
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science Curriculum

Gerli Viikmaa

Detection of Near-Duplicates Using

Error-Correcting Codes

Bachelor’s Thesis (6 ECTS)

Supervisor: Sven Laur, PhD

Tartu 2014

Detection of Near-Duplicates Using Error-Correcting Codes

Abstract:

The detection of near-duplicate items from a large set is a problem faced in many

fields. This paper constructs and analyses two algorithms for finding similar pairs

from an input dataset. It shows that these algorithms are applicable and efficient

in the domain of DNA sequences.

Keywords:

Duplicate detection, coding theory, algorithm design

Sarnaste elementide tuvastamine veaparanduskoodide abil

Kokkuvõte:

Sarnaste elementide tuvastamine suurest hulgast on probleem, mida esineb eri-

nevates valdkondades. See töö konstrueerib ja analüüsib kahte algoritmi sisend-

hulgast sarnaste paaride leidmiseks. Näidatakse, et need algoritmid on sarnaste

DNA järjestuste leidmiseks rakendatavad ja efektiivsed.

Võtmesõnad:

Sarnaste elementide tuvastus, kodeerimisteooria, algoritmide loomine

2

Contents

1 Introduction 4

2 Background 5

2.1 Coding theory . 5

2.2 Finite fields . 10

2.3 Mathematical setup of our problem 12

3 All pairwise near-duplicates 14

3.1 Baseline method . 15

3.2 Method based on error-correcting codes 19

4 Conclusion 28

5 References 29

Appendix 31

A Code examples in Sage . 31

A.1 Baseline method . 31

A.2 Neighbors of a single word 32

A.3 Finding candidate near-duplicates for q = 4, n = 5, d = 1 . . 32

B Licence . 34

3

1 Introduction

As a motivating example consider the following problem: we have a large set

of nucleotide sequences, which are 36 base pairs (letters) long. The number of

sequences is in the order of magnitude 106. We have determined that there are very

similar sequences in this set due to errors occurring during the dataset generation.

More specifically, when the sequences are read by a machine, it sometimes mistakes

one letter for another. These small errors clutter our dataset and we would like to

fix them. The structure of the data has led us to believe that any two sequences

with up to 3 differences in base pairs should actually be considered the same

sequence. The problem stems from the fact that our dataset is so large that

we cannot compare each sequence to another in reasonable time. We need some

algorithm that finds the pairs of near-duplicates more efficiently.

This problem, known as near-duplicate detection, has been explored previously

in the context of compressing sequence databases [2, 3]. However, our sequences

are rather short and the restrictions on the types of errors allowed in the data are

different, rendering those approaches inapplicable to our case.

Near-duplicate detection is also relevant in applications such as indexing web

pages [8, 9], compressing information found in natural language texts such as

tweets [6], image and video search on the web [7, 13], plagiarism and copyright

infringement detection [7]. This topic is also relevant in the field of cryptography,

with example applications in biometric authentication [5] and passwords that allow

spelling errors [1].

This thesis explores the solution to this problem using coding theory as this

approach has not been explored in mainstream literature.

This paper is structured in the following way. In Section 2, explanations are

given for relevant concepts in coding theory (Section 2.1) and linear algebra (Sec-

tion 2.2). Our problem is described in more detail in Section 2.3. The problem

is formalized and a general solution is given is Section 3. Two different variants

of the solution are analysed in Sections 3.1 and 3.2. The work is summarized and

additional topics for research are provided in Section 4, followed by references. Ap-

pendix A contains some implementations of the methods described in this thesis.

Appendix B contains a licence to allow reproduction of this thesis.

4

2 Background

This section aims to explain necessary concepts in coding theory, provides a few

useful results from linear algebra related to finite fields and describes the problem

dataset mathematically

2.1 Coding theory

Coding theory is a study of codes. The main terms as used in this field are

explained here. The following mathematical definitions are based on [10].

Definition 1. An (n, M) code over a finite alphabet Σ is a subset C of size M

of the space Σn. Each element of C is called a codeword. The parameter n is

called the code length and the parameter M is the code size. Code size can also

be expressed as |C|.

Let us consider words in some alphabet that all have the same length. A code,

in this context, is a set of words (known as codewords) that are used to represent a

set of pre-agreed messages. The process of retrieving the corresponding codeword

for a message is known as encoding. Each codeword corresponds to exactly one

message.

Codewords can become corrupted, resulting in a new word. We are interested

in the type of errors where some letters in the new word are different from the

letters in the same positions in the codeword. More formally, we can give the

following definition.

Definition 2. Let C be an (n, M) code over Σ and c ∈ C a codeword. An error

is the changing of some entry ci in the codeword c = c1c2 . . . ci . . . cn, resulting in

a word x = c1c2 . . . xi . . . cn where xi 6= ci.

The number of errors can be given by the following measure:

Definition 3. The Hamming distance between two words x, y ∈ Σn is the number

of coordinates on which x and y differ.

Hamming distance between words x and y is denoted by d(x, y). Hamming

distance is a metric, meaning that it satisfies the following properties for every

three words x, y, z ∈ Σn.

5

• Nonnegativity: d(x, y) ≥ 0. The distance is zero if and only if x = y.

• Symmetry: d(x, y) = d(y, x).

• The triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

The smaller the Hamming distance between two words, the closer they are to each

other. A similar concept can be defined for a single word.

Definition 4. The Hamming weight of a word x ∈ Σn is the number of nonzero

coordinates of x.

Hamming weight of a word x is denoted by w(x). The previous two terms are

related in the following way.

Proposition 1. Given that Σ is an Abelian group, for every two words x, y ∈ Σn,

the following equality holds

d(x, y) = w(y − x).

