases important and costly decisions might be made on the basis of 
analysis results where LoD is used for interpretation. In such cases simple ap-
proaches for LoD determination might not be sufficient [30] and more complex 
approaches should be used.  Multitude of different parameters and assumptions 
must be considered when a reliable LoD is needed – complex experimental 
design (that demands large number of measurements), and complex tests and 
calculations must be used. In this case our suggestion is to use CCα and CCβ 
estimated by the equations given in ISO 11843-2 [4]. Relevant tests should be 
performed to assess which assumptions can be made (e.g. heteroscedasticity 
should also be tested in addition to linearity). In addition, the differences in LoD 
values between days must be estimated and it should be considered whether 
LoD needs to be estimated daily. For LC-MS/MS both the day-to-day variabi-
lity and heteroscedasticity are likely to be important. 

It is suggested that after calculating LoD the results can be validated by ana-
lyzing samples near the LoD [27]. For example it has been suggested to check 
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whether an estimated LoD is achieved within an analytical run it has been sug-
gested to add two spiked samples with concentrations at LoD as a first and a last 
sample to be analysed [36]. 

It is likely that most applications that use LoD do not need the complex 
approaches for its estimation. For these applications the simple approaches 
suggested in guidelines fit well unless significantly underestimated values are 
obtained due to large bias in the approach used to estimate LoD. However, the 
simple approaches described in the guidelines make assumptions and simplifi-
cations that can significantly influence the estimated values. For example 
tolerance interval should be used in place of prediction interval. 

As a final action it should be considered if the obtained LoD estimate is fit 
for the purpose of the analysis method. If it is not then improvement of the 
analysis method is necessary and thereafter the LoD must be estimated again. 

 
 

2.2. LC-MS/MS 
2.2.1. Overview of LC-MS/MS 

The extensive use of LC-MS has become possible largely due to the advent of 
the atmospheric pressure ionization (API) methods [44]. The API sources are 
able to produce gas-phase ions with little or no spontaneous decomposition 
from delicate and high molecular weight analytes. This, combined with the 
intrinsic sensitivity of mass spectrometers, has revolutionized large areas of 
chemical analysis where traces of organic analytes are determined in complex 
matrices. Among the ionization methods electrospray ionization (ESI) has 
proven especially versatile [44]. As a result, almost all fields of chemical 
analysis (bioanalytical and medical, environmental, food, drug discovery [45], 
etc.) have experienced big changes. 

The success of the LC-MS technique arises from its ability to give three-
dimensional data. First, the compounds are separated in time by LC. Ions gene-
rated in the ionization source are then separated according to their m/z ratios in 
the mass analyzer of MS. Finally, the MS detector measures the abundance of 
each ion. In addition to these dimensions tandem mass spectrometry (MS/MS) 
enables significant increase in selectivity (and decreased noise) by fragmen-
tation of ions to monitor specific product ions that are produced from the 
analyte. Compared to the traditional LC detectors, such as ultraviolet – visible 
spectrophotometry or fluorescence, the MS detector therefore enables signifi-
cantly more reliable identification of the compounds eluting from LC. More-
over, MS often allows detection of analytes at lower concentrations than other 
detectors and therefore is often used for trace analysis. 

The extensive additional possibilities, however, come at a cost: LC-MS 
systems are complex and a large number of parameters have to be at or near 
optimal values in order to get the desired performance [46,47]. This auto-
matically means that whenever an analytical method based on LC-MS is 
developed, its performance has to be carefully checked and monitored. There-
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fore, method validation is a key activity in LC-MS analysis, indispensable for 
obtaining reliable results [48].  

Although there are many benefits to using MS as a detector, the accuracy of 
the obtained results may be strongly influenced by the ionization suppression/ 
enhancement occurring in most API sources. Both ionization suppression [49] 
or ion source contamination [50,51] result in variability of both MS signal and 
the obtained results. As seen in previous chapters LoD depends on the repeata-
bility (and therefore accuracy) of the analytical method. Therefore, it is impor-
tant to estimate LoD (CCα and CCβ) with matrix matched samples and for all the 
samples to go through the whole method procedure (see chapter 2.1.1 about 
method LoD). 
 
 

2.2.2. Properties of LC-MS/MS 

Due to difference in the way that analytical techniques give signals not all LoD 
estimation approaches are appropriate for all analytical methods. In the case of 
LC-MS/MS it can often be seen that the baseline is at 0 and its standard devia-
tion is 0 or very low [52]. This occurs if signal processing (e.g. thresholding) is 
used by the instrument software to improve the S/N of the peak [53]. This kind 
of data “censoring” by the instrument software (or hardware) means that some 
data are lost because the same value (e.g. 0, if the signal strength is below some 
threshold) is always given to results below it. This may cause non-normal 
distribution of analyte signals from low-level samples [2,54] and erroneous 
mean and standard deviation values as well as calibration graph parameters may 
be obtained [10]. If LoD is estimated assuming normal distribution of results the 
estimate will be erroneous even in case the standard deviation of the distribu-
tions is the same [18]. Therefore, assumptions made by most of the LoD esti-
mation approaches may not be valid. 

Robust statistics can be used in cases when normal distribution cannot be 
assumed (due to thresholding or some other reason). Approaches have been 
suggested to estimate LoD from these data [16,17,55]. EP17-A [24] recom-
mends estimating LoD with the approach proposed by Linnet et al [55]. The 
approaches using robust statistics can be also used if the data contain outliers 
[16,55]. Although these approaches can be simple to use they can give LoD 
values that are higher and vary significantly between days due to properties of 
robust statistics. An approach often suggested in guidelines that uses robust 
statistics (see Table 1, group 5) sets a cut-off threshold to classify detected and 
not detected analytes. Although robust, a large number of measurements is 
required by this approach. Therefore these approaches are only suggested if 
alternatives are not possible to use or give significantly erroneous LoD 
estimates.  

An important aspect to consider when using LC-MS/MS is the method of 
obtaining analyte signal from the chromatogram: measuring the analyte’s peak 
height or measuring its peak area. The peak area takes into account more 
information, does not assume identical peak shape in standard and sample 
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solutions at different concentrations, and has a larger dynamic range [23]. Peak 
height and area are not comparable in characterizing an analytical method and if 
peak areas are used for quantification then LoD must also be estimated from 
peak area data. However, due to difficulties in identifying the start and end of a 
peak at low S/N the area can have lower precision than height at low S/N [23]. 
This lower precision can lead to higher LoD values. However, when using the 
area of a peak the intensities of the data points are averaged and therefore this 
average value of a peak must be above the averaged intensities of blank sample 
for the peak to be detected. Averaging always increases precision and in this 
case will lead to decrease of LoD. Therefore it cannot be concluded that using 
peak heights would provide different LoD results. In this work peak area is used 
due to its significantly wider use. 

Another problem that arises here is that it can be difficult to extract reliable 
data from samples at low concentrations [12] because close to LoD noise blurs 
the beginning and the end of a peak leading to reduced confidence in the result 
of integration [23]. Moreover, if blank samples are used to estimate LoD an 
integration method must be used that is capable of providing comparable results 
for samples with and without peaks. In order to obtain these comparable results 
the same integration approach should be used for both. In the article published 
in the course of this work [Paper IV and V] we have suggested integrating of all 
the noise over the baseline (the mean value of noise around the peak area) so 
that the “integration line” is drawn on the baseline. However, the data analysis 
program used in this tutorial does not take into account the data points that are 
below the integration [Paper IV and V]. As a result the integration result of a 
blank sample is always positive and with a lower standard deviation than 
chromatograms with peaks.  Standard deviation decreases because the variance 
of points below the integration are not taken into account, but these points are 
above the baseline if a peak is present. However, not integrating blank and low 
concentration samples (because there is no visible peak) means that information 
about these samples is discarded based on the subjective decision made by the 
analyst. Information about the analyte might already be present in a chromato-
gram where a peak could not be seen by the analyst therefore leading to erro-
neous results. As a possibility to solve the problem of estimating the mean and 
standard deviation values of blank samples they can be assumed to be equal to 
the intercept value and Sy.x [37]. However, including blank measurements into 
the calibration data has also been suggested [4]. In this work the blank values 
are integrated and used in the calibration data. Therefore no information is lost 
because integration of the chromatogram is always performed and extrapolation 
of data is not needed (mean and standard deviation of blank samples should not 
be found from samples that contain the analyte). However, from the results it 
can be seen that using the estimated intercept or mean of blank values to 
estimate LoD does not give significantly different results (see chapter 4.3).  

From the discussion above it can be concluded that practical limitations of 
analysis method (instrumental or other) must be considered when choosing an 
approach to be used for LoD estimation.  
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2.2.3. Monitoring of fragments produced by MS/MS near LoD 

So far false positive and false negative results due to quantitative variability of 
measurement results have only been considered. However, errors in results can 
also be qualitative, i.e. caused by interfering components in the sample that give 
identical signal to the analyte. This problem is amplified at LoD level by the 
low analyte concentration and may lead to the signal apparently exceeding the 
LoD, while in reality the signal is caused by an interferent and analyte content 
may be below LoD in the sample. To avoid this error the selectivity of the 
analytical method must be assured at the LoD level. 
In LC-MS/MS selectivity (and correct analyte identity) is assured by observing 
the retention time on the chromatogram, and by recording the signals of more 
than one fragment ion specific to the analyte. In addition, peak shape can offer 
useful information. Furthermore, the relative abundance of the fragments is 
measured and compared to the relative abundances found with the standard 
substances. The article published in the course of this work addresses the diffe-
rent approaches of identity confirmation in LC-MS/MS [Papers II and III].  

The fragment ions used for identity confirmation (qualifier ions) might have 
significantly lower signal intensity than the most abundant fragment ion, which 
are usually used for quantitation (quantifier ion), and therefore might not be 
observable at LoD level if LoD is determined using the quantifier ion. To avoid 
false positive results reliable confirmation of identity is important and therefore 
it is often required that LoD is defined in such a way that one or more qualifier 
ions are also detectable at LOD. For example 2002/657/EC [6] demands that the 
S/N value of all observed ions should be above 3. If the qualifier ion(s) have 
low intensity signals then the consequence of this requirement is that method's 
LoD increases significantly. An approach has been suggested to defining LoD 
in such a way that the need of observing the relative abundance of ions at LoD 
level is accommodated [56]. However, this topic has not been discussed 
thoroughly and needs further research.  

 
 

2.3. Paper spray ionization 
2.3.1. Ionization methods of MS 

One of the main difficulties in using MS as a detector is the production of gas-
phase ions from analyte molecules. Many ionization sources have been 
developed that function with different mechanisms and are able to produce 
analyte ions from different phases. Another important characteristic of an 
ionization method is the internal energy transferred during the ionization to the 
compound. For example electron ionization transfers large amount of energy to 
gas phase compounds and as a result the compounds fragment extensively. 
However, in case of chemical ionization (CI) and ESI the energy transfer is 
small and the gas phase analytes produce molecular ions. Ionization methods 
have also been developed to produce gas phase ions from solids, most important 
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of which is matrix assisted laser desorption ionization (MALDI). In addition to 
ESI atmospheric pressure chemical ionization (APCI) and atmospheric pressure 
photoionization (APPI) are two approaches that can ionize compounds from 
solvents: first the solvent with the sample is nebulized after which ionization of 
the compounds is achieved with a coronal discharge (similar ionization 
mechanism to CI) in case of APCI or with ionizing ultraviolet radiation in case 
of APPI. [57] 

However, the most widely used ionization method for analytes in solvents is 
ESI. ESI has allowed the possibility to ionize analytes that are not volatile (e.g. 
large molecules like proteins) expanding the capabilities of MS greatly. ESI 
works by spraying the eluent from a needle to which electrical potential has 
been applied. As a result electrochemical reactions take place and excess posi-
tive charge is created into the liquid phase in case positive potential is applied to 
the needle (positive ionization mode). The excess ions collect to the liquid 
surface meniscus and due to the repulsive forces between the ions the liquid 
surface expands and forms a Taylor cone. At some point the repulsive forces 
overcome the surface tension and droplets with excess positive charge are 
formed. In case of ESI however pneumatic nebulization is also used to help the 
formation of droplets. [58] 

These droplets start losing solvent as it evaporates. As a result the excess 
positive charge will once again overcome the surface tension and produce a 
stream of smaller droplets. This process is repeated several times as the same 
happens with the produced smaller droplets. [58] 

As with MALDI, ESI ionization mechanisms are not understood to full 
extent. Two theories have been offered about the production of gas phase ions 
from the droplets neither of which are universally accepted. In the ion evapo-
ration model it is described that the analyte moves to the surface of the droplet 
and desolvation of the analyte ion takes place [58]. This can happen only from 
small droplets with diameter of approximately 10 nm or less as only then the 
repulsive forces are strong enough for the desorption to happen [59]. In the 
charge residue mechanism droplet evaporates until only the analyte is left and a 
gas phase ion is formed. The analyte is usually ionized by protonation as there 
is an excess amount of H+ ions in the droplet. However, the possibility of 
forming adducts with other ions is also possible (e.g. Na+) [58]. These models 
describe the ionization of different molecules – large sphere shaped proteins are 
likely to ionize by the charge residue model and smaller molecules by the ion 
evaporation model. Another model that has been suggested is the chain ejection 
model where a disordered polymer leaves the surface of the small droplet 
similarly to ion evaporation model [59]. 

Strong matrix effects can influence ESI as other compounds beside the 
analyte compete for the charge and the surface of the droplets by supressing the 
analyte ionization. It must be noted here however that other matrix compounds 
can also produce ionisation enhancing effects [60]. Therefore, extensive sample 
preparation is necessary prior to ESI/MS analysis to remove the other matrix 
compounds [Papers II and III]. This can make analysis methods significantly 
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more complex. These matrix effects can be somewhat decreased by using 
nanoESI ionization where a needle with much smaller diameter and lower 
eluent flow rates are used. As a result droplets are formed only due to repulsion 
of ions (no pneumatic assistance is necessary). These droplets are significantly 
smaller and therefore there is more surface from where the analytes can 
desolvate. However, nanoESI is somewhat capricious and the needle can clog 
easily. [58] 

Due to these problems a new family of ionization methods have been 
developed called ambient ionization methods. Ambient ionization methods are 
generally defined as methods that ionize analytes from samples under ambient 
atmosphere conditions and where the sample needs little or no pre-treatment 
prior to analysis. By now over 30 different ionization methods belong to this 
family and can be divided into 3 groups: (1) direct ionization, (2) direct 
desorption/ionization, and (3) two-step ionization. In the first ions are created 
from solvent (eluent on a surface or in a needle or from droplets) by high 
electric fields [61]. The ionisation mechanisms here are similar to ESI and 
nanoESI. In the second group the liquid or solid sample is on a surface which is 
then “bombarded” with charged droplets, ions, atoms or photons and as a result 
the compounds in the sample are brought into the gas phase and ionized. In the 
third and largest group the sample is first brought into gas phase or droplets of 
sample solvent are created after which ionization takes place by using charged 
droplets (created by ESI mechanism), plasma or similar mechanisms to APCI 
and APPI. A wide variety of applications have been shown to be fitting for 
ambient ionization techniques (from analysing different samples from surfaces 
to monitoring chemical reactions and medical analysis) [61]. Although the 
analysis can be made with little sample pre-treatment in the course of this work 
it was found that the matrix effects can still strongly affect the analysis [Paper I] 
and therefore further development of these methods is necessary. The most 
promising of this wide variety of ionization sources are desorption electrospray 
ionization, low temperature plasma ionization and PSI [61,62]. 

