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Chapter 1

Introduction

At approximation of functions or discrete data a well known tool is the interpola-
tion. Historically, the interpolation with polynomials was one of the first means.
There are several disadvantages like nonconvergence and instability with respect
to round-off errors. From the middle of 20th century an intensive study of splines
as piecewise polynomials is started, let us mention here the work by Schoenberg
[68] from the year 1946. Piecewise polynomials are free of above mentioned disad-
vantages, the interpolation process with them is, in general, converging and stable.
The use of piecewise polynomial functions as approximants showed success mostly
in engineering but also in economics, physics, statistics. They are easy to manage
in calculations and storing. An important application is construction of curves
and surfaces in industry like car or plane manufacturing.

Besides the interpolation, the histopolation is in many cases more practical
as, e.g., the statistical information is rather given in form of histograms. The
histopolation problem is equivalent to an interpolation problem, see [69], we will
explain this phenomena below. The dissertation will be devoted mainly to the
histopolation problems. However, instead of solving an histopolation problem, it
is possible to solve the corresponding interpolation problem. The derivative of the
interpolant is then the solution of histopolation problem. This additional step in
practice accompanies with additional (at least round-off) errors at calculations.
Because of that it is preferable to have direct algorithms for finding histopolant.

In the case of polynomial spline interpolants and histopolants it is well known
[44] that they do not keep the geometrical properties of data, we mean here pos-
itivity, monotonicity and convexity. Many researchers attempted to study the
shape preserving polynomial spline interpolants, about the history see, e.g., [41],
and also [5, 20]. The initial development of nonlinear spline spaces with rational
functions and their generalizations was accomplished by Schaback [62] and similar
idea was carried out by Werner [78]. Later on a well generalized space of rational
splines was introduced by Schumaker [70]. Carnier [2] generalized the work of [62].
Since then, we see several classes of rational splines to be investigated. Delbourgo
and Gregory in their works [9, 10, 11] considered piecewise C' and C? smooth
rational quadratic and cubic splines to preserve the shape of function to interpo-
late, in particular, to keep the monotonicity. Wang and Wu in their work [77]
established a general idea of rational splines to avoid solving nonlinear systems of



equations. A general idea in these works is that rational functions as spline pieces
keep the sign of certain derivative like, e.g., linear/linear rational function keeps
the sign of its first derivative, quadratic/linear rational function keeps the sign of
its second derivative. Polynomial spline pieces do not have such properties.

The convergence problem at spline interpolation is well studied. For the poly-
nomial cases this implies the results at histopolation. The case of rational spline
interpolation and histopolation requires special attention, let us mention here the
works [18, 19, 24, 52, 53].

To guarantee the shape of data an idea is to add additional spline knots creating
in such a way free parameters (see, e.g., [26]). It is also possible to require less
smoothness like in [42, 43].

A wide class at solving differential and integral equations is projection meth-
ods. The collocation method is also referred to as the interpolation projection
method and the subdomain method is to the histopolating projection method.
The application of these methods requires detailed description of interpolation and
histopolation processes, respectively. Probably the first comparison of quadratic
and cubic splines for collocation method at solving boundary value problems for
ordinary differential equations was indicated in Khalifa and Eilbeck’s work [32]. Tt
was found out that quadratic splines may be better than cubic splines, both having
the rate of convergence O(h?). Here, the adequate characterization of accuracy
was given in the papers [50, 51, 55]. In [55] and later in [54] for more general
case was established that the subdomain method with cubic splines has the rate
of convergence O(h?'). This showed an advantage in convergence for subdomain
method or histopolation projection method mentioned above. Another advantage
is that the subdomain method is very natural if, e.g., on subintervals, the free term
function in differential equation is given approximately by mean values. This idea
works well in case of Volterra integral equations [12]. There are several works
about shape preservation in the case of two variables. Let us mention here the
works [4, 63].

The comparison of polynomial and rational splines in collocation methods at
solving boundary value problems for second order linear differential equations was
systematically carried out in [27, 30, 31]. These reasonings base on comparison
of special interpolants which was given [28, 29]. We do not know appropriate
studies about subdomain method (or nonlinear histopolation projection method)
for this kind of boundary value problems. Thus, there cannot be any comparison
of subdomain and collocation methods using rational splines. By our knowledge,
there is no studies about the use of rational splines at solving Volterra or Fredholm
integral equations by collocation or subdomain methods.

The histopolation of data is named in literature under several different phrases
like interpolation in the mean [6], area matching interpolation [7, 13], area true
approximation of histogram [61], histopolating splines [73], and also as integral
splines.

An important particular case at histopolation is the study of cubic splines
[33]. As we have seen above, this is naturally related to the study of interpolating
quartic splines, in this area we mention the works [35, 36, 37] with quite systematic
approach.



A particular case is also the study of quadratic splines at interpolation, see
[40, 45, 46], and at histopolation [49].

A review about shape preserving approximation and interpolation is given in
[39].

There are several books about the spline theory where interpolation or histopo-
lation is treated, like, e.g., [1, 5, 41, 48, 72, 74]. The histopolation with splines in
two-dimensional case is developed in [4].

Gregory [22] worked out a rational cubic function which has shape preserving
interpolation properties, like, monotonic or convex sets of data. There are many
works where the histopolation or interpolation by rational spline is considered,
especially, focused on monotonicity [17, 64, 65, 66, 67, 71]. Clements [3] studied a
twice continuously differentiable piecewise rational interpolant. Also a necessary
and sufficient condition are employed to ensure that the interpolating function pre-
serves the local curvature. For given monotone data an histopolating linear/linear
rational spline of class C! is studied in [18]. In [19] algorithms are introduced
to get comonotone histopolating splines consisting of linear/linear rational or
quadratic polynomial pieces. Interpolation and histopolation with periodic poly-
nomial splines is studied in several papers, see, e.g., [8, 14, 15, 47, 56, 59, 76, 79].

Special attention to the monotone interpolation and its convergence is given
already in [57]. The existence of monotone polynomial spline interpolants is es-
tablished in [58] where some deficiency of the spline is assumed.

The convexity of histograms and the existence of convex polynomial spline
histopolants is studied in [80, 81].

Let us explain the connection between interpolants and histopolants. This is
done in several sources in literature, see, e.g., [21, 69]. For the convenience of the
reader, we reproduce this here.

Suppose we have a given mesh a = ¢ < 1 < ... < x,, = b and function values
(real numbers) f;, i =0,...,n, corresponding to points x;. In the interpolation
problem it is needed to find a function I : [a,b] — R such that I(z;) = fi, i=
0,...,n, which are called interpolation conditions. In the histopolation problem
we have given mesh as above and real numbers z;, i = 1,...,n, corresponding
to subintervals [x; 1, z;], ¢ = 1,...,n. It is needed to construct a function
H : [a,b] — R such that

T
/ H(z)dx = z(x; —xiq), i=1,...,n.
Ti—1
Let us mention that
1 i
/ H(z)dz, i=1,...,n,
Ty — Ti-1 Ja; 4
are the mean values of H on subintervals and, actually, z; are the given mean
values of H on subintervals.
For a given histopolation problem we may fix arbitrarily fy € R and calculate

fi=fior+zi(xi —x21), i =1,...,n. In such way we obtain the corresponding
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interpolation problem. Finding an interpolant I as a solution of this interpolation
problem we get I’ as a solution of the primary given histopolation problem.

For a given interpolation problem we calculate z; = (f; — fi_1)/(z; — 1),
1 =1,...,n, and get the corresponding histopolation problem. If H is a solution
of this histopolation problem then it is immediate to check that the function

I(2) = fo + / " H(s)ds

is a solution of the initially given interpolation problem.

We see that if one of the interpolation or histopolation problems is studied
then there are also results about the other one. Such an approach works well in
case of polynomial splines but not in case of rational splines. For example, the
derivative of quadratic/linear rational spline is not linear/linear rational spline,
or, the integral of linear/linear spline is not quadratic/linear spline. Thus, even if
we have an appropriate interpolation theory for rational splines, the histopolation
theory should be created independently. Due to this phenomena the rational spline
histopolation problem is studied in present dissertation.

In the following we briefly summarize the main results of the dissertation by
chapters. This dissertation consists of six chapters.

In Chapter 1 we have presented a brief summary of interpolation and histopo-
lation problems and also describe connection between interpolation and histopo-
lation problems. A review of main books and publications on spline theory is given.

Chapter 2 consists of some preliminary notions and presents some proposi-
tions and corollaries about general features in interpolantion and histopolation
problems.

In Chapter 3 we treat the histopolation problem with cubic splines and develop
an explicit theory about that. An appropriate representation of the histopolant on
interval between spline knots occurs to be the second moments of spline and inte-
grals of spline over parts of the interval. We consider the most common boundary
values conditions like given values of the spline and its first and second derivatives
in endpoints of given interval. We solve the problem of existence and unique-
ness of the solution for such histopolation problem. Another representation of the
histopolant via the values of spline and its second derivatives in spline knots is also
studied. The results about cubic spline histopolation in Chapter 3 are published
in [33].

In Chapter 4 we will discuss about the periodic polynomial spline histopola-
tion. We studied periodic polynomial spline histopolation with arbitrary place-
ment of histogram knots. Spline knots are considered coinciding with histogram
knots. The histopolation problem with polynomial splines is known to be equiva-
lent to an interpolation problem with polynomial splines of degree one higher. The
existence and uniqueness problem for the corresponding homogeneous problems
preserves this equivalence in periodical case. The main problem of this chapter is

10



the study of existence of solution. This is done for several numbers of grid points
and spline degree in dependence whether they are even or odd. Results of Chapter
4 are published in [56].

In Chapter 5 we study the rational spline histopolation of convex data. The
convenient tool here is the use of quadratic/linear rational splines of class C?.
Given histogram knots may be placed arbitrarily and the spline knots between
them also arbitrarily. A quite special representation of the histopolant on subin-
tervals is considered. The key moment at the study of existence of solution is the
existence of solution for a nonlinear system of basic equations to determine the
values of second derivatives in spline knots. The other parameters in the repre-
sentation of spline are determined from a linear system with regular matrix. We
arrive to the result that there is a strictly convex histogram without the solution
of histopolation problem for any choice of spline knots. The results of Chapter 5
are intended to publish in [34].

Chapter 6 includes the numerical tests and figures which support our theoret-
ical results. These results are in complete accordance with theory.

11



Chapter 2

Preliminary results about
histopolation

In this section we will give some general results about the shape of the histopolant.
Suppose we have in an interval [a,b] the points ; such that a = zo < 21 < ... <
x, = band let z;, i = 1,...,n, be given real numbers which will be considered
as the histogram heights. We are looking for a function S defined on [a, b] which
satisfies the following histopolation conditions

/ S(a)de = =z — 20 1), i=1,....m. (2.1)

Conditions (2.1) are called histopolation conditions. Denote h; = z; — z;_1,
1=1,...,n.
A function S : [a,b] — R is called linear/linear rational spline if S has the form

_CLl—FbZZ'

S(x) T € [xiiy,xi], i=1,...,n,
with 1+ d;z # 0 for all z € [x;,_1,2;] and S € C'[a, b].
A function S : [a,b] — R is called quadratic/linear rational spline if S has the

form
a; + bx + c;x?

1+ dix
with 1+ d;z # 0 for all z € [r;_1,7;] and S € C?[a,b].
Next we will prove a couple of propositions.

S(x) =

, T E i), i=1,....n,

Proposition 1. If f € C'a,b] is such that f'(x) > 0 for all x € [a,b] and
2z =h; ! fle)dz, i=1,...,n, then z1 < 20 < ... < 2, (shortly, z; < zi41 for

each 7).

12



Proof. We calculate

b [
(e o)
e [ ([ )

As here f’(s) > 0, we have / f'(s)ds < 0 for z € (x;_1,2;) and thus, z; < f(z).
Similarly, -

1 Tit1
Zir1 =7 / flz)dz

i+1 T;

e e o)
et [ ([

which gives f(z;) < z;41 because now / f'(s)ds > 0 for x € (x;,2441) - O

Remark 1. The condition z; < z1 for each i does not imply that f'(z) > 0
for all x, an appropriate example is the function f(z) = 23 with [a,b] around the
value 0.

Corollary 1. If a linear/linear rational spline S is such that S’(x) > 0 for all
x € la,b] and satisfies histopolation conditions (2.1) then necessarily z; < zjy; for
all 1.

Proposition 2. If f € C?[a,b] is such that f"(x) > 0 for all x € [a,b] and
2 = h,-l/ flx)dz, i=1,...,n, then

Ti-1

Di = (hi+hit1)zio1 — (hi—1 +2hi+ hig)zi+ (hicy + hi)zipn >0, i =2 n—1.

goeeey

Proof. Let us apply the Taylor expansion with the remainder in integral form

(-1,
f(x)=f(a) + fl(a)(x —a) +...+ le — f)') (x—a)!
+ =1 _11)! /az(x — 5)! 7 O (s)ds. (2.2)

13



By (2.2) we have

0) = f(aica) + S )a =) + [ " (o 5)f(s)ds

and
@) = fla) + £@a =)+ [ (o= 9)7"s)as.

First, using (2.3) we find

1 Ti—1
Zi—1 :hi71 /Ii2 f(.’lf)dl'

R
:f(zi—l) + h]'_l f/(-ri—1> (.T ;z—l) .
=y VAR
=f(wi1) — hglf/(xifl)

+ hil_l / ( / (=9 f”(s)ds> da.

Next we calculate with the help of (2.3) and (2.4)

2z = hl 1’ f(z)dx

i Jxp g

= f(zio1) + %f’(:ri,l) + }i/:jl (/:_1 (x — s)f”(s)ds) dz,

z = }i/zill flx)dx
h

sy =)+ [ ([ amars)

Finally, calculate z;,; using (2.4)

1 Li+1
Zi =y / f(x)dz

i+1 Jz;

= Fla) + ) +

hilﬂ / + ( / (96 - S)f”(s)ds> d.

(2.3)

(2.6)

2.7)

(2.8)

Substitute all the values of z;_1, z;, zi+1 from (2.5) — (2.8) into the expression of

D;. We get

14



D; =(hi—1 + hi)(zig1 — 2i) — (hi + hiya) (20 — 2i-1) (2.9)

—(his + hy) ( Pl + M )+ / ( / (x — 5)f"(s)ds) e

hi+1

= (flz:) = @f/(l‘z) + l ; z(:1: — ) f"(s)ds )dx
2 hi Jo,  \Ja,

— (hi + hit1) (f(xil) + %f/(ﬂ%fl) + h% /:il (/: l(x - s)f”(s)ds)dx

i—

(et rtn g ([ )

=(hi—1 + hy) (f/(;i) (hi + hiv1) + h11+1 /:M (/:(x - s)f”(s)ds) dx

_ hl @i (/:(:r - S)f”(s)ds) d:17>

(it ) (f Eltcny ey [ ([ @-aras)a

_ hil / ( / (x _s) f”(s)ds)dx). (2.10)

The terms without integrals give here

%(hi—l + hi)(hi + hit1) (f/(l’z‘) - f/(xi—l))

1 o5
= 5(}11'_1 + hl)(hz -+ hi+l) / f’l(S)dS‘

To transform the integral terms in (2.10) we use the formulae in general case like

Ti—1 T Ti—1 S
/ / g(z, s)dsdx = —/ / g(x, s)dxds, (2.11)
/ 1 / g(x, s)dsdx / / /g(x7s)dxds, (2.12)
Ti—1 Y Ti—1 Ti—1 VS
/ l / g(x, s)dsdx = —/ / g(x, s)dxds, (2.13)

15



Tit1 T Tit1 Tit1
/ /g(x,s)dsdac—/ / g(x, s)dxds. (2.14)

Then we get by (2.11) for the term in (2.10)

[ earoa=— [ [ @i
— [ ([ @ sa)as

2 —

_ / f”(s)(s_zﬂds.

