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Optimization of Model Points

Mudelpunktide optimiseerimine

Magistritöö finantsmatemaatika erialal

Miguel Cuevas Urosa

Lühikokkuvõte

Antud magistritöö eesmärk on uurida, kas mittenegatiivne vähimruutude
meetod on rakendatav mudelpunktide leidmiseks elukindlustuses arvutusaja
kokkuhoidmise eesmärgil. Me lähtume väga suurest reaalsest andmestikust
ja püüame selle jaoks leida mudelpunktid mittenegatiivse vähimruutude mee-
todi abil. Töös on tutvustatud mittenegatiivse vähimruutude meetodit, selle
rakendust elukindlustuspoliiside info kokkusurumisel ja tulemusi.

Võtmesõnad: Mittenegatiivne vähimruutude meetod, mudelpunnktid, elukind-
lustus
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Master Thesis in Financial Mathematics

Miguel Cuevas Urosa

Abstract

The aim of this work is to study the Nonnegative Least Squares Opti-
mization, to investigate if it is possible to reduce the number of model points
in a dataset to save time. We will start with a huge dataset from an insurance
company, we are going to optimize this dataset and reduce the number of
model point without losing significant accuracy. We do this with the Nonneg-
ative Least Squares (NNLS) method. In this thesis, NNLS will be described
briefly, results and conclusions from the NNLS optimization are shown and
discussed.

Keywords: Non-negative least squares, model points, life insurance.
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Optimization of Model Points 1 INTRODUCTION

1 Introduction

Insurance companies use Asset Liability models to calculate their future
cash flows as input for evaluating their solvency position. Insurers have a
portfolio of policies with different attributes and different scenarios that can
happen. To make a calculation of their expected cash flows, they need to
calculate the present value for each scenario or policy combination. These
calculations can spend a big amount of time given computing power. So that
they needed to create more sophisticated techniques to manage this problem.
Multiple options exist to deal with the problem:

• Replicating portfolios

• Software optimization

• Scenario optimization

• Grid technology

• Model Points

We will focus on the model points which are already being used by life insur-
ers and have been based on actuarial knowledge. Calculations of big datasets
can consume a lot of time. We are going to look at a case where the objective
is to go from a deterministic to a random method for evaluate insurances pol-
cies. Consequently, many of the calculations that are being performed in the
computer program Algo Financial Modeler, (AFM), will take longer. AFM
is a modeling system that is being used by actuaries to calculate risks and
value information. In January 2014 a new EU directive came into force.
This directive is called Solvency II and force development of a lot of new
calculations. Solvency II has replaced the old EU directive that existed to
make sure that all the insurance companies have access to replace their pol-
icyholders. Since big datasets are being used as input in AFM, it will take
a long time to perform these random calculations. If the number of model
points as input data is reduced, the datasets size will be short and also the
computation in AFM. It is important that the number of model points stay
as few as possible with big accuracy. The input set is called policy by policy
(P-by-P), and is created by the insurance company, it contains the different
expected values of cash flows for different insurance policies. We will proceed
from P-by-P for creating model points. We want to check if we can reduce
the number of model points from the input dataset. The way that we have
chose to reduce the number of model points in a dataset is through the help
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of a data algorithm, namely Nonnegative Least Squares, NNLS.

The questions we will answer in this project is:

• Is it possible to reduce the number of model points through nonnegative
least squares optimization?

• How many model points do we get through the help of NNLS?

• How does the new model points accuracy look?

The theoretical part of the thesis is based on [1] and [2], while the practical
part of the thesis is based in R program [6].
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2 Life insurances

Insurers protect the insured for some unwished events that can happen in
the future. Of course, this work is not for free. The insured pays a premium
which can be monthly, yearly or some other frequency. Whenever a certain
event happens, the insurer has a liability to fulfil. To calculate the present
value of the expected liabilities which they are exposed in a certain time
moment, they use an Asset Liability Model (ALM). ALM models are used
to calculate the present value of all future assets and liabilities.
By using these ALM models, companies can show that they are able to pay
out all policies under normal conditions. There exists a minimum amount of
reserves that insurers must have in order to cover the risks. The rules that
determine those amounts are included under the name Solvency.

2.1 Solvency II

Solvency II has replaced old requirements and established more levels for
protect the customer. So, it has important implications for runing times and
there is a huge interest in methods that can predict the liabilities which they
are exposed quickly and accurately as well as; and model points are a way
to do this.

