
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Ott Adermann

Wavelet-based Image Denoising

Bachelor’s Thesis (9 ECTS)

Supervisors: Irina Bocharova, PhD
Vitaly Skachek, PhD

Tartu 2019

Laineteisenduspõhine piltidelt müraeemaldus

Lühikokkuvõte:

Lühikokkuvõtte sisu.

Võtmesõnad:

Käesolev töö uurib laineteisenduste kasutust piltide kvaliteedi parandamise eesmärgil, neilt müra

eemaldades. See annab ülevaate erinevates müra tüüpidest ning müraeemaldusmeetoditest. Edasi

keskendub töö laineteisenduspõhistele müraeemaldusskeemidele. Samuti uurib töö laineteisendus-

põhise müraeemaldusmeetodi ning kokkupakkimise kombineerimise kasulikkust ja pakub välja uue

lävendamise tüübi ning muudatuse eksisteerivale BayesShrink meetodile. Pakutud meetod

implementeeritakse C# keeles ning selle implementatsiooni tulemusi, jõudlust ning optimaalseid

parameetreid analüüsitakse eksperimentaalsete tulemuste abil.

CERCS:

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)

T111 Pilditehnika

Wavelet-based Image Denoising

Abstract:

This thesis studies the use of wavelets for the purpose of improving the quality of images by

removing noise from them. It presents an overview of different types of noise and denoising

methods. The thesis then focuses on the wavelet transform based denoising schemes. It explores the

potential of combining wavelet-based denoising and compression, and presents a new thresholding

type and a modification to the existing BayesShrink method. The proposed method is implemented

in the C# language and its performance and optimal parameters are analyzed through experimental

results.

Keywords:

Wavelets, image processing, image denoising, image compression

CERCS:

P170 Computer science, numerical analysis, systems, control

T111 Imaging, image processing

2

Table of Contents

1. Introduction..5

2. Overview of Denoising Methods..7

2.1 Types of Noise and Denoising...7

2.2 Linear Smoothing Filters...8

2.3 Anisotropic Diffusion..8

2.4 Rank Selection Filters..9

2.5 Discrete Cosine Transform..9

2.6 Discrete Wavelet Transform..10

3. Wavelet-based Denoising Procedure..12

3.1 RGB to YCbCr Color Space Conversion..12

3.2 Discrete Wavelet Transform..14

3.2.1 Filtering..15

3.2.2 Algorithm...16

3.2.3 Extension to Images...18

3.3 Thresholding..20

3.4 Compression..24

4. Implementation Details...26

4.1 Parameters..26

4.2 Color Space Conversion..26

4.3 Discrete Wavelet Transform..27

4.4 Thresholding..29

4.5 Compression..31

4.6 Performance...32

5. Denoising and Compression Results..34

5.1 Test Description...34

5.2 Gaussian Noise..36

5.3 Impulse Noise..38

5.4 Speckle Noise..39

5.5 Poisson Noise...41

5.6 Compression..43

5.7 Overall Results...45

6. Conclusion..47

7. References..48

3

Appendix..51

I. Source code and executables of the created programs...51

II. Full list of PSNR and SSIM results of the images denoised with the created program............51

III. Licence..52

4

1. Introduction

Digital images, including videos, are a prevalent and important part of today’s world. A lot of these

images are acquired from the world through the use of sensors, and as such contain noise, which is

inherent to the imperfections of sensors. These images can be medical or scientific images acquired

through ultrasound, x-rays, and gamma rays, but are most often images acquired through a digital

camera. Of the latter category are movies, advertisements, and other types of images, including a lot

of personal pictures often made with poor quality cameras, such as those on mobile phones.

It is often desirable to remove noise from these images to improve their quality, either for practical

purposes in medical imagery [1] and computer vision, or for aesthetic purposes [2]. However,

removing noise manually is both very time consuming and very difficult, thus making it

impractical. Therefore, an automated method for removing noise is desirable.

There exist different types of noise, depending on the capturing device and the type of image being

captured. Different denoising methods are more effective on certain types of noise. However,

transform-based denoising is known to be rather universal and is successfully used for denoising

various kinds of images corrupted by different types of noise. The wavelet transform is a particular

form of transform usable as part of the denoising of images.

Most stored or transmitted digital images are compressed using lossy compression techniques.

These techniques usually include a digital transform as a step of the image encoding procedure.

Because the wavelet transform can be used for both denoising and compression, it is natural to

combine the two methods.

The goal of this thesis is the design of a method that improves image quality by removing noise

from images using the wavelet transform. A distinguishing feature of this thesis is the focus on

combining wavelet transform based denoising and compression. This approach is computationally

less expensive than denoising and compressing images separately. Finally, to verify the

effectiveness and usability of the method, a proof-of-concept computer program is created that

denoises images and optionally estimates the possible amount of compression after the denoising

process.

In Chapter 2, an overview is given of some of the existing denoising schemes and their

effectiveness on various types of noise. Chapter 3 is a theoretical overview of the used methods and

ideas, and Chapter 4 contains the implementation and performance details. The final chapter

5

measures the denoising quality of the resulting method on different types of noise, and compares the

results to some of the previously existing methods mentioned in Chapter 2.

The appendix contains links to the source code and executables of the finished program and

associated tools, as well a table of all the denoising results.

6

2. Overview of Denoising Methods

There are a lot of different methods and approaches to improve the quality of an image by reducing

the amount of noise in it. This chapter first covers the most common types of noise present in digital

images, explains what denoising is, and gives an overview of some of the existing methods of

image denoising, and how well they perform.

2.1 Types of Noise and Denoising

Image noise is the random undesirable differing of pixel color values from their expected values.

Generally, noise is more noticeable and disturbing when the difference between the color values of

pixels and their surrounding pixels is large. Most noise can be described by one or a combination of

multiple of the four following noise models [3, 4], examples of which can be seen in Figure 1.

Figure 1. Different types of noise on a gray background. From left to right: Gaussian noise with a

standard deviation of 15, impulse noise affecting 10% of the pixels in the image, Poisson noise with

an average of 150 photons, speckle noise affecting 10% of the pixels in the image.

Gaussian noise is additive noise with a Gaussian distribution around zero. It is often the largest

noise component when capturing an image due to imperfect image sensors, affecting all captured

pixels. A lot of pixels corrupted by this type of noise are individually not noticeably noisy, due to

the Gaussian distribution.

Impulse noise most often comes from errors in image transmission, analog-to-digital conversion, or

broken pieces of the sensor. It replaces individual pixels of the image with a random color value.

Salt and pepper noise is a subtype of impulse noise, but only has zero or full intensity values instead

of random ones.

7

Poisson noise occurs in image sensors due to the amount of photons hitting the sensor statistically

differing. This causes fluctuations in the color intensities of the image. Poisson noise is similar to

Gaussian noise, but typically has a much lower intensity.

Speckle noise is found in radar and ultrasound systems. It is multiplicative noise, adding to the

value of each pixel some positive or negative multiple of that value. Due to this, it affects brighter

areas of the image more significantly.

Image denoising is the process of removing noise from an image. Ideally, denoising should first

identify all the noisy pixels and then restore them to their original values, while leaving the color

values of non-noisy pixels untouched. However, in practice, it is not always possible to correctly

decide which pixels are noisy, which are not. Most commonly, fine details can be indistinguishable

from noise, and are often lost after denoising. Secondly, the original color values of the pixels are

not known either. This is worse when the noise covers all pixels in the image, such as for Gaussian

and Poisson noise, because there are no neighboring non-noisy pixels which could be used to guess

the original color values of the noisy pixels. Therefore, it is not possible to perfectly restore images,

but different methods are still capable of eliminating some or multiple types of noise quite

effectively without damaging the parts of the image not affected by noise nor the important details

in the image.

2.2 Linear Smoothing Filters

Linear smoothing filters are perhaps the simplest way to reduce noise in an image. They work by

taking an average or a weighted average of the pixel color values at and around each pixel in an

image. The weights in the latter case are often in the form of a 2D Gaussian function, and applying

such a filter is the equivalent of Gaussian blurring an image. Because it is characteristic of most

forms of noise to generally be distinct from its neighbors, blurring can effectively reduce noise by

forcing each pixel to be more similar to its neighbors [5]. This, however, has the undesired side

effect of reducing the quality of the image by turning the image blurry because the filter

indiscriminately averages all pixels, not just those with noise. Further, instead of just eliminating the

noisy pixels, the smoothing filter instead smears them across the neighboring region.

2.3 Anisotropic Diffusion

Anisotropic diffusion builds upon linear smoothing by combining it with edge detection. More

smoothing is applied in the direction of edges, while less smoothing is applied across edges. This

8

means that uniform regions of an image are more heavily blurred, while regions with sharp

transitions retain their quality [6]. While it solves the problem of indiscriminately blurring away

important parts of an image – the edges, it still does not limit the blurring to just noise, and still

smears the noise across the neighboring region.

2.4 Rank Selection Filters

Rank selection filters work by taking each pixel along with its neighboring region, sorting those

pixels by their values, and then choosing one according to its ranking to replace the center pixel

with. The simplest case of this is the median filter, which chooses the middle ranking value.