Similarly, by (2.12) we get

/:1 (/: l(x - S)f”(s)ds)dx = /jl f”(s)wds,

/:_1 (/:(I - S)f”(S)ds>dx = /;_1 f”(s)(S%xi‘l)QdS?

and finally, by (2.14)

[ oroa)i= [ otz

&3

by (2.13)

Collecting all transformed terms of (2.10) we obtain

1 “
D; :i(hi—l + i) (hi + hitq) / f"(s)ds

hi hi Ti—1 -z 2
+ + +1 / f”(S) (5 L 2) ds
hi,1 Ti_o 2

hi + hi+1 i " (*Ti B 8)2
W /Ii1 17(s) 5 ds

_ 11+h/ f// TZ 1) St VA 8

. . Tit1 . _ 2
+7h’*1hf h’/ f”(s)i(x”l2 ) g, (2.15)

16



As we supposed that f”(s) > 0 for all s, it is clear that the second and last addend
in (2.15) are strictly positive.
The other addends in (2.15) together are

1 [
3 O (CRRARIEYY
h; + hivq o hisi+hy 2
- T(I'z —5)° — T(S — i) )ds

1 [
= | £
2 Tj—1
where we introduced the quadratic polynomial (with respect to s) ¢. We see that

o(zi-1) = (hiz1 + hi)(hi + hig1) — (hi + hip1)h; > 0,
o(r;) = (hic1 + hi)(hi + hiy1) — (hioy + hi)h; > 0.

In addition, the coefficient of s? in ¢ is

(hi + hi+1) (hifl + hi)
I, I, <0,

and thus, ¢(s) > 0 for all s € [z;_1,x;]. In total, we have D; > 0 which completes
the proof. O

The condition D; > 0 for all ¢ will be called strict convexity of the histogram.

Remark 2. The condition D; > 0 for each ¢ does not imply that f”(x) > 0 for
all x, an example is the function f(z) = 2* on the interval [a,b] containing the
value 0.

Corollary 2. If quadratic/linear rational spline S is such that S"(z) > 0 for
all x € [a,b] and satisfies histopolation conditions then necessarily D; > 0,
i=2,...,n—1.

17



Chapter 3

Cubic spline histopolation

Consider the initial situation of Chapter 2 where in the given interval [a,b] we
have the points z; such that a« = g < 1 < ... < x, = b. We say that we have
a given grid A. A function S : [a,b] — R is called cubic spline if it is on each
subinterval [z;,_;,z;], i = 1,...,n, a cubic polynomial and S € C?[a,b]. The set
of all cubic splines on A is a finite dimensional vector space, denoted as S3(A).
It is well known that dim S*(A) = n + 3.

3.1 Interpolation problem with cubic splines

Suppose we have for a given grid A the values f;, i = 0,...,n, corresponding to
the points z;, i = 0,...,n. We are looking for a function S € S3(A) such that

called the interpolation conditions. As dim S*(A) = n + 3 and the number of
conditions (3.1) is n + 1, we add two conditions (boundary conditions) from

1) 5%(a) = a, S'(b) =5,
2) S"(a) =a, S"(b)=48

with given o and ( at different endpoints. Such a problem is an interpolation
problem with cubic splines.

There are several possibilities to represent the cubic spline. One of them is
to use S; = S(x;) and M; = S”(z;), i = 0,...,n. The problem with boundary
conditions 2) leads to the linear system

M():O[,
fi-‘rl — fl . fz - fi—l

hit1 hi
hi 4+ i1

piMi—y +2M; + A\iM; 1 =6

Mn:ﬁ

18



with p; = hi/(h; + hiy1), Ni = hip1/(hi + hiy1). Solving the system (3.2) we
get My,..., M,. The values S; = f;, ¢ = 0,...,n, are known from interpolation
conditions (3.1). The representation of S by the values f;, M, on subintervals
could be found almost in any book of spline theory, see, e.g., [5, 41, 69]. Tt is
remarkable that the diagonal of the matrix in (3.2) has diagonal domination in
rows which guarantees the stability of calculations.

The use of S; and m; = S'(z;), i = 0,...,n, in interpolation problem with
boundary conditions 1) leads to the system

moy = «,

Aimyi_1 + 2m; + pimig = 3 (MifiJrl —fi n A{fi - fi1> 7

it Yol (3.3)
1=1,....,n—1,
my = B
for finding my, ..., m,. The system (3.3) has also the matrix with diagonal dom-

ination in rows. Very popular is the use of B-splines to represent cubic splines.
It is important to mention here that the diagonal of the matrix in the system to
determine the coeflicients of representation may be not dominating in rows in case
of nonuniform grid. This causes certain instability in calculations.

3.2 The histopolation problem

In addition to the given grid /A suppose that we have given real numbers z;,
i = 1,...,n, called histogram heights. Denote the width of histograms by
hi = x; —x;_1, 1 = 1,...,n. We consider the problem of finding a function
S : [a,b] = R such that

/ l S(z)dr = hiz;, i=1,...,n. (3.4)

The function S is not reasonable to search in S3(A) as the number of conditions
in (3.4) is only n. Because of that we choose S to be a cubic spline having knots

51:(1307 gie(.ri717$i)7 7;:21"'177/_17 gn:xn

Then the cubic spline has n + 2 free parameters. To the histopolation conditions
(3.4) we add two boundary conditions from

S(a) =a, S() =0,
S'(a) =«a, S'(b) =P,
S"(a) = a, S"(b) =B, (3.5)

at different endpoints a and b.

19



3.3 Representation of the histopolant

Several representations of cubic spline histopolant could be considered, but the
one which uses second moments and particular integrals is appropriate. Thus, on
the interval [&;, &1 1] we use next four parameters to represent the spline:

x; Eit1
My = 8"(&), M= S8"(Em1), A= / S()de, pi= / S(x)d.
& z;

Denote E; = Xy — §i> ni = §i+1 — Xy, 61 =£&; +771, 1= 17 e, = 1 (see Figure 1)

61 62 67171

I I I I I I
e M 1e; Mi! En—1 TMn—1
& & & G Sn—1 | &n
L i 4 1 4 i 4 4 i ]
I — T t ! 1
Zo € Ti-1  T; Tp-1 Tn

I I I I I I

hy h; ho,

Figure 1: Additional parameters.

The cubic spline as a cubic polynomial in subinterval could be written as
S(z) = a; + bi(x — ;) + ci(w — ;) + di(x — 23) v € [&, &), i=1,...,n— 1.
(3.6)
From (3.6) we get
S"(x) = 2¢; + 6d;(x — x;),
which, in turn, gives M; = 2¢; — 6d;e; and M;1; = 2¢; + 6d;n;. From these two
equations we calculate

Miy — M; o — Min; + Mg

di - ) 7
Then we obtain
Ai = g S(r)dr = a;e; — 51522 + %5? - Zze?’
€iv b; i d;
. 2 3 4

and from them

1 i E; C; d1
i=5 (N e | — e — (0 — &)en,
a < - pn‘) il — o (i — eiein,

2 Pi )‘z Ci dz 2 9
=3 ( > (3 (i — i) + 1 (7 — miei +€7)

20



To determine the parameters M;, ¢ = 1,...,n, A, p;, ¢ =1,...,n—1, we use
smoothness conditions

S(E—0)=S(E+0), i=2,....n—1, (3.7)

S'(&—=0)=8(+0), i=2,....,n—1, (3.8)
histopolation conditions
Pi—1 +)\z :Zihia 1= ].,...,’I’L, (39)

with pg = 0, A, = 0, and two boundary conditions. Equations (3.7) and (3.8) take
the form, respectively,

Ni—1 1 €i—1 1 i Ei
- i — 24+ —)pii— =2+ = | M+ —ps
0i—18i—1 v di—1 ( * 77i1) Pz 0; ( N €i> * 5i77ip

1
24

{ — Ni1(gim1 + 2mim1) My

+ (= 0im1(Bei1 + 2mi21) + €4(2e; + 3m;) ) M,

+5i(25i+ni)Mi+1:|7 1= 27...,71— 1, (310)
1 1 1 1
— Mt it A=
0i—1€i-1 ! 6i—17]i—1p ! 0i€i 6i77ip
_ 1 0f 1 +nim10i + 77@'271]\414_1
24 52',1

n <35,2_1 + 2771'—(1551'—1 + Mic1€i—1 n 367 + 221‘51‘ + am) M,
i1 s

; m}, i=2....n—1 (3.11)

Observe that these equations are linear (homogeneous) with respect to the un-
knowns A; 1, pi—1, Ai, pi, Mi—1, My, My

3.4 Systems defining spline parameters

In total we have to determine 3n—2 unknowns My, ..., My, A1, ..., A1, P1, -5 Pt
from the system of 3n — 2 equations: (3.9), (3.10), (3.11) and two boundary con-
ditions. This system is of undetermined form to study. We take 9 equations
(3.9,i—1), (3.10,i—1), (3.11,i—1), (3.9,9), (3.10,0), (3.11,i), (3.9, +1), (3.10,i+1),
(3.11,4 + 1) containing eight unknowns \;_a, pi_2, Ni_1, Pi—1, N, Pis Nitls Pitl-
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These Aj, p; could be eliminated by using the linear combination of equations
with coefficients indicated below:

. hi + hitq
39,1—1 -
39.0=1 i
h; + h;
(3.10,i—1) il
hi—1
h; + h;
(3.11,i—1) _ i i 12727
hi—1
hi_1 + 2h; + h;
(3.9,1) SRS
hi
(3.10,4) i(hi + hiz1) — nie1(hica + hy)
.10, D )
(3.11,4) ( +) hﬁ 1(hicy ) _ (hiz1 + hi)(hi + hitq),
hi_1 + h;
(3.9,i+1) it e
hiva
hi1 + h;
(3.10,i + 1) - 17+5i+17
it
hi_1 + h;
(311,i+1)  — Lefﬂ.
hiy

For i = 3,...,n — 2 we obtain the equation

CiimaMi_o + i1 M1 + cyM; + ¢ i1 M1 + ¢ jp0Mis = Dy, (3.12)
where
D; = (hi + hix1)zie1 — (hiz1 + 2h; + hiv1) 2z + (hiz1 + he) ziga, (3.13)
1t o(hi + hy
Ciig = Ll +1) (3.14)

24 di—2hi—y ’
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1
Cii-1 =57 ( (Ui2(377i2 + 2,21 + 3ni21) + (€im1 + 2021) (hiz1 + miza)

2
Ni—o (Ei—2Mi—2 Ei—1Mi—1
h; + h;
T G >>( T hi)

3 i(hie hi + h; z hi— i— i+ h
el b ) | (b et >> (315)
i—11 1—1

1
Cii =54 <<7]i—2(25i—1 + 1) + (31 + 2mi—1) (hiz1 +1miz1)

2 2
Mi—2€i—1

+ 5i1hi1> (hi + hit1)

2.2
+ <€i+1<€i +2n;) + (2&; + 3mi) (g5 + hig1) + M) (hi—y + hi)

Oihit1
Ei— Up
+ ((3 + ﬁ)mq + (3 + 5)&) ((hil +mim1)(€i + hiv1)
hi1+ h; + h;
+ 77i1€il+h++1> ) ; (3.16)

1
Ciit1 ~51 <<5i+1(351 +2n; + 3ei01) + (28, + i) (e + hy)

62 8‘77‘ £; 177' 1
+ i+1 ( il + i+11/i+ ) hi, + hz
ha\ o T e )t

e (hi h: + h: 2(h. . 4B
+ i 152( 1—1 + 7 + l+1> + El( i—1 + i 1)(51 + l+l> : (317)
1 54+1(hi71 + hz)
S I a7 3.18
Ciyit2 2% Oiahi ( )

Let us notice certain symmetry in equation (3.12). There are symmetric pairs of
parameters: hi—l g hi+1, 51‘_1 — 5,‘, Ni—2 < €i+1, Ei—1 < Ny, MNim1 < ;. Then we
see the symmetry between c;;_5 and ¢; ;12, ¢;;—1 and ¢; ;11, inside ¢;. However, all
coefficients (3.14)—(3.18) are positive.

In case of i = 2 we take seven equations (3.9,1), (3.9,2), (3.10,2), (3.11,2),

(3.9,3), (3.10,3), (3.11,3) to eliminate six unknowns Ay, p1, A2, pa, Az, p3. The
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coefficients of the appropriate linear combination are as in general case. This
leads to the equation

co1 My + coa My 4 cosMs + coa My = Do,

where D, is determined by (3.13), ca3 and co4 by (3.17) and (3.18), respectively.
There is certain difference in ¢g; and cgy compared to (3.15) and (3.16), but they
could be calculated similarly to the general case taking into account also the
configuration of the intervals near the endpoint a.

Similar situation takes place in case of i =n — 1.

The simplest boundary equation here is S”(a) = o or M; = «. The other
possible boundary conditions, e.g., S(a) = « and S’(a) = a, require the calculation
of S(& +0) and S'(& + 0) as it was done at transformation of (3.7) and (3.8).
This should be followed by the elimination of appearing parameters A;, p;. Both
cases give us the equation

CHMl + ClgMg + 613M3 = D1 (319)

with certain expression D; depending on « and given histogram parameters. How-
ever, (3.19) includes M; = a.

The boundary conditions at the endpoint b could be treated similarly.

Thus, the spline parameters My, ..., M, are determined by the five-diagonal
System

ciuMy + cioMy + ¢13Ms = Dy,

cor My + cooMy + co3M3 + cosMy = Do,

CiimaMi—o + i i1 M1 + ciyM; + ¢ i1 M1 + ¢ ipoMipo = Dy,
1=3,...,n—2,

Cnim—3Mn_3+ch1noMyu_o+ chy 1 My_1 + o1 My, = Dy,
cn,n72Mn72 + Cn,nfanfl + CnnMn = Dn

(3.20)

Solving this, the system consisting of all equations (3.10), (3.11) allows to deter-
mine the parameters \;, p;. Its unique solvability is shown in [23]. Note that
the values A; and p,_; are known due to the histopolation conditions (3.9,1) and
(3.9,n). We will discuss the solvability of (3.20) in next section.

3.5 Existence and uniqueness of the solution
It is clear that the unique solvability of system (3.20) is equivalent to the existence
of unique solution to the histopolation problem. Let us start with particular cases.

Consider the case of spline knots as & = (z;-1 + ;)/2,i=2,...,n— 1. Then
N1 =¢; =hi/2,i=2,....,n—1, ey = hy, N,_1 = hy. The coefficients in (3.12)
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are (we write them also keeping symmetrical structure)

L —(hi + hits) iy
Cii— 7 7 . 1
2792 Y hi_o + hig
1 hi_ohZ
. hi +h 14h? | + 17h;_1h; 4+ 6h% + ———1_ h2h;
Cz,z 1= 192 <( + z+1)< 1 + 7 i—1 +6 hi_2+hi_1> + " z+1)7
1

+ (o + i) (10h2 + 30hhiyy + 1TH2,) + 2h,;_1hihi+1),

1 h2 . h;
Ciit1 :@ ((hz1 + hl) <6h2 + 17hhi1 + 14h1+1 M) + hzlhlz) ,

1 h3
—(hi—1 + hy) il

Cijit2 = 102 7hi+1 i

We see here the diagonal dominance in rows as
Ci — (Cijimo + Ciim1 + Ciig1 + Ciit2)

1
192((11 + hit1)(2h7_y + 13hi_1h; + 3R3)

+ (hiz1 + hi)(3hF + 13hihisy + 2h7. ) + 2R3 + 2Rt hihiyr).

Similar calculations give the diagonal dominance in near-boundary equations which
yields the unique solvability of (3.20) in this case.

