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On estimating open position risk on electricity forward market 

Abstract: 

The aim of the thesis is to study the question of estimating the risks of electricity 

retailers when they offer clients contracts with fixed electricity prices for future periods and 

the question of choosing prices for such contracts so that the level of risk is acceptable for the 

company. In the theoretical part of the master thesis details of such contracts and derivation of 

prices of those contracts under no arbitrage condition are discussed as well as a brief 

electricity market description and a few models proposed for forward price modelling are 

given. In the practical part open position risk problem in electricity market is explored by 

using simulations based on historical data for forward prices and various probability 

distributions for the number of clients accepting the offers, their desired quantities of 

electricity and decision making times. In the result the risk premiums for given risk levels 

under various assumptions are found and conclusions about which of the model parameters 

are affecting the risk premium most strongly are made. 

Keywords: financial mathematics, time series analysis, risk management, futures 

contracts, forward contracts, electricity market 

 

Avatud positsiooni riski hindamisest “Forward” tüüp i elektrilepingute 
müümisel jaeklientidele. 

Lühikokkuvõte: 

Magistritöö eesmärgiks on uurida elektrimüügifirma riske ning valitud riskitasemele 

vastavate hindade leidmist fikseeritud hinnaga elektrilepingu pakkumisega kliendile mingiks 

tulevikuperioodiks. Töö teoreetilises osas antakse ülevaade erinevatest tulevikuhinna 

fikseerimisega seotud lepingutest ning selliste lepingute teoreetilistest hindadest teatud 

lihtsustavatel eeldustel, samuti kirjeldatakse mõningaid mudeleid, mida on elektri 

tulevikulepingute hindade modelleerimisel kasutatud. Töö praktilises osas uuritakse mainitud 

lepinguga seotud riske arvutisimulatsioonide abil, kasutades ajaloolisi andmeid elektri 

tulevikulepingute hindade kohta ning mitmesugused tõenäosusjaotusi klientide arvu, nende 

soovitud elektrienergia koguste ja otsuse vastuvõtmiseks kuluva aja kirjeldamiseks. 

Tulemusena leitakse erinevatele riskitasemetele vastavad hinnad mitmesugustel eeldustel ning 

tehakse kindlaks, millised mudeli parameetrid mõjutavad neid hindu kõige tugevamini. 

Võtmesõnad: finantsmatemaatika, aegridade analüüs, riskihaldus, futuurid, elektriturg 
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INTRODUCTION 

A rational person producing something wants to be sure that when product is ready 

there will be someone who will buy it. A rational consumer also wants to be sure that for all 

products needed there will be someone from whom those products can be purchased. Even in 

Ancient Greece people wanted to be sure that there will be possibility to purchase products 

they were growing. Aristotle was the first who wrote about futures trading. In his trade 

description he gave an example of olive grower and his agreements with local olive-press 

owners about trading in future. [7]1 

Nowadays this type of trading is  well-developed and takes its place in futures markets, 

which are central financial exchanges where people can trade standardized contracts for 

obtaining the underlying asset in the future for a fixed price. However, in futures markets are 

some regulations what and how can be traded. For example, not all the customers can trade in 

those futures markets which deal with trading in large quantities. Therefore various 

companies can intermediate this market. These intermediary companies offer to a client a 

fixed price for underlying asset/obtaining an asset in a fixed future date or time period, which 

is based on current market price. If a client accepts it, company makes trading in futures 

markets for agreed quantity. However usually client cannot give an answer in the same day 

when an offer has been made – they need some time for considering it or just because of 

formalities. During this period the price of the corresponding contracts in the market could 

change and, consequently intermediary company takes some risk. If the price in the market at 

the time when client accepts an offer has increased comparing with the day when an offer was 

made, it results in loss due to this difference. The company can avoid this risk, if it is 

measured before and included in the initial price offered. The practical part of these thesis will 

be focused on finding this risk premium in electricity futures market. 

In the first chapter of theoretical part of this thesis two main types of contracts for fixing 

the price for a future date, namely, futures and forward contracts and their differences are 

described and the formulas for the prices of those contracts under no arbitrage condition are 

derived. Further the focus will be directed more on electricity market and a few proposed 

models for forward price modelling and risk premium will be presented. 

Nowadays futures markets and trading with forward contracts for electricity have 

developed and become a major financial activity of the energy commodity industry. Usually 

most of the electricity is delivered on basis of forward contracts for some fixed time period. 

                                                 
1 Article: Futures exchange (access time 15.04.2014.) 
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However, electricity has non-storable feature, so the pricing of risk in forward trading 

becomes more complicated.  

In practical part electricity market will be explored focusing on questions:  

1)  what would be universal, constant over time risk premium, which company should 

add to the market price making an offer to a client; 

2)  what would be the risk premium for current market situation;  

3) how does risk premium depends on amount of electricity.  

Calculations are based on historical prices which had been offering to clients for 

electricity for some specific time period. 
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1. FUTURES AND FORWARD CONTRACTS 

1.1. General description of futures and forward contracts 

Futures contract is an agreement between two parties to buy or sell a stated quantity of a 

specified asset with a pre-agreed price (the futures price) on a specific future date (delivery 

date). Futures price is fixed such that entering the contract does not cost any money to the 

parties of the contract. Futures contracts are widely used for commodities such as sugar, wool, 

gold and financial assets – currencies, bonds, stock indices.  

There are two largest exchanges on which the futures contracts are traded – the Chicago 

Board of Trade and the Chicago Mercantile Exchange (CME). The Chicago Board of Trade is 

the world’s oldest futures and options exchange, it was founded in 1848, while the Chicago 

Mercantile Exchange (CME) was established in 1898.  Nowadays it is focused on trading 

several types of financial instruments (interest rates, equities, currencies, and commodities) 

and also has the largest options and futures contracts open interest (number of contracts 

outstanding) of any futures exchange. 

The party which agrees to buy the asset in the futures contract is said to be “long” and 

the party which agrees to sell the asset in future, is called “short”. To govern positions in 

futures contracts specified daily agreement procedure is used which is known as marking to 

market. Initial deposit of investor is called initial margin and it is daily adjusted to reflect the 

losses and profits which are related to movements of the futures price. For example, if we 

consider the party which has a long position (agrees to buy), when the futures price decreases, 

then the margin account is reduced by appropriate amount of money and the broker has to pay 

it to the exchange. Exchange passes this money to the broker of party which has a short 

position. Similarly, in case when futures price increases, the broker from short position party 

needs to pay appropriate sum of money to exchange and the broker from long position party 

receives it from exchange. Thus the trade is marked in market at the end of each trading day. 

If delivery date is attained, party with a short position has to make a delivery to party with a 

long position. The price which party with a short position receives is the futures price at the 

time when the last marked to market has been made.  

The concept for forward prices is similar, just trading is less formal and regulated. The 

forward contract is an agreement to buy or sell an asset at a certain time in the future for a 

certain price which is agreed upon current time moment. The buyer (or seller) in a forward 

contract acquires a legal obligation to buy (or sell) an asset (known as the underlying asset) at 

some specific future date (the expiration date) for a price (the forward or delivery price) 
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which is fixed today. Party which has long position of forward contract agrees to buy the 

underlying asset on a specified future date for a delivery price. Holder of short position of 

forward contract agrees to sell the asset on the same future date for the same price. At the time 

when the forward contract is made, the delivery price is chosen so that the value of this 

contract for both sides is zero. However, later forward contract value can become positive or 

negative. Some features for forward contracts are similar to those in futures contracts. 

However there are differences, for example, forward contracts are not usually traded on 

exchange, it is settled only once – at the maturity date. The party of short position delivers the 

asset to the holder of the long position, getting the amount of money which is equal to the 

delivery price in return. [7]2 [11] [12] 

1.2. Main differences between the futures and forward contracts 

Contract specification and delivery 

Delivery dates and delivery procedures are standardized to a limited number of specific 

dates per year, at approved location. In reality delivery is often not taking place, since it is 

usually not the aim of transaction. According to [11] just less than 2% are delivered. In 

forward contracts the range of instruments is almost unlimited, with individual contract 

prices. Delivery can take place at any negotiated place and date, and it is the goal of 

transaction. More than 90% of forward contracts ended up with delivery.  

Prices 

In futures contracts the price is the same for all participants, not depending on the 

transaction size. Prices are disseminated publicly. Each transaction is made with the best price 

which is available at that time. In forward contracts the price depends on different factors like 

the size of transaction, the credit risk and others. Trading takes place between individual seller 

and buyer and prices are not spread publicly. There is no confidence that the available price is 

the best one. 

Security deposit and margin 

For futures contracts there are specific rules from exchange – for requiring initial 

margin and the daily settlement of variation margin. The daily reassessment of open position 

cash payments and delivery procedures for each exchange is done by a central clearing house. 

In forward contracts the amount of money which the seller gets even if other party breaks the 

contract is negotiable, with no adjustment for daily price variations. There is no separate 

clearing house function. If one party defaults, all market participants take this risk. 
                                                 
2 Article: Futures contracts, Forward contract (access time 05.03.2014.)  
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Market place and trading hours 

Trading with futures contracts is centralized on the trading floor of exchange, with 

worldwide communications during the hours which are fixed by the exchange. On  the 

contrary – it depends on agreement between individual buyer and seller, where trading with 

forward contract is organized. Trading goes on around the clock over-the-counter world-wide. 

Volume and market liquidity 

The information about volume of futures contracts is freely available. The liquidity for 

futures contracts is very high, what makes it easy to sell the contracts to other market 

participants. It is achieved mainly due to standardization of contracts. However, the 

information about volume of forward contracts is not openly available. The liquidity for 

forward contracts is limited, because some terms in contract is specified to the owner of the 

contract. [11] 

1.3. Forward price 

Forward contract is signed at initial date (� = 0). � denotes delivery date and � − 

delivery price. The forward price is the delivery price at the current time moment for fixed 

future date T which is offered to clients (for which it is possible to enter new forward contract 

at time t without any cost). So at the time when the forward contract is entered into it is the 

same as delivery price. Usually for different maturities the forward prices vary. For example, 

forward price for a 3 months contract is different than that for a 9 months contract. The party 

which has long position is obligated to buy an asset at delivery date with spot price �, for 

delivery price �. The payoff function from the long position in a forward contract on one unit 

of an asset is  

� = � − �, 
where � is contingent claim at time �. And similarly payoff function in case of short 

position is  

� = � − � . 
As from both sides it is not needed to pay anything to enter into the forward contract, 

the total gain or loss is the payoff from the contract. There are payoff functions for forward 

contracts in case of long position and short position shown in Figure 1. [6] [7]3   

                                                 
3 Article: Forward contract, Forward price (access time 08.03.2014.)  
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Figure 1. Payoffs from Forward Contracts. 

If underlying asset is freely tradable and can be bought earlier and stored for later use, 

then the delivery price for which it is possible to enter forward contract can be obtained from 

the arbitrage principle. Arbitrage principle states that almost surely (with probability 1) one 

side will get a profit. If arbitrage profit exists and it is quite high, more of arbitrage 

opportunities will be used, but in this case the profits will fall. As in idealized market 

information spreads quickly, arbitrage opportunities become evident and more investors want 

to use it and get some profit. It results that arbitrage cannot last for a long time. Therefore it is 

assumed that arbitrage is not possible. 

At first let us consider the case of asset that can be held without any storage costs and 

which does not provide any income (dividends). Let	�� be the spot price of an asset, ��, be 

forward price (at time	� � 0	normally the delivery price set equal to the forward price	� �

��,) and	� as the risk-free interest rate. Then in no-arbitrage case the price of a forward 

contract is 

��, � ���
�. (1) 

 

Let us show that formula (1) cannot hold in arbitrage case. Firstly assume that	��, �

���
�. Then one can construct an arbitrage strategy: at time � � 0 borrow �� with interest 

rate	�, buy one unit of asset and take short position into a forward contract with – sell the asset 

for	��, at delivery date. At time	� � � needs to sell a unit of asset for	��, and must repay the 

loan	���
�. So this leads to riskless profit	��, � ���

� � 0. But it is contrary to the no-

arbitrage. Secondly, assume that	��, � ���
�. Then the arbitrage strategy is reverse: at time 

� � 0 the owner sells one unit of asset for �� and invests this at interest rate	� for the time 

period	� and takes long position into forward contract. At time	� � � receives	���
�, but need 
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to buy an asset for ��,. Again this leads to a certain profit ���� − ��, > 0, which is 

contrary to the no-arbitrage principle -  ���� − ��, ≤ 0. If combine both cases of no-

arbitrage principle, get (1). [4] [10] [12] 

In general for any time moment equality (1) transfers by 

��, = ����(��), (2) 

where ��, – forward price at time �, 

�� – price of underlying asset in forward contract at time �. 