Compared to a linear smoothing filter, the median has the advantage of generally not being affected

by outliers, which is what noise usually is. Additionally, since the median value does not interpolate

between any of the existing values, but is instead one of them, blurring does not occur, and edges

are preserved well. This method is most effective when noise values deviate substantially from the

surrounding values, such as in salt and pepper noise, but is sometimes even less effective than a

linear smoothing filter for Gaussian noise [7, 8]. A quality-degrading side effect of the median not

creating any new interpolated pixel values is that the number of colors an image has can only

decrease, leading to an increasingly blocky image. Further, a regular median filter also does not

discriminate between noisy and non-noisy pixels, and is thus applied to all pixels of an image.

An example of a median filter particularly effective against salt and pepper noise is the Iterative

Trimmed Median Filter [9]. It identifies only zero or full intensity pixels as noise, and only corrects

those by selecting a median from the non-noisy values. If the entire neighborhood is noisy, the value

will be corrected in the following iteration. This method solves the issue of the image quality being

degraded due to median filtering being applied to all pixels. However, only considering fully

saturated values as noise limits the use of the filter to images that only have salt and pepper noise

and are free of large areas of saturated color.

2.5 Discrete Cosine Transform

The discrete cosine transform (DCT) transforms an image into a collection of cosine functions with

different frequencies and amplitudes. It is possible to represent the result of this transform as an

image of equal size to the original, where similar frequencies are grouped together. An inverse

transform can then be performed to retrieve the original image. Notable differences from the

discrete Fourier transform (DFT) are that the DCT is real-valued, not complex-valued, and that the

DCT has better energy compaction – the magnitudes of the frequencies are more concentrated into

9

fewer frequencies. Both of these differences are an important part in compression, because the

important parts of an image are packed into a smaller amount of data compared to the DFT [10, 11].

Noise is mostly localized in the high frequency components of images. Because the DCT separates

an image into its various frequency components, it is possible to use DCT-based techniques to

denoise images by removing high frequencies, which are most likely to correspond to noise, while

leaving the rest of the image untouched. This is an improvement over the previously discussed

methods, which generally failed to distinguish noise from the rest of the image. Examples of using

DCT include Wiener filtering in DCT domain [12] and adaptive DCT-based filtering [13].

2.6 Discrete Wavelet Transform

In its simplest form, the discrete wavelet transform (DWT) decomposes an image into a quarter-size

image representing the low frequency component of the image, and into three quarter-size images

representing the directional high frequency components of the image. The process can be repeated

on the low frequency component, further splitting it into low and high frequency components. This

transform is invertible, meaning the components can be combined back into the original image [14,

15].

A downside of the DCT and the DFT is that they represent an image as a combination of frequency

components which extend across the entire image, whilst it is more natural, and often also more

useful, to represent the image as a combination of components that only have a value in a limited

neighborhood around a point, therefore allowing the capture of information unique to the region

around that point. The DWT has an advantage in this regard, as it captures both frequency and

location information [16]. Dividing an image into smaller sections before applying a discrete

Fourier or cosine transform can achieve a similar result that captures location information, but a

wavelet transform achieves this in a more natural way. Moreover, wavelets can better represent

sharp and non-recurring transitions in an image, such as edges, while sines and cosines are by

definition non-local and extend to infinity [17].

For similar reasons as the DCT, the DWT is a good basis upon which to build methods for

compressing and denoising images. The listed advantages of the DWT benefit denoising and

compression as well. For denoising, an image is first transformed using a DWT. Notably, there exist

different wavelet functions which can be used for this transform. The choice of the wavelet function

can affect the quality of the results and is therefore important [15]. There also exist different

10

methods to eliminate noise from the transformed image. Hard and soft thresholding are often used

[18, 19], but statistical and other methods have been shown to be highly effective as well [19].

As part of this thesis, both Haar and orthogonal wavelets are tested for the DWT. Hard, soft, and a

custom thresholding method are tested, and a modified, adjustable version of BayesShrink [18] is

used for finding the thresholds.

11

3. Wavelet-based Denoising Procedure

The denoising procedure developed as part of this thesis consists of multiple separate steps. The

image is first prepared for denoising through a color space conversion followed by a discrete

wavelet transform. The transformed image is then denoised using thresholding and optionally

compressed and saved. If the image is not compressed or when the compressed image is loaded for

viewing, it is then transformed back. This chapter describes these steps and explains why they are a

necessary part of the overall procedure.

3.1 RGB to YCbCr Color Space Conversion

In nearly all cases, monitors display their gamut of color using tiny red, green, and blue lights.

Similarly, the individual photosites of digital cameras capture only red, green, or blue light each

[20]. Because of this, digital images are also represented as a combination of red, green, and blue

lights. An image can be thought of as being a combination of three separate images, each consisting

of a varying intensity of only one color of light, as shown in Figure 2.

Figure 2. The red, green, and blue color components that make up an image of a parrot [21].

Our eyes are more sensitive to light intensity than the color of light. For images, this means that we

care more about the brightness (luma) information quality of an image than its color (chroma)

information quality. As such, it is beneficial that both the amount of denoising and the amount of

compression be configurable separately for the luma and chroma components. For this reason, a

color space conversion is performed from RGB to YCbCr.

12

In relation to the RGB color space, the YCbCr color space is defined such that Y (luma) contains the

perceived brightness, which is also the grayscale of the image, while Cb (chroma blue) and Cr

(chroma red) contain all the color information of the image. In mathematical terms, this relation is

shown in the formulae in (1), which are an ITU-T standard [22], and a visual representation is given

in Figure 3. It can be seen from Figure 2 that green is indeed perceived as the brightest of the

images, while blue is the darkest, as is in the formula for luma.

(1)

Figure 3: RGB color cube in the YCbCr color space.

13

Y = 0.299 R + 0.587G + 0.114B
Cb=(B−Y) / 1.772 + 128
Cr= (R−Y) / 1.402 + 128

The backwards color space conversion, YCbCr to RGB, can be derived from the formulae in (1), and

is given by the formulae in (2), which are part of the same ITU-T standard [22]. It is important to

note that, as seen in Figure 3, the space of all possible YCbCr values is larger than the space of all

possible RGB values, so after the backwards conversion, the values have to be clamped to ensure

they are valid.

(2)

Figure 4. The luma and chroma components that make up an image of a parrot [21].

The result of the color space conversion can be seen in Figure 4, which also showcases that the

luma component holds more visually useful information than either chroma component. This can be

used for more efficient compression, allowing more information to be removed from the chroma

components without significantly affecting the quality of the image.

3.2 Discrete Wavelet Transform

The most important part of the denoising process is the discrete wavelet transform (DWT). This

transform, similarly to the DCT and the DFT, decomposes the original signal into a set of basis

functions multiplied by the transform coefficients. As was shown by S. Mallat the wavelet

transform can be implemented by filtering the original signal using a so-called wavelet filter bank,

decomposing the signal into a multiresolution representation [23]. The coefficients of filters in the

wavelet filter bank are related to the wavelet basis functions via dilation and wavelet equations [24].

14

R=Min(Max (Y + 1.402(C r − 128) , 0) , 255)
G=Min (Max (Y − 0.344(Cb − 128)− 0.714 (C r − 128) , 0) , 255)
B=Min(Max (Y + 1.772(Cb − 128) , 0) , 255)

A wavelet filter bank is also known as a wavelet family [25]. The so-called father wavelet and the

son wavelets derived from it through scaling the father wavelet act as scaling functions – low-pass

filters at the various resolutions which extract the low frequency information from the signal. On

the other hand, the so-called mother wavelet and the daughter wavelets derived from it through

scaling the mother wavelet act as the basis functions – the wavelets – for the wavelet transform at

its multiple resolutions. They can also be considered the high-pass filters which extract the high

frequency information from the signal. Intuitively, the low frequency component is like a smaller

scale copy of the original signal, while the high frequency component contains all the information

lost from the low frequency component due to the decrease in scale, such as contours and fine

details.

3.2.1 Filtering

Filtering can be implemented as convolution, which is a mathematical operation that can be

performed between two signals. For discrete signals f and g, the convolution f∗g is given by the

formula in (3) [26].

(3)

Usually, one of the signals is the longer input signal, and the other is a short signal used as the filter.

It is not possible to do an infinite number of calculations for each sample of the convolution, but

because wavelet filters have a finite impulse response, meaning they are of a finite length, and the

values of the filter signal outside its defined range are 0, we can use the equivalent formula in (4)

instead (assuming g is the input signal, and f is the filter with a finite length of n).

(4)

It can be seen that with a constant length filter, convolution works in linear time with respect to the

length of the signal. For any sample of the input signal which is outside the defined range, we

consider the signal periodic, and take the sample from the other end of the defined range. This is

known as circular convolution, and is defined as

(f∗g)i=∑
j=0

n−1

f jg (i+ j)mod n

15

(f∗g)i= ∑
j=−∞

∞

f j g i+ j

(f∗g)i=∑
j=0

n−1

f j g i+ j

Circular convolution is necessary for the DWT in order to have a convolution that is of the same

length as the original signal and is invertible. For other purposes, these samples can also be clamped

to each end of the signal or given zero values.