In case of uniform mesh with h; = h, i = 1,...,n, and & = (z;,_1 + x;)/2,
i=2,...,n— 1, the interior equations of (3.20) are

3

192
3

576
3
192
3
576(
h3
192

—(52M; + 255My + T6Ms + M) = Ds,

—_(2M + 229M, + 690M; + 228M, + 3M;) = Dj,

(Mi_y + T6M;_y + 230M; + T6M; 1 + Miy) = D;, i=4,...,n—3,
3My,_y + 228M,,_5 + 690M,,_y + 229M,, _; + 2M,) = D, _,,

(M_3 + 76M,,_ + 255M,,_y + 52M,) = D, _,.

The boundary condition S(a) = « gives the equation

1
—(2a — 321 + 29),

——(386 M, + 379M5 + 3M3) = 2

1152
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S(b) = [ gives

1 1
Ti55 (3Mn—a + 3790,y + 386M,) = 5 (201 — 32 + 26),

S'(a) = « leads to

1 1
@(706]\41 + 443M2 + 3M3) = ﬁ(ZQ —Z1 — Ckh),

S'(b) = B to
1
1152

In general case, there may be no diagonal dominance in equations (3.12). Let
us prove that. Consider in coeflicients (3.14) — (3.18) the situation where
1ni—2 = const > 0 and other used parameters 7;, €; are equal to ¢ — 0. Then ¢;;—»
is of order n? ,& but ¢;; has the order n;_se?.

The unique solvability of system (3.20) follows from the next result.

1
(3Ma + 443 My + T06M,) = 75 (hf + 201 — 2).

Proposition 3. The histopolation problem posed in Section 3.2 has the unique
solution.

Proof. 1t is sufficient to prove that the corresponding homogeneous problem has
only trivial solution. Suppose a cubic spline S satisfies

/ S(x)dr =0, i=1,...,n, (3.21)
and two of the boundary conditions S(a) = 0, S(b) = 0, S’(a) = 0, S'(b) =0
S"(a) = 0, S”(b) = 0 at different endpoints a and b. By (3.21) it exists
n; € (i1, x;) such that S(n;) =0,i=1,...,n.

If S(a)= S(b) =0 then there are7; € (mi—1,m:), i =2,...,n, 71 € (a,m),
Tpi1 € (M, b) such that S'(7;) =0, i=1,...,n+1. Therefore, there are?), €
(MisMis1), 4 =1,...,n, such that S”(7;) = 0. Consequently, an interval [{, {t1]
contains two (distinct) zeros of S” which means that S”(z) =0, x € [&, &k11]-

If S’(a) = S'(b) = 0 then again there are n + 1 zeros of S’ in [z, z,] and
n zeros of S” in (xg,x,). If S”(a) = S”(b) = 0 then S” has n zeros in [xg, T,).
Using different kind boundary conditions at different endpoints we also arrive at
the situation with S”(z) =0, x € [&, &k11]-

Let us make some observations about the situation of S”(z) =0, © € [&k, Ekr1]-
Then S is at most first degree polynomial on [&, prq]. If S keeps the sign in

k
[k, xx) then due to S(x)dz = 0 we have ny € (zg_1,&) with S(ng) = 0. We
Tp—1

call this case suitable for the left. If S keeps the sign in [z, {41] then S has a zero
in (41, k1) and this case is called suitable for the right. If, e.g., k = 1, then S

has a zero in (zg,x1), S keeps the sign in [z1, &], due to S(z)dx = 0 there is
a zero of S in [&, ) and this case is suitable for the right? Similarly, k =n — 1

(i.e., k+ 1 =n) is a case suitable for the left.
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Consider now the case of [{,&k41] suitable for the left. The interval [a, &]
contains k — 1 subintervals [£1,&],. .., [§k—1,&). We know that S(n;) = 0, n; €
(i1, 2),i=1,...,k—1,and S(ng) =0, nx, € (xk_1,&]. We have:

1) case S(a) =0, then S has k+1 zeros a,n, ..., n, S" has k zeros, S” has k—1
zeros in (a, &) and S” (&) = 0;

2) case S'(a) =0, then S has k zeros ny,...,nx, S’ has k — 1 zeros in (a, &) and
S'(a) =0, S” has k — 1 zeros in (a, &) and S”(&,) = 0;

3) case S”(a) =0, then S has k zeros in (a, &), S" has k — 1 zeros, S” has k — 2
zeros in (a, &) and S”(a) =0, S”(&) = 0.

Anyway, S” has k zeros in k — 1 subintervals and, thus, S” is again equal to zero
in some of them.
Observe that receiving S”(z) = 0, € [{g—1,&k41], first degree polynomial S
Tk
on [€x—1,&k+1], due to S(x)dr = 0, has a zero in (xj_1, ) and keeps the sign

Tr—1
in [£,_1, Tx_1], consequently, [£x_1, &| is suitable for the left. At the same time, S

keeps the sign in [z, 1] and [€g, Eey1] is suitable for the right.

Presented reasonings allow to assert that during the process there are always
adjacent subintervals [§;,&41], . - ., [§—1, &) where the nullity of S” is not yet es-
tablished, but [¢;_1, ;] is suitable for the right and [, £x41] is suitable for the left
which yields that S” is equal to zero on one of them. However, it may be as well
j = 1or k =n. The process ends at S"(x) = 0, x € [a,b], and then S(z) = 0,
x € [a,b], by histopolation and boundary conditions. Naturally, suppose that
n > 2 if we use S”(a) = o and S”(b) = S. O

3.6 Another representation

Consider the histopolation problem posed in Section 3.2. A classical representation
of cubic spline is the use of S; = S(&), M; = S"(&),i=1,...,n.
Any cubic spline satisfies the internal equations (continuity of S’ at knots &;)

Sit1— S _ Si — Sic1
0; di—1
0i—1 +9; ’

O 0
! M;_ 1 +2M;+

_— AAAAAAAA*JVQ =6
Si1 + 6 Sy o,

i=2,...,n—1.

(3.22)
For definiteness, add boundary conditions M; = « (first equation) and M,, = §
(last equation). We obtain the system

AM = BS +d (3.23)

where M = (My,..., M,), S = (S1,...,S5n), first and last rows of B are zero rows,
d = (,0,...,0,8). The matrix A has diagonal dominance in rows which gives its
invertibility. Note that the diagonal dominance of A in rows takes place also in
case of other boundary conditions.
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Basing on (3.6) we have
S; = a; — big; + cie; — dig}
Siv1 = a; + bn; + Cmiz + dﬂij
From them we obtain

a; = % — CiEiM;i + di(ﬁi - m)émz‘,

S; S;
= L + ci(es —m) — di(n} — emi + €7).

The coefficients ¢; and d; were expressed via M; and M, in Section 3.3. Using
(3.6) the histopolation conditions could be written

b’Ll Ci—1 dzl b C; d
277221+ 377?1+ 4772414—(1251 *5 +§?_Z€z_zlhl

a;—1Mi—1 +

or

2 2 2

771 1 €i—1Mi—1 i1 €N & i
Siy + (T Ty “L) S+ s,
%1 ( by 20 o, +25i> 35,7

2
Mi—
_ 246»11 (262 | +4deimiq + 0 )M
iy 2 2 &
_ 1=l (Ye2 de; ym;_ - dem; + 4 M;
(Gt b o ) + e+ e 4 )
€2
246 ( + 48,’/], + 277z )Mi+1 = Zihia 1= 2, ooy — 1. (324)

Near the boundary we get
771 hl h2 h?
S S
< 5 251> TR

2 2
~ 925, —L (40} + 4mhy + h})M, — 510,

(2771 +dmhy + b3 DMy = z1hy (3.25)

with the counterpart containing z,h,. These equations together form the system
CS=DM+ E=. (3.26)

Note that in matrices C' and D the diagonal dominates in rows, F is diago-
nal matrix with entries h; and z = (z1,...,2,). Clearly, to construct the cu-
bic spline histopolant it is necessary and sufficient to solve the system (3.23),
(3.26). An opportunity to solve it is the following. Take, e.g., a guess value
M® = (My, M3, ..., M? |, M,), M) = D;/2h}, i = 2,...,n — 1, (note that, in
uniform grid case, D;/2 is close to h?f”(z;) if the values z; are determined as
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in Chapter 2, Proposition 2) then find S° from CS° = DM° + Ez, M' from
AM' = BS® 4+ d, S* from CS' = DM' + Ez, in general, the iteration process is
AMF = BS* ' +d, CS* = DM* + Ez, k= 1,2,.... It may be deduced here also
the process

M* = AT'BCT'DM* ' + AT'BC'Ex + A7d

and the convergence is defined by the spectrum of A~'BC~1D. Another opportu-
nity is to take a guess value S° = (SY,...,59) e.g., S? = z;,i = 1,...,n, then find
M from AM® = BS® +d, in general, AM*~! = BS*1 +d. CS*¥ = DM* '+ Ez,
k=1,2,.... This process could be described as

Sk =C'DA'BS* '+ C'DA Y+ C T E=.

To compare the spectra of the matrices C"'DA™!B and A1 BC~1D let us apply a
more general result as follows: if one of the matrices P and @ is invertible then the
eigenvalues of PQ and QP coincide. Indeed, assume that P~! exists and x # 0,
A are such that PQxz = Az. Then, denoting y = P~ 'z, from PQx = \PP 'z
we get Qr = AP~ 'z or QPy = My with y # 0. Thus, it is sufficient to consider
P = C7'D and Q = A™'B where the invertibility of P takes place as C' and D
have diagonal domination in rows.

We will give information about spectra of these matrices in Chapter 6.

Let us consider now uniform mesh with central spline knots, i.e.,
hi=h,i=1,...,n, & = (z;-1 +x;)/2, 1 = 2,...,n — 1. Equation (3.22) is well
known in treatments about cubic splines, it should be taken into account that
0y =01 =3h/2,0;,=h,i=2,...,n—2. Equation (3.24) is

2

h
S;_1 +6S; + Si+1 = £(7M1_1 + 18M; + 7MZ‘+1) +8z, 1=3,...,n—2,

h2

and (3.25) is now
2

h
251 + SQ = ﬂ(SMl + 7M2) + 321.
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Chapter 4

Periodic polynomial spline
histopolation

We have seen in Chapter 1 that the given histopolation problem, in general, may be
reduced to an equivalent interpolation problem and derivative of the interpolant
is the histopolant. We have also seen that, on the contrary, certain integral of
the histopolant is the solution of a corresponding interpolation problem. This
correspondence keeps the periodicity only in one direction, namely, the derivative
of a periodic interpolant is periodic but not vice versa. This means that, at periodic
histopolation, some problems like, e.g., convergence or error estimates cannot be
reduced to similar problems at periodic interpolation. Fortunately, asking about
the existence and uniqueness of the solution in spline spaces we are successful
because the uniqueness problem could be solved for corresponding homogeneous
problems in finite dimensional spaces and the periodicity is preserved in both
directions. The existence and uniqueness of the solution at periodic polynomial
spline histopolation is the main problem in this chapter. Several cases are treated
and the reader can see that different tools are needed in the proofs of assertions.

4.1 The histopolation problem for periodicity
For a given grid A, of points a = ¢ < 1 < ... < x,, = b define the spline space
X (An) ={S|S : [xi—1, 2] = R is in P, (the set of all polynomials

of degree at most m) fori=1,...,n, S € C™ 'a,b]}.
It is known that dim X,,(A,) = n+m. The space X, ,,(A,) of periodic splines is
Xpm(An) = {S € Xu(A)|SD(a) = SD(b), j=0,1,...,m—1}.

Then dim X, ,,(A,) = n and this could be shown, e.g., in following way. From
linear algebra it is known the next assertion.

Lemma 1. Let X be a vector space with dim X = n,¢;,i = 1,...,k, be linear
functionals defined on X which are linearly independent. Then dim(NE_, ker ¢;) =
n—k.
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To use this result we take functionals ¢;(S) = SW(b) — S@(a), i =0,...,m —1,
defined on  X,,(A,). Then ¢;(S) =0, i = 0,...,m — 1, is equivalent to
S@(a) = SD(b), i = 0,...,m — 1, which means that, for S € X,,(A,) we get
S € X,m(A,) if and only if S € NI,  ker ;. Let us show that the functionals
i, 1 =0,...,m—1, are linearly independent. Suppose Z;’:OI a;p; = 0. Consider
the polynomials p;(z) = z'™/(i + 1)!, i = 0,...,m — 1, which belong to the
space X,,(A,). For po(x) = = we calculate po(pg) = b — a # 0 and ¢;(pg) =
p(()i)(b) fpg)(a) =0,i=1,...,m— 1, hence ag = 0. For p;(x) = 2?/2 we have
pi(x) =z and p1(p1) =b—a #0, pi(p1) = 0,7 =2,...,m — 1, which implies
a1 = 0. Continuing this calculation we establish that o; =0,¢=0,...,m — 1.

Denote the sizes of the intervals h; = z; — x;_1, ¢ = 1,...,n. In the periodic
histopolation problem we have to find S € X, ,,(4,) such that

1 [
h/ S(x)dr =z, i=1,...,n, (4.1)
i Jxig

for given numbers z;.

Our main task in this chapter is to answer the question: when for any given
values z;, i = 1,...,n, the formulated periodic histopolation problem has a unique
solution?

As our problem is linear, this question could be reformulated equivalently as
follows: when the corresponding homogeneous problem has only trivial solution,
i.e., when

S e Xpm(A,), / | S(z)dx =0, i=1,...,n, impliesS =07

4.2 Existence and uniqueness

In this section we first indicate the cases where the solution exists and is unique.

Proposition 4. For m even the periodic histopolation problem has a unique so-
lution.

1/2

b
Proof. Let m = 2k. Consider in X,,,(4A,) the seminorm ||.S||= </ (S(k) (x))2 dx)

Suppose that S € X, ,,,(A,). Then we get using integration by parts and period-
icity properties of the spline S
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b
15| = / 58 (2)5®)(2)dz

— 5 (2)SED) (g / SO+ ()01 ()

== (=D)L () S ()| 4 (—1)F /ab SR (1) S (z)dx
)k Zn; / S (25 (z)da

— 1)‘9;:5(2’“) <3312”) / S(w)de.

Let now, in addition, S(z)dr = 0,i = 1,...,n. Then S®(z) = 0 for all
x € [a,b] or S € Pp_1. n fact, S being a periodic polynomial, S is constant.
Indeed, for S(z) = co +civ+ ...+ qal with 1 <1 <k —1 and ¢ # 0 we have
SUN(z) = (I = 1) ey + 'z, Then SU"Y(a) = S (b) implies ¢; = 0 which
is a contradiction. The homogeneous histopolation conditions then yield S = 0
which completes the proof. O

Recall that sign change zero of a function f is a number z such that f(z) =0
and there exists ¢g > 0 such that f(z —¢)f(z+¢) < 0 for all ¢ € (0,¢0). If
S € X,,(A,) then let Z(S) be the number of sign change zeros of S in the interval
[0, Zn). In the case m = 0 we talk here about sign change point z requiring only
f(z—e)f(z+¢€) <0 forall € € (0,e9).

Lemma 2. (see, e.g.,[79]). For S € X, ,,(Ay) it holds

n—1, ifn is odd,

n, if n is even.

Z(S)g{

This holds for all m € NU {0}.
Lemma 3. If S € Xn(An), | S(x)de =0, j = 1,....n, and S(x) = 0,
where x € [x;_1,x;] for some i, then S(x) =0,z € [a,b].

Proof. f S(z) =0,z € [x;_1, %], then for x € [x;,x;.1] use Taylor expansion

, S(m_l)(l‘i) _—
m) (g, (m) (g,
+ WQ; _ Ii)m — w(m _ Ii)m.
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Ti+1
As / S(x)dx = 0, it holds S (z; +0) = 0 and S(z) =0, x € [2;, 7,41].