Error-correcting codes are codes that are designed to withstand a number of

errors occurring when a codeword gets corrupted. If the number of errors is not

too large, the corrupted word can be fixed. The process of finding the closest

codeword to a word is known as decoding.

Definition 5. A nearest-codeword decoder of an (n, M) code C over Σ is a function

D : Σn → C whose value for every word x ∈ Σn is the closest codeword in C in

terms of Hamming distance to x. In case of a tie between two or more codewords,

the first in the lexicographic ordering of the tying codewords is chosen.

Let it be noted that since each codeword corresponds to a message, by decoding

a word it is also possible to reconstruct the message.

Decoders of a different type have also been studied but they are not relevant

in the scope of this thesis. More information can be found in [10].

Example. A widely-used alphabet in data transmission is {0, 1} – bits. Let us

look at words in this alphabet of length 3. A possible code on such words is a

repetition code where the codewords are created by repeating a bit three times:

6

C = {000, 111}. This code can be used to transmit a single bit – 0 or 1 – by

repeating it three times and sending 000 or 111 instead. Although we are adding

to the size of the message (three bits instead of one), this allows us to detect and

correct the flip of a single bit. Thus message transfer is more error-resistant.

For instance, if we wish to send the message 0, we encode it and transmit 000.

If we were to receive 010, we can decode this back to the closest codeword 000 and

successfully determine that the sent message was 0. However, if more than a single

bit is flipped (e.g. we receive 011), the code will fail to determine the message -

111 is the closest codeword to 011.

Incidentally, the described code is not the most optimal code that can correct

the flip of a single bit in binary string. Exist constructions for codes that are able

to correct the same number of mutated bits but have less encoding overhead.

It is possible to quantify the number of mutations an error-correcting code can

fix. In order to do that, it is first necessary to determine how far apart codewords

of the code are.

Definition 6. The minimum distance of code C is the minimum Hamming distance

between a pair of distinct codewords of C. The distance dmin is given by

dmin = min
c1,c2∈C
c1 6=c2

d(c1, c2)

An (n, M) code with minimum distance dmin is called an (n, M, dmin) code.

As a corollary, all pairs of distinct codewords are at Hamming distance at least

dmin from each other.

Proposition 2. Let C be an (n, M, dmin) code over Σ. The nearest-codeword de-

coder D : Σn → C recovers correctly every pattern of up to
⌊

dmin−1

2

⌋

errors.

In the repetition code example above, the minimum distance of the code was

3, hence the code’s ability to detect the flip of one bit.

Let us give an another interpretation of the above proposition. This requires

us to introduce a new term and elaborate on its properties.

7

Definition 7. Let Σ be an alphabet and r be a nonnegative integer. The set of

all words in Σn at Hamming distance r or less from a word x is called a sphere of

radius r centered at x. The number of words in a sphere is called the volume of a

sphere.

Proposition 3. If the size of the alphabet is q and words have length n, then the

volume of a sphere of radius r is given as

Vq(n, r) =
r
∑

i=0

(

n

i

)

(q − 1)i

Proof. Let’s look at a sphere centered at x = x1x2 . . . xn. All the words y =

y1y2 . . . yn at distance i from x have the structure where there are exactly i coor-

dinates where x and y differ. There are

(

n

i

)

different sets of those i coordinates. In each position j where xj 6= yj there are

q − 1 different letters of the alphabet – all but xj – that could be at position j in

the word y. Thus the number of words exactly at distance i from x is

(

n

i

)

(q − 1)i.

Since all the words in a sphere are at an integer distance between 0 and r from

the centre of the sphere, the total number of words in a sphere is

Vq(n, r) =
r
∑

i=0

(

n

i

)

(q − 1)i.

Proposition 2 can be interpreted geometrically in the following way. Spheres

with radius r =
⌊

dmin−1

2

⌋

that are centered at a distinct pair of codewords in C are

disjoint. This is illustrated on Figure 1. The distance between the two codewords

c1 and c2 is at least dmin. Thus, if x ∈ Σn is a word contained in the sphere of

radius r centered at codeword c1, the nearest-codeword decoder D will return c1

8

c1

r

c2

r

x

Figure 1: Two spheres with diameter r =
⌊

dmin−1

2

⌋

(depicted as circles) centered at
codewords c1 and c2.

when applied to x.

If we center a sphere at each codeword, the total number of words contained

in the spheres is bounded by the following.

Proposition 4. For any (n, M, dmin) code over an alphabet Σ of size q, the fol-

lowing inequality holds (sphere packing bound):

M · Vq

(

n,

⌊

dmin − 1

2

⌋)

≤ qn

Here the right-hand side is the number of all words in the space Σn where q

is the size of the alphabet Σ. Thusly, for any code the sum of the volumes of the

spheres centered at each codeword is at most the number words in the space Σn.

Definition 8. A code C that attains the sphere-packing bound is called perfect.

As follows, perfect codes are codes such that the spheres with radius r centered

at each codeword cover the space Σn fully. This means that the code has the

following pleasant properties. First, there is no word x in the space Σn such that

∀c ∈ C : d(x, c) >

⌊

dmin − 1

2

⌋

.

Second, there are no ties in decoding. Finally, these spheres divide the entire space

Σn into equal-sized parts.

9

Unfortunately, it has been proven that only a few constructions of perfect

codes exist. Additionally, the constructions are rather limiting in terms of their

parameters n, q and dmin.

Although a perfect code for an arbitrary set of parameters n, q, dmin may not

exist, making the assumption that it does enables us to simplify the treatment in

this cursory feasibility scan.