 
 

2.3.2. PSI mechanisms 

In PSI [63] the sample is first transferred onto a paper triangle (e.g. with base of 
5 mm and height of 10 mm) with a sharp tip in front of an MS entrance. Voltage 
of approximately 3000–4500 V is then applied between the paper and the MS 
entrance, and finally the whole triangle is wetted with an eluent (in some cases 
eluent is added before the voltage is applied). As soon as this is done, the liquid 
starts spraying and the sample components are ionized and directed toward the 
MS. PSI therefore falls under the direct ionization group of ambient ionization 
methods. Paper has several advantageous characteristics for this type of 
ionization: well-known properties in chemical analysis, possibility of chemical 
modification, availability, low cost and ease of fabrication. Moreover, paper can 
be used as a substrate on which the sample is collected and then transported to a 
laboratory. For example analytes in dried blood spots on paper have been shown 
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to be more stable (and easier to handle) than in blood itself [64]. Therefore, with 
PSI it is possible to connect the sample pre-treatment and ionization into one 
step [63].  

The mechanisms of the different processes occurring in PSI have been 
studied. It has been shown that a saturation limit for the amount of sample exists 
starting from which adding more sample does not increase the signal intensity 
[65]. This amount depends on the size of the paper used for PSI. The mecha-
nism by which the liquid moves on the paper has also been studied. It was 
found that capillary forces and the movement of excess liquid on the paper 
toward the spray are responsible for the majority of the liquid’s movement. 
Movement due to the electrophoretic forces was not found to be significant 
[65]. It has been also found that two different ionization mechanisms work in 
PSI. During the first period of spraying when there is still enough eluent on the 
paper to form a Taylor cone, the ionization mechanism is similar to nanoESI. 
However, after most of the eluent has been used up and visually no more spray 
is seen, higher electrical current is measured and spectra similar to APCI can be 
seen. It is therefore theorized that an electrical discharge and desorption of 
analyte molecules occur [66].  

Because of its ease of use, low cost and fast analysis time PSI analysis 
methods are good candidates for screening methods. It has been shown that a 
great variety of analytes including amino acids, peptides, proteins, herbicides, 
therapeutic drugs and fatty acids can be ionized with PSI. Also PSI has been 
applied for analyses of different matrices, such as urine and, especially, blood 
[63]. Out of the different possible applications of PSI, the possibility of mea-
suring therapeutic drugs from dried blood spots has gained the most attention 
[67–70]. Moreover, when a whole piece of tissue is placed on the paper, hor-
mones, lipids and therapeutic drugs can be identified [71]. PSI can also be used 
in food analysis. When a cola drink was used as eluent, caffeine could be 
identified from the spectrum. Also, thiabendazole and imazalil could be identi-
fied from the peel of an orange with wiping method where the orange is wiped 
with the paper that is later used for PSI [63]. 

However, as commonly no sample pre-treatment is made strong matrix 
effects and large repeatability of results can be seen. In the course of this work it 
was found that the matrix of the sample not only influences the ionization 
mechanism at the tip of the paper but can also influence the movement of eluent 
(and therefore also the analyte and other matrix compounds) to the tip [Paper I]. 
As a result isotopically labelled internal standard (IS) are commonly used for 
quantification of results. A known amount of IS is added to the sample and 
when measurements are made the intensity value of the IS and the analyte are 
recorded. The calibration function is made in the scales of intensity value of 
analyte divided by the intensity value of the IS (in place of intensity value of the 
analyte on the y-axis) and the concentration value of the analyte divided by the 
concentration value of the IS (in place of concentration value of the analyte on 
the x-axis). After the results are received the concentration of the analyte can be 
calculated by multiplying the calculated concentration ratio by the concentration 
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of the IS in the sample. This method takes into account many different variabi-
lities that are caused by the matrix and systematic effects on that specific 
analysis as the intensity of the IS also changes due to these errors. However, it 
has been noted that even though repeatability of results significantly improve 
the LoD of the method still suffers from matrix effects [68]. 

 
 

2.3.3. Estimation of LoD for PSI approaches  

Similar approaches as brought in Table 1 have also be applied to PSI methods 
[72–75]. The only difference, however, is that as IS is used the LoD found from 
these approaches is not in the scale of analyte concentration in the sample but in 
the analyte and IS concentration ratio scale. Therefore, to receive LoD in the 
analyte concentration value the unitless LoD must be multiplied with the 
concentration of the IS in the sample. 

It must be noted here that the concentration of the IS used in the samples 
must be the same for standard and samples – it is not possible to decrease the 
LoD value by decreasing the concentration of IS. However, small changes in the 
concentration of IS (e.g. when weighting is used to produce the samples and 
standards with known IS concentration the concentrations will never be exactly 
the same) are allowed. Large concentration changes can cause changes in LoD 
value due to heteroscedasticity and nonlinearity. Moreover, the IS can influence 
the ionization efficiency of the analyte (by supressing the ionization of the 
analyte due to competition for charge and surface in the droplet) [76] and there-
fore using a different concentration of IS can change intensity values given by 
the analyte causing systematic error between measurements. This also means 
that the concentration of the IS should not be chosen to be too high so that the 
analyte ionization would not be significantly supressed.  

In conclusion whenever an LoD value is estimated for an analysis method it 
is assumed that the IS concentration will be the same in the sample that will be 
measured in the future. 

 
  



48 

3. EXPERIMENTAL 

3.1. LC-MS/MS 
The following conditions were used for all the LC-MS/MS measurements. 
Agilent Series 1100 LC system was used for the chromatographic separation. 
An aqueous buffer with 1 mM ammonium acetate and 0.1% acetic acid (eluent 
A), and methanol (eluent B) were used as mobile phase components. For both 
analysis methods the eluent flow rate was 0.8 ml/min and sample injection 
volume was 5 µL. The column temperature was set at 30 ⁰C. Agilent LC/MSD 
Trap XCT ion trap mass spectrometer was used for MS/MS detection. 
DataAnalysis for LC/MSD Trap Version 5.2 (Build 374) program made by 
Bruker Daltonik GmbH was used for data processing (including calculation of 
S/N ratio) and analysis. The analytes were recorded in segments where specific 
m/z values for the analytes were recorded around the time of its elution from the 
column.  

All the stock solutions and following dilutions were made by using the 
Sartorius ME235S GENIUS balance (with 0.01 mg resolution). 

Water was purified with MilliQ Advantage A10 system. For the buffer solu-
tion acetic acid (Sigma-Aldrich, ≥ 99.8%) and ammonium acetate (Fluka, 
BioUltra, ≥ 99.8%) were used. HPLC grade methanol was acquired from 
Sigma-Aldrich.  

It must be noted that due to the high number of replicate measurements by 
some of the LoD estimation approaches all the requirements of all approaches 
cannot be followed. 
 

3.1.1. Pesticides 

For pesticides a 250 mm (4.6 mm inner diameter) Agilent Eclipse XDB-C18 
column with 5 µm particles was used and the following LC gradient was used: 
from 0 to 20 minutes component B content was increased from 20% to 100%, 
from 20 to 25 minutes the component B was kept constant at 100%, from 25–27 
minutes the component B was decreased from 100% to 20% after which 7 
minutes of post-run time was used. The retention times of pesticides were the 
following: spiroxamine 18 minutes, imazalil 16.2 minutes, triazophos 20.3 
minutes, propamocarb 5.7 minutes, thiabendazole 10 minutes, carbendazim 8.7 
minutes.  

Commercial Agilent ESI ionization source was used. The nebulization gas 
pressure of 50 psi was used. Drying gas with flow rate of 12 l/min was used at 
temperature of 350 ⁰C. The following transitions were used for the compounds: 
spiroxamine 298 to 144 m/z, imazalil 297 to 255 m/z, triazophos 314 to 162 m/z, 
propamocarb 189 to 144 m/z, thiabendazole 202 to 175 m/z, and carbendazim 
192 to 160 m/z. The fragmentation amplitudes of the compounds were opti-
mized using the software’s built-in function. 

The following chemicals and materials were used for QuEChERS sample 
preparation: acetonitrile (acquired from Sigma-Aldrich, HPLC grade), acetic 
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acid (Sigma-Aldrich, ≥ 99.8%), magnesium sulfate anhydrous (Lach-ner, assay 
purity 99.2%), sodium acetate (Reakhim, the former Soviet Union, dried at 60 ⁰C for at least 48 h), PSA bonded silica (Supelco). All the pesticide standards 
were acquired from Dr. Ehrenstorfer GmbH. 

Stock solutions of all pesticides (kept at -20 °C) were made in acetonitrile 
which were used on 6 separate days for preparing the calibration samples. All 
the pesticide measurements were made from homogenized tomato matrix that 
was pre-treated with the QuEChERS method [77]. Before spiking the blank 
samples were analysed to check whether they are truly blank. Two separate 
dilutions were made for each calibration sample (including the blank) and 2 
parallel experiments were made for each sample. In total of 5 measurements 
were made with blank samples. In total of 10 different calibration levels 
(together with blank) were made. The concentration of each subsequent calib-
ration level was approximately 2.3 times higher than the previous level. How-
ever, for two lowest calibration levels the difference was 12 and 5 times. The 
total concentration range was therefore below 5 orders of magnitude. 

 
 

3.1.2. Antibiotics 

For antibiotics Phenomenex Synergy Hydro-RP 250 x 4.6 mm column with 4 
µm particles of C18 stationary phase was used. The following LC gradient was 
used: from 0 to 10 minutes component B content was increased from 20% to 
90%, from 10 to 15 minutes component B content was kept constant at 90%, 
from 15 to 20 minutes component B content was decreased from 90% to 20% 
after which 7 minutes of post-run time was used. The retention times of 
imipenem, doripenem, meropenem and cilastatine were 3.8, 5.6, 6.6, and 9.8 
minutes, respectively.  

For LC-MS interface two different ESI nebulization systems were used. 
First, the commercial Agilent ESI nebulizer originally designed for the used MS 
system and, second, a novel ESI nebulizer 3R [78] with an added inner capillary 
that directs additional nebulization gas to the tip. The parameters of the 3R 
nebulizer have been optimized in earlier works. The outer and inner diameters 
of the capillaries of the 3R nebulizer were respectively 4 and 2 mm, 0.8 and 
0.55 mm, 0.203 and 0.089 mm [78]. The nebulization gas pressure of the com-
mercial ESI was 50 psi and the gas pressures for the inner and outer capillary in 
case of 3R nebulization were 14 bars and 2 psi respectively. The drying gas 
flow rate and temperature of ESI and 3R nebulization were 10 L/min at 350 ⁰C 
and 10 L/min and 325 ⁰C respectively. The MS/MS data analysis program 
segment times and each segments parent to precursor m/z were respectively: 0 
to 5.1 minutes 300 to 256 m/z, 5.1 to 6.1 minutes 421 to 342 m/z, 6.1 to 7.5 
minutes 384 to 340 m/z, 7.5 to 12 minutes 359 to 202. The fragmentation ampli-
tudes of the compounds were optimized separately for the two different nebuli-
zation methods. 

Doripenem was purchased from AK Scientific Inc. (Union City, CA, USA), 
meropenem was kindly donated by AstraZeneca Limited (Macclesfield, United 
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Kingdom). A mix of imipenem and cilastatine was purchased from Merck 
Sharp & Dohme Corp. (New Jersey, USA). 

LoD measurements of meropenem, doripenem and cilastatine were repeated 
on 5 separate days and imipenem on 3 separate days with both commercial 
Agilent ESI and 3R nebulizer. Stock solutions of all compounds were prepared 
with concentrations of approximately 1000 mg kg-1 in water and were stored at -
80 °C. The calibration solutions were prepared from the stock solutions by suc-
cessive dilutions with water. 

For all antibiotics 8 calibration solutions were measured. In the case of 
meropenem, doripenem and cilastatine 10 separate samples were prepared for 4 
calibration points with lowest concentration and one sample was prepared for 4 
calibration points with the highest concentrations. In the case of the commercial 
nebulizer the used concentration range was 0.25 to 100 µg kg-1 for meropenem 
and 1 to 500 µg kg-1 for doripenem and cilastatine. For 3R nebulizer the con-
centration range was 0.25 to 50 µg kg-1 for meropenem and 0.5 to 250 µg kg-1 
for doripenem and cilastatine. Due to imipenem’s instability (see below), all 
calibration points of this analyte were measured with one separate sample. For 
imipenem the concentration range was 60 to 500 µg kg-1 for both ESI and 3R 
ionization. 10 separate blank samples were prepared and measured in each 
sequence. 
 

3.2. PSI 
Whatman Grade 1 filter paper (GE Healthcare, Little Chalfont, UK) was used 
for all measurements with PSI. Solvent containing 20% of 0.1% formic acid 
with 98.0–100.0% purity (Fluka, Buchs, Switzerland) in ultrapure water 
prepared with MilliQ Advantage A10 (Merck Millipore, Billerica, MA, USA) 
and 80% of HPLC grade acetonitrile (Avantor Performance Materials (JT 
Baker), Center Valley, PA, USA) by volume was used as eluent for PSI. Ima-
zalil standard substances was acquired from Dr. Ehrenstorfer GmbH (Augsburg, 
Germany) and the imazalil-d5 isotopically labelled IS was acquired from 
Sigma-Aldrich (St. Louis, Missouri, USA). Acetonitrile was used as the solvent 
for standard and stock solutions. 

The tomatoes used for testing were all acquired from a local supermarket. 
Retsch Grindomix GM200 (Retsch, Haan, Germany) was used for homo-
genization of the samples at 5000 rpm for 15 seconds and an additional 20 
seconds more at 10 000 rpm.  