As an example, let f = [0.5, 0.5], which is an averaging filter, and let our input signal g = [1, 7, 7, 5,

4, 8, 7, 9]. Then their circular convolution f∗g = [4, 7, 6, 4.5, 6, 7.5, 8, 5]. It can be seen that the

new signal is made of the pairwise averages of the original signal, and it has effectively been

smoothed.

3.2.2 Algorithm

For a wavelet transform, two filters are required – a low-pass filter, which constructs the low

frequency component, and a high-pass filter, which constructs the high-frequency component [25].

These filters are chosen such that the original signal can later be reconstructed from a combination

of the low and high frequency components. This is known as an inverse transform and it requires

two reconstruction filters – one which reconstructs the even-indexed samples, the other which

reconstructs the odd-indexed samples.

Perhaps the simplest filter bank is the Haar filter bank. The non-normalized low-pass filter is [1, 1],

and the non-normalized high-pass filter is [1, -1] [25]. It can be seen that these filters correspond to

the sums and differences of the signal, respectively. To show a worked example, using the signal [1,

7, 7, 5, 4, 8, 7, 9], the circular convolution with the low-pass filter gives [8, 14, 12, 9, 12, 15, 16,

10], and the circular convolution with the high-pass filter gives [-6, 0, 2, 1, -4, 1, -2, 8]. As will be

shown, all odd-indexed values can be discarded, leaving [8, 12, 12, 16] and [-6, 2, -4, -2].

Normalizing these filters by a factor of 0.5 gives the averages and half-differences instead – [4, 6, 6,

8] for the low frequency and [-3, 1, -2, -1] for the high frequency signals. It can now be seen that,

for a pair of values, if the average and half-difference are saved, then the original pair can be

recovered. For the first value of the pair, the average and the half-difference have to be summed,

and for the second value, the half-difference has to be subtracted from the average. This gives us the

reconstruction filters [1, 1] and [1, -1]. It is mostly a coincidence that they coincide with the low-

and high-pass filters. For this simple example, it can be worked out by hand that using the described

procedure indeed gives back the original signal. For longer filters, however, it would be simpler to

define this operation as convolution. First, the low and high frequency signals must be interleaved,

giving [4, -3, 6, 1, 6, -2, 8, -1]. This signal is convolved with each filter, and the odd-indexed values

16

are again discarded, leaving [1, 7, 4, 7] and [7, 5, 8, 9]. Interleaving these gives back the original

signal. The same algorithm can be used for longer filters as well.

Another benefit of the DWT is that the resulting low frequency signal resembles the original signal.

This means the DWT can be applied to the low frequency component multiple times at different

levels, each time obtaining the high frequency component of that level and an even lower frequency

component. Figure 5 illustrates this decomposition and reconstruction process. Wφ[J - n, k] are the

low frequency wavelet coefficients which correspond to the n-th decomposition level. At each

decomposition level, the low- and high-pass filters H0 and H1 produce higher level low and high

frequency representation of the current level low frequency coefficients. Both signals are then

downsampled, indicated by the down arrow, removing every other value. The high frequency

coefficients of the n-th decomposition level are saved as Wψ[J - n, k], while the low frequency

component can be filtered further. The process can be inverted from the final low and high

frequency wavelet coefficients by using the reconstruction filters G0 and G1. The highest level low

and high frequency signals are upsampled, indicated by the up arrow, by adding zeroes for every

other value, filtered with the corresponding reconstruction filters, then added together to get the one

level lower low frequency signal. The process is repeated with the reconstructed signal and the next

high frequency signal until the original image is reconstructed.

Figure 5: Signal decomposition and reconstruction with wavelets [26].

This multi-level decomposition is a useful step because it enables applying different amounts of

denoising and compression to different levels. By its nature, noise occurs primarily in the high

frequency component, so it makes sense to apply stronger denoising to that component. Further, as

images are largely comprised of smooth gradients or flat areas of color with relatively few details

such as edges, the low frequency components carry more useful information. For this reason, it is

17

not as harmful to the quality of an image if information is lost from the high frequency components

due to denoising or compression in comparison to losing information from the low frequency

components.

3.2.3 Extension to Images

Images can be viewed as two-dimensional discrete signals. They have a value (color intensity) at

every pixel for each color component (channel) they are made of. Because the wavelet transform

filters are separable, no special considerations have to be made for using wavelet transforms on

two-dimensional signals in comparison to one-dimensional signals. The transform is first applied on

either the rows or columns, and then applied in the other dimension. As follows from the

separability of the filters, this is equivalent to convolution with a two-dimensional filter that is the

product of the corresponding one-dimensional filter and its transpose.

Figure 6: One level of wavelet transform on a picture of a raccoon [27].

Figure 6 shows a visual representation of the DWT of an image. The low frequency component is in

the top left corner, and the high frequency components are on the right side and the bottom. This is

not an entirely accurate representation of the underlying data. Most values of the high frequency

components are either too low to be visible, or negative and could not be shown on an image at all.

To overcome this, they are shown as absolute values, and their intensity has been increased for

better visibility. Additionally, it is not necessary to fit all the components in one image, and the

18

neighboring pixels on the edges of two components are not next to each other in a mathematical

sense. However, this representation is convenient as it shows that after the transform, all the

components take up as much space together as the original image, and it is intuitive which

component is which, based on their location in the image. As is also illustrated in Figure 7, on the

right side are the horizontal high frequency components, on the left are the horizontal low frequency

components, while the bottom has vertical high frequency components, and the top has vertical low

frequency components. Figure 7 also shows how the low frequency component can be further

decomposed. The symbols show the name of the component, with the first letter showing the

horizontal frequency, the second letter showing the vertical frequency, and the number showing

which level of the transform they belong to. For example HL2 is the horizontal high frequency,

vertical low frequency component of the level 2 transform.

Figure 7: Three levels of wavelet transform on a picture of a raccoon [27].

It can be seen that high frequency components contain less information of the image. This includes

the lower level high frequency components in comparison to the higher level high frequency

components, because higher level components are derived from a lower frequency signal than the

lower level components. As such, the HH1 component carries the least useful information about the

image overall. These are important things to note for denoising with thresholding.

19

3.3 Thresholding

The idea behind thresholding is that for the high frequency components of a signal, most important

features have a high intensity (large absolute value) in the samples that contain them, and that they

are sparse, meaning that most samples do not contain important information [29]. This can be seen

on Figures 6 and 7. Conversely, a low to moderate amount of noise has a lower intensity than the

important features, and it is present in most samples. Removing the samples that have a low

intensity while keeping ones with a high intensity should thus work as an effective method of

denoising [29]. This process is known as thresholding, and the intensity below which samples

should be removed is the threshold. Different forms of thresholding have been shown to be highly

effective at removing additive Gaussian noise [18] and are expected to work on Poisson noise.

However, thresholding is not expected to be an effective method for removing impulse nor speckle

noise, as neither conforms to the properties of noise described – they can be both high intensity and

sparse.

Thresholding defines that values below the chosen threshold are removed (set to zero). It does not

define what is done with values above the chosen threshold. For this, two approaches are common:

hard and soft thresholding [18]. Hard thresholding leaves values above the threshold as they were,

while soft thresholding brings values above the threshold closer to zero by the threshold amount.

Hard thresholding leaves discontinuities in the denoised images because all high frequency values

between zero and the threshold have been removed. These can be large and visually unpleasant if

the image is particularly noisy. On the other hand, soft thresholding may overly smooth an image,

as all large values are brought closer to zero, lowering the intensity of details and edges. This thesis

also tests a third type of thresholding thought up by the author, which has no discontinuities and

which lowers the intensities of large values less. More precisely, it interpolates values above the

threshold to be between zero and the maximum value. It is inspired by both hard and soft

thresholding and will be referred to as moderate thresholding. The functions for hard, soft, and

moderate thresholding are given in (5), (6), and (7), respectively, where T is the threshold

parameter, and the visual representations of these functions can be seen in Figure 8.

h(x)={0, if |x|<T
x , otherwise

(5)

s (x)={x−T , if x>T
x+T , if x<−T
0, otherwise

(6)

20

m(x)={
x−T

1− T
255

, if x>T

x+T

1− T
255

, if x<−T

0, otherwise

(7)

Figure 8: The effect of the hard, soft, and moderate thresholding functions on the

value of a pixel, at a threshold of T=128.

Thresholding is a very simple yet effective technique when using optimally chosen thresholds, but it

does not include an inherent way to find these optimal thresholds. Over time, more complicated and

more successful methods have been developed. The simplest option of having a single prechosen

value for the threshold does not perform adequately mainly because the amount of noise differs

from image to image. A more complicated method, such as VisuShrink [30] picks the threshold by

estimating the amount of noise on the image. However, its performance is still unsatisfactory, as this

threshold is the same for each frequency component, while they may carry different amounts of

noise. SureShrink [31] adapts for this by considering each frequency component separately. Finally,

21

BayesShrink, the modified version of which is implemented in this thesis, has been shown to yield

even better results and finding thresholding values that are close to the optimal [18].

