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An Example of Uniform Strong Laws 
of Random Lines 

Tarmo Koll 

Summary. A result is proved for random lines by which the mean 

length of a random chord of a planar random figure converges uni­
formly (over the set of figures) to its expectation with probability 

one. Then an example of an uniformly and strongly consistent esti­

mator of the area of a planar figure is given. 

Key words: integral geometry, random Itnes, empirical processes. 

Introduction 
Integral geometry provides us with a great variety of formulas 

which show the linkage between different parameters of geometrical 
objects. In many cases some of these parameters, like the areas of 
figures and the lengths of curves, are associated with the expecta­
tions of certain random variables. Estimation of these expectations 
gives us also a possibility to estimate the related geometrical pa­
rameters (see, for example, Santalo (1976), pp. 31, 218). 

Our main concern in this paper is with a large class of figures 
on the plane and we focus on finding an estimator of the area of 
these figures which is uniformly (over the class) consistent with 
probability 1. 

The essential part of this paper is section 2, where we first 
prove a uniform strong convergence theorem for random lines, and 
then derive a uniformly and strongly consistent (USC) estimator to 
the area of a planar figure with the help of random line segments. 

1. Some facts from integral geometry 
First we will give a short glance at the formulas of integral 

geometry which we need. All the basic formulas can be found in 
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any book on this subject (Santalo (1976), for example). 
In integral geometry a line g on the plane is usually given by 

parametrization on [0, oo) x [0,2тг) via the identification 

9 = 9(P, <p) - {(ж, у) : x • cos у? + у • sin <p - p = 0}. (1) 

The measure of a set G of lines g is defined as integral over the 
density of lines dG = dpd<p. Up to a constant factor this density 
is the only one which remains invariant under the group of trans­
lations and rotations in R2. So we will consider the lines g which 
are uniformly distributed over the whole plane. 

If we restrict our attention only to the lines which intersect a 
convex set K, we have that the measure of such set of lines is equal 
to the perimeter L of the set К (Santalo (1976) p. 30). 

In section 2.2 we will deal with the line segments of equal 
length. For this case we need the measure of the set of line segments 
which intersect a convex set with area FO and perimeter Lq. It is 
known (see Santalo (1976)) that this measure is equal to the sum 
nFo + ILo, where / is the length of a linear segment. 

If a line g intersects a figure D on the plane we write a for 
the length of the intersection. According to the definition of the 
density of lines the following formula holds: 

where F is the area of D and the integral is taken over all lines 
that intersect the figure D. 

If we "normalize" the left-hand side of equation (2) by the mea­
sure of all lines that satisfy a condition A we obtain the conditional 
expectation Е(<т | A) of a given that g satisfies A. In particular, 
if the condition A means that g intersects a convex figure Iv, or 
another convex figure Ki containing K, the relation (2) implies the 
following two formulas for the expectation of the length <r of a ran­
dom chord of K. First, the expectation over the set of lines that 
intersect К itself is 

We will write E(cr) for E(<r|K) below. 
Second, if the figure К lies inside another convex set I<i, the 

conditional expectation of er given that g intersects I<i can be cal­
culated using the formula 

(2 )  

(jnD^O 

E(#) = T (3) 

(3') 
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where F is the area of К and L i is the perimeter of Ki. 
We will also need the definition of breadth of a figure K: 
The length of an orthogonal projection of a convex set К to a 

line parallel to the direction ip is called the breadth of К in direction 
f and we write A(y>) for it. 

The minimal (over <p) breadth is called the width of К and we 
write W to denote this. The following formula can be easily proved 
for a convex set K: 

EM < (4) 

where E(<r) is defined as above. 
By a classic result of integral geometry about rectifiable curves 

С we know that the length L of С can be expressed as an integral 
of the number of intersection points n(g,C) between this curve and 
a line g, i.e. 

jn(g,C)dG = '2L, (5) 

G 

where the integral is taken over the set of all lines on the plane. 
For line segments I of equal length we have 

J n(l,C)dC = 2lL, (5') 

mc^t 

where £ is the set of line segments on the plane, L and I are the 
lengths of С and a line segment, respectively. 

Equality (5) implies for the rectifiable curve C, which is located 
inside a closed convex curve Сi with length L\, that the expected 
number of intersection points between С and a line g over all lines 
that intersect Сi is 

(15) 
bl 

These nice formulae (3), (3') and ((i) given above can be ap­
plied to estimate the area of figures or the length of curves by 
estimating the expectations on the left-hand side. The standard 
estimator of expectation is arithmetic mean. By the strong law of 
large numbers such an estimator is strongly consistent, i.e. with 
probability 1 the arithmetic mean converges to the expectation as 
the sample size tends to infinity. 

2* 



However, in many causes it is necessary to make decisions (based 
on the same sample) on infinite sets of figures with unknown para­
meters and in such cases we need uniform almost sure convergence 
results. For example, suppose we want to identify the figure D* 
with maximum area in soine infinite class of figures. Then without 
uniform convergence property it may happen that the sequence 
of figures D* with empirically maximum area will infinitely often 
contain the elements different from D*. 

In this paper we observe a large set of figures with unknown 
areas and we need uniform consistency to make decisions on the 
whole set of figures. We construct USC estimators using the meth­
ods of the theory of empirical processes. 

2. Uniformly and strongly consistent estimator of the area 
of a planar figure obtained by using the direct approxima­
tion method 

We will use the direct approximation method which is based 
on the two following theorems proved in Pollard (1984). 

Let T be a class of measurable functions on a set S with a <7-
field that carries a probability measure P. The empirical measure 
Pn is constructed by sampling from P. Assume E | / |< 00 for each 
/in T and write E„/ for the expectation with respect to Pn. In the 
context of section 1 Enf can be regarded as the arithmetic mean 
of the intersection points or of the length of a chord. The following 
theorems hold. 
THEOREM 2.1. Suppose that for each e > 0 there exists a 
finite class T c  containing lower and upper approximations to each 
f in T, such that f e <L </< f c,u and E (f c,u — fc.b) < £• Then 

sup I Е„/ — Е/ |—* 0 a.s., n —* 00.  
T 0 

THEOREM 2.2. Suppose that for each e > 0 there exists a 
finite class T z  of functions such thai for each f in T there exists 
an f c  m T t  satisfying f€  < f and E(/ t) > Е/ — e. Then 

liminfinf(En/— E/) > 0 almost surely. 
" ^ о 

2.1. The basic convergence theorem. Let us consider a class 
V of uniformly bounded figures D on the plane. * 

* This restriction of uniform boundedness has almost no importance from 

practical point of view, but it allows us to use the direct approximation method. 
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Let G = {д<: 1 < i < 00} be independent uniformly distributed 
random lines on the plane defined by (1). The length of the inter­
section of a line with a figure D is denoted by <Ji = , D) 
and the number of intersection points between a line gi and the 
boundary <9D of D is denoted by n(gi, dD). 

Our purpose is to prove that the empirical mean £ 52"=1 cr, 
converges to the expectation E(<7i) with probability 1 uniformly 
over the class V as the number of lines increases indefinitely. The 
next theorem gives sufficient conditions for such convergence. 
THEOREM 2.3. Let G = {<?<: 1 < t < 00}  be independent 
uniformly distributed random lines and V be a class of uniformly 
bounded figures D in R2. Let every D from V have a rectifiable 
boundary. //sup s  €GsupDeP п(д<,<9D) < N < 00, then 

PROOF 
To apply the direct approximation method first note that every 

line g, defined by parameters p and y>, can also be regarded as a 
point X = (p,f) on the space R x [0,2ж). 

For each D £ V we can define a function /d : R x [0, 2ir) —> R 
as the length of the intersection between the line g and figure D, 
i.e. /о (X) = cr{g, D ). Write J-p for the class of such functions 

Now the statement of the current theorem can be written in 
the following form: 

By Theorem 2.1 it is sufficient to show that for each £ > 0 there 
exists a finite class T-pt of functions containing lower and upper 
approximations to each element of T-o with uniformly small errors 
of approximation. As we have one-to-one correspondence between 
the classes V and Tv we will first find such approximations to the 
elements of the class V . 

By assumption the class V is uniformly bounded, so without 
any loss of generality we can regard the elements of V be located in 
a finite square with a side M. For each f > 0 this MxM square can 
be divided into smaller equal squares with side length m = m(e). 

/d • 
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Let 7Z(m) be the set of all possible figures made of these smaller 
m x m squares. It is clear that for each £ > 0 7Z(m) is finite and 
cardTZ(m) = 2(">) . 

Now, for each D from V we can find two corresponding figures 
from 1Z(m) in such a way that one of them, say Dm;, would be the 
biggest element of 7Z(m) which is contained in D , and the other, 
say Dm|0, would be the smallest element of 1Z(m) which contains 
D . 

Write f r(X) = <r(g, r) for the length of the intersection of a 
line g with the element r of 7Z(m) and let Рщт) be the class of 
such functions, i.e. 

Ыт)  =  { / г (Х ) \ г еЩт) } .  

Define now T V e  := Тщ т ), / D m.,, /n° := fom,0-

It is clear that the class Tve is finite and for each /d 6 it 
contains two functions /ц1 and /q 0  such that 

fu' </D < /D'°-

To see that the second condition of Theorem 2.1 is also satisfied 
we have to show that for every e > 0 

E(/D'° - /D") < £ (8) 

and we proceed as follows. 
By assumption every D from V has rectifiable boundary and 

the number of intersection points between the boundary of D and 
a line g is finite. Uniform boundedness guarantees us that for each 
D from V n(g, <9D ) = 0 outside the MxM square. Let us write Lp 
for the length of the boundary of D Now, as a square is convex, 
we have from (6) the following: 

2Id = J n(g,dD)dG = J n(g , dD)dG < 
G  < 7П(МхМ)у£0 

< N J  d G  =  N  4M. 

</П(МхМ)у£0 

Let us set L = 2Л'М. So, as L < оо, we have that every D from 
72 has boundary with some finite length Ld , < L. 
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Recall that the MxM square is divided into m x m squares. 
It is easy to see that a segment of a planar closed curve of length 
m cannot intersect more than 4 squares with side m. Hence the 
boundary of D with length Lq does not intersect more than ~p-
squares and, therefore, the total area FE JJ of such squares is boun­
ded by < 4Lm. 

£2 

get 

Now, if for a given £ > 0 we choose m so that m < -—we 
4тгь 

Fe ,D < -- (9) 
7Г 

Let us now divide the elements of V into two subclasses ac­
cording to the widths of their convex hulls. With a slight abuse 
in the notation we will talk about the breadth and the width of 
D meaning actually the breadth and the width of its convex hull. 
This helps us to overcome the difficulties with nonconvex figures. 
For each £ > 0 we fix so-called critical value of width 

W£ = - (10) 
7Г 

and observe separately the "thick" figures with width W strictly 
larger than W £, and the " thin" figures with width W < \VE. Let 
us first consider the case W > We. 

Using formula (2) we first find the bound to the expectation 
having <p fixed: 

гл / i'E IО rS,i\ f  (J\~)  J  D )  j /  г.ч "I 
iMo - h ) =  J  ш  d,<— y  y-zloM-

</HD;c2> 

As A(v^) > W for each <p, then taking expectation over gives us 

IT-/ r £ , o  r e , i \  / f  , D I ,  / F  s  , D  f  ,  D 

where the last, inequality follows from (9) and (10). So (8) is satis­
fied for "thick" figures. 

Now consider figures with convex hulls of width [V < . Let 
us write fck for the length of a random chord of a convex hull. 
Then, by (4), we have 

7Г 7Г W 

3" 
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From the other side we have simple inequalities 

E(/D -/D'*)<E(/D)<E(/C A). 

Therefore we obtain E(/D — /D') < £• 
With this we have shown that there exists a class of functions 

that contains at least one-sided (for "thick" figures even two-sided) 
approximation(s) to each element of Tj>- Applying Theorem 2.2 
we get the convergence (7). 

The next corollary is a direct application of Theorem 2.3 to 
the set of convex figures. Since every convex curve is rectifiable 
and every line can have at most two intersection points with the 
boundary of a convex figure the following theorem is valid. 
COROLLARY 2.1. Consider independent uniformly distributed 
random lines G — {</*: 1 < i < oo} and any class К of uniformly 
bounded convex figures К on the plane. Then 

2.2. USC estimator for the area of a planar figure. Let us 
now apply the direct approximation method to derive USC esti­
mator of the areas of figures on the plane. We will generalize the 
"line intercept sampling" method which is used in plant ecology 
in estimating the proportion of plants in some fixed sampling area 
(Pielou (1985)). The proportion of a plant species is defined as the 
share of the total fixed sampling area covered by that plant species. 
The main difference between this method and the approach we have 
used till now is that here the line segments with finite length I are 
used instead of straight lines with infinite length. Nevertheless, 
the idea of estimation remains the same - the length of the tolal 
intercept is measured. More precisely, a line segment of length / is 
thrown onto the sampling area at random and then the estimate 
of the proportion V of the total area covered by some plant species 
is given by the estimator 

q.e.d. 

о 

i l l )  
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where lj is the length of the j-th plant patch intercept and J is the 
number of patches cut by the sampling line segment. It is known 
(see Kendall, Мог an (1972)) p. 79) that this estimator is unbiased, 
i.e. 

E(V) = V. (12) 

Theorem 2.4 gives the generalization of this method in the 
sense that instead of one random line segment we use the set of ran­
dom line segments and therefore unbiasedness can be strengthened 
to uniform consistency. The proof parallels the way we proceeded 
while proving Theorem 2.3. 

THEOREM 2.4. Consider a class V of uniformly bounded fi­
gures D with rectifiable boundaries and n independent uniformly 
distributed random Une segments ft1 ',..., of length I in R2. Let 
Jo,i be the number of connected subregions of D intersected by a 

line segment (W, i = 1,..., n, and let Ylj=i total length 

of the intersection of a line segment   with figure D7 i = 1 
//supD ep sup j Ju,i < J < oo, then 

^EEf  <»> 
«=iJ=I 

is USC estimator of the proportion of the area of D. 
PROOF 

For the sake of simplicity let the sampling area be MxM 
square, where M is chosen sufficiently large for all the elements 
of the class V to be bounded by that square. 

Every line segment on the plane is determined by the co­
ordinates of its center (x,y) and by the angle <p between it and the 
r-axis. We can define each line segment as a point X = (x, y; tp) on 
the space R2 x [0, тг). For each D from T> we can define a function 
/d : R 2  x [0,7r) -> R, 

/d  = )£/,•, (И) 
i=1 

where lj is the >-th intercept of the line segment X with figure D 
and Jj) is the number of intercepts. 

Having in mind (11) and (12) we get from (14) that, for each 
D in V , 

E(/D (A')) = V D  . (15) 

13 
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Notice that ^ 53"=1 /d (A*,-) is equal to (13). As we consider inde­
pendent line segments with the same distribution, the summands 
/D (A,) are i.i.d random variables and by the strong law of large 
numbers we have 

1 n 

~y~]fD (A,) -> E(/p (Ai)) a.s., n -> oo. (16) 
n  

So-we are left to show that the convergence (16) is uniform over 
the class V . 

Let us fix an e > 0 . Exactly in the same manner as in the 
proof of Theorem 2.3 we can find inner and outer approximations 
- Dt[i and Dc o, respectively, - made of finite number (depending 
on e) of small squares to each element of V. This gives us also ap­
proximations for the functions (14), say and f^°, respectively, 
which satisfy the conditions 

/D'' </D </D'° 

and 
E(/D'° -  ZD") < E- (17) 

Indeed, the first condition is trivial and the second comes from 
the definition of area proportion and from the fact that the area 

d between the inner and outer approximations can be made 
arbitrary small: using (15) we can first write 

E(/d'° - /о'') = E(/P'°) -  E(/q') = FD_ - , 

where M2 is the area of the whole sampling area. Notice that for 
each D we have ÕD) < 27o,i- Now, if we write Lq for the 
length of the -perimeter of D we have by (5') that 

2/£d = J n(l<- i\dD)dC < Jn^KdD)dC < J 2JDtidC < 

Jn9D^0 /nD?S0 /r,D#0 

<2J • J  dC<1J • J  dC = 2J(ttM 2  + 4/M) < oo. 

fn(MxM)^0 

So, each D from V has boundary with finite length. But this, as 
we have already seen in the proof of Theorem 2.3, is sufficient for 
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that that for a given £ > 0 fS|D can be made arbitrary small. So, 
as soon as the condition FEid < M2 • e is fulfilled (17) holds. Now, 
by Theorem 2.1 (16) holds uniformly over V . This completes the 
proof. 

q.e.d. 

COROLLARY 2.2. Consider a class V of uniformly bounded 
(by a set К of area Fk) figures D having rectifiable boundaries. 
Let i = 1,..., n be independent uniformly distributed random 
line segments of length I in R 2. Let Jd,i be the number of connected 

subregions of D intersected by a line segment and let Y2 Jj=i ̂  

be the total length of the intersection of a line segment   with 
figure D, i = l,...,n. //supD ep sup,-Jd,i < oo, then 

„ n Jo., 

^ = 5 e e < S "  
i=l j = 1 

is USC estimator of the area of D. 
PROOF 

Take К in the role of the sampling area, apply Theorem 2.4 
and use the relationship = Fk • Vd • 

q.e.d. 
Notice that the shape of the set in which the observable class 

is located, has no importance. So in practical cases we can always 
take it such that measuring its area would not be a problem (square, 
circle etc). 
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Näide ühtlaselt tugevast suurte arvude seadusest 
juhuslike sirgete korral. 

Tarmo Koll 

Kokkuvõte 

Käesolevas artiklis vaadeldakse juhuslike sirgete lõikeid min­
gist loenduvast tõkestatud hulgast pärinevate tasandiliste kujun­
ditega. Tõestatakse teoreem sellise juhusliku lõike pikkuse arit­
meetilise keskmise ühtlasest koondumisest peaaegu kindlasti tema 
keskväärtuseks. Selleks kasutatakse empiiriliste protsesside teoori­
ast tuntud otsese lähendamise meetodit (Pollard (1984)). Seejärel 
rakendatakse sama tõestusideed tasandilise kujundi pindalale üht­
laselt ja tugevalt mõjusa hinnangu saamiseks juhuslike sirglõikude 
abil. Selleks üldistatakse taimeökoloogiast tuntud "lõiguga taba­
mise" meetodit. Saadud tulemus lubab teha statistilisi järeldusi ka 
üle loenduva hulga tasandiliste kujundite. 
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A Note on Patterned Matrices with 
Applications in Multivariate Analysis 

Tõnu Kollo 

Summary. In the paper a notion of the patterned matrix is in­

troduced for a matrix A independently of functional relations bet­

ween elements of the matrix. The transformation of a matrix into 

a patterned matrix is realized by a transition matrix. An explicit 

expression of the transition matrix which has the unique inverse 

transformation under certain conditions has been presented. In­

troduced notions are used in two applications: firstly it has been 

shown that in deriving asymptotic covariance matri es for asymp­

totically normal statistics one can neglect the functional relations 

between elements of the considered multivariate statistic and the 

explicit expressions of the transition matrices have been found to 

select nonrepeated multivariate moments. 

Key vrords:patterned matrix, transition matrix, matrix derivative, 
asymptotic distribution, higher order moments. 