2.2 Model points

A model point is an aggregate of policies that is a good representation of a
group of policies. An additional criterion, is that we do not want too many of
those, otherwise we do not see any reduction in the computing time. A typical
model can be grouped in three components: scenarios, policies and attributes.
We assume that scenarios are already optimized, so they are assumed to be
different. The attributes are characteristics of the policyholder. Policies can
be grouped together. This is done, in a way that, if some policies are similar
to another one, we can group them in a new fictional policy, which represents
the individual policies. This is called the model point.
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3 Method
We will proceed from input data and with the help of NNLS we will

obtain weights that we can use to reduce the dataset. A weight, is a finite
real number greater than or equal to zero which indicates how many times
we are going to count every policy. We will obtain a weight for each policy.
When we are using NNLS we will get a number of insurance policies which
weight is zero. These policies will not have any significance for the dataset
and thus we can create a new dataset without the policies that have gotten
the weight of zero. In this way, we will obtain a dataset with less model
points. NNLS, is an algorithm that can be used in many different data
programs, we will choose to use the program R. We will describe how the
dataset is built and also how we can reduce the data set with NNLS.

3.1 Method of least squares

The method of least squares is an approximate method that is used to
estimate solutions to system of equations. The systems can be an over-
determined system which contains more equations than variables or under-
determined system which contains more variables than equations. Least
Squares Problems are classified into two groups, linear least squares problems
and nonlinear least squares problems. Linear least squares problems occur
most often in closed form, which means that they can be solved with a finite
number of standard operations. Here is an example of curve fitting using
least squares optimization.

Example 3.1 Let t be an independent variable and let b(t) an unknown
function of t that we want to estimate. Let suppose that we have m obser-
vations.

bi = b(ti), i = 1, . . . ,m.

The idea is to build b(t) by a linear combination of base functions, φj(t),
which are non-linear functions of t:

b(t) ≈ A1φ1(t) + · · ·Anφn(t). (3.1)

The design matrix, which we define as x is a rectangular matrix of order
m × n. The design matrix is defined as a matrix consisting of values of
variables.

xi,j = φj(ti), i = 1, . . . ,m, j = 1, . . . , n.

We can write the equation (3.1) in matrix form:

b ≈ Ax. (3.2)
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The unknown variables, Aj, are linear in the model. The system of linear
equations (3.2) is an over-determined system. So, it has more equations than
the number of variables that we want to estimate. The residuals are the
differences between the actual observed value and the value as the model
suggests. Mathematically, we can write the residual as

ri = bi −
∑
j

Ajφj(t), i = 1, . . . ,m.

So, we want to find Aj that give the least possible sum of least squares
residual. In summary, the least squares method minimizes the sum of squared
residuals

min ||r2|| = min
m∑
i=1

r2i .

Nonlinear least squares problems can be formulated as follows

minimize F (X) =
1

2

m∑
i=1

(fi(x))2,

where f1, . . . , fm are given functions of Rm to R. Nonlinear least squares
problems have no solution in closed form and must be solved numerically.

In order to make use of NNLS, we need to make certain assumptions about
the matrix that represents the dataset. The matrix must be non-negative,
irreducible and also satisfy the conditions of the Perron-Frobenius Theorem.
All matrices discussed are over the real numbers.

3.2 Perron-Frobenius theorem

Firstly, we need some definitions that we will use in the theorem and his
proof.

Definition 3.1 Let A be a matrix. We can say that the matrix A is non-
negative if all elements aij ≥ 0 for each i and j. We write it as A ≥ 0.

Note that it follows that the transpose matrix AT is also a non-negative ma-
trix and the linear systems of equations Ax = b have non-negative solutions
whenever b ≥ 0.

Definition 3.2 A non-negative matrix square T is called primitive if there
is a k such that all the entries of T k are positive.
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Definition 3.3 A n×n matrix A is said to be reducible if n ≥ 2 and there
exists a permutation matrix P such that

PAPT =

(
B 0
C D

)
,

where B and D are square matrices and 0 is the zero matrix. The matrix A
is irreducible if it is not reducible.

Definition 3.4 We let

Q := {x ∈ Rn : x ≥ 0, x 6= 0},

so Q is the non-negative orthant which we will call the positive orthant.
Also let

C := {x ≥ 0 : ||x|| = 1},

so C is the intersection of the positive orthant with the unit sphere.

Remark 3.1 If T is irreducible then I+T is primitive, where I is the identity
matrix. Indeed, the binomial expansion

(I + T )k = I + kT +
k(k − 1)

2
T 2 + · · ·

will eventually have positive entries in all positions if k large enough.

Lemma 3.1 Let T be a square matrix and let Λ be a diagonal matrix of the
same size, with entries λ1, . . . , λn along the diagonal. Expanding det(Λ− T )
along the i-th row shows that

∂

∂λi
det(Λ− T ) = det(Λi − Ti),

where the subscript i means the matrix obtained by eliminating the i-th row
and the i-th column from each matrix.

Setting λi = λ and applying the chain rule, we get

d

dλ
det(λI − T ) =

∑
i

det(λI − T(i)).

With the above, we are ready to study the following theorem.