The original formula for the threshold estimated by BayesShrink [18] is defined per high frequency

component as the estimated noise variance over the signal standard deviation.

T B=
σ noise

2

σ signal
(8)

The noise variance in (8) is estimated from the median of all samples in the highest frequency

component.

σ noise=
median(|Y ij|)

0.6745
, Y ij∈component HH1 (9)

The standard deviation of the signal in (8) is found for each high frequency component separately as

σ signal=√max(σ Y
2−σ noise

2 ,0) (10)

where σ Y
2 is the variance of all values Y ij for that high frequency component Y. Because the

filter coefficients of the high-pass filter producing the high frequency component have a mean of 0,

each high frequency component Y also has a mean of 0. This allows the simplification of finding the

variance of σ Y
2 as

σ Y
2= 1
nm

∑
i=1

n

∑
j=1

m

Y ij
2

As a more intuitive explanation, it can be seen from (10) that the original signal is roughly

estimated to be the current signal, from which the noise is subtracted. This corresponds to an

additive noise model, such as Gaussian noise, and the subtraction of noise is analogous to soft

thresholding. Because of this, the method is expected to perform better removing Gaussian noise

using soft thresholding than removing other types of noise or using other types of thresholding.

Experimental results in Chapter 5 show that the original BayesShrink formula is often too

aggressive in removing noise. In addition to noise, important details are also removed. As such, a

modification to the formula (9), which is used to estimate the standard deviation of noise, has been

made by the author. As seen in formula (11), the median is multiplied by k instead, which acts as a

parameter that controls the amount of noise removed. Lowering k removes less noise, but also keeps

22

more details. In the case of a user-controlled application, the user could choose the value of k

themselves, to get the result that subjectively looks best to them. The objective results of using

different values of k are given in Chapter 5, and a default value for automatic use is suggested. A

value of 1.5 is roughly equivalent to the original formula.

σ noise=k⋅median(|Y ij|), Y ij∈componentHH1 (11)

An example of what noise looks like in the wavelet domain, and how thresholding removes it can

be seen in Figure 9.

Figure 9: Example of noise and thresholding in the wavelet domain [27].

After thresholding, the inverse DWT and color space conversion are performed, giving back the

original image with noise removed from it. Alternatively, the image can be quantized, then encoded

in its current state and saved to a file, which acts as a form of lossy compression. The inverse DWT

and color space conversion would then be performed each time the image is loaded from its

compressed state for viewing.

23

3.4 Compression

A wavelet transform localizes the energy of an image into fewer areas. In other words, a lot of the

pixels have a value that is close to zero, while the important information is kept in the smaller low

frequency component and the sparsely occurring high value pixels in the high frequency

components, as seen in Figures 6 and 7. This localization of energy is useful for compression. For

example, the JPEG2000 standard uses a wavelet transform and quantization to reduce the entropy of

images [32].

Quantization is the process of rounding values to a multiple of some quantization step. The larger

the step size, the more the value deviates from its original value, and as such, the more quality is

lost. However, a larger step size also means that there will be fewer distinct values, which reduces

the entropy, as seen in formula (12). Therefore, the amount of quantization is the adjustable

parameter which controls the balance of quality and compression. Some step sizes are not

inherently better than others. Instead, the choice should depend on how much quality is valued in

comparison to compression in a specific use case.

While implementing the encoding procedure necessary for proper compression is outside the scope

of this thesis, it is possible to estimate the compression amount using first-order entropy [33],

defined as

H (X)=−∑
i=1

n

P(x i) log2P(x i) (12)

where X is a discrete random variable with possible values of x1, x2, …, xn and the probability of xi

occurring is P(xi). The variable X, and the entropy calculated from it, is found separately for each

frequency and color component, and the possible values x1 to xn are the possible different values of

individual pixels, with n being the amount of different values. The entropy H(X) is the minimal

average amount of bits that is required to represent each pixel in the corresponding component, and

thus the minimal amount of bits required to represent an entire component is the amount of pixels in

that component, multiplied by its entropy. The final compressed size of the image would then be

sum of the bits needed for representation of all of its components. As a comparison, each pixel takes

8 bits per color channel uncompressed. The compression ratio can be estimated by dividing the

uncompressed size (original image size multiplied by the bits per pixel) by the estimated

compressed size.

24

It should, however, be noted that this model of entropy assumes no correlation between the values

of individual pixels. For images, it is clear that there is generally a very high correlation between

neighboring pixels. This correlation is reduced, but not removed, by the wavelet transform. Due to

this correlation, encoding techniques used in practice can achieve a significantly lower entropy and

file size than is the lowest bound estimated by first-order entropy.

25

4. Implementation Details

As an implementation of the described denoising procedure, a program was created in C#. This

chapter describes the different parts of the program, provides pseudocode examples, and gives

examples of running speed, complexity, and parallelizability. For the most part, the programmatic

implementation is the same as the mathematical description in the theory chapter. The program

serves as a proof-of-concept and is not designed to be consumer-friendly. For the full source code

and compiled executables of the program and associated tools created as part of this thesis, see

Appendix I.

4.1 Parameters

The program takes several parameters as arguments to control how denoising is performed. The

first, mandatory parameter is the path to the image to be denoised. The program can open most

common image formats, including JPEG, PNG, and BMP.

The second parameter is the amount of decomposition steps, or in other words, the wavelet

transform level. It can be any positive integer, but values of 2-4 are recommended. Higher values do

not necessarily yield better results.

The third parameter is the thresholding multiplier, or k, in formula (11). This can be any floating

point value, but values in the range 0.5-2.0 are recommended. Higher values remove more noise,

but also more detail. The amount of noise on an image does, however, not correlate with the ideal

value for the multiplier. For best results, various values should be tested, but a value of 1.0

generally gives good results. Alternatively, a value of 0 skips the denoising step.

The fourth parameter is the quantization step size. It can be any positive floating point value, with

higher values offering more compression, but also preserving less quality. Values around 1-64 are

reasonable. Alternatively, a value of 0 skips the quantization and compression calculation steps.

4.2 Color Space Conversion

Color space conversion is the first, the last, and the simplest step. After loading the image into

memory, each pixel of the input image is iterated through and converted from RGB to YCbCr

according to (1). Similarly, after denoising, each pixel of the denoised image is iterated through and

converted from YCbCr to RGB according to (2). These processes are separate for each pixel and take

26

a constant amount of time per pixel. This makes the color space conversion easily parallelizable,

and it runs in linear time.

4.3 Discrete Wavelet Transform

The DWT has the most differing implementation from the process described in the theory chapter.

This is because a lot of efficiency would be wasted performing a full convolution on the image, then

discarding half the samples in both dimensions. Instead, only every other output pixel is computed

in both dimensions, thus increasing the speed by roughly a factor of 2. The following is simplified

pseudocode which performs multiple levels of the DWT.

DWT(float[] image, int width, int height, int stride, float[] lowPassFilter,

 float[] highPassFilter)

 float[] intermediateImage = new float[image.length]

 //Filter the image horizontally

 for (int y from 0 to height)

 for (int x from 0 to width / 2)

 int targetIndex = y * stride + x

 float lowPass, highPass = 0, 0

 for (int i from 0 to lowPassFilter.length)

 float source = image[targetIndex + x + i]

 lowPass += source * lowPassFilter[i]

 highPass += source * highPassFilter[i]

 intermediateImage[targetIndex] = lowPass

 intermediateImage[targetIndex + width / 2] = highPass

 //Filter the image vertically

 for (int y from 0 to height / 2)

 for (int x from 0 to width)

 int targetIndex = y * stride + x

 float lowPass, highPass = 0, 0

 for (int i from 0 to lowPassFilter.length)

 float source = intermediateImage[targetIndex + (y + i) * stride]

 lowPass += source * lowPassFilter[i]

 highPass += source * highPassFilter[i]

 image[targetIndex] = lowPass

 image[targetIndex + height / 2 * stride] = highPass

int newWidth, newHeight = width, height //Image width and height

for (int i from 0 to level) //One loop for each level of decomposition

 for (float[] channel in image) //Process each color channel separately

27

 DWT(channel, newWidth, newHeight, width, [0.2, 0.6, 0.3, -0.1],

 [0.1, 0.3, -0.6, 0.2])

 newWidth /= 2 //Reduce the width and height of the area

 newHeight /= 2 //processed by the DWT by half for each level

The low- and high-pass filters passed to the DWT function, as well as the reconstruction filters used

in the inverse DWT are the same as the ones used for the so-called orthogonal wavelets in Chapter

5. They have been normalized so that the low-pass filter coefficients sum up to 1. This is to keep the

average intensity of the low frequency component, and by extension, the high frequency

components derived from it, constant through all levels of decomposition. The inverse DWT

function that is applied after denoising is similar to the DWT, except the indexes are different and

reconstruction filters are used instead of the low- and high-pass filters.