The homogenated samples were spiked so that the analyte concentrations 
were approximately 0.0081, 0.035, 0.074, 0.26, 0.58, 0.90, 1.16 and 1.58 ppm. 
All the samples were also spiked with the IS so that its concentration was 
approximately 1.6 ppm. An additional blank sample was prepared where only 
the IS was added. All the fortifications were prepared by weighting by using the 
Sartorius ME235S GENIUS balance (with 0.01 mg resolution). Samples were 
carefully mixed on a Vortex mixer (VWR International, Leuven, Belgium) to 
guarantee the homogeneity of the spiked pesticides in the sample. No other 
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sample preparation steps were taken, so as to keep the sample pre-treatment 
quick and simple, and therefore more fitting to be used as a screening method.  

Varian 320 triple quadrupole MS model number: MS0906A002 (Varian Inc., 
Palo Alto, CA, USA) with nanoESI housing in the positive ion mode was used 
for measurements. The specific equipment necessary for PSI measurements 
were developed [Paper I]. A specifically designed template was used for fabri-
cating isosceles paper triangles with height of 10 mm and base of 5 mm. The 
paper triangle was placed into a holder, made from stainless steel, which was 
fabricated to fit into the nanoESI housing. The holder with the paper was placed 
in front of the MS inlet so that the distance between the inlet and the paper tip 
was approximately 5 mm. The nanoESI housing allows for precise positioning 
of the paper tip in all three axes.  

Capillary voltage and collision energy were optimized for the analyte and IS 
with the native nanoESI ion source of the same MS instrument. The emitter 
voltage was set to 3500 V and shield voltage to 300 V when PSI experiments 
were conducted (the shield is a part of the ion optics in front of the MS inlet that 
helps transmittance of ions into the capillary). Drying gas pressure was set to 15 
psi and temperature to 150 ⁰C. Argon gas pressure of 1.5 mTorr was used for 
fragmentation. The electron multiplier detector voltage was set to 1300 V. 

After fixing the triangle in the holder the sample was applied on the paper 
triangle. This is done by pipetting approximately 2.5 µL of sample onto the 
paper using a 2.5 µL automatic micropipette (precise pipetting is not possible 
due to high viscosity and heterogeneity of the sample). The sample is dried in 
ambient air after which the holder with the paper is placed into the nanoESI 
housing. Then the voltage was applied between the triangle and the MS inlet. 
The recording of the spectrum was started and thereafter 20 µL of eluent was 
added using a 20 µL automatic pipette (Eppendorf AG, Hamburg, Germany). 
This sequence of operations enables recording of the whole spectrum and 
avoids partial vaporization of the eluent before the spray is initiated. The 
multiple reaction monitoring mode was used to record MS responses of the 
analyte and IS. The monitored transition for the analyte was 297 to 159 m/z and 
for the IS was 302 to 255 m/z. Optimized capillary voltage and collision ener-
gies were for the analyte 68 V and 20.5 V respectively, and for the IS 64 V and 
13 V respectively. 

5 replicate measurements were made for the blank sample and sample with 
analyte concentration of 0.58 ppm. Other samples were measured once. 
Integration of the IS and analyte signal was made over the same length of time 
(over the time where IS signal was visibly observable over the background 
noise) from the recorded chronogram for each sample. In some cases the IS 
signal was not observed due to poor repeatability. Therefore, usable data could 
not be obtained and the data was not used in the analysis. These experiments 
were repeated on 3 separate days. The shield, inlet and holder were cleaned 
between every measurement. Regular measurements were made without any 
sample to check for carryover. No carryover was noted in the course of these 
experiments.  
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3.3. Demonstration of subjectivity of statistical tests 
It was hypothesised that in the following cases the interpretation of data can be 
subjective (depending on the analyst): (1) testing linearity based on absolute 
residuals plot, (2) testing scedasticity based on absolute residuals plot, (3) 
interpreting whether the analyte is present or not in the chromatogram by visual 
evaluation, and (4) integration of chromatograms. To test these hypothesis, and 
the extent of the influence that the subjectivity can have on the results, a test 
was conducted. 14 analysts with experience in LC were given the same 
instructions and the same data for interpretation.  

In the first two cases data was simulated in R with known properties (e.g. 
linear or nonlinear for first and homoscedastic or heteroscedastic for second 
case) using random number generator function in R. When testing linearity the 
simulated data was homoscedastic and when testing scedasticity the data was 
linear. Absolute residual plots were created from this data. In both cases 6 
different plots were chosen for the analysts to interpret: two were chosen so that 
their correct interpretation would be straightforward (e.g. homoscedastic data 
was plotted that could be easily interpreted as homoscedastic), the other four 
were chosen so that they would be difficult to interpret correctly (e.g. linear data 
was simulated but a plot was chosen so that it might be easy to interpret the 
result as nonlinear). The plots can be seen in Figure 4. These plots were shown 
to the analysts and it was asked to interpret whether the data was linear or 
nonlinear in case of linearity testing and whether the data was homoscedastic or 
heteroscedastic in case of scedasticity testing. 

In the last two cases chromatograms from LC-MS/MS analysis of samples 
containing pesticides (see description in chapter 3.1.1) at 5 different concentra-
tions were given to the analysts for interpretation and integration. The con-
centrations of the samples were close to the LoD so that in some samples 
analyte could not be identified but in others the analyte would be clearly 
present. All samples contained 5 different pesticides – carbendazim, imazalil, 
triazophos, spiroxamine, propamocarb. The presence of the analyte was inter-
preted in 4 separate replicate measurements at each concentration and inte-
gration was done in only one replicate measurement of each concentration. The 
analysts were asked to evaluate every chromatogram and state whether the peak 
of the analyte is present in the chromatogram or not. The integration “techni-
que” explained in chapter 2.1.4 was explained to all analysts. 
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3.4. Simulations 
Simulations in R were carried out to study how strongly the LoD value is 
affected if calibration points used to calculate it are below CCα and/or CCβ. For 
this a script was written that simulates a linear calibration function data with 
known variance and therefore the correct value for CCα and CCβ was known. 
Both homoscedastic and heteroscedastic data were simulated. This R script can 
be found in Appendix 1. In these specific cases the CCα and CCβ are 32.9 and 
65.8 for homoscedastic data, and 32.9 and 73.11 for heteroscedastic data. This 
script is then used to simulate data measurement results 1000 times at each 
calibration level (producing 1000 separate CF-s) at each following concent-
rations: (1) 0, 75, 100, 125, 150, 175, 200, (2) 0, 35, 60, 85, 110, 135, 160, (3) 
0, 5, 25, 50, 75, 100, 125, and (4) 0, 5, 10, 15, 20, 25, 30. Notice that in the last 
case all calibration levels are below CCα. The true value of slope is 5 and inter-
cept is 0. From each calibration function that is simulated the following para-
meters were calculated: slope, intercept, Sy.x, standard deviation of intercept, 
LoD calculated from ICH suggested approaches (see Table 1, group 4) using the 
Sy.x and standard deviation of intercept. To analyse these data the mean and 
standard deviation of these calculated parameters was found. From this data it 
can be seen how strongly the LoD values are affected by the choice of calib-
ration levels below LoD and what is the reason for the deviations. Discussion of 
the results can be found in Chapter 4.2. To assure that the results can be re-
produced set.seed(1) was used in the case of data presented in this work.  

Moreover, simulations were also made to study how moving the mean con-
centration of the calibration points to a lower value affects the prediction inter-
val at low concentrations (and therefore affects CCα and CCβ calculated by 
using approaches suggested by ISO 11843-2, see Table 1 group 7). For this 
linear homoscedastic data was simulated and prediction interval values at 0 
concentration were calculated. Two different sets of calibration levels were used 
in one of which most of the calibration levels are significantly lower: (1) 0, 200, 
400, 600, 1000, and (2) 0, 5, 10, 15, 20, 1000. For given experiment slope and 
intercept were both set as 5, 4 replicate measurements of each calibration level 
were made and 5 replicate measurements was given for future sample analysis. 
These calibration sets were simulated 1000 times and the mean and standard 
deviation of prediction interval at 0 concentration was found. For the results to 
be replicable set.seed(1) was set for the script. The script with further details 
can be seen in Appendix 2.  
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4. RESULTS AND DISCUSSION 

4.1. Subjectivity tests 
The results of the interpretations of absolute residual plots by the analysts are 
presented in Table 3. It can be seen that in both tests some plots were interpreted 
incorrectly by the majority of the analysts. Also the interpretation of the data 
between the analysts differs. Therefore, in some cases the analyst should make a 
conclusion that a definite interpretation cannot be made from the plot and always 
keep in mind that the interpretation can be subjective. Moreover, it can be seen 
from the plots (see Figure 4) that linear heteroscedastic data could be interpreted 
as nonlinear data. However, if the data are nonlinear and strongly heteroscedastic 
the nonlinearity might be visually insignificant and can be overlooked.  
 
 
Table 3. Interpretation results of absolute residual plots. The plots are designated with 
the letters as in Figure 4 and their actual linearity or scedasticity is given. Incorrect 
interpretations show the number of analysts who interpreted the plot contrary to the true 
linearity or scedasticity. 
 

Plot Linearity 
Incorrect 

interpretations Plot Scedasticity 
Incorrect 

interpretations 
(a) linear 4/14 (g) homoscedastic 0/14 
(b) linear 0/14 (h) heteroscedastic 13/14 
(c) nonlinear 2/14 (i) homoscedastic 14/14 
(d) linear 11/14 (j) heteroscedastic 0/14 
(e) nonlinear 0/14 (k) homoscedastic 6/14 
(f) nonlinear 1/14 (l) heteroscedastic 3/14 

 
 
From Figure 5 it can be seen that the analysts often do not agree about the 
presence of the peak (and therefore whether the analyte is detected) around 
LoD. Therefore, interpretation of the presence of the peak around LoD is sub-
jective. As a result determining LoD by using this interpretation depends on the 
analyst. It can be seen from the results that that the differences between the LoD 
values estimated by (using the visual evaluation approach taking into account 
all the 4 repeated measurements) the analysts were up to two times. However, it 
should be noted that (1) the difference was largely determined by the choice of 
concentrations for the samples (the two times difference comes from the diffe-
rence of the two consecutive concentrations in the series) and (2) only 4 
repeated measurements were evaluated at each concentration level. If more than 
4 replicates were to be used the difference between the results might be 
decreased. As the analyte peak’s shape and height changes between measure-
ments, replicates are needed to find LoD. In order to take the repeatability of 
measurements into account it is possible to use the cut-off approach with visual 
evaluation. However, it is possible that interpretation of the results could also be 
made clearer if more data points were to be collected over the same peak. The 
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MS instrument used in these experiments allowed only approximately 5 to 10 
number of data points to be collected per peak (due to relatively long cycle time 
needed for a measurement in an instrument using an ion trap). 
 
 

    
 

  
 
Figure 5. 4 replicate measurements were interpreted at 5 different concentration levels 
(on x-axis) by 14 analysts (on y-axis). Highest concentration level is not shown – 
similar to level 4 all analysts agreed that the peak is present at that level. On y-axis it is 
shown how many of the 14 analysts agreed that an analyte peak is present in that 
chromatogram. This was done for 5 separate compounds (shown in different colours). 
The first calibration level has the lowest concentration of analytes. For all compounds 
the concentration difference between the first and second calibration level was approxi-
mately 12 times, between the second and third was approximately 5 times and between 
the rest approximately 2 times. 
 
 
In Table 4 the RSD of integration results can be seen. The RSD of results 
between the analysts integrating a sample, where a peak was not visually 
present (calibration level 1), was over 60% but only over 6% for a sample with 
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a clear peak (calibration level 4). The RSD values of analyte peak areas (from 
different chromatograms of the same sample solution) obtained by one analyst 
are similar to (when no peak is present) or higher (if the peak is present) than 
the RSD values of analyte peak areas on the same chromatogram between diffe-
rent analysts. Therefore the difference between analysts when integrating the 
results is significant only in case of samples with peak intensities close to the 
noise level. 
 
 
Table 4. RSD of integration results between all different analysts depending on the 
calibration level. The concentrations of the calibration levels are similar as explained in 
Figure 5. 
 

Calibration level 
1 2 3 4 5 

Propamocarb 64% 49% 11% 3% 1% 
Carbendazim 39% 44% 23% 6% 4% 

Imazalil 13% 25% 10% 5% 2% 
Spiroxamine 34% 26% 7% 2% 1% 

Triazophos 14% 20% 3% 2% 1% 
 
 

4.2. Simulations 
The results of simulations can be found in Tables 5 and 6. The parameters given 
in different columns of the table are given in the caption of the table. The 4 
different calibrations given in rows correspond to the different calibration levels 
are given in Chapter 3.4. From the results it can be seen that even in case all 
calibration points were below CCα the Sy.x was not significantly affected. How-
ever in these cases it is seen that a value for slope that is close to 0 or negative 
can be obtained which causes unrealistic LoD values. It can be concluded that 
when using simple LoD estimation approaches (that do not account for the 
deviation of slope) and low number of repeated measurements the calibration 
points should be taken at or above CCβ value so that the variance of slope has 
less random effect on the LoD estimate. Therefore, here it is suggested that at 
least 3 calibration levels should be used at concentrations where peaks are 
present in the chromatogram. 

It can also be seen from simulations that if standard deviation of intercept is 
used in place of Sy.x the LoD values are always lower. In case the data are 
strongly heteroscedastic (see Table 6) both of the parameters overestimate LoD 
and therefore standard deviation of intercept might be somewhat less biased. 
However, the difference between the two can be small (in practical terms). 
Moreover, because conservative results are rather needed when using these 
approaches it is advisable to use Sy.x. 
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Table 5. An example result is given (set.seed(1) is used to obtain this simulation data). 
The concentration levels used in the calibration 1 to 4 can be found in the same as in the 
script and in Chapter 3.4. The following parameters are brought out in the table: (1) 
Bcalc – estimated slope, (2) Syx – standard deviation of residuals, (3) Acalc – intercept, 
(4) Aerror – standard deviation of intercept, (5) Blank – simulated value at 0 con-
centration, (6) LOD.res – LoD calculated from Syx, and (7) LODint – LoD calculated 
from Aerror. If “mean” is written in from of the name of the parameter the mean of the 
1000 results was found and if “sd” is written in front of the parametes the standard 
deviation of the 1000 results was found. 
 

