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INTRODUCTION
The topic of this  thesis  is  Discovering Entities  in Process Execution Logs.  The 

thesis is written in the frames of the Artifact-Centric Service Interoperation (ACSI) project. 

The goal of this project is to enable faster, smoother Internet services to be provided by 

developing new techniques and tools. 

Process mining techniques are used to analyze the new systems and tools on which 

the project focuses. Computer scientists have developed various methods to process large 

amounts of data in order to extract useful knowledge from it. These methods are called 

data  mining.  Process  mining  is  a  branch  of  data  mining  and  is  based  on  extracting 

meaningful knowledge from the event logs. 

The contribution  of  this  thesis  is  to  develop  and implement  a  new method  for 

discovering entities and candidate artifacts in the event logs. An artifact describes a class 

of similar objects [7], e.g., all purchase orders in a particular shop. This method would 

make it possible to use the existing process mining methods, such as life cycle discovery 

(to build an artifact model), conformance checking (against an existing model) etc., for the 

analysis of the artifact-centric models. In addition, this would allow the development of 

new types of analysis such as conformance checking of the artifact structure. For example, 

one of the tools developed in relation to the ACSI project is the conformance checker, 

which will be responsible for checking the conformance of Internet services against the 

artifact-centric  business  process  models.  Discovering entities  in  process  execution  logs 

(event logs) is a part of this conformance checker.

The new method should perform the following tasks. Firstly,  the method should 

take raw logs in the format of XES as input and extract event type tables from the logs. 

Secondly, the method should find the candidate keys for these tables. After that, the user is  

asked to choose a primary key from the set of candidate keys for each table.  After the 

primary keys have been selected, the method should group together the event types that 

share the same primary keys and integrate them into one entity. Finally, the method should 

show the formed entities to the user as output.

The set of entities formed by the new method will be a set of candidate artifacts. 

Other methods can be used to decide which are the most important ones or input from the 

user can be given. In practice it is partly subjective which entities are considered important 

enough to become artifacts. Heuristics can be used which require additional analysis, such 

as discovering relationships between the entities. Also, input from the user can be asked. 
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After the main entities (called primary entities) become artifacts, the rest of the entities 

(called secondary entities) can be joined with one or more of these artifacts. The process of 

choosing the artifacts is outside of the scope of this thesis. 

The new method that is presented in this thesis is implemented as a plug-in for 

ProM, written in the Java programming language. ProM [14] is a generic open-source Java 

framework  for  implementing  process  mining  algorithms  as  plug-ins.  It  also  uses  open 

source implementation of TANE algorithm [8], which will be used for finding functional 

dependencies and candidate keys.

The thesis is divided into four chapters. In the first chapter, the relevant terms are 

explained, the used implementation framework is introduced and the example of a CD-

shop that is also used for testing the method is described. In the second chapter, the tasks 

of the new method are explained in detail. In the third chapter, the implementation of the 

method is described. In the last chapter, the results from testing the method are analysed.
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1. BACKGROUND
1.1. Process Mining

Data mining is a collection of a wide variety of techniques for examining large 

preexisting databases  in order  to  generate  new information  [9].  Process mining is  data 

mining of event logs instead of databases. This means process mining is a collection of 

techniques that enable the analysis and improvement of business processes based on event 

logs. 

Event logs store some information about the execution of processes. A process is a 

series of actions taken in order to achieve a particular result. The workflow is the sequence 

of processes through which a piece of work passes from initiation to completion [9]. A 

workflow management system is a computer system that manages and defines a series of 

activities to produce the final outcome. Workflow management systems can also record the 

information about the execution of the activities into event logs. 

Some reasons why the process mining is useful to businesses are new legislation 

that  is  forcing  organizations  to  follow  their  business  activities  more  closely  and  the 

constant pressure to improve the performance and efficiency of business processes [1].

Process mining can be used for reverse engineering the business model from logs 

and to analyze  and improve the overall  workflow and remove the bottlenecks.  Process 

mining  can  also  be  used  for  social  networking  discovery  to  find  the  connection  and 

interaction patterns between people, to assign potential roles to them and to divide these 

people  into  groups.  Process  mining  can  also  be  used  for  conformance  checking  and 

auditing  the  already  existing  business  model  against  the  event  logs.  The  purpose  of 

conformance checking is to ascertain the conformance of the execution log of an existing 

system with respect to a given model and to pinpoint deviations between the logs and the 

model [15].