We may continue going from x;,1 to the right or similarly from z;_; to the left
and establish S(z) =0, = € [a,b]. O

Proposition 5. For m odd and n odd the periodic histopolation problem has a
unique solution.

Proof. Let S € X,,,(A,) and S(x)dr = 0,i = 1,...,n. Let S # 0. If
S(x) =0, = € [r;_1, ], then byliLemma 3 it holds S = 0 which is already a
contradiction. The condition S(z) > 0 for all z € [z;-1,2;] and S(§) > 0 for some

€ € [mi_1, 2] glves S(z)dx > 0 which is not the case. Similarly, S(x) < 0 for
all x € [z;_1,2;] and 3(5) < 0 for some & € [x;_1,x;] does not take place. Thus,
there are sign change zeros n; € (v;_1,%;), i = 1,...,n, of S and Z(S) > n. But
by Lemma 2 it holds Z(S) < n— 1, which is a contradiction. This means that the
homogeneous problem has only trivial solution. O

Let us remark that the proof of Proposition 5 is valid for arbitrary m > 1 and
n odd.

Proposition 6. For m = 1 and n even the homogeneous periodic histopolation
problem has a non-trivial solution.

Proof. Take n; = (v;_1 +x;)/2, i = 1,...,n. Let ¢ # 0. Consider the function
S(x) = ci(x —mi), © € [xim1, ), i =1,...,n. It holds S(x)dr =0, i =

Tj—1

1,...,n, for any choice of numbers ¢;. The choice of ¢; = (—2¢)/h; for i = 1,3, ...
and ¢; = (2¢)/h; for i =2,4,... ensures that S € X,,1(A,), S # 0, with

and

S(x1) =S(x3) =... = S(xpn1) = —c. O

Proposition 7. For m odd and n = 2 the homogeneous periodic histopolation
problem has a non-trivial solution.

Proof. For m = 1 the assertion is already proved by Proposition 6. We prove the
general case by induction.

Denote n; = (z-1 +2;)/2, t = 1,2. Let m = 2k — 1 and S € X,,,(A2) be
such that S # 0 and

2k—1

S(I’) = Cl,i(x — 771) =+ C37i([IZ — 7’]i)3 + ...+ ch—l,i(«r — T],) , L S [lei_l, l’i], Z = ,2.

1
(4.2)

Clearly, this holds for the spline S from the proof of Proposition 6 in the case
m = 1. Define

Si(x) = co, —|—/ S(s)ds
i
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or

Si(z) =cos + %(x —mi)® + %(1} )t 4.+ CZ;;“( — )k 1w € [wiiy, ).
(4.3)
Then S} = S and (4.3) implies that, for any numbers ¢,
Si(xi1 +0)=S(x; —0), i=1,2. (4.4)
If o1 and cp o are such that
Si(z1 —0) = Si(z1 +0) (4.5)

then S € X, m11(Az). Next, define S by

(z) = / " 81 (s)ds

i
or

G C1,i

S(x) = coi(x—mn;) + 5.3 2+l

. Cok—14
(x—mn)*+... + 2k—1, )(I—m) x € [T, xi).

k(2 11
We see that S has the form (4.2), S’ = S; and

If, in addition to (4.5), we have

Sz — 0) = S(z1 +0) (4.7)

then S € X, 12(Az) due to (4.4) — (4.7).
It remains to show that by (4.5) and (4.7) we can determine suitable numbers
cop and coo. The equation (4.5) is, in fact,

c —hy\” Cok— —hy\**

_ @ E 2_;’_ _|_C%_171 E *
2 2 2k 2

and (4.7) is
hy ho G2 —hs K Cok—1,2 —he 2
o1y Ty = 2-3(2 ) T ek ) \ 2

(e (MY, e (W)™
2.3\ 2 T ok(2k+ 1) \ 2 '
But this system has non-zero determinant (h; + hs)/2. However, as S # 0 then
S #£0. O
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We say that the grid xp < x; < ... < z, is pairwise uniform if n is even and
for any ¢ even it holds x; 1 — x; = hy and x; 19 — x;41 = ho.

Corollary 3. The homogeneous periodic histopolation problem has a non-trivial
solution for m odd and pairwise uniform grid.

In particular, the case of uniform grid for m odd and n even is included in
Corollary 3. This result could be found in [72, 76].
In general, we state as an open problem the following.

Conjecture. For m odd and n even the homogeneous periodic histopolation prob-
lem has a non-trivial solution.

Define the subspace of X, ,,,(A,,) as

Xopm(Ay) = {s € Xpm(A) | /  S(@)de=0,i=1,... n} .
Ti—1

For m odd and n even it may be that Xy, (A,) # {0} (if the Conjecture is true
then always). It is natural to ask what is in this case dim X, (A,)?

Remove from the grid A, :a =29 < x; < ...<x, =b aknot z;. We get the
grid Al jta=xg<x1 <...<xi1 <Xyis1 <...<x, =b with the number of
subintervals n — 1 which is odd. By Proposition 5 it holds X, ,(Al_;) = {0}.
Clearly, X, m(AL_1) 4+ Xopm(An) C Xpm(Ay). The sum X, (AL 1)+ Xopm(A)

is a direct sum which follows from the relation
Xp,m(A;z—l) N XO,p,m(An) - {O}
Thus, the equality
dim X, . (A,) = dim X, ., (A, ) + dim Xo . (A)

implies dim X, (A,) = 1.
The obtained results about the existence of non-trivial solutions for homoge-
neous problem yield the following.

Theorem 1. For m even or m and n odd the periodic histopolation problem has
for each z;, i = 1,... n, the unique solution. For m odd and n even there may
exist (if the Conjecture is true then exist always) z;, i = 1,...,n, such that the
periodic histopolation problem does not have solution.

4.3 Bibliographical notes

In this section we acquaint the reader with a subjective list of works on periodic
spline interpolation and histopolation. The results about existence and uniqueness
of solution for periodic polynomial spline interpolation could be found in [1]. A
short overview of existence results by several authors are presented in [76], this
work contains also convergence estimates for problems on uniform grid with inter-
polation knots not necessarily in grid points. The paper [47] contains results about

35



properties of periodic interpolating polynomial splines on subintervals. The exis-
tence and uniqueness results of periodic solutions for uniform grid case in several
papers are based on the theory of circulant matrices, see, e.g., [14, 15]. General
non-uniform grid is considered in [16] for low degree periodic splines with conver-
gence estimates. The work [60] gives error estimates for periodic quadratic spline
interpolation problem arising from the histopolation problem with these splines.
In [38] the existence and uniqueness problem of solution in periodic quartic poly-
nomial spline histopolation (m = 4) is stated generally but solved only for uniform
grid. Unlike the other studies the spline representation via moments is used. Our
Proposition 4 gives here the answer for general grid case. Periodic interpolation
problem on uniform grid with certain non-polynomial functions is studied in [§],
and histopolation in [7]. Interpolation with periodic polynomial splines of defect
greater than minimal is studied in [59, 75, 79]. Cubic spline histopolation on
general grid is treated in [33] in several aspects, including methods of practical
construction of the histopolant.
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Chapter 5

Quadratic/linear rational spline
histopolation

Histopolation problem is important to study as a lot of practical information is
given in the form of histograms. Besides, it is preferable to keep geometrical prop-
erties of given data like positivity, monotonicity, convexity, in general, see [41, 65].
It occurs that, concerning the convexity, an appropriate tool is interpolation or
histopolation with quadratic/linear rational splines [25, 29]. While the mono-
tonicity is preserved at interpolation and histopolation with linear/linear rational
splines where main problems like, e.g., existence of solution, are solved positively
[18, 19, 52, 53], for quadratic/linear rational spline histopolation the situation is
completely different [25]. Despite of the freedom at choosing spline knots which
seems to create a large flexibility, the solution of the histopolation problem may
not exist for any choice of spline knots. The proof of this result is main task in
this chapter.

A decisive point at working with splines is the choice of representation. Our
study of histopolation with quadratic/linear rational splines shows that the repre-
sentation via second derivatives of the spline at spline knots and integral values on
parts of particular intervals achieves desirable results. We are almost convinced
that the use of other parameters is not appropriate which is quite different com-
pared to the case of polynomial splines where several representations are successful
at working with them.

5.1 Histopolation problem

In this section we pose the histopolation problem with quadratic/linear rational
splines.

As in Chapter 3, let it be given a mesh a = zy < 1 < ... < x, = b and real
numbers z;, i = 1,...,n, with n > 2, corresponding to the subintervals [z;_1, ;]
as histopolation data in the form of a given histogram. Denote the lengths of
subintervals by h; = x; — z;_1, i = 1,...,n. We look for a function S which
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satisfies the histopolation conditions
/ S(x)dr = hiz;, i1=1,...,n. (5.1)
Ti—1

Now we consider the histopolant S to be a quadratic/linear rational function
on each subinterval between its knots and require the smoothness condition

S € C?a, b)].

Choose the spline knots & ¢ = 1,...,n, as follows: & = xg, ;01 < & < x4,
i1=2,....,n—1,&, = x,. The function S is supposed to have the form
C;

S(z) = a; + bi(z — x;) + z € [&, &l (5.2)

with 1+ d;(x — x;) > 0 for all z € [§;,&11]. We assume the spline S to satisfy the
histopolation conditions (5.1) and, in addition, two boundary conditions of the
form

S(a)=a, Sb) =04 (5.3)
S'(a) = a, S'(b) =8, (5.4)
S"(a) =, S"(b) =5, (5.5)

for given @ and 8. However, two conditions of different kind from (5.3) — (5.5)
could be posed at endpoints a and b.

It is known that the solution of such an histopolation problem is unique pro-
vided it exists [25]. From (5.2) it follows

" _ QCidzz
S(x) = A+ di(z—2)) v € [&, i), (5.6)

which implies that S” preserves the sign on each particular interval [¢;, & 1] and,
consequently, on the whole interval [a,b]. This means that a quadratic/linear
rational spline S of class C? is strictly convex or —S is strictly convex or S is a
linear function.

5.2 Representation of the histopolant

Besides of the spline representation (5.2) we will use another one for the histopolant
via the second derivatives M; = S”(&;), ¢=1,...,n, and the values

X

i £l+1
A= S(x)dz, p; = / S(x)de.
&i T

The histopolation conditions (5.1) are p;—1 + \; = h;z;, @ = 1,...,n, particularly,
A1 = hyz; and p,_ 1 = hyz, with pg = 0, A, = 0 if needed. Our next task is to
represent the histopolant S on [§;, & 1] by the values M;, M1, A, p;.
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We mentioned that S” preserves the sign on the whole interval [a,b]. Thus,
we consider the case M; > 0 and d; # 0, ¢ = 0,...,n. A remark about the
treatment of the case M; = 0 and, more generally, about the case of quadratic
polynomial pieces is given in [25].

As in Chapter 3, let us introduce on each interval [§;, §;1] the values g; = z;,—&;,
ni = &ix1 — Ti, 6 = & +n; = &iy1 — &, then hy = 01 + &, particularly, e, = hy,
61 = hl + M, Mn—1 = hn, 6n71 = E&p-1+ hn

From (5.6) we get

2. d2 2¢;d?
M= —""0 0 My =—t 5.7
(1 — diéi)g A (1 + dﬂ?z)?’ ( )
Then
Mi+1>1/3 _ M
which gives
(1+ dmi)M;ﬁ = (1= dies) M}"?
and from that 1/3 1/3
d = M — My 5.8
i = M1/3 1/3° ( ’ )
eM; " +miM [

For brevity, use the values p; = (M;y1/M;)'/?, then by (5.8) we have the repre-

sentation
L (M)
M; =

<M¢+1 > R
SN\ 3

d; =

Denote also «; = 1 — dse; and 8; = 1+ dyn;. We see that o = p;0;/(e; + mipus) > 0
and §; = 6;/(g; + mip;) > 0 because p; > 0. By symmetry consideration we use
also v; = (M;_1/M;)"/3, then, e.g., d; = (viy1 — 1)/(€itis1 + 1)

The second equality of (5.7) gives for v; = ¢;/d;

3 53 83 M; M;
=M o T
7 i 2<M/37MH{?)

7

i (5.9)

From (5.2) we calculate

T; )2 ) T=x;
Ai / S(z)dx = (aix + biw + 2 log(1 + d;(x — xl))
&i 2 di r=§;
bi 2 C;
=a;&; — 5@- — d—l log ;.
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Similarly we get

bi

pi = a7 + 5

2, G
2 4 Zlog Bi.
n; +di og 3

These two equalities allow to find

2 D ¥ 1 1
b= = (p——% <logozi+10gﬁi>> (5.10)
0; i Ei E; i
and
1 i i i i
P (M et ("mgai - Elog@»)) | (5.11)
0; i i €i i

The formulae (5.8) — (5.11) express the parameters of (5.2) via M;, My, 1, A, p; and
this gives the representation of the histopolant (we keep here d; and ; given in
(5.8) and (5.9) for brevity and better stress the structure of S)

L (n i i i
S(x) = 5 <77)\1 + i_/?i + 7 (77_10g0¢i - E_logﬁz))
K3 EZ 771 EZ

(2

2 (o N 1 1
+§ <p_ — % (logai+nlogﬁi>> (r — ;)

i & i
Vid;
_ i &ivtl. 5.12
MR r— z € [, &l (5.12)

5.3 Basic equations

The representation (5.12) allows to calculate the derivatives of S on subintervals
(i, &iv1]. The continuity of S” is ensured by the use of values M;. In this section
we write out the continuity conditions of S and S’. From them with histopo-
lation conditions we obtain the equations to determine the spline representation
parameters M;, A, p;.

The representation (5.12) gives

1 i i i i
S(&+0) =5 ((2+ "> A= it (<2+ ") log a; + glog@))
i Ei i Ei i

idi
+ 5%

Q;

1 i i i i
S(&i+1—0) =3 <_77)\i + <2 + 6) pi =% <7710g04i + <2 + 6) 10g5i>)
i i i € Up

Vid;
+ .
Bi
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The continuity requirements S(& — 0) = S(&; + 0) are

i1 1 €i—1 1 ( )
— Aio1+ 2+ i1 — — | 2+ i + i
Giagia b < 77z‘—1> pit 0; £ 51771'0
— i — Ei— i— di,
_Jim1 <7) 1 log a1 + <2+ 1) logﬂi_1) _ Yim1i—1
dic1 \Ei-1 Ti—1 Bi—1
Ei Yidi
—i—— 2+ loga; + —log B; | + ,i1=2,...,n—1. (5.13)
0; i Q;

We calculate from (5.12)

2 7 >\7, 1 1
S'(z) = =5, (p - <8logai —Q—nlogﬁi))

Yid;

Ot d@ oy ° €kl

From that we find

e Eﬁ_ﬁ_ L iogai+ Llog g) ) — 2%
S'(6+0) = 5 (2 togait loas) ) =25

€ :
and
P A 1 1 2
(&1 — 0 ————’—1(1 i+ —log ) ) - Lok
(€1 —0) = 5, ( - il losa +m og f3 7
By them, the conditions S’(§; — 0) = S’'(& + 0) give the equations
1 1 1 1
- it + ———pic1 + — i — —p;
0i—1€i-1 't 5i—17]i—1p 't 0i€i 5i77ip
Yi—1 1 '71‘2716@71
— 1 - log B Jim1%i-1
0i1 <5i1 o8 -1+ i—1 Ogﬁl 1) * 251'271

E; i

i (1 2
—7(1ogaz log@) TG =9 n—1.  (5.14)
i (0%

The histopolation conditions could be written in the form
Pi—1 —|—>\i—hizi :0, 1= 1,...,71. (515)

Let us refer to the just introduced equations (5.13) — (5.15) also as (5.13,4) —
(5.15,4).