Generally speaking, exist various constructions for codes, most of which are

not perfect. Examples of famous constructions are parity codes, repetition codes,

Hamming codes, Reed-Solomon codes. More details can be found in [10]. Many

constructions exist for codes having the following property.

Definition 9. A code C over a finite field Fq = Σ where q is the size of the field

is called linear if C is a linear subspace of the vector space F
n
q over Fq, that means

that for any two codewords c1, c2 ∈ C and two scalars α1, α2 ∈ Fq the condition

α1c1 + α2c2 ∈ C holds.

Subsequently, if C is defined over a finite field and D is the corresponding

nearest-codeword decoder, it is possible to represent each word x as the sum of its

nearest codeword and an error word ε:

x = D(x) + ε.

The following section gives a definition and lists some properties of finite fields.

2.2 Finite fields

Let Fq denote a finite field of size q. This is sometimes also denoted as GF(q).

The letters GF stand for Galois field.

Definition 10. A field F is a set of elements on which addition (+) and multi-

plication (×) are defined. The operations must satisfy the following axioms for all

elements a, b, c ∈ F.

• Associativity

(a + b) + c = a + (b + c)

(a × b) × c = a × (b × c)

10

• Commutativity

a + b = b + a

a × b = b × a

• Distributivity

a × (b + c) = a × b + a × c

(a + b) × c = a × c + b × c

• Identity

a + 0 = 0 + a = a

a × 1 = 1 × a = a

• Inverses

a + (−a) = (−a) + a = 0

a × a−1 = a−1 × a = 1 if a 6= 0

Let only a few results concerning finite fields be listed here.

Proposition 5. If q is a prime, the field Fq coincides with Zq, the ring of integer

residues modulo q.

Proposition 6. The size of any finite field is the power pn where p is a prime and

n a positive integer. For any prime p and positive integer n, there exists a finite

field with pn elements.

When working with nucleotide sequences, the alphabet we are using is Σ =

{A, C, G, T}. This can be transformed to use a finite field F4 with any correspon-

dence between the elements of Σ and F4 since we are using Hamming distance

which counts differences. We would like to use a finite field in some applications

because of some properties that finite fields have. One of them is the fact that

since fields are Abelian groups, Proposition 1 applies to them.

The field we are going to be using for DNA sequences is F4 which is a field

with elements {0, 1, α, α + 1} and addition and multiplication defined in Tables 1

and 2 respectively. [12]

11

Table 1: Addition table of F4

+ 0 1 α α + 1

0 0 1 α α + 1
1 1 0 α + 1 α
α α α + 1 0 1

α + 1 α + 1 α 1 0

Table 2: Multiplication table of F4

× 0 1 α α + 1

0 0 0 0 0
1 0 1 α α + 1
α 0 α α + 1 1

α + 1 0 α + 1 1 α

A relatively useful property of F4 is that

∀x ∈ F4 : x + x = 0.

This means that whenever we wish to subtract a value, we can add it instead.

2.3 Mathematical setup of our problem

As described in the introduction, the original problem was finding very similar

pairs of sequences from a relatively large set of DNA sequences. As noted in the

previous section, the size of the nucleotide alphabet is q = 4 so we can use the

finite field F4 as our alphabet. The data we are interested consists of sequences

that has length n = 36. In terms of the number of errors that we wish to correct,

let us look at a few different scenarios. In the milder case, let us set d = 1 error.

This means we need to use a code such that dmin = 3. A construction for a perfect

code exists for such parameters – the Hamming code. In a stronger case, we wish

to correct errors of up to d = 3 which means that we need to use a code where

dmin = 7. Unfortunately, no perfect code exists for this configuration. However, it

is still possible to use a code with a minimal coverage, i.e., a code such that the

radius needed to cover all words with spheres centered at codewords is minimal.

12

Furthermore, since we know that the DNA sequences encode proteins, we can

translate the DNA sequences into an amino acid sequence using a codon table.

In that case our sequences shorten to n = 12 and the alphabet has 20 letters.

However, since a finite field of size 20 does not exist, we must use an alphabet

that is slightly bigger. The next prime power after 20 is 23, so we can use q = 23

and Σ = F23. The number of errors we are interested in fixing here is d = 1. Note

that this situation is not equivalent to either of the cases for DNA sequences. This

is due to the fact that changes in a single nucleotide may or may not change the

translated amino acid. Similarly, changes in 3 different nucleotides may result in

0 to 3 changes in the corresponding peptide sequence.

Although in the following we will give general results for any parameter set,

these are the sets we are interested in benchmarking.

13

3 All pairwise near-duplicates

If we have a set of N words, then the brute-force solution to finding all similar

pairs requires comparisons of all possible pairs which is a total of

(

N

2

)

=
N(N − 1)

2

pairs of words.

We are looking for an algorithm to rather quickly find all the near-duplicate

pairs in a set of input words.

Definition 11. The set of near-duplicates of an input set X ⊆ Σn with respect to

distance d is a set of two-word sets

N (X, d) = {{x, y} : x, y ∈ X, d(x, y) ≤ d} .

The set {x, y} is called an unordered pair.

Note that since d(x, y) = 0 only if x = y, all near-duplicates are at distance

at least 1 from each other.

The task of finding all near-duplicates of a particular input set X is a rather

hard one. A simpler task is to find a superset of near-duplicates which is smaller

than the set of all pairs.

Definition 12. The set of candidate near-duplicates of an input set X ⊆ Σn with

respect to distance d is the set of two-element sets

NC(X, d) ⊇ N (X, d).

We can then calculate the exact distances between all of the pairs in this set

and thus find pairs of words that are in our distance range. Although a trivial

candidate set is the set of all pairs, it is our intention to minimize the size of the

candidate set, leaving us with as few comparisons as possible.