Calibration meanBcalc sdBcalc meanSyx sdSyx meanAcalc meanAerror 
1 5.01 0.60 97.10 31.25 -1.51 78.56 
2 5.03 0.72 93.79 30.44 -3.08 66.90 
3 5.02 0.83 95.68 30.58 -0.02 57.16 
4 5.09 3.75 96.16 31.79 -0.48 65.52 

 
Calibration meanBlank sdBlank meanLOD.resa sdLOD.resa meanLOD.intb sdLOD.intb 

1 -1.26 99.46 64.86 22.09 12.79 1.62 
2 -1.29 100.09 62.94 22.88 12.83 2.01 
3 2.23 97.42 64.76 23.89 12.95 2.33 
4 2.00 99.10 285.96 7861.68 38.11 1068.16 

 

a LoD calculated by using the standard deviation of residuals (group 4, Table 1). b LoD 
calculated by using the standard deviation of intercept (group 4, Table 1) 
 
 
Table 6. Example results of simulated heteroscedastic data (set.seed(1) is used). Same 
denomination is used as in Table 5. 
 

Calibration meanBcalc sdBcalc meanSxy sdSxy meanAcalc meanAerror 
1 5.00 0.91 159.21 52.08 -1.38 128.81 
2 5.03 1.04 135.01 44.69 -3.81 96.30 
3 5.03 1.13 121.82 40.15 -0.08 72.77 
4 5.11 4.03 103.42 34.21 -0.70 70.47 

 
Calibration meanBlank sdBlank meanLoD.res sdLoD.res meanLoD.int sdLoD.int 

1 -1.26 99.46 108.82 42.60 88.04 34.46 
2 -1.29 100.09 93.16 41.25 66.45 29.43 
3 2.23 97.42 84.78 37.35 50.64 22.31 
4 2.00 99.10 111.86 1544.37 76.22 1052.31 

 
 
The results from the simulation testing whether the prediction interval changes 
significantly if the calibration levels are significantly lower were the following: 
for the first and second calibration set the mean of prediction interval were 14.7 
and 13.5 with standard deviations of 2.6 and 2.1 respectively. It can be therefore 
concluded that although the prediction interval is somewhat narrower in case 
the mean value of calibration levels is lower but this difference is not signifi-
cant. Therefore, the choice of calibration levels does not significantly influence 
the CCα and CCβ results calculated by ISO 11843-2 if the data is homoscedastic 
and linear. 
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4.3. LC-MS/MS 
The following two chapters (chapters 4.3.1 and 4.3.2) review different ap-
proaches for estimating LoD for analytical methods that need LoD for charac-
terising the method but where scrutinizing the analytical results of specific 
samples against LoD is not critical. This is the typical situation e.g. deter-
mination of most pollutants – if the result is near LoD then it is far below the 
MRL and consequently the sample is compliant with requirements. If scrutini-
zing of the results at LoD level is critically important (e.g. in doping analysis) 
then CCα and CCβ should be used and this is reviewed in chapter 4.3.3. 

In the case of LC-MS/MS the data are likely heteroscedastic and possibly 
nonlinear (depending on the range of calibration points used). As these analy-
tical method characteristics strongly influence the LoD estimate their evaluation 
is reviewed here on the example of experimental data. These characteristics are 
tested separately for data with one (Chapter 4.3.1) and multiple repeated mea-
surements (Chapter 4.3.2) at each calibration points as these cases are somewhat 
different. The results of these two experimental designs are then also compared. 

As discussed above (see Chapter 2.2.3) in case of MS/MS it is possible to 
observe different fragments for quantification and identification. Our recom-
mendation is the following: LoD should be estimated from the signal intensity 
(or by using some other approaches, e.g. S/N) of a qualifier ion only (1) if LoD 
is used for making critical or costly decisions or (2) if LoD does not increase 
significantly due to using qualifier ion instead of quantifier ion. Otherwise LoD 
can be estimated using the quantifier ion signal. However, selectivity of the 
analytical method must be studied thoroughly before LoD estimation when 
validating the method. 

 
 

4.3.1. Data with single measurement at each calibration level 

Linearity of data with single measurement at each calibration level was esti-
mated by first inspecting the calibration graph and then the absolute residual 
values. In order to find the linear range the highest concentration values were 
removed one by one until linearity could be confirmed. It should be noted here 
that the calibration graph samples should be matrix matched (see chapter 2.1.1). 

In all cases the linear range estimated by the absolute residuals is the same or 
narrower than estimated by visual inspection of the calibration graph. The visual 
interpretation of calibration graph is therefore used rather as a guide to find the 
highest concentration from which it is not obvious whether the data are linear or 
not. Then the absolute residuals are plotted and highest concentrations are re-
moved (and CF parameters recalculated) until linear range is found. An example 
can be seen in Figure 6 where seemingly linear data in calibration graph are in 
fact nonlinear according to the absolute residuals plot. It can also be seen from 
the calibration graph plot that the R2 value cannot be used to estimate linearity 
of the data. 
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Relative residuals (these can only be used to estimate linearity if we know that 
the data are homoscedastic) and Lack-of-Fit test (this can only be used if more 
than one measurement is made at each calibration level) are not appropriate for 
the given data. Blank sample and fortified samples with intensities below LoD 
were kept in the calibration data as CF is not significantly influenced by these 
points if a sufficient number of data points are above LoD (see chapter 4.2). 
When integrating peaks of the samples (including blank samples) the guidelines 
offered in chapter 2.1.4 were followed.  

When estimating LoD heteroscedasticity can be taken into account by re-
moving higher calibration levels until homoscedastic range is found. However, 
in this case removing further calibration levels due to heteroscedasticity can 
often lead to too few data points (e.g. 3 or 4) for LoD estimation. This is due to 
the heteroscedastic nature of typical LC-MS/MS data and the wide range of 
concentrations used in this experimental design. Furthermore, estimating hetero-
scedasticity for calibration data with single measurements can be untrustworthy 
(see chapter 4.1).  

Although heteroscedasticity is not evaluated it is still important to evaluate 
linearity of the data. Otherwise the slope and intercept values can be unreliable 
and not fit for LoD estimation. For example an incorrectly high intercept value 
can be obtained causing the LoD to become negative. In case this occurs it can 
be said that the calibration range that was used to estimate LoD was not 
appropriate. Moreover, if significantly nonlinear data are fitted with a linear 
model then the error of the model will be large. 

OLS was used for estimating the CF parameters. Moreover, the calibration 
model was not forced through the origin (see chapter 2.1.4). 

Next, LoD values were estimated. For the LoD estimation approaches where 
standard deviations of repeated measurements of blanks or fortified samples are 
used, the Student’s t coefficient was chosen as 3.3 and 4.65 (see Table 1). These 
values correspond to different p values (α and β values) when calculating LoD. 
However, in some cases (e.g. approach suggested by EPA) the LoD estimates 
take into account only the false positive results, thereby effectively correspon-
ding to CCα. Therefore the t value is used to choose only the α value (e.g. t 
value of 1.64 and 2.33 leads to CCα with 95% and 99% confidence against false 
positive values respectively). If one would need to calculate CCα and CCβ with 
95% confidence level then the multiplier 3.3 (two times 1.64) would be used. 
The t value also depends on the number of degrees of freedom, which in the 
guidelines is usually assumed as very large. 

In order to estimate the LoD via standard deviation of the results of fortified 
samples (approaches in groups 1, 2 and 3 in Table 1) it is assumed here that the 
analyst has some prior knowledge of the approximate LoD so that the samples 
are fortified at a level near LoD. Here the fortified sample results for calculating 
LoD are taken from samples with lowest concentration at which all 4 repeated 
measurements still have S/N > 3.  

Automatic integration was not used because the used data analysis program 
(DataAnalysis, LC/MSD Trap software 5.2) does not allow adjusting the inte-
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gration parameters. Because only 4 measurements are made at each calibration 
level the S/N values and visual evaluation results can be unreliable because 
more repeated measurements at all calibration levels are necessary for these 
approaches. 

Systematically lower LoD was obtained when the standard deviation of 
intercept was used in place of Sy.x (see Figure 7) in the case of Group 4 
approaches (Table 1) confirming the results of simulations (see Chapter 4.2). 
Due to more conservative LoD estimate it is preferable to use the Sy.x.  

It can be seen from the comparison of LoD estimates (Figure 7) that the 
approach using Sy.x gives results similar to the other conservative approaches 
(e.g. approaches using standard deviation of fortified samples at a single con-
centration). However, due to strongly heteroscedastic data, if higher con-
centration levels are used to estimate the standard deviation of fortified samples 
then the LoD estimate from these results will be higher (e.g. in Figure 7 in the 
case of propamocarb the LoD value calculated using the Sy.x is significantly 
lower than the LoD estimates from approaches using standard deviation of 
blank or fortified samples). The LoD estimates calculated from the standard 
deviation of blank samples are lower also due to heteroscedasticity of data or 
due to the systematically low variability in integrated blank values. Therefore, it 
is easy to over- or underestimate LoD when unsuitable concentration level is 
chosen for fortification in the case of LC-MS/MS analysis methods. Prior 
knowledge of an approximate LoD value is necessary (e.g. see the LoD 
estimation approach suggested by EPA).  

The approaches using Sy.x rely on the assumption of linearity of data because 
in case of using a linear model on nonlinear data the errors of the model 
increase the standard deviation of the residuals. It can also be noted that the 
standard deviation of the mean LoD value is higher than for approaches using 
the standard deviation of fortified and blank values. In the case of approaches 3 
to 6 in Figure 7 only the slope and intercept vary, but in the case of approaches 
7 and 8 also the standard deviation varies. 
 
In conclusion, the approach using Sy.x (group 4 in Table 1) is recommended for 
general use for the following reasons: (1) a small number of measurements is 
needed, (2) little prior knowledge of LoD is necessary, (3) conservative LoD 
estimates are obtained, (4) the approach suggested in ISO 11843-2 also uses Sy.x 
and therefore the results of these approaches can be readily compared. 
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4.3.2. Data with repeated measurements at each calibration level 

Linear range was found for data with 4 replicate measurements at each calibra-
tion level on 6 separate days. Similarly to the data with single measurement at 
each calibration level the calibration graph and absolute residuals were used to 
find the linear range by removing the highest calibration levels one by one until 
linearity could be confirmed. Lack-of-Fit test was then used to confirm that the 
linear model found fits the data. Only in two cases (two different compounds on 
separate days) out of 36 (six analytes on six days) the results of Lack-of-Fit test 
demonstrated that the linear range had not been correctly found by using the 
absolute residual plots. When one more calibration level was removed for these 
cases the Lack-of-Fit test showed that the data are linear. As an example, in 
Table 7 the highest calibration levels are given for each compound that is found 
to be in the linear range with the specific test. These data are collected on one 
single day. It can be seen that in most cases estimating linearity from a visual 
inspection of calibration graph gives a similar result as absolute residuals. How-
ever, in case of spiroxamine the absolute residuals show significantly narrower 
linear range than visual evaluation of the calibration graph. The Lack-of-Fit test 
gives either the same or wider linear range than when estimated using the 
absolute residuals of the calibration graph. It can therefore be concluded that in 
most cases absolute residual plots can give critical evaluation of linearity of data 
in case more than one measurement is made at each calibration level. 
 
 
Table 7. The highest calibration level (mg/kg) of each compound with each linearity 
test is given that is found to fit the linear range together with all the lower concentration 
data. The data were collected on a single measurement day. 
 

Calibration graph Absolute residuals Lack-of-Fit 
Spiroxamine 0.053 0.010 0.121 

Imazalil 0.056 0.056 0.056 
Triazophos 0.015 0.015 0.015 

Propamocarb 0.843 0.843 1.981 
Thiabendazole 0.183 0.183 0.183 

Carbendazim 1.522 1.522 1.522 
 
 
For the following reasons, OLS was used: (1) it avoids the ambiguity of 
choosing the weighting scheme, (2) in the lower part of the calibration graph an 
approximately homoscedastic range usually exists and can be used by the 
majority of LoD estimation approaches, and (3) the LoD approaches used here 
do not take into account the standard deviation of slope and intercept and it can 
thus be expected that using WLS will not give significantly different results. 

Outliers (significantly deviating results that are not appropriate to be kept in 
the data) can possibly be identified here by visually inspecting the data on a 
calibration graph. If a data point clearly deviates more than the other replicate 
measurements at that level then an outlier can be suspected. These outliers can 
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easily be left unnoticed on calibration graph with only single measurement. 
However, data points must not be removed without a sufficient justification – 
unusual large deviation of data point is not enough to allow removal of the data 
point. In this work 8 data points out of over 800 were identified as outliers and 
were removed: 6 due to clear variance of data of all compounds in a single 
injection from the usual intensity (intensities for all compounds were unusually 
low) and 2 were removed due to abnormal peak shape. 

Contrary to the data used in the previous chapter here heteroscedasticity can 
be readily observed. Homoscedastic range can be found for LoD estimation by 
removing the highest calibration levels one by one until it can be confirmed that 
the data are homoscedastic.  

Three approaches to estimate the homoscedastic range of the data were com-
pared: absolute and relative residual plots, and using the Hartley’s test. From 
the absolute residuals plot it was visually observed whether the data are homo-
scedastic. To estimate the homoscedastic range with relative residuals 3 of the 
lowest concentration levels were plotted and the highest calibration levels were 
removed until the observed relative residuals did not significantly deviate from 
0 towards positive or negative values. Hartley’s test (see description in chapter 
2.1.3.2) was applied to the data and the highest concentration levels were 
removed until an F value below the critical level was obtained. From the results 
(see Table 8) it can be seen that the relative residual plots allow higher 
concentration levels to be left into the data than the other tests. This is because 
the relative residuals do not take into account the standard deviation of the 
results and it is only observed whether the regression line passes close to the 
data of the lowest calibration levels. However, in absolute residuals the standard 
deviation is indirectly observed by visual evaluation and in Hearty’s test 
standard deviation is used in calculations. Therefore relative residual plots over-
estimate the homoscedastic range and are not recommended for use. 

 
 
Table 8. The highest concentration (μg/kg) of the homoscedastic range estimated by the 
respective approach. 
 

Absolute residuals Relative residuals Hartley test 
Spiroxamine 0.35 10 0.35 

Imazalil 2.0 23 2.0 
Triazophos 0.52 6.1 2.8 

Propamocarb 31 840 72 
Thiabendazole 33 77 33 

Carbendazim 0.16 670 1.9 
 
 
The Hartley’s test is a general test for assessing whether groups of data (in this 
case: sets of replicate measurement results at different calibration levels) all 
have the same variance. This test therefore does not take into account that in a 
calibration graph the growth direction of variance is known. As a result, it is 
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seen in the data that due to low number of replicate measurements at each 
calibration level it can happen by random chance that higher calibration levels 
have lower variance than the results from blank samples (see Table 9). The 
following is therefore suggested: if the standard deviation of a calibration level 
is statistically significantly lower than that for the lowest calibration level (in 
this case: the blank value) this level should not be taken into account when 
estimating the homoscedastic range. This is because this level is most likely in 
the homoscedastic range. 
 