Similarly to the procedure from Chapter 3, 8 unknowns \; o, pi—2, A1, Pi—1,
Ais Piy Aix1, pir1 could be eliminated from the 9 equations (5.13,i—1), (5.15,i—1),
(5.14,i — 1), (5.13,4), (5.15,4), (5.14,), (5.13,i + 1), (5.15,i + 1), (5.14,i + 1). This
should be done with the help of coefficients (3.9,7—1), (3.10, i —1), (3.11,i—1),
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(3.9, 4), (3.10, 7), (3.11, @), (3.9, i+ 1), (3.10, i + 1), (3.11, i + 1) from Section 3.4.
The obtained combination results a nonlinear equation

D ( Mo, My, M;, M; 1, M; i) = D; (5.16)
with
D; = (hi + hit1)zie1 — (hi—y + 2k + higa)zi + (hicy + hi)zig1,i =2, ... ,n — 1.

We will analyze this elimination process more in details in the next section. The
equation (5.16) will be called basic equation. We suppose in the sequel that D; > 0
for all 4. As stated in Chapter 2, such condition is called strict convexity of the
histogram. Recall also from Chapter 2, Proposition 2 which asserts that if we

calculate the values z; = h; " | f(x)dx for a given function f € C?[a,b] having

f"(x) > 0 for all z € [a,b] then D; > 0.

5.4 Structure of basic equations

In this section we consider the elimination process at establishing the equation
(5.16). At left hand side of the formed combination the unknowns \;_s, p;—a, Ai_1,
i1, iy Piy Nit1, pir1 Will be eliminated. For example, the coefficient of \;_5 is
obtained in (3.10,7 — 1) multiplied by (5.13,7 — 1) and in (3.11,7 — 1) multiplied
by (5.14,i — 1) which gives

hi + hipa - (_ 5-771'72 )_hi + hit1 (_ 1 )

hi—a _9Ei_2 hion TP\ 608 s
h; + h; 1 1
b o L1y
hi—a di—28i—2 0i—2€i—9

Similarly, the multipliers of p;_s, ..., p;+1 appear to be equal to zero. The combi-
nation of z;_y, z;, zi11 collecting from equations (5.15, 7 — 1), (5.15, 7), (5.15,
i+ 1) gives us D;. On the other side compared to D; we have «;_5 presented only
in (5.13, 7 —1) and (5.14, ¢ — 1) with the multiplier as follows:

hi + hZ 1 i— Ei— di_
R (77 2log ;o + (2 + 2)10g 51‘—2) =
hi—1 0i—o \&—2 Ti—2 Bi—2

hiow 2\ 6o \eig Ni—2 243

hi + hipq Ni—adi—o 1 (Uz—zdi—2>2
e (e g, — - .
hi—l ( g/B 2 ﬁi—2 2 ﬁi—2

h; + h; 1 /1 1 d?
- — ; < ( log aij—o + log 51‘72) +-= 2 )
i—2
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Denoting for brevity o,_o = &;_o/n;_ (recall that v;_; = (M;_o/M;_1)'/?), we
calculate

Bi—e = 1+ di—ami—s

M- M
TNi—2
e M5 + oM}

_ 5i—2 M:,/;
51‘—2MZ~1,/§ + Ui—zMil,/f

M. 1/3
61',2 ( 7 2>
My

(0i—o + vy
Oi—oVi—q1 + 1

and, by (5.9)
i = 5;3_2Mz'—2Mi—1
=2 = 3
1/3 1/3
2 <Mi—/2 - Mz—/l)
07 oMo
2 (1/1'_1 — 1)3 '
We find also
Ni—2di 2 N Vi1 — 1

Biia (0ia+ Vv

In total, we have the term with ;_5 as

hi+hig1 6} 5 Mo (i + 1)viy
E log

hicpy 2 (vio—1 OioVi—1 +1
Vi1 — 1 1 < Vi1 — 1 >2
(UZ‘,Q + 1)Vi,1 2 (0'2'72 + 1)1/1',1 '
Define the function

N c+z  x-1 1/ z-1)°
palz,0) = (x —1)3 <log cr+1  (o+ 1z 2 ((U+ 1)x) ) (5.17)
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which we call one of the basic histopolation functions. Then the summand in
(5.16) containing ~;_o is the term

hi + hip1 03, (Mz2> 1/ €i—2
T E— M;_2p4 ) .
hi—q 2 M;_y Ni—2

Similar reasoning with (5.13, ¢ + 1) and (5.14, ¢ + 1) containing ~;1 gives the

symmetric term
hi—1 + h; 5?+1M (Mi+2> 1/ Mit1
i+2¥PA ’ .
Rit1 2 M Eit+1

The value v;_ is present in (5.13, 7 —1), (5.14, i — 1), (5.13, 7), (5.14,i). This part
at elimination gives the multiplier of ;_; as follows:

hi + h,l' 1 i— Ei— di_
7‘%01‘—2 (2 + " 1>log o1 + ! log B;—1 |+ !
hi—1 di—1 €i—1 i1 Q1

hi +hiv1 o 1 1 1 d{l
2 - log o1 + log Bi—1 | —==
hifl -2 5i71 Ei—1 & ! ni—1 gﬂ ' 20[?_1

n (hi + hiy1)ei — niz1(hica + hy)
hi

1 Ni—1 €i—1 diy
| i 2 I i1 | —
8 (@'1 (51’1 08 -1+ ( * 771‘71) o8 p 1) 51‘1)

+77¢271(hi—1 + hi) — (hicahi + i1 (hi + i) (hi + higa)
h;

1 1 1 &?
X 1 i— 1 i— 1 .
<5i1 (&1 08 it Ti—1 o8 p 1) +25i2—1>

We calculate in this expression the multiplier of log ;1 as the sum of following
terms:

hi + hip 1 Nie1 M2
WALV g4 Mty
hi—y =2 di—1 Ei-1 Ei-1

_hithiy 1 01+ ki
- hi—1 =2 i1 €i—1 7

h; + hi+1 1
I, A (Emz'q - (hiflhi + mim1 (b + 51)))
=—(hi+ hi+1)m(hi71 +mic1)
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(the term with (h;—; + h;)/h; is equal to zero). This sum gives us

1 Mi—20i—1
di—18i-1 < hi—1 =2 B

(hi + hit1)

1 Mo — hiy
hi—q

= (hi + hit1)

i1
_ hithin
B hiop
Similar calculations give us the multiplier of log 8; 1 as

B hi—1 4 2h; + hia
h; '

In total we get at elimination the term containing ~;_; as

hi + h; iodir 1 (niadi\”
+ A1 <—logai1+n 2 1+(77 2 1) )
« 2 (673

it hi—q i—1
hii 4+ 2Rh; + higq Nic1di—r 1 (mi_adiy ?
i —log B =
o 1( B ( w102 1 5 (150
diy 1 diy
—(hl + hi+1)7 - *(hl + hi+1)(277i71 + hifl) . (518)
Bi-1 2 Bi—1

Taking into account Yi-1 = 6?_1Mi,1/(2(l/i — 1)3) with Vv, = (]\47171/]\42)1/3 we
obtain (5.18) in the form

hi+ hi 64 M\
— D) M;_ 19051 M., y Oi—1

hi—q
+hH + 2}? + hiq 532,1Mi_1 (_@A ((A&I)w | JH>>
—l—% 5?2_1Mi—19032 ((%1)1/3’ oi1, Z:I) (5.19)
where
opi(z,0) = (95—11)3 (og gf:ll - a(ax+—11) +% <USU+_11)>2> ) (5.20)
¢p2(2,0,7) =T <(;;10;2 + %T x;,l) (5.21)

The functions ¢p; and gy are also called basic histopolation functions.

45



Similar calculations should be done with the terms containing ~;.

us also three summands symmetrical to (5.19).

In total, we arrive at the basic equation (5.16) in the form

hi + higq 51 2 M;_, 1/8 €i—2
-4 Mz )
hi—q 204 M;_4 Ni—2
h; + h; z Ei—
+ — 1Mz 1¥B1 ( 1)
hi—l z
+ hio1+ 2h; + hiq 5 M\ ey
hi e M; 7 Ni—1
h; + hi+1 z 1 < 1 hi
+ - M’L )
Tt en o G
+ m Migi ' @ i
T Mi 1982 M P
hi1 4+ 2h; + hipq 62 ( ( z+1>1/3 771))
+ i+1 y
h; €i
n hi—1+ hi &} My e i
T 2 i+1¥B1 M, el
hioi 4+ hi 0}, M; o 1 Ti+1
HELT N Sy, L) = D,
- it g A M €it1

The equations (5.16) or (5.22) could be considered for i = 3, ...
M,

that we have, in general, as unknowns My, ...,
i=1,...,n).

Let us show next shortly how to write basic equations near the boundary.
However, we may calculate from initial data D;, i = 2,...
of parameters \;, p; we take the equations (5.15,1), (5.13,2), (5.15,2), (5.14, 2),
The corresponding coefficients are as in Chapter 3,

(5.13,3), (5.15,3), (5.14,3).

namely

h2 + h3
hy
hi + 2ho + hs
ho ’

Eg(hg + hg)

the values M; =

— i (hy + ho)

ha
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This gives

,n —2 (recall

,n — 1. At elimination



€2(hy + h3) + ni(hy + ha)
ha

— (h1 + ha)(hg + h3),

_h1+h2

The elimination of parameters \;, p; results the equation

Oy (M, My, M3, My) = Dy

h1 + 2h2 + h3 (5% M1 1/3 €1
S AN (e | ()
h2 2 M2 7]1
h2 + hd 5f M1 1/3 €1 hl
2T s -1 oA
* hy 2 1ep2 M, ’ 771’ o1
hy + hy 63 M.
It he % <<3>
h3 2 2
hi+ 2ho + h3 53 Ms; 18 T2
ATERT 2an | - 3 12
+ h2 2 3 PA M2 ) &5
hy+ hy 63 3 V8 2
207 12
+ hd 2 3¥B1 M2 ) €5

hy + hy 63 M\ 3
ot - Mapa Y B =D,
hy 2

or

Near the point b, for i = n — 1, we obtain the equation
(I)nfl(Mnfi% Mn72> Mnfla Mn) = anl

which could be derived symmetrically to the equation (5.23).

(5.23)

(5.24)

The simplest boundary conditions here are (5.5) which give M; = « and M,, =
B. The condition (5.3) or (5.4) could be implemented also using the elimination
of parameters \;, p; which is described in [25] and results, e.g., for the point a as

¢1(M17 M27 MS) = Dl
with appropriate value D;.

47

(5.25)



In total, we arrive to the system of basic equations

boundary condition M; = « or (5.25),

Oy (M, My, Mz, My) = Do,

O, (M;_o, M1, M, My 1, Miy2) =Dy, i=3,...,n—2, (5.26)

(I)nfl(Mnf& Mn72a Mnfh Mn) = anla

boundary condition M,, = /3 or counterpart of (5.25).

5.5 Positivity of histopolation functions

Our solution of the main problem is based on the behaviour of basic functions @4,
©B1, 2. They are defined for x > 0, ¢ > 0, 7 > 0, however, for x = 1 as limit
values.

Lemma 4. It holds
1) limgy @a(z,0) = 1/(3(0 +1)°)
2) lim,_,1 Opa/0x(x,0) = — (40 + 3) /(4(0 + 1)),
3) lim, 1 0%p4/02*(x,0) = 2(1002 + 150 + 6)/(5(c + 1)°),
4) pa(x,0) >0 forx >0, c>0.
Proof. 1) For the function ¢4 in (5.17) we consider the decomposition
oa(r,0) = (x —1)*@a(w, 0). (5.27)

The use of L’Hospital’s rule gives

) L 1 0pa
lim pa(z,0) = iﬂm %(l’» o).
Here
@(IO’)_ ox+1 (c+1)(cx+1)—(0+1)zo
or 7 (o4 1) (ox+1)2
B 1 T 1 1
(c+1)22 (oc+ 1Dz (c+1)2?
_ 1 _ 1 oz —1
Cz(oxr+1) 22(oc+1) (04 1)23

B (z —1)?
3o+ 1)2(ox+ 1) (5.28)
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Now
1 1

1' — 1 = .
a1 Pa(@,0) el 3z3(c +1)%(cx+1) 3(c+1)3

2) Basing on (5.27) and (5.28) we find

dpa _ 3 > 1 994
Oz (‘Tva) - (x* 1)4 @A(I’O—> + (:U* 1)3 or (.’E7O')

= . 1 ((a+ 1)2(2% Nad 3"9‘*@’0)) :

Then

z—1 Oz x,o a1 or (U+1)2(U’L’—|—1)f1j3 YA\, T

i —(4o0x + 3) Opa
= 1 j—
ol <(a + 1) (ox + 1)2z4 s oz (z,0)

__fAot3 _ imaﬂ(:ﬁ o)
(o +1)* =1 dr

and from that

3) Similarly, to the proof of 2) we obtain

Ppa 1 <—803:2 +4ox —Tx+3

= 12 .
G (10) @-12\ @+ 120zt )% Pale U))
Applying twice L’Hospital’s rule we get

i D?pa (2,0) = 2(100% + 150 + 6)
a1 Ox2 5(c +1)°

4) For the proof of positivity of 4 we consider again the decomposition (5.27)
and the formula (5.28). Now, if z € (0, 1) then by Taylor expansion in z = 1 for
some ¢ € (z,1)

oty PPae
QOA(ZE,O') - @A(lvo) + o (f,a)(x 1) <0,

which gives @4(z,0) > 0. Similarly, if z > 1 then by the same expansion with
¢ € (1,z) we get pa(x,0) > 0 and also w4(z,0) > 0. O

It is important for us later that the summands in basic equation are strictly
positive. We will restrict ourselves to the uniform grid, i.e., h; =h, i =1,...,n.
In this case, define the function

op(x,0,7) = ppi1(x,0) = 20a(x,0) + ppa(z,0,7).
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Then equation (5.22) takes the form

M,y 1/3 .
53 M, i 7 i
2 204 ((Mi—1> Ni—2

‘ M, 1/3
+ 62 | Mi_10B (( M;) |

M\
45 Ming((]VZl) S

b
Ei

Ei—1 h
771‘71’ di—1

h
d;

3 Mo 1/3 Ti+1
+ 07 Miy1pa ) =D (5.29)
M

Eit1

It occurs that in this equation all summands are strictly positive for any choice
of spline knots. We will show that g is positive in certain feasible domain of
arguments.

Lemma 5. It holds
1) lim, ; ppi(x,0) = 03/(3(c + 1)3),
2) lim, 1 ppa(z,0,7)=7((1—0)/(1+0)+ 1),

3) vp(x,0,7) >0in Q={(z, o, 7) | 2 >0,0 =¢/n, 7= h/(ec+n),
g, n€(0,h)}.