1. Introduction. Patterned matrices have been studied in re­
cent years in „veral papers (Tracy, Jinadasa (1987, 1988); Wiens 
(1985), for example). Usually a matrix A is looked as a patterned 
matrix if there is some relationship between its elements e.g. sym­
metric matrices. In this paper we do not intend to connect the 
notion of patterned matrix with any kind of relationship among 
the elements of A. By definition (DEFINITION 1) we are talk­
ing about a patterned matrix A(I<), if some element(s) or certain 
part of the original matrix A has been excluded, "cut off", from 
A. As a special case, the notion of amputated matrix has been 
introduced by Parring (1980) for examining matrices, from where 
certain columns or rows where excluded. In matrix differentiation 
problems patterned matrices are used for eliminating constants and 
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repeated elements from matrices. This includes the possibility to 
get any patterned matrix in our sense, but the difference is that a 
patterned matrix must not consist of all non-repeated variables or 
may include part of repeated variables also. 

In section 2 we are going to introduce basic notions and nota­
tions on patterned matrices, which we need later in applications. 
In section 3 the problem of differentiating of a matrix function by a 
patterned matrix is examined and in section 4 patterned matrices 
are used in working with higher order multivariate moments. 

2. Patterned matrices. Let A be a p x ^-matrix and К the set 
of pairs of indices: 

К = {(г, j): г € IK; J € JK; IK С {1,... ,p}; JK С {1,. . . ,  g}}. 

DEFINITION 1. A(K) is a patterned matrix, if A(K) consists 
o f  e l e m e n t s  a . k t  o f  A ,  ( k ,  I )  £  K .  

Nel (1980) summarized the results on patterned matrices till 
1980 and for many notions and notations we will refer to him. 

Following Anderson (1958) we use double indices for indicating 
elements of block-matrices: the element of a block-matrix A in j-th 
row of г-th row of blocks and /-th column of k-th column of blocks 
is denoted by ct(i,j)(*,/) (or (A)(i,;)(*,/))• It means that in the index 
(г, j)(k, l) г and к stay for block-indices, j and / are row and column 
indices correspondingly. If A consists of one column (one row) of 
blocks we use the notation a(i tj)k ( ai(k,i)) for the element of A. 

Let A be an p x ̂ -matrix and A j its j-th column, then vecA is 
the p^-vector 

When the elements of A(K) are collected into one column by co­
lumns of A in natural order, we get a vector with dimensionality 
k, where к is the number of pairs in K. Let us denote this vec­
tor by vecA(K). Nel (1980) uses the notation vecpA for the vccA 
from which all the constants and repeated elements are eliminated. 
Henderson, Searle (1979) are using vechA to indicate the vector 
obtained from the lower triangular part of symmetric A, Traat 
(1986) and McCullogh (1982) use this notation for the upper tri­
angle, Magnus, Neudecker (1978) denote the last vector by u(A). 
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To transform vecA into uecA(K) we have to introduce к x pq-
transition matrix T(K): 

uecA(K) = T(K)recA, (1) 

where we look T(K) as a block-row matrix, consisting of к x p-
blocks. 

When the /-th coordinate of vecA(K) is the element a gh of the 
original matrix A we use the following indexation: (иесА(К))д й/,)-
Then the simpliest way of defining T(K) is via equality (2): 

mK)w,W) = {J: 9 :  < 2> 

It is not the only way of defining transformation (1) if there ex­
ist functional relations between elements of A. Later we will use 
another way of defining T(K) to get a more convenient expression 
from point of view of considering inverse transformations. 

EXAMPLE. 
Let R be a 3 x 3-correlation matrix: 

/1 r12 0 \ 
R = I r2i 1 Г23 

V О Г32 1 / 

and we assume we want to select as R(K) all the elements not equal 
to 1 or 0. Then K={(1,2); (2,1); (2,3); (3,2)} and 

vecR(K) = 

where from formula (2) 

(0 1 0 0 0 0 
0 0 0 
0 0 0 

/ r 2 i \  

''12 

»'32 
V ''23 / 

= T(K)uecR, 

0 0 0 
1 о 0 
0 0 1 
0 0 0 

I 0 0 0\ 
I о о 0 
I о о 0 
1 0  1 0 /  

If we have additional information about the structure and elements 
of A, we are able to define T(K) in such a way that we can consider 
also the inverse operation to construct vee A from t'ecA(K) . 
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DEFINITION 2. We call а к х pq-block-row matrix Т(К) the 
transition matrix for a patterned matrix A(K) if T(K) consists of 
к x p-blocks and for f(gh) £ {1,..., k} we have: 

T(K) 

l 
4 ( g h ) '  

0, 
? лУ '  

Q%j Qgh ,  

mW = ZLi Ej=i i{K-[=i«.»i}' 

~ a i j  —  a g h i  

otherwise. 

In the definition the indicator function for the absolute values 
of two elements is defined as usual: 

l{a=6} = 
1, a = 6; 
0 ,  а ф Ь .  

EXAMPLE (continued). 
Let us find the transition matrix in the case of matrix R for the 

same set К with the additional information, that R is symmetric. 
Then 

/ r 2 i \  

Г12 

Г32 

V23/ 

vecR(K) = = T(K)yecR, 

where from Definition 2 

T(K) 

/0 I 
0 I 

« 0 0  
1 i 0 0 

0 Õ 0 I 0 0 i 
0 0 j 

0  0  0 \  
0 0 0 
0 1 n 

V о о 0 j 0 I 

Let us assume, that we want to have in R(K') all different correla­
tions rtj ф 0,1. Then K' = {(1,2); (2,3)} and 

T(K') = 
0 0 0 I 0 I I , 

0 0 0 I 0 0 I 
0 0 0 
0 I 0 

Remark that for K" = {(2,1); (3,2)} the transition matrix T(K") 
will be the same, so the transformation does not depend on which 
equal elements we have fixed in the set K. 

To define the inverse transformation which realizes the map­

ping 
vecA(K) —* vecA 
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we need all the different nonzero elements of A being presented in 
vecA(K). For example, we cannot reconstruct vecR by vecR(K) 
or by yecR(K') in our example because we have no constant 1 in 
uecR(K) . 

Let us assume now that yecA(K) includes all the elements 
excluding zero. Then the inverse transition matrix P(K) is defined 
implicitly by the equality (3) 

vecA = P(K)i>ecA(K). (3) 

Nel (1980) proved that 

P(K) = T(K)+; T(K) = P(K)+, 

if T(K) is the transition matrix to eliminate constants and repeated 
elements from matrix A (here T(K)+ denotes the Moore-Penrose 
inverse of T(K)). Nel's proof extends to our case straightforwardly, 
so we get 

vecA = T(K)+vecA(K), (4) 

if all non-zero elements of A are presented in A(K) . 
EXAMPLE (continued). 

Let now К = {(г, j): i = 1,2,3; j = 2}. Then we have all 
non-zero elements in R(K) and 

/ 0 ± 0 | | 0 0 | 0 0  0 \  
T(K) = i о 0 I о ± о I о о i . 

\ 0  0 0 | 0 0 | | 0 | 0 /  

For the Moore-Penrose inverse we get the equality 

/0 1 0) 
1 0 0 
0 0 0 

1 0 0 
0 1 0 
0 0 1 

0 0 0 
0 0 1 

V о 1 0 / 
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It is easy to check that all the four defining properties of the Moore-
Penrose inverse (see Rao (1965), for example) are satisfied and 

= uecR. T(K) 

3. An application in asymptotic distribution theory. 
Asymptotic normality can be established for a very wide class of 
statistics in multivariate analysis. All continuously differentiable 
functions of the sample covariance matrix or the sample mean are 
asymptotically normal, for example. If matrix X is a random ma­
trix and it is asymptotically normal, then asymptotic normality can 
be established for Y = Y(X) also and for the asymptotic covariance 
matrix DYaj of Y we have the following expression: 

DY„,= " 
dvec'X( K) 

x=ex
D-x<K> <5> 

where ——^3 Tr is a suitably defined matrix derivative (Magnus, 
dvec'X( K) 

Neudecker (1988), or Kollo (1991)), and X(K) is obtained from X 
by eliminating constants and repeated elements. It is rather trou­
blesome to use vecX(K) in differentiating because of loosing usual 
matrix operations and properties. Would be much more convenient 
to use vecX directly. The following lemma gives us bases for that. 

LEMMA. Let A be an arbitrary p x q-matrtx, vecA(K) the k-
vector consisting of all distinct coordinates of vecA and T(K) its 
transition matrix. Then for an arbitrary к x k-matrix M(k) 

Т(К)+М(к)(Т(К)+У = M, 

where in the pq x pq-matrix M i-th and j-th rows and columns are 
equal to each other, if in vecA i-th and j-th coordinates are equal; 
i-th row and column of M are zeros if i-th coordinate of vecA is 
zero. 
PROOF. 

The result follows from the equality (4). In every column 
of the product [T(K)+M(k)] i-th and >th coordinates are equal, 
if the same coordinates are equal in vecA. Also in the product 
[T(K)+  M(k)](T(K)+)' in every row г-th and j-th coordinates are 
equal if these coordinates are equal in vecA. 
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From our lemma we get the following result. 
COROLLARY. The asymptotic covariance matrix (5) of a ran­
dom matrix Y=Y(X) can be found as 

DY- = ж DvecX . , 
X=EX V"X/ X_ E X  

dY\' 

if in vecX(K) all different variable elements ofX are presented. 
PROOF. 

By properties of the matrix derivative (chain rule) 

dY dY dX 

dvec'X(K) dX dvec'X(K)' 

if all different variable elements of X are presented in X(K). Differ­
entiating equality (4) we obtain 

dvecX 
= ЧК)+РШ = ЧК) +-

dvec'X(K) v  ' dvec'X(K) 

By definition of the matrix derivative we have 

dX dvecX 

dvec'X(К) ~~ cbec'X(K) 

and then from the expression (5) we get 

dY DY a. = 
dvec'X(K) 

dY 

dX 

dY 

dX 

D"« X<K> (з^эд)х= 

T(K)+DMcX(K) (T(K)+)'(jg) x  

X=EX 4  ' \ / X=EX 

Dt»ecX I —\ 
X=EX \dXJ X_E X  

The last equality follows from the lemma. 
It means that if we find matrix derivatives for calculating 

asymptotic covariance matrices we can forget about the relation­
ship between elements of the matrix X and if z,j = const, the 
corresponding column in the derivative matrix is a zero column 

0 for any yki ). 
/ дукI _ 
X d £ i j  

6* 
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4. Transition matrices for selecting multivariate moments. 
The problem of determing transition matrices for non-symmetric 
patterned matrices arises in multivariate analysis when finding 
multivariate higher order moments and cumulants as derivatives 
of a characteristic function. Then we are interested in selecting 
nonequal elements from the matrix of partial derivatives of k-th 
order. In fact we have the same problem when dealing with mo­
ments and cumulants of a random vector directly. In this case the 
fc-th order moment тд,(Х) is defined through Kronecker product, 
for example 

mjfe(X) = Е(Х®Х® ...® X) 

and we are interested in collecting all the different elements from 
the product. 

In Kollo, von Rosen (1993) an algorithm has been proposed 
for this procedure. Here we are going to present the transition 
matrices realizing that algorithm. To describe the algorithm we 
need the following notions and notations. 

Let [г. j] stand for the number of combinations given by 

[U]= h i  = 1 ,2 , . . .  (6 )  

and 
M = [i,o] = o. 

As a basic notion we define the vectorizing operator W(A). 
DEFINITION 3. For any matrix A : \j, n] x n, j — 1,2,... 

KJ(A) = (ац, Oi2, • • •,at)',2]2. ai3> • - •)a[j,3]3, • • • ,ain,. • •, %>]«)'• 

In particular, for j = 1,2, 3, we have 

VX(A) =(ац,а12,...,а1п)', 

K 2(A) =(«n,  ai2,  a 22,  a ia ,  «23,  «зз, • • •, «in,  «2«,  • • •, «n«) ' ,  

К 3(А) =(«11, Ü12, «22, 132, «13, «23, a33, °43, a53, 063, • • • , О »(•»+!)„)• 

It has been proved (Kollo, von Rosen (1993)) that all different 
mixed moments and cumulants of higher order can be found by 
vectorizing certain matrices A with the operator VJ(A). For using 
this result in applications the transition matrices for the operators 
lA'(A) are needed. In the following we present the structure of 
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these matrices. Because we are not interested in reconstructing 
matrices of Kronecker products from their nonrepeated elements, 
we will use the formula (2) in finding transition matrices. At first, 
let us write out the expressions of transition matrices for j — 1,2. 

If j = 1, A is 1 x n matrix, corresponding to 

K 1  = {(iJV-i = 1 , j  = 1, 

and VHA) is n-vector. So 

"ЦК1) = 1. 

If j — 2, we get from the formula (6) that (2, n) = n and A is 
n x n-matrix. Then 

K 2  = {(»',»:» < j, i , j  

and the transition matrix T(K2) for cutting out the upper triangle 

of A is ^n(n+ 1) x n2^j-matrix. From (2) it comes out that 

T(K2) has the block-diagonal structure and the i-th diagonal block 
[T(K2)]j, has the following form: 

 )]« = 
4D 

.1(0. 

where I(;.) denotes the i-th row of the identity matrix In. In the 
general case the transition matrix T(KJ) for the vector VJ (A) has 
the similar structure. Matrix T(KJ) is block-diagonal with diagonal 
blocks 

/ 1(1) X 

[T(K')],-< = 
I, ( 2 )  

i= 

V(u,.'))/ 

where I(*) is the k- th row of I(, n), and (i,j)  is defined by equality 
(6).  
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Kujundmaatriksitest koos rakendustega 
mitmemõõtmelises analüüsis 

Tõnu Kollo 

Kokkuvõte 

Artiklis on sisse toodud kujuiidmaatriksi mõiste maatriksi A 
jaoks sõltumatult maatriksi A elementide vahelistest funktsionaal­
setest seostest. Teisendus, mis seob kujundmaatriksit maatriksiga 
A, on antud tema üleminekumaatriksiga. On saadud tingimused 
üleminekumaatriksi pöördteisanduse olemasoluks ja ühesuseks ning 
leitud üleminekumaatriksi üldelemendi avaldis. Esitatud mõisteid 
kasutatakse kahe ülesande lahendamisel. Esiteks tõestatakse, et 
asümptootilise normaaljaotuse korral võib asümptootilise kovariat-
sioonimäatriksi leidmisel eirata statistiku elementide vahelisi funk­
tsionaalseid seoseid. Teiseks leitakse üleminekumaatriksitc avald­
ised tensorkorrutise abil defineeritud mitmemõõtmeliste momen­
tide maatriksist erinevate elementide eraldamiseks. 
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Use of Absorption in Environmental Studies 

T.Möb, A.-M.Parring 

T.Möls, A.-M.Parring 

Summary. A practical method baaed on absorption technique is 

propoeed for analysis of environmental trends in the presence of a 

nuisance factor with a great number of levels. Addressed to ecolo-

gists, the paper presents both an illustrative example of discovering 

changes in Estonian small lakes and the mathematical basis of ab­

sorption technique 

Key words: absorption, ANOVA, environmental data analysis, 
nuisance factor, linear model, chemical oxygen demand, perman­
ganate consumption 

1. Introduction and problem setting 

This paper concerns environmental data analysis in cases 
where some categorical nuisance factors have too many levels to 
be handled with standard packages. We have a good opportunity 
to discuss these problems on the example of statistical analysis of 
the Data Bank of Estonian Small Waterbodies (DBESW) compiled 
by the Institute of Zoology and Botany in Tartu. The DBESW 
includes results of hydrochemical and physical analyses of about 
4400 water samples from more than 350 Estonian lakes and other 
waterbodies investigated from 1925 to 1993. Collected partly dur­
ing turbulent times in Estonia, the DBESW data are fragmentary 
and heterogeneous, different lakes and parameters being inspected 
at different non-overlapping periods. As a result, the corresponding 
data table is unbalanced and contains a high percentage of missing 
values. No good multivariate time series can be extracted from 
these data. 
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Estonian hydrochemists attempt currently to identify domi­
nant changes in the water composition of local lakes. The prob­
lem is difficult because there exist significant individual variations 
between the lakes studied in different periods. Some tendencies 
observed in the data may be purely caused by these variations as 
well as by seasonal differences. At the same time, real changes may 
be completely camouflaged by distortions resulting from the bad 
(missing) experimental design. 

It seems that the elimination of the effects of lakes and sea­
sonality is an obligatory step in comparing different time periods. 
Roughly speaking, all measurements must be standardized by re­
lating them to a fixed abstract standard lake and to some specific 
day within the year. The problem is how this elimination could be 
carried out in a situation where the total number of factorial effects 
exceeds 300 as in case of DBESW. Simple statistical packages fail 
to handle models with as many parameters. 

One way to overcome the difficulty is to reduce the number of 
the levels of some factors. For example, in the trophic monitoring 
of Lake Peipsi (Möls et ai, 1992) we have used clustering of control 
sites for reducing their number. 

In this paper we propose another way to solve the problem 
within the analysis of variance. A key point in this approach is us­
ing the absorption technique for the elimination of the disturbing 
factor and taking into account only differences between the ex­
pected response values at different years or months. First, we give 
an example demonstrating absorption methods in environmental 
research. Futher, since our paper is meant as a reference material 
for hydrochemists not familiar with absorption and related topics, 
we explain these subjects more thoroughly in the next sections. 

The present study was partially supported by the Estonian 
Science Foundation, Grant 73 (1993). 

2. Model of organic components 
In DBESW, 1118 records can be found with simultaneous 

measurements of chemical oxygen demand (CODCr) which char­
acterizes the concentration of all organic components in water, and 
permanganate consumption (CODMn) as an indicator of mainly 
light organic substances. Every record in this selected data subset 
is characterized by the name of the lake (245 different names), year 
and the number of day within year (DN, ranging from 1 to 365). 

Our goal is to investigate the dependence of p = /n(CODMn) 
on ln(CODCr), year and season. For this purpose we try to fit a 
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polynomial regression function to the data so that it would smooth 
out behavioral variations of lakes. 

To enhance the analysis, the mean CODMn level of each 
studied lake must be taken into account. This can be achieved 
by eliminating the 'Lake' as a nuisance parameter from the model. 
Because the standard covariance analysis fails here as the number of 
levels of the factor 'Lake' is too large (245), absorption (explained 
in the next Section) will be made use of. After absorbing the fac­
tor 'Lake' by the SAS GLM procedure we can get the regression 
function represented in Table 1 (Model 1). 

Table 1 
Estimated coefficients and their standard errors (SE) in 

the regression function of p=ln(CODMn) after absorbing 
the nuisance factor 'Lake' (Model 1). 

Here r  =  ln(CODCr), a = (year - 1925)/10, d =  (number of day 
within year)/100. 

Parameter coefficient ± SE Parameter coefficient ± SE 
d -6.17559 ± 1.30060 r -4.67018 ± 0.91880 
d2 -1.88400 ± 0.26879 r 2  1.21276 ± 0.27180 
d 4  0.04430 ± 0.01473 r3 -0.10625 ± 0.02783 
a -1.80148 ± 0.26364 a2r 0.13891 ± 0.02273 
a 4  0.00160 ± 0.00041 dar  -0.47143 ± 0.06352 
da 7.47320 ± 1.26622 d 2 r  0.73511 ± 0.11397 
da 2  -2.30474 ± 0.44772 d 2 ar  0.04904 ± 0.01189 
da 3  0.33793 ± 0.06852 d 3 r  -0.10358 ± 0.02400 
da 4  -0.01730 ± 0.00379 a 3 r  -0.01377 ± 0.00262 
d 3 a 0.04960 ± 0.01871 d 3 r 2  -0.04144 ± 0.01069 
d 3 a~ -0.00890 ± 0.00206 dar 2  0.02795 ± 0.00623 

All coefficients in Model 1 are highly significant at the level 
a < 0.0001 except coefficients for d 4 and d 3 a with a = 0.0027 and 
a = 0.0082, correspondingly. General results of the analysis of 
variance of Model 1 are given in Table 2. 

