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A Framework for Collaborative Content Mashup with Pervasive Ser-

vices 

Abstract: 

By composing pervasive services, mobile phones can support various industrial and com-

mercial needs. However, the pervasive services composition involves discovering and 

processing a large amount of data in order to identify and interpret the content. Due to the 

limitation of the single device capability, it is advisable to collaborate with other devices 

via a wireless network to accomplish common goals. In this thesis, we propose and devel-

op a generic framework that supports service-oriented content mashup and integrating 

pervasive services composition in the Business Process Execution Language (BPEL)-

based collaboration. A resource-aware offloading scheme to collaborative devices has 

been proposed and implemented as a proof of concept. The evaluation results have shown 

that the framework supports collaborative task-offloading scheme that reduces the re-

source usage of mobile devices. 
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Task Offload, Collaboration, Workflow, Pervasive Services 
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Kombineeritud teenustega koostööl põhineva sisu mashupi raamistik 

Lhikokkuvte: 

Kombineerides erinevaid teenuseid saavad mobiiltelefonid rahuldada paljusid tööstus ja 

ärivajadusi.Samas tuleb teenuste kombineerimise raames sisu õigesti tuvastamiseks ja 

tõlgendamiseks avastada ja töödelda suurt hulka andmeid. Kuna ainult ühe seadme kasu-

tamine mingi ülesande lahendamiseks ei ole väga efektiivne on ühiste eesmärkide saa-

vutamiseks soovitatav tööd mitme seadme vahel jagada. Pakume välja ja arendame 

üldraamistikku, mis toetab teenustele orienteeritud sisu segunemist ning laialt levinud 

teenuste loomise integreerimist, mis toimuks Business Process Execution Language 

(BPEL)-tuginevale kollaboratsioonile. Esitasime kollaboratsioonis seadmetele ressursi-

säästliku teisaldamise plaani ja implementeerimise selle proof of concept'ina 

(kontseptsiooni tõestus). Hinnangu tulemused näitavad, et raamistik toetab kollaboratiivset 

ülesannete teisaldamise kava, mis vähendab mobiilsete seadete ressursside kasutamist. 

Märksnad:  

Task teisaldada, koostöö, töökorraldus Läbivad teenused 
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1 Introduction	
  

1.1 Preamble	
  

According to Moore’s law, the transistors in electric circuits doubled every two years, and 

manufacturer cost is also lower (Lanter, 2013). The electronic devices are mass-produced 

at a low cost rate. As a consequence, people are exposed in an environment where many 

electronic devices are surrounding them, e.g. mobile phone, wireless sensors, actua-

tors.  With application logic embedded into those electronic devices, they are capable of 

fetching, analysing, recording various environmental information or spatial information or 

point of interest.  By hosted Web servers (Srirama, Jarke, & Prinz, 2006), they can provide 

various services that interact with humans. 

 

In the meantime, people use the mobile phone more to perform their daily activities.  The 

evolved hardware and software change grants mobile phones not only allows for making a 

phone call, sending text messages but also capable of performing complex tasks as the 

computation power grows. The phones can play the role to communicate with the sensors 

in the pervasive services environment. There are potentially various sensors providing 

different kind of services. By composing pervasive services, mobile phones can support 

various industrial and commercial needs.  

 

Mashup represents aggregating different existing services into one composite service to-

wards providing customized service to fulfil the need of users. Content Mashup, which 

derived from a Web 2.0, is one of the standard approaches to realise service composition. 

It represents a content-driven approach that utilising the technology to fetch desired con-

tent from multiple content service providers and aggregate them together (O’reilly, 2007). 

 

In the past, researchers used different approaches to performing the mashup in pervasive 

services environments. In (Chang, Srirama, & Ling, 2014), the authors propose a work-

flow-based SPiCa framework to enable content mashup in Mobile Social Network in 

Proximity (MSNP). In (Spiess et al., 2009) using Device Profile for Web Services 

(DPWS), which is a subset of standard Web service interface that was designed as a set of 
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guideline based on WS-* standard to enable interoperability among heterogeneous devic-

es. In (Guinard, 2010), authors utilised a lightweight RESTful Web service to achieve ser-

vice composition. 

 

However, mashup in pervasive services environment face more challenge because of the 

environment consists of a large number of heterogeneous devices. Sensors’ hardware are 

usually made by different manufacturers with different standard and characters. As a re-

sult, it is hard to discover and integrate with the service because different protocol used by 

the devices cannot communicate directly. The level of heterogeneous become even com-

plicated when assemble the chips into a diverse device like actuator nodes. The content 

mashup will face overhead, high latency issues in the service discovery phase (Gama, 

Touseau, & Donsez, 2012). The content mashup in pervasive services composition in-

volves discovering and processing a large amount of data in order to identify and interpret 

the content. It will face the challenge as following describes. 

1.2 Motivation	
  

In order to clarify the main objectives of this research, we use the following scenarios to 

describe the motivation of the topic. 

1.2.1 Scenario	
  

Zhang is driving to Beijing with his friends Li and Wang during the Golden Week Holiday 

(Zhang, Song, & Qin, 2008). However, it is hard to find a parking lot during such hot hol-

iday season. Zhang wants to find a parking lot quickly with his smartphone. In Beijing, 

there are numerous closed-circuit television camera that are available for public to access 

(Klein, 2008).  However, they have different kinds of usage; some of them provide ser-

vices of the real-time telescope to view tourist attraction spot like Forbidden City, Triple 

of Heaven. There are cameras that provide service for checking the parking lot status. 

However, those cameras belong to different organizations. Some of them belong to differ-

ent department stores to monitoring their parking lot status. They are different in both syn-

tax and semantics (the different organization has their rules). Others are observing the 

street conditions but provide service to monitor the street parking lot status as well. How-

ever, the question is:" how does Zhang can rapidly find the parking lot information with 

such a crowded environment?" When it has a large number of information providers, 

Zhang may discover too much unwanted information. It is very challenge for Zhang to 
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identify and filter the information by using his device due to the resource-constrained is-

sues. Why not delegate the task to his friend Wang and Li if their devices are idle as de-

scribed in Figure 1.1. This is assuming they are friends, and they have installed the com-

patible standard-based Web service-oriented applications to perform the tasks. 

 

 

Figure 1.1 The workflow describes offloading the tasks to friends 

By collaborating with other mobile phones, it extends Zhang’s phone capability to discov-

ering the service and filtering the information he wants. However, because different mo-

bile phones have different capabilities, the tasks cannot be randomly delegated. Hence, it 

requires a feasible approach to identify how the task delegation process can be performed 

based on the phone’s capabilities in order to take full advantage of their performance. 

1.3 	
  Research	
  Challenge	
  	
  

One way to establish a composite service is that utilizes external computational resources 

to perform the tasks (Chen et al., 2003). There are typically two ways to achieve it. 

1. Offloading tasks to external cloud service like Google App Engine, Amazon Cloud 

(Dornemann, Juhnke, & Freisleben, 2009). 

2. Offloading task in a group of mobile devices that belong to friends or a same 

community or even belong to the same user (Chang et al., 2014). 
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In approach (1), it usually requires extra cost for using external cloud services, and it re-

quires additional mobile network bandwidth as well.  However in approach (2), it is less 

cost but it is assuming everyone has installed the compatible applications. A standalone 

approach such as (Bottaro, Gérodolle, & Lalanda, 2007) was built on top of OSGi. The 

framework maintains a list of available services and enables service composition at 

runtime. In such a design, developers have to implement and maintain the application for 

all platforms (e.g. Android, iOS, Windows Phone, Firefox OS etc.), which is less flexible 

and costly for development. 

 

Although there were many mobile workflow engines had been proposed in last decade, 

they are complex, difficult to extent, no support for RESTful services and no support for 

CoAP service interaction (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 2014; Kim, Lee, 

Kim, Park, & La, 2014). Additionally, they did not support context-awareness when per-

forming the task allocation. 

1.4 Research	
  Objective	
  and	
  Contributions	
  

• To investigate, develop and validate a solution for a content mashup in the perva-

sive environment by enabling service-oriented service composition among mobile 

resources. 

• To investigate, develop and validate an approach to support task offloading in con-

tent mashup in a collaborative environment 

• To investigate, develop and validate a lightweight service-oriented workflow en-

gine for a mobile device that can achieve above two mechanisms. 

To accomplish the objectives, we propose a framework for collaborative content mashup 

with pervasive services, which supports the following features: 

• Content-aware service discovery 

In order to achieve the content mashup in the pervasive services environment, the 

framework support content-aware service discovery based on user defined ontology. In 

another word, the framework can proactive discover and filter the desired service pro-

viders based on user preference in a large number of information providers. 

• Decentralisation 
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The framework supports decentralized service composition that consists of collabora-

tive devices discovery and interaction without relying on stationary mediators. 

• Energy saving 

The framework supports collaborative task-offloading scheme that reduces the re-

source usage of mobile devices. Also, the framework supports CoAP protocol in the 

constrained pervasive services environment. 

1.5 Research	
  Scope	
  

This thesis focuses on developing a generic framework that supports service-oriented con-

tent mashup and integrating pervasive services composition in the Business Process Exe-

cution Language (BPEL)-based collaboration. The proposed framework is implemented 

and evaluated on real mobile devices: Nexus 5, LG G3, and Nexus 7. The pervasive ser-

vices environment is based on simulation, in which a number of different Web services are 

hosted in the mobile phone. 

 

The service composition in pervasive services environment needs to consider the privacy 

and security problem. However, they are not in the scope of this thesis. 

1.6 Thesis	
  Outline	
  

This thesis organized as follow: 

Chapter 2 discusses some related background information like workflow system and ser-
vice composition, context-ware workflow system and related technologies to understand 
pervasive services composition in BPEL-related technologies. 

