
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of computer science
Software engineering curriculum

Madis Nõmme

Implementing in-browser screen sharing

library for robust, high-performance

co-browsing

Master’s thesis (30 EAP)

Supervisor: Satish Narayana Srirama, PhD

Tartu 2015

Implementing in-browser screen sharing library for robust, high-

performance co-browsing

Abstract:

Co-browsing is the activity of two or more people viewing and interacting with the same

web page simultaneously using web browsers running on di�erent computers. It can

be useful for many purposes: entertainment, information sharing, learning, supervision,

surveillance, etc. In this work the author concentrates on the issues and challenges in

implementing co-browsing for assisting users.

Sharing user’s screen has historically required installation of additional software. Installing

such software often requires elevating user privileges and can introduce security risks.

Also separate implementations on di�erent operating systems make it more expensive to

develop. Many application developers have discovered browsers as their new platform

independent platform. As more applications are moving into the browser, it has become

a good candidate to implement screen sharing on. Screen sharing in a browser is called

co-browsing.

This thesis describes a solution for screen-sharing inside browser without any plugins or

additional software.

Keywords:

co-browsing, screen sharing, desktop sharing, real-time communication, peer to peer,

WebRTC

2

Kõrge jõudluse ja veakindla ühisbrausimise teegi arendamine vee-

bisirvikutes ekraani jagamiseks

Lühikokkuvõte:

Ühisbrausimine on tegevus, mille käigus kaks või enam inimest näevad sama veebilehte

erinevate arvutite tagant samaaegselt ja suhtlevad teineteisega hiireklikkide, kerimise ja

muude juhtseadmete toimingute kaudu. Selline tegevus võib olla kasulik erinevatel põhjus-

tel, nagu meelelahutus, teabe jagamine, õppetöö, juhendamine, järelvalve jne. Käesolevas

töös keskendub autor küsimustele ja väljakutsetele, mis on seotud ühisbrausimisega kasu-

tajate abistamise eesmärgil.

Ekraanijagamine nõuab tavaliselt eriotstarbelise tarkvara paigaldamist. Sellise tark-

vara paigaldamine on tihti seotud kõrgentatud kasutajaõigustega, mis omakorda võib

põhjustada turvariske. Iga operatsioonisüsteemi jaoks eraldi programmikoodi kirjutamine

muudab sedasorti tarkvara arendamise kulukaks. Seetõttu on paljud rakenduste arendajad

oma tooted veebisirvikutesse ümber kolinud. Kuna järjest rohkem rakendusi kirjutatakse

veebisirvikus käitamiseks, siis on viimase veetlus ühisbrausimise platvormina suurenenud.

Ekraani jagamist veebisirvikus nimetatakse ühisbrausimiseks.

See töö kirjeldab tarkvaralahendust veebisirvikutes ekraani jagamiseks ilma ühegi

lisamooduli või täiendava tarkvarata.

Võtmesõnad:

ühisbrausimine, ekraani jagamine, töölaua jagamine, suhtlus reaalajas, otsesuhtlus, We-