 
Table 9. The square of standard deviation at 0.0086 µg/kg (highlighted with bold) is 
significantly lower than for blank samples. As a result when Hartley’s test is carried out 
homoscedastic range cannot be found. However, when removing the standard deviation 
results of the 0.0086 µg/kg sample a homoscedastic range can be found from blank 
samples to samples with range from blank samples to samples with concentration of 
2.89 µg/kg. 
 

C (µg/kg) 0 0.0086 0.104 0.535 1.23 2.89 6.33 14.7 
S(y)2 556835 7852 908155 4892298 1917186 9604625 60769665 147550168 

 
 
In spite of these difficulties and that it is somewhat more complex to use the 
Hartley’s test, this test is to be preferred over the use of absolute residuals as the 
latter can be subjective. Furthermore, Hartley’s test is more conservative when 
analysing the data: the estimated homoscedastic range is always the same or 
narrower compared to one estimated by absolute residuals (see Table 8). This is 
important because the collected experimental data are strongly heteroscedastic 
and in most cases only 4 or less calibration levels are in the homoscedastic range. 
As these data include the blank solutions and solutions with low analyte con-
centration level (where the peak is not clearly present) the slope value estimated 
from these data has large variance and is therefore not reliable (e.g. if only 
calibration levels are used where no peak is detected then the slope value is 0). 
Therefore, for further LoD calculations the results from Hartley’s test were used 
so that LoD could be estimated from a homoscedastic range. The strong 
heteroscedasticity was not caused only by the nature of the LC-MS/MS technique 
but also by the wide range of concentrations of the calibration levels. It is there-
fore concluded again that it is useful to approximately know the range where LoD 
is so that more concentration levels would fall in the homoscedastic range. 

It must be noted here that evaluating a concentration range as homoscedastic 
does not necessarily mean that this range is insignificantly heteroscedastic in the 
case of possible future datasets in the same concentration range. This means the 
range is evaluated as homoscedastic only because the used statistical test do not 
have the statistical power to distinguish heteroscedasticity. It is still reasonable 
to assume that this range is homoscedastic as the influence of heteroscedasticity 
in this range is less important than in wider range. However, it can be concluded 
that the LoD values estimated in the previous chapter from data with a single 
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point at each calibration level may be overestimated as heteroscedasticity was 
not properly taken into account. 

Because the analytical methods under consideration in this chapter do not 
need an LoD estimate where all assumptions and simplifications are taken into 
account and rather need a conservative LoD estimate that can be with high 
probability routinely achieved by the analytical method the following re-
commendation is made. At least 5 calibration levels (of which 3 should clearly 
have the analyte peak present, i.e. S/N > 3) should be used for LoD estimation. 
If a smaller number of calibration levels are found in the homoscedastic range 
then a new experimental design to estimate LoD with a different calibration 
range should be made. If this is not possible then the lowest calibration levels 
left out due to heteroscedasticity should be added to the data until the above 
requirements are met. If possible the 3 calibration levels with analyte peak 
present should be close to LoD, e.g. the concentrations of the calibration levels 
should not differ from LoD by more than an order of magnitude. However this 
last suggestion is a general guideline as linearity and heteroscedasticity are the 
parameters that determine the range that could be used. Using calibration levels 
in the heteroscedastic range means that the LoD values can be somewhat over-
estimated and therefore conservative. 

The LoD values estimated by different approaches are compared in Figure 8. 
Calculations by all the approaches assume that future samples will be analysed 
only once (standard deviation is used in place of standard deviation of the mean 
and the intensity values for calibration levels are not averaged before calcu-
lation of Sy.x and of the intercept). In general similar trends can be seen here as 
with LoD results where data contained only one measurement for each 
calibration level: the LoD values are lower when calculated from blank standard 
deviations, similar results are obtained for approaches that use Sy.x and of 
fortified samples, and the standard deviation of intercept provides a lower LoD 
estimate than residuals. Although, here 4 replicate measurements could be used 
for the cut-off approach using S/N and visual evaluation, this is still too few for 
obtaining reliable results and significantly below the usually required 10 mea-
surements (see Table 1). Therefore, in this case no significant difference exists 
between used approaches if single measurement or if replicate measurements at 
each calibration level are made.  

LoD estimate was also calculated using the Eurachem (group 3, Table 1) 
approach where it is taken into account that the sample is measured repeatedly. 
This was calculated from fortified samples and 4 replicate measurements were 
assumed for the future samples. The LoD estimate has a similar value to the 
ones calculated from the standard deviation of blank values. 
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It should also be noted that the difference between the LoD values from diffe-
rent approaches can be (depending on the compound) only 2 times. This diffe-
rence can be statistically significant but might not be important for the given 
application. However, it is still suggested to use the results of more conservative 
approaches.  

The results were compared to the data used in the previous chapter to iden-
tify whether making replicate measurements at each calibration level signifi-
cantly changes the results and therefore whether it is useful. For this the paired 
t-test was performed as in this case the variation due to changes between days 
does not influence the results. The test is done for each compound and each 
LoD estimation approach separately. It must be noted that for the approaches 
using standard deviation of blank and fortified values only the slope and inter-
cept values change between the single and multiple calibration level measure-
ment data and not the standard deviation as the same data is used in these cases. 
The data indicate that in most cases the LoD values obtained using the same 
approach with and without replicates of calibration points are not significantly 
different (see Table 10). Only one compound the results are significantly diffe-
rent for multiple LoD approaches. The main difference between these results 
can come from the fact that the linear range and homoscedastic range are 
evaluated differently leading to the use of different data for LoD estimation. 
 
 
Table 10. Results of paired t-test comparing LoD values in case only one measurement 
was used at each calibration level in comparison to results when 4 replicates at each 
calibration level were used to estimate LoD. The critical t value is 2.57. The t values 
higher than the critical level (i.e. results are significantly different) are highlighted. 

 

t value 

Approach 
Spirox-
amine Imazalil

Triazo-
phos 

Propamo-
carb 

Thiabenda-
zole 

Carben-
dazim 

S/N ≥ 3 0.26 0.10 1.99 0.60 1.58 1.00 
Visual evaluation 0.90 1.12 0.27 0.00 1.82 0.45 

(mean(y0)+3.3*S(y0)-a)/b 0.25 0.37 1.10 1.70 3.65 0.29 
(mean(y0)+ 4.65*S(y0)-a)/b 0.49 1.04 0.93 1.24 1.35 1.26 

(mean(y0)+ 3.3*S(y)-a)/b 0.44 0.12 1.27 1.90 3.51 0.15 
(mean(y0)+4.65*S(y)-a)/b 1.14 1.31 0.94 0.59 2.62 1.22 

3.3*Sxy/b 1.82 1.54 1.46 0.38 4.75 2.56 
3.3*S(a)/b 2.16 1.73 1.61 2.41 2.66 2.91 

 
 
In conclusion, if only a simple (i.e. not for critical decisions) LoD estimate is 
necessary then a single measurement at each calibration level is sufficient. Only 
if more reliable LoD estimates are necessary (e.g. for a thorough validation of 
an analytical method for publication of results) then performing more than one 
measurement at each calibration point increases the reliability of the LoD 
estimate and decreases its variability of LoD estimates within a day.  

A comparison was also made between LoD results when using the mean 
value of blank samples and the intercept value for approaches where standard 
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deviation at a single concentration is used to estimate LoD (Table 1, group 1). 
These parameters are used in these approaches to estimate the LoD in the 
intensity scale after which the corresponding concentration can be found (using 
the intercept and slope of the CF). It can be seen from Figure 9 that the results 
between the approaches when using the mean value of blank samples or the 
intercept is not significantly different. Therefore it is recommended here that 
blank LC-MS/MS results should be integrated similarly to chromatograms with 
peaks and the data should be used to estimate the CF. This is important because 
not integrating blanks and low level samples (and using the intercept value 
estimated from higher concentration samples) will result in losing information 
at low concentrations. 

 

 
 
Figure 9. LoD estimates of different approaches (equation for estimation given on x-
axis) for 3 different compounds (in different colours). The error bars represent standard 
deviation of the mean of six replicate LoD estimates between the days. 
 
 

4.3.3. CCα and CCβ estimation approaches 

If an analytical method is used that demands a reliable parameter for interpre-
tation of results in terms of whether the analyte is detected or not and for 
characterization of the method then it is recommended to use CCα and CCβ. 
Here the approaches suggested in the guideline ISO 11843-2 [4] are discussed 
and the obtained CCα and CCβ values are compared. The data collected for these 
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experiments follow the specific requirements given in that guideline. ISO 
11843-2 allows calculation of CCα and CCβ for homo- and heteroscedastic data 
with separate approaches and these results are compared. The approach that 
takes into account the heteroscedasticity of the data assumes that the standard 
deviation is linearly dependant on concentration. Moreover, the estimation 
procedure for this approach uses WLS in place of OLS [4]. As the CF uses 
multiple independent calibration solution preparations (in this case 2) separately 
(i.e. not averaged) for each calibration level then it is assumed that the same 
number of independent replicate sample preparations and measurements will be 
done for the future samples. To the authors’ knowledge these approaches are the 
most sophisticated approaches recommended in guidelines and take into 
account considerations that other LoD approaches do not (see Table 1). In 
addition, these approaches are quite widely used. 

In comparison to these approaches the simple approaches for estimating CCα 
and CCβ (group 6 in Table 1) can be recommended only when high reliability is 
not required, because they make similar assumptions to the LoD estimation 
approaches reviewed in the previous chapters. Keeping in mind that CCα and 
CCβ are usually used for making critical decisions, these simplified approaches 
are not discussed here. 

The data range found in the previous chapter is used for calculations: (1) for 
the approach assuming homoscedasticity the homoscedastic and linear range is 
used, and (2) for the approach that assumes heteroscedasticity the linear range is 
used. Ideally in the first case the data is homoscedastic, but can in practice be 
somewhat heteroscedastic as some higher calibration level data must in some 
cases be added so that enough calibration levels could be used. Figure 10 
presents the comparison of the two ISO 11843-2 approaches and the ICH 
approach using the Sy.x (group 4, Table 1). From paired t-test (similar to test 
used in chapter 4.3.2) of the results it is seen that for the given data the two 
approaches suggested by ISO 11843-2 do not give statistically different CCα 
and CCβ (p = 0.05). The results of the t-test can be seen in Table 11. Although 
significantly more complex the approach that takes heteroscedasticity into 
account is more appropriate due to possible heteroscedasticity of the data used 
here. Moreover, the LoD value estimated from Sy.x is significantly different 
from the estimated CCβ value only for one compound. This can be due to the 
fact that the most important assumptions on linearity and scedasticity have been 
taken into account in both approaches. Therefore fairly accurate interpretation 
can be done with this LoD approach. However, in case reliable interpretation of 
results is needed the ISO 11843-2 approach is still preferable. 
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Table 11. Three different pairs of estimates are compared to each other: (1) CCα 
estimates from the two different approaches given in ISO 11843-2, (2) CCβ estimates 
from the two different approaches given in ISO 11843-2, and (3) the CCβ value from the 
ISO 11843-2 approach that uses heteroscedastic data and WLS is compared to the 
approach using Sy.x value (Table 1, group 4). These comparisons are numbered in the 
rows of the Table similarly. 
 

t value 
Spiroxamine Imazalil Triazophos Propamo-

carb 
Thiabenda-

zole 
Carben-
dazim 

Comparison 1 1.35 1.14 0.17 2.22 1.63 0.44 
Comparison 2 1.32 1.12 0.06 2.19 1.61 0.49 
Comparison 3 0.01 0.66 1.78 0.18 0.42 2.89 

 
 

4.3.4. Between-days LoD 

The LC-MS/MS system parameters may significantly vary between days. Thus, 
the variability of LoD between days should be tested and between-days LoD 
should be used if necessary (see Chapter 2.1.5). 

In order to estimate whether LoD changes significantly between days more 
than one estimate of LoD is necessary on each day. Therefore 4 separate CF-s 
were obtained with a single calibration point at each calibration level for 
obtaining 4 independent LoD estimates within a day.  

With the data collected in the experiments, only the approaches in group 4 
Table 1 that uses Sy.x or standard deviation of intercept can be used for finding 
several LoD estimates within one day (there are not enough data to use other 
approaches). Here only the approach using Sy.x was used. LoD values were 
calculated with the approach from 4 different calibration graphs on each 6 days 
(altogether 24 LoD values) for each compound. The same data was used as in 
chapter 4.3.1 where single measurement was made at each calibration level. 
ANOVA (see general description of ANOVA in chapter 2.1.3.1) was performed 
on these data: the changing factor was taken to be time (meaning different days) 
and it was tested whether the variance of LoD results is significantly larger 
between days than within a day. 

The results show that the between-day variance of LoD estimates is similar 
to within-day variance (Table 12). Therefore, from these data it cannot be said 
that LoD significantly differs between days. In this case it is therefore appro-
priate to use the between-days LoD estimated because the LoD does not 
significantly differ between days and using a between-days LoD (calculated 
from data collected in many days) gives a more accurate representation of the 
methods capabilities. As discussed in chapter 2.1.5 if it would have been shown 
that the LoD significantly changes between days then the between-days LoD 
might not be best for use when interpreting result. This is so because in that 
case we would ignore the conditions of that specific day that significantly 
influences the LoD. 
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Table 12. Here the F values for different compounds calculated by ANOVA are given. 
The critical F value for one-sided F test at p = 0.05 for this ANOVA (accounting for 
degrees of freedom) is 2.773 [28]. It can be seen that for all the compounds the F value 
is below the critical value and therefore the between-days variance is not significantly 
larger than within day variance (meaning LoD between days does not change signifi-
cantly compared to random change of LoD within a day). 
 

F 
Spiroxamine 0.85 

Imazalil 0.82 
Triazophos 1.73 

Propamocarb 1.23 
Thiabendazole 0.65 

Carbendazim 0.89 
 
 
In this work it is recommended to estimate the between-days LoD using the 
following equation: 
 

)(65.1)( LoDSLoDmeanLoD daybtw      (8) 
 
where mean(LoD) is the mean value of the LoD estimates found on different 
days, S(LoD) is the standard deviation of LoD estimates from different days and 
1.65 is the one-sided Student’s t value for 95% (assuming a large number of 
measurements, more accurate t values can be chosen based on the degrees of 
freedom). This estimate should then be used for both interpretation of results 
and characterization of the analysis method. 