Table 2 
Analysis of Variance Table 

DF Sum of Squares Mean Square F 
268 387.87 1.447 42.15 
849 29.15 0.034 

1117 417.02 

R- = 0.93, s = 0.185 
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It is important to stress that the meaning of the regression 
model estimated by means of absorption is not exactly to the 
same that naturalists mean when applying regression analysis. For 
example, the value of p predicted from Model 1 is not a real level 
of /n(CODMn) but only conditional. Particularly, the estimated 
model does not contain the intercept. Therefore, we shall refer to 
values calculated from Model 1 as pseudovalues. Related mathe­
matical problems are discussed below in Section 5. 

From Model 1 (see Table 1) various submodels can be derived. 
For example, by substituting d = 2 we can standardize the p value 
to a level which corresponds to the level of 19th July. For this 
certain day we get, from Model 1, the following Model 2: 

p =  -  0.033a4 - a3(0.01378r - 0.67588) + a2(0.1389r - 4.6808) 

+ a(0.05592r2 - 0.74669r + 13.542) - 0.106251r3 + 1.047r2 

- 2.5584г. 

This model is illustrated in Fig. 1 where the z-axis scale cor­
responds to pseudovalues. It can be used effectively only for cal­
culating differences, not for getting perfect p values. However, a 
s tandard  e r ror  of  a  pseudovalue  p cor responding  to  a  g iven  year  a,  
date d, and the CODCr level r can be calculated if the regression 
function of Model 2 is considered as a parametric function with 
coefficients a4, a3r etc. Using this method, we can calculate, with 
the help of SAS package, the standard error sp for each predicted 
pseudovalue p. For example, from the Model 1 we get, for 19th July 
(corresponding to d = 2) and conditioned to the mean /n(CODCr) 
level r = 3.36, the results presented in Table 3. 

Table 3 
Some predicted pseudovalues p and their standard 
errors s p .  С denotes the undetermined constant. 

Year a d r С + p ± sp 

1950 2.5 2.0 3.36 -8.614il.384 
1960 3.5 2.0 3.36 -8.742il.384 
1970 4.5 2.0 3.36 -8.995il.385 
1980 5.5 2.0 3.36 -8.766il.379 
1990 6.5 2.0 3.36 -8.238il.378 
2000 7.5 2.0 3.36 -8.387il.453 

As one can see, standard errors s p  of the predicted pseudo-
values are relatively large. 
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Let us now estimate changes in the p value during decades. 
Using the 'estimate' option in the SAS GLM procedure, Table 4 
was drawn. The errors of differences are clearly much smaller than 
the errors of pseudovalues in Table 3. It seems that after absorption 
only differences have a practical value. 

Figure 1. Graph of p — /n(CODn) as a function of /n(CODr), 
Year and Day. The Z-axis scale depends on undetermined constant 
C. 

Table 4 
Changes in p = ln(CODMn) level on 19th July as conditioned 

to ln(CODCr)=3.36, and the corresponding standard errors SE. 

Time interval Change in p  ± SE  Sign, level 
1950- 1960 -0.128 ± 0.043 0.0032 
1950 - 1970 -0.381 ± 0.054 0.0001 
1950 - 1980 -0.152 ± 0.055 0.0059 
1950 - 1990 0.376 ± 0.040 0.0001 
1950 - 2000 0.227 ± 0.317 0.4746 
I960 - 1970 -0.254 ± 0.041 0.0001 
1960 - 1980 -0.024 ± 0.054 0.6545 
I960 - 1990 0.504 ± 0.039 0.0001 

9  
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1970 - 1980 0.229 ± 0.042 0.0001 
1980 - 1990 0.528 ± 0.042 0.0001 
1990 - 2000 -0.149 ± 0.327 0.6840 

3. The linear model and absorption 
Let us have a linear model with one nuisance factorial variable 

with a huge number of levels and with some other arguments. If 
main interest is focused on parameters not connected with this fac­
torial variable, it is appropriate to use the technique of absorption, 
see Searle S.R. (1971). 

In order to understand what happens when absorption is used, 
let us consider a linear model with one factorial variable of к levels, 
which will be absorbed, and with p other arguments for which the 
parameters will be calculated. So let us consider the model 

E Y = Fa + X0, 

where 
Y - n x 1 vector of a dependent variable, 
F - n x к matrix of ones and zeros, associated with the 

factorial variable, to be absorbed, 
X - n x p matrix of arguments (factors or cofactors), 
a - к x 1 vector of nuisance parameters, 
в - p x 1 vector of the parameters under study. 

Let us denote the number of measurements on the level i  of 
the nuisance factor by щ and the number of a l l  measurments by n, 
n — =i ni- The vector of the measured values of the dependent 
variable is denoted by y. 

The LSQ-estimate of the parameter-vector g, g = [a : в] '  is 
the solution of the normal equations 

G'Gg = G'y (1) 

where 

G = [F : X]. (2) 

It is clear that 

G'G 
F'F : F'X 

X'F : X'X 
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where F'F is a diagonal matrix with nonzero elements on the di­
agonal. These elements are numbers of measurements on the cor­
responding level of the nuisance variable, 

F'F = Diag(n u n 2 ,  . . . ,n k ) .  (3) 

From the first к equations of the linear system (1) it is poss­
ible to express the vector a. Indeed, as 

we get 

F'Fa + F'X.6 = F'y 

a — (F'F)_1F'(y — X0). (4) 

Substituting the vector a into the last p equations of the 
system (1) yields 

X'(I - F(F'F)-1F')X0 = X'(I - F(F'F)_1F')y. 

Let us calculate the n x n matrix F(F'F)-1F/. From (3) we 
get 

and 

(F'F)-1 = Diag(  — , —,. . . ,  —)  
n  1  n 2  щ 

г 1 

F(F'F) -  F' = 

_L I m Ащхп1 
0 _L 1 

,1 2  

0 

0 

0 _Li >-П к ХП к  

where l n > x n -  is the щ x n, matrix of ones. Hence the difference 
I — F(F'F)-1F' is a block-diagonal matrix 

I - F(F'F)_1F' 

["Hi 0 
0 Ho 

0 
0 

L 0 0 H,.J 

where H; = - —1 n,xn,- The latter matrix is usually called 
the centering matrix, see Mardia, Kent, Bibby (1979); it is a pro­
jection matrix, i.e. it is symmetric and idempotent, HiH; = Hj. 

9* 
35 



The matrix I-F(F'F)-1F' may be named the level-cen-
tering matrix. 

Let the matrix X be divided into blocks Xi, 

X = 

Lx*] 

where the щ x p block X; consists of the values of arguments 
measured on the i-th level of the nuisance factor. Then the matrix 

X = H;Xi (5) 

is the n, x p matrix of the centered values of arguments on the i-th 
level of the nuisance factor. 

Let us denote by X the matrix composed of blocks Xi, 

X = 
Xi 

X*J 

As 
XfHiXi = XiHfHiXi, 

we obtain the equation 

X'(I - F(F'F)- 1F')X = X'X. 

In the same way, we can divide the vector у into blocks 

У1 

У -

Ук 

where у; is the vector of values of the dependent variable corre­
sponding to the i-th level of the nuisance factor. 

Similarly to the above procedure, the vector H;yi is the щ x 1 
vector of the centered values of the dependent variable on the i-th 
level of the nuisance factor. Let us denote this vector by y; and 

У = 
У1 

Ук  
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Now we get 
X'(I - F(F'F)-1F')y = X'y 

and the linear system for the LSQ-estimate of в is the following 

Х'Хв = Xy 

The complexity of this system does not depend on the number of 
levels of the absorbed nuisance factor; the system consists only of 
p unknown parameters. 

Now we have got the following useful result. 

Conclusion 1. Let us have a linear model with one nuisance 
factor of к levels and p other arguments. If we absorb the nuisance 
factor, the LSQ-estimate for the vector 9 of coefficients of other 
arguments will be given as a solution of a p x p system of linear 
equat ions 

x 'xe = xy 

where the dot marks level-centered data. Hence, we get 

в = (X'X)-Xy. 

4. The characteristics of quality 
Without any characteristics of the model quality the esti­

mates of a linear model are usually useless. The most common 
characteristcs are the multiple coefficient of determination and the 
standard error. It is possible to calculate these characteristics using 
only the hitherto calculated matrices. 

At first, let us calculate the sum of squared errors. If we 
suppose that normal equations have a solution g, we get 

SSE  -  (y - Gg)'(y - Gg) = y'y - y'Gg. 

Substituting G from (2) and g from (4) we have 

SSE  =  y'y - y'Gg = y'y - y'(Fa + X0) 

= y'(I - F(F'F)"1F')y - y'(I - F(F'F)-1F')X0 

= y'y-y'X0 

Thus, we get the second useful result. 
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Hence, the standard error is the following 

SSE 
у n — rank(G) 

and the multiple coefficient of determination equals to 

y'y + to 

where, using the common notation, w = n i (V i  ~  у) 2 -
Also, it is possible to fill the A NOVA table for the whole 

model, which contains: 

the sum of squares of the model y'y + w — SSE 
the sum of squared errors SSE 
the total sum of squares y'y + w 

5. Prognosis after absorption 
It is clear that after the absorption of some parameters it 

is impossible to calculate residuals and the diagnostic statistics 
related to them. Let us examine possibilities to calculate the co-
variance matrix for the estimated parameter vector в. It is well 
known that if the solution of normal equations (1) is unique, the 
estimation of the covariance matrix of g is the following 

Dg = s 2 (G'G)~ 1 .  

Using formulas for inverting a partitioned matrix (see Appendix) 
we get 

DO = s(X'X - X'F(F'F) _ 1F'X)~ 1  

= s(X'(I — F(F'F)~1F')X)_1 = s(X'X)-1 ' 

It is possible to calculate from a given change of other argu­
ments prognosis and the standard error for a change of the depen­
dent variable for a fixed level of the nuisance factor. Let us fix two 
values of the argument vector, (z^,..., Xp1')' and \ .... Xp^)'-
Then the change in arguments is vector a, assuming the nuisance 
factor is fixed, we get 

a = (41} - 42). • • •. X11] - 42))'-
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values of the argument vector, (x^,..., Xp1^)' and (xj2\ ..., Xp2^)'. 
Then the change in arguments is vector a, assuming the nuisance 
factor is fixed, we get 

a = (x^ - x f\  ..., x^ - «<»>)'. 

Now the prognosis for a change of the dependent variable is 

Ay  = а! в 

and the standard error for this prognosis is 

sA  = 8 v/a(X'X)-ia. 
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Appendix 
Suppose matrix A is partitioned, 

_ Ац A12 
Л21 A22 

If all the necessary inverses exist, then the elements of A - 1  will be 

A 1 1  = (A n  - АиА^Аи)- 1, A 1 2  = -A nAi 2AJ 2\ 

A 2 1  = —A221 A2iAL1, A22 = (A22 — A2iA["1
1Ai2)-1. 
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Absorbeerimise kasutamine keskonnauuringus 

T.Möls, A.-M.Parring 

Kokkuvõte 

Artiklis tutvustatakse praktilist võtet - absorbeerimist - li­
neaarse mudeli parameetrite hindamiseks juhul, kui mudelisse kuu­
lub suure tasemete arvuga segav faktor. Niisugune mudel osutus 
otstarbekaks kirjeldamaks muutuseid Eesti järvede seisundis ajava­
hemikul 1925-1993 kogutud andmete põhjal. Antakse lühiülevaade 
mudelist ja avatakse selle tehnika matemaatiline külg. 
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Correspondence Analysis as a Method for 
Depicting Qualitative Data 

Kalev Pärna, Anneli Kulu 

Summary. Correspondence analysis is an exploratory method 
for analysing 2-dimensional data tables where the rows and 
columns of the table are depicted as points in a low-dimensional 
(usually 2-dimensional) vector space. This paper gives an in­

troduction to correspondence analysis covering essentials of the 

mathematical theory and demonstrating how the method can 

be applied to analyse a real data set. 

Key words: correspondence analysis, dual scaling, reciprocal av­
eraging, singular value decomposition, contingency tables. 

1. Introduction 
Nowadays statistics is used in very different fields and often 

a researcher tackles non-numerical variables. Actually, in social sci­
ences, market research we deal almost exclusively with categorical 
data. Some variables of this type are: profession, country, type of 
car, region, sex, religious affiliation, race, agreement-disagreement 
with a given statement etc. Categorical data is usually represented 
in the form of contingency tables. 

Correspondence analysis is a technique that in its simplest 
form can be applied to a two-way contingency table resulting in 
numerical values for both row and column categories. These values 
(scores) are chosen in such a way as to account for as much of 
the association between the two variables as possible. Then the 
row and column categories are displayed in 2-dimensional plots 
defined by pairs of these scores. It should be mentioned that the 
method can be applied not only for two-way contingency tables but 
to analyse large variety of data that can be brought into the form 
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of two-way table of non-negative numbers. 
The method of correspondence analysis is very popular in 

France, particularly due to J.-P. Benzecri and his school. They also 
introduced the term Г analyse des correspondances (see Benzecri 
(1973)). But the history of the idea is longer and goes back as 
far as Hirschfeld (1935) and Fisher (1940). Their aim was to re­
place the two categorical variables representing certain biometrical 
data by numerical variables ('scores') in such a way as to maxi­
mize correlation between them. At the same period, but in a to­
tally different (psychometric) context, L.Guttman (1941) derived 
a method for quantification of multivariate nominal data that in 
the case of two variables lead mathematically to the same solution 
as Fisher's method. Various names as 'canonical analysis of con­
tingency tables', 'reciprocal averaging', 'scalogram analysis', 'dual 
scaling', and some other have been used to designate essentially 
the same method. Correspondence analysis (in its 'French' sense) 
can be regarded as a geometric form of the above approaches. 

Correspondence analysis is mainly used as an exploratory 
method, and not too much attention has been paid (especially, in 
applications) to its statistical properties. This attitude is justified 
in many situations where the data can not be regarded as a random 
sample from any parent population. Researchers are more inter­
ested in stability properties of the method: do the small changes 
in data cause only small changes in the results, or not? 

We suggest Greenacre (1984) for a detailed exposition of the 
method and Greenacre, Hastie (1987) for an overview. 

2. The method of correspondence analysis 
Here we give a description of the mathematical method that 

stands behind the correspondence analysis (see also the section 4). 

Let us have n observations (persons, objects) classified by 
two categorical variates A and В according to their categories 
Ai, A 2, •.., A j and Bi,B2,..., Bj. The number of observations 
having simultaneously both values А,- and Bj will be denoted by 
n j j. The data can be presented in the form of IxJ contingency 
table N = (riij) which row, column, and grand totals are nj = 
£jTiij,n.j = and n — respectively. Let us denote 
two diagonal matrices R = diag(n\ . , . . .  ,n j  ) ,  С = diag(n, i , . .  . ,n j )  
and  r e l a t i v e  f r e qu enc i e s  Д ,  =  r i i j / n ,  f i  =  Щ J n ,  f j  =  n . j / n  .  

In correspondence analysis our main interest is with condi­
tional laws in the contingency table N. Let us denote row-wise and 
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column-wise relative frequencies (conditional probabilities) by: 

f '  = пц/щ., f f  - Tli j/ n . j .  

The vector f' B  = (/{, /2,. . . ,  f j ) T  will be called the row profile 

(for the row i). Similarly, the vector f 3
A  = (f{, /|,..., fj ) T  will 

be called the column profile (for the column j). The looser term 
'profile' (instead of 'conditional law') has the advantage that it can 
be applied to any rectangular table N of non-negative numbers 
(not necessarily contingency tables). Observe that row profiles f' B  

represent I points in the J-dimensional Euclidean space. We will 
cal l  these points a c loud o f  row prof i l e s  and denote i t  NB(A ) :  

N B ( A )  =  { f B \ i = l ,  

It is essential to correspondence analysis that each point f l
B  in the 

cloud has its mass defined by the marginal probability /,-. So, the 
cloud is a configuration of weighted points. The centroid of the 
cloud is defined as its mass-center, i.e. the weighted average of its 
elements: 

f e  =  Z i f i  •  rB 

which is readily seen to be equal to the marginal distribution of 
the variable B: 

/ в  =  ( h ,  •  •  • ,  f j ) T •  

Let us make a comment on the dimensionality problem. Initially, 
all points of the cloud NB(A) are the elements of J-dimensional 
space. But since the coordinates of these vectors sum up to unity 
(conditional laws!) we see that the profiles actually lie on a hyper-
plane of dimension J — 1. From the other side , any I points can 
be amounted by a subspace of dimension I —I. Thereby, the cloud 
needs no more than min{J — 1,7—1} dimensions to be amounted. 
Actual dimensionality can be even lower, depending on the initial 
data. For example, we loose one more dimension if the data table 
N contains two proportional rows. The 'right' dimensionality К of 
the cloud is  determined by the rank of the data matr ix N : К = 
rank(N) —1 < min{/ — 1, J — 1}. 

Now let us consider the cloud of column profiles: 

N A ( B )  =  { f j
A \ j  =  l  J}, 
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a subset of an /-dimensional space. The elements of Na (B ) have 
masses equal to corresponding marginal probabilities fj, and the 
centroid of the cloud is the weighted average of its elements which 
is now equal to the marginal distribution of the variable A: 

ZA = (/I,...,//)T 

We can now formulate the aim of correspondence analysis. In ge­
ometrical terms, our aim is to identify q low-dimensional subspace 
which comes 'closest' to all points of the cloud (Greenacre (1984)). 
The general idea is the same as in principal component analysis 
but also several differences can be noticed after having specified 
the term 'closeness'. If the points have different masses /; then the 
subspace should lie even closer to the points of higher mass, while 
a deviation from the points of lower mass would be more easily 
tolerated. Also, the distance we use is not common but a weighted 
Euclidean distance (see below). 

As a simple illustration let us have a data in the form of 
(8x3)-contingency table. Since the eight row profiles lie on a 2-
dimensional simplex defined by 

П + Г 2 + Г з  =  1, all f )  >  0 ,  

the cloud of 8 row profiles can be depicted as on Fig.l. 

first principal 
axis 

i f. 
2 

Fig.l. All eight points (the row profiles) lie on the triangle. 
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We now specify two important notions. The dis tance  of the 
row profile fl

B from the centroid of the cloud is, by definition, 

d2(i) = Z j(fj-f j)2/f j, (2.1)  

which is called the 'chi-squared distance'. In fact, it is a squared 
weighted Euclidean distance, since the normalizing factors yjjj are 

used to measure the difference between the j-th co-ordinates. The 
same in matrix form is: 

d\i) = (fh - fв)ТпС~\Гв - }в). (2.1') 

The crucial notion in correspondence analysis is inertia, a general­
ization of variance. Inertia of the cloud NB(A) is defined by the 
weighted average of the distances oil profiles from the centroid of 
the cloud: 

in(A) = Ei f i  •  d \ i ) .  (2.2) 

Inertia is the measure of how much the profiles are spread around 
the centroid. In the special case when all masses fx are equal, 
inertia reduces to the total variance of the/ points. Inertia is closely 
related to chi-squared statistics for testing the independence in the 
two-way contingency table. Namely, it is elementary to show that 

«04) = ад/"1'-""1»' 
Tlx ^  . j  

= x 2/ n- (2.3) 

As to the dual cloud Na(B), its inertia is determined by 

i n ( B )  =  E j f j  •  d \ j )  

where 
d ' \ i )  = ЭД - /,)7/i 

- the weighted Euclidean distance of the column profiles / J  from 
the centroid /д . The formula (2.3) also applies to the dual cloud, 
and we denote the common value of the two inertias by Л: 

A = in(A) = in(B) = \~/n. (2.3') 

Our gain in correspondence analysis - a specific low-dimensional 
sub-space which comes close to the points of the cloud - is deter­
mined by principal axes of inertia. Principal axes are К vectors 
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applied to the centroid of the cloud and showing the directions of 
largest inertia, every next being orthogonal to all previous. To 
get a low-dimensional space only a small number (say, K* — 2) of 
first principal axes are needed, in hope that these K* dimensions 
describe the data well enough (see Fig.l). The complete math­
ematical solution to the problem is embodied in the concepts of 
singular value decomposition and low rank approximation (see Sec­
tion 4 for details). Here we only give some facts that are important 
from applied point of view. 