bRTC, veebisirvik

3

Contents

1 Introduction 9

1.1 Outline . 10

2 State of the art 12

2.1 Screen sharing based on platform . 12

2.1.1 Operating system . 12

2.1.2 Application specific . 12

2.1.3 Browser based . 12

2.2 Sharing screen based on image reconstruction 13

2.2.1 Pixel info based screen sharing . 13

2.2.2 Using the canvas element . 13

2.2.3 Using WebRTC . 15

2.3 Structured content rendering . 16

2.4 Other useful technologies . 17

2.4.1 WebSockets . 17

2.4.2 WebRTC data-channels . 18

2.5 Existing commercial and free implementations 18

3 Goals and issues to solve 21

3.1 Dynamic features . 21

3.2 Content filtering . 21

3.3 Navigation and page reloads . 21

3.4 User presence and disconnects . 22

3.5 Visual outlook and CSS in the wild . 22

3.6 Latency and responsiveness . 23

4

3.7 Security issues . 23

4 Implementing Cobra - unified robust library for cobrowsing 24

4.1 Architecture . 24

4.1.1 Screen . 25

4.1.2 Source . 27

4.1.3 ScreenControl . 27

4.1.4 DriverMaster . 27

4.1.5 DriverSlave . 27

4.1.6 FeatureManager . 27

4.1.7 Features . 28

4.2 Drivers . 30

4.2.1 UrlDriver . 30

4.2.2 MutationSummaryDriver . 30

4.3 Co-browsing process . 31

4.3.1 Initialization . 32

4.3.2 Iframing . 32

4.3.3 Switching modes . 34

4.3.4 Teardown . 34

4.4 Used tools and libraries . 35

4.4.1 jQuery . 35

4.4.2 RxJS . 35

4.4.3 Underscore . 36

4.4.4 Messaging . 36

5

5 Evaluating Cobra 37

5.1 Performance . 37

5.2 Browser compatibility . 38

5.3 Testing . 38

5.3.1 Testing drivers . 38

5.3.2 Testing features . 39

6 Conclusions 40

7 Future improvements and ideas 41

References 42

Extras 44

I Terms used . 44

II Licence . 45

6

List of Tables

1 Comparison of existing implementations and libraries 19

2 Channel API for communication between parties in Cobra 32

3 CPU load with and without co-browsing 37

4 Browser compatibility of technologies supporting co-browsing 38

7

List of Figures

1 High level architecture . 24

2 Detailed architecture . 25

3 Screen design . 26

4 MutationRecord . 31

5 Cobra flow . 33

8

1 Introduction

We use computers in plethora of our daily activities. Some of them are as simple as

checking a new incoming email notification. Others are more complex - like designing

a model for 3D printer or making the decision to buy certain stock or insurance policy.

Browsers that were once mainly used for simple applications targeted for information

and media consumption are being target platform for complex and useful applications for

which the user needs to be trained or have moderate amount of experience in order to

handle the system and make correct decisions.

Traditionally helping confused users has been done in written form or via phone support.

It requires certain levels of frustration and motivation to make user find and read the

manual or grab a phone to call help desk. Often people just give up and leave the website.

To keep people engaged and solve their problems on the spot, the support service agent

needs to understand the circumstances of the user. When providing support through a

website, the traditional approach has been to describe the issue using text-chat. Most

people are not very proficient in entering text using keyboard and the interaction can

quickly become cumbersome. Better solution would be to make the communication

interactive so that the user can demonstrate the issue to the helping person right on the

page.

Often the interactive assistance tools are used by system administrators when configuring

remote computer or providing remote help to a user. Microsoft Windows has included

support for Remote Desktop protocol since Windows XP[1], OS X has done the same

with their software called Screen Share since OS X 10.5 (Leopard)[2]. These solutions

work in a setting where you trust your assister and both sides have necessary software

installed. It is not suited for situations where there are:

1. many customers coming and going. It can be di�cult for the assisting operator

to decide which user to contact. Also many of the users might be on the page for

the first and last time so no information is known about them. The classic screen

sharing tools do not o�er any metrics for measuring user confusion.

2. customers are using di�erent platforms (PC, Mac, Mobile). To assist them, they

9

would have to have the screen sharing software installed allow themselves to be

assisted. This does not work in untrusted setting - random web page and introduces

security issues.

Requirements for the ideal tool would be:

1. no installation on the client side

2. support for passive observation for the operator without any interaction required

from visitor

3. works in browsers so platform independence is achieved

1.1 Outline

The State of the art chapter gives an overview of the existing technologies and approaches in

screen sharing and co-browsing realms. Operating system level screen sharing applications

use pixel data to transport visual screen information to the other participant. In-browser

solutions can use the pixel approach (as in the canvas and webrtc approaches) but more

flexible results can be achieved through what is called structured content rendering. It

works by taking DOM representation from one browser and reconstructing it in another.

