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ABSTRACT 

This thesis verifies the worst case losses (Value-at-Risk) of financial returns over a specified 

time period with a certain level of confidence. The measurement of VaR hinges on the 

distribution of investment returns. In order to test whether or not the VaR model accurately 

represents reality, back-testing is carried out for one day horizon for a yearly rolling window. 

The standard VaR parametric model which is based on normal distribution of returns is tested 

on real data. Findings are that this model is better for historical VaR estimation for bigger 

exceedance probabilities such as 5%, 1%, 2% etc, while the Student’s t-distribution seems to 

be better for smaller exceedance probabilities such as 0.5%, 0.1% etc. 

Keywords: Value-at-Risk, parametric methods, return distribution. 

CERCS: P160 Statistics, Operation research, programming, actuarial mathematics 

 

VaR riskimõõdu empiiriline testimine 

Magistritöö 

Ibraheem Olanrewaju Ola-Adua 

Lühikokkuvõte 

Magistritöös testitakse Value-at-Risk (VaR) metoodika kasutatavust tegelikel andmetel. VaR 

on riskimõõt, mis näitab suurimat tõenäolist kahju, mis võib investeeringut tabada etteantud 

ajahorisondi lõpuks. VaR arvutamine põhineb investeeringu tulususe tõenäosusjaotusel. Töö 

eesmärgiks on testida empiiriliselt, kas tulususte normaaljaotusel põhinev VaR-metoodika 

annab teooriaga kooskõlalisi tulemusi.  New-Yorgi börsi andmete analüüs näitas, et mõõdukate 

usaldustõenäosuste (95%, 98%, 99%) korral on normaaljaotusel põhinev VaR õigustatud, kuid 

suuremate tõenäosuste puhul (99,9% jne) tuleks kasutada t-jaotust, mille sabad on raskemad. 

Võtmesõnad: riski all olev väärtus, parameetriline meetod, tulususe jaotus 

CERCS: P160 Statistika, operatsioonianalüüs, programmeerimine, finants- ja 

kindlustusmatemaatika   
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

Financial institutions need some capital (reserve) large enough to cater for future unexpected 

losses. The unexpected losses could be viewed as risks in financial terms. Risk is simply the 

possibility of an unfavourable outcome and its negative effect. Oxford dictionary defines risk 

with a modifier as “A person or thing regarded as a threat or likely source of danger”.  

 

A resolution was reached 1998 in Basel, Switzerland which turned into a recommendation for 

banking regulations with regard to credit, market and operational risks. According to Abad et al 

(2014), this resolution or agreement was called Basel I also known as the Basel Accord by the 

Basel Committee on Bank Supervision (BCBS) in a meeting which involves chairmen of various 

central banks across Europe and the United States of America. The purpose of the resolution is 

to ensure that financial institutions hold enough capital on account to meet obligations and absorb 

unexpected loss. However, financial risk cannot be measured practically in actual sense but can 

only be inferred from behaviours of observed market prices using some distribution tests as 

mathematical principles. 

 

Risk measure takes place when these mathematical principles are applied to the computation of 

risk. The statistic obtained during risk measure is referred to as risk measurement which tells us 

the extent to which a damage is done and how severe is the negative effect of risk on an 

investment.  Therefore, we measure risk in order to have the idea of how big a quantity, the 

unexpected loss would seem. The measurement of risks in financial institutions becomes crucial 

with the development of some instruments such as Mean Variance Portfolio Theory, volatility 

and Value-at-Risk (VaR) among others. The main focus of risk measure in this study is the VaR 

also called Riskmetrics which was believed to have been invented or introduced by JP Morgan 

in the late 80’s (Moscoso, 2012).  VaR has become an essential tool for risk measure in many 

financial institutions and this has sprung up an increase in academic literature over the last decade 

on the study of VaR with so many modifications especially in the aspect of finding a different 

distribution for returns other that the normal distribution as postulated in Riskmetrics.  

VaR is a universal concept which summarizes in a single number all the risks of a portfolio 

including interest rate risk, foreign exchange risk and so on. It combines loss (quantile) and 
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probability, it facilitates comparison between different asset classes. It is a significant step 

forward with respect to traditional measures such as the greek and gamma which measures the 

sensitivities of options to underlying risk factors (Danielsson, 2011).  

 

VaR as a risk measure is the scope of this thesis which aims to study and verify the interesting 

fact if returns are normally distributed or follow some other distributions such as the Student’s 

t-distribution. Value-at-Risk (VaR) is defined as a quantitative tool for determining the 

maximum potential loss in the return of investment over a given period of time at a specified 

confidence level. More precisely, VaR is the α-quantile of the profit (loss) distribution of the 

investment. Mathematically, 𝑃(𝑋 ≤ 𝑉𝑎𝑅) = 𝛼, where 𝑋 is the profit (loss) of the investment 

over the given time horizon. By this definition, VaR is usually a negative number. It also refers 

to the far-left tail of the unconditional return distributions. There is going to be difficulty in 

estimating VaR of financial returns when the distribution is unknown. The traditional method of 

estimating VaR is to assume normality but return distribution can be fitted in actual sense for 

correctness.  The empirical calculations involve the estimation of the lower-order quantile, for 

example 1% or 5% quantiles of the return distribution. It is noteworthy that VaR seems easy but 

its accurate measurement is a very challenging statistical problem. Under normal assumption, 

VaR either underestimates, that is, the number of risky returns is greater than the expected 

number when smaller quantile is specified or overestimates when bigger quantile is specified. 

Doric and Doric (2011), noted that risk analysis of VaR can be done in two stages; first, by 

expressing profit and loss in terms of returns and secondly, by modelling the returns statistically 

and estimate the VaR returns by computing appropriate quantiles. 

The empirical distribution function of the sample returns is an approximation of the true 

distribution of returns which usually is reasonably accurate in the centre of distribution. 

However, in order to estimate extreme quantile such as VaR, a reasonable estimate is needed not 

just in the centre but in the extreme tail as well. 
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1.2 STATEMENT OF THE HYPOTHESIS 

Value-at-Risk (VaR) is a measure of worst-case losses over a specified time period with a certain 

level of confidence. The measurement of VaR hinges on the distribution of investment returns. 