Based on equation 8 between-days LoD values for different approaches were 
calculated from pesticide measurement data where repeated measurements at 
each calibration level (the data from which calculations are made can be seen in 
Figure 8). The results are presented in Figure 11. 
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Figure 11. Between-days LoD values calculated for different compounds and ap-
proaches. The LoD values and standard deviation of mean values for propamocarb and 
carbendazim are divided by 10 and 5 respectively for better comparability on the graph. 

 

4.3.5. Comparing LoD values of different LC-MS/MS methods 

An important use of LoD estimates is comparison of analytical methods. It was 
therefore important to test whether the same conclusions (which are presented 
above on the basis of the analysis method for measuring pesticides in tomato) 
about the LoD estimation approaches can be made when using other LC-
MS/MS methods. 

For this 3 LC-MS/MS methods were compared: (1) determination of pesti-
cides in tomato, (2) determination of antibiotics in blood, and (3) determination 
of antibiotics in blood using a different ion source (3R). The 3R source has an 
additional capillary that directs additional nebulization gas to the tip (see 
Chapter 3.1.1) and has been shown to give lower LoD values as compared to the 
classical nebulizer design [78].  

The LoD values used for this comparison are estimated for pesticides from the 
data with more than one replicate measurement at each calibration level and the 
data used for antibiotics is described in chapter 3.1.1. The linear and homo-
scedastic range for the antibiotics data were found using absolute residual plots. 
However, similarly to pesticide data, due to the wide concentration range, 
additional concentration levels were required in the calibration data to meet the 
requirement that at least 5 calibration points must be included in the data of which 
at least 3 levels clearly have the analyte peak present in the chromatogram.  
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Figure 12 demonstrates that different approaches give rather consistent 
results with the analytical methods. It can also be seen that that the 3R nebulizer 
gives consistently lower LoD values than the commercial ESI source. This can 
be due to its better nebulization ability, leading to higher ionization efficiency 
and therefore lower LoD values [78]. 

Different analytical methods should not be compared to each other in case 
the LoD values are estimated with different approaches. This is why a clear 
description of the approach used to estimate LoD (and the concentration units of 
the LoD) should be given with the result. This also means that if a lab obtains 
(for a certain method) a higher LoD than reported for the same method in the 
literature, then the information on the LoD estimation approach has to be taken 
into account. The conclusion can often be that the lab’s method is not neces-
sarily inferior to the one reported in the literature. 

 
 

 
 
Figure 12. LoD estimates of different approaches (equation for estimation given on x-
axis) for different compounds estimated with different analytical methods (in different 
colours) can be seen. The error bars represent standard deviation of the mean of 
replicate LoD estimates between the days. 
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4.3.6. Conclusion of LC-MS results 

As a summary, the steps of estimation of LoD, formulated as a general flow-
chart is presented in Figure 13. It takes into account the experimental results, 
discussed in the previous chapters. In this flowchart the LoD estimation is 
divided into 3 parts. All steps for estimating LoD found to be important in this 
work are included. 
 
 

 
Figure 13. Flowchart (decision tree) for estimating LoD using suggestions made in this 
work. 

 

4.4. PSI 
The fast screening analysis method for five pesticides – thiabendazole, aldicarb, 
imazalil, methomyl and methiocarb – in oranges, grapes and tomatoes was 
developed [Paper I] and the LoD of these pesticides were evaluated to be below 
5 mg/kg on the basis of S/N values (see Table 13). Further details of these 
experiments can be found in Paper I. 
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Table 13. S/N values calculated from PSI/MS/MS measurement results of homogenized 
tomatoes spiked with 5 mg/kg of pesticides in the multiple reaction monitoring mode. 
The noise was measured from the blank homogenized samples. The MRL values of the 
pesticides for tomatoes are shown in mg/kg. 
 

 Methomyl Thiabendazole Aldicarb Methiocarb Imazalil 
S/N value 522.1 81.1 5.0 106.1 173.3 

MRL (mg/kg) 0.02 0.05 0.02 0.2 5 
 
 
It must be noted, however, that this method (even with IS) is not robust enough 
for routine analysis because in some cases no signal (of analyte or IS) is 
received from the measurement. This poor robustness can be explained by 
matrix effects that strongly depend on the portion of the homogenized tomato 
sample that is pipetted onto the PSI paper. As a result in the cases when very 
low signal is received from the IS the data cannot be used in further calcu-
lations. The number of measurements among the data that cannot be used for 
this reason is about 20%. As the decision whether the IS signal is present or not 
was made by the analyst the standard deviation of results is rather subjective.  

As explained in chapter 3.2 contamination of the MS was regularly checked 
and the MS was cleaned after each measurement, so that contamination of the 
MS can be ruled out as a reason. 

In Figure 14 a typical chronogram of IS and analyte can be seen. As soon as 
the eluent is added to the paper and the eluent reaches the paper triangle tip the 
signal is created. However, a visual spray (an example can be found in Figure 
15) can often be seen for more than 20 second which is significantly longer than 
the strong signal from analyte. This decrease in signal strength could be ex-
plained by the gradual increase of ionization suppression due to more matrix 
eluting to the tip of the paper [79].  
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Figure 14. Here chronograms of imazalil (bottom chronogram) and the IS (top chrono-
gram) collected with PSI/MS/MS can be seen. 
 

 
Figure 15. After eluent is added and its front reaches the tip of the paper visual spray is 
initiated. This picture is taken by a microscope attached to the nanoESI housing. The 
width of this picture is approximately 5 mm. 
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Three of the lowest concentration levels were left out of the calculations as the 
analyte signal was not observed (signal was difficult to distinguish from noise) 
and they were considered below LoD. However, data from blank sample were 
left in the calibration data. The linearity of the data was verified using absolute 
residuals. Heteroscedasticity could not be confirmed from the absolute residual 
plots. F-test (Table 14) was performed on the replicate measurement data 
collected from blank sample and fortified sample at 0.58 mg/kg. From this data 
it can be concluded that between these two calibration points the data can be 
treated as homoscedastic.  
 
 
Table 14. F-test results of 3 separate days performed on replicate measurement data of 
blank sample and sample fortified at 0.58 mg/kg concentration. 5 replicate measure-
ments were performed for both samples. The standard deviation was calculated for the 
values of analyte intensity divided by IS intensity. The critical value of this F-test is 
9.605 (two-tailed, p = 0.05) [28]. 
 

S(blank) S(fortified) F 
Day 1 0.078 0.068 1.32 
Day 2 0.071 0.038 3.47 
Day 3 0.057 0.054 1.10 

 
 
The LoD values were first calculated in the scale of analyte and IS intensity 
ratio. After this the calibration function was used to estimate the value in 
analyte and IS concentration ratio scale. The standard deviations and mean 
blank values of measurements used in the calculations are therefore also in the 
scale of analyte and IS intensity ratio. The LoD was then estimated in analyte 
concentration scale by multiplying the average IS concentration in the sample 
used in the calculations with the LoD value found in the scale of analyte and IS 
concentration ratio. 

The LoD estimates calculated by different approaches can be seen in Figure 
16. It can be seen that the approaches that use standard deviation values at 
single concentration can give somewhat higher LoD values that when Sy.x is 
used. However, this difference is generally not significant when the variance of 
the LoD values between days is taken into account. Therefore, here we suggest 
using the latter LoD estimation approach as it is simpler and requires less mea-
surements. Because critical decisions are not made with screening methods then 
using CCα and CCβ is not necessary here as these can be overly complex and 
time consuming for estimation. However, the LoD should be significantly 
below the MRL level for the analysis method to be useful. In case of imazalil in 
tomatoes the MRL is 0.5 mg/kg [80] and therefore the LoD value of the method 
is below the MRL. Therefore this approach could potentially be used as a 
screening method. 
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Figure 16. LoD estimates of different approaches for PSI/MS/MS method (equation for 
estimation are given on x-axis). The error bars represent standard deviation of the mean 
of 3 replicate LoD estimates obtained on different days. 
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5. SUMMARY 

The aim of this work was to study the estimation of LoD for analytical techni-
ques using MS. LC-ESI/MS and PSI/MS (as a screening methods) were used 
for this. Although the techniques used in MS can be somewhat different (e.g. 
using an IS addition method in case of PSI) the same general suggestions can be 
made for both techniques. 

When estimating LoD it must be first considered whether LoD or CCα and 
CCβ need to be determined for the particular analytical method. In case a certain 
guideline must be followed then the suggestions in that specific guideline 
should be used. However, guidelines often leave important decisions to the 
analyst. In this case the suggestions and discussion in this work can be helpful. 

Experiments were made so that different LoD estimation approaches could 
be applied to the data and the results could be compared. The ICH approach 
(Table 1, group 4) that uses the Sy.x is the approach recommended for estimating 
LoD in this work. This approach is suggested because it is simple to use, gives 
conservative results, and the results are reasonably similar to the CCβ estimates 
as defined by ISO 11843-2. However, the obtained LoD is strongly influenced 
by linearity and scedasticity of the used data and therefore before LoD esti-
mation the linear and homoscedastic range should be found. Based on experi-
mental results and simulations the following rule is suggested for choosing the 
calibration levels: at least 5 calibration levels (one measurement per calibration 
level) should be included in the used data of which 3 should have a well-defined 
signal (e.g. S/N > 3). If estimating CCα and CCβ is required then the ISO 11843-
2 approach is recommended. 

For all LoD determination approaches it is useful to know the approximate 
LoD beforehand, so that appropriate concentrations could be chosen for the 
measurements. This is especially true for the approaches that use repeatability at 
a single concentration and are strongly influenced by the choice of the fortifi-
cation level if the analytical method is heteroscedastic. 

Suggestions have been made how to take into account the variability of LoD 
estimates between days. For this a new parameter called between-days LoD has 
been suggested and its use described. Moreover, for more clear comparison of 
different analytical methods the between-labs LoD has been suggested. 

It was also shown that visual evaluation of LoD from the chromatogram, and 
estimation of linearity and scedasticity from residuals can be subjective 
(dependant on the analyst). Therefore, caution is suggested when using these 
approaches. 

In the course of this work it has become apparent that this topic needs further 
and more detailed attention (e.g. taking into account a priori knowledge and use 
of tolerance interval when estimating LoD). However, the goals set for this 
work have been met and hopefully this work will motivate further research on 
this important topic.  
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6. SUMMARY IN ESTONIAN 

Massispektromeetriliste analüüsimeetodite  
avastamispiiri hindamine 

Käesoleva töö eesmärk oli avastamispiiri (LoD) hindamisvõimaluste uurimine 
MS meetodite puhul. Selle uurimuse jaoks kasutati LC-ESI/MS analüüsimeeto-
dit ja PSI/MS põhinevat sõelmeetodit. Töö käigus tehtud üldised soovitused 
sobivad mõlemale MS meetodile kuigi need meetodid on mõnevõrra erinevad 
(näiteks sisestandardi kasutamine PSI puhul). 

LoD hindamisel tuleb esimesena kaaluda, kas vastava analüütilise meetodi 
jaoks oleks sobivam kasutada LoD-d või otsustuspiiri (CCα) ja avastamisvõimet 
(CCβ). Kui on kohustuslik järgida mõne spetsiifilise juhendi juhiseid, siis tuleb 
kasutada ka vastavaid spetsiifilisi juhiseid. Tihti aga jäetakse mitmed olulised 
otsused siiski juhendites lahtiseks ning seega tuleb need teha analüüsijal. Sellis-
tel juhtudel sobib järgida soovitusi, mis on antud selles töös.  

Selles töö käigus tehtud eksperimentide tulemusena soovitame kasutada LoD 
hindamise metoodikat, mida pakub ICH ja mis kasutab jääkliikmete standard-
hälvet LoD hindamiseks (Tabel 1, grupp 4). Seda metoodikat soovitame, kuna 
selle kasutamine on lihtne, see annab konservatiivseid (pigem kõrgeid kui 
madalaid) tulemusi ja tulemused on sarnased CCβ tulemustele, mis on hinnatud 
ISO 11843-2 soovituste järgi. See LoD väärtus on aga tugevasti mõjutatud 
kasutatud andmete lineaarsusest ja skedastilisusest ning seega tuleb enne LoD 
määramist hinnata, kas kasutatud andmed on lineaarses alas ning homoskedas-
tilised. Tuginedes eksperimentaalsetele tulemustele ja simulatsioonidele anname 
siinkohal järgneva soovituse kalibratsiooniandmete tasemete valimiseks: and-
med peaksid sisaldama vähemalt 5 kalibratsioonitaset (üks mõõtmine igal tase-
mel), kusjuures vähemalt kolmel tasemel peaks olema selgelt eristuv signaal 
(näiteks S/N > 3). Kui vastava analüüsimeetodi jaoks on vaja kasutada CCα ja 
CCβ väärtusi, siis soovitame nende hindamiseks järgida soovitusi, mis on antud 
juhendis ISO 11843-2. 

Olenemata selles, millist LoD määramise metoodikat kasutatakse, on kasulik 
enne määramist teada ligikaudset LoD väärtust. Sellisel juhul on võimalik 
valida LoD hindamiseks sobivad kontsentratsioonid. See on eriti oluline just 
metoodikate puhul, mis kasutavad LoD hindamiseks ühel kontsentratsioonil 
tehtud kordusmõõtmiste tulemusi, sest vastava kontsentratsiooni valik mõjutab 
tugevasti tulemust, kui süsteem annab heteroskedastilisi tulemusi. 

Selle töö käigus uuriti ja anti soovitusi selleks, et võtta arvesse LoD hin-
nangu päevadevahelist varieeruvust. Selle probleemi lahendamiseks pakuti välja 
uus parameeter “päevadevaheline LoD”. Lisaks sellele pakuti välja uus para-
meeter “laboritevaheline LoD”, mis aitab erinevaid analüüsimeetodeid oma-
vahel võrrelda.  

Lisaks näidati selle töö käigus ka, et visuaalne LoD hindamine kromato-
grammide järgi ja andmete lineaarsuse ning skedastilisuse hindamine jääkliik-
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mete visuaalse analüüsi kaudu on subjektiivne (sõltub analüüsijast). Seetõttu 
tuleb neid metoodikaid kasutades olla ettevaatlik. 

Töö käigus leiti, et avastamispiiri teema nõuab mõnes aspektis veelgi detail-
semat tähelepanu (näiteks a priori teadmiste arvesse võtmine ja tolerants-
intervalli kasutamine LoD arvutamisel). Selle töö eesmärgid on aga täidetud 
ning loodetavasti motiveerib see töö edasist uurimustööd sellel teemal. 
 
  



85 

ACKNOWLEDGEMENTS 

Most importantly I would deeply like to thank my long time supervisor Anneli 
for helping and guiding me through all these years. I would also like to thank 
Ivo for the constant inspiration and great advice. I feel that it would not have 
been possible to ask for better supervisors. 