1.2. CD-Shop Example
In this  section,  we are going to introduce an example,  which will later be used 

throughout the thesis as a running example. Let us describe a common process in an online 

CD-shop, when the customer buys music from it. At first, the customer places a purchase 

order and it gets either approved or rejected. If approved, the required CDs are ordered 

from the  suppliers  (material  orders)  and  in  the  end,  these  items  are  delivered  to  the 

customer.  CDs from purchase  orders  can  be  split  between multiple  material  orders.  If 
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supplier cannot successfully complete the material order then material orders can either be 

reordered or canceled.  

This CD-shop example [2] is also used in the ACSI project. Additionally,  there 

exists a set of artificially generated process execution logs based on this online CD-shop 

example.  These  logs  are  suitable  for  testing  the  new method.  More  information  about 

generating the logs can be found in section 4.2.

1.3. Event Logs
As mentioned above, event logs [4] store some information about the execution of 

processes.  An event  log  records  events  from a  certain  process  or  processes.  An event 

reflects an execution of an activity associated with the process. A process instance, i.e. a 

case, describes one execution of a process. For example let us have a process as shown 

informally  on  figure  1.1.  A  specific  process  instance  can  for  example  describe  the 

following: Customer John Smith orders 2 CDs, but as he does not pay for them within the 

required period of time, the order is canceled.

Figure 1.1. Example of a process in the CD-shop.

The events of a process instance are grouped as a single conceptual entity called a 

trace [15]. An example of a trace containing four events can be the following: 1) Customer 

orders a CD. 2) Customer pays for the order. 3) The CD is transported from the storehouse 

to the shop. 4) The CD is delivered to the customer. This order of events is usually defined 
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by  the  timestamp  attribute  (if  timestamp  is  present  for  these  events).  The  timestamp 

contains the occurring date and time for a single event.

There are some common attributes for events. One of them is the timestamp and 

there are also event type and resource. The event type determines the activity and its state 

(e.g.  “creating  new request  completed”  or  “done saving file”).  Resource  is  simply  the 

executor of the process: either the user of the system or the system itself.

Traditional  process mining is  process-centric  and it  assumes that the event  logs 

belong to  a  single  process  and are  organized  in  cases  where  each  case  describes  one 

execution of the process. For artifact-centric process mining, it is not required for event 

logs to be organized into cases. If the event logs are not organized into cases and are in one 

trace, then we call these logs raw logs.

There are two log formats for ProM: the XES and its ancestor MXML. These log 

formats were created to standardize the storing of the information in an event log. Both 

XES and MXML are in XML notation. 

On figure 1.2 there is a part of a XES file as an example. The traces in this example 

are  between  the  <trace>  tags.  A  trace  contains  several  events  from the  same  process 

instance. The events are between the <event> tags. The string element which belongs to the 

event element where the key=“concept:name” stands for the event type attribute. The value 

of this element determines the type of this event. In the online CD-shop event logs, the 

purchase orders are named quotes and material orders are simply named orders.
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...
<trace>

<string key="concept:name" value="481"/>
<event>

<int key="Id" value="481"/>
<string key="org:resource" value="Ann"/>
<date key="time:timestamp" 

value="2010-10-18T15:18:29.000+02:00"/>
<string key="concept:name" 

value="Generate request"/>
</event>
<event>

<int key="Id" value="481"/>
<string key="org:resource" value="CD shop"/>
<date key="time:timestamp" 

value="2010-10-18T15:18:29.000+02:00"/>
<int key="price_amount" value="20"/>
<string key="concept:name" value="Send quote"/>

</event>
<event>

<int key="Id" value="481"/>
<string key="org:resource" value="Ann"/>
<date key="time:timestamp" 

value="2010-10-19T00:00:14.000+02:00"/>
<string key="concept:name" value="Reject quote"/>

</event>
</trace>
<trace>

<string key="concept:name" value="482"/>
<event>

<int key="Id" value="482"/>
<string key="org:resource" value="Frank"/>
<date key="time:timestamp" 

value="2010-10-18T16:41:49.000+02:00"/>
<string key="concept:name" 

value="Generate request"/>
</event>

...
Figure 1.2. A part of a log file in XES format.

1.4. Artifact-Centric Modeling
A  business  process  model  is  a  representation  of  enterprise  processes.  Process 

models are commonly used to analyze and improve the processes.