Chapter 3 introduces our proposed framework for enabling Collaborative Content 
Mashup with Pervasive Services and how to make a decision on collaborates task schedul-
ing. 

Chapter 4 describes the implement detail of the proposed the framework. 

Chapter 5 evaluates the advantage of the framework in terms of performance and energy 
consumption. 

Chapter 6 concludes the research project and the direction of future research.   
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2 Background	
  

The content mashup in pervasive services environment needs a loosely couple standard to 

enhance the interoperability. Interoperability can be classified into two types: physical 

interoperability and logical interoperability (Chang, 2013).  Physical interoperability 

means the nodes, which connect with each other via a wireless network, are able to ex-

change data under physical network layer. Logical interoperability means the nodes under-

stand what kind of service other nodes provides. When a node needs to autonomously dis-

cover a particular content provided by the other nodes in an environment that consists of 

hundreds of nodes, the system needs to support a machine-readable way to enable the au-

tonomous content discovery and filtering. In (Srirama et al., 2006), authors used a mobile 

peer-to-peer network to support physical interoperability and using a set of Web services 

standards to enable logical interoperability. The content mashup in pervasive services re-

quires dealing with four challenges: service discovering and selection, scalability, fault 

tolerance and flexible (Bakhouya & Gaber, n.d.). This chapter provides the related back-

ground to understand content mashup with pervasive services.  

2.1 Overview	
  of	
  Web	
  Services	
  Composition	
  

Web service composition is the process by composing multiple services into one complex 

service to create the value-added application. In the subsection, we identify some basic 

concept and terminologies related to Web service composition. 

2.1.1 Web	
  Service	
  

Web service was designed to enable interoperability among machine-to-machine in a con-

nected network. In a classic design, Web service is described using Web Services Descrip-

tion Language (WSDL) for describing network services. There are mainly two ways to 

enable Web service: Simple Object Access Protocol (SOAP)-based and Representational 

State Transfer (REST)-based. 
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2.1.2 SOAP-­‐based	
  Web	
  Service	
  and	
  Restful	
  Web	
  Service	
  

SOAP stands for Simple Object Access Protocol. It uses Extensible Markup Language 

(XML) for messaging exchange and can be transmitted in HTTP, SMTP, or other proto-

cols. It consists of an envelope which includes header and body and a set of encoding rules 

(Hirsch, Kemp, & Ilkka, 2007). 

 

REST was created by Roy Fielding in his Ph.D. thesis (Fielding, 2000). In the RESTful 

Web service, the resource is manipulated based on Uniforms Resource Identifiers (URI) 

that uses stateless communication protocol, typically HTTP method: GET, POST, PUT, 

and DELETE. The data format used in REST can be XML or JSON for sending and re-

ceiving data. 

2.1.3 Semantic	
  Web	
  Service	
  

Before composing any Web service, firstly it requires discovering the service which 

providing the functionality that match the requirement. To be more specific, the service 

discovery needs to find all the service that matches the desired operation in the pervasive 

services environment. To fulfil this requirement, semantic Web for describing the func-

tionality of Web service is widely used. Several XML-based standards have been intro-

duced to enable semantic for service discovery: Resource Description Framework (RDF), 

Web ontology language (OWL), Semantic Annotation for WSDL and XML schema 

(SAWSDL) (Kopecky, Vitvar, Bournez, & Farrell, 2007). 

 

World Wide Web Consortium (W3C) has introduced RDF, which is an XML-based 

metadata for describing Web resources. The RDF terminology triples utilises the form of 

subject-predicate-object expression to describe entity relationship including subject and 

object represent the resource, and the predicate denotes the relationship between the re-

sources. List 2.1 illustrates an example of RDF document. 

List 2.1 an example of RDF 

<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"xmlns:university="http://purl.org/dc/elements/1.1/univer
sity"> 
<rdf:Description  
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rdf:about=" http://purl.org/dc/elements/1.1/university/tartu 
university"> 
    < university:rank>Top 400</university:rank>  
    < university:location>Tartu</university:location> 
</rdf:Description> 
</rdf:RDF> 

 

Because RDF is XML based, the first line is the XML declaration. Following by 

<rdf:RDF> tag that represents the XML is a RDF document, and it contains the RDF 

namespace. <rdf:Description> contains the particular resource as well as the attributes the 

resource contains. Usually, the attributes are defined in the global ontology. In this case, 

rank, location is defined in the http://purl.org/dc/elements/1.1/university namespace. In 

this example, it describes two triple relationships. “Tartu University ranks top 400” and 

“Tartu University location in Tartu.” in which the subject is “Tartu University”, the predi-

cation are “rank” and “location”, and the object are “Tartu” and “Top 400”. 

 

OWL was introduced for machines to process and to interpret the Web content by defining 

additional vocabulary (nouns and verbs) instead of just presenting content to users. The 

nouns represent the classes of objects, and the verbs represent the relation between the 

objects. It is built on top of RDF to support larger vocabulary with greater machine inter-

pretability than RDF. On the other words, OWL extends the RDF for representing the rela-

tionships to support for cardinality, disjointness and symmetry. 

2.1.4 	
  Web	
  Services	
  Composition	
  

There are several approaches to realise Web service composition. In general, The Web 

service composition can be classified into two categories: orchestration and choreography 

(Peltz, 2003). Further, the approach can be autonomous or manual service composition. 

Service orchestration utilises predetermined business logic and execution order to compos-

ing multiple services into one complex service. This is achieved with a central messaging 

engine (See Figure 2.1). The central engine coordinates the flow control, business logic. A 

common approach is to utilise a service-oriented workflow engine (e.g. Business Process 

Execution Language for Web services [BPEL4WS] engine) to enable the composition. 
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Figure 2.1 Service orchestration 

Service choreography does not require a central controller. By allowing each participant 

message exchange to other participants, each participative service knows the business log-

ic and rules of interaction according to the behaviour of other participants (See Figure 

2.2). 

 

Figure 2.2 Service Choreography 

Web service composition can be divided into two categories (static or dynamic) based on 

the time when the services are proposed. The static service composition means choosing 

the service and composing them at design time. This is assuming that the business logic 

and process usually fixed and can be predicted at design time. It does not fit when the re-

quirement of service frequent change. Static service composition is not flexible enough to 

support service change at the run time when the binding service becomes unavailable. 
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Dynamic service composition is more flexible that it supports discovery, selection, binding 

the service at run time. However, it is very difficult to implement dynamic service compo-

sition that many factors need to take into consideration, fault tolerance, correctness (Sheng 

& others, 2006). 

 

Web service composition can be achieved with three approaches, manual, automated, 

semi-automated. The manual composition is a tedious and error-prone procedure. It re-

quires designer manually binds the service and composing the services. However, compos-

ing services usually involve complex business process, which may contain multiple tasks 

and interact between those tasks. The manual composition is time-consuming and not al-

ways meets the requirement.  Automated composition take advantage of the semantic Web 

(Berners-Lee, Hendler, Lassila, & others, 2001). Based on the user specification, the au-

tomated composition will select services based on the semantic and compose the services 

automatically. However, because of Web service cannot full understanding Web seman-

tics, which will affect the automatic selection of the services. Fully automated service is 

very hard to achieve (Berardi, n.d. , 2005). 

2.1.5 Service	
  Composition	
  With	
  WS-­‐BPEL	
  

WS-BPEL, also known as BPEL, is an XML-based language that enable Web services 

exchange message in a service-oriented architecture (SOA) which specifying business 

process for data flow. In each BPEL process file, all the composition services and business 

process are defined by process tag. Inside process tag, the participating services are de-

fined in the partnerlink tag. A process contains a set of activities that define the business 

process for service composition. It identifies three primary activities that enable message 

interaction with Web service.  

• Receive. The purpose of receive is receiving a message from Web services. Usual-

ly, it represents a variable that hold the reply data from the Web service 

• Invoke. The purpose of invoke is used for call a Web service. 

• Reply. The purpose of reply is used in conjunction with the previous receive activ-

ity that send the reply message to the previous Web service. 

With the combination of above activities, it can support both synchronous and asynchro-

nous message exchange of Web service. 
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For example, List 2.2 shows the asynchronous invoke of Web service 

List 2.2 Asynchronous invoke 

<invoke name="invokeSemanticMatching" 
partnerLink="matchingSemantic" 
inputVariable="ontologyData" 
outputVariable="mathcingResult"/> 

 

It is blocks until it receive a response from Web service.  This invokes contains four at-

tributes. The name is important which used for identify this particular activity in the pro-

cess. The partnerLink defines that Web service to interact and BPEL engine use this name 

to identify the Web service for actual invoke. The inputVariable define the data that to be 

sent to the Web service. The outptutVariable define the synchronous behaviour that the 

invoke blocks until it gets reply data from the Web service. If the outputVariable omitted, 

invoke activity is blocked because it does not expect the reply message from Web service. 

 

BPEL also defines the structure execution order of the composing activities. It can be a 

sequence or parallel execution flow. 

The sequence defines the sequential order of the activities. The activities are executed in a 

pre-defined order. List 2.3 shows an example of sequence process. 

List 2.3 An example of sequence process 

<sequence> 
 <invoke name="CoapServiceDiscovery" 
  partnerLink="getWellKnowInCoap" 
  operation=".well-known/core" 
  outputVariable="coapServiceResponse"/> 
 <assign name="assign"> 
  <copy> 
   <from variable="coapServiceResponse" /> 
   <to variable="postData" /> 
  </copy> 
 </assign> 
 <invoke name="invokeMatchingCoap" 
  partnerLink="matchingCoap" 
  operation="POST" 
  inputVariable="postData" 
  outputVariable="mathcingResult"/> 
</sequence> 
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We can use a directed, acyclic graph to show the representation of the above sequence 

process (See Figure 2.3). The edges show the execution flow of the connected nodes. Each 

node represents one activity. 