In order to test whether or not the model accurately represents reality, back-testing can be carried 

out. A failed back-test means that the VaR model must be re-evaluated. In this master thesis, we 

will analyse market data and apply parametric method for calculation of VaR. The models 

obtained will be back-tested against real data. It will be interesting to see whether the normal 

distribution fits the return distribution sufficiently well, or an alternative distribution (e.g. t-

distribution) should be used. 

 

1.3 SIGNIFICANCE OF THE STUDY 

Recent articles have pointed out that the return distributions of a real market data are leptokurtic, 

that is, fat or heavy tailed as against the widely known standard method of VaR construction 

which assumes that financial returns are independently and identically distributed and having a 

normal distribution. It has been proven that distribution of investment returns have three stylized 

facts, first, the presence of volatility clustering, indicated by high autocorrelation of absolute and 

squared returns, secondly, excess kurtosis (fat tails) and thirdly, skewness in the density of the 

unconditional return distributions that returns are negatively skewed. This research work verifies 

this fact through empirical assessment of Value at Risk models by back-testing procedures.  

 

1.4 DELIMITATIONS 

The scope of this study is focused on the use of VaR as a financial instrument or model for risk 

measure by applying it on real financial market data as there are well known other methods of 

risk measures such as the Expected Shortfall “which is not applicable in real sense (in practice) 

(Danielsson, 2010, p. 160)” and conditional VaR which is applicable to time series data. These 

two methods could perhaps enhance the efficiency of VaR. However, it is not in the scope of this 

research work to dwell on the best model to apply but to analyse market data through 

unconditional parametric calculation of VaR and to verify, if the normal distribution assumption 

gives unbiased results in back-testing, or other distributions (e.g. t-distribution) should be 

preferred. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter focuses on some articles that were reviewed in the course of finding a good approach 

to writing and conducting this research study. No gainsaying that no research is novel! 

 

2.1 EMPIRICAL ASSESSMENT OF VaR 

Abad et al (2014) categorised the methodologies initially developed for calculating a portfolio 

VaR into three. These are; 1) the variance-covariance approach (the parametric method), 2) the 

historical simulation (non-parametric method) and 3) the Monte-Carlo simulation (semi-

parametric method). He noted further that these standard models have numerous shortcomings 

that have led to the development of new proposals. Among the parametric approaches the first 

model for VaR estimation is Riskmetrics and a major drawback of the model is the normal 

distribution assumption for investment returns which is against the empirical evidence that 

investment returns do not necessarily follow the normal distribution; secondly, this relates to the 

model used to estimate conditional volatility; thirdly, this involves the assumption that 

investment returns are independently identically distributed. He mentioned that parametric 

methods have moved in several directions to counter this drawbacks in the estimation of VaR. 

Hence, better return distributions other than the normal distribution should be fitted to real 

market data or investment returns.  

In his article, in the context of non-parametric method, he noted that several non-parametric 

density estimations have been implemented with improvement on the results by historical 

simulation. However, in the semi-parametric models, new approaches have been proposed, some 

of which are; the Filtered Historical Simulation proposed by Barone-Adesi et al (1999), this 

method is applied by Sommacampagna (2003) where she used the Kalman filter for estimating 

VaR, the CAViaR (Conditional Autoregressive VaR) method proposed by Engle and Manganelli 

(2004) and the conditional and unconditional approaches based on the Extreme Value Theory.  

Abad et al (2014) emphasised that the performance of the parametric approach in estimating VaR 

depends on the assumed investment return, when asymmetric and fat tail distributions are 

considered, the VaR estimate improves considerably, under a normal distribution the VaR 

estimate is not very accurate. 
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Doric and Doric (2011) used several alternative models on return distribution and compare 

predictive ability of VaR estimates based on them. They used the means of back-testing for the 

whole sample and did not discover the asymmetric behaviour of returns in the case for many 

stock indexes. However, it was proved that based on VaR estimation, Student’s t-distribution 

and Normal Inverse Gaussian (NIG) distribution are considered good for all α-values. 

However, they noted that since the unconditional parametric models assume that investment 

returns are independently and identically distributed (iid), the density given as: 

𝑓𝑥(𝑥) =  
1

𝜎
𝑓𝑟∗ (

𝑥 − 𝜇

𝜎
), 

 

where  𝑓𝑟   is the density function of the distribution of 𝑟𝑡 and 𝑓𝑟∗ is the density function of the 

standardized distribution of 𝑟𝑡. The parameters µ and σ are the mean value (trend) and standard 

deviation (volatility) of 𝑟𝑡. The VaR for return 𝑟𝑡for long trading positions is given by 

𝑉𝑎𝑅𝑙𝑜𝑛𝑔 =  𝜇 +  𝑟𝛼
∗𝜎 

For short trading positions, VaR is equal to, 

𝑉𝑎𝑅𝑠ℎ𝑜𝑟𝑡 =  𝜇 +  𝑟1−𝛼
∗ 𝜎, 

where 𝑟𝛼
∗ is the α-quantile of 𝑓𝑟

∗ and 𝛼 = 0.05. 

According to Danielsson (2011), there is no intrinsic reason for VaR to be positive, that is VaR 

might end up on the negative side if the mean of the density of profit/loss distribution is 

sufficiently large, the probability quantile corresponding to VaR might end up using the negative 

side especially for long holding periods. He summarized some issues which might arise in 

applying VaR. These include, VaR is only a quantile on the return distribution, it is a coherent 

risk measure for some special cases and lastly, it is easy to manipulate. However, VaR has 

provided the best estimate among other available risk measures, it has underpinned most practical 

risk models. 

 

2.2 RETURN DISTRIBUTIONS  

This section focuses on the normal distribution, student’s t-distribution, normal inverse Gaussian 

distribution and the stable distribution (Doric and Doric, 2011). 
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2.2.1 NORMAL DISTRIBUTION 

The normal distribution also known as the Gaussian distribution is defined with two parameters 

µ (trend) and σ (volatility). VaR under normal distribution is calculated using these two 

parameters which is the most technical and widely applied model for assets returns until about 

ten years ago when findings are that assets returns are not necessarily normally distributed. 

The normal density function is defined by 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒

(−
(𝑥−𝜇)2

2𝜎2 )
 

The fitting of the normal distribution uses the maximum likelihood estimate (MLE) for µ and σ. 