Theorem 3.1 (Perron-Frobenius) Let T be a n × n non-negative irre-
ducible matrix.
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1. T has a positive (real) eigenvalue λmax such that other eigenvalues of
T satisfy

|λ| ≤ λmax.

2. Furthermore λmax has algebraic and geometric multiplicity one, and has
an eigenvector x with x > 0.

3. Any non-negative eigenvector is a multiple of x.

4. More generally, if y ≥ 0, y 6= 0 is a vector and µ is a number such that

Ty ≤ µy,

then
y > 0 and µ ≥ λmax.

5. If 0 ≤ S ≤ T , S 6= T then every eigenvalue σ of S satisfies

|σ| < λmax.

6. In particular, all the diagonal minors T(i) obtained from T by deleting
the i-th row and column have eigenvalues all of which have absolute
value < λmax.

7. If T is primitive, then all other eigenvalues of T satisfy

|λ| < λmax.

Proof: (See [1])

Let define
P := (I + T )k,

where k is chosen so large that P is a positive matrix. Then v ≤ w, v 6= w ⇒
Pv < Pw. Recall that Q denotes the positive orthant and that C denotes
the intersection of the unit sphere with the positive orthant. For any z ∈ Q
let

L(z) := max{s : sz ≤ Tz} = min
1≤i≤n
zi 6=0

(Tz)i
zi

. (3.3)

By definition L(rz) = L(z) for any r > 0, so L(z) depends only on the way
though z. If z ≤ y, z 6= y we have Pz < Py. Also PT = TP . So, if sz ≤ Tz
then

sPz ≤ PTz = TPz,

10



Optimization of Model Points 3 METHOD

so
L(Pz) ≥ L(z).

Furthermore, if L(z)z 6= Tz then L(z)Pz < TPz. So L(Pz) ≥ L(z) unless z
is an eigenvector of T with eigenvalue L(z).

Thus, we have to look for a positive vector which maximizes L, show that
it is the eigenvector we want in the theorem and establish the properties
stated in the theorem.

Finding a positive eigenvector.

Consider the image of C under P , P (C). It is compact (being the image of
a compact set under a continuous function) and all of the elements of P (C)
have all their components strictly positive (since P is positive). Hence the
function L is continuous on P (C). Thus L achieves a maximum value, Lmax,
on P (C). Since L(z) ≤ L(Pz) this is in fact the maximum value of L on all
of Q, and since L(Pz) > L(z) unless z is an eigenvector of T , we conclude
that

Lmax is achieved at an eigenvector, call it x of T and x > 0 with Lmax the
eigenvalue.

Since Tx > 0 and Tx = Lmaxx we have Lmax > 0.

Showing that Lmax is the maximum eigenvalue.

Let y be any eigenvector with eigenvalue λ, and let |y| denote the vector
whose components are |yj|, the absolute values of the components of y. We
have |y| ∈ Q and from

Ty = λy,

which says that
λyi =

∑
j

Tijyj

and the fact that the Tij ≥ 0 we conclude that

|λ||yi| ≤
∑
i

Tij|yj|

which we write for short as

|λ||y| ≤ T |y|.
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Recalling the definition (3.3) of L, this says |λ| ≤ L(|y|) ≤ Lmax. So we may
use the notation

λ := Lmax

since we have proved that
|λ| ≤ λmax.

We have proved item 1 in the theorem.
Notice that we can not have λmax = 0 since then T would have all eigen-

values zero, and hence be nilpotent, contrary to the assumption that T is
irreducible.
So

λmax > 0.

Showing that 0 ≤ S ≤ T , S 6= T ⇒ λmax(S) ≤ λmax(T ).

Suppose that 0 ≤ S ≤ T . If z ∈ Q is a vector such that sz ≤ Sz then since
Sz ≤ Tz, we get sz ≤ Tz so LS(z) ≤ LT (z) for all z and hence

0 ≤ S ≤ T ⇒ Lmax(S) ≤ Lmax(T ).

So
0 ≤ S ≤ T, S 6= T ⇒ λmax(S) ≤ λmax(T ).

Showing that λmax(T
t) = λmax(T ).

We can apply the previous results to T t, the transpose of T , to conclude that
it also has a positive maximum eigenvalue. Let us call it η (we shall soon
show that η = λmax). This means that there is a row vector w > 0 such that

wtT = ηwt.

Recall that x > 0 denotes the eigenvector with maximum eigenvalue λmax of
T . We have

wtTx = ηwtx = λmaxw
tx

implying that η = λmax since wtx > 0.

Proving the first two assertions in item 4 of the theorem.