 

Figure 2.3 Acyclic graph represents sequence process 

The flow activity defines parallel tasks. Inside the flow activity usually consist two or more 

sequence activities. Those sequence activities do not depend on each other and run asyn-

chronously. This enables support for complex concurrency composition scenarios. List 2.4 

shows an example of flow activity with two parallel sequence tasks inside. 

List 2.4 Flow activity with two parallel sequence tasks 

<flow> 
 <sequence> 
  <invoke name="getData1" 
  partnerLink="getDataPL" 
  outputVariable="output1"/> 
  <assign name="assign1"> 
   <copy> 
    <from variable="output1" /> 
    <to variable="copy1" /> 
   </copy> 
  </assign> 
  <invoke name="postData1" 
  partnerLink="postDataPL" 
  inputVariable="copy1" 
  outputVariable="POSTOutput1"/> 
 </sequence> 
 <sequence> 
  <invoke name="getData2" 
  partnerLink="getDataPL" 
  outputVariable="output2"/> 
  <assign name="assign2"> 
   <copy> 
    <from variable="output2" /> 
    <to variable="copy2" /> 
   </copy> 
  </assign> 
  <invoke name="postData2" 
  partnerLink="postDataPL" 
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  inputVariable="copy2" 
  outputVariable="POSTOutput2"/> 
 </sequence> 
</flow> 

 

 

Figure 2.4 Acyclic graph represents flow activity 

 

In the graph above, the startFlow activity follows two sequence activities. That two se-

quence activity does not depend on each other. The endFlow activity will be executed after 

two sequence activities finish. 

2.1.6 Service	
  Composition	
  with	
  Semantic	
  Web	
  (OWL-­‐S)	
  

The semantic Web provides a set of machine-readable ontologies that makes Web re-

sources accessible by content or keyword. OWL-S consists of three upper ontologies (See 

Figure 2.5). 

 

 

Figure 2.5 OWL-S consists of three upper ontologies 
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• Service profile. Providing the information about what kind of input expected from 

users and presenting all the information for service discovery. It contains function-

al properties (input, output, and preconditions) and non-functional properties 

(Quality of Service parameters).  

• Process model. OWL-S defines three type of process: atomic, simple, composite. 

The Atomic process does not contain sub process and can be directly invoked. A 

simple process cannot be directly invoked and does not provide binding to any ser-

vice thus it used as an abstraction for service or process. The composite process 

contains sub process and can define complex workflows. 

• Grounding. Define how to access and use the service. 

List 2.5 An example of OWL-S  

<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xmlns:owl="http://www.w3.org/2002/07/owl#" 
xmlns:dc="http://purl.org/dc/elements/1.1/"> 
<owl:Ontology 
rdf:about="http://www.ontology.com/temperature"> 

<dc:title>The temperature Ontology</dc:title> 
<dc:description>An example for describe the temperature 
</dc:description> 

</owl:Ontology> 
<owl:Class 
rdf:about="http://www.ontology.com/temperature#temperatureTy
pe"> 

<rdfs:label>The temperature type</rdfs:label> 
<rdfs:comment>The class of temperature types. 
</rdfs:comment> 

</owl:Class> 
</rdf:RDF> 

2.2 	
  CoAP	
  Protocol	
  In	
  Constrained	
  Pervasive	
  Services	
  Environment	
  

In the pervasive services environment, all kind of sensors or actuators are expected to ac-

cess and interact in everywhere and anytime (Palattella et al., 2013). However, the manu-

facture is more concerned about the reduce the cost and energy consumption of the device 

instead of purely increase the computation power nowadays (CoAP, 2012). As a conse-

quence, the traditional communication protocol (HTTP etc.) does not suitable in this con-

strained environment. CoAP, as a new protocol, was designed to enable communication 

between small low power sensors, actuator through standard Internet network. CoAP es-

pecially meet the requirement for low overhead and support RESTful operations (GET, 
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PUT, POST, DELETE). In addition, CoAP provides additional functionality for discovery 

new service (provide a well-known URI). 

2.2.1 	
  CoAP	
  Message	
  Format	
  

Similar to client/server model of HTTP, CoAP using a binary-based header format to rep-

resent the request (client) and response (server) message. However, unlike HTTP that is 

based on Transmission Control Protocol (TCP), the CoAP is based on User Datagram Pro-

tocol (UDP). Therefore, it uses additional message layer to guarantee reliability. They are 

four type of message: confirmable, non-confirmable, acknowledgment, reset. 

CoAP messages (See Figure 2.6) are encoded in a binary format. The message contains a 

4-byte header, 0-8 byte long token value, a sequence of zero or more CoAP options, the 

rest followed by a payload (Shelby, Hartke, & Bormann, 2014). 

 

Figure 2.6 CoAP message format 

 

• Version represents CoAP version number in a 2-bit length and by default it must 

be set to 1. Other value are reserved for future use. 

• Type represents the four type of message in a 2-bit length also. 0 for confirmable. 

1 for non-confirmable. 2 for acknowledgment. 3 for reset. 

• Token length represents the length of the following token length in a 4-bit length 

• Code is 8-bit length long and divides into two categories: 3-bit in most significant 

bits represent the class. The class can further denote request message (0), a success 

response (2), an error occurs in client response (4), an error occurs in server re-

sponse (5). Other values are reserved for future use. The remaining 5-bit represents 

detail. 

• Message ID is 16-bit length long that representing identify for the message to de-

tect message duplication. 
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2.2.2 Method	
  Definition	
  

Similar to HTTP method, CoAP support GET, POST, PUT, DELETE operation. GET 

retrieve the resource identified by request URI. POST usually defines the operation to be 

processed for the entity enclosed in the client request. A typically use the POST request is 

for create a new resource on the server. PUT is used for update resource identified by re-

quest URI, and DELETE is for delete resource identified by request URI. 

2.2.3 CoAP	
  Discovery	
  

The client has to have a URI for discovery CoAP server in order to discovering the ser-

vices on the server.  The default port number for CoAP server is 5683, and this port num-

ber must be supported by CoAP server for resource discovery. In order to maximize in-

teroperability in pervasive services scenario, a CoAP service should include CoRE link 

format to describe hosted resources, their attributes for the machine to interpret the ser-

vices. By default, a well-known URI “/.well-known/core” is the entry point for request-

ing the links hosted by the server and performing CoRE Resource Discovery (Shelby, 

2012). 

 

CoRE link format also provides a set of attributes that provides information of the target 

link. The “rt” (resource type) attributes can be used to describe the semantic of a target 

resource. In case of humidity resource, The “rt” attributes could provide semantic type link 

“indoor-humidity” or a URI referencing a global ontology that defines the concepts and 

relationships like “http://www.ontology.com/phys.owl/#Humidity” 

	
  

For example, the CoRE link format can be used in building automation environment that 

enable the client to find and interact with humidity sensors without human intervention. 

The resource discovery can begin either unicast or multicast. If the client already knew a 

particular server IP through Domain Name System (DNS), the client wants to know 

whether this server provides the humidity information. The client can issue a request to the 

entry point “/.well-known/core” on the server. Then the client can match the appropriate 

resource type, description for locate temperature information through the server response.  

List 2.6 shows an example of CoAP request and response.  
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  List 2.6 CoAP request and response 

REQ: GET /.well-known/core 
RES: 2.05 Content 
</sensors/light>;if="sensor" 
</sensors/humidity>;rt="http://www.ontology.com/phys.owl/#Hu
midity" 

This example shows the server provide light and Humidity information. It also provides 

humidity with additional ontology defined in “rt” attribute that let the client know what 

specific humidity information it provides. 

2.3 Fuzzy	
  Logic	
  

Fuzzy logic (Klir & Yuan, 1995) has been applied to many fields, from industrial process 

control to artificial intelligence in the past decade. Unlike traditional binary logic where 

variables only permit propositions having true or false values, the fuzzy logic variable al-

lows partial truth, that ranges in degree between completely true and completely false 

(Perfilieva & Močko\vr, 1999). Fuzzy logic makes a decision closer to human thinking. It 

is suitable for decision-making application in which using classical control strategies are 

difficult to have a mathematical model. 

 

If categorizing a person based on the height, the criteria define a tall person whose height 

is above 170 cm. In the traditional set definition, a person whose height is 171 cm regards 

as tall. However, another person whose height is 169 cm does not regard as tall. In reality, 

a person whose height is 169 cm is no much different with a person whose height is 171 

cm. In the fuzzy set, it can easily solve the problem with a degree range. 

 

Figure 2.7 Mapping height in fuzzy logic 
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As shown in the picture above (See Figure 2.7), the meanings of the expressions short, 

normal, and tall are represented by functions mapping a height scale. A point has three 

“true values” based on three membership function. The vertical line denotes a particular 

person that three true values gauge. Because the purple arrow maps to 0, this person can 

regard as not short at all. The green arrow pointing at 0.8 could describe “fairly normal 

height” and the grey arrow pointing at 0.2 may describe slight tall. 

 

Fuzzy Logic Controller (FLC), proposed by Zadeh (Zadeh, 1965), is based on the fuzzy 

logic. It consists of three parts: input, inference processing, output. The input are a set of 

truth values in the Knowledge Base ranges from 0 to 1 representing degrees of member-

ship in the set. The Knowledge Base denotes a combination of expert knowledge: data 

base knowledge and rule base knowledge. Data base knowledge defines a linguistic term 

that is membership function for fuzzy sets. The rule base knowledge is consists of a set of 

fuzzy control rules. The inference processing using each rule in the form of IF-THEN 

statement and transform the crisp value of the input into fuzzy sets (also known as the 

Fuzzification), and then perform the reasoning process. The output combined the result 

generate each rule and map it into crisp values for the control variables (Cingolani & Al-

calá-Fdez, 2013). 