𝜇 ̂ =
1

𝑛
∑ 𝑟𝑖

𝑛
𝑖=1     𝜎̂ = √

∑(𝑟𝑖−𝜇̂𝑟)2

𝑛−1
 

 

where 𝑛 is the number of observations in the return series. The normal distribution is said to have 

a zero skewness and kurtosis of 3.  However a different method of fitting the distribution is 

employed in this research study using R-program. 

 

2.2.2 STUDENT’S T-DISTRIBUTION 

Doric and Doric (2011) noted that the Student’s t-distribution has become an appropriate 

distribution in developing a model for asset return as seen in many empirical distribution. This 

is because it has a fat tail and its skewness is not zero as in the case of the normal distribution. 

The density function of t-distribution is defined by; 

𝑓(𝑥) =
𝛤 (

𝑣
2 + 1/2)

𝛤 (
𝑣
2 √𝜋𝑣𝑏)

(1 +
(𝑥 − 𝜇)2

𝑏𝑣
)

−(𝑣+1)/2

, 

where v > 2 is the degrees of freedom and b > 0  is the scale parameter. 

Rozga and Arneric (2009) stated that the standard t-distribution has heavier tail with degrees of 

freedom in the interval, 4 ≤ df ≤ 30. This becomes a fact after fitting the t-distribution in this 

research work. They stated that degrees of freedom (df) can also be estimated by using the 

formula; 
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𝐾̂ =
6

𝑑𝑓̂ − 4
, 

where 𝐾̂is the kurtosis of the investment returns and df̂ is the degrees of freedom. This is the 

method of moments for estimation of degrees of freedom. 

 

2.2.3 NORMAL INVERSE GAUSSIAN DISTRIBUTION 

The NIG distribution is characterised by fours parameters α, β, σ and µ. 

The density function is defined by; 

𝑓𝑁𝐼𝐺(𝑥) =  
𝛼𝜎

𝜋

𝑘1 (𝛼√𝜎2+ (𝑥−𝜇)2)

√𝜎2+ (𝑥−𝜇)2
 𝑒𝜎√𝛼2−𝛽2+ 𝛽(𝑥−𝜇),  

where 𝑘1 denotes the modified Bessel function of the third kind of order 1, µ and σ denote the 

scale and location parameters respectively. The conditions for parameters are ׀β ׀   ≤ α and δ > 0. 

The parameters α and β refer to the flatness of the density function and the skewness of the 

distribution respectively. The greater the α, the greater the concentration of the probability mass 

around µ and a negative β means heavier left tail while a positive β means heavier right tail. The 

value β = 0 means the symmetric distribution around µ (Doric and Doric, 2011). 

Aas and Haff (2006) argued that NIG is one of the most promising distributions for financial 

returns among other distributions because it is analytically tractable among other attractive 

theoretical properties. 

 

2.2.4 HYPERBOLIC DISTRIBUTION 

The hyperbolic distribution had been used in various fields before it was applied by Eberlein and 

Keller (1995).  The hyperbolic distribution permits heavier tail than the normal distribution 

because its log-density is a hyperbola instead of a parabola as in the normal distribution (Doric 

and Doric, 2011). 

The density function is defined by; 

𝑓𝐻(𝑥) =  
 𝜎2 − 𝛽2

2𝛼𝜎𝑘1(𝜎√𝜎2 − 𝛽2)
 𝑒−𝛼√𝜎2+(𝑥−𝜇)2+ 𝛽(𝑥−𝜇), 

where 𝑘1is the modified Bessel function of the third kind with index 1. Parameters α and β 

determine the shape of the density while σ and µ determine the scale and location respectively. 
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2.2.5 STABLE DISTRIBUTION 

The linear combination of two independent random samples is to be stable if it has the same 

distribution for both the location and the scale parameters. They are sometimes referred to as the 

Levy alpha-stable distribution. 

 Doric and Doric (2011) related that the use of the stable distribution to model stock prices was 

first proposed by Mandelbrot (1963), when he used it for modelling stock and commodity prices 

and also regarded it as a better description than the normal distribution. He noted that although, 

most stable distributions and their probability densities cannot be described in closed 

mathematical form but their characteristic functions can be expressed in closed form. He stated 

that stable distributions are characterized by four parameters α, β, σ, and µ and the characteristic 

function of the general stable function is given by; 

𝐸(𝑒𝑖𝜃𝑥) =  {
𝑒−𝜎𝛼|𝜃|𝛼(1−𝑖𝛽 tan

𝜋𝛼
2

sin 𝜃)+𝑖𝜇𝜃 ;  𝛼 ≠ 1

𝑒−𝜎|𝜃|(1+𝑖𝛽
2
𝜋

ln|𝜃| sin 𝜃)+𝑖𝜇𝜃 ;  𝛼 = 1
 

He explained the parameters of this characteristic function as follows. The characteristics of the 

exponent or index α lies in the half-open interval (0, 2] and measures the rate at which the tails 

of the density function decline to zero. The skewness parameter β lies in the closed interval [-1, 

1] and is a measure of asymmetric of the distribution. Stable distribution can be skewed to the 

left or right depending on the sign β. The scale parameter, σ > 0 measures the spread of the 

distribution and location parameter, µ is a rough measure of the midpoint of the distribution. The 

stable distribution with these parameters is denoted as 𝑆𝛼(𝛽, 𝜎. 𝜇). 

 

2.2.6 BINOMIAL DISTRIBUTION  

From the basic idea of probability, Andersen and Frederiksen (2010) noted that the binomial 

distribution is useful when dealing with random variable with two possible outcomes, success 

and failure.  They noted that this idea is also useful in risk management because of the continuous 

interest in the evaluation of the risk models. 

Say one is interested in evaluating whether the loss in a given portfolio is below (success) or 

above (failure) some arbitrary threshold. Given a sample of n-trial observations and X, a random 

variable that equals the number of successes in these 𝑛 − trials. If 𝑝 is the probability of success 

and 1 − 𝑝 is the probability of a failure and the four conditions below are met, then the series of 

random variable can be defined as binomial distributed. These four conditions are: 
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i. only two outcomes are possible for every trial, 

ii. each trial’s outcome has the same probability of success, 

iii. each outcome does not depend on previous outcomes, that is, independence between 

outcomes, 

iv. there is a fixed number of trials. 