The two algorithms described in this section are both based on the same idea

of hashing multiple times. The general scheme is the following. Let H be a set

of hash functions. Pick a hash function h ∈ H and group all of the input words

14

in set X based on the output of this function. We will then form unordered pairs

of all the words in one group. All these pairs will be added to the candidate set

NC(X, d). We will repeat this process with all the hash functions in set H. This

process should give us a smaller set of candidates than the set of all pairs. Our

task is to construct this set of hash functions.

We are interested in finding the smallest set of functions for the described

algorithm such that for any input set all the near-duplicate pairs are covered but

also the least amount of false near-duplicate candidates are reported. This should

help us to minimize the number of necessary comparisons we will have to make to

find the actual near-duplicates.

Two different hash function sets will be constructed in the following subsections.

We will analyse the resulting constructions in terms of the size of the candidate

set, giving both a lower and an upper bound to the set size.

3.1 Baseline method

Before describing the method based on coding theory, let us set the baseline with

the following simple solution based on the idea of locality-sensitive hashing [4]

which has also been used for near-duplicate detection.

Denote the set of indices of words in Σn with I = {1, 2, . . . , n}. The construc-

tion will use the following type of hash functions.

Definition 13. A substring function is a function hI : Σn → Σk where 0 < k ≤ n

and I = {i1, i2, . . . , ik} ⊆ I is a set of indices such that

hI(x) = xi1
xi2

. . . xik
.

Let X be a set of words. Let x, y ∈ X be near-duplicates with respect to

distance d, that is {x, y} ∈ N (X, d). Hence the two words are different in some

positions ∆ = {i1, i2, . . . , id′} where d′ ≤ d. We would like to have a set of hash

functions H = {hI : I ⊆ I} such that

∃I ⊆ I : hI(x) = hI(y).

This requirement ensures that for all pairs of near-duplicates {x, y}, at least

15

one of the hash functions will use a set of indices where the two words are the

same and if it does, the output of the hash function will be the same.

Let there be ℓ = |H| hash functions. To simplify the analysis, let us use a set of

hash functions H = {hI1
, hI2

, . . . hIℓ
} such that all coordinates will be used exactly

once for some hash function. This is formalized in the following two equations.

ℓ
⋃

i=1

Ii = I

∀i, j : i 6= j ⇒ Ii ∩ Ij = ∅

We will consider as candidate pairs all such pairs where the output of at least

one hash function was the same. For an input set X, this can be expressed more

formally as

NC(X, d) = {{x, y} : ∃h ∈ H : x, y ∈ X, h(x) = h(y)}.

One way of defining the functions is by splitting the words into d+1 consecutive

substrings of length k = n
d+1

where n is the length of the words and d is the

threshold of near-duplicates. For simplicity, let us assume that n is a multiple of

d+1. According to the pigeonhole principle, if two words have d or less differences,

at least one of the d + 1 substrings will be equal. Thus the algorithm requires

ℓ = d + 1 hash functions.

The functions will be the following.

h1(x) = x1x2 . . . xk

h2(x) = xk+1xk+2 . . . x2k

...

hℓ(x) = xdk+1xdk+2 . . . xn

Let us give some bounds on the size of the candidate near-duplicate set. If the

words all come from an alphabet Σ which contains q letters, then each of these

functions has qk possible outputs. Each of these outputs has a corresponding

bucket.

16

Definition 14. A bucket for hash function h is the set

By,h = {x : h(x) = y}.

In case we are not interested in any particular function h, the notation for a bucket

can be shortened to By.

Each function splits the input dataset between its buckets. For each bucket

By, there are qn−k different inputs x ∈ Σn that will result in the same output y.

Hence, the maximal number of words that can fall into the bucket is qn−k:

∀y ∈ Σk : |By| ≤ qn−k.

Since candidates are formed by pairing up all the elements in a bucket, the

number of candidate near-duplicates for an input set X for this algorithm is

|NC(X, d)| =
∑

h∈H

∑

y∈X

(

|By,h|

2

)

.

For a single function each word can only fall into a single bucket, hence for an

N -element input set the following condition must hold:

∀h ∈ H :
∑

y∈X

|By,h| = N.

For an input set X containing N elements, the size of NC(X, d) is maximal

when for all functions some buckets are full and the rest are empty.

The number of full buckets for a single function is then

N

qn−k
.

All of these will contribute
(

qn−k

2

)

unordered pairs to the candidate set and there

are d + 1 functions. This can be summarized by the following lemma.

Lemma 1. Let X ⊆ Σn be an N -element input set. The maximal number of

candidate near-duplicates with respect to distance d arising in the baseline scheme

17

|NCmin(X, 1)| |NCmax(X, 1)| |NCmin(X, 3)| |NCmax(X, 3)|

DNA
(

N
6.9·1010 − 1

)

N 6.9 · 1010N
(

N
1.3·105 − 2

)

N 3.6 · 1016N

Peptide
(

N
6.4·107 − 1

)

N 6.4 · 107N - -

Table 3: Bounds to sizes of candidate near-duplicate sets for N -element input set
X for three different scenarios. The numbers for peptides are given with q = 20.

is

|NCmax(X, d)| = (d + 1) ·
N

qn−k
·

(

qn−k

2

)

=
d + 1

2

(

qn−k − 1
)

N

where q is the size of the alphabet Σ and k = n/(d + 1).

Next, let us provide a lower bound to the size of the candidate set. The size

of NC(X, d) is minimized when hashing spreads the words uniformly over all the

buckets, resulting in as few words as possible in a single bucket. As a reminder,

a single function has qk different buckets. For simplicity let us assume that N is

divisible by qk. Then the number of words in a single bucket is

N

qk

which will contribute
(

N
qk

2

)

pairs to the candidate set. Since there are d + 1 hash functions, the total number

of candidate pairs is given by the following lemma.