A traditional process-centric process model is based on the workflow model and 

focuses on the constructs and patterns of a process model, without providing the structure 

or life cycle of the data related to the workflow [15].
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Artifacts  are  business-relevant  objects  that  are  created,  evolved,  and (typically) 

archived as they pass through a business. An artifact instance is an object that participates 

in the process [7],  for example one purchase order. Artifacts combine both data aspects 

and process aspects into a holistic unit, and serve as the basic building blocks from which 

models of business operations and processes are constructed. The artifact type includes 

both an information model for data about the business object during their lifetime, and a 

lifecycle model, describing the possible ways and timings of the tasks that can be invoked 

on these objects [16]. For example, the lifecycle model would include the multiple ways 

that the CDs can be delivered to the customer and be paid for. 

Data related to the artifacts might not always be present in raw logs, but for the 

artifact-centric  process  mining  we  assume  that  at  least  the  minimum  amount  of  data 

required for the artifact-centric approach is present, such as a timestamp, event type and at 

least one domain-specific data attribute. These attributes form the information model for 

this artifact. In order to perform artifact discovery, the domain-specific attribute(s) should 

contain enough information to distinguish between different artifacts  and instances.  We 

call these sets of attributes as artifact identifiers. Ideally the artifact will include the artifact  

identifiers  but it  is  not necessary to know which attribute(s).  For example the material 

order might have attributes like material_order_id, process_order_id, ordered_item_id and 

so on, where material_order_id is the identifier. In the raw logs it might not always be 

trivial which attribute (or attributes) should be identifier(s) for the artifact. 

Artifact-centric  modeling  allows  multiple  artifacts  with  independent  life  cycles, 

multiple  instances  of  each  artifact  to  exist  in  parallel  and  n-m  relations  between  the 

artifacts. Most of the existing process mining methods cannot be used directly for artifact-

centric  approaches  unless  we  know  which  events  belong  to  which  instance  of  which 

artifact.

For example in this artifact-centric model, the purchase order, the material order 

and the  delivery can  be  the  artifacts.  Figure 1.3 shows informally  one  example  of  an 

execution of such an artifact model with two purchase orders, two material orders and two 

deliveries.  In  the  artifact-centric  model,  items  from different  purchase  orders  may  be 

combined  into  one material  order  as  well  as  one purchase  order  may require  multiple 

material orders to be made.   
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Figure 1.3. CD-shop artifact-centric model.

1.5. Artifact-Centric Service Interoperation Project
The  Artifact-Centric  Service  Interoperation  project  started  in  June  2010.  This 

European research project will end in May 2013 and has a budget of 4.7 million euros [3]. 

The goal of this project is to enable faster, smoother internet services to be provided by 

developing new techniques and tools. Process mining techniques are used to analyze the 

new  systems  and  tools  on  which  the  project  focuses  [11].  Several  universities  are 

participating in the project, including the University of Tartu.

1.6. ProM, the Process Mining Framework
ProM [14]  is  a  generic  open-source  Java  framework  for  implementing  process 

mining algorithms as plug-ins. ProM is developed by the Eindhoven Technical University 

and currently has two major editions: 5.2 and 6.0. Older ProM 5.2 features over 280 plug-

ins for various process mining tasks.

While  ProM  5.2  is  successful,  it  has  some  limitations,  most  notably  the  tight 

integration between the tool and the GUI. Because of the limitations  of ProM 5.2, the 

ProM 6.0 was introduced. ProM 6 is redesigned and developed from scratch and plug-ins 

for ProM 5.2 are incompatible with ProM 6. As Prom 6 was released in September 2010, 

there are still some plug-ins which are not ported to ProM 6. ProM is developed in Java, 

hence it supports multiple platforms, including Windows, Mac OS X and Linux. ProM 

already has  dozens  of  plug-ins  for  both  mining  purposes  (like  control-flow mining  or 

mining  from  less-structured  processes)  and  analysis  purposes  (like  verification, 

conformance  and performance  analysis).  In  this  thesis,  a  plug-in  for  ProM 6 is  being 

developed.
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1.7. Relational Database Theory
A relation is a data structure which consists of a heading and an unordered set of 

tuples which share the same type. Relation is in first normal form (1NF) if every element 

of  each  tuple  has  atomic  value,  which  means  none  of  the  element  values  can  be 

decomposed. 

A candidate key is a set of attributes from a particular relation, so that the relation 

does not have two distinct tuples with the same values for these attributes. Additionally the 

candidate key must be minimal, meaning there is no proper subset of these attributes which 

also forms a candidate key. From the set of candidate keys, a single unique key is selected 

and declared as the primary key for that data entity.

The candidate  keys  can  be  found by finding the  minimal  non-trivial  functional 

dependencies. A set of attributes X in relation R is said to functionally determine another 

attribute Y also in R if and only if each X value is associated with precisely one Y value. If 

X  functionally  determines  Y,  then  Y  functionally  depends  on  X.  Minimal  functional 

dependency means that if a set of attributes X determines an attribute Y, then there is no 

true subset of X, which also determines Y. Non-trivial functional dependency means that if 

a set of attributes X determines Y, then Y is not the element of set X.