Let m i , ,  т . ц  be the principal axes of inertia for the cloud 
of the row profiles and let x,* be the co-ordinate of the i-th row 
profile with respect to the fc-th principal axis of inertia —k-th prin­
cipal co-ordinate. Then the i-th row profile is given by the /("-vector 
Xi = (xji,Xi2,..., Xix) and the whole cloud of row profiles by an 
(ZxÄ')-matrix X, 

It comes mathematically from the singular value decomposition 
method that the К columns of the matrix X can be computed as 
eigenvectors of the (/x/)-matrix R _ 1  JVC - 1  NT  corresponding to 
i t s  non-zero eigenvalues Ai , . . . ,  А к • I t  means  that  the  matr ix  X 
satisfies the equation 

where D\ is a (A'xA')-diagonal matrix of eigenvalues, D\ = diag 
(Aj,..., A#), assuming the ordering Ai >,...,> Хк > 0. The 
equation (2.4) is equivalent to (4.9), but because of symmetric-
ity the latter is computationally more convenient to solve. Ob­
serve also that, actually, the number of non-zero eigenvalues in 
(2.4) equals rank(iV) = К + 1. However, we do not use the 'trivial' 
largest eigenvalue Ao = 1 and the corresponding constant eigenvec­
tor consisting of l's, which is easily seen to satisfy (2.4) but not 
of real interest. Geometrically, the dropping of the trivial eigen­
value and eigenvector means that in our analysis we set the origin 
of principal axes at the centroid of the cloud. 

If we normalize the eigenvectors so that 

( .R~ 1 NC~ 1 N T )X  =  XD x  (2.4) 

-X  T RX --= D x  (2.5) 
n 
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then the weighted sum of squares along the fc-th principal axis 
i s  equal  to  the  e igenvalue  A*  -  ca l led,  thereby,  the  k- th  pr inc ipa l  
iner t ia .  

In the case of the dual cloud let the principal co-ordinates of 
the j-th column profile be уц, yj2,..., yjK which are collected into 
the (Jx/<)-array Y. However, it is not necessary to solve a new 
eigenvalue problem (an analog of (2.4) - instead we can exploit 
simple 'transition formulae' between the two sets of principal co­
ordinates: 

YD P  = C~ 1 N T X,  (2.10) 

XD P  = R~ l NY (2.11) 

where D p  = d] / 2  .  The use of (2.10) results in y-co-ordinates 
that have similar to z-co-ordinates standardization (see the for­
mula (4.11). The resulting equality of principal inertias in both 
clouds allows to merge the two separate graphical displays into one 
joint display with I points for row and J points for the column 
profiles. Still, according to Greenacre (1984) we should 'avoid the 
danger of interpreting distances between points of different clouds, 
since no such distances have been explicitly defined'. 

Finally, we show that the principal inertias A I, A 2 , . . . , A  к  
are, in fact, the components of the total inertia A. Indeed, we have 

о n i i  riA = r = n(SiEj—У- - 1) 
ЩП j 

= n{ t r(R- 1 NC~ 1 N T ) -  1) 

= n(Ai + A2 + ... + А к), (2.12) 

since the trace of the matrix is equal to the sum of its eigenvalues. 
Therefore A = in(A) = in(B) = AI+A 2  + . . +Ад- - the total inertia is 
divided between К principal axes, the first axis taking the largest 
portion etc. In computer outputs the relative inertias A*/A are 
usually given (expressed in percents) to show relative importances 
of different axes in describing the data. 

3, An application of correspondence analysis 
A sample of 105 university students were asked to charac­

terize their teachers in order to get. some idea about what is impor­
tant. in teachers from students' point of view. A complete list of 58 
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teachers of a faculty was presented to each student who had to find 
one or more characteristic features for every teacher in the list. In 
order to get an 'unbiased' data the question was formulated in a 
very loose form, no prior list of possible features was used. It was 
allowed to skip if the student did not know some of the teachers. 
The total number of different words used by the students exceeded 
80, but in order to supress the dimensionality the words with al­
most the same meaning were replaced by one of them. Thereby, as 
many as 55 qualities (listed below) were used in the analysis. 

All the data were collected into a 58x55 contingency table 
showing how many times one or other word (column of the table) 
was used to characterize a specific teacher (a row of the table). The 
data table is too large to be presented here. 

List of characteristics used by students 

A slow a nervous 
В active b objective 
С authoritarian с optimistic 
D authoritative d ill-posed 
E vain e pedant 
F egoistic f gabbler 
G emotional g stubborn 
H conceited h quiet 
I fanatic i strict 
J absent-minded j glad 
К well-wishing к confusing 
L sense of humour 1 sarcastic 
M dull m solid 
N talkative n subjective 
0 closed о communicative 
P fast p friendly 
Q correct q likable 
R careless r reserved 
S kind s balanced 
T pleasant t moody 
U nonunderstanding u serious 
V enjoyable v dizzy 
W understanding w trusting 
X naive x complaisant 
Y censorious, nagging у polite 
Z demanding z whiner 
! overbearing " undemanding 
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* supercilious 

The correspondence analysis procedure of the MVSP statis­
tical package was used to analyse the data. Because of the large 
number of points the emphasis is put on graphical display rather 
than numerical analysis. For the same reason two separate displays 
are given, although, in principle, they can be overlayed. 

AXIS г 

0.4 

h s 

J 

-R—S-ZKq-

V 2 : 

с : 
j 2 : 

v L P 

N 

И 

f I 

ey Q 

-bZ-n-

a # 
gUY e F 

-k i 
D H t 1 

! 

z С 

-0.4 

-0.27 0.51 

AXIS 1 

Fig.2. Display of the characteristics 
(2 = two overlapping characteristics) 

In this example the first and the second principal axes de­
scribe 14 and 11 percent, respectively, of the total inertia involved 
in the data (thus Ai/A = 0.14, A2/A = 0.11). The numbers are 

49 

13  



not very large, but it should be taken into consideration that the 
dimensionality of the data can be as large as 54 and, therefore, the 
total inertia is distributed between many (maximum 54) axes. In a 
hypothetical extreme case where the total variance were uniformly 
distributed between all 54 axes the first two axes would cover only 
3.8 percent of the total variance, which is 7 times less than in our 
real case. Moreover, the two dimensions are easy to interprete. 

AXIS 2 

* 

* 

* * 

* 

* 

* *2* * » * 

* 2 * 2 * 

» * 2* 2** * 2 

2 

* * 

* * 

-0.4 

* 

-0.20 0 0.52 

AXIS 1 

Fig.3. Display of the teachers 
2 = two overlapping teachers 

On the display of characteristics (see Fig.2.) one notices a 
long right-hand tail with various words expressing demandingness 
of teachers, whereas the words on the left-hand side have opposite 
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meaning. Since it is the first principal axis we conclude that, from 
students' point of view, the strictness is the most important feature 
that discriminates between university teachers. 

According to the meaning of the characteristics at the top 
and the bottom of the same display, the second principal axis can 
probably be called the introversy-extraversy dimension ('closed' 
people - 'open' people). 

Distribution of the points on the teachers' display has ap­
proximately the same shape (see Fig.3). Overlaying the two dis­
plays one can (to some extent) decide on which characteristics are 
related with any specific teacher. 

4. Appendix: Singular value decomposition and low rank 
approximation 

A fundamental theorem of matrix algebra states that each 
rectangular matrix permits a singular value decomposition (SVD), 
as explained below. 

Let A be an (/xJ) data matrix, and G(/x/) and H(JxJ) be 
given positive definite symmetric matrices. The generalized SVD 
of A is the following decomposition of A: 

where 1\ , . . . JK are orthonormalized (in metrics G) /-vectors, 
?7ii,..., тк are orthonormalized (in metrics H) J-vectors and 

, рк are positive numbers (in decreasing order). The vectors 
lк and mjfc are uniquely determined up to the reflections. In view 
of form (4.1) of the SVD it. seems that if, for some A'*, singular 
v a l u e s  р к * + 1 ,  •  •  • ,  P K  a r e  r e l a t i v e l y  s m a l l  c o m p a r e d  t o  р к * , ,  р ц  
, then dropping the last К — К* terms of the right hand side of 
(4.1) gives a good approximation to A and has lower rank than A. 
This approximation 

turns out to be a generalized least squares one, and this is the result 
which makes the SVD so useful. More precisely, А (К*) is the best 
approximator in the sense that it minimizes: 

к 
A = Pb'k™!• (4.1) 

к'  
(4.2) 

Zr{(G( A - Z )H( A - Z ) T ) } .  
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over all possible /xJ-matrices Z of rank A'"(see Kshirsagar (1972)). 
The same SVD in matrix form looks like 

A = LD P M T ,  with L T GL = M T HM = I. (4.4) 

where the columns of L and M are 4 and m<; respectively. 
Let us apply the theory for the purposes of correspondence 

analysis now. As stated in the section 2, in correspondence analysis 
our aim is to find a low-dimensional subspace that comes closest 
to all points in a given cloud. Let us consider the cloud of the 
row profiles f'B. First, it can be shown that the 'best' subspace 
must contain the centroid of the cloud, i.e. the marginal profile 
vector /5. (The best O-dimensional subspace is the point /д it­
self!) Therefore, instead of the row profiles we will approximate 
the centred row profiles /5 — /в, i.e. the rows of the matrix 

where 1/ is the column of I unities. Each row of A has its mass 
/,-, and the distances are defined by the diagonal matrix C(see the 
formula (2.1'). Thereby, the criterion for finding the best approxi­
mation for A is: minimize 

5 3  f i ( f B  - f a -  Zi)TnC-\ fB  -  fB  -  Zi)  = 

= tr{{l/n)R(R-lN-\Ifl-Z)nC-\R-xN-\Ifl-Z)T} (4.6) 

over all /x.J-matrices Z of rank K* . It means that the rows of 
Z are unknown points z< that must belong to a K*-dimensional 
subspace. This function is a particular case of the criterion (4.3) 
with G and H as diagonal matrices: 

Therefore, the solution is embodied in the generalized SVD of A: 

A = R~ lN -  hf l  (4.5) 

G = —R = diag {£}, 
n 

H = (lcr1= diag {1/f j } .  

R~ X N -  hf l  = LD P M T  (4.7) 

with normalization 

L T (-R)L = M T (-C)~ 1 M = I. ((4.8)) 
П 71 
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The columns of M, the vectors mi,..., тк (say), define the princi­
pal axes, and the rows of LDP define the co-ordinates with respect 
to these axes, i.e. principal co-ordinates. (Recall that in the sec­
tion 2 the principal co-ordinate matrix was denoted by X - thus 
we have X = LDP.) Due to (4.8) we have normalization 

-XTRX = D x  (4.9) 
n 

which prescribes that the weighted sum of squares of the points' 
co-ordinates along the fc-th principal axis is equal to the eigenvalue 
A*. 

How to compute the principal co-ordinates matrix X = 
LDP1 Premultiplying (4.7) by gives another generalized SVD 
problem: 

-W-/A/I = -RLD„Mt, (4.10) 
n n 

which, in turn, can be shown to be equivalent to a symmetric eigen­
value problem 

(ß-1/2NC_1/2)(ü-1/2NC-1/2)T(Ä1/2X) = (R 1 ' 2X)DX  (4.11) 

where D\ = D 2
p ,  and N = N — nf& fg .  Actually, one can solve 

(4.11) with N instead of N . Since the rank of N is by 1 larger 
than the rank of N we then will obtain one more eigenvalue and 
eigenvector (additional column to X). But it can be readily checked 
that the additional column will be 'trivial' in the sense that it 
consists of l's only, and thus can be neglected as uninteresting. 
The trivial solution simply points the centroid of the cloud as its 
best 0-dimensional approximation. 

Having obtained principal co-ordinates for the rows, those 
for the columns can be calculated via the following 'transition for­
mula': 

Y = C~ 1NTXD;\  (4.12) 

which yields in standardization 

-YTCY = D x .  (4.13) 
n 

In view of identical right, hand sides in (4.9) and (4.13), both clouds 
have the same principal inertia along each axis. This makes the row 
and column co-ordinates comparable, justifying their joint display. 
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Korrespondentsanalüüs kui kvalitatiivsete 
andmete kujutamise meetod 

Kalev Pärna, Anneli Kulu 
Kokkuvõte 

Korrespondentsanalüüs ehk "prantsuse faktoranalüüs" on 
andmetöötlusmeetod, mis rakendatuna 2-mõõtmelisele sagedusta­
belile omistab tabeli ridadele ja veergudele teatud mõttes opti­
maalsed arvväärtused (st. kvantifitseerib rea- ja veerutunnused), 
mida kasutades saab tabeli ridu ja veerge kujutada punktidena 
väikese-mõõtmelises ruumis, näiteks tasandil. Arvväärtused va­
litakse nii, et nad võtaks arvesse nii palju seost kahe tunnuse va­
hel kui võimalik. Artiklis antakse ülevaade korrespondentsanalüüsi 
meetodist, näidates selle sarnasust hästituntud peakomponentide 
meetodiga ning seostades teda maatriksi singulaarse lahutuse mõis­
tega. Kirjeldatakse meetodi kasutamist ühe üliõpilasküsitluse and­
mete analüüsimisel. 
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Using Index-vectors and Partitions 
in Multivariate Analysis 

Ene-Margit Tiit, Sirli Tammet 

Summary. The paper considers some concepts, which are 

used in different problems of multivariate analysis - the index-

vector, i.e. vector, having natural components and identify­

ing the subvector or submatrix, and the -partition of an index-

vector, identifying the division of a set of variables into several 

subsets. In the first part of the paper some properties of lex­

icographical ordering of index-vectors are represented, which 

are useful for estimating higher moments and their functions 

and solving the problem of 'moments of moments', too. The 

second part of the paper presents some algorithms for gener­

ating partitions of a number. All results are illustrated with 

examples. 

Key words: correlat ion matrix ,  mixed moments ,  index-set ,  part i ­
t ion of  set ,  part i t ion of  number,  extremal  dis tr ibut ion.  

1. Introduction 

In multivariate statistics the concept of an index-vector  is 
widely used for identifying the subsets of variables or the compo­
nents of random vectors, for defining higher moments and cumu-
lants etc. In this paper several problems connected with describing 
and ordering of multivariate statistical objects, identified by the 
index-vectors, are regarded. 

In the first part (Sections 2 - 3) of the paper some identi­
fication problems of the higher moments of multivariate random 
vectors are solved using the ordering rule of index-vectors. The 
theoretical discussion is illustrated with the help of an example, 
where the index-vectors, corresponding to all fourth moments of a 
five-variate random vector are found (Table 1). 
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The results received in Section 3 are generalized in Section 
4, where the rule for identifying the 'moments of moments' is given, 
(see Fisher, 1929 and Kotz & Johnson, 1981, 124 - 129). In Table 
2, the double index-vectors, identifying the third moments of the 
fourth moments of a bivariate random vector, are represented. 

In the second part (Section 5) of the paper the concept of the 
partition of number is used for building a classification of higher 
moments of random vectors. Also a formula for calculating the 
cardinalities of classes of different moments is derived in this part. 
The theoretical results are illustrated by an example, where the 
data from Table 1 are used. 

The third part (Sections 6 and 7) of the paper is devoted to 
the construction of partitions of a given index-vector. This problem 
is essential in several procedures of building statistical models (e.g. 
the regression analysis), but also in the construction of extremal 
distributions and extremal correlation matrices, see Tiit (1992). In 
Section 6 the algorithm for constructing of binary partitions is given 
and illustrated in Examples 4 and 5. In Section 7 the algorithm 
is generalized for building arbitrary partitions. The algorithm is 
illustrated in Example 6. 

2. Index-vector 

Let us start with the definitions of the basic concepts. 
DEFINITION 1. The vector 

/=(*!,..., it) (1) 

is said to be an index-vector,  if all its components are integers, 
ij < p, p is a fixed parameter. 

The set of all index-vectors (1) will be denoted by T(p, k). 
Let us assume that the parameter p and the dimension к are fixed. 
Let us regard the equivalence classes of index-vectors by permuta­
tions of indices. 

DEFINITION 2. Let I  = (n,...,i*) and J = (ji,...,jfc) be two 
index-vectors from the class T(p, k). If there exists a permutation 
P so, that the equality 1 = PJ holds, then we say that the index-
vectors  I  and J are  equivalent .  

As a rcpresentai i  ve  of a class of equivalent index-vectors we 
will take the lexicographically decreasingly ordered index-vector 

/' = («': 4) 
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from this class, where 

i j  <  i j- i ,  j  = 2, (2) 

The index-vectors that belong to different classes are said to be 
essentially different. In the future (Sections 3 and 4) we will regard 
the set Ф(р, к) of equivalence classes (essentially different index-
vectors), Ф(p,k) С T(p,k). 

3. Ordering of index-vectors 

Let us define the posi t ion /(•) of a component i f  of an index-
vector I as its successive number in the lexicographically ordered 
index-vector (z'i,..., i*). Every index-vector (ij,..., it) can be re­
garded as an fc-figure natural number in the positional number 
system having the basis  p.  

Let us order all index-vectors of the set Ф(р, к) lexicographi­
cally; as a result we receive the sequence l(p, k) with terms 1/, (here 
Ih  is  the  / i - th  e lement  of  the sequence) .  The sequence l (p ,k)  = 
{/л} does not include all possible k-figure p-numbers, but only 
these which satisfy the conditions (2). 

Let us assign to every index-vector Ih its rank h = h(I). Our 
task is to find the ordering rule ф, describing the correspondence 

ф: I h  =»A(I), ф- 1  : Л(7) => I h .  (3) 

In the following we will define several concepts, connected 
with the sequence l(p, к). 

DEFINITION 3. The subsequence of the sequence Z(p, k), consist­
ing of fc-variate index-vectors (i\,..., it), satisfying the condition 

il < j  

is said to be a j -segment  of the sequence Z(p, k)  and will be denoted 
by H(j,k), j = 1, — ,p-

Let k) denote the cardinal i ty  of the segment H(j,  к). 

DEFINITION 4. The subsequence of the sequence l(p, к), consist­
ing of t-variate index-vectors (ii,..., it), satisfying the condition 

»1 = j  

is said to be a j-sect ion of the sequence J(p, k) and will be denoted 
by G(j,  k),  j  = l,...,p. 
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Let kq(j ,  к) denote the cardinality of the section G(j, к). 
From the definitions it follows that between the cardinalities 

of segments and sections the following equation holds: 

кяС?\ *) = £]«:<?(/> *)• (4) 
/ = 1  

To find the ordering rule ф we will start with the siinpliest 
possible index-vectors I. 