Lemma 2. Let X ⊆ Σn be an N -element input set. The minimal number of

candidate near-duplicates with respect to distance d arising in the baseline scheme

is

|NCmin(X, d)| = (d + 1) · qk ·

(

N
qk

2

)

=
d + 1

2
N

(

N

qk
− 1

)

where q is the size of the alphabet Σ and k = n/(d + 1).

For any set of input sequences X, |NCmin(X, d)| ≤ |NC(X, d)| ≤ |NCmax(X, d)|.

The sizes of NCmin and NCmax have been tabulated in Table 3 for the scenarios

described in Section 2.3. The bounds give a rather wide range for the actual size

18

of NC. We can see that in the best case the number of comparisons we will have

to make is a lot smaller than in the brute-force solution. This is promising, since

under the assumption that words in the input dataset are sampled randomly, the

lower bound is much more likely to occur. The upper bound provided here is very

improbable in practice.

The prototype implementation of this scheme in Sage can be seen in Appendix

A.1.

3.2 Method based on error-correcting codes

This section provides the second construction for a set of hash functions. Let

Σ = Fq be a finite field and C ⊆ F
n
q an (n, M, dmin) code. Let the threshold for

near-duplicates be d such that

d =

⌊

dmin − 1

2

⌋

> 0.

Let D be a nearest-codeword decoder of this code. Let us assume that the code is

perfect.

Let us construct a set of hash functions H. Let the first hash function in this

set be the decoding function D. The buckets will now correspond to codewords,

since the decoding function assigns the nearest codeword to any word in the space

Σn. All buckets will have the form

Bc = {x : D(x) = c}.

Since the code we are using is perfect, all of the words in bucket Bc will be in the

sphere centered at c. Since all the words in a sphere are relatively close together,

let the set NC(X, d) be populated by forming unordered pairs of all the words in

a single bucket.

However, this one hash function may not yet have found all the pairs at distance

up to d - there might be pairs that fell into different spheres at hashing. See Figure

2 for an illustration. So we need to shift all the codewords to cover the rest of the

candidate near-duplicate pairs.

19

c1

c2

c′
1

c′
2

x

y

Figure 2: A pair of near-duplicate words that decode to different codewords are
decoded to the same codeword in a shifted code.

Definition 15. Given an (n, M, dmin) code C over a finite field Fq, the shifting of

this code by a vector ε ∈ F
n
q is the operation of creating a new code Cε such that

Cε = {c + ε : c ∈ C}.

Let it be noted that even if C is a linear code, the resulting shifted code is not

linear in the case

∀c ∈ C : c + ε 6= 0.

Additionally, in the case of ε = 0, the shifted code is equal to the original:

C0 = C.

Let us denote the nearest-codeword decoder of Cε by Dε. Since C is defined over

a field, shifting codewords by a vector ε is equivalent to shifting all words by a

vector −ε. Thus we can construct decoding of the shifted code as

Dε(x) = D(x − ε).

Let X be an arbitrary input set. The task of constructing the set of hash func-

tions can be reworded into finding a set of shifts E such that each near-duplicate

20

pair is decoded into the same codeword for at least one code Cε:

∀{x, y} ∈ N (X, d) : ∃ε ∈ E : Dε(x) = Dε(y).

On the one hand, the more shifts there are, the more candidate pairs we will get.

On the other hand, there need to be enough shifts so that all near-duplicate pairs

will always be caught by some shifting. In the following, we will first give a lower

bound to the number of shifts in set E . Assuming that pairs of near-duplicates

contributed to the near-duplicate set are disjoint between distinct shifts, the lower

bound will have the form

|Emin| =
|N (Σn, d)|

|C| |Ns(Σn, d)|

where |N (Σn, d)| in this context is the number of all near-duplicates in Σn, |C| is

the number of codewords in code C and |Ns(Σ
n, d)| the number of near-duplicates

in a sphere with radius d.

Let us prove the following lemma.

Lemma 3. In the space Σn the number of near-duplicates with respect to distance

d is

|N (Σn, d)| =
qn

2
·

d
∑

i=1

(

n

i

)

(q − 1)i

where q is the size of the alphabet Σ.

Proof. Fix an arbitrary word x from Σn. The number of words at Hamming

distance i from word x is
(

n

i

)

(q − 1)i.

This is due to the fact that any word y at distance i from x differs from x at

exactly i positions out of n.

Since near-duplicates are at distance 1 to d from each other, the number of

near-duplicates containing x is

d
∑

i=1

(

n

i

)

(q − 1)i.

21

Since there are qn words in Σn and the pairs we are counting are unordered,

the total number of near-duplicates is

|N (Σn, d)| =
qn

2
·

d
∑

i=1

(

n

i

)

(q − 1)i.

Next, let us find the number of near-duplicate pairs in a sphere. We could

simply estimate it from above with the total number of pairs we can form of all

the words within a sphere. This estimate is, sadly, quite far off and we would like

to have a stricter bound. In order to do that, let us prove the following lemmas.

Lemma 4. In a full sphere with radius d the number of near-duplicates |Ns(Σ
n, d)|

with respect to distance 1 is

|Ns(Σ
n, 1)| =

(

n

1

)

(q − 1) +

(

n

1

)(

q − 1

2

)

=

(

n

1

)(

q

2

)

.