If a set of attributes X in relation R functionally determines every other attribute Y 

in R and if the X is minimal, then X is a candidate key of this relation. 

Id org:resource order quantity supplier cd artist cd title

489 CD Shop 9 1 bol.com Sigur Ros Takk

489 CD Shop 10 2 bol.com Sigur Ros Takk

489 CD Shop 11 1 amazon.com Metallica St Anger

489 CD Shop 12 1 bol.com Rammstein Mutter

Figure 1.4. Example of a relation.

In figure 1.4 we have a relation with the subsequent attributes: Id, org:resource, 

order, quantity,  supplier, cd artist,  cd title.  This relation has 3 candidate keys: {order}, 

{quantity, cd artist} and {quantity, cd title}. {order} is called a simple key as it contains 

only one attribute while the other two are called composite keys for the opposite reasons. It 
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seems that {quantity, cd artist} and {quantity, cd title} are keys only because there is not 

enough data to prove otherwise. 
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2. CONTRIBUTION
2.1. Method Summary

The goal of this thesis is to develop and implement a method for discovering the 

important artifacts (or entities, to be more general) in the event logs and group event types 

into logical groups based on these artifacts. Later on (outside the scope of this thesis), the 

output of this implementation is used as an input for another algorithm, which discovers 

the relationships between the entities and so an entity-relationship model is built based on 

the event logs. The discovered model will then be used for conformance checking against 

artifact-centric business model or artifact life cycle discovery.

The event logs, as defined in section 1.3, can be represented as a relation in first 

normal form (1NF). Such relation contains a tuple for each event with attributes including 

timestamp, event type, resource and other data attributes in the log. To discover the entities 

from the event logs, the logs should be sorted into data sets according to the event types. 

We can do this by using selection. Every such data set can be seen as a database relation 

that holds all of the events of the same type. 

We can then discover the candidate keys of the event type relations. A key in the 

relational database theory is an identifier, and thus it has to be unique. As the problem of 

the thesis is to group together the event types with the identical primary keys, the challenge 

is to find these keys. One relation can have several keys, all of these keys are called the 

candidate keys. In order to find the primary key for an event type, the program must first  

find the candidate keys. The candidate keys can be found in various ways. As the event 

logs can be represented as a relational database, it is possible to use the methods from the 

relational  algebra  on  this  data.  One  of  the  most  efficient  algorithms  finds  them  via 

functional dependencies [12]. 

The functional dependencies are found using an algorithm called TANE [13]. After 

that, the keys are discovered from the dependencies. If a table has more than one candidate 

key,  the user is  asked to pick one as the primary key.  The event types  with the same 

primary keys  can be grouped together  to make an entity with a  unique identifier.  The 

entities are the candidates for the artifacts; the user can confirm or reject them if needed. 

The primary entities correspond to the artifacts, the secondary entities are associated with 

or  shared  by the  artifacts.  The  identifiers  of  the  secondary  entities  are  composite  and 

contain the identifiers of their associated primary entities.

13



The steps of the implementation of finding the entities is shown on figure 2.1. The 

implementation of the method is described in more detail in section 3.

Figure 2.1. The process of discovering the underlying ER model for the raw logs [2].

2.2. Contribution of Implementation
From  the  implementational  point  of  view  the  contribution  of  the  thesis  is  as 

follows:

1. Modifying TANE to work with plain text or XML type of data instead of SQL 

database.

2. Implementing  breadth-first  search  over  the  functional  dependencies  found  by 

TANE to find the candidate keys.

3. Integration as a plug-in to industry standard process mining tool called ProM.

4. Graphical user interface for this implementation 

There are also some specific requirements in order to integrate the method with the 

rest  of the ACSI project.  Most importantly,  the ACSI uses ProM platform for process 

mining. As ProM itself is built on Java platform, the implementation of this thesis should 

also be in Java. It is also assumed that the event logs are either in XES or in MXML format 

and that event logs have a certain structure. All events in the logs should have an event 

type, timestamp and at least one data attribute. In this artifact-centric approach, the process 

instances are not observed separately but as continuous life cycles of multiple artifacts, i.e. 

the logs are structured as a single trace rather than in cases for separate process executions.
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3. IMPLEMENTATION
3.1. About the Implementation

The implementation of finding the entities from the event logs is available in the 

appendix. This implementation can be divided into the following steps:

1. Integration with ProM.

2. Extracting the event type tables from the raw log input.

3. Finding functional dependencies from relational representation of event logs. The 

functional dependencies are found using an algorithm called TANE.