A. Let us construct the sequence T(p,k) in the case к = 1. Then 
I = ii and we have the following equations for the segments 

H(j, 1) = {l, . . . , j} , n H( j , 1) = j, 

and the sections of the sequence Z(p, 1): 

G(j, 1) = {j}, KG( j , 1) = 1, j  = l, . . . ,p. 

In the case к = 1 the ordering rule ф is the following: 

h ( I )  = ii, »1 = 1, . . . , P -  (5) 

The cardinality of the sequence Z(p, 1) is p. 

B. Let us consider the case к = 2. In this case the members of 
the sequence I(p, 2) are the vectors (ii, г'2). Let us regard a section 
G(j, 2). By the conditions (2) and the lexicographical ordering 
rule of the sequence Z(p, 2) it can be concluded that the index-
vectors (гi, г '2), belonging to the section G(j, 2), have the following 
construction: 

i\ -  j, 
г'2 has all successive values of the index i [ , belonging to the 

segment H(j, 1) of the sequence I(p, 1). 
From this construction the expression of the cardinality of a 

section immediately follows: 

KcAj, 2) = K H( j , 1), j  = l,...,p. (6) 

From this construction another important statement follows, too. 
If the vector I = (ii,г'2) belongs to the section G{i\,2), then for 
the rank h(I) the following inequalities: 

K/f(t'i - 1,2) < h ( I )  <  К ц { > 1 . 2 ) ,  i i  =  1  , . . . , p .  ( 7 )  
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are valid. 
To get the precise value of the rank h(I)  we will regard all 

index-vectors (j, г'2) from the section G(j, 2). It is easy to see that 
there exists one-to-one correspondence between the section G(j, 2) 
and the sequence l(j, 1), formed from the second components {г'2} 
of the initial index-vectors. Using the equation (5), we will get 
from the equation (7) the following formula: 

h ( I )  — к н O'l - 1,2) -Нг-

The last equation can be transformed with the help of the 
formulae (4) and (6): 

i  
«ff (j, 2) = «я(/, 1) = ( U  •  ( j  + l))/2 = 4 ,  

/ = 1 

where we use the notation Aj  = ((/ 4- g  — 1) • ... • f )/(g\) .  
Using the equation Af = g,  it will be convenient to rewrite 

the formula of the transformation rule ф in the following, more 
symmetric (in the sense of indices), shape: 

A(2) = l + A^ + Är1- (8) 

The cardinality к ( 1 ( р ,  2) can be calculated with the help of 
equation (8): 

к ( 1 ( р , 2 ) ) =  1 + ЛГ 1  +A F
1~ 1  =A p

2 .  (9) 

C. Let us prove now Theorem 1, determining the rule ф for the 
arbitrary dimensionality к. 

THEOREM 1. Let Ф(p, k) be the set of essentially different index-
vectors (<1,. .., ih), where the dimensionality к and the parameter 
p are fixed. The rule ф for the lexicographical ordering of index-
vectors in the sequence X(p, k) is the following: 

к 

h(I) = l + E^Vi-r (Ю) 
<z=i 

PROOF. The formula (10) is an immediate generalization of the 
formula (8) by the principle of mathematical induction. 
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On the first step of the proof we fix the posi t ion of the index-
vector I = (»i,..., ik) in the sequence l(p, k), using the concepts 
of segments and sections of the sequence. 

By Definition 3 and 4 the index-vector (»i,. ., i t )  belongs to 
the sect ion G(i  i ,  k)  and hence to  the segment  H(i\ ,  k)  of  the Z(p,  к), 
as well. Let us take the section G(ii,k) and regard all (к — 1)-
variate subvectors of the index-vectors (ii,..., г*) belonging to the 
section G(i\,k) and having different values on posit ions 2 , . . . ,k. 
This sequence coincides with the sequence l(p, к — 1). The (к — 1)-
subvector (?2, • • •, г*) of the initial index-vector I belongs to the 
segment H(i? 4, к — 1) of the sequence l(p, к — 1). 

Repeating this discussion, we get on the /-th stage a se­
quence I(p, к + 1 — /) of (к + 1 — /)-variate subvectors of index-
vectors  f rom the set  Ф(р, к), and fix the segment H{ij, & + ! — /),  
where the (k + l — f) subvector of the initial index-vector I belongs, 
f — 1 , • • ,k. From here we receive the formula for h(I): 

t-i 
h(I)  = У\д(»; -l ,k+l- f) + ik- (И) 

/=i 

The next step is to calculate the cardinalities к: # ( г 1  —  l ,k  +  

1 — /). From the equations (4) and (6) and the construction of the 
sequence l(p, k) the following equation can be concluded: 

f  

«я(/ ,9+ 1)  = ХляСм)-  (6 ' )  
;'=i 

Using the well-known equation 

A i  =  Е л и  
3 - 1  

and the equation (8), we receive the following formula: 

«я(/ , г )  = ̂ ;+ /- 1. (12) 

Substitution of the formula (12) into the equation (11) immediately 
gives the formula (10). Theorem 1 is proved. 

As the transformation ф is by definition one-to-one, so the 
transformation 0~' exists, as well. 
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The rule ф is a generalization of the well-known operator 
vech, transforming the upper triangle of a symmetric matrix into 
the vector. 

From Theorem 1 immediately Corollary 1 follows. 

COROLLARY 1. The cardinality of the sequence l(p, k) is A p
k .  

To prove the corollary it is sufficient to use the formula (10), 
using the values i j  — p,  j  — 1, . . .  ,k.  

Example 1. Let us regard the set of fourth moments of 
a five-variate random vector (Xi, X2, X3, X4, X$). The usual way 
to present the set of moments is to use the moment's matrix (of 
order 5x5x5x5). In this matrix, which is usually written 
with the help of 5 x 5 blocks, there are 625 entries. But most of 
the elements of the matrix are superfluous, as almost all moments 
are represented in this matrix repeatedly. The situation is similar 
to that of correlation matrix, where all correlation coefficients are 
represented twice: in the upper and in the lower triangle. 

The main practical problem is to eliminate the repeated 
copies of  the moments  from the matrix.  Using the ordering rule  ф, 
where as the dimensionality к the order of moments is taken and 
as parameter p - the dimensionality p of the initial vector, it is 
possible to get all different fourth moments of the vector, identified 
by the indices, as a finite sequence l(p, k). In Table 1 all different 
fourth moments of a five-variate random vector are represented as 
4-dimensional index-vectors, identifying the indices of the random 
variables. 

Table 1. 

h(I) I h(I) I h(I) / h(I) I h(I) I 
1 1111 15 3333 29 4431 43 5331 57 5521 
2 2111 16 4111 30 4432 44 5332 58 5522 
3 2211 17 4211 31 4433 45 5333 59 5531 
4 2221 18 4221 32 4441 46 5411 60 5532 
5 2222 19 4222 33 4442 47 5421 61 5533 
6 3111 20 4311 34 4443 48 5422 62 5541 
7 3211 21 4321 35 4444 49 5431 63 5542 
8 3221 22 4322 36 5111 50 5432 64 5543 
9 3222 23 4331 37 5211 51 5433 65 5544 
10 3311 24 4332 38 5221 52 5443 66 5551 
11 3321 25 4333 39 5222 53 5444 67 5552 
12 3322 26 4411 40 5311 54 5511 68 5553 
13 3331 27 4421 41 5321 55 5521 69 5554 
14 3332 28 4422 42 5321 56 5522 70 5555 
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By the corollary it is easy to calculate the number of different 
moments A\ = (8 • 7 • 6 • 5)/4! = 70. This number is concordant 
with the data given in Table 1. 

To identify the moment E(X i • X\  • X$)  we take the index-
vector (1,2,2,5), find its representative (5,2,2,1) and calculate the 
value of h(I) = A\ + A\ + + A\ + 1 = 35 + 1 + 1 + 0 + 1 = 38. 
The result is the rank h(I) of the index-vector I = (5,2,2,1), as 
we can see in the Table 1. 

In similar way the inverse transformation h => //, can be 
found. For example, let h(I) = 50 be given. As A\ — 35 and 

= 70, so ii = 5. The next step is to compare the difference 
50 — 35 = 15 with the values of A| (j = 1,..., 5). As A§ = 10 and 

A| = 20, hence г'2 = 4. The difference 5 is between the values of 
A 2  = 3 and A2 = 3 and the difference 5-3 =2 equals to Af = A} +1: 
Hence the index-vector /50 has the form (5,4,3,2). 

Example 1 demonstrates that the rule ф and its inverse ф~ 1  

are both easily programmable. 

4. Repeated ordering 

For solving several problems it is necessary to carry out the 
repeated ordering of index-vectors. For instance, after the moments 
of order к are estimated, the moments of the estimated empirical 
moments are needed to estimate. Hence the moments of moments 
should be calculated. In this case the procedure described in Sec­
t ion 3  can be used,  where as the components  i j  of  index-vectors  
some index-vectors should be regarded. In this case the following 
Theorem 2, generalizing Theorem 1, will hold. 

THEOREM 2. Assume J is a finite set of completely ordered 
objects  i j ,  j  = 1,  . . . ,p ,  p = K (J) .  Let  Ф(p,k) be the set of k-
variate vectors 7 = (ii,...,ü), where ij £ J and the conditions 
(2) are satisfied, and let X(p,k) be the lexicographically ordered 
set Ф(р, к). 

Then the rank h(I) of a vector (ij,...,ifc) in the sequence 
J(p, к) can be calculated by the formula (10). 

PROOF is similar to that of Theorem 1. 

Example 2. 
Let us have the set of empirical fourth moments of a bivari-

ate random vector (A'i,X?). Using the ordering rule, introduced 
in Sections 2 - 4, we get the sequence 2(2,4), consisting of the 
following five index-vectors (1,1,1,1), (2,1,1,1), (2,2,1,1), (2,2,2,1), 
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(2,2,2,2). The next problem is to find all 3rd moments of these em­
pirical moments. These moments form a sequence 1(5,3), having 
the cardinality A\-35. In the following Table 2 the double index-
vectors, consisting of index-vectors as components, are given. 

Notice, that by the usual algorithms of calculation of mo­
ments, we should have received the matrix of moments, consisting 
of (24)3= 4096 entries instead of 35, given in Table 2. 

Table 2. 

h(I)  I  = (h ,h  h)  18 (2221), (2221), (2111 

1 (1111) (1111) (1111) 19 (2221), (2221), (2211 
2 (2111) (1111) (1111) 20 (2221), (2221), (2221 
3 (2111) (2111) (1111) 21 (2222), (1111),(1111 
4 (2111) (2111) (2111) 22 (2222), (2111),(1111 
5 (2211) (1111) (1111) 23 (2222), (2111),(2111 
6 (2211) (2111) (1111) 24 (2222), (2211),(1111 
7 (2211) (2111) (2111) 25 (2222), (2211), (2111 
8 (2211) (2211) (1111) 26 (2222), (2211), (2211 
9 (2211) (2211) (2111) 27 (2222), (2221), (1111 

10 (2221) (1111) (1111) 28 (2222), (2221), (2111 
11 (2221) (2111) (1111) 29 (2222), (2221), (2211 
12 (2221) (2111) (1111) 30 (2222), (2221), (2221 
13 (2221) (2111) (2111) 31 (2222), (2222),(1111 
14 (2221) (2211) (ИИ) 32 (2222), (2222), (2111 
15 (2221) (2211) (2111) 33 (2222), (2222), (2211 
16 (2221) (2211) (2211) 34 (2222), (2222), (2221 
17 (2221) (2221) (1111) 35 (2222), (2222), (2222 

It is also easy to see, that the result is different from the case, 
if all components were used in the same index-vector of length 

6 = 3-4. In the last case the cardinality of the sequence was 
A\ 2= 13, that means, part, of the moments, represented in 

Table 2, were missing. 

5. Classification of higher moments of a random vec­
tor 

In the set Ф(p, k) there are different types of fourth moments, 
depending on the number of variables, included into the moment 
and the degrees of them. To describe the higher moments of a 
random vector i t is convenient to use the concept of the part i t ion 
of a number, see e.g. Andrews (1980). 
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DEFINITION 5. Let n be a natural number. A set of natural 
numbers Q = {?i,.. •, satisfying the condition 

i=1 

is a part i t ion of  the  natural  number  n, the addendae qj  are said to 
be the parts  of  n,  v  — tc(Q)  i s  the cardinal i ty  o f  the  part i t ion Q.  

Usually the set Q is represented as a non-decreasingly or­
dered set of parts. As the parts have the values 1, 2,..., n, so there 
exists an equivalent representation of the partition via its charac­
teristic numbers Oj, i = 1,..., n in the following sense.. 

DEFINITION 6. Let Q = {q\ , . . . ,  q v}  be a partition of a natural 
number n. Let a j denote the number of repetitions of the integer 
j in the set Q, i.d., the following equation must be valid: 

The numbers aj are said to be the characteris t ic  numbers  of the 
par t i t ion Q, and the vector  a = (ax, . . .  a n )  is  i t s  characteris t ic  
vector .  

Let us regard the set of moments of order к of a p-dimensional 
random vector, к < p, and introduce the following classification, 
using the concept of the part i t ion of a number. 

DEFINITION 7. Let (Xi,..., X p) be a given random vector and 
Q = (91,, qv) a partition of a natural number к, к < p. Then we 
say that the moment 

belongs to the type Q, if ii,..., i v  are different integers from the 
set {1,.. .,p}. 

The following problem is to clear up the number KP ( Q )  of 
moments of a type Q in the sequence X{p,k). The answer to this 
problem will be given in the following theorem. 

THEOREM 3. Let Z(p, k) be a sequence of all moments of the 
order к of a p-variate random vector, and let Q be a partition of 
the number k, having the characteristic vector a = (ax,...,at). 

E(X<: (13) 
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Then the number of moments of the type Q  equals to the following 
expression: 

к 
«*(<?) = ПС£, (14) 

j=I 

where: 

j  
d j = p- 6 ,-1, bj = b p  =  0 ;  j  =  l , . . . ,к 

f=i 

and C™ = n!/(m! • ( n  — m)!). 

PROOF is evident. Let r be the first (smallest) integer hav­
ing a non-zero characteristic number ar. Then there are Cr

p differ­
ent ways to fix the indices of the variables A',- of the ar-th degree 
in the expression (13) of the Ar-th moment. For the following term 
having non-zero degree there remains p — aT possibilities, etc. 

Example 3. Let us regard the set of the fourth moments 
of a five-variate index-vector, given in Example 1. As the number 
4 (the order of moments k) has 5 different partitions ([4], [3,1], 
[2,2], [2,1,1], [1,1,1,1]), so there are five different types of the fourth 
moments, see Table 1. To the partition [4] all marginal moments 
correspond, to the partition [2,2] the moments E(A2 • У 2), etc. 

Let us calculate the cardinalities of different fourth moments 
of all types. At first, let us write the characteristic vectors of all 
partitions: 

[4] =>(0,0,0,1); [3,1] =>(1,0,1,0); [2,2] => (0,2,0,0); 
[2,1,1] =>(2,1,0,0); [1,1,1,1] =>(4,0,0,0); 

The cardinalities are calculated using the formula (14): 
«{[4]} = Cl = 5; k{[3][1]} = C\ • C\ = 20; 
«{[2][2]} = Cl = 10; «с{[2][1][1]} = Q • C\  = 30; 
«{[1J[1][1][1]} = Ci = 5; 

It is easy to check that the results of the calculation fit with 
the data in Table 1. 

For some types of moments it is quite easy to find the rule for 
determining their ranks in the sequence I(p, k). E.g., the marginal 
moment, corresponding to index j, has the rank 

h( I )  = A 3
k ,  j  = 1 ,...,p. 
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6. Binary partition of index-vectors 
Often in the practical multivariate statistical analysis the 

fol lowing problem arises .  Let  a  random vector  X = (Xi,  • - •,  X p  )  
be given. From X a subvector (X,-,, • • • Xiq) can be extracted. To 
formalize this procedure it is convenient to use the index-vector: 

I  — (il j *" *. 

satisfying the following conditions: 
1° all components i j  of I  are natural numbers, i j  < p; 
2°  i j  <  i j + 1,  j  = 1,  • - ,q  -  1.  
3 0  q <p.  

Here q is the cardinal i ty  o f  the  index-vector  I ,  q  = «(/) .  
Another class of problems is connected with the partition 

of a given random vector X into two subvectors. For solving this 
problem a pair of complementary index-vectors I and Iе can be 
used, where I е  can be defined as the index-vector, satisfying the 
conditions 1° — 2° and consisting of indices: 

{j i .---. jV}  =  { l .  - .p}-{h. - - - . » J -

It is evident, that the number of components r of the index-vector 
I е  equals to r = p — q.  

In the following we will use the symbol I  (or I е) of an index-
vector for denoting the set of its components, as well: 

I — { j l ,  • - •,  iq  }  • 

We will use the term order  for the cardinal i ty  p  of the initial index-
set (г 1,..., г jt). 

DEFINITION 8. Let the integer p be fixed. Every pair of com­
plementary index-vectors (I, Iе), satisfying the conditions 1° — 3°, 
defines a binary partition or shortly B-partition Bp of the index-
vector (1,.. •, p). Here p is said to be the order of the partition. 

As the index-vector I е  is uniquely defined by the index-
vector I, we will in future identify the B-partition by the (first) 
index-vector I and use the denotation B p(I). 

A. Our following task is to find the rule for construction of 
binary partitions B p. This task can be solved easily with using the 
indicators, defined in the following way: 
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DEFINITION 9. A p-variate vector L = (/1,..., l p ),  is said to be 
an indicator of the partition Bp(I), if 

< 1 5 >  

Using the concept of indicator, it is easy to construct al l  
Bp-partitions with the help of binary numbers as indicators. From 
here it follows that the cardinality of the set of p-variate indicators 
should be 2P. As for binary numbers, consisting of l's only and 2's 
only,  no part i t ion corresponds,  hence the cardinal i ty  of  the set  B p  

is 2P - 2. 
As in the partition B p (I)  the parts I  and I е  are, in principal, 

symmetric, so sometimes it is important to guarantee the unique­
ness of an partition with the help of an additional condition. The 
simpliest way is to demand that 

г I G I. (16) 

Let us denote the B p-pa,rtitions, satisfying the condition (16) by 
B' p(I) and say that these 4are Bp-partitions. Let the set of Bp-
partitions of order p be B' p. It is evident, that there exists one-
to-one correspondence between all B p_i-partitions of order p — 1 
and Bp-partitions of order p, realized on the level of indicators 
L = (h,  • • •,  lp- i)  and L'  = (H,. . . , l ' p ),  

I '/= 
1,  i f  j  = 1,  
l j  — 1 5  i f  j  =  2 , . .  - ,  p ,  

/ = 1,..., к(В'р). Hence к(В' р) = к(В р-1) = 2 p  \ where also the 
partit ion (/p , 0) is included into the set B' p .  

C. A more complicated task is to find specially defined subsets of 
all B-partitions. E.g., in regression analysis it is convenient to find 
all subsets of explanatory variables, having given cardinality q. For 
solving problems of this kind we will introduce the concept of the 
cardinality of a B p-partition in the following way: 

DEFINITION 10. Let us have a Bp-partition B p(I). We say that, 
i ts cardinali ty к(В р) is q, i f  к{1) — q.  

We will denote the B-partition (B'-partition) of the order p 
and of cardinality q by B« (B^, correspondingly). 

Our following step is to give an algorithm for the construc­
tion of B^-partitions of fixed order and cardinality. 
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Algorithm 1. Construction of indicators of ^-parti­
tions.  Let the integers p (order of the index-vector) and q (cardi­
nal i ty)  be given,  1  < q < p.  