IDWT(float[] image, int width, int height, int stride, float[] reconstruction1,

 float[] reconstruction2)

 float[] intermediateImage = new float[image.length]

 //Filter the image horizontally

 for (int y from 0 to height * 2)

 for (int x from 0 to width)

 int sourceIndex = y * stride + x

 float target1, target2 = 0, 0

 for (int i from 0 to reconstruction1.length)

 float source = image[sourceIndex + (i % 2 == 0 ? 0 : width) + i / 2 – 1]

 target1 += source * reconstruction1[i]

 target2 += source * reconstruction2[i]

 intermediateImage[sourceIndex + x] = target1

 intermediateImage[sourceIndex + x + 1] = target2

 //Filter the image vertically

 for (int y from 0 to height)

 for (int x from 0 to width * 2)

 int sourceIndex = y * stride + x

 float target1, target2 = 0, 0

 for (int i from 0 to reconstruction1.length)

 float source = image[sourceIndex + ((i % 2 == 0 ? 0 : height) + i / 2 –

 1) * stride]

 target1 += source * reconstruction1[i]

 target2 += source * reconstruction2[i]

 image[sourceIndex + y * stride] = target1

 image[sourceIndex + (y + 1) * stride] = target2

28

for (int i from 0 to level) //One loop for each level of decomposition

 for (float[] channel in image) //Process each color channel separately

 IDWT(channel, newWidth, newHeight, width, [0.6, -1.2, 0.4, 0.2],

 [-0.2, 0.4, 1.2, 0.6])

 newWidth *= 2 //Increase the width and height of the area

 newHeight *= 2 //processed by the IDWT two times for each level

As can be seen from the pseudocode, both the DWT and the IDWT have linear complexity relative

to the amount of pixels in the image. For each output pixel, the amount of computations is

proportional to the length of the filter, which is constant. The complexity stays linear when applying

multiple levels of the transform, since the amount of pixels that need to be processed is reduced by

a factor of 4 for every level, making it a converging geometric series. Further, since the value of

every output pixel is not dependent on the value of any other output pixel, both of these functions

are also easily parallelizable by processing each output pixel separately.

4.4 Thresholding

The main difficulty in thresholding is finding the threshold for each high frequency component.

This consists of two steps. First, the noise variance is estimated from the HH1 component by

computing its median value using QuickSelect, then the threshold is found for each high frequency

component using that component’s variance. The following is the pseudocode for both of these

processes.

float FindMedian(float[] values)

 int lastLength, medianIndex = 0, list.length / 2

 //Iterate until only 1 value is left or all the remaining values are equal

 while (values.length > 1 && lastLength != values.length)

 float pivot = values[0]

 List<float> smaller, larger = new List<float>(), new List<float>()

 lastLength = values.length

 for (float value in values)

 if (value <= pivot) smaller.Add(value) else larger.Add(value)

 if (medianIndex < smaller.length)

 values = smaller.array

 else

 medianIndex -= smaller.length

 values = larger.array

 return list[0]

29

Because the median is used to estimate the variance of the noise, the sign of the values is not

important, only the amplitude is. Therefore, the list of values passed to the FindMedian function

should be the absolute values of the HH1 component. The function works in linear time on average

because the array of values it looks through decreases in size by a factor of 2 on average after each

iteration, which is a converging geometric series. QuickSelect is not as easily parallelizable, and

was not implemented as such in this thesis, but parallel implementations exist [34].

Threshold(float[] image, int x1, int y1, int x2, int y2, int stride,

 float noise, int level, Func threshFunc)

 //Compute the variance

 float variance = 0

 for (int y from y1 to y2)

 for (int x from x1 to x2)

 variance += (2^(level - 1) * image[y * stride + x])^2

 variance /= (x2 – x1) * (y2 – y1)

 //Compute the threshold from the variance

 float threshold = noise / Sqrt(Max(variance – noise, 0))

 //Threshold each pixel in the component

 for (int y from y1 to y2)

 for (int x from x1 to x2)

 int i = y * stride + x

 image[i] = threshFunc(image[i], threshold)

for (float[] channel in image) //Process each color channel separately

 float noise = (k * FindMedian(Abs(HH1)))^2

 //Get information about all high frequency components in a channel and process

 //each one separately according to their bounds and transform level

 for (Component comp in GetComponents(channel, width, height, level))

 Threshold(channel, comp.left, comp.top, comp.right, comp.bottom, width,

 noise, comp.level, (x, t) => (Abs(x) > t) ? (x – Sign(x) * t) : 0)

Finding the values of the HH1 component, as well as the component bounds and which

decomposition level they are a part of has been heavily simplified in this example. The thresholding

function thresholds the region specified by the bounds in-place and pixel-by-pixel. It can be passed

another function, which takes into account the original value of the pixel and the threshold, to

determine the new value. Because the filters have been normalized, effectively reducing the

amplitude of the resulting wavelet coefficients by a factor of 2 for each decomposition level of the

30

transform, the values of the pixels have to be multiplied by 2level-1 for the purposes of calculating

their variance, in order to avoid denoising the higher levels too aggressively.

The variance calculation and the thresholding both have linear complexity, because each pixel is

iterated over once – the components do not overlap and use no more pixels than the original image,

regardless of how many of them there are. The thresholding is easily parallelizable because each

pixel is processed separately. The parallelization of the variance calculation was not implemented in

this thesis, but parallel implementations exist [35].

4.5 Compression

A typical algorithm for lossy image compression consists of two parts. First, some of the

information is lost in favor of a simplified representation of the data through quantization. Secondly,

the quantized data is encoded by a variable length lossless encoder into a representation that takes

less bytes than the original data, which is the step that performs the actual compression. Upon

requesting to view the compressed image, it is then decoded. The encoding and decoding

procedures are quite complicated in the case of an effective solution, and are as such outside the

scope of this thesis. However, due to the lossless nature of these steps, the effect of compression on

the quality of the image can be shown by simply quantizing each component. Further, since

quantization reduces the total amount of different values in the image, it also lowers its entropy,

which is used to give some estimate of possible compression. The following is pseudocode for both

quantization and entropy calculation.

Quantize(float[] image, int x1, int y1, int x2, int y2, int stride, float step)

 for (int y from y1 to y2)

 for (int x from x1 to x2)

 int i = y * stride + x

 image[i] = Round(image[i] / step) * step

for (float[] channel in image) //Process each color channel separately

 //Get information about all components in a channel and process

 //each one separately according to their bounds and transform level

 for (Component comp in GetComponents(channel, width, height, level))

 Quantize(channel, comp.left, comp.top, comp.right, comp.bottom, width,

 stepSize / 2^(comp.level – 1))

Similarly to thresholding, the process of getting the component bounds and decomposition levels is

heavily simplified in these examples. The quantization step size is decreased by a factor of 2 each

31

level to prioritize quality in the higher level components, which carry more important information.

It is mostly a coincidence that this factor coincides with how much the amplitudes of the values

have been decreased by the normalized filter coefficients. Some other quantization scheme can also

be used.

If quantization would always be applied, it could be done in the same pass as thresholding,

immediately after it, to save one iteration through the entire image. Because it follows a nearly

identical process, it can be seen that it also has linear complexity and is easily parallelizable.

float CompressedSize(float[] image, int x1, int y1, int x2, int y2, int stride)

 occurances = new Dictionary<float, int>()

 for (int y from y1 to y2)

 for (int x from x1 to x2)

 occurances[image[y * stride + x]] += 1

 float size = 0

 for (int value in occurances)

 size -= value * Log2(value / (x2 – x1) / (y2 – y1))

 return size

float size = 0

for (float[] channel in image) //Process each color channel separately

 //Get information about all components in a channel and process

 //each one separately according to their bounds

 for (Component comp in GetComponents(channel, width, height, level))

 size += CompressedSize(channel, comp.left, comp.top, comp.right,

 comp.bottom, width)

float compressionRatio = width * height * 24 / size //24 bits per pixel

This estimation of entropy gives both the estimated final file size and the compression ratio. The

latter showing how many times the compressed file is smaller than its uncompressed counterpart.

The speed and other performance-related qualities of estimating entropy are not important, as it is

not a part of the denoising nor compression procedure.

4.6 Performance

One of the design goals of the program was an optimized running time. Every part of the program,

and therefore the program as a whole runs in O(n), where n is the amount of pixels in the image

being processed. Additionally, every part of the program that runs in linear time can be parallelized,

reducing the running time by roughly a factor of the number of processing units available. Table 1

32

gives examples of running times of various parts of the program, as well as the running time of the

program as a whole, excluding the quantization step. The tests were done on an i5-7600K CPU at

3.8GHz using a 2160 by 1440 pixel image and averaged over 10 runs.

Table 1: Average running times of various parts of the program in milliseconds.