Proof. Likewise in the proof of Lemma 4, 1) and 2) are the results of standard
calculations and we prove the assertion 3).
By Lemma 4, 1) and Lemma 5,1),2) we have

(1 - 1—0+ N -2 (0.7)
ep(lioyT) =7 (o +7 3(0—1—1)3_@0’7

(we introduced here the function ¢). Actually, 7 = h/d; > 1/2 as §; < 2h. It holds

0 1-—

6—f((77 T) =
only if 7 = (0 — 1)/2(c + 1) < 1/2. Thus, for 7 > 1/2, d¢/07(0,T) # 0. Because
0p/01(0,7) > 0 for great 7, we have 0p/d7(0,7) > 0 for each 7 > 1/2 which
means that the function 7 — (o, 7) is increasing. Now, for 7 > 1/2

0+2T:0
1+o0

>0

(0,7) > 1 o3+ 30% + 150 + 1
o,T o,- | =
AT =P T 12(c + 1)3

or pp(l,0,7)>0for o >0, 7> 1/2.
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Write ¢p(r,0,7) = (v — 1)73¢p(z,0,7), then ¢p(l,0,7) = 0. Using the
Taylor expansion of the function g in x = 1 it is sufficient to prove that
0pp/0x(x,0,7) > 0, (x,0,7) € Q. We calculate

0
o (,0,7) = (¢ = 1’Bp(a,0.7),

ox

where

7( ) 3 1—o0ox +1 Tz +1
z,0,7) = 31| —=+ T ——
P, (c+1)22 2 a2

+(z =11 (W - T(%x + 1);3>

o3 2
M sy ey p v D)

Let us write expression (5.30) with the common denominator (o + 1)*(ox 4 1)2?
and show that the numerator is positive. Consider 0 =¢/n, 7 = h/(e + 1),
g,1n € (0,h). The numerator of (5.30) could be written as

1
73
+(hn? 4+ h® + hen + he)x + 2n*(h — n) + h*n)

(e(h —€)*2® + (he(h — &) + hn(h — €))?

which is strictly positive for z > 0. This ends of the proof of assertion 3). O

Let us remark that if we assume only z > 0, ¢ > 0, 7 > 0 then pp(z,0,7)
may be negative.

5.6 Asymptotic behaviour of histopolation func-
tions

In this section we establish the behaviour of functions ¢4 and ¢p if one of the
arguments is going to 0 or oo with other arguments fixed. We do not describe all
asymptotics in full details but only those of them which seem more essential. In
the following assertions the sign ~ means that the quotient of two expressions has
limit 1 in the limit process under consideration.

Lemma 6. It holds
1) pa(z,0) ~ 1/(2(c +1)*2?) asx — 0, 0 > 0 fized,

2) pa(z,0) ~ p(o)/z* as x — oo, 0 > 0 fized with o(c) > 0 for all o > 0,
(o) ~ —logo as o — 0 and p(o) ~ 1/(303) as ¢ — oo,

3) walz,0) ~ p(z) as 0 — 0, z fired with p(z) ~ 1/(22%) as  — 0 and
o(z) ~ (logz)/2* as x — oo,
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4) pa(r,0) ~1/(36%23) as 0 — o0, > 0 fized.

Proof. 1) Let us treat the function ¢4 given in (5.17) as @ — 0 with fixed o > 0.
Then

lim(z — 1)* = —1,

z—0

(c+ 1Dz
log +1 2 2
. ox .
Clvlg%f =2(c+1) Clvlg%x log(c + 1)z =0,
2(0 + 1)%2?
z—1
, (c+ 1z , B
ilg%f =2(c+ 1)31612%(x -1z =0,
2(0 + 1)%a?

and the main term is obtained from the summand —((z — 1)/((o + 1)z))?/2.

2) It is immediate to obtain the indicated behaviour pa(z,0) ~ o(o)/z® but
let us study here the multiplying function ¢(o) =log((c +1)/0) —1/(c +1) —
1/(2(c 4+ 1)?). Clearly, pa(x,0) > 0 for all z > 0, 0 > 0 implies (o) > 0 for all
o > 0. The asymptotics of ¢(o) as 0 — 0 is immediate. Taylor expansion

1 1 1 1 1 1 1

log(l4=)=- — — 4 -~~~ 0, =
o8 +0) o 292 343 41+ 8o s€ < ’ a)’

gives

1 1 1

303 20%(c+1)2  4(1+&)tot

o(0) = (5.31)
and the asymptotics of p(0) as 0 — 0.

From (5.31) we get also that ¢(o) ~ 1/(303) as 0 — co. It holds also (o) ~
—logo -+ oo as o — 0.

3) Here we obtain immediately the asymptotical function

o= et (e 3 (1))

as 0 — 0, x > 0 fixed.

For x — 0 the main term in ¢(x) is obtained from the last summand and for
x — oo from the first summand.

4) We apply the expansion

ot Dr _a—1 1/ w—1 2+1 r—1\° 1 r—1\"
8 or+1  or+l 2\oz+1 3\ox+1 41+9* \ox+1) "’

z—1
0
§E<’U{E+1>7
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with £ — 0 as ¢ — co. This gives

(2,0) = 1 r—1 r—1
pANE )= 3(ox+1)2 2(0+1)%(ox+1)%222 41+ &*(or+1)*
and the asserted asymptotics. O

Lemma 7. It holds in the feasible domain

1) pp(x,0,7) ~ p(o,7)/2* asx — 0, o, T fized, with the function ¢ bounded
from below by a positive constant,

2) pp(x,0,7) ~ p(o,7)/x as v — o0, 0, T fized,
3) pp(z,0,7) ~ @(x,7) as 0 — 0, x, T fized,

4) pp(x,0,7) ~ o(x,7) as 0 — 00, z, T fized,
5) op(r,0,7) ~ p(x)T? as T — o0, z, o fized.

Proof. 1) In the process x — 0

() 11+a+102
YBIT, 0 B 1 T o+l 2\ox1) )

1
2(0 +1)222’

@A<Ia 0) ~

( ) 1 +1 1
~ —T —
Q)OBQ xr,0,T T 0_+1 2 xQ?

thus
o) = (] 1
plor) =7 7+357 CEE
Taking o =¢/n, 7 = h/(e + 1), ,n € (0,h), we have

hn + %h2 —n? h?
= >
AR P P TR

1
>
-8

and, in addition, ¢(o,7) < 3h%/(2(c +n)?).
2) In this case

(0,7) o +1 +1 o? 1(h—5)2>0
=7(— =T - == .
PGT o1 2 2(c+1)2  2(c+1)

3) For 0 — 0, z, 7 fixed, we have @p(x,0) ~ 0, the asymptotics of pa(x,0)
is given in Lemma 6, 3) and

( ) 1 +1 +I+1
r,o,7)~T | —< =T
¥YB2\T, 0, IQ 92 IQ
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which yields that ¢p(z, 0, 7) behaves as a constant depending on z and 7.
4) For ¢ — oo, z, 7 fixed

el o) ~ (1ogx SRR 1>2) ,

oa(r,0) ~ 1/(30%2%) , Lemma 6,4), now @a(x,0) ~ 0,
T(1 z4+1
ep1(x,0,7) ~ — (27 i 1) = o(z,7)

T
with @(z,7) ~ (x + 1)72/(22%) as 7 — oo and p(x,7) ~ 72/(22%) as x — 0.
5) The main term here comes from ¢p, and p(x) = (z +1)/(22?). O

5.7 Non-existence of the histopolant

The chosen representation (5.12) of the quadratic/linear rational spline histopolant
shows that for its existence it is necessary and sufficient that the parameters M;,
Ai, p; satisfy a nonlinear system consisting of all equations (5.13) — (5.15) together
with two boundary conditions from (5.3) —(5.5). The elimination of parameters \;,
pi leads to the system of basic equations (5.26), therefore the parameters M; should
satisfy (5.26). If (5.26) has a solution then the parameters \;, p; are determined
from a linear system (see [23, 25]) which has always the unique solution. Thus,
the existence of solution for histopolating problem is equivalent to the existence
of solution for the system of basic equations.

We will show that it exists a strictly convex histogram based on uniform grid
such that the histopolating problem with quadratic/linear rational spline has no
solution regardless how the spline knots are chosen.

Let us refer to the equation (5.29) as (5.29,14), we need them for several values
of 7. Suppose that in the case of fixed uniform grid, for given D; > 0 for all ¢
it is possible to choose &; in such a way that the solution of basic system exists.
With the knots & we have also the numbers ¢;, 1;, ;. Consider the case D; — oo,
Diy =0, D9 —0, Diyy — 0, Diyo — 0 and suppose that there are always
appropriate knots & for the existence.

From D; — oo basing on (5.29,4) and positivity of ¢4 and pp we get

M;_, 1/3 o
8 M, < . ) . = — 00 5.32
2 2P A < M, - ( )
or
f M\ &, h
(5?_1Mi_1¢B (( M.1> , ; 11 5 ) — 0 (5‘33)

(the reasoning with third and forth summands in (5.29,14) is symmetrical). How-
ever, sometimes there is the need to consider subsequences but we keep simple
writings without sequence indices. From D;_; — 0 by (5.29,7 — 1) we obtain

. M*,g /3 Ei—3
83 M, < ’ ) , = —0 5.34
8 3A < M;_ i3 ( )

o4




and

M'_2 1/3 Ei—2 h
8 M, ! : — 0 5.35
i—2 2¥B ((Mz—1> ' Tz, Giz — ( )
and
. M; 1/3 Mi—1 h
83 M, : — -0 5.36
i—1 ¥YB <<M21> ) ci1 ) 51‘—1 ( )
and
Mi 13 ()
53 Myrpa << M+1) 7 Z) 0. (5.37)

Similar convergences we get from D; 5 — 0 and D;,; — 0, D; 5 — 0.
1) Assume (5.32). As d;_5 is bounded, it holds

M, 1/3 Ei—2
M, , . .
0 (( ) ) e (5.38)
la) Consider the case M;_5 < const. Then (5.38) gives
<Mi2> V8 €i—2 N
, 0.
oA My Ni—2

By Lemma 6 this yields M;_o/M;_1 — 0. Due to that by Lemma 7, 1),

Mi,Q 1/3 Ei—2 h >l 1
vB M; " iy Oia ) T8 (Mi2>2/3

M;_y

and (5.35) gives

82, MMM 0. (5.39)
We have also by Lemma 6
Mi—2 /3 Ei—9 1 < 1
pa M;_4 ’ 1i—2 ~ M, 2/3 — M;_, 2/3
e G
i1 M;

and the limit of the expression in (5.32) could be estimated by
1
551'3—2 M5 M — 0,
contradicting to (5.32).
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].b) Let MZ‘_Q — OQ.
1ba) Consider the case 0 < ¢; < M;_o/M;_1 < ¢y with some constants ¢; and

¢o. Then by Lemma 6 @4 ((Mi,g/Mi,l)l/‘n),Ei,g/m,z) is bounded from above
and (5.32) yields

(5?72 Mi_g — 0.

(5.40)
But by Lemma 7
<Mi—2>1/3 €i—a h ¢
, , — | ~ cons
vp My Ni—2 02
and (5.35) gives 67 , M;_ 5 — 0 which is contradicting to (5.40).
1bb) The case M; o/ M; 1 — 0 could be treated as 1a).
1bc) Assume M;_o/M; 1 — co. Then M;_1/M; 5 — 0. By Lemma 6, 2),
M;_ e Ei—2 ( )Mzel
oA M; 4 " Mo P M;_
and by (5.32)
5?72 MZ‘,1 99(0'2‘,2) — 00. (541)
If now 67 , M;_y > const > 0 then the counterpart of (5.36) obtained from
Di_g — 0 is
53 M, Mo\ mea ) (5.42)
i—9Vi—1¥B M1'72 ) €io ) 5172 .

with (by Lemma 7,1))
. M\ s, h S 1 1
P\, T g 0ia) T8 '
The convergence (5.42) gives

‘ M, 2/3
52y M- <> -0
2 M

which is a contradiction to 82 , M;_; > const > 0 and M;_o/M; 1 — o0o.
It remains to consider the case 67 , M;_; — 0 and ¢p(0;_2) — oo. Then
Oi—g — 0, €i—o — 0 and (p(O'i,Q) ~ — lOg Oi—9 = *lOg(Ei,Q/ni,Q). thllS7 by (541)7

6?_2 M, <—log Ei?) — 0.
Mi—2

(5.43)
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From (5.35) with the help of Lemma 7,2) we obtain

Sico MY MY5(h — ei-0)* = 0

i—

and, by ¢;_o — 0,

M,y \ 2P
(5;372 Mi—l <Mi_1> — 0.
Now, (5.43) and (5.44) give

— IOg O;—9

7]\4}72 273 — 00
My

and, in turn

Mo\ 23
N 1/3 _q< ’) N3
oo (M) ) ()

Mi—l Mi—l

In this case the asymptotics of ¢4 could be calculated as

Mi,g ) 1/3

1
M;_ 8 <Mi1
PA 7Mi—1 y Oi—2 | ~ M,

M;—

which in (5.32) yields

Mo\ 3
87 o M; 1 log <M 2) — 9,

i—1

giving contradiction to (5.44).
2) Assume (5.33).
2a) Let M;_; < const. Then

o (Mi1>1/3 €i—1 h NS
B ) )
M; Ti-1, dio1

which is possible only if M;_1/M; — 0 and, by Lemma 7,1), (5.33) gives

8 MM 0

7 7

From (5.36), using Lemma 7,2), we get

5 s s o)

f — 0.
0L

o7

(5.44)

(5.45)



Because of (5.45) this yields 7,_1 — h and ;1 > const > 0. The counterpart of
(5.34) obtained from D;;; — 0 implies via Lemma 6, 1)

Sioam?y M7 MR 0

(2

contradicting to (5.45).
2b) Let M; 1 — oo.
2ba) Consider the case M; < const, then M; 1/M; — co. Lemma 7,2) gives

o M; 1/ €i—1 L - 1 (h - 52'71)2
B ]\4Z } 'fh‘717 62',1 9 (Mi_1>1/3
0y | =

M;

and (5.33) then yields

Sy M3 MM 0, (5.46)

7

On the other hand, in (5.36)

Ly 2
SDB ( Ml >1/3 77;'71 h N hgi_l + §h — €’i71
M;_4 Teic1 i M;

2/3
52, (2
i—1 <M21>

iy M3 MM 0

2

which gives

contradicting to (5.46).

2bb) Suppose M; — oo.

2bba) Let 0 < ¢; < M;/M;_1 < ¢o. Then (5.33) implies §7 ; M, ; — oo and,
consequently, 62 | M; — oo. But (5.36) gives 67 ; M; — 0, contradiction.

2bbb) Let M; 1/M; — oc. This case leads to a contradiction as 2ba).

2bbce) Let M;_1/M; — 0. Now, similarly to 2ba), (5.33) leads to
iy M3 MY — 0 and (5.36) to 6,1 M3 M — .

We see that in all cases the existence of appropriate knots &; leads to a contra-
diction. With this we proved

Theorem 2. There is a strictly convex histogram on uniform mesh without any
possibility to choose spline knots so that quadratic/linear spline histopolant exists.

Remark 3. In [25] are given sufficient conditions for existence of the solution at
quadratic/linear rational spline histopolation. These conditions seem to be quite
restrictive to the quotients D;_1/D;. Heuristically the proof of Theorem 2 suggests
that if the solution exists then these quotients cannot be very small or great. This
is confirmed to a certain extent by the numerical experiments presented in the
following section.

Let us conclude the presentation of theoretical results with the section
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Main results

At cubic spline histopolation the existence of solution for the problem is described
in Proposition 3.

Results about periodic spline histopolation are given in Propositions 4 —7 with
Corollary 3 and summarized in Theorem 1.

Quadratic/linear rational spline histopolation defines histopolation functions
and their properties are presented in Lemmas 4—7. Theorem 2 formulates the
main results about non-existence of the histopolant.
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Chapter 6

Numerical results

6.1 Tests in Chapter 3

We histopolated the function f(z) = 1/2?, x € [-2,—0.1], on uniform grid for

n = 8 and central spline knots §; = (rii1+x:)/2,i = 2,...,n — 1. Histogram

heights were computed as z; = 7 f(z)dz,i=1,... ,n. Resulting histopolants
Ti—1

S are given in Figures 2-4:

500

[ —

400 —

I (b)

cubic spline histopolant, S”(a) = f"“(a), 8"(b) =
cubic spline interpolant, S”(a) = f"(a), S”(b) = f"(b)

300 —

200 —

100 —

-100 —

—200 : : : : - : - : - : - : : : : : : :

Figure 2: Cubic spline histopolant and interpolant for n = 8

In Figure 2 the histopolant with boundary conditions S”(a) = f"(a),
S"(b) = f"(b); in Figure 3 the histopolant with boundary conditions S’(a) = f’(a),
S’(b) = f'(b); in Figure 4 the histopolant with boundary conditions S(a) = f(a),
S(b) = f(b). In comparison also cubic spline interpolants are given satisfying
interpolation conditions S(z;) = f(x;),7=0,...,n.