4. Finding the candidate keys from the functional dependencies. In case a relation has 

multiple candidate keys, the user is prompted to select one as primary key.

5. Grouping together the event types that have the same primary keys and integrating 

them into one entity.

6. The output is shown to the user or the entities are sent to another algorithm.

The implementation of finding the entities from the event logs is done in Java using 

Eclipse IDE. The advantages of using Java are:

1. A well-known process mining framework called ProM is implemented in Java, so a 

plug-in for ProM should also be implemented in Java.

2. An open-source implementation of TANE algorithm is available for Java [13].

3. Java is widely used for teaching programming in the University of Tartu and also 

for business programming in general.

3.2. Preparation of the Input Data
The first step prepares the process logs for further analysis.  The plug-in (Figure 

3.1) receives a set of logs from ProM as a Java data object. ProM itself supports various  

log formats, including XES and MXML. In this step, the events from the log are sorted 

into groups according to their event type attribute. For the example in figure 1.2, all of the 

events of type “Generate request” form one group, the events of type “Send quote” form 

another group and so on. Additionally, the TANE implementation that is being used gets 

the  input  by  connecting  itself  to  a  relational  SQL database  and  reading  the  relations 

directly from this database. Because ProM does not present event logs as a SQL database, 

it  was necessary to alter  the TANE implementation to accept  the data as Java objects.  

When TANE has the input, it is ready to start processing it.
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Figure 3.1. ProM plug-ins.

3.3. The TANE Algorithm for Finding the Functional Dependencies
In this step (Figure 3.2), functional dependencies for each group of event types are 

found. A sophisticated and efficient breadth-first search algorithm named TANE is used to 

find the functional dependencies. 

TANE is based on partitioning the set of relation tuples, which makes the testing of 

validity of functional dependencies remain efficient for a large number of tuples. TANE’s 

computing time complexity is O(n*2k), where k is the number of attributes, n is the number 

of tuples in the relation and n>>k. Despite the worst case exponential complexity of the 

number of attributes, the algorithm remains fast when the number of candidate keys in the 

relation is small. 

One of the main advantage of this algorithm is the linear complexity of the number 

of tuples in the relation, while the other known algorithms have the complexity of O(n log 

n) or worse on the number of tuples [8]. 

Our implementation uses the Java implementation of the TANE algorithm created 

by  Dr  Jürgen  Wäsch  from  the  University  of  Hochschule  Konstanz.  Wäsch’s 

implementation is open-source and under the GPLv2 license [13].

High-level pseudo code of the TANE implementation:
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1 initialize()
2 while (Lx != empty)
3 compute_dependencies(Lx)
4 prune(Lx)
5 Lx+1 := generate_next_level(Lx)
6 x := x+1
Where level Lx is the collection of the attribute sets of size x = 1.

After  all  of  the  functional  dependencies  have  been  found,  the  new method  of 

finding entities from the event logs continues by processing the functional dependencies in 

order to find the candidate keys.

Figure 3.2. Processing data.

3.4 Finding the Keys
To find the candidate keys from the dependencies, a breadth-first search algorithm 

is used. This search has the exponential time complexity over the number of attributes in 

the relation. If necessary, the implementation can be improved to have polynomial time 

complexity by limiting the maximum number of attributes allowed for any candidate key 

[10]. 
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High-level  pseudo  code  of  finding  the  candidate  keys  from  the  functional 

dependencies:
1 current_limit := 1
2 while (current_limit != maximum_limit)
3 recursive_generate_key(empty_key, 0, current_limit)
4 current_limit := current_limit+1
5 function recursive_generate_key(key, i, limit)
6 if(key->level = limit) check_key(key)
7 recursive_generate_key(key, i+1, limit)
8 recursive_generate_key(key->include_attribute(i),  i+1, 

limit)
When the candidate keys are found, it is time for the user to confirm them.

Figure 3.3. Selecting the identifiers.

3.5 The Output
Before the output can be shown to the user or subjected to further analysis, the user 

must pick exactly one candidate key for each event type to be the identifier for this event 

type entity (Figure 3.3). The majority of event types in the available example only have 
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one candidate key and in this case, user can only confirm it to be the identifier. But in some 

situations, for example when the event logs have too few data for a particular event, it is 

possible for an event type to have more than one candidate key. In this case, the user is 

responsible  for  picking  the  most  meaningful  identifier.  As  the  identifier  should  be 

meaningful in the domain, there is no known way to algorithmically find this identifier out 

of all the candidate keys. 