When these conditions are met, it is possible to calculate the number of successes with the 

combinatorial approach below: 

(𝑛
𝑥

) =  
𝑛!

𝑥!(𝑛−𝑥)!
     (2.1) 

and the related probability 𝑝𝑥(1 − 𝑝)𝑛−𝑥. Summing up, the probability of 𝑥 successes within a 

series of 𝑛 − trials can be calculated as: 

𝑃(𝑥) = (𝑛
𝑥

)𝑝𝑥(1 − 𝑝)𝑛−𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑥 = 0,1,2, … , 𝑛   (2.2)  

The mean of the binomial distribution equals the proportion of the rate of success of the trials, 

that is, 𝜇 = 𝑛𝑝 and the standard deviation is 𝜎 =  √𝑛𝑝(1 − 𝑝). 

 

2.3 BACK-TESTING 

Abad et al (2014) noted that among the standard tests for the accuracy of VaR models there is 

back-testing criterion. Others include, the unconditional and conditional coverage tests and the 

dynamic quantile test. They noted that to implement all these tests an exception indicator must 

be defined as follows: 

𝐼𝑡+1 =  {
1      𝑖𝑓  𝑟𝑡+1 < 𝑉𝑎𝑅(𝛼)
 0     𝑖𝑓  𝑟𝑡+1 > 𝑉𝑎𝑅(𝛼)

, 

where  𝑟𝑡+1 is the return after day 𝑡 = 252 . 

Kupiec showed that if the probability of an exception is constant, then the number of 

exceptions, 𝑥 =  ∑ 𝐼𝑡+1 follows a binomial distribution, B(N, α). For back-testing criterion, the 

test for the significance of the departure of 𝛼̂ from α is carried out using the z-statistic which 

follows an asymptotic normal distribution: 

𝑧 =  
(𝑁𝛼̂ − 𝑁𝛼)

√𝑁𝛼(1 − 𝛼)
 

(Kupiec, 1995 as cited in Abad et al 2014). 
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Danielsson (2011) noted that there is no best model for forecasting risk as individual models can 

be checked for parametric significance or analysing residuals. According to him, back-testing 

evaluates VaR forecasts by checking how a VaR forecast model performs over a period. It is a 

procedure used to compare various risk models. It aims to take an ex ante VaR forecasts from a 

particular model and compare them with ex post realized investment returns (historical 

observations), whenever losses exceed VaR, a VaR violation is said to have occurred. He noted 

that back-testing can be useful in identifying the weakness of risk forecasting models and 

providing an improvement. It prevents underestimation of VaR and which ensures that a financial 

institution carries significantly high capital, it as well reduces overestimating VaR which can 

lead to excessive conservatism. Danielsson (2011) emphasized that the violation ratio is the 

actual number of VaR violation compared with expected value. This he said is the main tool in 

back-testing. 

His idea is as below: 

Violation Ratio, VR =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠
=  

𝑣1

𝑝 𝑥 𝑊𝑇
 

𝑣1 =  ∑ 𝐼𝑡+1 

𝑣0 = 𝑊𝑇 − 𝑣1, 

where 𝑊𝑇 is the testing window (the difference between the number of returns, N and number 

of trading days in a year, 252), 𝑣1 is the count of the indicator 𝐼𝑡+1 = 1 and 𝑣0 is the count of 𝐼𝑡+1 

= 0. 

He emphasized that if VR > 1 then the VaR model underforecasts risk and if VR < 1 then the 

VaR model overforecasts risk. However, if  𝑉𝑅 ∈ [0.8, 1.2], it is a good forecast and if 𝑉𝑅 <

0.5 𝑜𝑟 𝑉𝑅 > 1.5, the model is imprecise for 𝛼 = 0.01.  
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CHAPTER THREE 

METHODOLOGY OF BACK-TESTING 

This chapter focuses on the procedures involved in the parametric evaluation of VaR using the 

standard model, the normal distribution. However, after the discovery of some inadequacies the 

Student’s t-distribution was applied. 

 

3.1 DATA COLLECTION 

A 3-year historical trading data from 14/02/2014 to 14/02/2017 (756 days) gotten from 

www.finance.yahoo.com, the adjusted closing price for 12 companies form NASDAQ stock 

market was used in analysing the VaR at  90%, 95%, 98%, 99%, 99.5% and 99.9% confidence 

probabilities for both the normal and Student’s t-distributions. The companies are listed in the 

table below with the following label for identification purpose. 

COMPANY STOCK NUMBER 

APPLE 1 

INTEL 2 

MICROSOFT 3 

MICRON 4 

SIRIUS 5 

POPEYES 6 

CISCO 7 

FACEBOOK 8 

ON 9 

FRONTIER 10 

SPARTAN 11 

GILEAD 12 

 

3.2 INSTRUMENTATION 

3.2.1 ESTIMATING INVESTMENT RETURNS 

Let 𝑃𝑡 be the price of an investment asset on day 𝑡 and 𝑃𝑡−1the price the day before, that is, 𝑡 − 1. 

The investment return is given and calculated by; 

𝑟𝑡 =  
𝑃𝑡

𝑃𝑡−1
− 1        (3.1) 
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3.2.2PARAMETRIC MODEL FOR VaR FOR NORMAL DISTRIBUTION 

The calculation of VaR for normal distribution was based on the standard formula, 

  𝑉𝑎𝑅𝛼 =  𝜇 −  𝑞𝑛𝑜𝑟𝑚𝛼𝜎,      (3.2) 

where α is the confidence probability (90%, 95% etc),  𝑞𝑛𝑜𝑟𝑚𝛼 is the standard normal α-

quantile, µ is the mean and σ is the standard deviation of the return. 

The expected return, µ is estimated by the sample mean 

𝜇 ̂ =
1

𝑛
∑ 𝑟𝑖

𝑛
𝑖=1 , 

where 𝑟𝑖is the return on the day 𝑖, 𝑛 is the number of trading days in a year. 

The standard deviation 𝜎 is estimated by sample standard deviation 

𝜎̂ = √
∑(𝑟𝑖 − 𝑟̂)2

𝑛 − 1
 

 

The region for the profit/loss distribution is specified with the diagram below. 

 
L o s s Profit

5 %

 

Figure 3.1. Graphical representation of VaR (own drawing). 