The Fuzzification works as follows: 

Α =   Ϝ(𝔦) 

Where, 𝔦  is a crisp value defined in the input variable set. A is a fuzzy set defined in the 

same universe as input variable set. F denotes the fuzzifier operator (Cingolani & Alcalá-

Fdez, 2013). 

Fundamentally, the inference processing is the process for fuzzy implication function. 

Generalized modus tollens is the fuzzy implication inference rules in approximate reason-

ing in which: 

Premise 1: y is B’ 

Premise 2: if x is A then y is B 

Consequence: x is A’ 

Where x and y are linguistic variables, A and B are fuzzy sets, B’ is the inferred fuzzy set. 
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2.4 Comparison	
  of	
  Existing	
  Works	
   	
  

2.4.1 A	
   REST	
   Architecture	
   for	
   Interconnecting	
   Business	
   Processes	
   with	
   IoT	
  

Resources	
  	
  

(Dar et al., 2014) authors propose an architectural model which using the resource-

oriented approach for designing that integrating Internet of Things (IoT) service with en-

terprise level Business Process (BPs). HTTP REST and CoAP were used for communica-

tion protocol for IoT service to be integrated into BPs. They use Contiki-based Tmote 

Sky1 for supporting REST in IoT device. WSDL and WADL were used for service de-

scription that describe what methods provided and in which way to invoke the service. 

BPMN was used to compose those smart objects. In order to find the available service, it 

needs to search available service using JUDDI (service discovery protocol) to fetch 

WADL to find available service. Activity BPMN execution engine was used to support 

disturbed business process execution in Android phone.  

 

The advantage of the above approach is the application developer can easily integrate IoT 

services using drag and drop fashion with little understanding the underlying technologies. 

2.4.2 A	
  Notation	
  for	
  Representing	
  the	
  Behaviour	
  of	
  Things	
  to	
  Enable	
  Complex	
  
Mashups	
  

Devices Profile for Web Service (DPWS) takes full advantage of Web services that allows 

integration heterogeneous device provided certain service seamlessly. In (Cubo, Brogi, & 

Pimentel, 2012) authors made a proposal to extend the DPWS specification by introducing 

new tags in the WSDL file to add a set of behavior “constraints” to automate the behavior 

of things properly composed at run time without human involved.  

 

                                                
1 http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf 
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2.4.3 Web	
  Mashups	
  for	
  Embedded	
  Devices	
  with	
  RESTful	
  Resources	
  

In (Guinard & Trifa, 2009), the authors propose two ways to integrate IoT devices into 

RESTful resources that addressed over HTTP. If the device is resource constrained that 

not capable to access through IP. Then authors propose a gateway that hides the commuta-

tion detail with the device and providing RESTful information related to the device. By 

this way, the gateway can orchestrate the composition those services with more functional-

ities. For example, it can get the battery consumption by all the devices connected to the 

gateway. The second way directly turn the device into RESTful service. The prototype 

was build based on Sun SPOT RESTful API. 

2.4.4 Smart	
  Objects	
  as	
  Building	
  Blocks	
  for	
  the	
  Internet	
  of	
  Things	
  

In (Kortuem, Kawsar, Fitton, & Sundramoorthy, 2010), authors identify the smart object 

as three categories used for a building block of Internet of things. They are activity-aware, 

policy-aware, process-aware smart objects. Awareness, Representation, Interaction is the 

three criteria that identify the smart object in the proposed categories. In summary, the 

activity-aware smart object only stores activity record and using recognition algorithms to 

detect activity. It is the simplest type that doesn’t interact with users. The policy-aware 

smart object can consist predefined policy that interprets activity accordingly. It provides 

interactive action that alert users if they violate policies. It is like activity model with addi-

tional policy integrated. The process-aware smart object understands the real-world sce-

nario. It consists of context-ware workflow model that integrates company’s workflow 

process. More specifically, it knows what users suppose to do now and what activity ought 

to be done next. 
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2.4.5 Summarize	
  and	
  Compares	
  the	
  Technologies	
  in	
  Related	
  Work	
  

Title Lower Layer Centralized App Layer Technolo-
gy 

Messag-
ing 

Composition Application 

A resource 
oriented inte-
gration archi-
tecture for the 
Internet of 
Things: A 
business 
process per-
spective (Dar 
et al., 2014) 

Bluetooth 
author men-
tion “It should 
be noted that 
due to the 
lack of 
Zigbee-based 
communica-
tion in most of 
the 
smartphones.
” 

Decentral-
ized(choreography)  

HTTP AND 
CoAP(RES
T) 

WSs using 
Contiki-
based and 
Tmote Sky 
nodes 
CoAp 
using 
Erbium  

JSON BPMN （
mention it 
supports 
orchestration, 
as well as 
choreography) 
it supports a 
larger set of 
workflow 
patterns and 
events, has a 
standardized 
diagram inter-
change format, 
and provides 
user tasks for 
human interac-
tion 

Use case: 
Ambient 
Assisted 
Living  
Help elderly 
people to 
live inde-
pendently at 
home with 
bio-medical 
devices 
attached to 
measure 
essential 
signs of the 
patient 
 

Towards 
Physical 
Mashups in the 
Web of Things 
(Guinard, Trifa, 
Pham, & 
Liechti, 2009) 

n/a N/A HTTP(RES
T) 

 JSON N/A demonstrate 
a sensor 
that provide 
temperature 
status and 
integrate it 
into ERP 
through SAP 
MII  

Multidimen-
sional reputa-
tion network for 
service com-
position in the 
internet of 
things (Bossi, 
Braghin, & 
Trombetta, 
2014) 

n/a N/A N/A N/A N/A N/A N/A 

Towards 
Behavior-
Aware Compo-
sitions of 
Things in the 
Future Internet 
(Cubo et al., 
2012) 

ipv4/ipv6/ip 
multicast 

N/A HTTP DPWS N/A By introduc-
ing  new tags 
(constraints) in 
WSDL file to 
ensure the 
execution 
sequence 

airport 
surveillance 
system 

Towards the 
Web of Things: 
Web Mashups 
for Embedded 
Devices 
(Guinard & 
Trifa, 2009) 

Bluetooth Decentralized HTTP Wireless 
sensor 
network 

JSON N/A monitoring 
battery 
consumption 

Smart Objects 
as Building 
Blocks for the 
Internet of 
Things (Kor-
tuem et al., 
2010) 

N/A Decentralized(p2p) N/A N/A N/A Ad Hoc Road-
patching at 
road con-
struction site 
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3 System	
  Design	
  

3.1 A	
  Framework	
  for	
  Collaborative	
  Content	
  Mashup	
  with	
  Pervasive	
  Ser-­‐

vices	
  

3.1.1 Framework	
  Requirement	
  

The proposed framework consists of following mechanisms in order to realise the run-time 

collaborative content mashup with pervasive services. 

• Workflow execution – the framework is able to parse and to execute the prede-

fined BPEL-based workflow. 

• Collecting resource and context information – In order to decide whether or not 

the workflow tasks should be performed solely or be performed collaboratively, 

the framework needs to be capable of collecting relevant resource and context in-

formation such as CPU usage, battery status and network condition from the col-

laborative mobile devices. 

• Decision-making – Once the relevant resource and context information are col-

lected, the framework should be able to decide whether to partition and offload the 

tasks to other mobile devices or run it locally. 

• Enable collaboration – The framework should be able to modify the workflow 

and generate new workflow in order to partition the tasks to the collaborative mo-

bile devices. 

3.1.2 Architecture	
  Overview	
  

Figure 3.1 shows the high-level architecture of the proposed framework. 
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Figure 3.1 The high-level architecture  of the proposed framework 

This framework consists of the following components: 

• Workflow Description defines the workflow process. Specifically, it describes the 
automatic selection, composition services, sequence or parallel execution and syn-
chronization or asynchronization mechanisms. 

• Workflow Parser Module reads the structure of the BPEL process as a directed 
graph and stores all the BPEL-related information (partnerlink, variable) 
into the memory. 

• Workflow Execution Module plays an important role in this framework. It will 
interactive with external services based on the tasks defined in the workflow de-
scription. 

• Workflow Resource Module provides hardware information of the mobile device. 
For instance, CPU usage, battery status and network condition. 
 

• Workflow Decision Module makes the decision based on the information get 
from Workflow Resource Module to decide whether to offload the current task or 
partition the following parallel tasks to collaborative devices.  

• Workflow Collaborate Module maintains a list of collaborative devices, as well 
as its status such as CPU, RAM, and battery condition. 

• Workflow Offloading Module generates new BPEL file based on the decision 
made by Workflow Decision Module and modify the existing BPEL file to enable 
collaboration with the other devices.  
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3.2 Decision	
  on	
  Collaborates	
  Task	
  Scheduling	
  

The key contribution of this thesis is designing task delegation model for collaborative 

content mashup in pervasive services scenario, which is achieved by the BPEL-based 

workflow controlled resource-aware task-scheduling scheme. Since this framework is a 

BPEL workflow, we can use Business Process Model and Notation (BPMN) (White, 

2004) to describe the BPEL workflow models (Ouyang, Dumas, Van Der Aalst, Ter Hof-

stede, & Mendling, 2009). The task delegation model is based on two types of BPEL 

workflow, sequential task delegation, and parallel task delegation. 

3.2.1 Fuzzy	
  Logic	
  for	
  Decision	
  Making	
  

Applying fuzzy logic in a mobile environment for decision-making has several ad-

vantages. Firstly, it can generate the decision result without limiting the input variables. 