As the entities  are now formed out of the event  types  and their  identifiers,  the 

method can send its outcome for further analysis. The result is also displayed to the user as 

a graphical representation of the entities in groups. (Figure 3.4).

 

Figure 3.4. Grouped outcome.
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4. EXPERIMENTS
4.1 Generating the Input Data

In the experiments the data  is used from a simulation of the CD-shop example 

described in section 1.2. The steps followed to generate the data are presented in figure 4.1. 

Data that is used in the experiments is generated explicitly for process mining [4] and is 

not a part of this thesis.

Firstly, a business model is created by the domain expert. This model describes the 

behavior  of  the  CD  shop  together  with  its  environment  consisting  of  customers  and 

suppliers [2]. The model is implemented using CPN Tools [6]. CPN Tools is a tool for 

editing, simulating, and analyzing Colored Petri nets. Coloured Petri Nets is a graphical 

language for constructing models of concurrent systems and analysing their properties [5].

The fully automatic simulation in CPN Tools produces a textual file with a set of SQL 

statements to insert or update tuples in the database tables of the simulated artifact-centric 

system. These SQL statements are later executed in a batch, causing the database tables to 

be populated [2].

After  that,  the  information  in  the  database  is  serialized  into  a  raw  log  using 

XeSAME. XeSAME is an application that provides a generic way for converting data from 

a data source to an event log [4]. The logs used in relation to this thesis are extracted in 

XES format, which enables their direct use in ProM.

Figure 4.1. The steps followed to generate the data [2].
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4.2 Testing
For testing, the method is applied separately on two log files that are generated by a 

simulation of the CD-shop example. The resulting entities are compared to the artifacts 

shown on the artifact models for the CD-shop. The artifact models are represented in the 

proclets notation based on Petri Nets [5]. Proclets are used as a light-weight formal model 

for artifacts. Proclets propose concepts for describing artifacts and their interactions [7].

The event types on the artifact models are not exactly the same as in the log files, 

so the results may be a bit different from the artifact models. It is also taken into account  

that  each  artifact  can  consist  of  several  entities  and  some  entities  can  be  exclusively 

encapsulated in one artifact whereas other entities can be shared among the artifacts [2].

4.2.1 Single Material Order per Purchase Order

The log file is generated based on a model where the quotes are decomposed into 

orders  to  different  suppliers.  Items  from  different  quotes  are  not  combined  together. 

Reordering if the item is unavailable is not allowed. The size of the log file is 148 KB and 

there are 528 events from 15 event types.

Figure 4.2. Artifact model 1.
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Figure 4.3. Entities from log file 1.

On the  artifact  model  (figure 4.2)  there  are  two artifacts:  quote and order.  The 

model in figure 4.2 uses some non-standard short-hand notation to represent AND- and 

OR-splits. These transitions were ignored in the analysis.

There are 11 event types in the quote artifact: create quote, generate request, send 

quote, accept quote, reject quote, generate invoice, send invoice to customer, ship quote to 

customer, receive payment, notify undeliverability to customer, finish quote.

There  are  8 event  types  in  the order  artifact:  create  order,  check deliverability, 

generate invoice, send invoice to CD shop, ship order to CD shop, notify undeliverability 

to CD shop, receive payment, finish order.

During the application of the method, the user was given the possibility to choose 

the primary key in case of the event  type  ‘notify undeliverability to cd shop’:  {Id} or 

{order}. Using domain knowledge, the choice of {order} seems more meaningful.  This 

event happens rarely in this log which is why {Id} is also found to be a key. In a larger  

sample this would not be the case since it can happen multiple times for the same Id. 

The  application  of  the  method  resulted  in  two  entities  (figure  4.3)  with  the 

discovered primary keys and event types:

1) Id: receive payment from customer, ship to the customer, notify undeliverability 

to  customer,  accept  quote,  generate  request,  generate  invoice  to  customer,  send quote, 

reject quote, send invoice to customer;

2) order: receive payment from CD shop, generate invoice for the CD shop, create 

order, send invoice to the CD shop, notify undeliverability to CD shop, ship order to CD 

shop.

All  the  event  types  of  the  Id  entity  are  in  the  quote  artifact.  There  are  minor 

differences  concerning  the  names  of  the  event  types,  like  receive  payment  -  receive 
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payment from customer or ship quote to customer - ship to the customer, but the semantics  

of these names is evidently the same. There are two event types that are not a part of the 

first entity but are a part of the quote artifact. These are create quote and finish quote. The 

log file does not contain event types with these names.  Therefore the absence of these 

event type is due to the difference between the event log and the artifact model, not due to 

a defect in the method.