The equation (2) changes if consider forward contracts on security that provides known 

cash income. Denote the present value of income which holder receives during the life of the 

forward contract in case of risk-free discount rate by �. Then under no-arbitrage condition, the 

price of forward contract must be 

� = (� − �)��(��). (3) 

To prove that previous formula cannot hold in arbitrage principle, at first, assume 

� > (� − �)��(��). Arbitrage strategy is such: at time � borrow money, buy the asset and 

take short position in forward contract. At maturity, sell the asset for � and need to repay the 

loan which is (� − �)��(��), assuming that a part of loan is covered by incomes which are 

received. Then the profit becomes � − (� − �)��(��), which obviously is positive. And on 

the contrary – assume � < (� − �)��(��). At time � sell the asset for �� and invest the money 

and go long in forward contract. If we are using short-selling, then we have to provide the 

owner of the share we sold, if we sell our own asset then, compared to not selling we are 

losing during time interval [�, �] the income  that is equivalent to ���(��) at time �, so the 

profit is (� − �)��(��) − �. It follows that (3) no-arbitrage condition. 

Considering previous situation with two portfolios, in case of known cash income, the 

portfolio 1 remains the same, but in the portfolio 2 – one unit of the security plus amount �, 

which comes from loan at a risk-free rate. This means that the loan can be repaid from the 

income of the security, so that at time � the value of the portfolio would be one unit of 

security. From previous portfolio 1 value is the same, therefore 

! + ����(��) = � − �. 
As forward price � is the same as delivery price � initially and it is chosen so that the 

value of forward contract is zero. Thus (3). 

Let us now consider forward contract in a security what provides a known dividend 

yield, this means that the income which is expressed as percentage form the security price is 

known. Assume that the dividend yield is paid continuously with an annual rate #. Looking at 
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previous case with two portfolios, this time portfolio 1 remains the same, but as regards 

portfolio 2 – buy ��$(��) units of underlying asset and reinvest all income in the security. In 

portfolio 2 the amount of security grows, because of paid dividends and at the time � it 

reaches one unit of security. So at maturity date both portfolios are worth the same value  

! + ����(��) = ���$(��). 
In time � = 0 the forward price is equal with delivery price and set so that value of 

forward contract is zero, so 

� = ��(��$)(��). (4) 

1.4. The forward price relationship with the futures pri ce 

It can be shown that if interest rate is nonstochastic and forward contracts can be traded, 

then forward price is equal to futures price. [6] Trading happen with futures contract as it 

would be a forward contract and mark-to-market has been ignored.  

Let us provide a proof that in the case of constant interest rate and when futures and 

forward contracts can be traded for any quantity of assets, the futures and forward prices are 

the same. Consider the futures contract which lasts for % days and the futures price at the end 

of day  & is �' (0 < & < %). Denote a risk-free rate per day by ( and assume that it is constant. 

Consider the strategy where at the initial time one buys futures contract for �) assets, at the 

end of the first day increases the long position to �*), at the end of the second day increases 

long position to �+) and so on. Hence, at the beginning of day & investor has long position of 

�') and the profit (or loss) from the position is (�' − �'�,)�'). This amount will compound at 

risk-free rate until the end of day n and becomes 

(�' − �'�,)�')�(.�')) = (�' − �'�,)�.). 
The value of this strategy at the end of day % is 

/(�' − �'�,)�.)
.

'0,
= 1(�, − ��) + (�* − �,) + ⋯ + (�. − �.�,)3�.) = (�. − ��)�.). 

As final future price �. is equal to asset price at the delivery date �, then  

/(�' − �'�,)�.)
.

'0,
= (� − ��)�.). 

An investment of �� in a risk-free bond at time � = 0 and together with previous 

strategy yield at time �  

���.) + (� − ��)�.) = ��.). 
Observe that no initial investment is required for the strategy. 
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Denote forward price at the end of initial day as 4�. In strategy where invest 4� into 

riskless bond and take long position of �.) forward contracts, at maturity date amount ��.) 

is guaranteed. So there are two strategies which at time � give the same return ��.). For the 

first initial expenses �� are required and for the second initial expenses are 4�. It follows that 

if no-arbitrage principle holds, then futures price and forward price are identical:  

�� = 4�. 
However, in case when interest rate is not deterministic – it can depend on time, but 

cannot be stochastic, futures and forward prices are not theoretically identical. [6] [10] 

1.5. Futures on commodities and the cost of carry 

Commodities could be divided in two main types for which futures contracts are used: 

in the first commodities are held primarily for investment purposes, such as, gold and silver, 

in the second, commodities mainly are held for consumption.  

In case commodities are held solely for investment if the storage costs are zero, then the 

previous case can be considered that underlying asset provide no income (2). Denote the 

present value of all the storage costs which occur during the life of a futures contract by 5. If 

there exist storage cost, then it can be assumed as negative income and (3) could be used to 

describe the relationship between � and �, as result � = (� + 5)��(��). However, if 6 

denotes the storage costs which are proportional of the price for commodity, then the case 

when dividend yield is known could be used. As storage costs provide a negative dividend 

yield, form (3) get � = ��(�78)(��). 
From commodities which primarily are held for consumption it is possible to get some 

benefit from holding the physical commodity, so it is logical that those who keep the 

commodity do not want to sell it therefore 

� ≤ (� + 5)��(��), � ≤ ��(�78)(��). 
The benefit from ownership of commodity is measured by convenience yield, which is 

denote by 9 such that  

��:(��) = (� + 5)��(��), ��:(��) = ��(�78)(��). 
The relationship between futures price and spot price describe so-called cost of carry. It 

measures the storage costs plus the interest costs paid by carrying the asset, but it should be 

less for the income earned on the asset. For stock which pays no dividend, the cost of carry is 

�, because there are no storage costs and it does not give any income. If the cost of carry is 

denoted by ;, then for and investment asset � = ��<(��) and for a consumption asset 

� = ��(<�:)(��). [6] [10] 
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2. ELECTRICITY MARKET 

2.1. Basic physical and economical aspects of electricity market 

The main difference of electricity market and traditional commodity market is the fact 

that electricity cannot be stored like goods in warehouses in such quantities that can make 

impact on market processes.  It is impossible to produce larger amount of electricity at the 

moments when price of electricity production is lower and sell it in market when electricity 

price is higher. According to the laws of physics and electrical aspects, the quantity of 

produced electricity at any moment is balanced with power consumption. Production volume 

is determined by customer load size and it is continuously variable. On basis of physics it is 

not possible to sell electricity in queue order (serve customers as in the store) or make any 

other priorities of customers  to provide them with electricity. All grid connected customer 

appliances receive electricity simultaneously. Supply and demand balance influences not only 

market conditions but also physical processes. The compliance of load and producing power 

determines the frequency of electrical system that combined with voltage quality characterizes 

the overall quality of electricity supply. If load exceeds producing power system frequency is 

decreasing, but if producing power is larger than load, system frequency is rising. Therefore 

in electricity power system permanently is maintained generating power capacity that can 

ensure power for sudden load rise and there are some power stations the main mission of 

which is to control system frequency and take sudden load. These are processes that customer 

and market stakeholders often do not know – they are like invisible part. For covering the 

peak loads in Baltic states most commonly hydro power plants are used, but in Europe also 

gas power plants are used due to their shorter start-up time – only a few minutes. [13] 

Specific feature, characterizing the electricity market is the fact that the market price of 

electricity can vary in large range within a relatively short period. During peak hours, when 

electricity consumption is the highest, electricity price can be several times larger than at the 

moments when the consumption is the lowest. According to the characteristics of the power 

consumption during the day the highest electricity consumption is in the morning peak hours 

from 7 till 11  a.m. and in the evening peak hours from 17 till 23 p.m.. The lowest 

consumption is during the night hours. During a year the highest consumption and electricity 

prices are in winter and summer months (especially in countries where conditioning 

appliances are developed), but the lowest consumption and prices are in autumn and spring. In 

spring, especially in Baltic and Scandinavian countries, lower prices are because of high water 

level in rivers. During these periods  comparatively cheaper electricity from hydro power 
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plants is available. The electricity price is also influenced by meteorological forecasts, 

planned network outages (maintenance works), availability of production units etc. On basis 

of meteorological situation varies production in hydro power plants and in wind farms. 

Planned network maintenance works reduces carrying capacity of network, so during this time 

there is limited offer of electricity. Recently existing power carrying capacity limitation on the 

border between Estonia and Latvia is a reason why on JSC "Nord pool spot" market in 

Latvian bidding area, that was made in June, 2013 electricity price is higher than in Estonian 

bidding area. [8] 

Baltic states joined to electricity market quite late. Monopolistic system is changed to 

free market with electricity trader competition. Electricity prices are not determined by public 

utility regulator but by the market situation. Electricity market in Europe was opened in the 

year 2007 and the first countries joining to the market were Sweden, Finland and United 

Kingdom. According to the strategic document of Baltic states "Baltic Energy Market 

Interconnection Plan" (BEMIP) was started opening process of electricity markets of Baltic 

states. Liberalization of electricity market in Latvia was started on July 1, 2007 when from 

holding company “Latvenergo” transmission and distribution system operators were 

separated. JSC “Latvenergo” now is electricity producer and trader. Now electricity market in 

Latvia is fully opened for legal persons but for household market  it will be opened on 

January 1, 2015. In Latvian electricity market in spring, 2014 are 10 active electricity trading 

companies. In Estonia electricity market is opened since April 1, 2010 when legal persons 

joined, but on January 1, 2013 households joined. Since electricity trading in the free market 

is a relatively new thing, electricity operators have to acquire new knowledge and to analyze 

the experience acquired in order to operate successfully in the market. [9] 

In the electricity market electricity producers, power transmission and distribution 

system operators, customers, traders and electricity exchange are involved. In the electricity 

exchange traders and producers submit their offers. Customers evaluate offers in the 

electricity market and choose electricity trader from which they will purchase electricity. 

Power transmission and distribution operators provide physical network infrastructure to 

deliver electricity from producer to customer appliances. Bill for electricity basically consists 

of two parts – charge for electricity and for system services.  

Today electricity exchange participants are prompted to use current spot market and 

forward market and that is why the market has great liquidity, more efficient use of electricity 

capacity and ensures transparent price formation. All the participants of electricity market are 

responsible for adequate purchased amount of electricity and the delivered in system to 
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amount of electricity received from transmission system. That is why one organization that 

controls (balances) these values is necessary. It is a special power balancing service and 

usually it is done by power transmission operator. [9] 

As mentioned before electricity cannot be stored in reasonable quantity and that is why 

it cannot be considered as regular commodity. No-arbitrage principle is based on buy-and-

hold strategy, but because of electricity non-storable feature, it cannot be used for deriving the 

price of forward contracts. In literature commonly two ways of models for price are 

described: the price could be modeled in traditional way – as stochastic process and derive 

prices of assets from equilibrium principle (modeling and balancing demand and supply). [5] 

[3] 

2.2. Some proposed models for electricity forward price 

Next we are going to consider two models for electricity forward price: the first, model 

for forward price dynamics, the second, model for forward price using equilibrium principle. 