The VaR formula stated above is used because our focus is on the loss i.e. on the negative side 

of the return distribution. 

 

3.2.3 PARAMETRIC MODEL FOR VaR FOR STUDENT’S T-DISTRIBUTION 

The normal distribution does not fit return investment in some cases, whereas, the Student’s t-

distribution fits properly in these failed cases. Hence, the calculation of VaR for Student’s t-

distribution was based on the formula, 

𝑉𝑎𝑅𝛼 =  𝜇 −  𝑞𝑡𝛼
𝑣𝜎,       (3.3) 

  

µ 𝑉𝑎𝑅𝛼 
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where α is the confidence probability (90%, 95% etc), 𝑣 is the same as degrees of freedom (df), 

𝑞𝑡𝛼
𝑣 is the α-quantile for the t-distribution, µ is the mean and σ is the standard deviation of the 

return. 

The expected return, µ is estimated by the sample mean, 

𝜇 ̂ =
1

𝑛
∑ 𝑟𝑖

𝑛
𝑖=1  , 

where 𝑟𝑖 is the return on day 𝑖, 𝑛 is the number of trading days in a year. 

The standard deviation is estimated by the sample standard deviation 

𝜎̂ = √
∑(𝑟𝑖 − 𝑟̂)2

𝑛 − 1
 

 

3.2.4 GENERAL SCHEME OF THE BACK-TESTING PROCEDURE 

General scheme of our back-testing procedure is the following: 

1. Get adjusted closing price for 3 trading years of stock data for any company, say Apple 

Incorporation. 

2. Proceed as follows: 

i. Calculate 𝑉𝑎𝑅𝛼 on the basis of 1 year data (252 days) 

ii. Compare 𝑉𝑎𝑅𝛼 with actual loss of the next day 

iii. Repeat the steps i-ii 503 times, each time with a new window shifted by 1 day 

forward 

iv. Count how many times (out of 503) 𝑉𝑎𝑅𝛼 did not work (number of violations). 

In an ideal case, the relative frequency of violations is close to the probability 𝛼. 
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The whole idea of the back testing procedure is explained by the diagram below. 

Year 1 , 252 trading days
Year 2 , 252 trading days

Year 3 , 252 trading days
 

Figure 3.2 showing the back-testing procedure for a 756 trading days starting with a 252-days 

and shifting the test window each time by one-day (own drawing). 

The idea of back-testing as it applies to failure rate gives a quantitative measure of the accuracy 

of the model. Since the loss values are on the negative side of the profit/loss distribution, the 

failure rates are expected to be 1% for 99% confidence level, 5% for 95% confidence level etc. 

Howbeit, statistical tests are needed to verify if the failure rate is too high or low compared to 

the expected failure rate. For if the number of violations is too low, the model is too conservative 

leading to an inefficient allocation of capital. Hence, the company applying the model will not 

act in their owner’s (shareholder’s etc) best interest. This failure rate could also be called the 

violation (Danielsson, 2011) or the Indicator (Abad et al, 2014).  
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3.2.5 BINOMIAL DISTRIBUTION AND THE BACK-TESTING FAILURE RATE 

From the binomial distribution discussed in the preceding chapter, when testing for failure rate, 

it is known that there are two possible outcomes at each point in time, that is VaR can either be 

violated or not. Because of this, each daily outcome can be treated as a Bernoulli trial with a 

binomial distribution. 

Letting 𝑛 be the total number of trials, 𝑝 the assumed probability of failure (the probability of 

violating VaR) and 𝑛𝐴 the number of failures in the series of 𝑛 −trials, the failure rate can be 

estimated by 𝑝̂ =
𝑛𝐴

𝑛
. 

We test the proportion hypothesis as follows to know whether to reject the model or accept it. 

𝐻0 ∶ 𝑝 =  𝑝0, 𝑤ℎ𝑒𝑟𝑒 𝑝0 = 𝛼 

Because the proportion test is two-sided, it gives the spread within which the sample failure rate 

will be in line with the population failure rate. If this hypothesis is rejected, the model is also 

rejected. 

 

3.2.6 CONFIDENCE INTERVAL AND THE BACK-TESTING FAILURE RATE 

The confidence interval is a good choice to check if the test for failure rate is accurate with a 

specific model by checking the interval for which the test values should fall within. 

The confidence interval for the failure rate 𝑝 is given by; 

𝑝̂𝐿𝐶𝐿 , 𝑝̂𝑈𝐶𝐿 =  𝑝̂  ±  𝑍0.975 𝜎̂,      (3.4) 

where 𝑝̂ denotes the proportion of failure rate 𝑝̂ =
𝑛𝐴

𝑛
, 𝑛𝐴 denotes the number of failure of 

investment returns, 𝑛 denotes the total number of the values of VaR, 𝑝̂𝐿𝐶𝐿 denotes the lower 

confidence level, 𝑝̂𝑈𝐶𝐿 denotes the upper confidence level, 𝑍0.975 is the standard 0.975-quantile 

of the standard normal distribution and 𝜎̂ is the standard deviation of the failure rate proportion 

given by 

𝜎̂ = √
𝑝̂(1 − 𝑝̂)

𝑛
 

The value of the failure rate 𝑝 is within the interval,  𝑝̂𝐿𝐶𝐿 < 𝑝 <  𝑝̂𝑈𝐶𝐿 , with probability 0.95. 

the confidence limit above are based on the assumption of independence of 𝑛 −  trials. 
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3.2.7 LOG-LIKELIHOOD TEST AND THE BACK-TESTING FAILURE RATE 

Christoffersen (1998) used a log-likelihood test to compare empirical failure rate 𝑝̂ with 𝑝0 = 𝛼  

(called the unconditional coverage test). 

 His setup for the test is as follows. 