Suppose that y ∈ Q and Ty ≤ µy. Then

λmaxw
ty = wtTy ≤ µwty

implying that λmax ≤ µ, again using the fact that all the components of w
are positive and some component of y is positive so wty > 0. In particular,
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if Ty = µy then µ = λmax. Futhermore, if y ∈ Q and Ty ≤ µy then µ ≥ 0
and

0 < Py = (I + T )n−1y ≤ (1 + µ)n−1y

so
y > 0.

This proves the first two assertions in item 4.
If µ = λmax then wt(Ty − λmax) = 0 but Ty − λmaxy ≤ 0 and therefore

wt(Ty − λmaxy) = 0 implies that Ty = λmaxy. Then the last assertion of
item 4 (that y is a scalar multilpe of x) will then follow from item 2 (that
λmax has a multiplicity one) once we prove item 2, since we have shown that
y must be an eigenvector with eigenvalue λmax.

Proof that if 0 ≤ S ≤ T , S 6= T then every eigenvalue σ of S satisfies
|σ| < λmax.

Suppose that 0 ≤ S ≤ T and Sz = σz, z 6= 0. Then

T |z| ≥ S|z| ≥ |σ||z|

so
|σ| ≤ Lmax(T ) = λmax,

as we have already seen. But if |σ| = λmax(T ) then LT (|z|) = Lmax(T ) so
|z| > 0 and |z| is also an eigenvector of T with the same eigenvalue. But
then (T − S)|z| = 0 and this is impossible unless S = T since |z| > 0. Re-
placing the i-th row and column of T by zeros give a S ≥ 0 with S < T since
the irreducibility of T precludes all the entries in a row being. This proves
the assertion that the eigenvalues of Ti are all less in absolute value that λmax.

Showing that λmax has algebraic (and hence geometric) multiplicity
one.

Each of the matrices λmaxI−T(i) has strictly positive determinant by lemma
3.1. This shows that the derivative of the characteristic polynomial of T
is not zero at λmax, and therefore the algebraic multiplicity and hence the
geometric multiplicity of λmax is one. This proves item 2 and hence all but
the assertion of the theorem, which says that if T is primitive, then all the
other eigenvalues of T satisfy

|λ| < λmax.

13
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Proof of the last assertion of the theorem.

The eigenvalues of T k are the k-th powers of the eigenvalues of T . So if we
want to show that there are not other eigenvalues of a primitive matrix with
absolute value equal to λmax, it is enough to prove this for a positive matrix.
Dividing the positive matrix by λmax, we are reduced to proving the following

Lemma 3.2 Let A > 0 be a positive matrix with λmax = 1. Then all other
eigenvalues of A satisfy |λ| < 1.

Proof: Suppose that z is an eigenvector of A with eigenvalue λ with
|λ = 1|. Then |z| = |Az| ≤ |A||z| = A|z| ⇒ |z| ≤ A|z|. Let y := A|z| − |z| so
y ≥ 0. Suppose (contrary to fact) that y 6= 0. Then Ay > 0 and A|z| > 0 so
there is an ε > 0 so that Ay > εA|z| and hence A(A|z| − |z|) > εA|z| or

B(A|z|) > A|z|, whereB :=
1

1 + ε
A.

This implies that BkA|z| > A|z| for all k. But the eigenvalues of B are all
< 1 in absolute value, so Bk → 0. Thus all the entries of A|z| are ≤ 0
contradicting the fact that A|z| > 0. So |z| is an eigenvector of A with
eigenvalue 1. But |Az| = |z| so |Az| = A|z| which can only happen if all the
entries of z are of the same sign. So z must be a multiple of our eigenvector
x since there are not eigenvectors with all entries of the same sign other than
multiples of x, so λ = 1.

�
This completes the proof of the theorem. �

Another concept that will be useful is the classical Karush-Kuhn-Tucker
conditions. The set of conditions is a generalization of the method of La-
grange multipliers.

The Karush-Kuhn-Tucker (KKT) conditions must be satisfied for a so-
lution to be optimal (which in our case means the solution with the lowest
sum of least square residual). This condition is necessary for the solution to
be optimal but not enough to show that the solution is optimal.

Theorem 3.2 (Karush-Kuhn-Tucker conditions) (See [2]).
Let f be objective function. Let h and g be the restriction functions. We will
find the value of x that gives the least value of the function. Let xmin be a
local minimum of

min
x
f(x) subject to

{
h(x) = 0
g(x) ≤ 0

14
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Assume xmin lies within these limits, then the Jacobian of the binding con-
straints at that point is of full rank. Then ∃ λ and µ such that

∇f(xmin) + λT∇h(xmin) + µT∇g(xmin) = 0 (3.4)
µTg(xmin) = 0 (3.5)
h(xmin) = 0

µ ≥ 0. (3.6)