RGB →

YCbCr

DWT,

length 2

filter

DWT,

length 4

filter

Median
Thres-

hold
Quantize

IDWT,

length 2

filter

IDWT,

length 4

filter

YCbCr

→ RGB

Total,

short

filter

Total,

long

filter

17.7ms 27.6ms 55.6ms 50.8ms 74.6ms 62.0ms 44.7ms 62.0ms 18.6ms 234ms 279ms

The results show that wavelet-based thresholding methods are fast and can be used to perform real-

time image denoising. This can make the method usable in imaging devices for denoising the

images right after they are taken, and for showing the user an already denoised image.

33

5. Denoising and Compression Results

For the purposes of testing, various images were corrupted with different types of noise and

denoised using different parameters. This chapter highlights some of the more significant results,

compares them with the results given by simpler methods, and gives a suggestion of which

parameters are best to use. This chapter also reports the amount of compression possible using

different quantization steps, and how much quality is lost using them.

5.1 Test Description

Eight different original images are used for testing, each corrupted with 4 different types of noise –

Gaussian, impulse, speckle, and Poisson – of 4 different intensities for a total of 128 noisy images.

Each noisy image is denoised with the program with 20 different noise intensity estimation

parameter values, from 0.1 to 2.0, 2 different types of wavelets, and hard, moderate, and soft

thresholding functions, for a total of 120 different results on a single image, and 15360 results

overall. For a full list of these results, see Appendix II. The denoising performance of simple 3×3

mean and median filters is also shown. Two popular free software, Paint.NET [37] and FastStone

Image Viewer [38], that have noise removal as part of their functionality were tested as well, but

their objective performance did not exceed that of even the mean filter, so they have been excluded

from the results.

The images used for testing range in size from 1920 by 1080 pixels to 2160 by 1440 pixels, and are

downscaled from larger high quality images so that they have no visible noise left on them that

might have a negative effect on the test results. A few of the images used can be seen in Figure 10.

Each image is decomposed using four levels of wavelet transform, and has no quantization applied.

Figure 10: Original noise-free images used for testing. From left to right: Raccoon [27], Oranges

[38], River [39].

34

Each result is compared to the corresponding original image using two objective quality metrics

with the best results marked in bold. The first, located higher in each cell in the tables of results is

the peak signal-to-noise ratio (PSNR). PSNR is a simple quality metric based on the mean square

error on a logarithmic scale, defined as

10 log10(2552

MSE(a ,b))
where 255 is the maximum pixel value (peak signal), and MSE is the mean square error (noise) of

the pixel values between images a and b.

The second quality metric is the structural similarity (SSIM) index, designed to better correlate with

human perception of image quality [36], because PSNR overvalues the quality of, for example,

overly smoothed images. This can be seen in the relatively high PSNR results of the mean filter in

the following comparisons. It is also the reason why SSIM results are favored in deciding which

parameters produce good results.

The following subchapters show the results of denoising the Raccoon image corrupted with 4

different types of noise, at 4 increasing intensities. For each noisy image, the performance of the

median and mean filters is shown, as well as the performance of the original BayesShrink, which

uses soft thresholding. The choice of k = 1 and soft thresholding for the modified BayesShrink as

the recommended default values is explained after the results. Finally, the best result from all the

test data in terms of SSIM is also given. Manually adjusting k for optimal perceived quality when

denoising would probably yield a result close to this near-optimal. An additional table featuring a

different test image is provided for Gaussian and Poisson noise, as the results of the program on

those types of noise is more interesting. For each type of noise, subsections of the images

corresponding to the second row of one of the tables are also shown, for the purpose of visual

comparison.

35

5.2 Gaussian Noise

Figure 11: Quality comparison of various denoising methods on the Raccoon image. The images are

row-by-row as follows: Original corrupted by Gaussian noise, σ=20. 3×3 mean filtered. 3×3 median

filtered. Original BayesShrink, orthogonal wavelet, soft thresholding. BayesShrink, k=1.0,

orthogonal wavelet, soft thresholding. BayesShrink, k=0.7, orthogonal wavelet, moderate

thresholding.

36

Table 2: PSNR and SSIM values of various denoising results on the Raccoon image corrupted with

Gaussian noise, σ = 10, 20, 30, 40.

σ
Noisy

Original

Mean

Filter

Median

Filter

Original

BayesShrink

BayesShrink

k=1.0

BayesShrink

Best SSIM

10
28.17

72.32%

32.31

89.29%

31.88

87.70%

33.12

91.25%

33.67

85.85%

33.62

91.51%

20
22.21

44.76%

29.58

79.31%

28.42

74.19%

26.58

73.47%

27.16

78.83%

26.41

85.16%

30
18.78

30.22%

27.12

68.06%

25.66

60.67%

25.32

69.07%

26.31

72.60%

28.53

79.44%

40
16.42

22.01%

25.13

57.95%

23.48

49.40%

24.81

67.66%

25.35

69.37%

23.56

75.74%

Table 3: PSNR and SSIM values of various denoising results on the Oranges image corrupted with

Gaussian noise, σ = 10, 20, 30, 40.

σ
Noisy

Original

Mean

Filter

Median

Filter

Original

BayesShrink

BayesShrink

k=1.0

BayesShrink

Best SSIM

10
29.03

67.88%

36.49

91.62%

35.53

90.32%

33.05

89.63%

35.36

92.26%

36.91

92.91%

20
23.55

38.96%

31.14

78.76%

30.40

74.84%

29.52

80.45%

30.75

83.96%

31.48

85.67%

30
20.36

24.29%

27.58

65.74%

27.28

60.11%

27.20

73.36%

28.14

76.94%

28.12

78.52%

40
18.10

16.46%

24.97

54.53%

25.06

48.35%

25.65

69.59%

26.04

66.78%

26.35

72.85%

Table 2 and Table 3 show that for Gaussian noise for both the Raccoon and Oranges images, the

default modified BayesShrink usually produces better results than both the original BayesShrink

and the median and mean filters, sometimes significantly. The optimal choice further improves on

this, always producing the best results, sometimes marginally, sometimes significantly. Figure 11

shows that median and mean filtering are unable to remove all the noise while the original

BayesShrink removes the noise, but also far too much detail. The default modified BayesShrink

37

also removes all the noise, keeping significantly more but still too little detail. Finally, the optimal

choice keeps a good amount of detail while still succeeding in removing all the noise.

5.3 Impulse Noise

Figure 12: Quality comparison of various denoising methods on the Raccoon image. The images are

row-by-row as follows: Original corrupted with Impulse noise affecting 5% of the pixels at random.

3×3 mean filtered. 3×3 median filtered. Original BayesShrink, orthogonal wavelet, soft

38

thresholding. BayesShrink, k=1.0, orthogonal wavelet, soft thresholding. BayesShrink, k=2.0,

orthogonal wavelet, soft thresholding.

Table 4: PSNR and SSIM values of various denoising results on the Raccoon image corrupted with

impulse noise affecting 2.5, 5, 10, or 20 percent of the pixels at random.

%
Noisy

Original

Mean

Filter

Median

Filter

Original

BayesShrink

BayesShrink

k=1.0

BayesShrink

Best SSIM

2.5
25.02

66.58%

30.97

86.23%

34.35

94.25%

27.37

70.20%

26.05

68.32%

27.58

82.79%

5
21.97

49.81%

29.07

80.04%

34.13

94.15%

24.52

65.78%

23.15

56.58%

26.01

82.07%

10
18.97

33.88%

26.49

70.37%

33.61

93.83%

25.75

69.63%

22.62

45.17%

27.18

78.68%

20
15.96

21.06%

23.18

57.06%

31.60

91.23%

23.72

70.53%

20.94

45.84%

22.97

74.01%

Table 4 shows that the median filter produces significantly better results on impulse noise than any

other method, restoring even heavily noisy images to a good state. Figure 12 shows how all other

methods are unable to remove the noise, even if heavily blurring the image, while the median filter

removes the noise and keeps the image relatively sharp. This is expected, as impulse noise usually

has a very high intensity in the wavelet domain, and wavelet-based thresholding is only effective at

removing noise with a lower intensity than the image details.

5.4 Speckle Noise

39

Figure 13: Quality comparison of various denoising methods on the Raccoon image. The images are

row-by-row as follows: Original corrupted with speckle noise affecting 10% of the pixels at

random. 3×3 mean filtered. 3×3 median filtered. Original BayesShrink, orthogonal wavelet, soft

thresholding. BayesShrink, k=1.0, orthogonal wavelet, soft thresholding. BayesShrink, k=2.0,

orthogonal wavelet, soft thresholding.

Table 5: PSNR and SSIM values of various denoising results on the Raccoon image corrupted with

speckle noise affecting 2.5, 10, 20, or 30 percent of the pixels at random.

%
Noisy

Original

Mean

Filter

Median

Filter

Original

BayesShrink

BayesShrink

k=1.0

BayesShrink

Best SSIM

2.5
27.64

72.95%

32.15

88.27%

34.40

94.27%

28.88

78.28%

28.50

75.51%

29.87

83.33%

10
21.65

44.02%

29.21

76.38%

33.93

94.02%

27.39

59.74%

24.96

50.35%

29.25

79.90%

40

20
18.63

31.62%

26.96

65.77%

33.08

93.03%

25.00

68.42%

24.90

70.57%

22.33

77.19%

30
16.87

25.75%

25.44

58.44%

31.59

89.59%

24.77

68.41%

21.16

70.89%

17.92

74.62%

Very similarly to impulse noise, Table 5 shows that the median filter produces significantly better

results on speckle noise than any other method, restoring even heavily noisy images to a good state.