2.2.1. Model for electricity forward curve dynamics 

There has been suggested a model for price dynamics in Nordic electricity market 

elaborated by N. Audet, P. Heiskanen, J. Keppo, and I. Vehviläinen in year 2004. [2] 

Consider that forward contracts are traded continuously within finite time horizon [0, =]. 
Denote �(�, �,, �*) by forward price for the period [�,, �*] at time � and for this period it is 

constant. To get the forward price which would depend just on one maturity date, consider the 

following theoretical forward price 

�(�, �) = limA→ �(�, �, �*) , ∀ � ∈ [0, �], � ∈ [0, =]. 
It means that the forward price at time � is for the time period [�, � + E�].  
In the paper the model is 

E�(�, �) = �(�, �)��F(��)G(�)EH(�), ∀ � ∈ [0, �], � ∈ [0, =], 
where I is a constant (I > 0), G is a bounded and deterministic spot volatility curve, 

and H is a Brownian motion corresponding to the �-maturity forward price on the 

probability space (J, �, K) along with the standard filtration {��: � ∈ [0, =]}. The correlation 

structure of the Brownian motions is given by 

EH∗(�)EH(�) = ��)|�∗|E�, ∀ �, �∗ ∈ [0, =], 
where ( is a constant (( > 0). This model implies that logarithmic returns  of forward 

prices are independent and normally distributed and that the variance of the changes over 

fixed time intervals is increasing as the maturity date is approaching. [2] 
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2.2.2. Model for the electricity forward price using equilibrium principle 

Another model to satisfy non-storable property has been suggested model for the 

equilibrium electricity forward price by Hendrik Bessembinder and Michael L. Lemmon in 

year 2002. [3] The model is based on assumptions that most of market participants are 

interested to sell or buy electricity not to make speculations, so the price is set by industry 

participants. It is assumed that the all power producers and all retailers are similar to each other 
and specific forms for their objective functions and operating cost functions are assumed. 
Based on equilibrium principle the following formula for the price of one period ahead 
forward price is derived:  

� = R(�S) − TUV

TWV; (;�X;YZ(�SV , �S) − ;YZ(�SV7,, �S), 
where � − forward price, 

�S − wholesale spot power price at next period, 

�X − fixed retail price, 

TU , TX − power producers and power retailers, 

; −  constant which is greater than or equal to two [\ = ,
<�,], 

W − variable cost parameter, 

T = ^_7^`
a , where 

a
* is the coefficient on the variance of profit in the objective functions 

of power retailers and producers. 

To use this model information about power producers and retailing firms is needed, 

however, as we do not have such information then this model would not be practically 

analyzed. [3] 
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3. ESTIMATING RETAILER’S RISK IN ELECTRICITY MARKET 

3.1. General description of the problem  

As in electricity futures market there are regulations for participants, therefore all clients 

cannot take part in futures market, so there are companies which operates as intermediaries 

between the futures markets and the clients. However, acting as intermediary a company takes 

the open position risk. Open position is a financial status, where counterparty has an option to 

enter into a contract to buy a certain amount of electricity during specified future period for a 

fixed price. Open position risk is the problem when a company offers to client one price 

which is related to the electricity futures market price in the day the offer is made. Client 

usually needs more than one day to make the decision, but meanwhile the company cannot 

change the offered price. However, during this period price in the market could change. If the 

market price in the day when client makes a decision has decreased compared with the day 

when the company has made an offer, it results in a profit due to this difference, but if the 

price has increased, it is accordingly a loss for the company. Our aim is to estimate how much 

should the offered price be larger than the current market price in order to get the probability 

of loss of specified level.  

3.2. Assumptions and model components for finding the risk premium 

To find the price difference which can be used in the future contracts and to be quite 

sure that the company would end up without big losses, we have to find the distribution of the 

gains/losses per MWh. Therefore we form a model  for trading outcomes that consists of the 

following components: 

1. model for forward price process (��) for a fixed delivery period; 

2. clients arrival – how many clients who eventually accept the offer arrive in one day, 

denoted by b�; 
3. quantities of electricity for a client – how much MWh of electricity each of the 

clients want to buy, denoted by c', & = 1,2, … , b�; 

4. how long each client is considering an offer, denoted by �', & = 1,2, … , b�.  
In this thesis we assume that all model components are independent. It means that it 

does not depend on forward prices, how many clients arrive in one day and how much 

electricity they want to buy. And the length of time needed  to clients for making up their 

minds also does not depend on amount of electricity they want to buy and on what happens 

with the prices at the market while a client is thinking.  
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As we do not have data about client arrivals and their thinking times and electricity 

quantities they are going to buy, we just choose some reasonable distributions for those 

random variables. For client arrival in one day we consider two cases: b�~1 + �, �~KY(4) 

and b�~1 + �, �~4�Yg [,
h], where the values of the geometric distribution are assumed to 

start from 0. For quantity of MWh of electricity exponential distribution was chosen 

ic'~R\j [,
h]k. It was considered that the client thinking time is measured in days and �' has 

discrete uniform distribution with values {1,2, . . , �} for some fixed maximal thinking time �. 

First examples use � = 3, but later we consider also cases � = 10,20,30. 

As mentioned before to model the spot price and also forward price in electricity market 

is a difficult task, because of electricity’s non-storable property as well as the fact the price 

depends on lots of other factors, such as weather and oil price. We consider two approaches of 

forward prices according to risk preferences: the first is adding a constant premium to current 

price, the second is increasing the current price by fixed percentage. The first approach:  l� = �� + m, 
where �� – price in the market at time �; l� – price which have been offered to the client; δ – constant premium. 

The second: l� = ��(1 + o), 
where o – fixed percentage. 

At time � company takes an obligation to sell c' MWh electricity  for price l� to client & 
during delivery period, but at time � + �' buys it from the market with price ��7p. In the first 

case the total money what the company earns/loses during the delivery period based on price 

offered at time � is 

/ c'(�� + m) − / c'��7p
qr

'0,
qr

'0, = m / c'
qr

'0, + / c'(�� − ��7p)
qr

'0, . 
If a measure of risk is specified, it is possible to compute the risk premium so that the 

risk level is acceptable. In this thesis measure the risk by probability of losing moneys. So if 

risk level I is specified, we find premium α form the condition: 

K tm − / c'c 1��7p − ��3qr

'0, > 0u = #, 
where c = ∑ c'qr'0,  and # = 1 − I.  
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It means that interpretation of the result will be, how much the company should add to 

the current market price, so that risk would be at acceptable level. Two levels of # will be 

considered: 80% and 90%.  

Denote 

y = / c'c 1��7p − �3qr

'0, . 
Then we find the risk premium m from the equation  K(y < m) = #. 
Thus m is the # −quantile of y.  

If considering the second case for the offered price, the problem is different. The total 

earnings/losses of the company per one day are: 

/ c'��(1 + o) − / c'��7p
qr

'0,
qr

'0, = o / c'��
qr

'0, + / c'(�� − ��7p)
qr

'0, . 
Similarly to the previous case we can transform the condition that risk is less than I to 

the condition 

K t/ c'c i��7p − ���� k < oqr

'0, u = #, 
where # = 1 − I. 

If current time � and model for forward market price is fixed, it does not matter which 

approach to use. Which of the two approaches is more meaningful, depends on the model for 

forward prices – for some models m does not depend on current time (so is the same for all 

time moments), for other models o does not depend on time. 

3.3. Characteristics of the analyzed data 

In practical part historical prices which the company � had been offering to clients for 

electricity for year 2012, 2013 and 2014 will be used in the role of market prices of 

corresponding contracts. In Figure 2 it can be seen that for years 2012 and 2013 in general 

electricity price decreases, but for year 2014 it is more stable.  
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Figure 2. Electricity prices. 

The first plot of Figure 3 shows historical price differences for the year 2013. Similar 

plots for year 2012 and 2014 data could be found in Appendix Figure 9 and Figure 10. It can 

be seen that price movements are different, some of them are relatively small, but some are 

quite large, so one could say that one day price difference is quite random.  

`

 

Figure 3. Price differences and their autocorrelation plot. 

Let us first try to fit an Autoregressive Integrated Moving Average (ARIMA) type 

model for forward prices. It is statistical method which uses time series data for predicting 

future trends. The Figure 1 of prices shows that the process is not stationary, so taking a 

difference is needed. From the second plot of Figure 3 and Appendix 1. Figure 9 and Figure 
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10 could be seen that autocorrelations and partial autocorrelations are practically within error 

bounds, so we can say that ARIMA(0,1,0) models (random walk) may be appropriate: ��7, = �� + \�7,, 
where \�7, is price difference at time � + 1. 

Firstly it will be assumed that all one day historical price differences are with the same 

distribution and, as autocorrelations are close to zero, then independent identically distributed 

(IID) increments will be considered, so in order to simulate forward prices according to the 

model, there are two common approaches. The first one is to find a suitable distribution for 

the changes and generate random variables from this distribution. The second approach is to 

consider historical differences as possible outcomes from sampling of the distribution and for 

generating a new value of \� a random historical value is chosen. As historical data is 

available, in these thesis the second approach is chosen. So at first will be simulated the 

simple model for forward price movements with independent identically distributed (IID) 

increments. 

However usually in finance it is often reasonable to assume that changes of asset values 

are proportional to the current value. It was also assumed in model for electricity forward 

curve dynamics from theoretical part. This means that in modelling it may be reasonable to 

use either returns or to model logarithm of prices (which differences are logarithmic returns). 

Return at time � is the relative change of the stock price, if �� is a stock price at time �, 

then return is 

�� = �� − ���,���, . 
Sometimes logarithmic return is analysed. It is defined by 

z� = ln(1 + ��) = ln i �����,k. 
If �� is small, then �� ≈ z�, so which is used depends on the problem. Look for ARIMA 

model for logarithm of forward price, then looking at autocorrelations of differences (or 

logarithmic returns) are shown in Figure 4 for data of year 2013 and for data of years 2012 

and 2014 in Appendix 1. Figure 11 and Figure 12 and it could be seen that they are close to 

zero, so it could be assumed that logarithmic returns are IID. Therefore again the model  

ARIMA( 0,1,0) can be considered to be a reasonable one. This gives us the model: ln(��7,) = ln(��) + \�7,  ↔  ��7, = ���Vr}~  , 
where \�7, is IID logarithmic returns [\�7, = ln [�r}~�r ]], for the market prices of 

forward contracts available for retailers. 
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Figure 4. Autocorrelation plot from logarithmic returns. 

It is easy to see that if the first model is used, the value of parameter delta (reference) 

does not depend on the value of the current market price �� and if the model for the logarithm 

of the market price is used, the computation of the parameter gamma does not depend on the 

current value ��. If we assume that changes in prices are proportional to the current prices, 

then it is reasonable also to ask, what percent of the current price should be added to it in 

order to have risk at acceptable level.  

In previous model we assumed that differences between consecutive working days 

behave similarly but it is definitely possible that changes over longer periods (like weekends) 

behave differently, so it would not be reasonable to use previous assumptions about one day 

historical price differences. In Figure 5 one may see the historical price difference histogram 

for  working days and weekends for year 2013 data. Price differences for year 2012 data and 

year 2014 could be seen in Appendix 1. Figure 13 and Figure 14 and they are similar to those 

of Figure 5 for year 2013.  

 

Figure 5. Price differences in working days and weekends for year 2013 data. 
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Mean value from both samples are around zero, for example, from data of year 2013 

mean value from working days is −0.000485 and mean value from weekends is −0.057066 . With Kolmogorov-Smirnov test it was checked, if historical price differences in 

working days and weekends has the same distribution. It rejected this hypothesis with j −value 0.006212 for data of year 2012, 0.001489 – in year 2013 and 0.0254 – in year 2014. It means that it would be logical to consider two different samples and make 

calculations depending on which day of the week client has come, then price difference 

depends on the fact weather client decision-making time crosses Friday or not –  if it does 

then also weekend data are included. For example, when client thinking time is limited to 

three days, then if entry day is Monday, price difference consists just from randomly picked 

one day increments from working day sample, but if entry day is Wednesday, then price 

difference is the sum of two randomly picked values from working day sample and one from 

weekend day sample. So the model when increments are identical, but the distribution for 

weekends is different also will be analyzed. 

3.4. Numerical results 

Further the results of numerical calculation will be represented. In each case considered, 

the distribution of losses was estimated by simulating outcome of our model 100000 times. 