All the event types of the order entity are in the order artifact. Similarly to the first  

entity-artifact  pair,  there  are  minor  differences  in  the  names  of  the  event  types,  like 

generate invoice - generate invoice for the CD shop, but the semantics is the same. There  

are two event types that are not a part of the first entity but are a part of the order artifact. 

These are finish order and check deliverability. The log file does not contain event types 

with  these  names.  Therefore  the  absence  of  these  event  type  is  due  to  the  difference 

between the event log and the artifact model, not due to a defect in the method.

In the output the name of the event type ‘notify undeliverability’ is presented as 

‘notify undeliverabil’,  because the word ‘undeliverability’  is  too long. This could be a 

minor issue with the method but as the main purpose of the method is to send the entities to 

the next algorithm (for conformance checking) and not to present them to the user, it is not  

an important issue.

In conclusion, the method worked correctly in case of the first event log.

4.2.2 Multiple Material Orders per Purchase Order with Reorders

The log file is generated based on a model where reordering is allowed and items 

for the same supplier from different quotes are combined. The size of the log file is 944 

KB and there are 4376 events from 22 event types.
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Figure 4.4. Artifact model 2.

Figure 4.5. Entities from log file 2.

24



On the artifact model (figure 4.4) there are three artifacts: quote, delivery and order.

There are 11 event types in the quote artifact: create quote, generate request, send 

quote,  accept  quote,  generate  invoice  for  customer,  send  invoice  to  customer,  receive 

payment from customer, reorder, notify undeliverability, reject quote, close quote.

There are 3 event types in the delivery artifact: receive goods, ship to customer, 

close delivery.

There are 9 event types in the order artifact: create order, add quote to order, add 

quote to order, order at supplier, generate invoice for CD shop, receive payment from CD 

shop, ship order to CD shop, notify undeliverability, close order.

During the application of the method, the user was given the possibility to choose 

the primary key in case of the event type ‘receive goods’. Possible keys to choose from are 

composite  key  {RequestID,  OrderID}  and  simple  key  {DeliveryID}.  Using  domain 

knowledge, the choice of {DeliveryID} seems more meaningful. 

The  application  of  the  method  resulted  in  four  entities  (figure  4.5)  with  the 

subsequent primary keys and event types:

1)  RequestID:  send  invoice  to  customer,  accept  quote,  generate  invoice  to 

customer, notify undeliverability, reject quote, send quote, generate request, close quote, 

receive payment from customer;

2) RequestID, OrderID: reorder, add quote to order, ship order to CD shop, notify 

undeliverability;

3) OrderID: create order, generate invoice for CD shop, receive payment from CD 

shop, order at supplier, close order, send invoice to the CD shop;

4) DeliveryID: ship to customer, receive goods, close delivery.

All the event types of the RequestID entity are in the quote artifact. There are two 

event types that are not a part of this first entity but are a part of the quote artifact. These 

are create quote and reorder. In fact, the log file does not contain an event type of ‘create 

quote’. Therefore the absence of this event type is due to the difference between the event 

log and the artifact model, not due to a defect in the method. The reorder event type is 

included in the second entity.  As mentioned above, the artifact  may consist  of several 

entities. There exist the subsequent entries in the event log:

There exist the following entries in the event log (figure 4.6).
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<event>
<string key="OrderID" value="22"/>
<string key="RequestID" value="488"/>
<string key="concept:name" value="reorder"/>
<date key="time:timestamp" 

value="2011-06-05T20:35:36.000+02:00"/>
</event>
<event>

<string key="OrderID" value="22"/>
<string key="RequestID" value="518"/>
<string key="concept:name" value="reorder"/>
<date key="time:timestamp" 

value="2011-06-06T04:39:56.000+02:00"/>
</event>
<event>

<string key="OrderID" value="28"/>
<string key="RequestID" value="488"/>
<string key="concept:name" value="reorder"/>
<date key="time:timestamp" 

value="2011-06-07T21:44:25.000+02:00"/>
</event>
Figure 4.6. An example of three reorder events in the log file.

In all of these entries the event type is reorder. In the first and second entries the 

OrderID  is  the  same  but  the  RequestID  is  different,  therefore  the  OrderID  does  not 

determine the RequestID. In the first and third entries the RequestID is the same but the 

OrderID  is  different,  thus  the  RequestID  does  not  determine  the  OrderID.  Hence,  the 

method worked correctly in positioning the reorder event type to a separate entity with the 

key of {RequestID, OrderID} and not positioning it to the entity with the key RequestID, 

as would seem appropriate according to the artifact model.