Any input variable that provide an indication of the system’s action is sufficient, and the 

input variables does not necessary to be precise and noise-free. Moreover, it is flexible and 

extensible by letting users freely add/remove fuzzy logic rules or even input variables. The 

output control is stable even with a wide range of input variables. 

In this thesis, we will use JfuzzyLogic (Cingolani & Alcalá-Fdez, 2013) for making a de-

cision whether to offload certain activity to external collaborative device In order to design 

a fuzzy control system for our decision-making scheme, the first step is to define the input 

and the output variables. 

We define the input variables as following: 

• Battery 

• CPU 

• RAM 

• Bandwidth 

Input variables are defined under VAR_INPUT section as following shows. 

List 3.1 Define input variables 

// Define input variables 
VAR_INPUT     
 CPU : REAL; 
 BATTERY : REAL; 
 RAM:REAL; 
 BANDWIDTH : REAL; 
END_VAR 
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The output variable of the decision-making system is to decide whether to offload or not. 

We define it as “decision”. Output variables are defined under VAR_OUTPUT sections. 

List 3.2 Define output variable 

// Define output variable 
VAR_OUTPUT     
 decision : REAL; 
END_VAR 

 

Fuzzy sets are divided into two categories, FUZZIFY and DEFUZZIFY. FUZZIFY de-

fines a linguistic term and its corresponding membership function for each input variable. 

We use different membership functions for each input variables. For example, we define 

CPU, RAM and Bandwidth in triangular function. However, we define battery function in 

piece-wise linear functions.  Because the mobile phones commonly use lithium-ion batter-

ies. The cell voltage of the lithium ion chemistries discharge curve looks like below. 

 

Figure 3.2 Cell voltage of discharge curve2 

Figure 3.2 shows that when the battery level is less than 20%, the cell voltage drops dra-

matically. We regard the battery in absolute poor condition when they are less than 20%. 

Therefore, the piece-wise linear function defines the level of battery from 0%-20% in an 

absolute poor condition where the function maps to 1 in the y-axis (List 3.3). 
                                                
2 http://www.mpoweruk.com/performance.htm 
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List 3.3 Define FUZZIFY function 

// Fuzzify input variable 'CPU': {'low', 'medium' ,  'high'} 
FUZZIFY CPU    
 TERM low := (0, 1) (40, 0) ;  
 TERM medium := (30, 0) (50,1) (70,0); 
 TERM high := (60, 0) (100, 1); 
END_FUZZIFY 
// Fuzzify input variable 'RAM': {'low', 'medium' ,  'high'} 
FUZZIFY RAM    
 TERM low := (0, 1) (40, 0) ;  
 TERM medium := (30, 0) (50,1) (70,0); 
 TERM high := (60, 0) (100, 1); 
END_FUZZIFY 
// Fuzzify input variable 'BATTERY': { 'poor', 'excellent' } 
FUZZIFY BATTERY    
 TERM poor := (0, 1) (20, 1) (70,0) ; 
 TERM excellent := (30,0) (80,1) (100,1); 
// Fuzzify input variable ' BANDWIDTH ': { 'poor', 'fast', 
'excellent' } 
FUZZIFY BANDWIDTH    
 TERM poor := (0, 1) (8,0); 
            TERM fast := (6,0) (10,1) (14,0) 
 TERM excellent := (12,0) (20,1) ; 
END_FUZZIFY 

 

We use three terms “high”, “low” and “medium” to indicate RAM and CPU usage. If the 

RAM is less than 30%, it means in low usage.  We use the term “poor” and “excellent” to 

describe the battery usage. If it is less than 20%, it means the battery is in absolute poor 

condition. If it is in 60%, it means the battery is in fairly excellent condition. The 60% 

mapping to piece-wise linear functions we defined, we can see 0.75 points to the excellent 

category and 0.25 point to the poor category from the y-axis.  

 

DEFUZZIFY defines membership function of the output variables. The definition is most-

ly similar to the previous input variables described. The jFuzzyLogic provides several de-

fuzzification methods for calculating the output variables. The study shows the “Centre Of 

Gravity” approach as the best and the most popular defuzzifer method (Runkler, 1997). 

Therefore, we define the DEFUZZIFY as follows. 
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List 3.4 Define DEFUZZIFY function 

// Defuzzify output variable 'decision' : {'offloading', 
'notoffloading' } 
DEFUZZIFY decision    
 TERM offloading := (0,0) (5,1) (10,0); 
 TERM notoffloading := (10,0) (15,1) (20,0); 
 METHOD : COG;   
 DEFAULT := 0; 
END_DEFUZZIF 

The inference logic is defined by a list of RULEBOLCK, in which the fuzzy rules are de-

clared. The order of the fuzzy rule does not matter by default; the jFuzzyLogic treats them 

equally. However, we can assign a weight of each rule by using “IF condition THEN con-

clusion with weight” clause. Also, it can use AND connector to bind several conditions. 

We define our rules as follows 

List 3.5 Define rules 

// Inference rules 
RULEBLOCK No1 
 AND : MIN;  
 ACT : MIN; 
 ACCU : MAX; 
 RULE 1 : IF CPU IS high OR BATTERY IS poor THEN deci-
sion IS offloading; 
 RULE 2 : IF CPU IS low AND BANDWIDTH IS fast THEN deci-
sion IS notoffloading;  
 RULE 3 : IF CPU IS medium AND BATTERY IS poor THEN de-
cision IS offloading; 
 RULE 4 : IF RAM IS high AND CPU IS medium THEN decision 
IS offloading; 
 RULE 5 : IF RAM IS medium AND CPU is medium AND BATTERY 
is excellent THEN decision IS notoffloading; 
END_RULEBLOCK 

 

Setting the fuzzy rules is very import because the inference is based on the rules and they 

should be defined very carefully in order to obtain the accurate decisions. For instance, if 

the CPU usage is high that means the device currently is performing some heavy computa-

tion task, which also consume more battery at the same time. Hence, the decision can be: 

offloading the task.  
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Figure 3.3 A test case example 

 

Figure 3.3 shows one test case. As the figure illustrates, currently, the phone status are: 

RAM is in 50% usage, CPU is in 80% usage, the battery status is 20% and the Bandwidth 

is 15Mbit/s. The decision is to offloading. This is the expected behaviour because the CPU 

current doing heavy task and battery is in poor condition, which also indicates the phone 

already in poor condition, and it is suitable to offloading the task. 

 

The key contribution of this thesis is how to design a workflow-controlled framework with 

the resource-aware adaptive task-scheduling scheme that enables collaboration with other 

devices. We propose two task-scheduling scheme corresponding to the sequence workflow 

and parallel workflow. 

3.2.2 Sequential	
  Task	
  Delegation	
  

 

 

Figure 3.4 Sequence workflow  
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Figure 3.4 illustrates a sequence workflow using BPMN notation. Before each task execu-

tion, our framework will perform the offloading decision as the following sequence dia-

gram shows (See Figure 3.5). 

 

Figure 3.5 Sequence diagram for sequence delegation 

 

Before executing each activity, the Workflow Execution Module will ask the Workflow 
Decision Module whether to offload the activity or not. In order to run the fuzzy logic to 
make the decision, the Workflow Decision Module needs to get the input variables (e.g. 
CPU, RAM, Battery and Bandwidth). It communicates with the workflow resource man-
ager to get the current CPU, RAM, Battery and Bandwidth usage. The fuzzy logic will 
evaluate and make the decision based on those input variable. If the decision is to offload-
ing the current task, the Workflow Offloading Module will generate a new BPEL file for 
this specify activity.  

 

However, in order to decide which collaborative device will handle this activity. We have 
to find the device with the best capability to process it.  We introduce a ranking scheme 
based on the collaborative device current capability, such as available CPU, RAM, Battery 
and Bandwidth. We expect each collaborative device provides a service about whether it is 
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capable to handle extra tasks currently. This can be achieved by using the same fuzzy log-
ic to make the decision whether it is capable to handle extra tasks or not. If they are capa-
ble to be assigned extra tasks, the service will reply their current available CPU, RAM, 
Battery and Bandwidth value. The Workflow Collaborate Module will invoke this service 
on each collaborative device to get the available CPU, RAM, Battery and Bandwidth val-
ues. We use the following algorithm to calculate the ranking for each collaborative device. 

 

Definition 1 (Collaborator Profile). Collaborator profile is defined as a tuple (𝒟, 𝜀, 𝜆) 
where: 

− 𝒟 is a set of mobile devices of collaborators. 
− 𝜀:  𝒟 → ℛ maps mobile devices to available resource values (e.g., CPU, RAM, etc). 
− 𝜆:  ℛ →𝒲 maps resources to the weight of resource. 

 

Let 𝜖𝑣!!  be 𝑣!!!∈𝒟  where 𝑣!!  denotes the value of one of the available resource—
𝑟 ∈ 𝜀(𝑑) in device—𝑑 ∈ 𝒟. 

The ranking of a device—𝑑! ∈ 𝒟 is computed by: 

𝑟𝑎𝑛𝑘! =
𝑣!
𝜖𝑣!!!∈!(!)

∙ 𝜆(𝑟) 

Equation 1 

where 𝑟𝑎𝑛𝑘! denotes the ranking score of 𝑑!. 𝜀(𝑥) denotes the function that generates a 
set of available resource values of 𝑑!. 𝑣! represents the value of a 𝑟 ∈ 𝜀(𝑥) where the re-
source denoted by 𝑟 ∈ 𝜀(𝑥) is same as the resource denoted by 𝜖𝑣!!. 𝜆(𝑟) is the function 
that generates the weight value of the 𝑟. 