Considering the representation used in Section 3.6 we tested the dependence
of eigenvalues of matrix A~'!BC~'D on grid points z; and spline knots &;. Again
the case n = 8 is analysed for different meshes.
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160
4 1
= fle) =
140 — X
cubic spline histopolant, S'(a) = f'(a), S'(b) = f'(b)
120 — cubic spline interpolant, S'(a) = f'(a), S'(b) = f'(b)
100
80
60 —|
40 —
20
0 —+—— - ==
-20 — —— 1 ——
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 o

Figure 3: Cubic spline histopolant and interpolant for n = 8

120
1
1 —- flo)y = =
100 o cubic spline histopolant, S(a) = f(a), S(b) = f(b)
1 cubic spline interpolant, S'(a) = f'(a), S'(b) = f'(b)
80 —
60 —
40 |
20
s
o I S
-20 : , : , : , . . . . . . : , . , : ,
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 —-0.86 —0.4 -0.2 (]

Figure 4: Cubic spline histopolant and interpolant for n = 8

1) Uniform grid z; = a + ih, i = 0,...,n, and spline knots & = (z,-1 + ;)/2,
i=2,...,n—1, give the maximal by modulus eigenvalue |A\yax|= 0.271.

2) For uniform histogram grid z; = a 4+ ih, i = 0,...,n, and spline knots & =
(xi_l + ZL’Z)/Q, 1= 2,3,6,7, §4 = 01[[3 + 0.91'4, 65 = 09[E4 + 011’5 (€4 and 55
are close to z4) it holds |An.x|= 2.388.

3) For uniform grid z; = a + ih, i = 0,...,n, spline knots & = (x;_1 + 2;)/2,
i=2,3,6,7, & = 0.923 + 0.1z4, & = 0.1x4 + 0.925 (& and & are close to 3
and x5, respectively) it holds |Apax|= 0.803.

4) Take h = (b—a)/n, h; =0.1h, i =1,3,5,7, h; = 1.9h, i = 2,4, 6,8, and central
spline knots & = (z;-1 +;)/2, i =2,...,n — 1, then |Apnax|= 0.241.
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1
=
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Figure 5: Cubic spline histopolant for n = 32

Construction of histopolating cubic spline could be done using second deriva-
tives M; and particular integrals );, p;. The crucial moment here is the solution
of system (3.20). In case of diagonal dominance in the matrix of (3.20) standard
methods (e.g., Gaussian elimination) are stable. In absence of diagonal dominance
it may be that other methods should be applied. One way to continue is to solve
the system determining parameters );, p;. Another natural way is to solve system
(3.26) where the matrix C' has diagonal dominance. An opportunity is to use an
iteration process described in Section 3.6 to determine either second derivatives or
spline values and then the others by (3.23) or (3.26) with a matrix having diagonal
dominance. We have seen above in this section that the convergence may be slow
or be absent at all. In return, in the presence of convergence, the calculations at
interation are stable.

Numerical tests with the function 1/2% confirmed the known fact that polyno-
mial splines (at interpolation or histopolation) do not preserve geometrical proper-
ties like positivity, monotonicity, convexity. However, increasing the number n of
knots, the cubic spline histopolant occurs to have these properties because of the
uniform convergence of values, first and second derivatives (see Figure 5). For the
cubic spline histopolant this follows from the uniform convergence (see, e.g., [1])
of first, second and third derivatives of interpolating quartic splines in equivalent
problem as described in Chapter 1.

6.2 Tests in Chapter 4

We tested the case m = 3 (cubic splines) with n = 4 to check the validity of
Conjecture. For arbitrary values of h; = 1,...,4, Taylor representation was used.
The symbolic computations showed that, in this case, the Conjecture is true.
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6.3 Tests in Chapter 5

In this section we illustrate obtained theoretical results with particular examples.
All histograms are based on uniform mesh in the interval [a,b] with a = —2, b = 2,
h=(b—a)/8, z; = a+ih, i =0,...,8. The boundary conditions are given by fixed
M, = 5"(a) =1 and Mg = S”(b) = 1. In addition, we fix z; = zg = 1. Assume
that there are given Ds, ..., D7 corresponding to the interior knots &, .. ., & of the
quadratic/linear rational spline S. In each example we indicated how the knots
& and values D; are chosen, however, except the common choice of & = a and
£ =10.

In tests we used Matlab software at solving the system of basic equations and
also at solving the linear system to determine the parameters \;, p;.

Remark 4. For chosen knots x;, & and values D;, My, M, we may form the
system of basic equations. If this has the solution then solving an appropriate
linear system (using z1, z,), see [25], we determine the parameters \;, p;. Now
(5.15) allows to calculate the values z; and get all initial data needed to pose the
histopolation problem with quadratic/linear rational splines.

Example 1. We take

fi = (I,;l +£UZ)/2, 1= 27...,77 DQ = D3 = D5 = D6 = D7 = h3, D4 = Ch37 with
a parameter ¢ > 0. The influence of ¢ to the values M; is reflected by following
results.

Table 1 Results for ¢ = 0.5 in Example 1.

i 1 2 3 4 5 6 7 8
D; 1/8 1/8 1/16 1/8 1/8 1/8

M; 1 0.373 0.860 0.101 0.807 0.441 0.448 1

Table 2 Results for ¢ = 2 in Example 1.

i 1 2 3 4 5 6 7 8
D; 1/8 1/8 1/4 1/8 1/8 /3

M; 1 0.506 0.262 2.338 0.244 0.668 0.401 1
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Table 3 Results for ¢ = 5.6 in Example 1.

i 1 2 3 4 5 6 7 8

D; 1/8 1/8 7/10 1/8 1/8 1/8
M; 1 0918 00005 379.97  0.0002 1.887 0298 1

The used Matlab software could not solve the system of basic equations for
c=2>5.7.

f\\ //
HERN /

N yd

.- 5 o o

.5 1 1.5 2

-2 -1.5 -1 -0.

Figure 6: Histogram and histopolant for ¢ = 1.7 in Example 1.

Additional tests show that for ¢ = 3 we get 24, 25 < 0; forc =4 z3, 24, 25 < 0;
forc=5and c=5.6 29, 23, 24, 25 <O.
We see that the influence of ¢ to the histopolant is remarkable.

Remark 5. The system consisting of basic equations and two boundary conditions
is homogeneous in the sense that if we multiply all values z; and data «, § in
boundary conditions by a number A # 0 then the solution of obtained system is
the multiple by A of the solution for initial system. Thus, considering ¢ — oo
with D; = ¢'/2h3, D; = h3/c'/?, i = 2,3,5,6,7, 21 = 2 = 1/c'/?, we arrive to
the case Dy — 00, D3 — 0, Dy — 0, D5 — 0, Dg — 0, which was the starting
assumption in the proof of Theorem 2. So the numerical results are consistent
with the theoretical results about the existence of solution.

Example 2. Let Dy = h3, D3 = h®/c, Dy = ch®, D5 = h®/c, Dg = Dy = h? with
¢ =1.7. Take first & = (v;_1 +x;)/2, i =2,...,7. The results are in Table 4 and
in Figure 7.
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Table 4 Results for & = (x;_1 + 2;)/2 in Example 2.

i 1 2 3 4 ) 6 7 8
i/ 2 1 1 1 1 1 1/2

M; 1 0.653 0.063 4.169 0.055 0.994 0.358 1

AN /

s ] <
s ] ™~ A 4

0.2 o

Figure 7: Histogram and histopolant in Example 2 for Table 4.

It is natural to ask how the replacement of knots &; influence the histopolant.
Let us shift 1) & and & closer to & (no/e3 =9, na/es = 1/9); 2) £2,83,&5 and &
farther from & (n1/e2 = 1/9, m2/e3 = 1/99, na/es =99, 15/e6 = 9).

Table 5 Results where &3 and &5 are shifted closer to &4 in Example 2.

i 1 2 3 4 5 6 7 3
£:/Mi 2 0.556 0.2 ) 1.8 1 0.5

M; 1 0.605 0.065 8.309 0.053 0.878 0.371 1

Table 6 Results where &, &3, & and & are shifted farther from &, in Example 2.

i 1 2 3 4 5 6 7 8
£:/M; 10 90 1.98 0.505 0.011 0.2 0.5

M; 1 1.396 0.059 2.669 0.057 2.606 0.179 1
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1.4

7] \\ L/

Figure 8: Histogram and histopolant in Example 2 for Table 6.

We see by the presented results that the replacement of knots & has relatively
mild influence to the histopolant. This was confirmed also by our other numerous
tests.
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Summary in Estonian

Splainidega lahendamine

Interpoleerimine on iiks tdhtsamatest vahenditest funktsioonide ligikaudseks taas-
tamiseks diskreetse andmestiku korral. Ajalooliselt iiks esimesi lahendavaid funk-
tsioone olid poliinoomid. Splainide kui tiikiti poliinoomide uurimise alguseks
loetakse 20. sajandi keskpaika. Esimeseks tahtsamaks t66ks loetakse Schonbergi
1946. aastal avaldatud artiklit [68]. Tiikiti poliinomiaalsete funktsioonide ka-
sutamine ldhenditena oli edukas inseneriteadustes, samuti majanduses, fltisikas,
statistikas. Nende funktsioonidega on lihtne arvutada, samuti on neid lihtne
salvestada arvuti malus. Uks tihtsamaid rakendusi on siin koverate ja pindade
konstrueerimine nateks auto-ja lennukitoostuses.

Dissertatsioonis kasitletakse pohiliselt histopoleerimistilesandeid. Vorreldes in-
terpoleerimisiilesannetega on histopoleerimisiilesanded tihti palju praktilisemad,
sest naiteks statistiline informatsioon on enamasti antud histogrammidena.

On teada, et antud histopoleerimisiilesande korral saab moodustada samal
vorgul madratud interpoleerimisiilesande, kusjuures interpoleerimisiilesande la-
hendi tuletis on histopoleerimisiilesande lahend. Ka vastupidi, antud interpoleer-
imisiilesande korral saab piistitada sama vorguga histopoleerimisiilesande ning
saadud histopoleerimisiilesande lahendist voetud integraal on interpoleerimisiiles-
ande lahend. Seega on iihte tiiiipi iilesande uurimisel saadud tulemustest kohe
leitavad ka teist tiiiipi iilesande kohta kéaivad tulemused. Selline késitlus on sobiv
poliinomiaalsete splainide uurimisel, aga mitte ratsionaalsplainide korral. Néaiteks
ei ole ruut/lineaar ratsionaalsplaini tuletis lineaar/lineaar ratsionaalsplain,
samuti ei ole lineaar/lineaar ratsionaalsplaini integraal ruut/lineaar ratsionaal-
splain. Niisiis, kui on olemas sobiv interpoleerimise teooria ratsionaalsplainide
jaoks, tuleb ikkagi kasitleda eraldi ratsionaalsplainidega histopoleerimist. Eelkoige
just selleparast on kéesolevas dissertatsioonis uuritud ratsionaalsplainidega
histopoleerimist.

Dissertatsiooni pohimaterjal on esitatud kuues peatiikis.

Esimeses peatiikis, mis on sissejuhatus, antakse iilevaade antud temaatikaga
seotud toodest. Puudutatakse interpoleerimist ja histopoleerimist splainidega,
samuti diferentsiaalvorrandite lahendamist splainide abil. Viimasel juhul on tegem-
ist rajatlilesannete korral projektsioonimeetoditega, kus kasutatakse interpolatiooni-
projektoreid, mis vastavad kollokatsioonimeetodile, voi histopolatsiooniprojekto-
reid, mis vastavad osapiirkondade meetodile. Uksikasjalikult on kasitletud inter-
poleerimise ja histopoleerimise vahekorda.
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Peatiikis 2 tuuakse lineaar/lineaar ja ruut/lineaar ratsionaalsplaini moisted.
Toestatakse tulemused histogrammi monotoonsuse ja kumeruse kohta soltuvalt
histogrammi tekitava funktsiooni omadustest.

Peatiikis 3 vaadeldakse kuupsplainidega histopoleerimist. Seda ei taandata
kvartsplainidega interpoleerimise teooriale, seeparast voib sellist kasitlust nimetada
ka ilmutatud teooriaks. Splain esitatakse teiste momentide ehk teiste tuletiste
abil splaini solmedes. Lisaks on veel esitusparameetriteks integraalid splainist
osaloikude osadel. Osaintegraalide elimineerimisel vorranditest, mis méaéravad
histopoleerimisiilesande lahendi, saadakse teiste momentide suhtes lineaarne
stisteem. Olenevalt splaini solmede valikust (need asuvad histogrammi solmede
vahel) voib selle siisteemi maatriksi peadiagonaal alla domineeriv ridade kaupa voi
mitte. Sellele vaatamata on histopoleerimisiilesanne alati iiheselt lahenduv. On
kasitletud ka teist esitust teiste momentide ja splaini vadrtuste kaudu solmedes.
Vastavate stisteemide lahendamiseks sobib interatsioonimeetod , mille koondumine
ja selle kiirus soltub splaini solmede valikust . Peatiiki tulemused on publitseeritud
artiklis [33].

Peatiikis 4 vaadeldakse suvalist jarku poliinoomiaalsete perioodiliste splainidega
histopoleerimist. Splaini ja histogrammi solmed langevad kokku, aga need
voivad paikneda suvaliselt. Peamine probleem, mida lahendatakse, on histopolat-
siooniiilesande lahendi olemasolu ja tihesus. Varasemates toodes on sellele antud
terviklik vastus iihtlase vorgu korral. Need koik jarelduvad selles peatiikis esitatud
tulemustest. On toestatud, et lahend on olemas ja tihene, kui 1) splaini aste on
paarisarv ; 2) splaini aste ja osaldikude arv on mélemad paaritud. On néidatud,
et lahend ei ole iithene (kui eksisteerib) voi ei eksisteeri, kui 1) splaini aste on 1
ja osaloikude arv on paaris; 2) splaini aste on paaritu arv ja osaldikude arv on 2.
Esitatakse hiipotees, et lahend ei ole iihene voi ei eksisteeri, kui splaini aste on
paaritu arv ja osaldikude arv on paarisarv. Naidatakse, et kui lahend ei ole iihene,
siis histopolatsioonioperaatori tuum on ithedimensionaalne. Peatiiki tulemused on
publitseeritud artiklis [56].

Peatiikk 5 on piihendatud ruut/lineaar ratsionaalsplainidega histopoleeri-
misele. Ruut/ lineaar ratsionaalsplainid klassist C? on rangelt kumerad voi rangelt
nogusad. Seepéarast on loomulik eeldada, et histopoleerimisiilesandes antud his-
togramm on rangelt kumer . Splaini solmed valitakse histogrammi s6lmede vahel,
selline oli olukord ka kuupsplainidega histopoleerimisel peatiikis 3. Ka siin nagu
eelmises peatiikis on pohiprobleemiks lahendi olemasolu kiisimus. Vabadus splaini
solmede valikus naib suure paindlikkusena, kuid selgus, et on olemas rangelt kumer
histogramm, kus histopoleerimisiilesandel ei ole lahendit ithegi splaini solmede va-
liku korral. Selle peatiiki tulemuste saamisel taandati probleem nn. baasvorrandite
mittelineaarse siisteemi lahendi olemasolule.

Selleks tuli pohjalikult uurida baasvorrandite siisteemis esinevate histopoleeri-
misfunktsinoonide kéitumist, milles ilmnes mondagi ootamatut. Peatiiki 5 tule-
mused on vormistatud artikliks [34] ning esitatud publitseerimiseks.