3.4.1.  Simple model for forward price movements with IID increments 

Computation results are possible loss per share if clients are offered the market prices, 

so Figure 6 describes the distribution of losses per share if clients are offered the current 

market price in case if client arrival per one day has Poisson distribution for year 2013 data. 

It can be seen that 90% of all 100000 times these losses are less than R =  0.7046(R5z) 

and each colour (from light green to dark orange) represents 5% of results. Looking at 

numbers (from � to R) we can see that their differences are quite small – difference from � to H is approximately 0.08 of one euro, if comparing with one MWh price (for example 50 (R5z)), it means that for lower confidence level like 70% and 75% even small changes 

of the price can have an effect on the level that actual price differences (offered price and 

market price) would not be larger than estimated. Similar figures for year 2012 and 2014 can 

be found in Appendix 1. Figure 15 and Figure 16. 
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Figure 6. � = 0.2524; 		H � 0.3349; 			b � 	0.4253; 		� � 	0.5466; 			R � 0.7046. 

Figure 7 represents risk premium for one MWh in case when number of clients arrive in 

one day follows geometric distribution with parameter j �
,

h
. 90% of repeated times risk 

premium was smaller than R � 0.7046	�R5z�. Therefore if a company under those 

assumptions would ask by 0.7	R5z more than the market price, then the company could be 

90% confident that they would not end up with big loss. One can compare results of both 

Figure 6 and Figure 7 ‒ as they are very similar, then probably all differences are caused by 

random effects of simulation. This type of figures for risk premium using year 2012 and 

2014 data could be seen in Appendix 1. Figure 17 and Figure 18 and they also are similar for 

clients arrival with Poisson and geometric distributions. 

 

Figure 7. � � 0.2535; 		H � 0.3383; 			b � 	0.43; 			� � 	0.55; 			R � 0.7074. 
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3.4.2. Logarithmic model for forward prices, short maximal thinking time 

Table 1 represents results for all three year data using regular differences and 

logarithmic returns. Risk premium for logarithmic returns is calculate as the product of mean 

value of the price and obtained percentage, so in this case percentages are random.  

Comparing results for regular differences and logarithmic returns it can be seen that they are 

quite close to each other. For example, difference between year 2013 90�� percentile for 

assumptions that clients are coming with Poisson distribution is just approximately 0.0005. 

There is no information available how the company is calculating its forward price and as 

results under assumptions are very similar, then in the further calculations regular differences 

will be used. 

Table 1. Results for previous calculations. 

 

2012 2013 2014 
Regular 

difference 
Log-
return 

Regular 
difference 

Log-
return 

Regular 
difference 

Log-
return 

Poisson 
distr. 

80% of 
differences 
less than 

0.5559 0.5610 0.4253 0.4326 0.2997 0.3036 
90% of 

differences 
less than 

0.914 0.9170 0.7046 0.7051 0.5 0.5114 

Geometric 
distr. 

80% of 
differences 
less than 

0.5535 0.5680 0.4376 0.4307 0.3 0.3053 
90% of 

differences 
less than 

0.9192 0.9346 0.72 0.7097 0.5026 0.5164 
 

In Table 2 one may see the percentage which should be added to the current market price for 

finding the price which the company should offer to the clients in order to have a risk at 

acceptable level: 20% and 10%.  

Table 2. Percentage what of the current price should added. 

 

2012 2013 2014 
Poisson d. Geom. d. Poisson d. Geom. d. Poisson d. Geom. d. 

Risk level 20% 
0.0122 0.0123 0.0094 0.0094 0.0072 0.0072 

Risk level 10% 
0.0199 0.0203 0.0154 0.0155 0.0122 0.0122 
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In Table 1 it can be seen that comparing results for client arriving with Poisson and 

geometric distribution and results from using regular difference and log-returns they are more 

or less close to each other, but the comparative results during years are a bit different. For 

example, 90�� percentile for assumptions that clients are coming with Poisson distribution are  
0.9155, 0.7046 and 0.5 for year 2012, 2013 and 2014, the difference for each next year is 

around 0.2. Also Figure 8 shows the differences, however the views for both client arrival 

distributions are similar. Using data of the year 2014 more risk premiums are around zero and 

less values around 1 comparing with years 2012 and 2013, however the results using data of 

the year 2012 there are less values around zero and the heaviest tails, and the results of year 

2013 are in between both others. As it can be seen in the Figure 2, this could happen because 

the data of year 2012 fluctuate the most, but the data of year 2014 are more stable. Also 

variation for one day price increments for year 2012 data is the largest (0.3854737), but for 

year 2014 data it is 0.1181933 and for year 2013 –  0.2344494.   

 

Figure 8. These are losses per share in the case of 0 risk premium ( random variable y from 
before). 

In previous analysis risk premium is determined as fixed percentile from 100000 

computed times, however we do not know how random are the obtained results, it means that 

it is necessary to study the question, how much the bais changes. The influence to results of 

increasing number of calculations is studied, if the differences between results using different 

number of calculations are small, then even calculating with smaller number of generations 

we get accurate results.  
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Table 3. Percentiles using different number of calculations (%, = 100000,  

%* = 1000000). 

 
2012 2013 2014 

 
n1 n2 n1 n2 n1 n2 70% 0.3388 0.3397 0.2524 0.2559 0.17 0.1678 75% 0.4392 0.4408 0.3349 0.3372 0.2294 0.2279 80% 0.5559 0.5587 0.4253 0.431 0.2997 0.2992 85% 0.7063 0.7076 0.5466 0.55 0.3867 0.384 90% 0.914 0.9149 0.7046 0.7104 0.5 0.4986 

 

Table 3 represents percentiles of the risk premiums using different number of 

calculations under assumption that client arrival follows Poisson distribution: %, = 100000, %* = 1000000. It could be seen that maximum absolute difference between all given 

percentiles for data of year 2013 is 0.0028, for data of year 2013 is 0.0058 and for data of 

the year 2014 is 0.0027, again the largest difference is  approximately 
+h of R5z cent then it 

could be said that if repeating computation for 100000 times obtained results are sufficiently 

accurate. 

In Appendix 1. Table 15 one may find results for case if client arrival follows geometric 

distribution. It can be seen that maximum absolute difference from all years is less than 0.01. 

If compering results from Table 1 between using Poisson and geometric distribution for client 

arrival, the difference is relatively small and as the randomness error also is not significant, 

then it could be said that client arrival distribution (Poisson or geometric) does have major 

influence of the results. 

3.4.3. Model for not identically distributed price increments 

Table 4 represents the risk premiums from this model. It can be seen that results using 

Poisson and geometric distributions for how many clients are coming in one day are again 

quite close. However, examining results for using data from different years certain variations 

can be observed. Average difference between results of year 2012 and 2013 is approximately 0.13 and it remains the same between results of year 2013 and 2014, however average 

difference between risk premiums of year 2012 and 2014 is approximately twice as large –  0.26.  
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Table 4. 80�� percentile of the second task risk premiums. 

Entry day 
2012 2013 2014 

Poisson d. Geom. d. Poisson d. Geom. d. Poisson d. Geom. d. 

Monday 0.5533 0.5579 0.4155 0.4198 0.2991 0.3002 
Tuesday 0.5565 0.5525 0.4112 0.4135 0.2936 0.3 

Wednesday 0.5705 0.5710 0.4315 0.4333 0.3063 0.3073 
Thursday 0.5702 0.5700 0.4460 0.45 0.3069 0.3029 

Friday 0.5687 0.5792 0.48 0.4862 0.3195 0.3145 
 

In Table 5 one can find the 90�� percentile of 100000 simulation times. Comparing the 

same data as in the previous table, conclusions are similar. There are insignificant differences 

between results using Poisson and geometric distribution for clients arriving and comparing 

risk premiums between two years (2012 and 2013 as well as 2013 and 2014) the average 

difference is approximately 0.25 and differences between year 2012 and 2014 also are twice 

larger – 0.42.  

Table 5. 90�� percentile of second tasks risk premiums. 

Entry day 
2012 2013 2014 

Poisson d. Geom. d. Poisson d. Geom. d. Poisson d. Geom. d. 

Monday 0.8835 0.8970 0.6729 0.6905 0.4897 0.4974 
Tuesday 0.8879 0.8946 0.6754 0.6829 0.48 0.4997 

Wednesday 0.9300 0.9417 0.72 0.73 0.5145 0.52 
Thursday 0.9574 0.9577 0.7486 0.7664 0.5277 0.5261 

Friday 0.9949 1.0144 0.8048 0.8279 0.55 0.55 
 

In Table 4 and Table 5 it can be observed, that results for Monday and Tuesday as entry 

day should be more or less the same, because in calculations the same principle was used. 

Also results for Wednesday, Thursday and Friday as entry day also are more similar. The 

biggest risk premium is for Friday as entry day, it is because variance of price difference 

between weekend is bigger than that of working days, as it can be seen in Table 6, and 

regardless of client thinking time data from weekend sample will be included in price 

difference.  
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Table 6. Variance of historical one day price difference. 2012 2013 2014 
Working days 0.20754 0.34812 0.10447 

Weekend 0.33953 0.50555 0.16808 
 

From the results can be obtained that the risk premium for Monday, Tuesday as entry 

day is slightly lower as it is for Wednesday, Thursday or Friday as entry day. This proves that 

a client entry day should be taken into account in analysis as well as the fact that working 

days and weekend increments do not have the same distribution. From data with less 

fluctuations 90% of all 100000 repeated calculations average risk premium was smaller than 

approximately 0.525 R5z, and from data with wide fluctuations 90% of all simulations give 

results which was smaller than approximately 0.95 R5z. 

3.4.4. Dependence of risk premium on clients thinking time distribution 

All previous analysis were based on assumption that clients are thinking three or less 

days, but in the real life clients usually can make their decision for a longer time. In the 

following calculation we assume that clients’ thinking time is from 1 to � days, all with equal 

probability, for several values of �. Also assumptions about client coming with Poisson and 

geometric distributions, client size follows exponential distribution are  used. In the first part 

of analysis assumption about IID price differences is considered. Calculations are based on 

three cases – maximum client decision-making time is 10, 20 or 30. 

Table 7 shows risk premiums 80�� and 90�� percentile of 100000 calculation times. 

Under different assumptions if maximum client thinking time is 10 days the risk premiums 

are less than for maximum – 20 and 30 – days, also results using maximum thinking for 20 

days are less than those for 30 days. It is quite logical: the more days client thinks the bigger 

is a risk that the price in the market will change. And if market price increases during that 

time then company may lose a lot of money, so to avoid this situation the company should 

add bigger risk premium. 

Table 7. Risk premiums depending on maximum client thinking time and IID price increment 

 

Max. 
thinking 

time 

2012 2013 2014 
Poisson d. Geom. d. Poisson d. Geom. d. Poisson d. Geom. d. 

80% 
10d. 0.9267 0.9399 0.7169 0.7238 0.4823 0.4864 
20d. 1.2619 1.2802 0.9837 0.9851 0.654 0.6507 
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30d. 1.4989 1.523 1.1516 1.1776 0.754 0.7722 
90% 

10d. 1.496 1.52 1.1649 1.1943 0.8155 0.83 
20d. 2.0435 2.0987 1.6088 1.612 1.117 1.1308 
30d. 2.4487 2.5051 1.8998 1.9477 1.3205 1.3606 

 

In further calculations previous assumptions are used, just for calculation of the price 

differences it is taken into account that increments from working days and weekends have 

different distributions, so analysis depend on day of the week when client arrives and it is 

based on three cases – maximum client decision-making time is 10, 20 or 30 days. 

The principle for calculations is the same as in the second model, however in this case 

client thinking time is longer. In Table 8, Table 9 and Table 10 one may find the results. In 

those tables 90�� percentiles of loss distributions are presented for different maximum 

thinking time based on the weekday the offer is made, the distribution of client arrival and 

exercise period. It means that if the risk premium under certain assumptions is as in the table, 

the company with 90% can be sure that it will be sufficient to cover incurred price 

differences. Table 6 represents the results using 10 days as maximum client thinking time, it 

could be seen that result differences between years (2012 and 2013 as well as 2013 and 2014)  are approximately 0.335.  

Table 8. Risk premiums with maximum client thinking time 10 days. 