 

Based on different activity, the 𝜆(𝑟)  change accordingly. For example, the invoke activity 
usually involved the networking connection.  The available resource bandwidth in device 
𝑟 ∈ 𝜀(𝑥) will be assigned a high weight value 𝜆(𝑟), which means the device with a large 
network bandwidth will get a high score. Similarly, if the task requires a high computation 
power, the available resource CPU in device 𝑟 ∈ 𝜀(𝑥) will be assigned a high weight value 
𝜆(𝑟) , which means the device with a better CPU will get a high score. 

 

We will offload the task to the device with the best ranking score. The workflow generate 
module will get the best capability device from the Workflow Collaborate Module, and it 
will modify the original BEPL activity to the invoke activity that will offload the task to 
the selected device (See Figure 3.6). 
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Figure 3.6 Sequence task delegation 

 

3.2.3 Parallel	
  Task	
  Delegation	
  

This section will discuss how parallel task delegation works. The parallel task is suitable 

for invoking a large of activities asynchronously. For example, the content mashup in ser-

vice composition needs to discover and to process a large amount of data in order to iden-

tify and interpreter the consent. This usually involves interactive with a large number of 

service providers. The interaction with service providers does not depend on each other 

and can be done asynchronously.   

 

Figure 3.7 Parallel workflow 

Figure 3.7 shows an example for content mashup in service discovery phase. Since this 

process may consume a lot of resources for single mobile phone, it is feasible to split the 

parallel tasks and delegate to the collaborative devices.  
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Figure 3.8 Parallel task delegation 

Figure 3.8 shows an example of partition previous example of the parallel activities to two 

collaborative devices. The original BPEL file contains 50 parallel activities for discover-

ing services. After the Workflow Execution Module decides to offload the parallel tasks, 

the Workflow Offloading Module creates two new BPEL file. One BPEL files contains 40 

parallel activities; the other contains ten parallel activities. The parallel activities of the 

original BPEL file change to two invoke activity, which will offload the parallel activities 

to two external collaborative devices. 

 

Unlike the sequencing task delegation, which we only select one collaborative device with 

the best capability currently, the parallel task delegation involves delegate the tasks to 

multiple collaborative devices, and each collaborate will assign different portion of the 

parallel tasks. We have the following question need to consider.  

• How the workflow engine decides how many collaborative devices to support par-

tition? 

•  How the workflow engine determines the portion of parallel tasks to each collabo-

rative device for the partition?  
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To answer the question one, we use the same scheme as we describe in the sequence part. 

The workflow collaborates module firstly invoke the service on the collaborative device 

asking if they are capable to assign tasks currently. The workflow collaborates module 

maintain a list of collaborative devices that are capable to assign the tasks. We divide the 

parallel task based on the number of available collaborative devices. 

 

To answer the second question, we using the same ranking algorithm as we describe in 

sequence part, and we add an extra algorithm to calculate the portion of parallel tasks to 

each collaborative device. 

Definition 2 (Collaborator Portion). Collaborator Portion is defined as a tuple (D, 𝜆) 

Where: 

− D is a set of mobile devices of collaborators. 

− 𝜆 is the ranking score of a device defining in Equation 1 

The portion of a device  —𝑑! ∈ 𝒟 is computed by:  

𝑝𝑜𝑟𝑡𝑖𝑜𝑛! =   
𝑟!
𝑟!!

!∈!
 

Equation 2 

Where 𝑝𝑜𝑟𝑡𝑖𝑜𝑛! denotes the portion of the collaborative device r.  𝑟! denotes the ranking 

score 𝜆 of the device r. 𝑟!!
!∈!  is the addition of a sequence ranking score 𝜆 in the set of 

collaborative devices D. 

 

For example, the workflow collaborates module get three available devices with the status 

as List 3.6 shows. 

List 3.6 An example of three available devices status 

 available RAM(MB) available CPU(MHZ) available Battery(mAH) available Bandwidth(Mbit/s) 
Device 1 400 1610 1890 4 
Device 2 2000 3000 3000 10 
Device 3 1000 1000 1000 3 
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After normalized value (List 3.7) 

List 3.7 Normalized value 

 

 

If the task involves networking connection, the ranking weight for the bandwidth will be-

come 2. Therefore, The ranking score for each device is the summary of the normalized 

RAM, CPU, and Battery. Therefore 

 Device 1 ranking = 0.12 + 0.29 + 0.31 + 0.23 *2  = 1.18 

 Device 2 ranking = 0.59 + 0.54 + 0.52 + 0.59 * 2= 2.83 

 Device 3 ranking = 0.29 + 0.17 + 0.17 + 0.18 * 2 = 0.99 

Therefore the portion of parallel task assign to device 1 is  

1.18
1.18+ 2.83+ 0.99 = 24% 

If the parallel task contains 100 asynchronized task, the device 1 will handle 100 * 24% = 

24 tasks.  

Similar to device 2 

2.83
1.18+ 2.83+ 0.99 = 57% 

The device 2 will handle 100 * 55% = 57 tasks.   
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4 Implementation	
  Description	
  

In the last chapter, we introduced our proposed a framework for enabling collaborative 

content mashup with pervasive services. In this section, we describe the implementation 

detail of each component of the framework.  

4.1 Workflow	
  Parser	
  Module	
  

This module is for reading and parsing BPEL-based workflow description into memory. 

The BPEL-based workflow description fundamentally is an XML file. We use the XML-

PullParser, which is an Android native library for processing XML file. The tradition-

al DOM-based parser, which reads the whole document as a tree structure in the memory 

for dynamically access and updates the content, occupies more memory. Hence, XML-

PullParser was chosen.   

 

The purpose of Workflow Parser Module is to provide all the information that described in 

the BPEL workflow description file for the Workflow Execution Module to execute the 

workflow.  The BPEL workflow description file could have different tags to describe the 

structure of the workflow.  Currently, the prototype support to process <sequence>, 

<flow>,<forEach>,<invoke>,<assign>,<partnerLink> and <varia-

ble> tags.  

 

The following class diagram shows Workflow Parser Module components and their rela-

tionship. 
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Figure 4.1 Class diagram of Workflow Parser Module 

 

Figure 4.1 shows WorkFlowXmlParser, which is the entry point for processing the 

BPEL workflow description. Once it created, it directly executes parser() function that 

reading stream data of the BPEL workflow description file. Inside the parser() func-

tion, we instantiate an object of a XmlPullParser class for retrieving and processing 

BPEL tags. The WorkFlowXmlParser call corresponding method to handle different 

tags. For example, the readFlow() function is for retrieving the parallel structure of the 

workflow process. The WorkflowProcess class contains all the information related the 

BPEL workflow. The graphMap and graphMapBackword attribute inside Work-

flowProcess class store the workflow structure in a directed graph using Map inter-
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face. For one particular activity inside workflow, the graphMap provides information 

about next activity/activities after that activity in the workflow. If the next activity is more 

than one, it means the next execution is a parallel task. If the next activity is only one ac-

tivity, it means a sequence task. 

4.2 Workflow	
  Execution	
  Module	
  

 

 

Figure 4.2 Class diagram of Workflow Execution Module 

 

This module is for executing the workflow based on the information from the Workflow 

Parser Module. The Workflow Execution Module will get the reference of work-

flowProcess class that contains the workflow graph and list of partnerlinks and 

variables. The Workflow Execution Module will execute the activity defined in the 

workflow graph map. Before execute each activity, the Workflow Execution Module will 

communicate with the Workflow Decision Module for deciding whether to offload this 

activity or not based on the device current condition of the device. The implementation for 

Workflow Decision Module will be discussed later. 

 

The invoke activity defines the behavior to invoke external services that was defined in 

the partnerlink. The Workflow Execution Module supports CoAP and HTTP proto-

col. Based on the URI signature defined in the partnerLink variable, the Workflow 

Execution Module invokes CoAP or HTTP service dynamically. 
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For the sequence workflow, the activities run sequentially, which means the current activi-

ty needs to be accomplished before the execution of the next activity. Conversely, the par-

allel task in the workflow is running asynchronously. The Workflow Execution Module 

identifies the following workflow is parallel or sequential task based on the size of next 

activity in the graph map. If next activity size is more than one, it means that next task in 

the workflow is a parallel task. The module will create multiple threads to support the 

asynchronous process of the parallel task execution in BPEL (See Figure 4.3). 

 

Figure 4.3 The code of support parallel task execution 

 

The ExecutionTask class implements the java runnable interface. If the graph-

Values.size() is more than one, each parallel task will execute on its own thread that 

means running asynchronously (See Figure 4.4). 

 

Figure 4.4 Code for running workflow asynchronously 
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4.3 Workflow	
  Offloading	
  Module	
  

4.3.1 Overview	
  

Once the Workflow Decision Module decides to offload the task to collaborative device, 

the Workflow Execution Module will pass the execution flow to Workflow Offloading 

Module. The Workflow Offloading Module will generate new BPEL file that describe the 

workflow about the offloading task. Afterward, the original task in the BPEL file will be 

changed to an invoke activity in which the inputvariable is the new BPEL file, and 

the partnerlink is the collaborative device IP address. The Workflow Execution Mod-

ule will execute the modified invoke activity that offloads the task to the collaborative 

device. 

4.3.1 Implementation	
  Detail	
  

When the Workflow Offloading Module generate new BPEL file, the following require-

ments need to be meet. 

• When generating new BPEL file with the offloading tasks, the corresponding vari-

able and partnerlink in the BPEL file need to be added as well. 

• When offloading the parallel tasks, the Workflow Offloading Module is generating 

multiple new BPEL files when it needs to partition the parallel tasks to several collab-

orative devices with a different portion. 

• The original BPEL file needs to be modified correspondingly in order to achieve col-

laboration with external devices. 