I would also like to thank Asko, Maarja-Liisa, Jaanus, Piia, Gunnar, Mari, 
Karl, Tõiv, Kristjan and everyone in the Chair of Analytical Chemistry for the 
great atmosphere. In this regard I would also like to thank Ott, Birgit, Olga, 
Marie, Hedi and others. 

I am also very grateful for the support from my family – this work would 
have not been possible without them.  

I would like to thank the University of Tartu and Institute of Chemistry for 
providing all the possibilities for developing the useful skill and knowledge 
necessary for this work and for the future. Finally, for the financial support I 
would like to thank the Estonian Research Council (Personal research funding 
Project 34 and the institutional research funding IUT20-14), the Estonian 
Science Foundation (grant No 8572), the EU Regional Development Fund 
(project “Development of software for validation of chromatographic methods” 
with registration number 3.2.1201.13-0020 under the sub-measure “Supporting 
the development of R&D of info and communication technology”), Enterprise 
Estonia Foundation (Estonian National Research and Development Infra-
structure development program of measure 2.3 “Promotion of development 
activities and innovation”, Regulation No. 34), and Archimedes Foundation 
(DoRa action 6, doctoral research in foreign university/research center). 
 
  



86 

REFERENCES 

[1] P. Araujo, Key aspects of analytical method validation and linearity evaluation, J. 
Chromatogr. B. 877 (2009) 2224–2234. doi:10.1016/j.jchromb.2008.09.030. 

[2] M. Thompson, S.L.R. Ellison, R. Wood, HARMONIZED GUIDELINES FOR 
SINGLELABORATORY VALIDATION OF METHODS OF ANALYSIS 
(IUPAC Technical Report), Pure Appl Chem. 74 (2002) 835–855. 

[3] L.A. Currie, Limits for qualitative detection and quantitative determination. Appli-
cation to radiochemistry, Anal. Chem. 40 (1968) 586–593. 

[4] ISO 11843-2:2000 Capability of detection – Part 2: Methodology in the linear 
calibration case, (2000). 

[5] L.A. Currie, NOMENCLATURE IN EVALUATION OF ANALYTICAL 
METHODS INCLUDING DETECTION AND QUANTIFICATION CAPABI-
LITIES, Pure Appl Chem. 67 (1995) 1699–1723. 

[6] EUROPEAN COMMISSION, COMMISSION DECISION of 12 August 2002 
implementing Council Directive 96/23/EC concerning the performance of analyti-
cal methods and the interpretation of results, (2002). 

[7] International vocabulary of metrology – Basic and general concepts and associated 
terms (VIM), (2012). http://digilib.uin-suka.ac.id/10881/ (accessed July 7, 2015). 

[8] L.A. Currie, Detection and quantification limits: origins and historical overview, 
Anal. Chim. Acta. 391 (1999) 127–134. 

[9] L.V. Rajaković, D.D. Marković, V.N. Rajaković-Ognjanović, D.Z. Antanasijević, 
Review: The approaches for estimation of limit of detection for ICP-MS trace 
analysis of arsenic, Talanta. 102 (2012) 79–87. doi:10.1016/j.talanta.2012.08.016. 

[10] R.S. of C. Analytical Methods Committee, What should be done with results 
below the detection limit? Mentioning the unmentionable, 5 (2001). 

[11] K. Danzer, Analytical Chemistry Theoretical and Metrological Fundamentals, 
2007. 

[12] Eurachem, EURACHEM Guide. The Fitness for Purpose of Analytical Methods A 
Laboratory Guide to Method Validation and Related Topics, [Eurachem], [Ted-
dington], 1998. 

[13] APPENDIX B TO PART 136 – DEFINITION AND PROCEDURE FOR THE 
DETERMINATION OF THE METHOD DETECTION LIMIT – REVISION 1. 
11, (2012). 

[14] A. Hubaux, G. Vos, Decision and detection limits for calibration curves, Anal. 
Chem. 42 (1970) 849–855. 

[15] M. Thompson, S.L.R. Ellison, Towards an uncertainty paradigm of detection capa-
bility, Anal. Methods. 5 (2013) 5857. doi:10.1039/c3ay41209a. 

[16] I. Lavagnini, D. Badocco, P. Pastore, F. Magno, Theil–Sen nonparametric regres-
sion technique on univariate calibration, inverse regression and detection limits, 
Talanta. 87 (2011) 180–188. doi:10.1016/j.talanta.2011.09.059. 

[17] A.L. Rukhin, D.V. Samarov, Limit of detection determination for censored samp-
les, Chemom. Intell. Lab. Syst. 105 (2011) 188–194. doi:10.1016/j.chemolab. 
2011. 01.001. 

[18] J. Fonollosa, A. Vergara, R. Huerta, S. Marco, Estimation of the limit of detection 
using information theory measures, Anal. Chim. Acta. 810 (2014) 1–9. 
doi:10.1016/j.aca.2013.10.030. 



87 

[19] E. Desimoni, B. Brunetti, About estimating the limit of detection of heterosce-
dastic analytical systems, Anal. Chim. Acta. 655 (2009) 30–37. doi:10.1016/ j.aca. 
2009.09.036. 

[20] The Fitness for Purpose of Analytical Methods A Laboratory Guide to Method 
Validation and Related Topics Second Edition, (2014). 

[21] Guide in Validation of Alternative Proprietary Chemical Methods, (2010). 
[22] M. Valcárcel, S. Cárdenas, D. Barceló, L. Buydens, K. Heydorn, B. Karlberg, K. 

Klemm, B. Lendl, B. Milman, B. Neidhart, A. Rios, R. Stephany, A. Townshend, 
A. Zschunke, Metrology of Qualitative Chemical Analysis, (2002). 

[23] N. Dyson, Chromatographic Integration Methods, Second edition, 1998. 
[24] A.G. Huesgen, Reliable and Automatic Integration of Trace Compounds Using the 

Agilent 1200 Infi nity Series High Dynamic Range Diode Array Detector Solution, 
(2014). 

[25] AOAC Guidelines for Single Laboratory Validation of Chemical Methods for 
Dietary Supplements and Botanicals, (2002). 

[26] Guidance for Industry Bioanalytical Method Validation, (2001). 
[27] INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL, 

REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR 
HUMAN, USE, INTERNATIONAL CONFERENCE ON HARMONISATION 
OF TECHNICAL, ICH HARMONISED TRIPARTITE GUIDELINE VALIDA-
TION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY 
Q2(R1), in: Int. Conf. Harmon. Geneva, 1994: pp. 1–5. http://members3.jcom. 
home.ne.jp/yrq01133/ctd/quality/q2a/q2astep4.pdf (accessed October 21, 2014). 

[28] J.N. Miller, J.C. Miller, Statistics and chemometrics for analytical chemistry, Fifth 
Edition, Pearson Prentice Hall, Harlow, England, 2005. 

[29] S. De Gryze, I. Langhans, M. Vandebroek, Using the correct intervals for pre-
diction: A tutorial on tolerance intervals for ordinary least-squares regression, Che-
mom. Intell. Lab. Syst. 87 (2007) 147–154. doi:10.1016/j.chemolab. 2007.03.002. 

[30] R.D. Gibbons, Some statistical and conceptual issues in the detection of low-level 
environmental pollutants, Environ. Ecol. Stat. 2 (1995) 125–145. 

[31] J. Vial, A. Jardy, Experimental Comparison of the Different Approaches To Esti-
mate LOD and LOQ of an HPLC Method, Anal. Chem. 71 (1999) 2672–2677. 
doi:10.1021/ac981179n. 

[32] V.R. Meyer, Weighted Linear Least-Squares Fit – A Need? Monte Carlo Simula-
tion Gives the Answer, LC-GC- Eur. 29 (2015) 204–209. 

[33] A.M. Almeida, M.M. Castel-Branco, A.C. Falcao, Linear regression for calibration 
lines revisited: weighting schemes for bioanalytical methods, J. Chromatogr. B. 
(2002) 215 – 222. 

[34] E.L. Johnson, D.L. Reynolds, D.S. Wright, L.A.. Pachl, Biological Sample Prepa-
ration and Data Reduction Concepts in Pharmaceutical Analysis, J. Chromatogr. 
Sci. 25 (1988) 372 – 379. 

[35] J. Mandel, The Statistical Analysis of Experimental Data, 1984. 
[36] SANCO/12571/2013 - Guidance document on analytical quality control and 

validation procedures for pesticide residues analysis in food and feed., (2013). 
[37] L.A. Currie, Detection: International update, and some emerging di-lemmas 

involving calibration, the blank, and multiple detection decision, Chemom. Intell. 
Lab. Syst. 37 (1997) 151–181. 

[38] E. Verdon, D. Hurtaud-Pessel, P. Sanders, Evaluation of the limit of performance 
of an analytical method based on a statistical calculation of its critical con-
centrations according to ISO standard 11843: Application to routine control of 



88 

banned veterinary drug residues in food according to European Decision 
657/2002/EC, Accreditation Qual. Assur. 11 (2006) 58–62. doi:10.1007/s00769-
005-0055-y. 

[39] E. Desimoni, B. Brunetti, R. Cattaneo, Comparing some operational approaches to 
the limit of detection, Ann. Chim. 94 (2004) 555–569. 

[40] R. Michel, Quality assurance of nuclear analytical techniques based on Bayesian 
characteristic limits, J. Radioanal. Nucl. Chem. 245 (1999) 137–144. 

[41] M. Woldegebriel, G. Vivo-Truyols, Probabilistic Model for Untargeted Peak 
Detection in LC−MS Using Bayesian Statistics, (2015). 

[42] D.B. Hibbert, N. Armstrong, An introduction to Bayesian methods for analyzing 
chemistry data Part 2, Chemom. Intell. Lab. Syst. 97 (2009) 211–220. doi:10.1016/ 
j.chemolab.2009.03.009. 

[43] N. Armstrong, D.B. Hibbert, An introduction to Bayesian methods for analyzing 
chemistry data Part 1, Chemom. Intell. Lab. Syst. 97 (2009) 194–210. doi:10.1016/ 
j.chemolab.2009.04.001. 

[44] J.H. Gross, Mass Spectrometry, Springer Berlin Heidelberg, Berlin, Heidelberg, 
2011. http://link.springer.com/10.1007/978-3-642-10711-5 (accessed May 9, 
2016). 

[45] W.A. Korfmacher, Foundation review: Principles and applications of LC-MS in 
new drug discovery, Drug Discov. Today. 10 (2005) 1357–1367. doi:10.1016/ 
S1359-6446(05)03620-2. 

[46] A. Kruve, K. Herodes, I. Leito, Optimization of electrospray interface and quadru-
pole ion trap mass spectrometer parameters in pesticide liquid chromatography/ 
electrospray ionization mass spectrometry analysis, Rapid Commun. Mass Spect-
rom. 24 (2010) 919–926. doi:10.1002/rcm.4470. 

[47] M. Jemal, Y.-Q. Xia, LC-MS Development strategies for quantitative bioanalysis, 
Curr. Drug Metab. 7 (2006) 491–502. 

[48] I. Taverniers, M. De Loose, E. Van Bockstaele, Trends in quality in the analytical 
laboratory. II. Analytical method validation and quality assurance, TrAC Trends 
Anal. Chem. 23 (2004) 535–552. doi:10.1016/j.trac.2004.04.001. 

[49] P.J. Taylor, Matrix effects: the Achilles heel of quantitative high-performance 
liquid chromatography–electrospray–tandem mass spectrometry, Clin. Biochem. 
38 (2005) 328–334. doi:10.1016/j.clinbiochem.2004.11.007. 

[50] C. Singleton, Recent advances in bioanalytical sample preparation for LC-MS 
analysis, Bioanalysis. 4 (2012) 1123–1140. doi:10.4155/bio.12.73. 

[51] A. Tan, S. Hussain, A. Musuku, R. Massé, Internal standard response variations 
during incurred sample analysis by LC-MS/MS: Case by case trouble-shooting, J. 
Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 877 (2009) 3201–3209. 
doi:10.1016/j.jchromb.2009.08.019. 

[52] R.J.C. Brown, R.E. Yardley, A.S. Brown, P.R. Edwards, C. Rivier, C. Yardin, 
Analytical Methodologies with Very Low Blank Levels: Implications for Practical 
and Empirical Evaluations of the Limit of Detection, Anal. Lett. 39 (2006) 1229–
1241. doi:10.1080/00032710600622563. 

[53] Defining lower limit of quantitation, A Discussion od Signal / Noise, Repro-
ducibility and Detector Tehnology in Quantitative LC/MS/MS Experiments, AB 
Sciex. (2010). 

[54] M. Belter, A. Sajnóg, D. Barałkiewicz, Over a century of detection and quanti-
fication capabilities in analytical chemistry – Historical overview and trends, 
Talanta. 129 (2014) 606–616. doi:10.1016/j.talanta.2014.05.018. 



89 

[55] K. Linnet, Partly Nonparametric Approach for Determining the Limit of Detection, 
Clin. Chem. 50 (2004) 732–740. doi:10.1373/clinchem.2003.029983. 

[56] T. Delatour, P. Mottier, E. Gremaud, Limits of suspicion, recognition and con-
firmation as concepts that account for the confirmation transitions at the detection 
limit for quantification by liquid chromatography – tandem mass spectrometry, J. 
Chromatogr. A. 1169 (2007) 103–110. doi:10.1016/j.chroma. 2007.08.065. 

[57] E. de Hoffmann, V. Stroobant, Mass spectrometry: principles and applications, 3rd 
ed, J. Wiley, Chichester, West Sussex, England ; Hoboken, NJ, 2007. 

[58] Applied Electrospray Mass Spectrometry: Practical Spectroscopy Series Volume 
32, CRC Press. (2002). https://www.crcpress.com/Applied-Electrospray-Mass-
Spectrometry-Practical-Spectroscopy-Series-Volume/Pramanik-Ganguly-
Gross/9780824706180 (accessed May 9, 2016). 

[59] L. Konermann, E. Ahadi, A.D. Rodriguez, S. Vahidi, Unraveling the Mechanism 
of Electrospray Ionization, Anal. Chem. 85 (2013) 2–9. doi:10.1021/ac302789c. 

[60] W.M.A. Niessen, P. Manini, R. Andreoli, Matrix effects in quantitative pesticide 
analysis using liquid chromatography–mass spectrometry, Mass Spectrom. Rev. 25 
(2006) 881–899. doi:10.1002/mas.20097. 