𝐻0 ∶ 𝑝 = 𝑝0 𝑣𝑠 𝐻1 ∶ 𝑝 ≠ 𝑝0 

Combined with equation 2.1 which states that the probability of seeing 𝑛𝐴 violations is 

(1 − 𝑝0)𝑛0𝑝0
𝑛𝐴 where 𝑛0 = 𝑛 − 𝑛𝐴  is the total number of non-violating observations, it is 

possible to test the likelihood of this hypothesis against the observed probability of 

𝑛𝐴; (1 − 𝑝̂)𝑛0𝑝̂𝑛𝐴 where 𝜋 is an estimate of the true failure rate, 𝑝̂ =  
𝑛𝐴 

𝑛
. This gives the log-

likelihood ratio (LR) test simplified by (Andersen and Frederiksen, 2010) as below 

𝐿𝑅𝑢𝑐 =  −2 log [
(1−𝑝0)𝑛0𝑝0

𝑛𝐴  

(1−𝑝)𝑛0𝑝𝑛𝐴 ] ~𝑥2(1)      (3.5) 

or 

𝐿𝑅𝑢𝑐 =  −2[𝑛0 log(1 − 𝑝0) +  𝑛𝐴 log(𝑝0) − 𝑛0 log(1 − 𝑝̂) − 𝑛𝐴 log(𝑝̂)  ],  (3.6) 

where 𝑥2(1) is the chi-square distribution with 1 degree of freedom (df = 1). 

In practice, equation 3.6 is applied as some mathematical software programs have problem 

calculating (3.5) because when 𝑝 → 0  and 𝑛 → ∞ the denominator in 3.5 tends to zero and 

when 𝑛 and 𝑝 combined pass some threshold, some software programs fail to work. 

The test for unconditional coverage explains the goodness-of-fit of the failure rate compared to 

the proposed failure rate under 𝐻0. Therefore, 𝐻0 is accepted when 𝐿𝑅𝑢𝑐 < 𝑥2
1−𝛼(1) which 

means that the overall observed failure rate is in line with the expected failure rate, otherwise, 

𝐻0is rejected and 𝐻1is accepted. 

 

3.2.8 LOG-LIKELIHOOD TEST FOR INDEPENDENCE OF BACK-TESTING 

VIOLATIONS. 

The unconditional coverage test does not test for clustering and thereby it does not reveal if there 

is a tendency for large violations to come in clusters. Hence, the test for independence can be 

carried out to reveal this fact. 



17 
 

Andersen and Frederiksen (2010) stated that a more scientific test which will make it possible to 

accept or reject the model based on the failure rate, is a likelihood test. This method tests to verify 

whether violations are independently and identically distributed (iid) as postulated by 

Christoffersen (1998) 

 

When violations are not independent, the probability of a violation tomorrow, given there has 

been a violation today, is no longer equal to 𝑝. Because of this, it is necessary to set up a test 

which will reveal such tendencies. 

By defining 

 𝑛0𝐴 as the number of observations where a non-violation is followed by a violation 

 𝑛𝐴𝐴 when a violation is followed by another violation 

 𝑛𝐴0 when a violation is followed by a non-violation 

 𝑛00 when a non-violation is followed by another non-violation 

Define ℿ1 as:  

ℿ1  =  (
𝜋0𝐴

𝜋𝐴𝐴
) =  (

𝑛0𝐴

𝑛00 +  𝑛0𝐴
𝑛𝐴𝐴

𝑛𝐴0 + 𝑛𝐴𝐴

) 

The log-likelihood ratio test for independence thereby becomes a test for the null hypothesis,  

𝐻0 ∶  ℿ1  = ℿ2    𝑣𝑠    𝐻1 ∶ ℿ1 ≠ ℿ2, 

where ℿ2 = (𝑝
𝑝

)  and 𝑝̂ =
𝑛0𝐴+ 𝑛𝐴𝐴

𝑛
=

𝑛𝐴

𝑛
. The test statistic to test 𝐻0 is  

𝐿𝑅𝑖𝑛 =  −2 log [
(1−𝜋0𝐴)𝑛00𝜋0𝐴

𝑛0𝐴(1−𝜋𝐴𝐴)𝑛𝐴0  𝜋𝐴𝐴
𝑛𝐴𝐴

(1−𝑝)(𝑛00+ 𝑛𝐴0)(𝑝)(𝑛0𝐴+ 𝑛𝐴𝐴)
] ~𝑥2(1),  (3.9) 

 

The hypothesis test above is to test if the general failure rate is the same as the likelihood of 

observing a violation following a violation. If this is true, then the series of violations do not 

cluster. This test completely ignores 𝑝0 and only tests if it is comfortably probable that the 

probability of 𝑛𝐴𝐴 and 𝑛0𝐴 is the same as the general probability of observing a violation. If this 

test’s p-value is too high compared to the chi-squared value, the test of independence is rejected 

with the consequence of being that the violations are not independently and identically 

distributed (iid) (Andersen and Frederiksen, 2010). 
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Worthy of note is that if 𝐿𝑅𝑢𝑐 is rejected but 𝐿𝑅𝑖𝑛 is accepted, then this is a special case, where 

𝑝0 ≠ 𝑝 but where the violations are iid. On the other hand, if the test for unconditional coverage 

and independence is accepted then it means that the observed failure rate is close to the 

confidence level and that the probability of observing subsequent violations is also close to this 

confidence level.  

 

3.2.9 LJUNG-BOX TEST 

 One of the assumptions for the application of Value-at-Risk formula (3.2) is the assumption of 

independence of returns (𝑟𝑖). More exactly, the independence of returns is necessary in order for 

𝜎̂ to be an unbiased estimator of 𝜎. Therefore, we also need to test autocorrelations in return data. 

According to Danielsson (2011), the Ljung-Box test verifies for the correlation of investment 

returns, it verifies if the correlations of return are zero. If the autocorrelations of return are not 

different from zero then the expected value of the distribution would be the best guess for 

tomorrow’s portfolio return. It tests the overall randomness based on a number of lags, instead 

of testing randomness at each lag. However, the Ljung-Box test is a test of the general 

independently and identically distributed (iid) assumption of returns, where the 𝐿𝑅𝑖𝑛 is only 

tested for independence between violations. Hence, positive deviation must be followed by 

negative deviation on the average.  

𝐻0: Returns are independently distributed  

The test statistic is given by 

𝑄𝐿𝐵 = 𝑛(𝑛 + 2) ∑
𝜌̂(𝑗)2

𝑛 − 𝑗

ℎ

𝑗=1

, 

where 𝜌̂(𝑗)2 is the correlation factor between the 𝑗𝑡ℎ observation and the initial observation, 𝑛 

is the sample size, and ℎ is the number of lags being tested. The Ljung-Box test is thereby a test 

of the predictability between observations. We reject 𝐻0 if 𝑄𝐿𝐵 >  𝑥2
1−𝛼(ℎ), where 𝑥2

1−𝛼(ℎ)is 

the α-quantile distribution with ℎ degrees of freedom. 
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3.3 JARQUE-BERA TEST  

Among the assumptions for the application of Riskmetrics, Value-at-Risk formula (3.2) is to 

assume that returns are normally distributed. We need to ascertain this fact by carrying the 

normality test. 