Lemma 5. In a full sphere with radius d the number of near-duplicates |Ns(Σ
n, d)|

with respect to distance 2 is

|Ns(Σ
n, 2)| =

(

n

1

)(

q

2

)

+
1

2

(

n

2

)

(q − 1)2(2n(q − 1) + q2 − 2q + 4).

Proof. The near-duplicate pairs {x, y} with threshold d inside a sphere of radius

d centered at vector c can be split into the following disjoint groups, each of which

can be easily counted. Let us accompany the following list with an example in F4

where c = (0, 0, 0, 0, 0). Assuming that d = 2, these are the groups.

(a) Pairs containing the vector c (for example x = c = (0, 0, 0, 0, 0) and y =

(1, 0, 0, 0, 0)).

(b) Pairs where both vectors are at distance a (0 < a ≤ d) from the vector c and

are at distance b (0 < b ≤ d) from each other (for example x = (1, 0, 0, 0, 0)

and y = (α, 0, 0, 0, 0) for a = 1, b = 1).

(c) Pairs where one vector is at distance a1 (0 < a1 ≤ d) from c, the other

at distance a2 (0 < a2 ≤ d) from c where a1 6= a2 and are at distance b

22

(0 < b ≤ d) from each other (for example x = (1, 0, 0, 0, 0) and y = (1, 1, 0, 0, 0)

for a1 = 1, a2 = 2, b = 1).

Let us find all these numbers. The number of pairs in group (a) is simply

Vq(n, d) − 1 =
d
∑

i=1

(

n

i

)

(q − 1)i. (1)

If we consider a codeword c, all the points in the sphere centered at c are at

distance up to d from c. The only word at distance 0 is the codeword itself. Thus

each element in the sphere (except for c) forms a near-duplicate pair with c.

The number of pairs in group (b) is

1

2

(

n

a

)

(q − 1)a

⌊ b

2⌋
∑

k=0

(

a

k

)(

n − a

k

)

(q − 1)k ·

(

a − k

b − 2k

)

(q − 2)b−2k (2)

given that we have defined the binomial coefficient in such a way that

if m > n, then

(

n

m

)

= 0.

This formula stems from the following components. First, there are
(

n

a

)

(q − 1)a

words at distance a from the codeword c. Let x be an arbitrary word from Σn.

All words y ∈ Σn differ from x in a combination of the following two ways.

(1) At a position i where xi 6= ci, yi is such that yi 6= xi and yi 6= ci. Thus x and

y are at the same distance from c and there is one difference between x and

y.

(2) At a position i where xi 6= ci, yi = ci; for another position j 6= i where xj = cj,

let yj 6= cj. Thus again the distance from c is the same but in this scenario

there are two differences between x and y.

If the difference between x and y is b, there can be 0 to ⌊b/2⌋ differences of type (2)

since each of this type of difference adds 2 to d(x, y). Let us denote the number of

this kind of differences by k. Thus the number of differences of type (1) is b − 2k.

If there are k differences of type (2), there are
(

a

k

)

different combinations of

k indexes i such that xi 6= ci. At each of these positions ci must be equal to

23

yi. Additionally, there are
(

n−a

k

)

different combinations of k indexes j such that

xj = cj. At each of these positions in y there can be anything but cj. As such,

there are (q − 1)k different ways that those positions could be filled in y.

As there were k differences of type (2), there need to be b − 2k differences of

type (1) for the distance between x and y to be b. There are a − k positions i in

y such that they are not different in terms of a type (2) difference and xi 6= ci.

Hence, there are
(

a−k

b−2k

)

different ways of choosing b − 2k such positions in y. At

each of these positions there can be a value that is different from both xi and ci,

so there are a total of (q − 2)b−2k ways those positions could be filled in y.

Addionally, the number of differences of type (2) can range from 0 to ⌊b/2⌋,

each of which corresponds to a different type of pair of x and y. Finally, since we

are interested in the number of unordered pairs and in the previous manner we

counted each such pair twice - once for x and once for y, the total number of pairs

as described in (b) is given in equation (2).

If d = 1, we can split the pairs in a sphere into only two groups: (a) and (b) –

the third group is empty. Thus, if we replace d = 1 in equation (1) and the only

combination of parameters a = 1, b = 1 in (2), we get the sum in Lemma 4.

If d > 1, we need to calculate the number of pairs in group (c) as well. Since

we are looking to find the number of unordered pairs, w.l.o.g. we can only look at

cases where a1 < a2. Let x be the word at distance a1 and y the word at distance

a2 from the codeword. Since in this case one word is farther from the codeword

than the other, we need to introduce a new type of difference.

(3) At a position i where xi = ci, yi is such that yi 6= xi. Thus y is farther away

by one difference from c than x and there is one difference between x and y.

For the pairs in this group, there have to be a2 − a1 differences of this type. The

rest b−(a2−a1) differences are formed similarly to the previous group of differences

of types (1) and (2). Thus, the number of pairs in group (c) is given by the formula

(

n

a1

)

(q − 1)a1 ·

(

n − a1

a2 − a1

)

(q − 1)a2−a1·

·

⌊

b
′

2

⌋

∑

k=0

(

a1

k

)(

n − a2

k

)

(q − 1)k ·

(

a1 − k

b′ − 2k

)

(q − 2)b′−2k

(3)

24

where b′ = b − (a2 − a1).

As these groups cover all possibilities of near-duplicate pairs to exist within a

sphere, to get the total number of near-duplicates, we need to add up the numbers

of each group as given in equations (1), (2), (3) with all possible combinations of

distance parameters a and b.

Example. With q = 4, n = 5, d = 1 we can use the [5, 3, 3] Hamming code (see

[10] for the construction). For that we know that the lower bound is

|N (F5
4, 1)|

|C| |Ns(F5
4, 1)|

=
7680

64 · 30
= 4

but empirically we have managed to find only sets of shifts with size 7. A possible

set of shifts that can be used as H is

(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (α, 0, 0, 0, 0),

(α + 1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1).