[61] M.-Z. Huang, S.-C. Cheng, Y.-T. Cho, J. Shiea, Ambient ionization mass spectro-
metry: A tutorial, Anal. Chim. Acta. 702 (2011) 1–15. doi:10.1016/ j.aca.2011. 
06.017. 

[62] D.T. Snyder, C.J. Pulliam, Z. Ouyang, R.G. Cooks, Miniature and Fieldable Mass 
Spectrometers: Recent Advances, Anal. Chem. (2015) 151021154156004. 
doi:10.1021/ acs.analchem.5b03070. 

[63] J. Liu, H. Wang, N.E. Manicke, J.-M. Lin, R.G. Cooks, Z. Ouyang, Development, 
Characterization, and Application of Paper Spray Ionization, Anal. Chem. 82 
(2010) 2463–2471. doi:10.1021/ac902854g. 

[64] P.A. Demirev, Dried Blood Spots: Analysis and Applications, Anal. Chem. 85 
(2013) 779–789. doi:10.1021/ac303205m. 

[65] Q. Yang, H. Wang, J.D. Maas, W.J. Chappell, N.E. Manicke, R.G. Cooks, Z. 
Ouyang, Paper spray ionization devices for direct, biomedical analysis using mass 
spectrometry, Int. J. Mass Spectrom. 312 (2012) 201–207. doi:10.1016/ 
j.ijms.2011.05.013. 

[66] R.D. Espy, A.R. Muliadi, Z. Ouyang, R.G. Cooks, Spray mechanism in paper 
spray ionization, Int. J. Mass Spectrom. 325–327 (2012) 167–171. doi:10.1016/ 
j.ijms.2012.06.017. 

[67] R.D. Espy, N.E. Manicke, Z. Ouyang, R.G. Cooks, Rapid analysis of whole blood 
by paper spray mass spectrometry for point-of-care therapeutic drug monitoring, 
The Analyst. 137 (2012) 2344. doi:10.1039/c2an35082c. 

[68] N.E. Manicke, Q. Yang, H. Wang, S. Oradu, Z. Ouyang, R.G. Cooks, Assessment 
of paper spray ionization for quantitation of pharmaceuticals in blood spots, Int. J. 
Mass Spectrom. 300 (2011) 123–129. doi:10.1016/j.ijms.2010.06.037. 

[69] N.E. Manicke, P. Abu-Rabie, N. Spooner, Z. Ouyang, R.G. Cooks, Quantitative 
Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass 
Spectrometry: An Avenue to Therapeutic Drug Monitoring, J. Am. Soc. Mass 
Spectrom. 22 (2011) 1501–1507. doi:10.1007/s13361-011-0177-x. 

[70] Q. Yang, N.E. Manicke, H. Wang, C. Petucci, R.G. Cooks, Z. Ouyang, Direct and 
quantitative analysis of underivatized acylcarnitines in serum and whole blood 
using paper spray mass spectrometry, Anal. Bioanal. Chem. 404 (2012) 1389–
1397. doi:10.1007/s00216-012-6211-4. 



90 

[71] H. Wang, N.E. Manicke, Q. Yang, L. Zheng, R. Shi, R.G. Cooks, Z. Ouyang, 
Direct Analysis of Biological Tissue by Paper Spray Mass Spectrometry, Anal. 
Chem. 83 (2011) 1197–1201. doi:10.1021/ac103150a. 

[72] A. Li, P. Wei, H.-C. Hsu, R.G. Cooks, Direct analysis of 4-methylimidazole in 
foods using paper spray mass spectrometry, The Analyst. 138 (2013) 4624. 
doi:10.1039/c3an00888f. 

[73] P.-H. Lai, P.-C. Chen, Y.-W. Liao, J.-T. Liu, C.-C. Chen, C.-H. Lin, Comparison 
of gampi paper and nanofibers to chromatography paper used in paper spray-mass 
spectrometry, Int. J. Mass Spectrom. 375 (2015) 14–17. doi:10.1016/j.ijms.2014. 
10.013. 

[74] R.D. Espy, S.F. Teunissen, N.E. Manicke, Y. Ren, Z. Ouyang, A. van Asten, R.G. 
Cooks, Paper Spray and Extraction Spray Mass Spectrometry for the Direct and 
Simultaneous Quantification of Eight Drugs of Abuse in Whole Blood, Anal. 
Chem. 86 (2014) 7712–7718. doi:10.1021/ac5016408. 

[75] S. Jain, A. Heiser, A.R. Venter, Spray desorption collection: an alternative to 
swabbing for pharmaceutical cleaning validation, The Analyst. 136 (2011) 1298. 
doi:10.1039/c0an00728e. 

[76] L.E. Sojo, G. Lum, P. Chee, Internal standard signal suppression by co-eluting 
analyte in isotope dilution LC-ESI-MS, The Analyst. 128 (2003) 51–54. doi:10. 
1039/b209521c. 

[77] M. Anastassiades, S.J. Lehotay, D. Štajnbaher, F.J. Schenck, Fast and easy multi-
residue method employing acetonitrile extraction/partitioning and “dispersive 
solid-phase extraction” for the determination of pesticide residues in produce, J. 
AOAC Int. 86 (2003) 412–431. 

[78] A. Kruve, I. Leito, K. Herodes, A. Laaniste, R. Lõhmus, Enhanced Nebulization 
Efficiency of Electrospray Mass Spectrometry: Improved Sensitivity and Detec-
tion Limit, J. Am. Soc. Mass Spectrom. 23 (2012) 2051–2054. doi:10.1007/ 
s13361-012-0475-y. 

[79] C. Vega, C. Spence, C. Zhang, B.J. Bills, N.E. Manicke, Ionization Suppression 
and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry, 
J. Am. Soc. Mass Spectrom. (2016). doi:10.1007/s13361-015-1322-8. 

[80] EU Pesticide Database Regulation (EC) No. 395/2005. Retrieved from: 
http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database-
redirect/index_en.htm (9.5.2016), (n.d.). 

 
  



91 

APPENDIX 1 

R script for simulation of calibration graph with known variance 
R script to simulate a calibration graph with known (homoscedastic) variance 
and known CCα, CCβ values is given. LOD values can be calculated from the 
simulated data. It is tested how the estimated LOD changes in case different 
calibration levels are used. 
 
# Function for simulating and calculating calibration 
graph parameters 
# (variables similar to previous scripts) 
simul <- function(Concentration, b = 5, a = 0){ 
     
        # Data is simulated: 
    res = 100*rnorm(length(Concentration)) 
    y = b*Concentration + a + res 
         
        # Calculations with simulated data: 
    CF <- lm(y ~ Concentration) 
    Nsamp <- length(Concentration) 
         
        # Output parameters: 
    Bcalc <- CF$coefficient[[2]] # estimated slope 
    Sxy <- ( sum(resid(CF)^2 ) / (Nsamp - 2) )^0.5 
    Acalc = CF$coefficient[[1]] # estimated intercept 
    Aerror = summary(CF)$coef[1,2] # estimated 
standard deviation of intercept 
    LoD.resid <- 3.3*Sxy/Bcalc 
    LoD.int <- 3.3*Aerror/Bcalc 
    mat <- cbind(Bcalc, Syx, Acalc, Aerror, y[1], 
LoD.resid, LoD.int) 
    return(mat) 
} 
 
# True CCa and CCb in concentration scale at alpha 
and beta 5%: 
# CCa = (1.645 * 100)/5 = 32.9 
# CCb = (1.645 * 100 + 1.645 * 100)/5 = 65.8 
 
n = 1000 
 
# Concentration levels 1: Blank + all other levels 
over CCb) 
C1 = c(0, 75, 100, 125, 150, 175, 200) 
data1 <- matrix(nrow = n, ncol = 7) 
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for(i in 1:n){ 
    data1[i, ] <- simul(C1)     
} 
bind1 <- cbind(mean(data1[, 1]), sd(data1[, 1]), 
mean(data1[, 2]), sd(data1[, 2]),  
               mean(data1[, 3]),mean(data1[, 4]), 
mean(data1[, 5]), sd(data1[, 5]), 
               mean(data1[, 6]), sd(data1[, 6]), 
               mean(data1[, 7]), sd(data1[, 7])) 
 
# Concentration levels 2: Blank + all other levels 
over CCa 
C2 = c(0, 35, 60, 85, 110, 135, 160) 
data2 <- matrix(nrow = n, ncol = 7) 
for(i in 1:n){ 
    data2[i, ] <- simul(C2)     
} 
bind2 <- cbind(mean(data2[, 1]), sd(data2[, 1]), 
mean(data2[, 2]), sd(data2[, 2]),  
               mean(data2[, 3]),mean(data2[, 4]), 
mean(data2[, 5]), sd(data2[, 5]), 
               mean(data2[, 6]), sd(data2[, 6]), 
               mean(data2[, 7]), sd(data2[, 7])) 
 
# Half of Concentrations under CCb, 2 are under CCa, 
1 under CCb 
C3 = c(0, 5, 25, 50, 75, 100, 125) 
data3 <- matrix(nrow = n, ncol = 7) 
for(i in 1:n){ 
    data3[i, ] <- simul(C3)     
} 
bind3 <- cbind(mean(data3[, 1]), sd(data3[, 1]), 
mean(data3[, 2]), sd(data3[, 2]),  
               mean(data3[, 3]),mean(data3[, 4]), 
mean(data3[, 5]), sd(data3[, 5]), 
               mean(data3[, 6]), sd(data3[, 6]), 
               mean(data3[, 7]), sd(data3[, 7])) 
 
 
# All concentrations below CCa 
C4 = c(0, 5, 10, 15, 20, 25, 30) 
data4 <- matrix(nrow = n, ncol = 7) 
for(i in 1:n){ 
    data4[i, ] <- simul(C4)     
} 
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bind4 <- cbind(mean(data4[, 1]), sd(data4[, 1]), 
mean(data4[, 2]), sd(data4[, 2]),  
               mean(data4[, 3]),mean(data4[, 4]), 
mean(data4[, 5]), sd(data4[, 5]), 
               mean(data4[, 6]), sd(data4[, 6]), 
               mean(data4[, 7]), sd(data4[, 7])) 
 
# the results: 
bind <- rbind(bind1, bind2, bind3, bind4) 
df <- data.frame(meanBcalc = bind[, 1], sdBcalc = 
bind[, 2],  
                 meanSyx = bind[, 3], sdSyx = bind[, 
4],  
                 meanAcalc = bind[, 5], meanAerror = 
bind[, 6], 
                 meanBlank = bind[, 7], sdBlank = 
bind[, 8], 
                 meanLoD.res = bind[, 9], sdLoD.res = 
bind[, 10], 
                 meanLoD.int = bind[, 11], sdLoD.int 
= bind[, 12]) 
df 
 
R script to simulate a calibration graph with known (heteroscedastic) variance 
and known CCα, CCβ values is given. LOD values can be calculated from the 
simulated data similarly to the case with homoscedastic data. 
 
simul <- function(Concentration, b = 5, a = 0){ 
     
        # Simulation of data 
    res <- NULL 
    n <- length(Concentration) 
    for(i in 1:n){ 
        res[i] = rnorm(1) * (0.5 * Concentration[i] + 
100) 
    } 
    y = b * Concentration + a + res 
     
        # Calculations with simulated data: 
    CF <- lm(y ~ Concentration) 
    Nsamp <- length(Concentration) 
     
        # Outputs: 
    Bcalc <- CF$coefficient[[2]] # estimated slope 
    Sxy <- ( sum(resid(CF)^2 ) / (Nsamp - 2) )^0.5 
    Acalc = CF$coefficient[[1]] # estimated intercept 
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    Aerror = summary(CF)$coef[1,2] # estimated 
standard deviation of intercept 
    LoD.resid <- 3.3*Sxy/Bcalc 
    LoD.int <- 3.3*Aerror/Bcalc 
    mat <- cbind(Bcalc, Syx, Acalc, Aerror, y[1], 
LoD.resid, LoD.int) 
    return(mat) 
} 
 
# True CCa and CCb in concentration scale at alpha 
and beta 5%: 
# CCa = (100 * 1.645)/5 = 32.6 
# CCb = ((100 * 1.645) + 164.5) / (5 - 0.5) = 329 / 
4.5 = 73.11 
 
 
  



95 

APPENDIX 2 

R script for simulation of prediction interval value for blank samples 
The R script to simulate prediction interval value of homoscedastic data in case 
of different calibration levels. Equation suggested in ISO 11843-2 [4] to 
estimate CC is used to calculate the prediction interval value at 0 
concentration. 
 
    # Conc = concentration values of the calibration 
points; 
    # b = slope of true calibration function, a = 
intercept of true calibration function; 
    # n = number of repeated measurements at each 
calibration level; 
    # m = number of sample measurements; 
    # sd = standard deviation of the data. 
 
 
# Simulation of prediction interval (of the mean) for 
linear homoscedastic data 
 
function.homosc <- function(Conc, b = 5, a = 5, n = 
4, sd = 20, m = 5){ 
     
        # Simulation of data 
    data <- matrix(nrow = length(Conc), ncol = n) 
    i = 1 
    while(i <= n){ 
        res = rnorm(length(Conc), sd = sd)  
        y = b * Conc + a + res 
        data[, i] = y 
        i = i + 1 
    } 
     
        # Calculating the parameters of the simulated 
regression 
    df <- data.frame(ppm = Conc, y = data) 
    Y <- c(data[, 1:n]) 
    C <- rep(df[, 1], n) 
    OLS <- lm(Y ~ C) 
    Bcalc = OLS$coef[2] 
    Acalc = OLS$coef[1] 
    Nsamp <- length(Conc) # Nsamp = sample size 
(total number of measurements) 
    Syx = ( sum(resid(OLS)^2 ) / (Nsamp - 2) )^0.5  
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    y <- Bcalc * Conc + Acalc 
     
    t <- 2.35 
     
        # Calculation of the prediction interval 
values  
        # (ISO 11843-2 suggested equation to estimate 
CCa is used) 
    PI <- t * Syx/Bcalc * sqrt( (1/m) + (1/Nsamp) +  
                                ( (mean(C))^2 / 
(sum((C-mean(C))^2) ) ) ) 
     
    return(PI) 
} 
 
n <- 1000 
 
C1 = c(0, 200, 400, 600, 800, 1000) 
y1 <- NULL 
for(i in 1:n){ 
     
    f <- function.homosc(C1) 
    y1[i] <- f[1] 
} 
 
C2 = c(0, 5, 10, 15, 20, 1000) 
y2 <- NULL 
for(i in 1:n){ 
     
    g <- function.homosc(C2) 
    y2[i] <- g[1] 
     
} 
 
mean(y1) 
mean(y2) 
sd(y1) 
sd(y2) 
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