According to Danielsson (2011), the Jarque-Bera test is a goodness-of-fit test which can be used 

to test if the return follows a normal distribution based on the observations of skewness and 

kurtosis of the empirical distribution. The test statistic is defined as  

𝐽𝐵 =  
𝑛 − 𝑘

6
(𝑆2 +

1

4
(𝐾 − 3)2), 

where 𝑛 is the number of observations, 𝑘 is the number of explanatory variables if the data come 

from the residuals of a linear regression, otherwise, 𝑘 = 0, 𝑆 is the asymmetry coefficient of the 

sample tested and 𝐾 is the kurtosis of the sample tested.  

Mathematically, 𝑆 and 𝐾 are defined by; 

 𝑆 =  
𝜇̂3

𝜎̂3 is the empirical distribution’s skewness and 𝐾 =  
𝜇̂4

𝜎̂4, where 
𝜇̂4

𝜎̂4 is the kurtosis, 𝜇̂3and 𝜇̂4 

are the third and fourth moment estimators respectively and 𝜎̂3 and 𝜎̂4 can be estimated from 

the variance as below, 

𝜇̂3 =  
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)3𝑛

𝑖=1 ,  𝜎̂3 = (
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 )
3/2

, 𝜇̂4 =  
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)4𝑛

𝑖=1 , 𝜎̂3 = (
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 )
2

, 

where 𝑥̅ is the average of the sample. 

This test follows a chi-square distribution with degrees of freedom (df) = 2.  

These tests are implemented in R-program. 
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CHAPTER FOUR 

DATA ANALYSIS AND INTERPRETATION 

This chapter presents the analysis of data used in conducting this research study. The 

interpretation of statistical findings based on the drawn hypotheses in Chapter one using the data 

gathering and analysis instrument described in Chapter three. 

 

4.1 DESCRIPTIVE STATISTICAL ANALYSIS OF INVESTMENT RETURNS OF 12 STOCKS  

Stock Min Return Max Return Median Mean 

 

Standard deviation Skewness Kurtosis 

1 -0.066 

 

0.081 

 

0.001 

 

0.001 

 

0.015 

 

0.148 

 

6.667 

 

2 -0.091 0.093 0.001 0.001 0.014 0.063 8.852 

3 -0.093 0.105 0.000 0.001 0.015 0.469 12.505 

4 -0.182 0.127 0.000 0.000 0.029 -0.009 6.825 

5 -0.057 0.048 0.000 0.000 0.012 -0.230 4.235 

6 -0.093 0.144 0.000 0.001 0.017 0.953 13.026 

7 -0.058 0.096 0.000 0.001 0.013 0.805 12.017 

8 -0.069 0.115 0.001 0.001 0.018 0.668 11.482 

9 -0.106 0.109 0.001 0.001 0.022 -0.186 5.756 

10 -0.137 0.143 0.000 0.000 0.023 0.238 9.524 

11 -0.130 0.153 0.001 0.001 0.020 0.927 14.256 

12 -0.143 0.059 0.001 0.000 0.019 -1.149 10.053 
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4.2 GRAPHICAL REPRESENTATIONS OF INVESTMENT RETURNS 

4.2.1 QQ PLOTS FOR APPLE RETURNS 

 

 

 

 

 

 

 

 

 

Figure 4.2.2(a) shows the QQ plot (norm quantiles) for normal distribution. It is obvious that this 

plot did not contain returns at the extreme ends (light tail) with the red lines. However, the QQ 

plot (t quantiles) for Student’s t-distribution is a better plot for its heavy/fat tail property. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2.2(a) Figure 4.2.2(b) 
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4.2.2 NORMAL PROBABILITY DENSITY FUNCTION AND HISTOGRAM FOR APPLE RETURNS 

 

 

 

 

 

 

 

 

 

 

 

 

From these charts above we see that, qualitatively, the distribution of Apple returns is close to 

normal. 

 

4.3 DISTRIBUTION TESTS FOR APPLE RETURNS 

Now we perform statistical tests of normality of Apple returns 

4.3.1 Result table of Test for normality for Apple returns. 

Test 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

Jarque-Bera 2.2e-16 

Shapiro-Wilk 9.34e-15 

 

The above table shows the test for normality based on the investment returns. The 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 

for each test is less than 0.05 which means we reject that the distribution of return is normal. 
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4.3.2 Result table of test for Student’s t-distribution for Apple returns. 

Test 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

t.test 0.0894 

The 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05 for the t-test above. We accept 𝐻0 and conclude that the distribution of 

return of the Apple equity could actually be from the t-distribution. 

 

4.4 TEST FOR AUTOCORRELATION OF RETURNS OF APPLE 

4.4.1 LJUNG-BOX TEST 

A 3-year historical trading data from 14/02/2014 to 14/02/2017 (756 days) for Apple equity was 

used for this test. 

Test 𝒑 − 𝒗𝒂𝒍𝒖𝒆 h 

Ljung-Box 0.5606 1 

 

From the result in the table above the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05. Hence, we accept 𝐻0 and conclude that 

investment returns of Apple can be regarded as independent.  