All the event types of the OrderID entity are in the order artifact. There are three 

event types that are not a part of the third entity but are a part of the order artifact. These  

are add quote to order, notify undeliverability and ship order to CD shop. All of these event 

types are included in the second entity. It is allowed that one artifact consists of several  

entities. One event type in the second entity (reorder) is a part of the quote artifact and 

three event types in  the second entity are a part of the third entity. This is also allowed,  

because an entity may be shared among several artifacts.

The fourth entity contains exactly the same event types as the delivery artifact. 

In consequence, the method worked correctly on the second event log. The first, 

third and fourth entities are primary entities. The second entity is a secondary entity.
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To sum up, the method worked as expected on the event log files. As it was in the 

first section, a minor disadvantage in the graphical interface was discovered that in case of 

long words the word might not be properly presented on the screen. However, as the main 

purpose of the method is to send the entities to another algorithm and not to show them as 

output, this is not a major problem. 
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CONCLUSION
The purpose of this thesis was to present a new method for discovering entities and 

candidate artifacts in the event logs. The method was implemented in Java as a plug-in for 

ProM. The method discovers the relevant entities and the candidate artifacts in the event 

logs and groups the event types into logical groups based on these entities.

As the method was implemented as a part of the ProM framework, it takes as input 

logs in a specific XML event log format called XES. Then the implementation serves this 

information to the sophisticated TANE algorithm, which finds the functional dependencies 

for each event type. After finding the dependencies, breadth-first search was used to find 

the candidate keys from the functional dependencies. In case there were multiple candidate 

keys for the same event type, the user is allowed to pick one of them. In the end, the event 

types with the same keys are grouped together and the result is visualized using the ProM 

built-in user interface.

The method was tested on two event logs generated by a simulation of the CD-shop 

example.  The  method  worked  correctly  on  these  log  files  and  produced  the  expected 

entities. A minor problem was discovered that in case of long words in the names of the 

event types the word might not be properly presented in the output.

The output of this algorithm can be used as an input for another algorithm, which 

discovers the relationships between the entities and so an entity-relationship model is built 

based  on  the  event  logs.  This  model  can  be  used  together  with  the  event  logs  for 

conformance  checking  between  the  logs  and  an  artifact-centric  model  or  to  discover 

artifact life cycle.
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Olemite leidmine protsessi läbiviimise logidest
Bakalaureusetöö (6 EAP)

Tanel Teinemaa

Lühikokkuvõte

Töö on kirjutatud protsessikaeve valdkonnas Artefaktikeskse teenuste koosvõime 

projekti  (ACSI)  raames.  Töö  eesmärgiks  oli  luua  meetod  sündmuste  logidest  olemite 

avastamiseks ja seda meetodit rakendada.

Loodud  meetod  on  kirjutatud  Javas  ning  kujutab  endast  pluginat  ProM 

raamistikule.  ProM  on  geneeriline  avatud  lähtekoodiga  Java  raamistik  protsessikaeve 

algoritmide rakendamiseks pluginatena. 

Olemite leidmise protsessi saab jaotada järgmisteks sammudeks:

1. Integreerimine ProM-iga.

2. Sisendandmetest  (XES formaadis   logifailidest)  sündmuste  tüüpide  relatsioonide 

koostamine.

3. Funktsionaalsete  sõltuvuste  leidmine  sündmuste  logide relatsioonilisest  esitusest. 

Funktsionaalsete sõltuvuste leidmiseks kasutatakse algoritmi TANE.

4. Funktsionaalsete sõltuvuste alusel kandidaatvõtmete leidmine. Kui relatsioonil on 

mitu kandidaatvõtit, palutakse kasutajal valida neist üks primaarseks võtmeks.

5. Sama primaarse võtmega sündmustest moodustatakse üks olem.

6. Kasutajale  esitatakse  töö  käigus  moodustatud  olemid  väljundina  või  saadetakse 

need järgmisele algoritmile töötlemiseks.

Meetodit testiti kahe logifaili puhul, milles olid andmed CD-poe näitel. Tulemuseks 

saadud  olemeid  võrreldi  vastavate  skeemidega  (joonised  4.2  kuni  4.5).  Meetod  töötas 

mõlema logifaili puhul korrektselt. 
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APPENDIX

The attached optical disc contains the source code of the implementation and the 

ProM environment to run it. It also contains a readme.txt explaining how to run the the 

implementation.
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