Entry day 

Poisson distribution Geometric distribution 2012 2013 2014 2012 2013 2014 
Monday 1.467 1.138 0.800 1.499 1.16 0.832 
Tuesday 1.460 1.146 0.803 1.501 1.150 0.820 

Wednesday 1.458 1.159 0.810 1.481 1.169 0.828 
Thursday 1.470 1.166 0.804 1.515 1.180 0.822 

Friday 1.493 1.181 0.815 1.514 1.193 0.829 
 

In Table 9 and Table 10 results using maximum client thinking day 20 and 30 can be 

found. Again there is difference between years, with maximum decision making time 20 days 

it is approximately 0.45 and with maximum time 30 days – around 0.53. Compared to result 

presented in Table 9, the dependence of risk on the day the offer is made is very weak and not 

clearly visible in Table 10. It means if for maximum clients thinking time is relatively large 

(10, 20, 30), risk premium depends very little upon the fact on which day of week the client 
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arrives, but if maximum decision making time is small – like three days, then risk premium is 

influenced by entry day. 

Table 9. Risk premiums with maximum client thinking time 20 days.  

Entry day 

Poisson distribution Geometric distribution 2012 2013 2014 2012 2013 2014 
Monday 1.995 1.559 1.106 2.052 1.590 1.132 
Tuesday 2.014 1.559 1.097 2.023 1.604 1.114 

Wednesday 1.975 1.558 1.109 2.042 1.590 1.114 
Thursday 2.000 1.576 1.096 2.044 1.600 1.117 

Friday 1.993 1.577 1.091 2.038 1.591 1.122 
 

Table 10. Risk premiums for maximum client thinking time 30 days.  

Entry day 

Poisson distribution Geometric distribution 2012 2013 2014 2012 2013 2014 
Monday 2.398 1.876 1.318 2.422 1.912 1.353 
Tuesday 2.383 1.878 1.310 2.440 1.917 1.360 

Wednesday 2.375 1.872 1.330 2.440 1.923 1.345 
Thursday 2.389 1.889 1.321 2.433 1.911 1.333 

Friday 2.375 1.885 1.315 2.420 1.920 1.340 
 

If the  results between different entry days are compared one can see that for longer 

client decision making time the risk premiums should be larger. For example, results of the 

year 2012 with Poisson distribution as client arrival for entry day Wednesday are the 

following: risk premium with maximum client thinking time 10 days is 1.458, with maximum 

client thinking 20 days it is 1.975 and with 30 days – 2.375. Difference between maximum 

thinking time 10 and 20 is approximately 0.5, between maximum thinking time 20 and 30 it is 

0.4. Table 11 shows the boundaries for differences of risk premium for various maximum 

client thinking days. It could be seen that results of year 2012 has the largest differences 

depending on maximum thinking time and the closest results for different number of 

maximum thinking days are for data of year 2014. It also could be explained with fluctuation 

from initial data, if the variation from historical prices is bigger it also appears in results and if 

variation is smaller than results varies less as well. 
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Table 11. Differences in results between different days. 

Poisson distribution Geometric distribution 2012 2013 2014 2012 2013 2014 
10d. to 20d. 

Minimum 0.500 0.395 0.276 0.522 0.398 0.287 
Maximum 0.553 0.421 0.305 0.561 0.454 0.300       20d. to 30d. 

Minimum 0.370 0.309 0.213 0.370 0.311 0.216 
Maximum 0.403 0.319 0.224 0.417 0.333 0.247 

 

3.4.5. Effect of changing expected number of clients’ arrival 

The aim of following analysis is to find out whether mean number of clients’ arrival per 

one day effects the risk premium. The cases when mean client arrival is 2, 3, 5, 7 and 10 are 

analysed. Table 12 shows percentiles of the results for data of the year 2013 and tables with 

results from data of years 2012 and 2014 are in Appendix 1. Table 16 and Table 17. 

Comparing results from those tables one may see that most of them are quite close, however 

maximum difference between different average numbers of clients arrival is 0.033 for data of 

year 2013 and for data of the years 2012 and 2014:  0.0405, 0.0183. For data of the year 2012 this maximum difference of the risk Premium is approximately 4 eurocents, it means 

that if change the mean number of client arrival, it could have an effect to the risk premium 

which the company should add to the current market price. 

Table 12. Percentiles of the results using different mean client arrival.  2 clients 3 clients 5 clients 7 clients 10 clients 70% 0.2564 0.2575 0.2524 0.2561 0.2563 75% 0.3408 0.3383 0.3349 0.3367 0.3356 80% 0.4392 0.4315 0.4253 0.4281 0.4274 85% 0.5633 0.55 0.5466 0.5426 0.5459 90% 0.73 0.7101 0.7046 0.697 0.7011 
 

3.4.6. Effect of changing given expected order size 

Next we want to find out how much client size effects the results of analysis. In 

previous analysis clients size follows exponential distribution with parameter 
,h, which means 
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that clients want to buy in average 5 ��ℎ of electricity. Further is studied how much 

changes result of risk premiums if change average client size to 2 ��ℎ, 3 ��ℎ, 5 ��ℎ,  7 ��ℎ and 10 ��ℎ. Table 13 represents percentiles from 100000 computed times of risk 

premiums in those cases for data of the year 2013 and results from data of years 2012 and 

2014 one may find in Appendix 1. Table 18 and Table 19. There are no significant differences 

between results, maximum difference within data of the year  2012 is 0.0074, in data of the 

year 2013 it is 0.0134 and between data of the 2014 – 0.0075. As the differences are small, 

then it could cause by randomness. 

Table 13. Percentiles of risk premiums for data using different average client size. 

 2 ��ℎ 3 ��ℎ 5 ��ℎ 7 ��ℎ 10 ��ℎ 70% 0.2535 0.2577 0.2524 0.2549 0.26 75% 0.3342 0.3406 0.3349 0.3367 0.3384 80% 0.43 0.4359 0.4253 0.4324 0.434 85% 0.55 0.5543 0.5466 0.5512 0.5552 90% 0.7129 0.7169 0.7046 0.7113 0.718 
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CONCLUSION 

The aim of the master thesis was to analyse data from electricity market estimating the 

risks of the company when it offered to clients contracts with fixed prices for future periods. 

For studying this question historical electricity prices which the company had been offering to 

clients for year 2012, 2013 and 2014 were used. Before starting practical part the theoretical 

background was prepared. These thesis includes the futures and forward contract descriptions 

and comparison, as well as derivation of prices of the contracts under no arbitrage condition 

are included. Information about electricity market was collected and discovered because of 

electricity’s non-storable character, the pricing of risk in forward trading become more 

complicated, so also a few models for forward price modelling were described.  

In the master thesis practical part data analysis was based on ARIMA(0,1,0) model 

(random walk) for market price of wholesale futures contracts. For comparison a model using 

logarithmic return was analyzed. As a result the risk premiums for given risk levels under 

various assumptions were found. The questions were studied, whether the risk premium 

depended on maximum client thinking time, average client arrival per one day and average 

amount of electricity which they wanted to buy. At first it was assumed that all price 

differences and logarithmic returns were IID.  

From the obtained results it was concluded that client arrival distribution (Poisson or 

geometric distribution) did not have an effect, however the results depend on mean number of 

clients arrival for one day. Major differences between results using regular differences and 

logarithmic returns was not observed. If changed the expected number of client size analyzed 

results did not show any significant effect from it. In practical part the question that price 

differences between weekdays and weekends were not from the same distribution was 

studied. Results showed dependence on client entry day per week showed in case if maximum 

client thinking time were three days, however if the maximum client thinking time was larger 

– like 10, 20 and 30 – then results did not have significant differences. Differences of data 

results from different years of all analyzed cases were obtained. From the data which 

fluctuated the most the results were the largest, but from data which were more stable the 

smallest results were obtained.  

As there are some unexpected factors which could influence processes in the future and 

as obtained results depend on quite many assumptions, then one universal, constant overtime 

risk premium could not be concluded. It would be better to take results as advisory 
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information and data source. As the topic is very complicated, it is still opened to deeper 

analysis.  
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APPENDIX 

1. appendix 

Figures and tables 

 

A.1. Figure 9. Price difference and their autocorrelation plot (2012). 

 

A.1. Figure 10. Price difference and their autocorrelation plot (2014). 
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A.1. Figure 11. Autocorrelation plot from logarithmic returns. (2012). 

 

A.1. Figure 12. Autocorrelation plot from logarithmic returns. (2014). 

 

A.1. Figure 13. Price differences in working days and weekends for year 2012 data. 
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A.1. Figure 14. Price differences in working days and weekends for year 2014 data. 

 

A.1. Figure 15. � � 0.3388; 		H � 0.4392; 			b � 	0.5559; 		� � 	0.7063; 

R � 0.914 (2012). 

 

A.1. Figure 16. � � 0.17; 		H � 0.2294; 			b � 	0.2997; 		� � 	0.3867; 

R � 0.5 (2014). 
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A.1. Figure 17. � = 0.3402; H � 0.4405; b � 	0.5535	� � 	0.7035; 

R � 0.9192  (2012). 

 

 

A.1. Figure 18. � � 0.17; H � 0.2312; b � 	0.3; � � 	0.3929; 	R � 0.5026 (2014). 

A.1. Table 15. Percentiles using different number of calculations (%, � 100000, 

%* � 1000000) (client arrival - geometric distribution). 

 
2012	 2013	 2014	

 
n1	 n2	 n1	 n2	 n1	 n2	

70%	 0.3402	 0.3442	 0.2559	 0.255	 0.17	 0.1698	

75%	 0.4405	 0.4471	 0.341	 0.3396	 0.2312	 0.23	

80%	 0.5535	 0.5604	 0.4376	 0.4336	 0.3	 0.3	

85%	 0.7035	 0.7126	 0.5588	 0.555	 0.3929	 0.39	

90%	 0.9192	 0.9274	 0.72	 0.7206	 0.5026	 0.5022	
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A.1. Table 16. Percentiles of the results using different mean client arrival (2012).  2 clients 3 clients 5 clients 7 clients 10 clients 70% 0.3467 0.341 0.3388 0.3393 0.3369 75% 0.4497 0.445 0.4392 0.4382 0.4363 80% 0.5659 0.5624 0.5559 0.5531 0.5499 85% 0.7195 0.7138 0.7063 0.6974 0.6934 90% 0.9306 0.924 0.914 0.8966 0.8901 
 

A.1. Table 17. Percentiles of the results using different mean client arrival (2014).  2 clients 3 clients 5 clients 7 clients 10 clients 70% 0.1703 0.1698 0.17 0.1644 0.1661 75% 0.2315 0.23 0.2294 0.2236 0.2271 80% 0.3001 0.3 0.2997 0.2934 0.2972 85% 0.3931 0.3876 0.3867 0.3786 0.38 90% 0.5062 0.5 0.5 0.4879 0.4913 
 

A.1. Table 18. Percentiles of risk premiums for data of the year 2012  2 ��ℎ 3 ��ℎ 5 ��ℎ 7 ��ℎ 10 ��ℎ 70% 0.3429 0.3386 0.3388 0.3402 0.3359 75% 0.4421 0.4382 0.4392 0.4431 0.4388 80% 0.5592 0.5566 0.5559 0.5607 0.5578 85% 0.7086 0.7046 0.7063 0.7081 0.7105 90% 0.9113 0.9108 0.914 0.9157 0.9182 
 

A.1. Table 19. Percentiles of risk premiums for data of the year 2014  2 ��ℎ 3 ��ℎ 5 ��ℎ 7 ��ℎ 10 ��ℎ 70% 0.1688 0.1711 0.17 0.1642 0.1671 75% 0.23 0.2307 0.2294 0.2244 0.2271 80% 0.3 0.3 0.2997 0.296 0.2962 85% 0.3855 0.3883 0.3867 0.3808 0.3834 90% 0.4978 0.5 0.5 0.4952 0.4999 
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2. appendix 

R code 

Initial_data_send <- read.delim("~/Studijas EE/MT/Practical part/Initial_data_send.txt", dec=",") 
Initial_data_send 
dati_2013 <-Initial_data_send$Price_2013 
dati_2012 <-Initial_data_send$Price_2012 
dati_2014 <-Initial_data_send$Price_2014 
dati_2012=dati_2012[complete.cases(dati_2012)] 
dati_2014=dati_2014[complete.cases(dati_2014)] 
 
dati_2013 
 
time<-Initial_data_send$Date_2013 
time_2013<-strptime(time, format="%d.%m.%Y",  tz ="GMT") 
time_2013=time_2013[complete.cases(time_2013)] 
time_2013 
time1<-Initial_data_send$Date_2012 
time_2012<-strptime(time1, format="%d.%m.%Y",  tz ="GMT") 
time_2012=time_2012[complete.cases(time_2012)] 
time_2012 
time2<-Initial_data_send$Date_2014 
time_2014<-strptime(time2, format="%d.%m.%Y",  tz ="GMT") 
time_2014=time_2014[complete.cases(time_2014)] 
time_2014 
 
############for year 2012############. 
Dati=dati_2012 
D=diff(dati_2012) 
D_date=diff(time_2012) 
length(D) 
mean(Dati) 
var(Dati) 
 
############for year 2013############. 
Dati=dati_2013 
D=diff(dati_2013) 
D_date=diff(time_2013) 
length(D) 
mean(Dati) 
var(Dati) 
############for year 2014############. 
Dati=dati_2014 
D=diff(dati_2014) 
D_date=diff(time_2014) 
length(D) 
mean(Dati) 
var(Dati) 
####################################. 
 
par(mfrow=c(1,2)) 
plot(D, type="l", ylab="Price difference", main="Price difference") 
acf(D,main='Autocorrelation plot of price difference', ylab="Autocorelations") 
layout(1:1) 
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###################1. task.################. 
 