See Appendix A.3 for the usage of these shifts in the context of the code

method.

The question we were also trying answer is what is the number of candidate

near-duplicates that this scheme will provide us with? For each shift the candidates

will be formed by pairs of words in the same bucket. Given an input set X and a

set of shifts E , the number of candidates is then

|NC(X, d)| =
∑

ε∈E

∑

c∈Cε

(

|Bc,Dε
|

2

)

.

Similarly to the baseline, we would like to give upper and lower bounds to the

size of the candidate set.

First, let us give the upper bound for the size of NC(X, d) for an input set X

containing N words. Similarly to the baseline, the size of NC(X, d) is maximal

when some of the buckets are full and the rest are empty.

Since the buckets are spherical and one sphere can hold Vq(n, d) elements, the

number of full spheres is
N

Vq(n, d)
.

25

Between the elements in a sphere we will have to make

(

Vq(n, d)

2

)

comparisons. If the number of necessary shifts is |E|, the total number of candidate

pairs is given by the following lemma.

Lemma 6. Let X ⊆ Σn be an N -element input set. The maximal number of

candidate near-duplicates with respect to distance d arising in the code scheme is

|NCmax(X, d)| = |E|
N

Vq(n, d)

(

Vq(n, d)

2

)

=
|E|

2
(Vq(n, d) − 1)N

where q is the size of the alphabet Σ, |E| is the number of hash functions and

Vq(n, d) is the volume of a sphere set in Σn with radius d.

Also similarly to the baseline, the size of NC(X, d) is minimal if words are

spread equally between spheres. For a single shift, the number of buckets is |C|,

thus the number of words in each bucket is

N

|C|

which form
(

N
|C|

2

)

pairs that are added to the candidate set. If the number of necessary shifts is |E|,

the total number of candidate pairs is given by the following lemma.

Lemma 7. Let X ⊆ Σn be an N -element input set. The minimal number of

candidate near-duplicates with respect to distance d arising in the code scheme

with code C is

|NCmin(X, d)| = |E| |C|

(

N
|C|

2

)

=
|E|

2

(

N

|C|
− 1

)

where |E| is the number of hash functions.

26

Since the number of functions in this scheme is not obvious, it is not as straight-

forward to tabulate the bounds for our scenarios. We can, however, calculate two

types of values: first, bounds for the candidate set if the number of shifts is given

by the lower bound of the size of the shift set; and second, the maximal size for

the shift set for this method to be more effective in terms of number of candidate

near-duplicates compared to the baseline.

As a reminder, the upper bound for NC(X, d) for the baseline method was

|NCmax(X, d)| =
d + 1

2
(qn−k − 1)N.

In order for this method to be more effective, the number of candidate near-

duplicates must be smaller for this method. Thus, by comparing the upper bounds,

the number of shifts has to satisfy the following condition:

|E| <
(d + 1)

(

qn d

d+1 − 1
)

Vq(n, d) − 1
.

For example, if d = 1 then the condition can be simplified to the form

|E| <
2q

n

2

n(q − 1)
− 1

For our scenarios, the condition has the following numerical values. If q = 4 and

n = 36, for values of d = 1, 2, 3: |E| < 1.3 · 109, |E| < 1.5 · 1011, |E| < 3.6 · 1011

respectively.

If q = 20 and n = 12, for values of d = 1: |E| < 5.6 · 105.

So although the exact set of shifts is unknown, the bounds for the size of this

set are rather large for this method to be effective. We are hopeful that a set of

such shifts exist.

We can conclude that, at least in the worst case scenario for sufficiently large

q and n this method is better than the baseline.

27

4 Conclusion

This paper proposed and studied two methods for finding near-duplicates in a

large collection. The methods were defined over an abstract data collection and

analysed with the application domain of DNA sequences in mind. Upper and lower

bounds were given to the efficiency of both of the algorithms when compared to the

brute force method. Both algorithms were declared viable and faster alternatives

to the brute force method. The algorithm based on coding theory was shown to

be promising and we hypothesized that it is the more efficient method on large

input spaces.

Since this was only the first cursory glance at these algorithms, there are plenty

more questions that could be answered in relation to this topic. The method based

on coding theory could be further analysed. An implementation could be devel-

oped with restraints on time and memory consumption based on modern computer

architecture. Empirical tests on real biological datasets could be conducted. Since

the currently proven bounds are relatively lax, stricter bounds could be proven

for datasets drawn from fixed distributions. Either of the methods could be de-

veloped further and alterations to the schemes could be proposed and analysed.

For example, there may be alternatives to the parts in both schemes where all

pairs were formed out of elements in all buckets. Since we can theoretically list

all the neighbors of a word, we might gain in efficiency by taking this information

into account. More specifically, we are looking for a fast way to find neighbouring

buckets for a given input word x in bucket B that could contain near-duplicate

pairs containing x.

Overall, this study provided a relatively brief overview of a couple of algorithms

that can be used in speeding up a computation that has applications in many fields.

28

5 References

[1] G. V. Bard. Spelling-error tolerant, order-independent pass-phrases via the

Damerau-Levenshtein string-edit distance metric. In Proceedings of the fifth

Australasian symposium on ACSW frontiers-Volume 68, pages 117–124. Aus-

tralian Computer Society, Inc., 2007.

[2] M. Cameron, Y. Bernstein, and H. E. Williams. Clustered sequence represen-

tation for fast homology search. Journal of Computational Biology, 14(5):594–

614, 2007.