 

4.4.2 PARTIAL AUTOCORRELATION FUNCTION PLOT OF APPLE RETURNS 

A 3-year historical trading data from 14/02/2014 to 14/02/2017 (756 days) for Apple equity was 

used for this test. 
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4.5 SOME EMPIRICAL RESULTS PLOTS FOR APPLE DATA 

Next we present some graphics depicting the returns of Apple stock, its volatility, trend and 

values of 𝑉𝑎𝑅0.05 that are calculated by two methods (normal distribution based & t-distribution 

based). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Return volatility is calculated on the basis of 252 previous days. The same is true for trend and 

5% VaR based on normal and t-distribution. 
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4.6 CORRELATION MATRIX OF INVESTMENT RETURNS FOR 12 STOCKS 
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4.7 BACK-TESTING RESULTS TABLES FOR VaR ESTIMATES 

In the graph below the number of violations is plotted as graph against the confidence 

probabilities. The expected number of violations and the empirical number of violations from 

the normal distribution and the t-distribution is shown with the table of values at confidence 

probabilities 90%, 95%, 98%, 99%, 99.5% and 99.9%. 
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From the above charts with table of values, from the empirical estimation of VaR, the normal 

distribution produces the better results for 𝛼 = 5% , the same applies to 𝛼 = 10% where-as for 

other values like 𝛼 = 1% , 𝛼 = 0.5%  𝑎𝑛𝑑  𝛼 = 0.1%, the Student’s t-distribution seems to be a 

better model. For 𝛼 = 2%, the normal distribution seems good for some stocks, while the 

Student’s t-distribution seems good for some other stocks. 
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4.7.1 Results table for failure rate 𝑝̂. 

Here we present the names of data in numerical form. 

Empirical failure rate 𝑝̂ 

Model Normal Student’s t 

Stock α 0.1 0.05 0.02 0.01 0.005 0.001 0.1 0.05 0.02 0.01 0.005 0.001 

1   0.08 0.046 0.018 0.016 0.0119 0.0099 0.064 0.019 0.012 0.008 0.0019 0.000 

2 0.07 0.036 0.018 0.012 0.0099 0.0059 0.043 0.019 0.008 0.004 0.0039 0.000 

3 0.05 0.032 0.018 0.012 0.0039 0.0039 0.037 0.014 0.004 0.002 0.00 0.000 

4 0.07 0.048 0.024 0.012 0.0039 0.0039 0.061 0.026 0.004 0.004 0.0019 0.002 

5 0.08 0.052 0.032 0.019 0.0119 0.0059 0.069 0.036 0.012 0.006 0.0019 0.000 

6 0.07 0.038 0.019 0.014 0.0119 0.0079 0.049 0.024 0.012 0.008 0.0059 0.002 

7 0.06 0.039 0.018 0.012 0.0119 0.0079 0.049 0.018 0.009 0.006 0.0019 0.00 

8 0.07 0.038 0.022 0.018 0.0119 0.0079 0.049 0.022 0.012 0.002 0.00 0.00 

9 0.08 0.048 0.026 0.019 0.0139 0.0039 0.058 0.028 0.014 0.002 0.00 0.00 

10 0.08 0.052 0.026 0.018 0.0119 0.0059 0.059 0.024 0.008 0.004 0.0039 0.00 

11 0.09 0.046 0.029 0.018 0.0159 0.0039 0.058 0.028 0.014 0.004 0.0039 0.002 

12 0.06 0.034 0.024 0.014 0.0139 0.0079 0.038 0.024 0.009 0.004 0.0059 0.00 

 

Next we need to test whether the empirical failure rates in the table are in accordance with 

respective theoretical values of 𝛼 (shown at the top of each column of the table). 
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4.7.2 Results table for Log-likelihood test.  

 

The p-values in the table are to be used in the following way: if a p-value is smaller than 0.05, 

then we reject the null hypothesis i.e. the empirical failure rate is different from its respective 

theoretical failure rate 𝛼. However, if the p-value is larger than 0.05, then the empirical failure 

rate does not differ significantly from its respective 𝛼. The smaller p-values are highlighted in 

colour grey. 

 

Finally, the Christofferssen log-likelihood independence test of violations fails showing very 

small p-values. Hence, we reject 𝐻0 and conclude that there are dependencies in our back-testing 

sequences. However, this fact does not have serious consequences in practice since it does not 

affect the overall number of violations. 

 

 

 

Kupiec  Coverage Test 

Model Normal Student’s t 

Stock α 0.1 0.05 0.02 0.01 0.005 0.001 0.1 0.05 0.02 0.01 0.005 0.001 

1  p

-

v

a

l

u

e

s 

0.21 0.66 0.73 0.22 0.062 0.0002 0.004 0.0004 0.16 0.63 0.28 0.000 

2 0.006 0.12 0.73 0.67 0.17 0.02 0.00 0.0004 0.03 0.12 0.74 0.000 

3 0.00 0.05 0.73 0.67 0.74 0.11 0.00 0.00 0.002 0.03 0.00 0.000 

4 0.05 0.81 0.55 0.67 0.74 0.11 0.002 0.01 0.002 0.12 0.28 0.54 

5 0.11 0.86 0.08 0.05 0.06 0.02 0.02 0.12 0.16 0.33 0.28 0.000 

6 0.03 0.19 0.98 0.41 0.06 0.002 0.00 0.003 0.16 0.63 0.77 0.54 

7 0.002 0.28 0.73 0.67 0.06 0.002 0.00 0.00 0.07 0.33 0.28 0.000 

8 0.01 0.19 0.77 0.11 0.06 0.002 0.00 0.001 0.16 0.03 0.00 0.000 

9 0.06 0.81 0.37 0.05 0.02 0.11 0.00 0.01 0.30 0.03 0.00 0.000 

10 0.21 0.86 0.37 0.11 0.06 0.02 0.00 0.003 0.03 0.12 0.74 0.000 

11 0.42 0.66 0.24 0.11 0.01 0.11 0.00 0.01 0.30 0.12 0.74 0.54 

12 0.00 0.07 0.55 0.40 0.02 0.002 0.00 0.003 0.07 0.33 0.76 0.000 
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CHAPTER FIVE 

CONCLUSION 

It has been seen from the empirical assessment of VaR carried out in this research study that 

investment returns do not necessarily follow the normal distribution especially at extreme tails. 

The empirical distribution for 0.05 and other bigger quantiles seem to be a truism in most cases 

for the normal distribution while the Student’s t distribution is in fact a good model for smaller 

quantiles. More so, investment returns are not independently identically distributed. 

 The effectiveness of any VaR model depends on the specified confidence level, the trend and 

volatility of market for every financial trading as being considered for a yearly rolling window 

in this research through back-testing procedure. As it was investigated and proved that the VaR 

violations for normal distribution using a bigger quantile produced a good result but the Student’s 

t-distribution overestimates risk using a bigger quantile leading to conservatism, howbeit, the 

Student’s t-distribution produced a good result when a smaller quantile is specified. 
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