Figure 13 shows how most other methods are unable to remove the noise. Only the optimal

BayesShrink manages to get rid of most of the noise, at the cost of heavily blurring the image. The

median filter both completely removes the noise and keeps the image relatively sharp. A more

specialized median filter would probably do an even better job, and is a more suitable method for

removing high-intensity sparse noise than thresholding.

5.5 Poisson Noise

Table 6: PSNR and SSIM values of various denoising results on the Raccoon image corrupted with

Poisson noise with an average amount of 225, 42, 18, or 8 photons per pixel.

P
Noisy

Original

Mean

Filter

Median

Filter

Original

BayesShrink

BayesShrink

k=1.0

BayesShrink

Best SSIM

225
29.54

75.11%

32.67

89.78%

32.44

88.38%

31.19

88.89%

33.06

89.51%

33.31

91.41%

42
22.43

45.38%

29.71

78.00%

28.53

72.50%

28.24

79.69%

29.86

75.58%

29.74

83.53%

18
19.01

32.34%

27.25

66.68%

25.66

58.83%

27.71

77.96%

25.10

47.55%

28.16

78.32%

8
15.78

22.33%

24.41

53.29%

22.41

43.72%

24.63

67.90%

21.25

69.55%

16.91

73.28%

41

Figure 14: Quality comparison of various denoising methods on the River image. The images are

row-by-row as follows: Original corrupted by Poisson noise, average of 42 photons per pixel. 3×3

mean filtered. 3×3 median filtered. Original BayesShrink, orthogonal wavelet, soft thresholding.

BayesShrink, k=1.0, orthogonal wavelet, soft thresholding. BayesShrink, k=0.7, orthogonal

wavelet, soft thresholding.

Table 7: PSNR and SSIM values of various denoising results on the River image corrupted with

42

Poisson noise with an average amount of 225, 42, 18, or 8 photons per pixel.

P
Noisy

Original

Mean

Filter

Median

Filter

Original

BayesShrink

BayesShrink

k=1.0

BayesShrink

Best SSIM

225
30.03

88.26%

32.24

92.25%

32.30

92.07%

32.36

92.13%

32.29

90.56%

32.20

92.16%

42
23.21

72.59%

29.68

86.75%

28.61

84.09%

24.69

66.20%

26.81

77.13%

27.21

81.73%

18
19.93

61.78%

27.34

81.50%

25.95

77.26%

22.55

58.49%

22.62

69.11%

22.76

74.34%

8
16.75

49.13%

24.38

74.45%

22.91

68.61%

20.75

44.99%

21.31

48.31%

22.82

67.14%

Table 6 shows similar results for Poisson noise as for Gaussian noise. For the Raccoon image, the

default modified BayesShrink usually produces better results than both the original BayesShrink

and the median and mean filters, sometimes significantly. The optimal choice further improves on

this, always producing the best results, sometimes marginally, sometimes significantly. However, as

seen in Table 7, for the River image, the mean filter almost always produces the best results. This is

not inherent to Poisson noise – the mean filter also produces better results for Gaussian noise on the

same image. This is because the River image has very few flat-colored areas and lots of low

intensity details. As can be seen in Figure 14, a high thresholding multiplier removes the noise, but

also too much detail. A low thresholding multiplier removes most of the low intensity details first

before removing most of the higher intensity noise. This produces a better result, but is still not as

good as the mean or even the median filter, which do not remove as much noise, but make up for it

with the lack of removed detail.

5.6 Compression

Compression is most efficient after denoising, as the denoising process has already eliminated a lot

of information, which improves the compression ratio. The following Table 8 shows the effect of

various levels of quantization on quality, as well as how many times smaller the resulting image

would be. A single example of JPEG2000 is also included to show that these estimated results are

reasonable realistically. The images corresponding to the second row of the table can be seen in

Figure 15.

43

Figure 15: Quality comparison of various amounts of quantization on the denoised Raccoon image.

The images are row-by-row as follows: Denoised with no quantization. Step size 8. Step size 16.

Step size 32. Step Size 64. JPEG2000, quality 10.

Table 8: PSNR, SSIM values, and compression ratios of different step sizes on the optimally

denoised Raccoon image corrupted with Gaussian noise, σ = 10, 20, 30, 40.

44

σ
No

Quantization
Step Size 8 Step Size 16 Step Size 32 Step Size 64

JPEG2000,

Quality 10

10

33.62

91.51%

3.28

32.76

89.46%

48.9

31.46

87.42%

85.2

27.96

81.40%

172

23.05

63.84%

675

32.50

90.04%

100

20

26.41

85.16%

3.24

25.86

83.97%

13.0

25.45

82.28%

30.7

27.50

78.01%

179

25.12

70.33%

561

29.02

82.60%

100

30

28.53

79.44%

3.29

28.52

78.26%

79.7

27.24

74.17%

174

27.18

75.07%

293

24.19

68.81%

716

28.74

80.63%

100

40

23.56

75.74%

3.25

23.57

74.46%

17.4

22.99

72.18%

30.4

22.86

67.11%

85.4

24.20

66.79%

675

25.80

73.17%

100

As can be seen from Table 8, the quality of images goes down the more quantization and

compression is applied. However, a compression ratio that is around 10 times better than what can

be achieved on an image with no quantization still produces a result that is almost not

distinguishably worse. This can be seen from Figure 15, where there is little difference between the

top left image with no quantization and the 10 times more compressed middle left image, with a

quantization step size of 16. Increasing the step size to 64 allows the compression ratio to reach

hundreds, but at the significant cost of details and color information.

5.7 Overall Results

Wavelet-based denoising is generally effective on Gaussian and Poisson noise, which both affect all

pixels in an image. However, for cases where the image has many low intensity details and few

areas which are roughly the same color, wavelets can fail to remove noise more effectively than a

mean filter, because they remove too many of the details. For sparse noise, such as impulse and

speckle noise, which only affects some pixels, median filtering is incredibly effective, while

thresholding by nature is incredibly ineffective in removing these high intensity deviations from the

rest of the image.

45

Focusing on Gaussian and Poisson noise, as these are the types of noise wavelet-based thresholding

is effectively capable of removing, the larger tables in Appendix II give an idea what might be an

optimal choice of wavelet, thresholding type, and thresholding multiplier. Haar wavelets almost

always produce worse results than the length 4 orthogonal wavelets. Similarly, hard thresholding

almost always produces worse results than moderate and soft thresholding. Moderate and soft

thresholding have very similar performance, and the marginally better result is sometimes in favor

of one thresholding type, sometimes in the favor of the other. Although, due to the relative

simplicity of soft thresholding in comparison to moderate thresholding, it could be argued that soft

thresholding is the better choice. Finally, the choice of the thresholding multiplier k is the most

difficult. The optimal value for k varies based on the image and how much noise there is, as well as

the wavelet and thresholding type, with no apparent pattern. Manually choosing this value would

increase denoising quality, but a value of 1 generally produces an acceptable result.

46

6. Conclusion

This thesis studied methods for improving the quality of images by removing noise using wavelet

transforms and thresholding. The efficiency of combining wavelet transform based denoising and

compression as a computationally cheap process was explored. A C# implementation was

developed as a proof-of-concept of both the effectiveness and the speed of the method.

The thesis surveyed different types of noise. A short description of various denoising schemes and

their effectiveness at removing different types of noise was presented. A description of each

important step of the denoising process and the motivation behind them was given in Chapter 3,

with a focus on the wavelet transform process. A new thresholding type and a modification to the

BayesShrink method that allows for configuration via a parameter were presented. The

implementations and experimental performance of each of these steps were demonstrated.

Finally, the experimental results of using the developed method with different types of wavelets,

thresholding, and different values of the configurable parameter were shown, and the optimal

choices were highlighted. The effect of compression on the quality of images was analyzed. The

implementation of different compression techniques in the context of denoising is a potential

avenue for future research.

The developed method was shown to successfully remove both Gaussian and Poisson noise. It

could be applicable to real-time image denoising. The proposed thresholding type was shown to be

competitive with previously existing thresholding types, and the modification to BayesShrink

produced better results than the original method.

47

7. References

[1] Pizurica A., Wink A.M., Vansteenkiste E., Philips W., Roerdink B.J. A review of wavelet

denoising in MRI and ultrasound brain imaging. Current medical imaging reviews, 2006,

vol. 2, no. 2, pp. 247-260.

[2] Jansen M. Noise reduction by wavelet thresholding. Springer Science & Business Media.

2012.

[3] Patidar P., Gupta M., Srivastava S., Nagawat A.K. Image de-noising by various filters for

different noise. International journal of computer applications, 2010, vol. 9, no. 4, pp. 45-

50.