Peatiikis 6 on toodud eelnevates peatiikkides késitletud iilesannete naiteid,
mille kohta on arvutil tehtud testid. Peatiikis 4 toodud hiipoteesi on kontrollitud
kuupsplainide korral, kus osaloikude arv on 4. Peatiikkide 3 ja 5 kohta tehtud
testid on illustreerivad ja kooskodlas teoreetliste tulemustega.

73



Acknowledgments

Undertaking this Ph.D has been a truly life-changing experience for me and it
would not have been possible to do without the support and guidance that I re-
ceived from many people.

I would like to express my special appreciation and gratitude to my supervisor
Professor Peeter Oja, who made this work possible. His friendly guidance, pa-
tience, and expert advice have been invaluable throughout all stages of my studies,
research work and writing of this dissertation.

I would also wish to express my gratitude to Evely Kirsiaed for her kind sup-
port which has contributed greatly to the improvement of this dissertation.

I would like to thank my fellow doctoral students for their feedback, coopera-
tion and of course friendship. In addition, I would like to express my gratitude
to the staff, very thank-full to the office of the secretary of the institute and the
faculty who provided their friendly help and advice on many occasions.

Last but not the least, I would like to thank my family: my mother, to my
wife and friends for supporting me spiritually throughout my studies, writing this
dissertation and my life in general.

Finally, in the publication of this dissertation, I gratefully acknowledge the funding
received by the Estonian Science Foundation Grant and by institutional research
funding IUT20-57 of the Estonian Ministry of Education and Research. I also give
my gratitude to the Estonian Doctoral School of Mathematics and Statistics who
financially support my conferences, seminars and publications.

74



Curriculum Vitae

Gul Wali Shah

Born: Febuary 2, 1980, Jamrud, Pakistan

Citizenship: Pakistani

Address: Institute of Mathematics and Statistics, J.Liivi 2, 50409 Tartu, Estonia
Phone: +372 737 5863, 737 5453

E-mail :gulwaliQut.ee, ltmsQut.ee

Education
1984 — 1997  Primary and High School (Science group) in Jamrud, Khyber
1997 — 1999  Secondary School Education, Degree College, Landi Kotal

2000 — 2002  Degree College, Landi Kotal
Bachelor degree in mathematics and statistics

2002 — 2005  Department of Mathematics, University of Peshawar
Master degree

2012 — 2014  Faculty of Basic Sciences, Peshawar
Master degree in applied mathematics

2015 — 2019  Institute of Mathematics and Statistics, University of Tartu,
PhD student in applied mathematics

Professional Education

2009 — 2012 Institute of Management Sciences, Hayatabad, Peshawar
Master in business administration

2013 — 2014  Allama Igbal Open University, Islamabad
Bachelor in education

75



Professional Employment

2005 — 2011 Degree College Jamrud, teacher of mathematics

2011 — 2012 Post-graduate College Mana Sciences, Jamrud
teacher of mathematics

2012 — 2013 Institute of Computer and Management Sciences, Hayatabad
teacher of mathematics

Feb—Jun 2018 Institute of Computer Science, University of Tartu,
teacher of mathematics

Conferences Attended

13" International Conference on Statistical Science, March 16-18, 2015,
Peshawar, Pakistan,

21%* International Conference on Mathematical Modelling and Analysis,
June 1-4, 2016, Tartu, Estonia,

2214 International Conference on Mathematical Modelling and Analysis,
May 30-June 2, 2017, Druskininkai, Lithuania,

23" International Conference on Mathematical Modelling and Analysis
May 29-June 1, 2018, Sigulda, Latvia,

Workshop “Series of lectures on waves and imaging (I)”, June 14-15, 2018,
ETH Zurich, Switzerland,

4™ Tnternational conference on Optimization and Analysis of Structure,
August 21-23, 2018, Tartu Estonia.

76



Elulookirjeldus

Gul Wali Shah

Stinniaeg ja koht: 2. veebruar 1980, Jamrud, Pakistan

Kodakondsus: Pakistan

Aadress: TU matemaatika ja statistika instituut, J.Liivi 2, 50409 Tartu, Eesti
Telefon: 4372 737 5863, 737 5453

E-kiri: gulwali@Qut.ee, ltmsQut.ee

Haridus

1984 — 1997  Pohi -ja keskkool, Jamrud, Khyber
1997 — 1999  Giimnaasium, Degree College, Landi Kotal

2000 — 2002 Kraadioppe Kolledz, Landi Kotal
baccalaureuse kraad matemaatikas ja statistikas

2002 — 2005 Matemaatika osakond, Peshawari iilikool
magistrikraad

2012 — 2014 Baasteaduste teaduskond, Peshawar
magistrikraad rakendusmatemaatikas

2015 — 2019 Tartu Ulikool, matemaatika ja statistika instituut
doktorioppe tliopilane matemaatika erialal

Erialane koolitus

2009 — 2012  Juhtimisteaduste instituut, Hayatabad, Peshawar
magister arijuhtimises

2013 — 2014  Allama Igbali avatud iilikool, Islamabad
bakalaureus kasvatusteadustes

7



Teenistuskaik

2005 — 2011 Kraadioppe Kolledz, Jamrud
matemaatika opetaja

2011 — 2012 Kraadioppe Juhtimisteaduste Kolledz, Jamrud
matemaatika Gpetaja

2012 — 2013 arvuti -ja juhtimisteaduste instituut, Hayatabd
matemaatika opetaja

Feb—Jun 2018 Tartu Ulikooli, arvutiteaduse instituut
matemaatika opetaja

Teadustegevus

Peamine uurimisvaldkond on splainidega lahendusmeetodid. Tulemused dissertat-
siooni teemal on ilmunud kahes teadusartiklis ja tliks artikkel on esitatud publit-
seerimiseks. varem on ilmunud artikkel teisest valdkonnast konverentsikogumikus.
Votnud osa ja esinenud ettekandega jargmistel konverentsidel:

“13th International Conference on Statistical Science” March 16-18, 2015,
Peshawar, Pakistan,

“21% International Conference on Mathematical Modelling and Analysis”
June 1-4, 2016, Tartu, Estonia,

“22d Tnternational Conference on Mathematical Modelling and Analysis”
May 30-June 2, 2017, Druskininkai, Lithuania,

“23' International Conference on Mathematical Modelling and Analysis”
May 29-June 1, 2018, Sigulda, Latvia,

Workshop “Series of lectures on waves and imaging (I)” June 14-15, 2018,
ETH Zurich, Switzerland,

“4th International conference on Optimization and Analysis of Structure”
August 21-23, 2018, Tartu Estonia.

78



List of Publications

1) E. Kirsiaed, P. Oja, and G. W. Shah, Cubic spline histopolation. Math.
Model. Anal., 22(2017), 514-527.

2) P. Ojaand G. W. Shah, Periodic polynomial spline histopolation, Proc.Est.Acad.
Sci., 67(2018), 246-251.

3) E. Kirsiaed, P. Oja, and G. W. Shah, Rational spline histopolation of convex
data (submitted).

79



10.

11.

12.

13.

14.

15.
16.

17.
18.
19.
20.

21.
22.

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical
tubes and circular discs. Tartu, 1991, 23 p.

Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,
1991, 14 p.

Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,
1992, 47 p.

Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,
1992, 15 p.

Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.

Jiiri Majak. Optimization of plastic axisymmetric plates and shells in the
case of Von Mises yield condition. Tartu, 1992, 32 p.

Ants Aasma. Matrix transformations of summability and absolute summa-
bility fields of matrix methods. Tartu, 1993, 32 p.

Helle Hein. Optimization of plastic axisymmetric plates and shells with
piece-wise constant thickness. Tartu, 1993, 28 p.

Toomas Kiho. Study of optimality of iterated Lavrentiev method and
its generalizations. Tartu, 1994, 23 p.

Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-
tive linear functionals. Tartu, 1995, 165 p.

Toomas Lepikult. Automated calculation of dynamically loaded rigid-
plastic structures. Tartu, 1995, 93 p, (in Russian).

Sander Hannus. Parametrical optimization of the plastic cylindrical shells
by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
Mirt Poldvere. Subspaces of Banach spaces having Phelps’ uniqueness
property. Tartu, 1999, 74 p.

Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence
spaces. Tartu, 1999, 72 p.

Krista Fischer. Structural mean models for analyzing the effect of
compliance in clinical trials. Tartu, 1999, 124 p.

Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

Jiiri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.

Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
Kaili Miiiirisep. Eesti keele arvutigrammatika: siintaks. Tartu, 2000, 107 lk.

80



23.

24.

25.

26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Varmo Vene. Categorical programming with inductive and coinductive
types. Tartu, 2000, 116 p.

Olga Sokratova. Q-rings, their flat and projective acts with some appli-
cations. Tartu, 2000, 120 p.

Maria Zeltser. Investigation of double sequence spaces by soft and hard
analitical methods. Tartu, 2001, 154 p.

Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline iihesta-
mine. Tartu, 2001, 138 p.

Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.

Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.

T606 kaitsmata.

Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,
2003. 100 p.

Olga Dunajeva. Asymptotic matrix methods in statistical inference
problems. Tartu 2003. 78 p.

Mare Tarang. Stability of the spline collocation method for volterra
integro-differential equations. Tartu 2004. 90 p.

Tatjana Nahtman. Permutation invariance and reparameterizations in
linear models. Tartu 2004. 91 p.

Mirt Méls. Linear mixed models with equivalent predictors. Tartu 2004.
70 p.

Kristiina Hakk. Approximation methods for weakly singular integral
equations with discontinuous coefficients. Tartu 2004, 137 p.

Meelis Kéairik. Fitting sets to probability distributions. Tartu 2005, 90 p.
Inga Parts. Piecewise polynomial collocation methods for solving weakly
singular integro-differential equations. Tartu 2005, 140 p.

Natalia Saealle. Convergence and summability with speed of functional
series. Tartu 2005, 91 p.

Tanel Kaart. The reliability of linear mixed models in genetic studies.
Tartu 2006, 124 p.

Kadre Torn. Shear and bending response of inelastic structures to dynamic
load. Tartu 2006, 142 p.

Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

Annely Miirk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

Annemai Raidjoe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.

81



49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Hirmel Nestra. [teratively defined transfinite trace semantics and program
slicing with respect to them. Tartu 2006, 116 p.

Margus Pihlak. Approximation of multivariate distribution functions.
Tartu 2007, 82 p.

Ene Kiirik. Handling dropouts in repeated measurements using copulas.
Tartu 2007, 99 p.

Artur Sepp. Affine models in mathematical finance: an analytical approach.
Tartu 2007, 147 p.

Marina Issakova. Solving of linear equations, linear inequalities and
systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

Kaja Sostra. Restriction estimator for domains. Tartu 2007, 104 p.

Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

Evely Leetma. Solution of smoothing problems with obstacles. Tartu
2009, 81 p.

Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model
with heavy-tailed claims. Tartu 2009, 139 p.

Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

Indrek Zolk. The commuting bounded approximation property of Banach
spaces. Tartu 2010, 107 p.

Jiiri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral
Equations with Singularities. Tartu 2010, 134 p.

Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

Mark FiSel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

Olga Liivapuu. Graded g-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.

82



72.

73.

74.

75.

76.

77.

78.
79.

80.
81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

Margus Treumuth. A Framework for Asynchronous Dialogue Systems:
Concepts, Issues and Design Aspects. Tartu 2011, 95 p.

Dmitri Lepp. Solving simplification problems in the domain of exponents,
monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

NadeZda Bazunova. Differential calculus d® =0 on binary and ternary
associative algebras. Tartu 2011, 99 p.

Natalja Lepik. Estimation of domains under restrictions built upon gene-
ralized regression and synthetic estimators. Tartu 2011, 133 p.

Bingsheng Zhang. Efficient cryptographic protocols for secure and private
remote databases. Tartu 2011, 206 p.

Reina Uba. Merging business process models. Tartu 2011, 166 p.

Uuno Puus. Structural performance as a success factor in software
development projects — Estonian experience. Tartu 2012, 106 p.

Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.
Georg Singer. Web search engines and complex information needs. Tartu
2012, 218 p.

Vitali RetSnoi. Vector fields and Lie group representations. Tartu 2012,
108 p.

Dan Bogdanov. Sharemind: programmable secure computations with
practical applications. Tartu 2013, 191 p.

Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu
2013, 151 p.

Erge Ideon. Rational spline collocation for boundary value problems.
Tartu, 2013, 111 p.

Esta Kéago. Natural vibrations of elastic stepped plates with cracks. Tartu,
2013, 114 p.

Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language
development in enterprise information systems. Tartu, 2013, 151 p.

Boriss Vlassov. Optimization of stepped plates in the case of smooth yield
surfaces. Tartu, 2013, 104 p.

Elina Safiulina. Parallel and semiparallel space-like submanifolds of low
dimension in pseudo-Euclidean space. Tartu, 2013, 85 p.

Raivo Kolde. Methods for re-using public gene expression data. Tartu,
2014, 121 p.

Vladimir Sor. Statistical Approach for Memory Leak Detection in Java
Applications. Tartu, 2014, 155 p.

Naved Ahmed. Deriving Security Requirements from Business Process
Models. Tartu, 2014, 171 p.

Kerli Orav-Puurand. Central Part Interpolation Schemes for Weakly
Singular Integral Equations. Tartu, 2014, 109 p.

Liina Kamm. Privacy-preserving statistical analysis using secure multi-
party computation. Tartu, 2015, 201 p.

83



95.

96.
97.

98.
99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

Kaido Litt. Singular fractional differential equations and cordial Volterra
integral operators. Tartu, 2015, 93 p.

Oleg Kosik. Categorical equivalence in algebra. Tartu, 2015, 84 p.

Kati Ain. Compactness and null sequences defined by ¢, spaces. Tartu,
2015, 90 p.

Helle Hallik. Rational spline histopolation. Tartu, 2015, 100 p.

Johann Langemets. Geometrical structure in diameter 2 Banach spaces.
Tartu, 2015, 132 p.

Abel Armas Cervantes. Diagnosing Behavioral Differences between
Business Process Models. Tartu, 2015, 193 p.

Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:
An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

Md Raknuzzaman. Noncommutative Galois Extension Approach to
Ternary Grassmann Algebra and Graded g-Differential Algebra. Tartu,
2016, 110 p.

Alexander Liyvapuu. Natural vibrations of elastic stepped arches with
cracks. Tartu, 2016, 110 p.

Julia Polikarpus. Elastic plastic analysis and optimization of axisym-
metric plates. Tartu, 2016, 114 p.

Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

Tiina Kraav. Stability of elastic stepped beams with cracks. Tartu, 2017,
126 p.

Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

84



117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

Silja Veidenberg. Lifting bounded approximation properties from Banach
spaces to their dual spaces. Tartu, 2017, 112 p.

Liivika Tee. Stochastic Chain-Ladder Methods in Non-Life Insurance.
Tartu, 2017, 110 p.

Ulo Reimaa. Non-unital Morita equivalence in a bicategorical setting.
Tartu, 2017, 86 p.

Rauni Lillemets. Generating Systems of Sets and Sequences. Tartu, 2017,
181 p.

Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

Eno Tonisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

Kaur Lumiste. Improving accuracy of survey estimators by using
auxiliary information in data collection and estimation stages. Tartu, 2018,
112 p.

Paul Tammo. Closed maximal regular one-sided ideals in topological
algebras. Tartu, 2018, 112 p.

Mart Kals. Computational and statistical methods for DNA sequencing
data analysis and applications in the Estonian Biobank cohort. Tartu,
2018, 174 p.

Annika Krutto. Empirical Cumulant Function Based Parameter Estima-
tion in Stable Distributions. Tartu, 2019, 140 p.

Kristi Lill. Risk scores and their predictive ability for common complex
diseases. Tartu, 2019, 118 p.