To achieve the above requirements, the Workflow Offloading Module use the following 

processing steps: 

Step 1 Find the corresponding variables and partnerlinks with the offloading tasks 

When the initiator device decides to offload the tasks, the Workflow Offloading Module 

will identify the start task and end task on the graph map. The start task means the starting 

point of the workflow task that needs to be offloaded; the end task means the ending point 

of the workflow task that needs to be offloaded. For each task, the module calls the 

FindCurrentTaskVariableAndPartnerLink() function to find the correspond-

ing variable and partner link in this task.    
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Figure 4.5 Code for adding variables and partnerlinks 

As Figure 4.5 shows, for each activity, the corresponding variables and part-

nerlinks will be added. 

Step 2 Generate a new BPEL activity with the current activity  

 

Figure 4.6 Code for generate new activity 

If the current activity is an <invoke/> activity, the module will call the CreateIn-

voke() method to create new BPEL invoke. If the current activity is <assign/>, the 

module will call the CreateAssign() method to create new BPEL assign. 

Step 3: Modify the original BPEL workflow 

If the offloading task is a sequence task, we only need to change the task to an <in-

voke/> activity in the original BPEL file. The graph map and graph backward map need 

to be modified as to describe the new BPEL workflow.  
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Figure 4.7 Code for modify original sequence workflow 

 

As the Figure 4.7 shows, the ModifyBpelMap() method will change the original work-

flow with a new <invoke/> activity together with an input variable that contains the 

new BPEL workflow description. Afterward, the original BPEL workflow was modified 

with the new graph map and graph backward map structure. 

 

Unlike to sequence task, the parallel task delegation involves modifying the original BPEL 

workflow to multiple <invoke/> activities that support task delegation to several col-

laborative devices. The ModifyBpelParallel() method will receive a list of IP 

address of the collaborative device. The new invoke activity is created based on the IP 

address size. Also, the original BPEL workflow was modified with a list of invoke activity 

added (See Figure 4.8). 

 

Figure 4.8  Code for modify the original parallel workflow 



 
 

42 

 

4.4 Workflow	
  Decision	
  Module 

As describes in Chapter 3.2.1, the Workflow Decision Module will use battery status, CPU, 

RAM, and bandwidth as input variables for the fuzzy logic to make the decision of of-

floading. Figure 4.9 shows the class diagram for the Workflow Decision Module. 

 

Figure 4.9 Class diagram for Workflow Decision Module 

 

The FIS object is the core element in the jFuzzyLogic library. Firstly, it read the fuzzy 

logic rules that we describe in Chapter 3. Inside the IsOffloading() method, the FIS 

object will run the fuzzy logic based on the current CPU, RAM , Battery and Bandwidth 

through the evaluate() method. After the evaluation, we get the output value, which 

has been defined in Chapter 3. The output value is the decision point to tell whether to 

offload the current task (See Figure 4.10). 

 

 

Figure 4.10 Code for running fuzzy logic	
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4.5 Workflow	
  Collaborate	
  Module	
  

 

 

Figure 4.11 Class diagram for Workflow Collaborate Module 

 

The Workflow Collaborate Module maintains a list of currently available collaborative 

devices. The term “available” means that the collaborative device can handle extra tasks 

currently. When the Workflow Decision Module makes a decision, the Workflow Collabo-

rate Module will communicate each collaborative device and asking if then are capable to 

assign tasks currently. The FetchingStatusService() function will get a list of available 

collaborative devices and as well as their current CPU, RAM, Battery and Bandwidth. 

 

Figure 4.12 The code for getting available device with their conditions 
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As the code above, we assume each collaborative device is running a service on port 8081 

that providing the information whether they are capable to handle extra tasks or not. If 

they are available, they will reply their current available CPU, RAM, battery, and band-

width. The Workflow Collaborate Module will store the currently available collaborative 

device as well as the CPU, RAM, battery, and bandwidth. The WeightNormalize() 

function will calculate the ranking for each available collaborative device as we describe 

in Chapter 3 (See Figure 4.13).  

 

 

Figure 4.13 Code to perform normalize 
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5 Evaluation	
  

5.1 Introduction	
  

 

In the previous chapters, we have illustrated the proposed solution to resolve Collaborative 

Content Mashup with Pervasive Services. In Chapter 3, we have presented the architecture 

design of the proposed framework. A proposed fuzzy model-based resource-aware of-

floading among mobile devices. Also, we introduced two offloading scheme for how to 

partition and offload the activities in sequence and parallel tasks.  The framework is light-

weight and supports CoAP protocol. 

 

In this chapter, we evaluated our framework based on two scenarios. The first scenario 

demonstrated the advantage of supporting CoAP protocol for content mashup in a con-

strained pervasive services environment in terms of energy saving and performance. The 

second scenario demonstrated the advantage of supporting task offloading using our pro-

posed algorithm. 

5.2 Scenario	
  1	
  

The first scenario is a ‘service discover scenario’. The workflow of this scenario defines 

parallel tasks to perform service discovery. A classic service provider uses a standard 

WSDL to describe its operation.  When a client performs service discovery for the desired 

service, the client matches the keyword based on the vocabularies provided by the server 

WSDL. On the other hand, the CoAP service discovery is based on the well-known 

address. The well-known address includes CoRE link format to describe hosted re-

sources, their attributes for the client to interpreter the services. 

1. Setting 

 In order to compare the advantage of adopting CoAP protocol in our framework, we 

compare the WSDL service discovery and CoAP service discovery. In the workflow, we 

define 10-200 parallel tasks for the service discovery. We measure and compare the aver-

age response time, throughput, and battery consumption for using CoAP service discovery 

and WSDL service discovery. 
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List 5.1 Test case for WSDL service discovery 

    <sequence name="main"> 
        <assign name="startPoint"> 
            <copy> 
                <from variable="variable1" /> 
                <to variable="variable2" /> 
            </copy> 
        </assign> 
        <forEach countername='n'> 
            <startCounterValue>0</startCounterValue> 
            <finalCounterValue>200</finalCounterValue> 
            <sequence> 
                <invoke name="ServiceDiscovery" 
                partnerLink="getWSDL" 
                operation="GET" 
                outputVariable="mathcingResult"/> 
            </sequence> 
        </forEach> 
        <assign name="endPoint"> 
            <copy> 
                <from variable="variable1" /> 
                <to variable="variable2" /> 
            </copy> 
        </assign> 
    </sequence> 

List 5.1 defines a workflow for WSDL service discovery. The <forEach/> defines 

number of repeat tasks based on the number defined in the <finalCounterValue/> 

tag. The <invoke/> defines an HTTP GET request that would fetch a WSDL from the 

external service defined in the <partnerLink/>.  We implemented an external server 

that would return the following the WSDL (List 5.2) based on the request. 

List 5.2 The WSDL defined in the external server 

<message name="getTemperatureRequest"> 
  <part name="value" type="xs:string"/> 
</message> 
<message name="getTemperatureResponse"> 
  <part name="value" type="xs:string"/> 
</message> 
<portType name="Temperature"> 
  <operation name="getTemperature"> 
    <input message="getTemperatureRequest"/> 
    <output message="getTemperatureResponse"/> 
  </operation> 
</portType> 
<binding type="Temperature" name="b1"> 
   <soap:binding style="document" 
   transport="http://schemas.xmlsoap.org/soap/http" /> 
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   <operation> 
     <soap:operation soapAc-
tion="http://example.com/Temperature"/> 
     <input><soap:body use="literal"/></input> 
     <output><soap:body use="literal"/></output> 
  </operation> 
</binding> 

 

List 5.3 Test case for CoAP service discovery 

    <sequence name="main"> 
        <assign name="startPoint"> 
            <copy> 
                <from variable="variable1" /> 
                <to variable="variable2" /> 
            </copy> 
        </assign> 
        <forEach countername='n'> 
            <startCounterValue>0</startCounterValue> 
            <finalCounterValue>200</finalCounterValue> 
            <sequence> 
                <invoke name="CoapServiceDiscovery" 
                partnerLink="getWellKnowInCoap" 
                operation=".well-known/core" 
                outputVariable="coapServiceResponse"/> 
            </sequence> 
        </forEach> 
        <assign name="endPoint"> 
            <copy> 
                <from variable="variable1" /> 
                <to variable="variable2" /> 
            </copy> 
        </assign> 
    </sequence> 

 

List 5.3 defines a workflow for CoAP service discovery. The <forEach/> defines the 

same behavior as previously described. The <invoke/> defines a CoAP well-known 

discovery to the service defined in the partnerLink.  

 

The service provider was implemented in mobile device - LG G3 with Android version 5.0 

under local wireless network in the University of Tartu. The client was implemented in 

mobile device - Google Nexus 5 running with Android OS 5.0.1 in the same local wireless 

network. The clients performed 10-200 parallel requests for testing. For each test case, we 

performed five times and calculated the average time. 
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2. Result 

A. Throughput comparison: 

Figure 5.1 shows the throughput comparison between the HTTP-based WSDL service 

provider and the UDP-based CoAP servicer provider. Because HTTP implemented on 

top of TCP, which guarantees reliable transmission of data. It maintains 100% success 

rate for the client invokes 10-200 parallel requests. However, the CoAP protocol was 

based on UDP in which packets are sent without guarantee of delivery. As we can see 

from the figure when the client invokes large than 100 parallel requests, the throughput 

of the service provider was not able to maintain 100% rate. 