3.3 Non-negative method of least squares

A fundamental problem in data modeling is the estimation of a parameter-
ized model for describing the data. We assume that several observations
that are linear functions of the parameters have been made. Given a suffi-
ciently large number of such observations, we can reliably estimate the true
parameters. Let the unknown model parameters be denoted by the vector
x = (x1, . . . , xn)T . The different experiments relating x are represented by
the matrix A ∈ Rm×n, and the set of observed values are given by b ∈ Rm.
The aim is to build a vector x ∈ Rn that explains the observed values as well
as possible. This requirement can be written as

Ax = b,

where the system may be either under-determined (m < n) or over-determined
(m ≥ n), (see [3]). In the case of over-determined systems, the method of
least squares proposes to compute x so that the sum of least squares residual
is minimized:

f(x) =
1

2
||Ax− b||2. (3.7)

However, in many real world problems the parameters represent quantities
that can take only non-negative values. In such case, problem (3.7) must be
modified to include non-negativity constraints on the model parameters x.
The resulting problem is called Nonnegative Least Squares (NNLS), and is
formulated as follows:

NNLS Problem:
Given a matrixA ∈ Rm×n and the set of observed values given by b ∈ Rm,

find a nonnegative vector x ∈ Rn to minimize the function f(x) = 1
2
||Ax −

b||2, i.e.

min
x
f(x) =

1

2
||Ax− b||2,

subject to x ≥ 0. (3.8)
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The gradient of f(x) is ∇f(x) = AT (Ax − b) and the KKT optimality
conditions for NNLS problem (3.8) are

x ≥ 0,

∇f(x) ≥ 0,

∇f(x)Tx = 0.

Some of the iterative methods for solving (3.8) are based on the solution
of the corresponding linear complementarity problem (LCP).

Let’s see that the constraints above are KKT conditions:
We have from theorem 3.2 that

f(x) =
1

2
||Ax− b||2,

g(x) = −x,
h(x) = 0

so

∇f(x) = AT (Ax− b),
∇g(x) = −1

The first constraint is obvious from definition of the problem (3.8). The
second and third constraints, we can see that they are equivalence if we
substitute in (3.4), (3.5) and (3.6) and we get

∇f(x)− µT = 0,

−µTx = 0,

µ ≥ 0.

so we can see that

∇f(x) = µT ≥ 0 ⇒ ∇f(x) ≥ 0,

−∇f(x)Tx = 0 ⇒ ∇f(x)Tx = 0.

Linear Complementarity Problem:
Given a matrix A ∈ Rm×n and the set of observed values be given by

b ∈ Rm, find a vector x ∈ Rn to minimize the function

λ = ∇f(x) = ATAx−ATb ≥ 0,

x ≥ 0, (3.9)
λTx = 0.
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Problem (3.9) is essentially the set of KKT optimality conditions for
quadratic programming. The problem reduces to find a nonnegative x which
satisfies (Ax− b)TAx = 0.

Dealing with nonnegative constraints when we are working with large
amounts of non-linear equations is difficult. Sometimes is more manageable
a different formulation of NNLS using the residual vector variable p = b−Ax
as follows:

min
x,p

1

2
pTp,

subject to Ax+ p = b, x ≥ 0.

The advantage of this formulation is that we have a simple and separable
objective function with linear and nonnegativity constraints.

3.4 History of NNLS

Since the 1990’s, NNLS calculations have been generalizated to approx-
imate non-negative matrices and tensor factorizations, in order to obtain
low-dimensional representations of nonnegative data. A tensor is a multidi-
mensional vector or a generalization of vectors, matrices and scalars. Albert
Einstein was one of the first to use tensors and he used them to describe the
laws of physics. After this, several tensor analysis techniques have become.
Tensor analysis have multiple uses but is especially suitable for large data
sets. NNLS is used on large data sets non negative. Using low rank con-
straints on high dimensional data set, this method can reduce the number of
elements in the data set . There are several different methods for reducing
the dimensions of the matrices and data sets. Some examples are:

• Principal Component Analysis (PCA)

• Independent Component Analysis (ICA)

• Approximate Nonnegative Matrix Factorization (NMF)

• Nonnegative Tensor Factorization (NTF)

3.5 NNLS algorithm

NNLS algorithm computes the solution to a vector x. This vector solves the
least squares problem, where ||Ax − b|| is minimized with constraints that
Gx ≥ h. A is a m × n matrix and b is a vector with m elements. What

17
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distinguishes NNLS from other least squares optimization is that A in other
least squares optimizations tend to be an arbitrary m × n matrix, but in
NNLS, G is the identity matrix and h is the zero vector. This problem has
always at least one solution, and this solution usually will contain at least
n−m of elements equal to zero.
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4 Data
In this section, we are going to show a numerical example with real data.

We will get the model points for two different data sets and we will compare
graphically the difference if we use the full data or the model points, for
checking the accuracy of the result.