#write one complect for one day 
#clients arrival - exponential distribution with rate 1/5 
#amount of electricity - exponential distribution with rate 1/5 
#clients thinking time: 
#1 day with probability - 33% 
#2 days with probability - 33% 
#3 days with probability - 33% 
 
#day differences as empirical data - random chosen one day difference form historical data 
 
n=100000 
 
task1=function(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,D){ 
  S_1task=rep(NA,n) 
  Z_1task=rep(NA,n) 
  for(k in 1:n) { 
    cl_arrival=client_arrival_gen(1) #how many clients arrive in one day ("1+" is because this 
distribution also gives 0 value, but here we consider case when clients actually are  coming) 
    cl_amount=client_size_gen(cl_arrival) #how much the clients want to buy 
    #generates sample from historical price 
    diff=diff_gen(D) 
    ta_1task=rep(NA,cl_arrival)  #vector for profit/loss from one clients 
    for (i in 1:cl_arrival) { #cycle for one day's client arrival  
      F_diff=0 
      #generate how long client is thnking - one, two or three days (each day has the same probability 
1/6) 
      t=client_thinking_gen(1) 
      F_diff=sum(diff[1:t]) 
      ta_1task[i]=F_diff*cl_amount[i]  # amount of money which the company get/lose from one client 
    } 
    S_1task[k]=sum(ta_1task) #total amount which company get/lose for one day (from one 
"complect") 
    Z_1task[k]=S_1task[k]/sum(cl_amount) # amount which company should add to current price 
  } 
  return(Z_1task)} 
 
client_thinking_gen=function(n){ 
  T=3 
  p=rep(1/T,T) 
  return(sample(T,n,replace=T,prob=p))} 
 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/5))} 
 
diff_gen=function(D){ 
  return(sample(D, 3, replace = TRUE, prob = NULL)  )} 
 
#poisson distribution 
client_arrival_gen=function(n){ 
  return(1+rpois(n,lambda=4))} 
 
Z_1task_po=task1(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,D) 
Z1_70_po<-round(quantile(Z_1task_po,0.70,names = FALSE),digits = 4) 
Z1_75_po<-round(quantile(Z_1task_po,0.75,names = FALSE),digits = 4) 
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Z1_80_po<-round(quantile(Z_1task_po,0.80,names = FALSE),digits = 4) 
Z1_85_po<-round(quantile(Z_1task_po,0.85,names = FALSE),digits = 4) 
Z1_90_po<-round(quantile(Z_1task_po,0.90,names = FALSE),digits = 4) 
perc_70_po <-Z1_70_po 
perc_75_po <-Z1_75_po 
perc_80_po <-Z1_80_po 
perc_85_po <-Z1_85_po 
perc_90_po <-Z1_90_po 
plot(density(Z_1task_po), lwd=2.5,xlim=c(-2.5,2.5),col="darkblue",main="Density of price difference 
for MWh (cl. - Poisson distr.)",xlab="Price difference for MWh",ylab="%",bg="red",font.main=2) 
clip(-2.5,perc_70_po,0,30) 
polygon(density(Z_1task_po), col="lightblue", border="darkblue")  
clip(perc_70_po,perc_75_po,0,30) 
polygon(density(Z_1task_po), col="lightgreen", border="darkblue")  
clip(perc_75_po,perc_80_po,0,30) 
polygon(density(Z_1task_po), col="yellow", border="darkblue")  
clip(perc_80_po,perc_85_po,0,30) 
polygon(density(Z_1task_po), col="orange", border="darkblue")  
clip(perc_85_po,perc_90_po,0,30) 
polygon(density(Z_1task_po), col="darkorange", border="darkblue")  
clip(perc_90_po,2.5,0,30) 
polygon(density(Z_1task_po), col="red", border="darkblue")  
clip(-2,2,-1,30) 
text(-0.1,0.45,"70%", font=2) 
text(1,0.08,"10%", font=2) 
text(0.37,0.40,"5%", font=1) 
text(0.47,0.30,"5%", font=1) 
text(0.58,0.20,"5%", font=1) 
text(0.7,0.10,"5%", font=1) 
 
#Geometric distribution 
client_arrival_gen=function(n){ 
  return(1+rgeom(1, prob = 1/5))} 
 
Z_1task_geo=task1(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,D) 
######### previous assumpations, just change average value of client size 
 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/7)) 
} 
 
Z_1task_po_size7=task1(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,D) 
Z1_70_po_size7<-round(quantile(Z_1task_po_size7,0.70,names = FALSE),digits = 4) 
Z1_75_po_size7<-round(quantile(Z_1task_po_size7,0.75,names = FALSE),digits = 4) 
Z1_80_po_size7<-round(quantile(Z_1task_po_size7,0.80,names = FALSE),digits = 4) 
Z1_85_po_size7<-round(quantile(Z_1task_po_size7,0.85,names = FALSE),digits = 4) 
Z1_90_po_size7<-round(quantile(Z_1task_po_size7,0.90,names = FALSE),digits = 4) 
 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/3)) 
} 
 
Z_1task_po_size3=task1(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,D) 
Z1_70_po_size3<-round(quantile(Z_1task_po_size3,0.70,names = FALSE),digits = 4) 
Z1_75_po_size3<-round(quantile(Z_1task_po_size3,0.75,names = FALSE),digits = 4) 
Z1_80_po_size3<-round(quantile(Z_1task_po_size3,0.80,names = FALSE),digits = 4) 
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Z1_85_po_size3<-round(quantile(Z_1task_po_size3,0.85,names = FALSE),digits = 4) 
Z1_90_po_size3<-round(quantile(Z_1task_po_size3,0.90,names = FALSE),digits = 4) 
 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/2)) 
} 
 
Z_1task_po_size2=task1(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,D) 
Z1_70_po_size2<-round(quantile(Z_1task_po_size2,0.70,names = FALSE),digits = 4) 
Z1_75_po_size2<-round(quantile(Z_1task_po_size2,0.75,names = FALSE),digits = 4) 
Z1_80_po_size2<-round(quantile(Z_1task_po_size2,0.80,names = FALSE),digits = 4) 
Z1_85_po_size2<-round(quantile(Z_1task_po_size2,0.85,names = FALSE),digits = 4) 
Z1_90_po_size2<-round(quantile(Z_1task_po_size2,0.90,names = FALSE),digits = 4) 
 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/10)) 
} 
 
Z_1task_po_size10=task1(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,D) 
Z1_70_po_size10<-round(quantile(Z_1task_po_size10,0.70,names = FALSE),digits = 4) 
Z1_75_po_size10<-round(quantile(Z_1task_po_size10,0.75,names = FALSE),digits = 4) 
Z1_80_po_size10<-round(quantile(Z_1task_po_size10,0.80,names = FALSE),digits = 4) 
Z1_85_po_size10<-round(quantile(Z_1task_po_size10,0.85,names = FALSE),digits = 4) 
Z1_90_po_size10<-round(quantile(Z_1task_po_size10,0.90,names = FALSE),digits = 4) 
 
#########using not regular differences, but logarithmic returns 
 
task1_return=function(Dati,n,client_size_gen,client_thinking_gen,log_return_gen,client_arrival_gen){ 
  S_1task_return=rep(NA,n) 
  Z_1task_return=rep(NA,n) 
  for(k in 1:n) { 
    cl_arrival=client_arrival_gen(1) #how many clients arrive in one day ("1+" is because this 
distributio also gives 0 value, but here we consider case when clients actually are  coming) 
    cl_amount=client_size_gen(cl_arrival) #how much the clients want to buy 
    #generates sample from historical price 
    log_return_sample=log_return_gen(log_return) 
    ta_1task=rep(NA,cl_arrival)  #vector for profit/loss from one clients 
    for (i in 1:cl_arrival) { #cycle for one day's client arrival  
      F_return=0 
      #generate how long client is thnking - one, two or three days (each day has the same probability 
1/6) 
      t=client_thinking_gen(1) 
      F_return=sum(log_return_sample[1:t]) 
      ta_1task[i]=(exp(F_return)-1)*cl_amount[i]  # amount of money which the company get/lose from 
one client 
    } 
    S_1task_return[k]=sum(ta_1task) #total amount which company get/lose for one day (from one 
"complect") 
    Z_1task_return[k]=S_1task_return[k]/sum(cl_amount) # amount which company should add to 
current price 
  } 
  return(Z_1task_return) 
} 
 
client_thinking_gen=function(n){ 
  T=3 
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  p=rep(1/T,T) 
  return(sample(T,n,replace=T,prob=p)) 
} 
 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/5)) 
} 
log_return=log(Dati[-1]/Dati[-length(Dati)])  
log_return 
 
 
log_return_gen=function(log_return){ 
  return(sample(log_return,3, replace = TRUE, prob = NULL) ) 
} 
 
log_return_gen(log_return) 
acf(log_return) 
 
#poisson distribution 
 
client_arrival_gen=function(n){ 
  return(1+rpois(n,lambda=4)) 
} 
 
result_po=task1_return(Dati,n,client_size_gen,client_thinking_gen,log_return_gen,client_arrival_gen) 
 
Z1_80_po_return=quantile(result_po,0.80,names = FALSE)   
Z1_90_po_return=quantile(result_po,0.90,names = FALSE)   
mean(Dati)*Z1_90_po_return 
 
#Geometric distribution 
 
client_arrival_gen=function(n){ 
  return(1+rgeom(1, prob = 1/5)) 
} 
 
result_geo=task1_return(Dati,n,client_size_gen,client_thinking_gen,log_return_gen,client_arrival_gen
) 
 
Z1_80_geo_return=quantile(result_geo,0.80,names = FALSE)   
Z1_90_geo_return=quantile(result_geo,0.90,names = FALSE)   
mean(Dati)*Z1_90_geo_return 
 
###################2. task.################. 
#check if price differences in working days are with the same distribution as in weekends 
 
length(D_date) 
l1=length(D_date[D_date==1]) 
l2=length(D_date[D_date==3]) 
set1=rep(NA,l1) 
set2=rep(NA,l2) 
set1=D[D_date==1] 
set2=D[D_date==3] 
mean(set1) # -0.0004848485 
mean(set2) # -0.05706612 
var(set1)  # 0.2075353 
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var(set2)  # 0.3395279   
 
par(mfrow=c(1,2)) 
hist(set1, breaks=50, xlab="Price differences", main="Working days", col="lightgreen") 
hist(set2, breaks=50, xlab="Price differences", main="Weekends", col="lightgreen") 
layout(1:1) 
 
ks.test(set1, set2) 
#Two-sample Kolmogorov-Smirnov test 
#data:  set1 and set2 
#D = 0.1361, p-value = 0.001489 
#alternative hypothesis: two-sided 
 