 

 

Figure 5.1 Line chart of the throughput  

 

B. Response time comparison 

Figure 5.2(a) shows the average response time for the parallel requests. As the parallel 

task request increased, the average response time for both CoAP and HTTP also in-

creased. However, the average response time for CoAP is much less compares the 

HTTP request. Figure 5.2(b) shows the max response time for each parallel request. As 

we can see from the figure when the client sends more than 100 parallel requests, the 

max response time for HTTP has increased to almost 2 seconds. However, the max re-

sponse time for CoAP remains almost the same level. The CoAP server is much more 

efficiency for processing the parallel request comparing to HTTP. 
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Figure 5.2 Line chart of the response time 

C. Energy consumption comparison 

The energy consumption was measured by simulating 200 parallel requests every 15 

seconds in an hour. As  Figure 5.3 shows, the battery drop 11% in traditional HTTP 

while the battery drop 9% in CoAP. The result shows that the framework supporting 

CoAP consumes less energy. 

 

 

 

Figure 5.3 Bar chart for battery consumption 

5.3 Scenario	
  2	
  

The second scenario is the “content mashup scenario”. The scenario performed tempera-

ture mashup in the pervasive services environment. In 1.2.1 under Chapter 1, we described 

a scenario of finding parking lot information. In our test case 2, we defined exactly the 
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same workflow but finding temperature information instead of finding parking lot infor-

mation. The challenge is that potentially there are many service providers, it is difficult 

and time-consuming for a single device to explore and filter the desired service in the per-

vasive services environment without collaborating with other devices. We proposed a re-

source-aware offloading scheme in our framework. We evaluated the framework under 

two test cases. In the first test case, we measured the workflow execution time and com-

pared the execution time difference between partition equal and partition using our pro-

posed algorithm. In the second test case, we measured the energy consumption between 

running the workflow locally and partition the workflow to the collaborative devices. 

1. Setting 

The workflow begins with the service discovery. For each service, it performs service in-

vocation and service filter. We performed the scenario under the CoAP implementation. 

Therefore, the workflow contains CoAP discovery, CoAP well-know invoke, CoAP 

ontology matching based on the resource type (See List 5.4). 

 

List 5.4 Workflow for scenario 2 

<process name="ExecuteWorkflow" 
    xmlns="http://docs.oasis-
open.org/wsbpel/2.0/process/executable" 
xsi:noNamespaceSchemaLocation="datatype.xsd"> 
    <partnerLinks> 
        <partnerLink name="BLEScanning" 
            partnerLink-
Type="tns:GetData">coap://localhost/coapIP</partnerLink> 
        <partnerLink name="getWellKnowInCoap" 
            partnerLink-
Type="tns:GetData">$scanCoapResultUsingBLE</partnerLink> 
        <partnerLink name="matchingCoap" 
            partnerLink-
Type="tns:GetData">coap://localhost:5684/temperatureMatching
</partnerLink> 
 
    </partnerLinks> 
    <variables> 
        <!-- 
         Reference to the message that will be returned to 
the requester 
         --> 
        <variable name="scanCoapResultUsingBLE" 
            messageType="tns:List"/> 
        <variable name="coapServiceResponse" 



 
 

51 

            messageType="tns:String"/> 
        <variable name="postData" 
            messageType="tns:String"/> 
        <variable name="mathcingResult" 
            messageType="tns:String"/> 
    </variables> 
    <sequence name="main"> 
        <assign name="startPoint"> 
            <copy> 
                <from variable="variable1" /> 
                <to variable="variable2" /> 
            </copy> 
        </assign> 
        <forEach countername='n'> 
            <startCounterValue>0</startCounterValue> 
            <finalCounterValue>20</finalCounterValue> 
            <sequence> 
                <invoke name="CoapServiceDiscovery" 
                    partnerLink="getWellKnowInCoap" 
                    operation=".well-known/core" 
                    outputVariable="coapServiceResponse"/> 
                <assign name="assign"> 
                    <copy> 
                        <from variable="coapServiceResponse" 
/> 
                        <to variable="postData" /> 
                    </copy> 
                </assign> 
                <invoke name="invokeMatchingCoap" 
                    partnerLink="matchingCoap" 
                    operation="POST" 
                    inputVariable="postData" 
                    outputVariable="mathcingResult"/> 
            </sequence> 
        </forEach> 
        <assign name="endPoint"> 
            <copy> 
                <from variable="variable1" /> 
                <to variable="variable2" /> 
            </copy> 
        </assign> 
    </sequence></process> 

 

For each partnerlink, it means a different service running on the android phone. For 

example, the partnerLink “getWellKnowInCoap” is the service running on an-

droid to performing the CoAP well-known discovery and get the ontology defined on 

the resource type. The partnerLink “matchingCoap” is another service running on 

android to perform the ontology matching (See Figure 5.4). 
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Figure 5.4 Temperature ontology matching 

We run this workflow in LG G3 running Android version 5.0 under local wireless network 

in the University of Tartu. Three collaborative devices participate the workflow offload-

ing. Two devices are Google Nexus 5 running on Android 5.0.1 and one device is Google 

Nexus 7 running on Android 4.4.4. We run the parallel tasks from 10 – 70 tasks and meas-

ure the time consumption using the algorithm to perform task partition and equal task par-

tition. For each test case, we performed five times and calculated the average time. 

2. Result 

A. Time comparison 

As Figure 5.5 shows, when the parallel tasks less than 20 tasks, there is no much differ-

ence when using the algorithm to enable the tasks partition or equal tasks partition. Be-

cause the total number of the tasks is small, the task assigned for each collaborative almost 

the same as the equal tasks partition even using the algorithm. However, when there are 

many parallel tasks, using the algorithm to enable the task partition takes less execution 

time compare just partition the tasks equally.  
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Figure 5.5 Scenario 2 time comparison 

B. Energy consumption comparison 

We run two test cases to compare the energy consumption. One test case is running the 

entire workflow locally. The other test case is offloading the task to collaborative de-

vices using partition algorithm. The testing was repeatedly running 24 parallel tasks 

defined in the workflow (List 5.4) every 20 seconds for one hour and measuring the 

battery consumption. As Figure 5.6 shows, the battery computation saved nearly half 

when offloading the workflow to collaborative devices than running the workflow lo-

cally. The result proved that the offloading scheme consumes much less energy than 

running the workflow locally. 

 

Figure 5.6 Battery consumption for running workflow locally and partition the workflow 
to collaborative devices 
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5.4 Discussion	
  

In general, the test cases results were as we expected. Figure 5.2 shows that the service 

discovery using CoAP takes less time compares the traditional HTTP WSDL service dis-

covery. Figure 5.3 shows that using CoAP consumes less energy in terms of battery con-

sumption. It proves that the framework is lightweight and CoAP supported workflow en-

gine. Figure 5.5 shows that it is efficient using our ranking algorithm to decide the portion 

of the offloading tasks instead of partition the task equally. Figure 5.6 shows that offload-

ing the tasks to collaborative devices can save a significant amount of battery than running 

all the tasks locally. The framework supports task offloading in content mashup in a col-

laborative environment. The result shows that the framework achieves the objective de-

fined in Chapter 1. 
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6 Conclusions	
  	
  

6.1 Research	
  Summary	
  and	
  Contributions	
  

This thesis intends to investigate an approach towards resolving Collaborative Content 

Mashup with Pervasive Services. We implement a framework that supports content-aware 

service discovery, decentralisation, and a collaborative task-offloading scheme by ena-

bling service-oriented service composition among mobile resources. The framework sup-

ports BPEL workflow to achieve the content mashup. In order to resolve resource-

constrained issues in mobile devices, the framework supports CoAP service interaction 

and task offloading scheme. Based on the device real-time condition (CPU, RAM, Battery 

and Bandwidth), we implement a fuzzy logic for deciding whether to offload tasks to col-

laborative devices. We proposed two offloading scheme for how to partition and offload 

the activities in sequence and parallel tasks. We proposed a ranking algorithm for collabo-

rative devices to decide the portion of the offloading tasks. The framework can dynamic 

generate new workflows to collaborative devices and modify the original workflow based 

on the decision was made at run-time. The first test case shows the advantage of the 

framework supporting the CoAP protocol in service discovery phase in terms of energy 

and time consumption.  The second test case shows the advantage of the ranking algorithm 

to decide the portion of the offloading tasks instead of partition the task equally. It also 

proves that offloading the tasks to collaborative devices can save a significant amount of 

battery than running all the tasks locally. The evaluation results have shown that the 

framework supports collaborative task-offloading scheme that reduces the resource usage 

of mobile devices. 

6.2 Future	
  Research	
  Directions	
  

Currently, we continue validating the framework and the possible improvement could be 

• The framework is capable of processing basic BPEL workflow, <sequence>, 

<flow>, <invoke>, <assign> and <forEach>. However, the more 

advance workflow, <faultHandlers>, <catch> and <validate> is 

not supported yet.  
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• When deciding the portion of offloading tasks to collaborative devices, we only 

consider the available CPU, RAM, Bandwidth, and Battery usage in our ranking 

algorithm.  We are still studying and trying to find a better benchmarking algo-

rithm to compare different device capabilities. 

Besides the possible improvement of our framework, there are still many unsolved chal-

lenges. We list our future research directions as follows 

• The framework does not address how to establish a high-quality long-live commu-

nication with collaborative devices in an unstable network communication envi-

ronment. When the framework decides to offload certain tasks to the collaborative 

device, due to the high dynamic change of collaborative device, the connection be-

tween the initiator device with the collaborative device could be lost during run-

time. Even the collaborative device finished the assigned tasks. It could not be able 

to send the result back to the initiator device. 

• The potential collaborative network could consist of 1000 or more mobile devices. 

It is too expensive to explore all the collaborative devices and to calculate the rank-

ing score for each collaborative device at run-time for each workflow activity. It 

requires further investigation to find a proper solution. 

• The framework does not address the trust and security with the collaborative de-

vices to enable task delegation. Untrusted user from the public could assign mali-

cious tasks to the device, which is not the friend of the untrusted user. A trustwor-

thy collaborative environment requires further investigation. 
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