Step L  The indicator L 1  =  ( / J , . . . , / ' )  is defined in the following 
way: 

,1 _ / 1,if i = 1, 
3  \  2,  i f  j  = q + l , . . . ,p .  

Step 2. Let us have constructed f  indicators (/ > 1), and let the 
indicator Lf have the following form: 

1,2,...,2,1,..7Д), 

where 1 < a < p — q,  0 < b < q.  Let us notice, that the first 
p — a — b — 1 components of the index-vector L/ have no influence 
on the construction. The construction of the next index-vector 
Lj+i  depends on the value of  b:  

If 6 = q,  then Step 4. 
If b = 0, then /+i will be defined in the following way: 

f 2, if j  = p - a, 
l j + 1  = J 1 if j  =p-a + 1, 

I  l j  otherwise. 

If 0 < b <  q,  then 

I{ + 1  = 

l j ,  ifj = l,...,p— a - b -  1 ,  
2,  i f  j  = p -  a -  b,  
1, if j  = p — a — b + 1, • • • ,p — a + 1, 
2, if j  = p - a  +  2 , -  •, p. 

As it follows, the index-vector Lj+1 has in this case the following 
form: 

6+1 a-l 

( l{ + 1 , . . . ,CL b ,  2,C^TT,CT2) 

Lj+1 is defined. 
Step 3. Take 

/ : = / + !  a n d  r e p e a t  S t e p  2 .  
Step 4.. End. The sequence { L / }  of all indicators of ß^-partitions 
of order p and cardinality q is completed. 
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Example 4. Let us demonstrate the sequence Lj in the 
case p = 7, q = 4, see Table 3. 

Table 3. 

/ I f  12 (1211212) 24 (2112112) 
1 (1111222) 13 (1211221) 25 (2112121) 
2 (1112122) 14 (1212112) 26 (2112211) 
3 (1112212) 15 (1212121) 27 (2121112) 
4 (1112221) 16 (1212211) 28 (2121121) 
5 (1121122) 17 (1221112) 29 (2121211) 
'6 (1121212) 18 (1221121) 30 (2122111) 
7 (1121221) 19 (1221211) 31 (2211112) 
8 (1122112) 20 (1222111) 32 (2211121) 
9 (1122121) 21 (2111122) 33 (2211211) 
10 (1122211) 22 (2111212) 34 (2212111) 
11 (1211122) 23 (2111221) 35 (2221111) 

From Algotithm 1 the following corollaries can be deduced: 

COROLLARY 2. In the sequence L f ,  constructed by Algorithm 1, 
all indicators are lexicographically ordered. 

COROLLARY 3. The cardinality «.{Lf  of the sequence, con­
structed by Algori thm 1,  is  C£. 

C. Construction of Bp5-partitions. From Algorithm 1 
for building the indicators of B^-partitions it is easy to get an al­
gorithm for building the indicators of Bp?-partitions, which satisfy 
the condition (16) and have the parameters p (order) and q (cardi­
nality). 

Algorithm 2. Construction of indicators of B^-par­
titions. Let the integers p (the order) and q (the cardinality) be 
given,  1  < q < p.  

If q = 1, then by the condition (16) exactly one partition, 
corresponding to the indicator (1,2,..., 2), exists. 

Let us regard the case q > 1 and define q'  q  — l ,p '  p— 1. 

Step 1.  Calculate  F = Cy.  Use Algori thm 1  with parameters  p'  
and q' .  

Step 2. Let L/ be the f - th  indicator generated by the Algorithm 
1. Then 

is the indicator of Bp'-paitition. 
Step 3. If f  = F,  then Step 4. 
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If f  <  F,  then /:/ + !, repeat Step 2. 
Step 4. End. 

COROLLARY 4. The cardinality of the sequence {L' j }  is Cy. 

Example 5. Let us construct the sequence {L' j }  of indica­
tors for Bp5-partitions having the order p = 7 and the cardinality 
q = 4. 

It is easy to see, that the 20 first indicators from Table 3 are 
exactly the indicators L'j needed. 

D. Construction of indicators of all Bp-partitions. 

Using Algorithm 2 repeatedly, taking q = 1, • • •, p all Bp-
partitions can be received. The cardinality of the set of all Bp-
partitions is 

p' 

K(B'p)=J2Ci'= 2p'=2p-1. (17) 
q'= 0 

Example 6. Let us construct the indicators of all Bg-par-
titions, see Table 4. 

Table 4. 

/ If  / J ' f  f  r }  f  l'l 
1 (12222) 5 (12221) 9 (12112) 13 (11121) 
2 (11222) 6 (11122) 10 (12121) 14 (11211) 
3 (12122) 7 (11212) 11 (12211) 15 (12111) 
4 (12212) 8 (11221) 12 (11112) 16 (11111) 

We see, that there is one indicator corresponding to cardi­
nality, equal to 1, a subsequence, consisting of 4 indicators, corre­
sponding to cardinality, equal to 2 etc. The last indicator corre­
sponds to the trivial Bp-partition, where I = {l,...,p}, Iе — 0. 
Every subsequence is lexicographically ordered, but not the com­
pound sequence {L' j} .  

7. Arbitrary partition of an index-vector 

Let us regard the following problem. The index-set = 
{l,...,p} and a natural number s, 1 < s < p are given. The 
problem is to find all possible partitions Pp of the set /° into not 
more than s non-overlapping parts. 

This task must be solved for getting all quasi-maximal dis­
tributions, having not- more than s independent (higher) marginal 
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distributions, or for constructing all quasi-positive correlation ma­
trices, consisting of not more than q blocks (of non-correlated vari­
ables), see Tiit (1986). 

Every partition can be characterized by an index-vector I 3  = 

(*i i l , ) ,  j  =  1 . '  • ' .  • * ,  E j = i  v i  = P-
To solve this problem it is useful to introduce the concept of 

the s-indicator, generalizing the indicator (see Definition 9) in the 
following way: 

DEFINITION 11. A p-variate vector L — { l i ,- . . , l p ),  satisfying 
the condit ion 1  < i j  < s,  j  = 1,. . .  ,  p,  i s  said to  be an s- indicator  
of a s-partition, if 

l i  = j  <-+i  e  I j ,  i  = 1,... ,p; j  •= 1,..., s .  (18) 

To guarantee the uniqueness of the s-partition constructed 
by an s-indicator, it is useful to introduce the conditions, general­
izing the condition (16) in the following way: 

*i < *i+1> i = 1. 1- (19) 

Let us give an algorithm for building all g-indicators (18) of 
-P^-partitions, q — 1,..., s, satisfying the conditions (19). 

Algorithm 3. Construction of indicators of P^-parti-
tions. 
Step 1. Take f  — 1, 

~Ь г=( 1, 

Step 2. Let f  indicators be constructed. Define the values m*, i  = 
1,..., p in the following way: 

mi = 1, m,i — min(s, max l \  + 1), i  = 2,... ,p. 
i<j<»—l J 

If i f ,  < rrip,  then the indicator L^+ 1  will be constructed by the 
following formula: 

[f+i  =  f  ' j ,  if  j  = 1,  - ,P  — 1,  
3 \ l l  + 1, if j  = P-

If i f  = m p ,  then find the first index q  satisfying the condition: 

l { ,- q  < m p _ q ,  q  < p.  (20) 
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If there does not exist any integer q,  satisfying the copndition (20), 
then Step 4. 

If there exists such index q,  then define the indicator L^+1: 

/ + i _  J ' / ,  X j  =  h -  - , P - q - i ,  
l i  -  ̂  *p-q + 1, if j  =P-q,  

I  1 ,  i f ?  = p - q + l , . . . , p .  

Step 3. Take /:=/+! and repeat Step 2. 
Step 4. End, the sequence { L / }  is completed. 

COROLLARY 5. From the construction it follows that the se­
quence {I/ } is lexicographically ordered. 

Let us use the notation P* for the set of all Pp
5-partitions 

and Vp for the set of all p-partitions. 

COROLLARY 6. Taking s = p in Algorithm 3 we get all indicators 
of the partitions of the set Vp in lexicographical order. 

Example 7. Let us construct the sequence of all indicators 
of the Pg-partitions (see Table 5) and all indicators of the P$-
partitions (see Table 6). 

Table 5. 

/ h 11 (11223) 22 (12132) 33 (12311) 
1 (11111) 12 (11231) 23 (12133) 34 (12312) 
2 (11112) 13 (11232) 24 (12211) 35 (12313) 
3 (11121) 14 (11233) 25 (12212) 36 (12321) 
4 (11122) 15 (12111) 26 (12213) 37 (12322) 
5 (11123) 16 (12112) 27 (12221) 38 (12323) 

6 (11211) 17 (12113) 28 (12222) 39 (12331) 

7 (11212) 18 (12121) 29 (12223) 40 (12332) 
8 (11213) 19 (12122) 30 (12231) 41 (12333) 

9 (11221) 20 (12123) 31 (12232) 
10 (11222) 21 (12131) 32 (12233) 

Using the value q = 5 we get all /^-partitions. In Table 6 
there are all indicators, contained in Table 5 plus some indicators, 
containing the indices 4 and 5, additionally. 
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Table 6. 

1 (11111) 14 (11233) 27 (12212) 40 (12321) 
2 (11112) 15 (11234) 28 (12213) 41 (12322) 
3 (11121) 16 (12111) 29 (12221) 42 (12323) 
4 (11122) 17 (12112) 30 (12222) 43 (12324) 
5 (11123) 18 (12113) 31 (12223) 44 (12331) 
6 (11211) 19 (12121) 32 (12231) 45 (12332) 
7 (11212) 20 (12122) 33 (12232) 46 (12333) 
8 (11213) 21 (12123) 34 (12233) 47 (12334) 
9 (11221) 22 (12131) 35 (12234) 48 (12341) 

10 (11222) 23 (12132) 36 (12311) 49 (12342) 
11 (11223) 24 (12133) 37 (12312) 50 (12343) 
12 (11231) 25 (12134) 38 (12313) 51 (12344) 
13 (11232) 26 (12211) 39 (12321) 52 (12345) 

8. Multiple partitions 

Using the partition rules (Algorithms 1-3) for all index-
vectors 11 , characterizing the parts of a partition of a given index-
vector  Ip,  i t  i s  easy  to  get  several  types  of  mult ip le  part i t ions.  

One task, using the double partition, is the construction of 
quasi-extremal distributions (correlation matrices), see Tiit (1986). 
First, the partitions of the initial index-vector into independent 
subvectors must be found. Second, all extremal distributions of 
defined subvectors must be constructed,"e.g., all B-partitions of 
each part should be found. This procedure is illustrated in the 
following example. 

Example 7. Let us construct all B-partitions of all 4-par-
titions. In the Table 7 all indicators of these double partitions are 
given, where the parts of the 4-partitions are denoted with integers 
from 1 to 4, and the parts of the B-partition - with signs before 
these integers, where the sign + (omitted) corresponds to the first 
i n d e x - v e c t o r  I  a n d  t h e  s i g n  —  t o  t h e  s e c o n d  i n d e x - v e c t o r  I е .  
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Table 7. 

/ и 
1 1,1,1,1 
2 1,1,1,-1 
3 1,1,-1,1 
4 1,1,-1,-1 
5 1,-1,1,1 
6 1,-1,1,-1 
7 1,-1,-1,1 
8 1,-1,-1,-1 
9 1,1,1,2 
10 1,1,-1,2 
11 1,1,-1,2 
12 1,-1,-1,2 
13 1,1,2,1 
14 1,1,2,-1 
15 1,-1,2,1 
16 1,-1,2,-1 

17 1,1,2,2 
18 1,-1,2,2 
19 1,1,2,-2 
20 1,-1,2,-2 
21 1,1,2,3 
22 1,-1,2,3 
23 1,2,1,1 
24 1,2,1,-1 
25 1,2,-1,1 
26 1,2,-1,-1 
27 1,2,1,2 
28 1,2,-1,2 
29 1,2,1,-2 
30 1,2,-1.-2 
31 1,2,1,3 
32 1,2,-1,3 
33 1,2,2,1 

34 1,1,1,-1 
35 1,2,-2,1 
36 1,2,-2,-1 
37 1,2,2,2 
38 1,2,-2,2 
39 1,2,-2,2 
40 1,2,-2,-2 
41 1,2,2,3 
42 1,2,-2,3 
43 1,2,3,1 
44 1,2,3,-1 
45 1,2,3,2 
46 1,2,3,-1 
47 1,2,3,3 
48 1,2,3,-3 
49 1,2,3,4 

To explain the using of the indicators from Table 7 for con­
struction of quasi-extremal distributions and correlation matrices 
let us take one indicator, e.g. L30. To this indicator (1,2,-1,-2) 
there corresponds a distribution, where the first and the third com­
ponents are independent from the second and the fourth ones. At 
the same time, the first and the third components are negatively 
intercorrelated, and the same is true about the second and the 
fourth components, as well. 

In the case of equal and symmetrical univariate marginal 
distributions the correlation matrix, corresponding to the double 
partition, described by the indicator L30, is the following: 

( 1 0 -1 0 )  
0 1 0 -1 

-1 0 1 0 
\ 0 -1 0 1 / 
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Indeks-vektorite ja liigenduste kasutamine 
mitmemõõtmelises statistilises analüüsis 

Ene-Margit Tiit, Sirli Tammet 

Kokkuvõte 

Käesolevas artiklis vaadeldakse mitmemõõtmelises statistili­
ses analüüsis sageli kasutatavat indeks-vektori mõistet, mis hästi so­
bib juhusliku vektori alamvektori identifitseerimiseks. Rakendades 
indeks-vektorile liigendust, saame identifitseerida juhuslike suurus­
te hulga jaotamise osahulkadeks. Artiklis tõestatakse mõned teo­
reemid indeks-vektori te leksikograafiliselt järjestatud jada kohta, 
millest on kasu juhusliku vektori momentide hulga kirjeldamisel 
(nn Fisheri momentide momentide probleem), samuti tuletatakse 
algoritme liigenduste moodustamiseks. 
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The Convex-extremal Decomposition 
of Correlation Matrix. 

An Application in Anthropometrical Research 

Ene-Margit Tiit , Maie Thetloff 

Summary. in the paper ihe extremal and quasi-extremal 
distributions and corresponding correlation matrices (consist­

ing of ones and minus ones, or ones, zeros and minus ones) 

are introduced. Using the extremal and quasiextremal corre­

lation matrices the convex-extremal decomposition of a given 

correlation matrix is defined, and compared with factor anal­

ysis. Several examples and a practical application ill physical 

anthropology are given. 

Key words: correlat ion matrix ,  factor  analysis ,  convex decompo­
si t ion,  mixture,  extremal  dis tr ibut ion 

1. Set-up of the problem 

For a long time the factor analysis has been the most pop­
ular methods in multivariate statistics to establish and describe 
the dependence structure of a high-dimensonal data-set, using the 
decomposition of a given correlation matrix by its eigenvalues and 
eigenvectors, so-called factor decomposition. Here we propose an­
other methodology - the convex decomposition of a correlation 
matr ix  by the extremal  correlat ion matr ices ,  or  short ly  the  convex-
extremal decomposition of a correlation matrix. We will also anal­
yse the common and different features of the two decompositions. 
Some comparative examples of both analyses will be given. 

As the extremal correlation matrices are in many cases stan­
dard in the sense that they do not depend on concrete data-set, so 
it is reasonable to use the convex-extremal decomposition for de­
scribing the differences between data-sets or changes in time. In 
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the last part of the article ail example of the usage of the con'ex-
extremal decomposition in the description of the change of the 
anthropometrical structure of schoolchildren will be given. 

2. The underlying models 

Both models use the correlation matrix as the initial infor­
mation. Hence, they describe the correlative dependencies arid 
for both methods the best theoretical model is the normally dis­
tributed population. Nevertheless, for the convex-extremal anal­
ysis arbitrary multivariate distribution having equal symmetrical 
marginals can be used. 

In practical applications the most convenient result is the 
approximate model, which describes only a part of the information 
(in the sense of dependencies) of the initial distribution. 

In both cases the building of the model means the estimation 
of parameters of the model, more precisely -- the calculation of the 
coefficients of the decomposition of a correlation matrix by some 
other matrices. 

As it is well-known, the factor analysis uses the decomposi­
tion of the given correlation matrix R of order к by the eigenvectors 
and eigenvalues: 

Д  =  H A H ' ,  ( 1 )  

where H is the matrix of eigenvectors h g  = (/if,..., h g
k), g — 

1,... ,lc , Л the matrix of non-increasingly ordered eigenvalues, 
Л = diag(\\,..., A;.) and к the order of matrix R. In factor analy­
sis usually instead of matrix H the block of H, consisting of q first 
columns, q < к. is used. 

The extremal decomposition of the correlation matrix has 
the following form: 

h 
R  - YlwäRi*> С 2) 

9= 1 

where the weights w g  must fulfill the following conditions: 

h 
Wg > 0, Y U'g ~ 1. (3) 

</=1 

and the number h of components of the decomposition fulfills the 
condition 

1 <  / )  <  k ( k  -  1)/2 + 1.  
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The matrices R[ g  belong either to the set of extremal corre­
lation matrices (see liit. 1984, 1986, 1992, Kotz, Tiit, 1992) or to 
the set of quasi-extremal matrices (see Tiit, 1986). In the case of 
equal and symmetric, e.g. normal population the extremal corre­
lation matrices consist of ones and minus ones only. The number 
of extremal correlation matrices is 2i_l. The quasi-extremal cor­
relation matrices consist of zeros, ones and minus ones, and their 
number is much larger, but, of course, always finite. 

The factor decomposition of a correlation matrix can be 
interpreted as the linear transformation of variables - the initial 
variables are expressed as linear combinations of (small number) 
factors, having some good standard properties (standardization, 
orthogonality). 

The convex-extremal decomposition of a correlation matrix 
can be interpreted as a mixture of exteremal matrices and hence 
the initial distribution can be expressed as a mixture of extremal 
distributions (see Tiit, 1984, 1986, 1992), having the same univari­
ate marginal distributions as the initial distribution. In the next 
paragraph the properties of the extremal correlation matrices will 
be regarded more closely. 

3. The extremal correlation matrix and the convex de­
composition 

Let Xi,.. .,Xk be given random variables having the same 
symmetrical distribution P0. Then the maximal and minimal pos­
sible correlation coefficients between the variables Л",- and Xj are 
equal to 1 and —1 correspondingly, i, j — 1 

In the case к — 2 the concept of minimal and maximal dis­
tributions was introduced by Hoeffding (see Hoeffding, 1940) and 
Frechet (see Frechet, 1951). 

An extremal correlation matrix is defined with the help of 
a binary partition of the set of initial variables, as it follows from 
the forthcoming definitions, (see Tiit, Tammet, 1994). 

DEFINITION 1. Lei IJ  be the initial index-set. {1,2,..., k}. 
Say (/, V) is a partition (more precisely binary partitionJ of the 
index-set 1°, if the subsets I = {/b .. ., iq} and Iе — \j t,..., js] of 
I" are non-overlapping and fulfill the following conditions: 

ц = 1, I и I е  = Г. (4) 

Hence the cardinalities q and s of the subsets fulfill the foi-
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lowing conditions: 

1 < q < к, 0 < s = к — 4 < к — 1. 

From the definition it follows that as a special case the trivial 
partition (/",(9) can be regarded. Then the common number of 
different partitions of the index-set /° is 21-1. 