#write one complect for one day depending on which day client enter 
 
#clients arrival:  1) Poisson distribution distribution with lambda=5 
#                  2) Geometric distributon with prob.=1/6 
#amount of electricity - exponential distribution with rate 1/5 
#clients thinking time: 
#1 day with probability - 33.33% 
#2 days with probability - 33.33% 
#3 days with probability - 33.33% 
#day differences as empirical data - random chosen one day difference form historical data, but 
consider different distributions for workdays and weekends price differences 
 
###########using Poison distribution for client arrival 
task2=function(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, set2){ 
  S_2task=rep(NA,n) 
  Z_2task=rep(NA,n) 
  for(k in 1:n) { 
    cl_arrival=client_arrival_gen(1) #how many clients arrive in one day ("1+" is because this 
distributio also gives 0 value, but here we consider case when clients actually are  coming) 
    cl_amount=client_size_gen(cl_arrival) #how much the clients want to buy 
    #generates sample from historical price 
    diff1=diff_gen(set1,3)  #generates sample from historical working days differences 
    diff2=diff_gen(set2,1) #generates sample from historical weekend days differences 
    ta_2task=rep(NA,cl_arrival)  #vector for profit/loss from one clients 
    for (i in 1:cl_arrival) { #cycle for one day's client arrival  
      F_diff=0 
      #generate how long client is thnking - one, two or three days (each day has the same probability 
1/6) 
      t=client_thinking_gen(1) 
      F_diff=F_diff_gen(diff1,diff2,t) 
      ta_2task[i]=F_diff*cl_amount[i]  # amount of money which the company get/lose from one client 
    } 
    S_2task[k]=sum(ta_2task) #total amount which company get/lose for one day (from one 
"complect") 
    Z_2task[k]=S_2task[k]/sum(cl_amount) # amount which company should add to current price 
  } 
  return(Z_2task) 
} 
client_thinking_gen=function(n){ 
  T=3 
  p=rep(1/T,T) 
  return(sample(T,n,replace=T,prob=p)) 
} 
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client_size_gen=function(n){ 
  return(rexp(n,rate=1/5)) 
} 
diff_gen=function(D,n){ 
  return(sample(D, n, replace = TRUE, prob = NULL)  ) 
} 
#poisson distribution 
 
client_arrival_gen=function(n){ 
  return(1+rpois(n,lambda=4)) 
} 
#####For Monday 
F_diff_gen=function(diff1,diff2,t){ 
  return(sum(diff1[1:t]) ) 
} 
Z_2task_po_1day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, set2) 
Z1_2task_80_po_1day=quantile(Z_2task_po_1day,0.80,names = FALSE)   
Z1_2task_90_po_1day=quantile(Z_2task_po_1day,0.90,names = FALSE)  
#####For Tuesday 
F_diff_gen=function(diff1,diff2,t){ 
  return(sum(diff1[1:t]) ) 
} 
Z_2task_po_2day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, set2) 
Z1_2task_80_po_2day=quantile(Z_2task_po_2day,0.80,names = FALSE)   
Z1_2task_90_po_2day=quantile(Z_2task_po_2day,0.90,names = FALSE)   
#####For Wednesday 
F_diff_gen=function(diff1,diff2,t){ 
  if (t<3) { 
    F_diff_g=sum(diff1[1:t]) 
  }else {F_diff_g=(sum(diff1)+diff2)} 
  return(F_diff_g ) 
} 
Z_2task_po_3day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, set2) 
Z1_2task_80_po_3day=quantile(Z_2task_po_3day,0.80,names = FALSE)   
Z1_2task_90_po_3day=quantile(Z_2task_po_3day,0.90,names = FALSE)   
#####For Thursday 
F_diff_gen=function(diff1,diff2,t){ 
  if (t==1) { 
    F_diff_g=diff1[1] 
  }else if (t==2){ 
    F_diff_g=diff1[1]+diff2 
  } else {F_diff_g=(sum(diff1)+diff2)} 
  return(F_diff_g ) 
} 
Z_2task_po_4day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, set2) 
Z1_2task_80_po_4day=quantile(Z_2task_po_4day,0.80,names = FALSE)   
Z1_2task_90_po_4day=quantile(Z_2task_po_4day,0.90,names = FALSE)  
Z1_2task_80_po_4day 
Z1_2task_90_po_4day 
#####For Friday 
F_diff_gen=function(diff1,diff2,t){ 
  if (t==1) { 
    F_diff_g=diff2 
  }else if (t==2){ 
    F_diff_g=diff2+diff1[1] 
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  } else {F_diff_g=(diff2+sum(diff1))} 
  return(F_diff_g ) 
} 
Z_2task_po_5day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, set2) 
Z1_2task_80_po_5day=quantile(Z_2task_po_5day,0.80,names = FALSE)   
Z1_2task_90_po_5day=quantile(Z_2task_po_5day,0.90,names = FALSE)  
 
###########using geometric distribution for client arrival 
client_arrival_gen=function(n){ 
  return(1+rgeom(1, prob = 1/5)) 
} 
#####For Monday 
F_diff_gen=function(diff1,diff2,t){ 
  return(sum(diff1[1:t]) ) 
} 
Z_2task_geo_1day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, 
set2) 
Z1_2task_80_geo_1day=quantile(Z_2task_geo_1day,0.80,names = FALSE)   
Z1_2task_90_geo_1day=quantile(Z_2task_geo_1day,0.90,names = FALSE)  
#####For Tuesday 
F_diff_gen=function(diff1,diff2,t){ 
  return(sum(diff1[1:t]) ) 
} 
Z_2task_geo_2day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, 
set2) 
Z1_2task_80_geo_2day=quantile(Z_2task_geo_2day,0.80,names = FALSE)   
Z1_2task_90_geo_2day=quantile(Z_2task_geo_2day,0.90,names = FALSE)   
#####For Wednesday 
F_diff_gen=function(diff1,diff2,t){ 
  if (t<3) { 
    F_diff_g=sum(diff1[1:t]) 
  }else {F_diff_g=(sum(diff1)+diff2)} 
  return(F_diff_g ) 
} 
Z_2task_geo_3day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, 
set2) 
Z1_2task_80_geo_3day=quantile(Z_2task_geo_3day,0.80,names = FALSE)   
Z1_2task_90_geo_3day=quantile(Z_2task_geo_3day,0.90,names = FALSE)   
#####For Thursday 
F_diff_gen=function(diff1,diff2,t){ 
  if (t==1) { 
    F_diff_g=diff1[1] 
  }else if (t==2){ 
    F_diff_g=diff1[1]+diff2 
  } else {F_diff_g=(sum(diff1)+diff2)} 
  return(F_diff_g ) 
} 
Z_2task_geo_4day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, 
set2) 
Z1_2task_80_geo_4day=quantile(Z_2task_geo_4day,0.80,names = FALSE)   
Z1_2task_90_geo_4day=quantile(Z_2task_geo_4day,0.90,names = FALSE)  
#####For Friday 
F_diff_gen=function(diff1,diff2,t){ 
  if (t==1) { 
    F_diff_g=diff2 
  }else if (t==2){ 
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    F_diff_g=diff2+diff1[1] 
  } else {F_diff_g=(diff2+sum(diff1))} 
  return(F_diff_g ) 
} 
Z_2task_geo_5day=task2(n,client_size_gen,client_thinking_gen,diff_gen,client_arrival_gen,set1, 
set2) 
Z1_2task_80_geo_5day=quantile(Z_2task_geo_5day,0.80,names = FALSE)   
Z1_2task_90_geo_5day=quantile(Z_2task_geo_5day,0.90,names = FALSE)  
 
###################3. task.################. 
#previous analysis if longest client thinking time is T 
###########################################. 
#using 1. task assumptions (IID increments) 
 
task3_1=function(T,n,client_size_gen, client_arrival_gen, client_thinking_gen){  
  S_1task=rep(NA,n) 
  Z_1task=rep(NA,n) 
  for(k in 1:n) { 
    cl_arrival=client_arrival_gen(1) #how many clients arrive in one day ("1+" is because this 
distributio also gives 0 value, but here we consider case when clients actually are  coming) 
    cl_amount=client_size_gen(cl_arrival) #how much the clients want to buy 
    diff=sample(D, T, replace = TRUE, prob = NULL)  #generates sample from historical differences 
    ta_1task=rep(NA,cl_arrival)  #vector for profit/loss from one clients 
    cl_thinking=client_thinking_gen(T,cl_arrival)  #generate how long client is thinking  
    for (i in 1:cl_arrival) { #cycle for one day's client arrival  
      F_diff=0 
      t=cl_thinking[i]   
      F_diff=sum(diff[1:t])  # the sum of price differences for all client "thinking days" 
      ta_1task[i]=F_diff*cl_amount[i]  # amount of money which the company get/lose from one client 
    } 
    S_1task[k]=sum(ta_1task) #total amount which company get/lose for one day (from one 
"complect") 
    Z_1task[k]=S_1task[k]/sum(cl_amount) # amount which company should add to current price 
  } 
  return(Z_1task) 
} 
client_thinking_gen=function(T,n){ 
  p=rep(1/T,T) 
  return(sample(T,n,replace=T,prob=p)) 
} 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/5)) 
} 
#poisson distribution 
client_arrival_gen=function(n){ 
  return(1+rpois(n,lambda=4)) 
} 
Z_3task_1_po_10=task3_1(T=10,n,client_size_gen, client_arrival_gen, client_thinking_gen) 
Z1_3task_1_80_po_10<-round(quantile(Z_3task_1_po_10,0.80,names = FALSE),digits = 4) 
Z1_3task_1_90_po_10<-round(quantile(Z_3task_1_po_10,0.90,names = FALSE),digits = 4) 
Z_3task_1_po_20=task3_1(T=20,n,client_size_gen, client_arrival_gen, client_thinking_gen) 
Z1_3task_1_80_po_20<-round(quantile(Z_3task_1_po_20,0.80,names = FALSE),digits = 4) 
Z1_3task_1_90_po_20<-round(quantile(Z_3task_1_po_20,0.90,names = FALSE),digits = 4) 
 
Z_3task_1_po_30=task3_1(T=30,n,client_size_gen, client_arrival_gen, client_thinking_gen) 
Z1_3task_1_80_po_30<-round(quantile(Z_3task_1_po_30,0.80,names = FALSE),digits = 4) 
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Z1_3task_1_90_po_30<-round(quantile(Z_3task_1_po_30,0.90,names = FALSE),digits = 4) 
#Geometric distribution 
client_arrival_gen=function(n){ 
  return(1+rgeom(1, prob = 1/5)) 
} 
Z_3task_1_geo_10=task3_1(T=10,n,client_size_gen, client_arrival_gen, client_thinking_gen) 
Z1_3task_1_80_geo_10<-round(quantile(Z_3task_1_geo_10,0.80,names = FALSE),digits = 4) 
Z1_3task_1_90_geo_10<-round(quantile(Z_3task_1_geo_10,0.90,names = FALSE),digits = 4) 
Z_3task_1_geo_20=task3_1(T=20,n,client_size_gen, client_arrival_gen, client_thinking_gen) 
Z1_3task_1_80_geo_20<-round(quantile(Z_3task_1_geo_20,0.80,names = FALSE),digits = 4) 
Z1_3task_1_90_geo_20<-round(quantile(Z_3task_1_geo_20,0.90,names = FALSE),digits = 4) 
Z_3task_1_geo_30=task3_1(T=30,n,client_size_gen, client_arrival_gen, client_thinking_gen) 
Z1_3task_1_80_geo_30<-round(quantile(Z_3task_1_geo_30,0.80,names = FALSE),digits = 4) 
Z1_3task_1_90_geo_30<-round(quantile(Z_3task_1_geo_30,0.90,names = FALSE),digits = 4) 
 