4.1 Description of the data

We start from a data set for creating the model points P-by-P (Policy by
Policy). We have two differents data sets built P-by-P with insurance poli-
cies. These data sets contain the same variables and we will treat them
independently.

We can consider the data sets as matrices, where each column of the
matrix corresponds to policies and each row corresponds to a variable. In
the first data set we have 7045 policies and in the second one, we have 13924
policies.

Each policy is equivalent to a model point, so when calculations are per-
formed with data sets, is important to have the fewest model points as pos-
sible of our data set because calculations will perform faster.

The number of variables is the same for both data sets. In total, we
have 4 different variables. We know the value of the variables for each year
until the next 50 years, such that, we have 50 values for the first variable,
50 values for the second one and so on. However, there are some variables
which include also year 0 (present value).

In our data set, for the first variable Best Estimate Reserve, we have 51
values and for the rest of variables Cash Flow Benefit Maturity, Cash Flow
Benefit Surrender and Cash Flow Premium 50 values, so the total number of
rows is m = 201.

Each year of each variable corresponds to a row in the matrix A. For
using the algorithm "nnls", we need an agregate data set b. This data set
consists of the sum of the insurance policies per year, i.e. the agregate data
set b is equal to the sum of the columns of the matrix A.

The following table show us the variables which represent our data set
and how many years we have values for the respective variables.

Variable Number of years
1 Best Estimate Reserve 51
2 Cash Flow Benefit Maturity 50
3 Cash Flow Benefit Surrender 50
4 Cash Flow Premium 50
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So we have m = 201 rows and n = 7045 columns in the matrix A. Let
Vj be the variable j for each j = 1, . . . ,m and Fi the policy i for each
i = 1, . . . , n, so we have that the elements aij ∈ A are aij = VjFi, hence we
can write

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

... . . . ...
am,1 am,2 . . . am,n

 b =


∑n

i a1,i∑n
i a2,i
...∑n

i am,i



So we will treat the data set as a huge matrix with dimension 201×7045.
From this data set, we can create the agregate data set for each variable
denoted by b, which is a matrix with dimension m × 1 including all the
agregate values for each variable. We take this aggregate vector b, since
we want that the weights of the model points produce the same aggregated
values of the variables as original policies. After that, we will estimate the
vector x with the algorithm NNLS and we will get a vector with dimension
n× 1 for this data set.

4.2 Current model point method

Before starting to compute the NNLS algorithm, we are going to show an
example of the current model points method to understand why it is impor-
tant to introduce the new method, Non-Negative Least Square.

The previous method for creating model points, (the current method), is
carried out in two steps. The first step is to create model points P-by-P in
different policy groups and the second one is to reduce the number of model
points.

Example of current method:

We have a portfolio with 100 policyholders and we are interesting in
dividing people by two categories, gender and premium. The gender can
take 2 values, women or men, and the premiums can take 3 values, A, B or
C. So, for example, we can have 20 men belonging to type A, 10 women who
belong to type A, 25 men belonging to type B, 15 women who belong to type
B, 15 men belonging to type C and 15 women who belong to type C.
Then we get the following table:
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Men Women
A 20 10
B 25 15
C 15 15

This example contains six model points with weights 20, 10, 25, 15, 15
and 15. In the second step, we have to reduce the number of model points.
To do this, we have to analyze each category separately.

For instance, we can reduce the number of variables in the range of pre-
miums from (A, B, C) to (A, B), if B and C have the same properties.
Then we get the following table

Men Women
A 20 10
B 40 30

Hence, we have gotten to reduce the number of model points from six to
four and the new model points have weights 20, 10, 40 and 30.

In the case of a set with real data, there are too many categories and we
get a result with a lot of model points. Another disadvantange of this method
is that when we reduce a varible, the model has to be checked with the AFM
program to evaluate his efficiency and also we need a large knowledge of the
variables to group them as efficient as possible, so this process is really slow.

Therefore, this method become difficult, ineffective and takes too much
time.

4.3 NNLS model point method

Now, we are going to explain how to use the algorithm NNLS for getting the
model points.

We have used the program R. Before starting to read the data, we need to
install and load some additional packages called "XLConnect", "MASS" and
"nnls". Then, we can see the code in R where we will explain the algorithm.

Code in R: (See [6])

#Fi r s t , we have to import the data s e t from exc e l to R.
ex c e l . f i l e=f i l e . path (" data_al l . x l s ")
x=readWorksheetFromFile ( e x c e l . f i l e , shee t=1)
#where "data . f i l e . x l s " i s the name o f the data s e t .