DEFINITION 2. Let (/, Iе) be a partition. The correlation 
matrix Rj = (rfj), defined in the following way 

/ _ Г 1, if г (E / and j (E I or i € I е  and j € I е  

Г у  ~ \ —1, if  г G / and j € I е  or i G I е  and j € I 

is said to be the extremal correlation matrix,  corresponding to the 
partit ion (/,  / c ).  

We shall use the symbol R(jfc) for denotation the set of all 
extremal correlation matrices of order k. 

From here it follows that between all variables, eg. Xi and 
Xj should be an exact linear dependency: 

Xi = aij  + bijXj,  i , j  =  1 , . . . , * .  (6) 

where the sign of regression coefficient is determined by the 
direction of correlation, e.g. by the sign of r,j. 

The correlation matrix corresponding to the partition (1°, 0), 
is so-called maximal correlation matrix. All its elements equal to 
the maximal correlation coefficients, which equal in the case of 
identical marginals to one. Hence, in the formula (6) all regression 
coefficients fctJ are strictly positive. 

DEFINITION 3. Let R be a given correlation matrix of 
o r d er k. If there exist such coefficients wy, g — 1,..., Л, fulfilling 
the conditions (3), that the equation (2) holds, where Rlf € R(*), 
we will  say that for the correlation matrix R there exists  a convex 
decomposition by the extremal correlation matrices.  

If the decomposition (2) exists, it will be easy to show that 
the decomposition, having the number of terms h, h < k(k —1)/2 + 
1, exists as well. 

In future we will need the well-known concept of orthogo­
nality in the case of quadratic matrices, as it will be given in the 
following: 
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DEFINITION 4. Let A and В be quadratic matrices of order 
k. They are said to be orthogonal, if the following condition holds: 

к к 

У У aijl>ij - 0. 
t = l ji=l 

4. Comparison of factor decomposition and convex-extre­
mal decomposition 

Let R be a correlation matrix. Let us rewrite the factor 
decomposition (1): 

к к 

R = ) ̂ Лghghg — )  ̂ v gQgt (7) 
g = l  g = l  

where v g  =  Ag / k  and the matrix Q g  — kh gh' g  is defined by its 
elements: 

q9
tj = kh^hj. (8) 

About the decomposition the following lemmas hold: 

LEMMA 1. The coefficients vg fulfill the conditions (3) . 
Proof follows immediately from the well-known properties 

of eigenvalues of the correlation matrix: 

к  

A, >0, 5^А у/* = 1. 
3=1 

LEMMA 2. The matrix Q g ,  g  —  1 , . . . , k ,  defined by the 
formula (7), has the following properties: 

1) Q g  is positively defined; 
2) TrQ g  = k; 

3) If g ф /, then Q g  and Qf are orthogonal. 

Proof follows from the definition of matrices Q g  and from 
the properties of eigenvectors of a correlation matrix, as it. will be 
shown in the following three equations: 

к  к  к  

xQx' = к ̂ 2 xi hf hj Xj = (53 xihf)~ > 0; 
i=i j=l i=i 
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ъ0, = ЕЙ = *Х>?) 9  = *; 
»=i *=i 

k k  к  

YlYjiiMi = k4J2 hi hi) 2  = °-

LEMMA 3. The matrix defined by the formula (7), is a 
correlation matrix if and only if all components of the eigenvector 
hg have the equal absolute values. 

Proof. I. Let us suppose that h9- = maxi<,• <t(/if) and there 
exists an index I so that the inequality | h° |<| /ij | is valid. Let 

us use the following denotation: Л(2) = Then h(2) 
is the average of the squares of the components of the eigenvector 
h g, and from the properties of the average we have the following 
inequality: 

II. Let j h f  |= h  for i  =  1 , . . .  , k ,  then h  =  l / k  and | gf |= 1 
for i  —  1,..., k .  From Lemma 2 it follows that in this case Q g  is a 
correlation matrix. 

COROLLARY 4. If all components of an eigenvector h g  of 
a correlation matrix R have the equal absolute values, then the 
matrix Qg, defined by the formula (8), is an extremal correlation 
matrix. The partition (I, Iе) corresponding to Q g  is defined in the 
following way: 

From lemmas 1-3 and the corollary 4 the following Theorem 
5 can be deduced: 

THEOR EM 5. A. The factor decomposition of a correlation 
matrix R is in the same time the convex decomposition of the given 
correlation matrix R by the extremal matrices, if all components of 
every eigenvector, used in the decomposition, have correspondingly 
equal absolute values: 

к 
I h ° ? >  l/*5>?)3-l/*' 

i = l 

hence | | > 1 and Q g  cannot be a correlation matrix. 

h f  | =  h g ,  i  =  1  к ,  g  =  1 , . . .  ,q. 
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В. The convex decomposition of a correlation matrix R by 
its extremal correlation matrices R^ is in the same time the fac­
tor decomposition, if all extremal correlation matrices used in the 
decomposition are orthogonal. 

From here it follows, that in this case the number of compo­
nents q of the decomposition cannot be more than k. 

5. Example 1. Comparison of decompositions in the case 
of an artifical correlation matrix 

Let us regard the correlation matrix 

1 0.6 0.4 0 \ 
0.6 1 0 0.4 
0.4 0 1 0.6 ' 
0 0.4 0.6 1 / 

It is easy to check that this matrix has the following eigen­
values: Aj = 2, Аг = 1.2, Аз = 0.8; A4 = 0 and eigenvectors: 
/11 = (0.5,0.5,0.5,0.5), h 2  = (0.5,0.5,-0.5,-0.5), 
/13 = (0.5, —0.5, 0.5, —0.5). The fourth eigenvector is not defined, 
as A4 = 0. 

The full factor matrix consists of three columns that are 
equal to the product and has the following form: 

/0.707 0.548 0.447 \ 
0.707 0.548 -0.447 | 
0.707 -0.548 0.447 I ' 

V 0.707 -0.548 -0.447/ 

As all components of the eigenvectors have the equal ab­
solute values, so the eigenvectors define the extremal correlation 
matrices. Corresponding partitions are the following (see Corol­
lary 1): 

h = {1,2,3,4}, I{ = 0, I2 = {1,2}, Ц = {3,4}, 

/з = {1,3} Л = {2,4}. 

The corresponding extremal correlation matrices are the fol­
lowing: 

/1 1 1 1\ 
1 1 1 1 
1 1 1 1 

{1 1 1 lj 
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/ 1 1 -1 -1\ 
1 1 -1 -1 

-1 -1 1 1 
\ -1 -1 1 1 / 
/ 1 -1 1 -1\ 

-1 1 -1 1 
1 -1 1 -1 

V -1 1 -1 1 / 
and we have the following convex decomposition of the given cor­
relation matrix: 

R = 0.5ß/j + О.З/Z/, + 0.2Д/ 3. 

6. The quasi-extremal correlation matrices and their con­
vex combinations 

Let X\,..., Xk be given variables having the same symmet­
rical distribution P0. 

DEFINITION 5. Let 1° be the initial index-set {1,2,..., k}. 
Say the sequence of index-sets L — (L i,..., L t) is a t-partition (1 < 
t  <  k )  o f  t h e  i n d e x - s e t  I " ,  i f  t h e  s u b s e t s  L f  =  { ? { , . . . ,  } ,  /  =  
!,...,< of Iе are non-overlapping and fulfill the following condi­
tions: 

i { 1  < i { \  ifA </2, /i = l,...,i-l, h  — 2 , . . . , t .  (9) 

and 

\ J L f  =  I ° -
/=i 

Hence the cardinalities qj of the subsets Lf fulfill the fol­
lowing conditions: 

= k-

/=i 

The quasi-extremal correlation matrix, corresponding to a 
/-partition L, will be defined in the following way: all blocks, cor­
responding to subsets Lj, f = 1 ,...,<, are extremal, but differ­
ent blocks are independent. For exact formulation of the concept 
we need a definition of a more complicated partition of the initial 
index-set I" (see Tiit, Tammet, 1994): 

84 



DEFINITION 6. Let L be a (-partition of an index-set I". 
Say (L,J) is a t-double partition of the index-set I", if for every 
subset Lf there is defined a two-partition (Jf, J j) in such way that 

the subsets Jf = (j{, • • •, j{f) and Jc
} = (/{,...,//) of Lf are non-

overlapping and fulfill the following conditions: 

j {  = i { ,  J f u J j  = Lf, f = l , . . . , t .  (10)  

It is easy to see that the conditions (10) generalize the con­
ditions (4) for the case of /-partition of the initial subset Iq . 

DEFINITION 7. Let ( L ,  J )  be a /-double partition of the 

given index-set 1°. The correlation matrix\ft(i,J) = is said 
to be quasi-extremal, if it is defined in the following way: 

0, if г  G L f l  and j  G L h , f i ф  f 2 ,  
1, if i G Jf and j G Jf 

or i G J]  a n d j G <//,/ = 1, - --,t, (11) 
—1, if i  G Jf and j  G Jj  

or i  G J f  and j  G J f ,  / = 1,... , t .  

The defining formula (11) is an immediate generalization of 
the defining formula (5) for the case, when the correlation matrix 
consists of t independent blocks. 

We shall use the symbol R/l>j)(A:) for denoting the set of 
all quasi-extremal correlation matrices of order k. If the order к is 
fixed, we shall write simply R^ L , IX 

DEFINITION 8. Let R be a given correlation matrix of or­
der k. If there exist such coefficients wg, g = 1,..., h, fulfilling the 
conditions (3), that the equation (2) holds, where R[ G R(L,J'(fc), 
then we say that for the correlation matrix R exists a convex de­
composition by quasi-extremal correlation matrices. 

If the decomposition (2) exists, the decomposition with num­
ber of terms h < k(k — 1)/2 + 1 will exist as well. 

Between the sets R and R^L J' there exists evident inclusion 
R С R(L'J). Hence from the existence of a decomposition of given 
correlation matrix R by the extremal correlation matrices follows 
that the decomposition of the same correlation matrix R by the 
quasi-extremal correlation matrices exists as well. In the case, when 
the initial marginal distributions are equal and symmetrical (as it 
weis supposed in this article), the opposite inclusion is true as well 
(see Tiit, 1986). 

( L J )  г- — V 
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DEFINITION 9. Let L be a /-partition of the given index-set 
I". The correlation matrix RL  = (rfj) is said to be quasi-maximal, 
if it is defined in the following way: 

Formula (12) is a special case of the formula (11), when all 
' n e g a t i v e '  s u b s e t s  - J j  o f  p a r t s  L j  a r e  e m p t y ,  f  =  \ , . . .  , t .  

We shall use the symbol RL(FC) = RL for denotation of the 
set of all quasi-maximal correlation matrices of order k. 

It is easy to see, that quasi-maximal matrices form a subset 
of all quasi-extremal matrices. 

In the case when the initial correlation matrix includes many 
elements close to zero, i.d. there are quite weak dependencies be­
tween several variables, it is reasonable to use the quasi-extremal 
correlation matrices instead of extremal correlation matrices in the 
convex decomposition of the given correlation matrix. In the case 
when the initial correlation matrix R has all positive elements it is 
usually useful to look for the decomposition of it in the set RL. 

7. Computational procedure for decomposition of corre­
lation matrix. 

Let R be a given correlation matrix of arbitrary order к 
and let Ri,..., Rh be the given matrices (either from the set R, 
R^ or R l j) to be used in the convex decomposition. Then the 
decomposition problem can be solved as a solution of a system of 
linear equations 

where i  —  1 , . . . ,  к  —  1 ,  j  = i+l,..., k ,  by the additional conditions 
(3). Here the number h of unknowns w g  is, in general, much more 
than the number of equations, which equals to k(k — l)/2 + 1. The 
o n l y  e x c e p t i o n s  f o r m  t h e  c a s e s  к  <  3 ,  w h e n  t h e  e q u a t i o n  k ( k  —  
l)/2+l = 2*-1 holds. 

Due to the following additional problems the solution of the 
system (3, 13) is quite complicated and labour-consuming. 

1) The number of all quasi-extremal distributions is huge, 
and as it follows, the completing of equation system is rather com­
plicated: for all used quasi-extremal correlation matrices R^L,J^ all 
values of correlation coefficients should be calculated. 

0, if i G L} i  and j G Lh,f\ ф / 2, 
1, if i  G L j  and j G L } ,  /i,/ 2,/= 1, 

(12) 

h  
(13) 



2) It is unknown beforehand if the exact solution exists at 
all. 

But using the standard regression procedures, where the ele­
ments of the given correlation matrix are taken as the values (mea­
surements) of the dependent variable and the elements of extremal 
or quasi-extremal correlation matrices as explanatory variables, we 
can get in many cases quite a satisfactory approximation to the 
exact decomposition. 

8. Example 2. Comparison of decompositions in the case 
of the data of Tabachnic and Fidell 

Here will be regarded the 'Small sample hypothetical data', 
introduced by Tabachnic and Fidell. The initial correlation matrix 
is the following (see Tabachnick, Fidell, 1989, pp 607 - 633): 

/  COST  X x  1 -0.953 -0.055 -0.130 \ 
LIFT  X i  -0.953 1 -0.091 -0.036 

DEPTH X 3  -0.055 -0.091 1 0.990 " 
\  POWDER X 4  -0.130 -0.036 0.990 1 / 

Using the traditional procedure of factor analysis the fol­
lowing two eigenvalues Ai = 2.00, Ao = 1.91 were found. The 
corresponding eigenvectors are: 

hx = (-0.283,0.177,0.658,0.675)', 

h 2  = (0.651, -0.685,0.252,0.207).' 

As it follows, the two-factor solution should be satisfactory, and 
these factors are: 

Fi = (-0.400,0.251,0.932,0.956),' 

F 2  = (0.900, -0.947,0.348,0.286).' 

The first factor describes 50 % and the set of two factors 97.75 % of 
the diagonal elements of the correlation matrix, eg of the common 
variability of the initial data. 

The sum of residual correlations 

к  к  h  

53 53 ('v 53 f'slig)'' 
i=i j--.: 4=1 
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where for the factor loadings the denotation /lfl  is used, equals to 
0.0028 and the largest residual correlation has the absolute value 
equal to 0.005. From here it followos, that the two-factor solution 
is sufficient, e.g. the zero hypothesis that the residuals equal to 
zero, can be accepted for very large samples, having the size of 
order 100 000 measurements. For reasonable interpretation of the 
factor structure received some rotation procedure is needed (see 
Tabachnick, Fidell, 1989, pp 628 - 633). 

Now let us use the convex-extremal decomposition for the 
same correlation matrix. At first we find the approximation by one 
quasi-extremal matrix. It is easy to see, that the matrix R\, defined 
by the following (L, J)-partition: L — ({1,2}, {3,4}), where Ji = 
{1}, — {2} and Ji — {3,4}, J| = 0, gives the best approximation 
for the initial matrix R. Let us write the matrix Ri down by its 
elements: 

f  1 -1 0 0\ 
-1 1 0 0 
0 0 1 1 
0 0 1 l )  

For getting the first approximation due to the condition (3) no 
parameters should be estimated: the only parameter wi equals to 
one. From here it follows, that the first approximation is 

R  —  R i ,  

and the quality of approximation can be characterized by the sum 
S of the squares of residual correlation coefficients: 

-Y,w<> rtD2- (14) 
i=lj=l 5=1 

In this case the sum (see formula (14)) S equals to 0.08 and the 
largest residual has the absolute value 0.130. It means, that for the 
samples having size less than n = 250 it is possible to accept the 
zero hypothesis that the residuals equal to zeros. 

The interpretation of the model is the following: the vari­
ables COST and LIFT are linearly dependent having the negative 
regression coefficient: when one of the values increases, the sec­
ond decreases and vice versa. The last two variables DEPTH and 
POWDER are linearly dependent having positive regression coeffi­
cient. The both sets of variables are independent from each other. 
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Using the first approximation we must assume, that the structure 
of the initial data-set is entirely described by the quasi-extremal 
correlation matrix Ri-

For getting better approximation the second term must be 
added to the decomposition. This is the extremal correlation ma­
trix R2, corresponding to the partition ({1,2}, {3,4}): 

To estimate the parameters the traditional regression anal­
y s i s  p r o c e d u r e  w a s  u s e d ,  w h e r e  Y  : =  r , ; -  a n d  X g  r f j ' ,  g  =  
1,,h. The model without constant term will be used, and the 
e s t i m a t e d  r e g r e s s i o n  c o e f f i c i e n t s  b g  w i l l  b e  t a k e n  a s  w e i g h t s  w g .  
For warranting the satisfaction of the condition (3) the following 
additional transformation should be done:y := Y — Xh\X g  := 

Xg — Xh, h = 1,..., h — 1. Then Wh — 1 — J2g=i wg • The so­
lution is acceptable only if if the weights (regression coefficients) 
are nonnegative. That means, from all possible solutions only the 
acceptable ones will be regarded. 

The second approximation of the initial correlation matrix 
is the following: 

R= 0.933fii + 0.067R2, 

and the intepretation is: 93.3% of the population has the depen­
dence structure, characterized by the correlation matrix Ri and 6.7 
% has the dependence structure, characterized by the correlation 
matrix R2. In this case the sum (14) S of the squares of deviations 
equals to 0.027 and the zero hypothesis about the zero residuals 
can be accepted in the case when the population size is not more 
than 500. 

9. Discussion 

A. The preferences of the convex-extremal decomposition 
are the following: 

I. The set of elements of the extremal/quasi-extremal corre­
lation matrices is standard and does not depend on the concrete 
sample. 
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II. The number h of parameters (weights) to estimate is 
much less than in the с Eise of factor decomposition, when hk factor 
loadings must be estimated, where h is the number of factors. 

III. The mixture of distributions can be interpreted as a 
mixture of populations and hence it is quite easy to understand. 

IV. No rotation procedure is needed for improving the solu­
tion. 

In the second example the both decompositions gave quite 
different results. As the assumptions of the Theorem 5 were not 
fulfilled, the equivalent decompositions did not exist. It is remark­
able, that in this case one quasi-extremal matrix gave almost as 
good description as two factors. For the factor decomposition 8 
parameters (the factor loadings) had to be estimated, but in the 
case of the convex-extremal decomposition the only weight u>i was 
equal to one, so no estimation was needed at all. The reason of this 
feature is, that the quasi-extremal correlation matrices are able to 
describe more complex dependence structures than the factors (and 
the extremal correlation matrices, which are in some sense equiva­
lent to each other). 

From here it follows, that it would be reasonable to use the 
convex-extremal decomposition especially for the case of small sam­
ples. 

B. The shortcomings of the convex-extremal decomposition 
compared with the factor decomposition are the following: 

I. For all correlation matrices thv exact convex-extremal de­
composition (2) - (4) does not exist at all, but the decomposition 
(1), forming the basis for the factor decomposition, always exists. 

II. The convex decomposition is not unique in the sense that 
there might be different sets of extremal or quasi-extremal corre­
lation matrices {Д/,,..., Д/,}, satisfying the conditions (2) - (4) 
either exactly, either approximately. 

In fact, the same situation occurs in factor decomposition 
in the case of equal or close eigenvalues, but also in using different 
numbers of factors, different factors extraction or different rotation 
procedures. 

III. For factor analysis there exists standard software and 
long tradition of usage. 

In the solution of computational problems of convex-extremal 
decomposition there is a possibility to use standard statistical soft­
ware (multiple and step-wise regression procedures) as it was men­
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tioned above. 