[3] N. M. Daniels, A. Gallant, J. Peng, L. J. Cowen, M. Baym, and B. Berger.

Compressive genomics for protein databases. Bioinformatics, 29(13):i283–

i290, 2013.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive

hashing scheme based on p-stable distributions. In Proceedings of the twentieth

annual symposium on Computational geometry, pages 253–262. ACM, 2004.

[5] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate

strong keys from biometrics and other noisy data. In Advances in cryptology-

Eurocrypt 2004, pages 523–540. Springer, 2004.

[6] C. Gong, Y. Huang, X. Cheng, and S. Bai. Detecting near-duplicates in

large-scale short text databases. In Advances in Knowledge Discovery and

Data Mining, pages 877–883. Springer, 2008.

[7] Y. Ke, R. Sukthankar, and L. Huston. Efficient near-duplicate detection and

sub-image retrieval. In ACM Multimedia, volume 4, page 5, 2004.

[8] J. P. Kumar and P. Govindarajulu. Duplicate and near duplicate documents

detection: A review. European Journal of Scientific Research, 32(4):514–527,

2009.

[9] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2008.

[10] R. Roth. Introduction to coding theory. Cambridge University Press, 2006.

29

[11] W. A. Stein et al. Sage Mathematics Software (Version 6.1.1). The Sage

Development Team, 2014. http://www.sagemath.org.

[12] Wikipedia. Finite field — Wikipedia, the free encyclopedia, 2004. http://

en.wikipedia.org/w/index.php?title=Finite_field&oldid=606530008

[Online; accessed 14-May-2014].

[13] X. Wu, A. G. Hauptmann, and C.-W. Ngo. Practical elimination of near-

duplicates from web video search. In Proceedings of the 15th international

conference on Multimedia, pages 218–227. ACM, 2007.

30

http://www.sagemath.org
http://en.wikipedia.org/w/index.php?title=Finite_field&oldid=606530008
http://en.wikipedia.org/w/index.php?title=Finite_field&oldid=606530008

Appendix

A Code examples in Sage

Validation of theoretical results and implementations of schemes were done using

Sage, an open-source mathematics software system [11].

A.1 Baseline method

The following is a simple implementation for the baseline method described in

section 3.1.

In this example, the analysed sequences are randomly drawn from F
5
4. Addi-

tionally, a simple scheme for the case where n is not divisible by d + 1 has been

implemented in the function find_pairs.

from collections import defaultdict

from itertools import combinations

def f(coordinates):

return lambda x: tuple(x.list_from_positions(coordinates))

def find_pairs(sequences, distance, space=space):

First, create the hash functions

n = space.degree()

k - the length of the (longer) subsequences

k = ceil(n/(distance+1))

n_short = k * (distance+1) - n

hash_functions = []

start = 0

for i in range(distance+1):

length = (k-1) if i < n_short else k

hash_functions.append(f(range(start, start+length)))

start += length

Second, fill buckets for each function

for fun in hash_functions:

buckets = defaultdict(list)

for sequence in sequences:

hash = fun(sequence)

buckets[hash].append(sequence)

31

Form unordered pairs for each bucket

for hash in buckets:

for pair in combinations(buckets[hash], 2):

yield pair

field = GF(4, ’a’)

dimension = 5

N = 100

sequences = random_matrix(field, N, dimension)

distance = 1

for pair in find_pairs(sequences, distance):

print pair

A.2 Neighbors of a single word

The following demonstrates the retrieval of a single vector’s neighbors in the vec-

torspace GF(4)5

Notice how Hamming distance is calculated as per the property 1.

field = GF(4, ’a’)

space = VectorSpace(field, 5)

word = space.random_element()

neighbors = []

for vector in space:

distance = (word + vector).hamming_weight()

if distance == 1:

neighbors.append(vector)

A.3 Finding candidate near-duplicates for q = 4, n = 5, d = 1

The candidates are found by the function find_pairs.

from collections import defaultdict

from itertools import combinations

def find_pairs(sequences, code, shifts):

32

for shift in shifts:

spheres = defaultdict(list)

for sequence in sequences:

hash = code.decode(sequence-shift)

spheres[tuple(hash)].append(sequence)

for hash in spheres:

for pair in combinations(spheres[hash], 2):

yield pair

field = GF(4, ’a’)

code = codes.HammingCode(2, field)

V = code.ambient_space()

shifts = [V((0,0,0,0,0)), V((1,0,0,0,0)), V((’a’,0,0,0,0)),

V((’a+1’,0,0,0,0)), V((0,1,0,0,0)), V((0,0,0,1,0)),

V((0,0,0,0,1))]

N = 100

sequences = random_matrix(field, N, code.length())

for pair in find_pairs(sequences, code, shifts):

print pair

33

B Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Gerli Viikmaa (date of birth: 17 February 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence)

to:

(a) reproduce, for the purpose of preservation and making available to the

public, including for addition to the DSpace digital archives until expiry

of the term of validity of the copyright, and

(b) make available to the public via the web environment of the University

of Tartu, including via the DSpace digital archives until expiry of the

term of validity of the copyright, of my thesis Detection of Near-

Duplicates Using Error-Correcting Codes, supervised by Sven

Laur,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-

lectual property rights or rights arising from the Personal Data Protection

Act.

Tartu, 14 May 2014

34

	Introduction
	Background
	Coding theory
	Finite fields
	Mathematical setup of our problem

	All pairwise near-duplicates
	Baseline method
	Method based on error-correcting codes

	Conclusion
	References
	Appendix
	Code examples in Sage
	Baseline method
	Neighbors of a single word
	Finding candidate near-duplicates for q=4,n=5,d=1

	Licence