#We c r ea t e an empty matrix where we can wr i t e the va lue s
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#of the data s e t and the l a s t column w i l l f i l l with
#the po l i c y number .
M=matrix ( rep ( 0 ) , nrow=dim(x ) [ 1 ] , nco l=dim(x ) [ 2 ] )
f o r ( i in 1 : dim(x ) [ 2 ] ) {

M[ , i ]=x [ , i ]
}

#We c r ea t e an empty matrix A^T and a vec to r po l i c y and
#we w i l l f i l l them with the data and the po l i c y number .
A_T=matrix ( rep (0 ) , nrow=dim(x ) [ 1 ] , nco l=dim(x ) [2 ] −1)
po l i c y=matrix ( rep ( 0 ) , nrow=dim(x ) [ 1 ] , nco l=1)

f o r ( i in 1 : dim(M) [ 1 ] ) {
po l i c y [ i ,1 ]=M[ i , dim(M) [ 2 ] ]

}
f o r ( i in 1 : dim(M)[2 ]−1){

A_T[ , i ]=M[ , i ]
}

#Fina l ly , we get the matrix A.
A=t (A_T)

#Now, we c r ea t e the agregate vec to r b ,
#which conta in s the sum of the rows o f the matrix A.
b=matrix ( rep (0 ) , nrow=dim(A) [ 1 ] , nco l=1)
f o r ( i in 1 : dim(A) [ 1 ] ) {

b [ i ,1 ]=sum(A_T[ , i ] )
}

#Then , we can compute the a lgor i thm NNLS.
r e s u l t=nnl s (A, b)

#After that , we wr i t e a vec to r with the weights
#o f the model po in t s .
weights=matrix ( rep ( 0 ) , nrow=re su l t $n s e tp , nco l=2)
model_points=matrix ( rep ( 0 ) , nrow=re su l t $n s e tp , nco l=1)
a=0
f o r ( i in 1 : l ength ( r e s u l t $ x ) ){

i f ( r e s u l t $ x [ i ] !=0){
a=a+1
weights [ a ,1 ]= r e su l t $ x [ i ]
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weights [ a ,2 ]= po l i c y [ i ]
model_points [ a]= i

}
}

#Fina l ly , we can export the weights
#with the r e s p e c t i v e po l i c y number from R to Excel .
base=data . frame ( weights )
colnames ( base)=c (" weights " ," policy_number ")
wb=loadWorkbook (" Result . x l s " , c r e a t e=TRUE)
c r ea t eShee t (wb, name="outputs ")
createName (wb, name="outputs " , formula="outputs ! $A$1")
writeNamedRegion (wb, base , name="outputs ")
saveWorkbook (wb)
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5 Results

In this section, we will show the results that we obtained in the previous
one.

5.1 Model points

Here we show the code in R for plotting the graphs.

#Graphs ( Fu l l data vs model po in t s )

#We wr i t e the vec to r with the f u l l data f o r each va r i a b l e
t o t a l_re s e rv e=matrix ( rep ( 0 ) , nrow=51, nco l=1)
f o r ( i in 1 : 51 ){

to t a l_re s e rv e [ i ,1 ]=sum(A[ i , ] )
}

#We f i l l the vec to r below with the va lue s
#o f the model po in t s f o r each va r i a b l e
mp_reserve=matrix ( rep (0 ) , nrow=51, nco l=1)
f o r ( i in 1 : 51 ){

f o r ( j in 1 : dim(model_points ) [ 1 ] ) {
mp_reserve [ i ,1 ]=mp_reserve [ i , 1 ]
+A[ i , model_points [ j ] ]

}
}

#We p lo t the cor re spond ing graphs
years=seq (1 ,51 )
par (mfrow = c (1 , 2 ) )

p l o t ( years , to ta l_re se rve , type=" l " , c o l="blue " , lwd=2,
main=" f u l l data ")
p l o t ( years , mp_reserve , type=" l " , c o l="red " , lwd=2,
main="model po in t s ")

If we analyze the first variable Best Estimate Reserve and we plot the
values using the original data in one graph and then the model points in a
different one, we can see that the graphs below are similar so that it is a
good optimization.

For the rest of the variables, Cash Flow Benefit Maturity, Cash Flow
Benefit Surrender and Cash Flow Premium, the result is also good as we can
see in the following graphs.
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Best Estimate Reserve:

Cash Flow Benefit Maturity:
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Cash Flow Benefit Surrender:

Cash Flow Premium:
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5.2 Residuals

The result obtained when we optimize the first data set using the algorithm
NNLS is a vector x of dimension n× 1 with n = 7045. This vector contains
6934 elements equal to zero, hence we get 111 model points. Recall that the
residuals are the differences between the actual observed value and the value
as the model suggests. So, we have that

ri = bi −
∑
j

Aijxj, i = 1, . . . ,m, j = 1, . . . , n,

and the objective of the least squares method is minimizes the sum of the
squared residuals (

∑
i r

2
i ). The residual sum of squares is 2.916 × 10−25.