10. Example 3. The analysis of changes in the anthropo­
logical structure of Estonian schoolchildren. 

To analyse the development of Estonian children's body struc­
ture in age, some measurements were carried out among schoolchil­
dren aged 6 to 18, both boys and girls. In each age and sex 
group there were taken about 150 to 200 children. The sample 
of schools was representative of Estonia (rural/urban, different re­
gions). Only Estonian speaking population was considered. From 
every schoolchild about 60 different measurements were taken, but 
for more detailed investigation only 12 in some sense most infor­
mative of them were chosen. 

The measurements used in this study were the following (in 
brackets is the number of variable):weight (1), height (2), cervical 
height (3), foot length (4), upper limb length (5), lower limb length 
(6), chest circumference (7), pelvis circumference (8), biacromial 
breadth (9), chest breadth (10), chest depth (11), pelvis breadth (12). 
On the basis of these data 26 correlation matrices of order 12 were 
calculated, one for each age-sex group. All of them were quite 
similar, having only quite large positive correlation coefficients (on 
average the range of them was 0.25 - 0.95), practically all corre­
lations were significant. Using component or factor analysis in all 
subpopulations several principal components/factors can be found, 
but there is no effective procedure for establishing and modelling 
the changes in the factor structures of children of different age 
groups. 

Then the convex decomposition of correlation matrices by 
quasi-extremal ones was used. The assumptions used in the study 
were the following: All anthropological measurements have the dis­
tributions, quite close to the normal distributions, where the de-
viances from the normality are almost the same, character - small 
positive skewness, very small excess (see Kaarma, 1981). Hence the 
assumption about the equal distributions (up to the linear trans­
formation), see (3) is valid. As all correlations are positive, it 
is reasonable to use the decomposition by quasi-maximal distribu­
tions. In this case the assumption about symmetry of all marginals 
is not necessary. The main advantage of the extremal decomposi­
tion behind the principal decomposition is the existence of the same 
standard base elements for all correlation matrices to be considered 
- these are the quasi-maximal correlation matrices, consisting of 
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ones and zeros only. 
In this case the construction of the model of change can be 

carried out by analysing the change of coefficients in the decompo­
sitions. 

For getting the comparable decompositions, several quasi-
positive correlation matrices, which were common in decomposi­
tions of different age-groups, were chosen. 

I. As the first step, the decomposition by three matrices Ri, 
consisting of all l's, Ro = I (unit matrix) and R2, corresponding 
to the following partition: 

L = {{1,7,8}, {2,3,5,6}, {9}, {10}, {11}, {12}}. 

To this partition the following correlation matrix corresponds: 

/1 0 0 0 0 0 1 1 0 0 0 ° \  
0 1 1 0 1 1 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 0 0 0 
1 0 0 0 0 0 1 1 0 0 0 0 
1 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 

\0 0 0 0 0 0 0 0 0 0 0 1/ 

was made. For example, in the case of the six-year old boys we 
received the following decomposition: 

R = 0.158Яо + 0.613/Zi + 0.229Ä2- (15) 

One possible interpretation of the model (15) is the follow­
ing. The population of 6-year-old boys can be divided by the struc­
ture of their body into three groups. The first group corresponds to 
Ri - all body measurements of the boys of this group are linearly 
dependent (proportional). Hence the body structure of all boys of 
this group is quite similar, but their sizes can be different. From 
the decomposition formula (15) it follows, that about 61% of all 
boys belong to this group. 
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The second group, corresponding to R2, can be character­
ized through two sets of proportional measurements - to one of 
them belong the measurements, characterizing the tallness of boys 
- height, cervival height, upper and lower limb lengths. The second 
set consists of measurements, characterizing the thickness of boys -
weight, chest and pelvis circumferences. It is typical, that the vari­
ables, belonging to different sets, are uncorrected (independent). 
These measurements are uncorrelated with all other measurements 
(foot length, biacromial breadth etc, as well. Hence into this group 
belong the boys, who can be either thick either thin, and are char­
acterized as pycnic and leptosomous anthropometrical types. The 
rate of 6-year old boys, belonging to these types, is about 23% . 

The third group corresponds to the unit correlation matrix, 
that means, all body measurements can be considered as uncorre­
lated. In fact, we can assume that the correlations between body 
measurements are rather weak and the higher correlations might 
be situated in random cells of the correlation matrix. As it follows 
from the formula (15), the percentage of such 6-year old boys is 
about 16%. 

In the similar way the correlative matrices characterizing the 
body structure of boys and girls of all age groups were found. As a 
result, two 3-dimensional time series - one T(B) for boys and the 
second, T(G) for girls, 

T ( B )  =  ( t 9 ( B ) , t } ( B ) , t l ( B ) ) ,  T ( G )  =  ( t ° ( G ) , t } ( G ) , t j ( G ) )  

» = 6, —, 18, 

were received. Here the index i characterizes the age, and the 
following general condition, 

2 

£ti(A) = 1, i = 6,..., 18, A = B,G 
j=i 

is fulfilled. 

These time series are illustrated by the figures 1 and 2, where 
the so-called component charts of the series are given. 

We see the following trends in the coefficients: 
1) The rate of the full dependence set, characterized by the 

correlation matrix R\, eg the entirely proportional body types, de­
creases for both, boys and girls, about 1.2 to 1.5 per cent by year, 
the change is statistically significant, p < 0.05. 
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Figure 1. Figure 2. 
Changes of weights (u>,) of different extremal correlation matrices, i.e. shares of different body structures 

in age from 6 till 18 years. 
%%% uii - entirely proportional measurements, 
ЩЗ u>; - classical anthropological types, 

u>o = 1 — (toj + u>;) - non-proportional (independent) measurements. 

Changes of weights (ш,) of different extremal correlation matrices. 
ш uii - entirely proportional measurements, 
ffift wi - classical anthropological types, 
^ шз - classical anthropological types (all measurements included), 
^ иц - weakly dependent measurements, 

u>0 = 1 — (uii -+ u>2 + и;з + Ш4) - non-proportional (independent) measurements 



2) The other characteristic subpopulation, described by the 
correlation matrix R2, eg the children, belonging to different an­
thropometrical types, increases, in average about one per cent by 
year, wherby the change is strongly significant (p < 0.01). 

II. More detailed characteristic of anthropometrical types 
can be received using more quasi-maximal correlation matrices. On 
figures 3 and 4 the component charts of the decompositions by 5 
matrices are given. The matrix R3, corresponding to the partition 

L3= {{1,7,8,10,11},{2,3,4,5,6},{9,12}} 

and matrix R 4 ,  corresponding to one maximally correlated subset 
{1,2,3,12} and hence to the partition 

Z4 = {{1,2,3,12},{4},{5},{6},{7},{8},{9},{10},{11}} 

were added to the matrices, used in the partition (15). 

We see, that the same general tendencies as in the с eise of 
decomposition (15) are obvious, but some new features occur: 

3) The group, characterizing the anthropometrical types (i.d., 
corresponding to R2 in the decomposition (15)) is divided into two 
subpopulations, corresponding to matrices R? and R3. In the last 
one all measurements participate in dependencies: they are divided 
into three groups: 

a) the measurements of length (tallness) - height, cervival 
height, foot and limbs' lengths-, 

b) the measurements of thickness (stockyness) - weight, chest 
and pelvis circumference, chest breadth and depth-, 

c) the measurements of breadth: biacromial breadth and 
pelvis breadth. 

4) Part of the subpopulation, characterized by the matrix 
Rq (independendent measurements) can be characterized by some­
what more rich dependency structure, described by matrix Я.4, 

indicating the correlations between weight, height, cervival height 
and pelvis breadth. The children of this group cannot be considered 
as representatives of some typical anthropometrical types, but their 
body weight is correlated with length and pelvis breadth, hence the 
main measurements are proportional. 

Here again we see that tlie rate of anthropometrical types 
increases with age for boys and girls, but the rate of simply propor­
tional bodies - decreases. Also the fact, that in the case of older 
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teenagers more measurements are involved to the typical depen­
dence structures seems to be quite reasonable conclusion 2 proved 
by the given statistical procedure. 

References. 

Frechet, M. (1951) Sur les tableux de correlation dont les marges 

sont donnees. Ann. Univ. Lyon. Sect. A, 14, 53 - 77. 
Hoeffding, W. (1940) Masstabinvariante Korrelations theorie. 

Sehr. Math. Inst. u. Inst. Angew. Math. Univ. Berlin, 5, 

179 - 233. 
Kaarma,H. (1981) Multivariate statistical investigation of the sys­

tem of anthropometrical variables of women. Tallinn, 'Val­

gus' (In Russian). 

Kotz,S., Tiit, E.-M. (1992) Bounds in multivariate dependence. 

Acta et Commentationes Universitatis Tartuensis, 942, 

35 - 45. 
Tabachnick, B.G., Fidell, L.S. (1989) Using Multivariate Statistics. 

Second Edition, N York, Harper Collins Publishers. 

Tiit, E.-M. (1984) Definition of random vectors with given marginal 

distributions and given correlation matrix. Acta et Com­

mentationes Universitatis Tartuensis, 685, 21 - 36. 

Tiit, E.-M. (1986) Random vectors with given arbitrary marginals 

and given correlation matrix. Acta et Commentationes Uni­

versitatis Tartuensis, 733, 14 - 38. 

Tiit, E.-M. (1992) Extremal multivariate distributions havinggiven 

discrete marginals. Acta et Commentationes Universitatis 

Tartuensis, 942, p. 94 - 113. 
Tiit, E.-M., Tammet, S. (1994) Using index-vectors and partitions 

in multivariate analysis. This issue, p. 55 - 75. 

Received November, 1993. 

96 



Korrelatsioonimaatriks kumer-ekstremaalne lahutus. 
Rakendus antropomeetrilistel andmetel 

Ene-Margit Tiit, Maie Thetloff 

Kokkuvõte 

Käesolevas artiklis vaadeldakse ekstremaalseid ja kvaasieks-
tremaalseid jaotusi ning vastavaid korrelatsioonimaatrikseid. Vii­
maste elementideks on kas ühed ja miinus ühed, kvaasiekstrernaal-
sete korrelatsioonimaatriksite elementideks võivad olla ka nullid. 
Artiklis võetakse kasutusele antud korrelatsioonimaatriksi kumer 
lahutus ekstremaalsete (kvaasiekstremaalsete) korrelatsioonimaat­
riksite kaudu. Jaotuste klassis vastab sellele ekstremaaljaotuste 
segu, mis on antud mitmemõõtmelise jaotuse lahendiks. 

Korrelatsioonimaatriksi kumerat lahutust võrreldakse fak­
toranalüüsiga ning leitakse tingimused, millal mõlemad lahutused 
ühtivad. Tuuakse näiteid nii ühtiva kui erineva lahutuse kohta ja 
analüüsitakse mõlema meetodi tugevaid ning nõrku külgi. Tõde­
takse, et kumer-ekstremaalne jaotus sobib hästi seoste struktuuride 
võrdlemiseks erinevates andmestikes. 

Rakenduslikus näites vaadeldakse eesti kooliõpilaste (vanu­
ses 6-18 aastat) kehaehitustüüpide vahekordade muutusi sõltuvalt 
vanusest. Leitakse statistiliselt olulised nihked - vanuse suurenedes 
suureneb klassikalistesse kehaehituse tüüpidesse sobivate noorukite 
hulk lastega võrreldes. 
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Cornish-Fisher Expansion 
for the Ratio of Two Sample Means 

Imbi Traat 

Summary. The paper gives the explicit expression of the 
Cornish-Fisher expansion with the accuracy o(fl—*/"*) for the 

quantile of the ratio of two sample means in the case of i.i.d. 

observations. 

Keywords: Edgeworih expansion, Cornish-Fisher expansion, ra­
tio of sample means, approximation accuracy 

1. Introduction 

The ratio of sample means is a frequently used statistic in 
many application areas, e.g. in Survival Analysis, Survey Sampling 
etc. Its distribution is usually unknown and therefore several ap­
proximations are looked for. Much attention has been paid to the 
Edgeworth expansion of its distribution. Validity of the expansion 
has been proved under more and more general and weaker con­
ditions, see e.g. Bai and Rao (1992). In applications, instead of 
distribution or density function, very often the corresponding quan­
tile is needed, e.g. for constructing confidence intervals at a given 
level. It is possible to approximate the quantile of an unknown dis­
tribution by the Cornish-Fisher type expansion first introduced by 
Cornish and Fisher (1937). A simple derivation technique of a gen­
eral Cornish-Fisher expansion is given by Lee and Lee (1992). On 
the basis of an example the authors also show, that for certain dis­
tributions, quantile approximation gives even better approximation 
of the probability than Edgeworth expansion does. In the present 
paper we give the formal Cornish Fisher expansion up to the order 
o(n~1'J) for the quantile of the ratio of two sample means. 

99 



Let ( x i ,  2/i), i  = 1,n be i.i.d. observations of the random 
vector (x,y). Denote 

E x  -  Ц ,  E y  = 77, (/? ^ 0) 

T) 4E( t]x - /<t/)2 = cr2. 

We consider the standardized quantity 

У f 
(1.1) 

Bai and Rao (1992) have shown that if the characteristic function 
v(t) of r/x — цу satisfies the Cramer c-condition 

and x, у have finite m-th (m > 3) moment, then the distribution 
function F n  of S„ is approximated uniformly by the Edgeworth 
expansion U„m with the accuracy o(n~tm_2)/2). Cramer condition 
for rjx — цу allows one of the variables x, у to be discrete. 

2. Cumulants of the ratio of two sample means 

To find either Edgeworth expansion or Cornish-Fisher ex­
pansion for a statistic the most difficult task usually is to find the 
cumulants of that statistic. They are often found as power series 
of 11, where the coefficients are some functions of the cumulants of 
the parent population. 

Bai and Rao (1992) give the explicite Edgeworth expansion 
for Sn using the cumulants of <т~1Г1~2(т)Х — цу) and т]~ 1(у — т}). To 
express the cumulants of S n  through the cumulants of x and y, we 
use ordinary Taylor expansion method. The Taylor expansion of 
x/y around ju/77 is 

Finding necessary expectations we get the following first cumulants 

Iim|,|_ooM<)| < 1  (1.2) 

of S n: 
ES„ = А, +0(тГ 3 / 2) 
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E(S„-£S„)2 = l + 0(n-1), 

E ( S n - E S n ) 3  =  \ 3 + 0(n-3 '2), 

where 
Ai = n~1/2<7~1if3(nm02 - *?mn), (2.1) 

A3 = п~ 1^<т~ 3т)~ 6(т) 3т 3о - Ъргртц + 3p 2/?mi 2  - А< 3т 0з), (2.2) 

and 
rriij = Е(Х-Ц)'(У-Т}У-

The Edgeworth expansion U„3 for Sn has then the following 
explicite form: 

Un3 = Ф(х) - (Al + Аз(х 2  - 1)/6)ф(х) + oin- 1 ' 2), (2.3) 

where Ф( ) and ф ( - )  are standard normal distribution function and 
density function respectively. 

3. Cornish-Fisher expansion for the quantile of S„ 

We use here the method of Lee and Lee (1992) to derive the 
expansion of the quantile of Sn including the term n-1/2. The gen­
eral idea stands in looking for the relationship between arguments 
z and £ so that 

m = F(z). (3.1) 

The distributions Ф and F are expected to be close to each other 
so that 

z = 4 + 6. 

Then the Taylor expansion of F 

00 . 
+  * )  =  £  v D k F W  =  exP( 6 D ) F ( Z ) ,  (3.2) 

к-0 

is used, where D k F ( £ )  means (dh/dtk)F(t)\ t={. Distribution func­
tion F(£) on the right-hand side is substituted by its Edgeworth 
expansion 

F(0 = exp( f ;  \ к ( - О ) к / к \ ) Ф ( 0 ,  (3.3) 
k = l 

where the cumulants of the distribution F are of following orders: 

A] = Av = 0, A f c  = 0{n 1~ k / 2), к > 3 . 
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The quantity 6 is expected to have the form 

6 = 61 + Si + S3 + ... (3-4) 

with 6 k  = 0 ( n ~ k / 2 ) .  From (3.1)—(3.4) Lee and Lee get the equation 
where F is eliminated. Expanding then the exponent and using the 
partition of an integer they write down the general expression for 
h. 

In our case the cumulants of Sn  have different orders of n, all 
being power series of n~1!2. For such a case the explicite Cornish-
Fisher expansion is given by Withers (1984). Coefficients in these 
power series certainly depend on considered statistic and they need 
to be found for special cases. To present the Cornish-Fisher ex­
pansion for our special case we use the idea of Lee and Lee (1992). 
Using only the terms of order 0(n-1/2), we obtain from (3.1)—(3.4) 

Ф«) = exp{ 6 X D  - Ai£>- А 3£> 3/6...)Ф(£). 

After expanding we have 

Ф(0 =  ( l  +  6 l D - \ l D -  А 3£) 3/6...)Ф(£). 

Using Hermite polynomials, defined by 

оф(0 = Ф(0, 

D 3  ф(о = н2(ОФ(0 = «2  - 1Ж<), 

where <£(£) is the density function of N(0,1), we have 

Si = Ai - A3(£: - l)/6. 

Equation (3.1) being equal to a means that there exists a 
relationship between a-quantile of F and a-quantile £Q of standard 
normal distribution. For the a-quantile of Sn we have obtained the 
following Cornish-Fisher expansion up to the order o(n-1/2): 

-a = £„ + Ai + A3(£2 - l)/6, (3.5) 

whvir AI, A3 ate determined by (2.1)—(2.2). 
To say something about the accuracy of this quantile expan­

sion, notice that 

/'(.S, < -a) - P(S„ - A, - А;;(ча ~ D/6 < <a)-
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Since the random variable 

Sn - Ai - Ый - l)/6 

has the same cumulants as S n, except the first cumulant (mean), 
which is equal to 

-не* -1)/6, 

the n - 1/ 2  -term in its Edgeworth expansion vanishes and we get 

P(S n  < z a) = Ф(£„) + o(n _ 1 / 2) = a + o(n~ 1 / 2). 

So we have verified the following: 
Theorem. Suppose that random variables г, у have finite 

t h i r d  moments (E(y) ф 0) and the characteristic function v(t) of 
•qx — цу satisfies the Cramer c-condition (1.2). Then the standard­
ized ratio of sample means 

S„ = л/тГЧ? -
У П 

hsis the a-quantile 

Za = £a + Ai + Аз(^ 2  — l)/6 

with the accuracy 

P(S n  < z a ) = at + o(r»- ] / 2) .  
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Cornish-Fisheri reaksarendus 
valimikeskmiste suhte jaoks 

Imbi Traat 

Kokkuvõte 

Vaadeldakse juhuslikku vektorit (x, y), mis omab lõplikke kol­
mandaid momente ja rahuldab Crameri c-tingimust (1.2). Vek­
torist on antud n-elemendiline valim ja vastav valimikeskmiste 
normeeritud suhe S„ (1.1). Statistikut S„ kasutatakse mitmetes 
rakendustee, näiteks elukestuse analüüsis, valikuuringus jm. Prak­
tilistes ülesannetes eeldatakse tavaliselt, et S„ on normaaljaotusega 
ja usalduspiiride leidmisel kasutatakse tema a-kvantiilina normaal­
jaotuse a-kvantiili. Üldjuhul, eriti aga väikeste valimite korral, 
ei ole Sn normaaljaotusega, kusjuures pole ka teada tema tege­
lik jaotus. Artiklis esitatakse statistiku Sn ligikaudne a-kvantiil 
za - st. Cornish-Fisheri reaksarendus (3.5). Ligikaudse kvantiili 
viga koondub protsessis n —* oo nulliks kiiremini kui n-1/2, st. 
P(S n  < z a ) = a + o(n~ l / 2 ).  
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