###########################################. 
#using 2. task assumptions (increments are not identically distributed) 
 
task3_2=function(T,n,client_size_gen, client_arrival_gen, client_thinking_gen,enter_day){  
  S_1task=rep(NA,n) 
  Z_1task=rep(NA,n) 
  for(k in 1:n) { 
    cl_arrival=client_arrival_gen(1) #how many clients arrive in one day ("1+" is because this 
distributio also gives 0 value, but here we consider case when clients actually are  coming) 
    cl_amount=client_size_gen(cl_arrival) #how much the clients want to buy 
    diff=sample(D, T, replace = TRUE, prob = NULL)  #generates sample from historical differences 
    ta_1task=rep(NA,cl_arrival)  #vector for profit/loss from one clients 
    cl_thinking=client_thinking_gen(cl_arrival,T)  #generate how long client is thinking  
    S=Diff_vector(T,enter_day) 
    for (i in 1:cl_arrival) { #cycle for one day's client arrival  
      F_diff=0 
      t=cl_thinking[i]   
      F_diff=S[t]  # the sum of price differences for all client "thinking days" 
      ta_1task[i]=F_diff*cl_amount[i]  # amount of money which the company get/lose from one client 
    } 
    S_1task[k]=sum(ta_1task) #total amount which company get/lose for one day (from one 
"complect") 
    Z_1task[k]=S_1task[k]/sum(cl_amount) # amount which company should add to current price 
  } 
  return(Z_1task_po) 
} 
client_size_gen=function(n){ 
  return(rexp(n,rate=1/5)) 
} 
client_thinking_gen=function(n,T){ 
  p=rep(1/T,T) 
  return(sample(T,n,replace=T,prob=p)) 
} 
Diff_vector=function(T,enter_day){ 
  diff1=sample(set1, T-floor(T/5), replace = TRUE, prob = NULL)  #generates sample from historical 
working days differences 
  diff2=sample(set2, ceiling(T/5), replace = TRUE, prob = NULL) 
  S=rep(NA,T)  #vector of all posible price differences 
  if(enter_day<5){ 
    for (j in 1:T){ 
      if(j<(6-enter_day)){ 
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        S[j]=sum(diff1[1:j]) 
      } else { 
        S[j]=sum(diff1[1:(j-floor((j+(enter_day-1))/5))])+sum(diff2[1:floor((j+(enter_day-1))/5)])}} 
  } 
  else if(enter_day==5){ 
    for (j in 1:T){ 
      if(j==1){ 
        S[j]=sum(diff2[1:floor((j+4)/5)]) 
      } else { 
        S[j]=sum(diff1[1:(j-floor((j+4)/5))])+sum(diff2[1:floor((j+4)/5)])}} 
  } 
  return(S)} 
 
#poisson distribution 
 
client_arrival_gen=function(n){ 
  return(1+rpois(n,lambda=4)) 
} 
Z_3task_2_po_10_1day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=1) 
Z1_3task_2_80_po_10_1day<-round(quantile(Z_3task_2_po_10_1day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_10_1day<-round(quantile(Z_3task_2_po_10_1day,0.90,names = FALSE),digits = 
4) 
Z_3task_2_po_20_1day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=1) 
Z1_3task_2_80_po_20_1day<-round(quantile(Z_3task_2_po_20_1day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_20_1day<-round(quantile(Z_3task_2_po_20_1day,0.90,names = FALSE),digits = 
4) 
 
Z_3task_2_po_30_1day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=1) 
Z1_3task_2_80_po_30_1day<-round(quantile(Z_3task_2_po_30_1day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_30_1day<-round(quantile(Z_3task_2_po_30_1day,0.90,names = FALSE),digits = 
4) 
Z_3task_2_po_10_2day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=2) 
Z1_3task_2_80_po_10_2day<-round(quantile(Z_3task_2_po_10_2day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_10_2day<-round(quantile(Z_3task_2_po_10_2day,0.90,names = FALSE),digits = 
4) 
Z_3task_2_po_20_2day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=2) 
Z1_3task_2_80_po_20_2day<-round(quantile(Z_3task_2_po_20_2day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_20_2day<-round(quantile(Z_3task_2_po_20_2day,0.90,names = FALSE),digits = 
4) 
 
Z_3task_2_po_30_2day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=2) 
Z1_3task_2_80_po_30_2day<-round(quantile(Z_3task_2_po_30_2day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_30_2day<-round(quantile(Z_3task_2_po_30_2day,0.90,names = FALSE),digits = 
4) 
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Z_3task_2_po_10_3day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=3) 
Z1_3task_2_80_po_10_3day<-round(quantile(Z_3task_2_po_10_3day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_10_3day<-round(quantile(Z_3task_2_po_10_3day,0.90,names = FALSE),digits = 
4) 
Z_3task_2_po_20_3day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=3) 
Z1_3task_2_80_po_20_3day<-round(quantile(Z_3task_2_po_20_3day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_20_3day<-round(quantile(Z_3task_2_po_20_3day,0.90,names = FALSE),digits = 
4) 
 
Z_3task_2_po_30_3day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=3) 
Z1_3task_2_80_po_30_3day<-round(quantile(Z_3task_2_po_30_3day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_30_3day<-round(quantile(Z_3task_2_po_30_3day,0.90,names = FALSE),digits = 
4) 
 
Z_3task_2_po_10_4day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=4) 
Z1_3task_2_80_po_10_4day<-round(quantile(Z_3task_2_po_10_4day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_10_4day<-round(quantile(Z_3task_2_po_10_4day,0.90,names = FALSE),digits = 
4) 
Z_3task_2_po_20_4day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=4) 
Z1_3task_2_80_po_20_4day<-round(quantile(Z_3task_2_po_20_4day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_20_4day<-round(quantile(Z_3task_2_po_20_4day,0.90,names = FALSE),digits = 
4) 
 
Z_3task_2_po_30_4day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=4) 
Z1_3task_2_80_po_30_4day<-round(quantile(Z_3task_2_po_30_4day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_30_4day<-round(quantile(Z_3task_2_po_30_4day,0.90,names = FALSE),digits = 
4) 
 
Z_3task_2_po_10_5day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=5) 
Z1_3task_2_80_po_10_5day<-round(quantile(Z_3task_2_po_10_5day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_10_5day<-round(quantile(Z_3task_2_po_10_5day,0.90,names = FALSE),digits = 
4) 
Z_3task_2_po_20_5day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=5) 
Z1_3task_2_80_po_20_5day<-round(quantile(Z_3task_2_po_20_5day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_20_5day<-round(quantile(Z_3task_2_po_20_5day,0.90,names = FALSE),digits = 
4) 
Z_3task_2_po_30_5day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=5) 
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Z1_3task_2_80_po_30_5day<-round(quantile(Z_3task_2_po_30_5day,0.80,names = FALSE),digits = 
4) 
Z1_3task_2_90_po_30_5day<-round(quantile(Z_3task_2_po_30_5day,0.90,names = FALSE),digits = 
4) 
 
#Geometric distribution 
client_arrival_gen=function(n){ 
  return(1+rgeom(1, prob = 1/5)) 
} 
 
Z_3task_2_geo_10_1day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=1) 
Z1_3task_2_80_geo_10_1day<-round(quantile(Z_3task_2_geo_10_1day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_10_1day<-round(quantile(Z_3task_2_geo_10_1day,0.90,names = FALSE),digits 
= 4) 
Z_3task_2_geo_20_1day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=1) 
Z1_3task_2_80_geo_20_1day<-round(quantile(Z_3task_2_geo_20_1day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_20_1day<-round(quantile(Z_3task_2_geo_20_1day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_30_1day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=1) 
Z1_3task_2_80_geo_30_1day<-round(quantile(Z_3task_2_geo_30_1day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_30_1day<-round(quantile(Z_3task_2_geo_30_1day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_10_2day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=2) 
Z1_3task_2_80_geo_10_2day<-round(quantile(Z_3task_2_geo_10_2day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_10_2day<-round(quantile(Z_3task_2_geo_10_2day,0.90,names = FALSE),digits 
= 4) 
Z_3task_2_geo_20_2day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=2) 
Z1_3task_2_80_geo_20_2day<-round(quantile(Z_3task_2_geo_20_2day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_20_2day<-round(quantile(Z_3task_2_geo_20_2day,0.90,names = FALSE),digits 
= 4) 
Z_3task_2_geo_30_2day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=2) 
Z1_3task_2_80_geo_30_2day<-round(quantile(Z_3task_2_geo_30_2day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_30_2day<-round(quantile(Z_3task_2_geo_30_2day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_10_3day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=3) 
Z1_3task_2_80_geo_10_3day<-round(quantile(Z_3task_2_geo_10_3day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_10_3day<-round(quantile(Z_3task_2_geo_10_3day,0.90,names = FALSE),digits 
= 4) 
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Z_3task_2_geo_20_3day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=3) 
Z1_3task_2_80_geo_20_3day<-round(quantile(Z_3task_2_geo_20_3day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_20_3day<-round(quantile(Z_3task_2_geo_20_3day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_30_3day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=3) 
Z1_3task_2_80_geo_30_3day<-round(quantile(Z_3task_2_geo_30_3day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_30_3day<-round(quantile(Z_3task_2_geo_30_3day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_10_4day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=4) 
Z1_3task_2_80_geo_10_4day<-round(quantile(Z_3task_2_geo_10_4day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_10_4day<-round(quantile(Z_3task_2_geo_10_4day,0.90,names = FALSE),digits 
= 4) 
Z_3task_2_geo_20_4day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=4) 
Z1_3task_2_80_geo_20_4day<-round(quantile(Z_3task_2_geo_20_4day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_20_4day<-round(quantile(Z_3task_2_geo_20_4day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_30_4day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=4) 
Z1_3task_2_80_geo_30_4day<-round(quantile(Z_3task_2_geo_30_4day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_30_4day<-round(quantile(Z_3task_2_geo_30_4day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_10_5day=task3_2(T=10,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=5) 
Z1_3task_2_80_geo_10_5day<-round(quantile(Z_3task_2_geo_10_5day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_10_5day<-round(quantile(Z_3task_2_geo_10_5day,0.90,names = FALSE),digits 
= 4) 
Z_3task_2_geo_20_5day=task3_2(T=20,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=5) 
Z1_3task_2_80_geo_20_5day<-round(quantile(Z_3task_2_geo_20_5day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_20_5day<-round(quantile(Z_3task_2_geo_20_5day,0.90,names = FALSE),digits 
= 4) 
 
Z_3task_2_geo_30_5day=task3_2(T=30,n,client_size_gen, client_arrival_gen, 
client_thinking_gen,enter_day=5) 
Z1_3task_2_80_geo_30_5day<-round(quantile(Z_3task_2_geo_30_5day,0.80,names = FALSE),digits 
= 4) 
Z1_3task_2_90_geo_30_5day<-round(quantile(Z_3task_2_geo_30_5day,0.90,names = FALSE),digits 
= 4) 
 
################plot for all. 
par(mfrow=c(1,2)) 
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plot(density(task_1_po_2013), xlim=c(-2.5,2.5), ylim=c(0,1.3),lwd=2.5,col="darkblue",main="Client 
arrival - Poisson distr.",xlab="Price difference for MWh",ylab="%",bg="red",font.main=2) 
lines(density(task_1_po_2014),lwd=2.5, col="red") 
lines(density(task_1_po_2012),lwd=2.5, col="darkgreen") 
legend("topright", 
       c("2012","2013","2014"),  
       lty=c(1,1,1), 
       lwd=c(2,2,2), 
       bty="n", 
       col=c("darkgreen",'darkblue',"red" )) 
plot(density(task_1_geo_2013), xlim=c(-2.5,2.5), ylim=c(0,1.3),lwd=2.5,col="darkblue",main="Client 
arrival - Geometric distr.",xlab="Price difference for MWh",ylab="%",bg="red",font.main=2) 
lines(density(task_1_geo_2014),lwd=2.5, col="red") 
lines(density(task_1_geo_2012),lwd=2.5, col="darkgreen") 
legend("topright", 
       c("2012","2013","2014"),  
       lty=c(1,1,1), 
       lwd=c(2,2,2), 
       bty="n", 
       col=c("darkgreen",'darkblue',"red" )) 
layout(1:1)  
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