[4] Verma R., Ali J. A comparative study of various types of image noise and efficient noise

removal techniques. International journal of advanced research in computer science and

software engineering, 2013, vol. 3, no. 10, pp. 617-622.

[5] Linear Filters. https://www8.cs.umu.se/kurser/TDBD09/VT02/cvbook/

ch08linearfilters.pdf (21.01.2019)

[6] Perona P., Shiota T., Malik J. Anisotropic diffusion. Geometry-driven diffusion in computer

vision. Dordrecht: Springer, 1994, pp. 73-92.

[7] Fisher R., Perkins S., Walker A., Wolfart E. Median filter. 2003.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm (22.01.2019)

[8] Hardie R.C., Barner K.E. Rank conditioned rank selection filters for signal restoration.

IEEE transactions on image processing, 1994, vol. 3, no. 2, pp. 192-206.

[9] Narayanan S.A., Arumugam G., Bijlani K. Trimmed median filters for salt and pepper

noise removal. International journal of emerging trends & technology in computer science,

2013, vol. 2, no. 1, pp. 35-40.

[10] Rao K.R., Yip P. Discrete cosine transform: algorithms, advantages, applications.

Academic press. 2014.

[11] Vasconcelos N. Discrete cosine transform. http://www.svcl.ucsd.edu/courses/ece161c/

handouts/DCT.pdf (24.01.2019)

[12] Pogrebnyak O., Lukin V.V. Wiener discrete cosine transform-based image filtering.

Journal of electronic Imaging, 2012, vol. 21, no. 4.

48

https://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm
http://www.svcl.ucsd.edu/courses/ece161c/handouts/DCT.pdf
http://www.svcl.ucsd.edu/courses/ece161c/handouts/DCT.pdf
https://www8.cs.umu.se/kurser/TDBD09/VT02/cvbook/ch08linearfilters.pdf
https://www8.cs.umu.se/kurser/TDBD09/VT02/cvbook/ch08linearfilters.pdf
https://www8.cs.umu.se/kurser/TDBD09/VT02/cvbook/ch08linearfilters.pdf

[13] Ponomarenko N.N., Lukin V.V., Zelensky A.A., Astola J.T., Egiazarian K.O. Adaptive

DCT-based filtering of images corrupted by spatially correlated noise. Image processing:

algorithms and systems VI, 2008, vol. 6812.

[14] Discrete wavelet transform. https://www.cs.toronto.edu/~mangas/teaching/320/slides/

CSC320L11.pdf (24.01.2019)

[15] Mohideen S.K., Perumal S.A., Sathik M.M. Image de-noising using discrete wavelet

transform. International journal of computer science and network security, 2008, vol. 8,

no. 1, pp. 213-216.

[16] Heil C.E., Walnut D.F. Continuous and discrete wavelet transforms. SIAM review, 1989,

vol. 31, no. 4, pp. 628-666.

[17] Graps A. An introduction to wavelets. IEEE computational science and engineering, 1995,

vol. 2, no. 2, pp. 50-61.

[18] Chang S.G., Yu B., Vetterli M. Adaptive wavelet thresholding for image denoising and

compression. IEEE transactions on image processing, 2000, vol. 9, no. 9, pp. 1532-1546.

[19] Kenterlis P., Salonikidis D. Evaluation of wavelet domain methods for image denoising.

1st international scientific conference eRA, 2006.

[20] McHugh S. Understanding digital camera sensors. https://www.cambridgeincolour.com/

tutorials/camera-sensors.htm (20.04.2019)

[21] Vasilyev M. Blue, red and green parrot. 2015. https://unsplash.com/photos/gGC63oug3iY

(20.04.2019)

[22] T. 871: Information technology – digital compression and coding of continuous-tone still

images: JPEG file interchange format (JFIF). ITU-T, 2012. https://www.itu.int/rec/T-REC-

T.871 (21.04.2019)

[23] Mallat S.G. A theory for multiresolution signal decomposition: the wavelet representation.

IEEE transactions on pattern analysis & machine intelligence, 1989, vol. 2, no. 7, pp. 674-

693.

[24] Bocharova I. Compression for multimedia. Cambridge University Press. 2010.

[25] Lin H.Y. An introduction to wavelets. 2013.

[26] Damelin S.B., Miller W. The mathematics of signal processing. Cambridge University

Press. 2012.

49

https://www.itu.int/rec/T-REC-T.871
https://www.itu.int/rec/T-REC-T.871
https://www.cs.toronto.edu/~mangas/teaching/320/slides/CSC320L11.pdf
https://www.cambridgeincolour.com/tutorials/camera-sensors.htm
https://www.cs.toronto.edu/~mangas/teaching/320/slides/CSC320L11.pdf
https://www.cambridgeincolour.com/tutorials/camera-sensors.htm
https://www.cambridgeincolour.com/tutorials/camera-sensors.htm
https://unsplash.com/photos/gGC63oug3iY

[27] Wang R. 2008. http://fourier.eng.hmc.edu/e161/lectures/wavelets/node7.html (25.04.2019)

[28] Bendig G. Raccoon walking on lawn grass. 2017.

https://unsplash.com/photos/6GMq7AGxNbE (25.04.2019)

[29] Fletcher A.K., Goyal V.K., Ramchandran K. Iterative projective wavelet methods for

denoising. Wavelets: applications in signal and image processing X, 2003, vol. 5207, pp.

9-16.

[30] Donoho D.L., Johnstone I.M. Ideal spatial adaption by wavelet shrinkage. Biometrika,

1994, vol. 81, no. 3, pp. 425-455.

[31] Donoho D.L., Johnstone I.M. Adapting to unknown smoothness via wavelet shrinkage.

Journal of the american statistical association, 1995, vol. 90, no. 432, pp. 1200-1224.

[32] T. 800: Information technology – JPEG 2000 image coding system: Core coding system.

ITU-T, 2015. https://www.itu.int/rec/T-REC-T.800 (05.05.2019)

[33] Borda M. Fundamentals in information theory and coding. Springer Science & Business

Media. 2011.

[34] Zadeh R., Santucci A. Distributed algorithms and optimization. 2017. https://stanford.edu/

~rezab/dao/notes/lecture04/cme323_lec4.pdf (06.05.2019)

[35] Chan T.F., Golub G.H., LeVeque R.J. Updating formulae and a pairwise algorithm for

computing sample variances. COMPSTAT 1982 5th symposium held at Toulouse, 1982, pp.

30-41.

[36] Wang Z., Simoncelli E.P., Bovik A.C. Multi-scale structural similarity for image quality

assessment. The thrity-seventh asilomar conference on signals, systems & computers,

2003, vol. 2, pp. 1398-1402.

[37] Paint.NET. https://www.getpaint.net/ (04.05.2019)

[38] FastStone Image Viewer. https://www.faststone.org/ (04.05.2019)

[39] Hesry E. Orange tree. 2016. https://unsplash.com/photos/_omuigahLco (07.05.2019)

[40] Postma D. River with gray rocks near mountain covered in snow. 2017.

https://unsplash.com/photos/XqtJY5gTo5k (07.05.2019)

50

http://fourier.eng.hmc.edu/e161/lectures/wavelets/node7.html
https://stanford.edu/~rezab/dao/notes/lecture04/cme323_lec4.pdf
https://stanford.edu/~rezab/dao/notes/lecture04/cme323_lec4.pdf
https://www.itu.int/rec/T-REC-T.800
https://unsplash.com/photos/XqtJY5gTo5k
https://unsplash.com/photos/_omuigahLco
https://www.faststone.org/
https://www.getpaint.net/
https://unsplash.com/photos/6GMq7AGxNbE

Appendix

I. Source code and executables of the created programs

https://github.com/TornOne/CS-Thesis-2019

II. Full list of PSNR and SSIM results of the images denoised with the created program

https://docs.google.com/spreadsheets/d/e/2PACX-1vRQjp5DeS34gn_HdATH-

Tl4nUA1WzAtfs_UzGNi4g7n_7ykYTwcXK10RWkHiBWy4Vx0GoAJaPpetUyC/pubhtml

51

https://docs.google.com/spreadsheets/d/e/2PACX-1vRQjp5DeS34gn_HdATH-Tl4nUA1WzAtfs_UzGNi4g7n_7ykYTwcXK10RWkHiBWy4Vx0GoAJaPpetUyC/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRQjp5DeS34gn_HdATH-Tl4nUA1WzAtfs_UzGNi4g7n_7ykYTwcXK10RWkHiBWy4Vx0GoAJaPpetUyC/pubhtml
https://github.com/TornOne/CS-Thesis-2019

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Ott Adermann,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the
purpose of preservation, including for adding to the DSpace digital archives until the expiry of
the term of copyright,

 Wavelet-based image denoising,

 supervised by Irina Bocharova and Vitaly Skachek.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the public
via the web environment of the University of Tartu, including via the DSpace digital archives,
under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving appropriate
credit to the author, to reproduce, distribute the work and communicate it to the public, and
prohibits the creation of derivative works and any commercial use of the work until the expiry
of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual
property rights or rights arising from the personal data protection legislation.

Ott Adermann

10/05/2019

52