We can see the graph which represents the residuals for each variable. The
notation 4e-09 in the graph means 4× 10−9.

For the second data set, the result obtained with NNLS algorithm is a vector
x which has a dimension n× 1 with n = 13924. This vector contains 13748
elements equal to zero, therefore we get 176 model points. The residual sum
of squares is 6.215 × 10−25. We can show the same graph which represents
the residuals for each variable.
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5.3 Weights of model points

Now, we will show the main result, i.e. the vector x with the weights and
the corresponding policy number taking the first data set as a reference.
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After this analysis, we deleted the first variable, Best Estimate Reserve,
and we repeated the same process for the first data set with the other three
variables. After that, we did the analysis with the first, third and fourth
variables, i.e. removing the second one. Then, we repeated the procedure
without the third variable and then without the fourth one.

The results were similar when we removed some variables. We get 89
model points in the first case, 81 model points in the second one, 90 and
80 model points in the other cases, respectively. So, we can reduce the
model points since we got in the first calculation 111. Now, if we analyze
the residual sum of the squares, we get a low sum only when we remove the
second variable, since if we remove the first, third or fourth variables we do
not get a good accuracy, as we can see in the graphs below.

Figure 1: Residual values for each variable without the first one.

Figure 2: Residual values for each variable without the second one.
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For the second data set, we did the same procedure with similar results,
we can reduce the model points from 176 to around 135, but we have the
same problem, we get only a good accuracy if we remove the second variable,
Cash Flow Benefit Maturity.

Finally, we can conclude that we could remove just the second variable
for computing the results, but since we have only four variables, it will take
the same computing time more or less, so is better do the calculations with
all the variables to get a better accuracy. Anyway, when NNLS optimization
is carried out in a data set, we have to pay attention with the input data.

The number of variables that we consider when we implement the opti-
mization affect the accuracy of the results, i.e. the more variables you have
into account, the more exact the results are.

The accuracy of the data set has a negative correlation with the number
of model points; when we reduce the number of variables, then we get less
model points, but in proportion the residual sum of the squares increases.
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6 Conclusion

In this work, we start from two data sets of insurance policies and we use
NNLS optimization in program R to answer the following questions:

1. Is it possible to reduce the number of model points with non-
negative least squares optimization?

We can say that it is possible to reduce the number of model points
with NNLS, since the result obtained using the algorithm NNLS gave
good results fulfilling the constraints that we have established.

2. How many model points do we obtain using NNLS?

We obtained 111 model points from 7045 policies in the first data set
and 176 model points from 13924 policies en the second data set. We
can even get less model points if we remove some variables but since
we have just four variables, it does not worth it.

3. What is the accuracy of the new model points?

The accuracy was good in all the variables as we can see in the graphs
where we compare the use of the model points with the use of the full
data.

On the other hand, the sum of the residuals is 2.916×10−25 for the first
data set and 6.215× 10−25 for the second data set, but both residuals
are higher in the variables which have high values, i.e. Best Estimate
Reserve and Cash Flow Benefit Maturity.

The overall conclusion from this work is that the NNLS algorithm is a
reasonable tool for findind model points in life insurance.
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A Non-linear least squares
Below we will show an example of a non-linear least squares problem

which can be solved using the Gauss-Newton method, (See [5]).

minimize F (x) =
1

2

n∑
i=0

fi(x)2 =
1

2
||f(x)||2,

where x ∈ Rn, fi : Rn → R and f(x) = (f1(x), . . . , fm(x))T is an even
function of x. A necessary condition for any x, x̄ must be a critical point of
g(x), which we define as ∇f(x̄) is equal to zero, ∇f(x) is equal to J(x)Tf(x),
where we define as Jacobian

J(x) :=
∂f

∂x
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn...

...
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


Note that g : Rn → Rn. We can know when g(x) is equal to zero using

Newton Raphson method, let x be the current estimator of x̄, and calculates
a Newton step pk by solving the equation

g′(x(k))pk = −g(x(x)),

and then update x to
x(k+1) = x(k) + τkpk,

where the variable τk is chosen in such a way that F (x)(k+1) strictly monoton-
ically increasing. The matrix g′(x) is the Hessian matrix of F and calculated

g′(x) = Jf (x)TJf (x) +
n∑
i

Hifi(x), (A.1)

where Hi(x) := ∂2fi
∂xs∂xt

is the Hessian matrix of fi(x).
Usually, if ||fi|| approaches zero when xk+1 approaching the solution, the
second matrix of (A.1) also go to zero

J(x(k))TJ(x(k))Pk = −J(x(k))Tf(x(k)). (A.2)

The solution to (A.2) is the solution to the least squares problem

minimize
1

2
||J(X)(K)P + F (xk)||2,

and the solution is unique if J(x(k)) is of full rank.
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