Goals and issues to solve chapter describes which co-browsing issues a library must

solve and unique features it has to implement in order for it to stand out among other

analogous software solutions. Dynamic features allow to package groups of functionality

into modes and switch between these modes during a co-browsing session. Content filtering

helps to omit or mask parts of the page that co-browsing is happening on. Examples

of omitted or masked page parts are personal information like credit card numbers or

a DIV element containing picture of the user. Navigation and page reloads need to be

dealt with to make co-browsing look smooth and uninterrupted for the receiving side. If

user is navigating, the WebSocket connection gets disconnected between page reloads, so

the library needs to know that the user is not actually leaving page. User presence and

disconnects is related to the navigation disconnects but also has to deal with notifying

the end of co-browsing session in case the user is idle for too long. Visual outlook section

describes why it is necessary to deal with di�erent and often obscure ways that pages

use CSS and how to make injected CSS to not conflict with the page. Latency and

10

responsiveness describes why it is important to optimize for latency and technologies to

use for it (WebSockets, WebRTC data channels). Security issues are an important concern

of an injected 3rd party JavaScript library that dynamically transports web page content

between users. Di�erent MITM and cross site scripting issues could arise.

Implementing Cobra chapter describes parts of the implemented co-browsing library.

Cobra implementation follows plugin architecture. There are two sides: Source, which

collects and forwards co-browsing data and Screen which takes info sent by Source and

transforms it into displayable form. Basic co-browsing is supported by Drivers. Screen

side runs DriverMaster and source side runs DriverSlave Two driver implementations

- UrlDriver and MutationSummaryDriver are described. Additional functionality like

support for keyboard, pointers, focus and scrolling is implemented by Features. Di�erent

features can be grouped together into Modes. The Co-browsing process section describes

how the library setup process works. To allow other communication forms like chat

and audio/video calls persist during navigation, the co-browsable page must be iframed.

Iframing, switching modes and teardown are also described in this chapter.

Evaluating Cobra chapter describes testing approach and some performance character-

istics of the devised co-browsing library.

11

2 State of the art

In general, screen sharing software can be categorized in based on the platform they run on:

operating system, inside application, browser or based on how the screen representation

gets built for the other participant: pixel info, structured content rendering.

2.1 Screen sharing based on platform

Platform here means the collection of API-s and the provider of these, that is used to

achieve screen sharing.

2.1.1 Operating system

Operating system screen sharing requires a special program to be installed. Sometimes the

program can be bundled with the operating system1. These applications provide greatest

level of control and pixel-perfect replication of user’s screen. They require extra e�ort

and knowledge from the user to install them. Also they give the joining party permissions

to access the whole computer with the same rights as the user, which can cause trust

and security issues. Operating system based screen sharing tools are best for providing

temporary assistance and aid in system administration.

2.1.2 Application specific

Great example of application specific screen sharing are the Google Drive suite applications

- Docs, Sheets, Slides, Forms, Drawings. Each of these applications provides specific

functionality and adds co-browsing where users can collaborate within the bounds of the

specific application’s functionality.

2.1.3 Browser based

Browser based screen sharing means that the code that implements the logic for getting

one user’s screen visible to another runs in browser and uses browser provided API-s
1Apple Screen Sharing

12

http://en.wikipedia.org/wiki/Screen_Sharing

to achieve its goal. Browser based screen sharing gets number of benefits from its host

environment:

• runs on the same platforms that the browsers run

• has access to standardised networking API-s

• gets browser provided sandboxing, mitigating many security issues

• has access to structured contents used for rendering the application

• once implemented, works on most of the web applications

2.2 Sharing screen based on image reconstruction

2.2.1 Pixel info based screen sharing

Image based screen sharing implementations are possible both on operating system and

inside browsers. They work by capturing image representation from a source e.g. a frame

bu�er or HTML canvas element. In the case of widespread standard of operating system

screen sharing protocol VNC, reproducing the screen image works through “put a rectangle

of pixel data at a given x,y position” [3].

Where in Operating System (OS) level a framebu�er can be accessed, in browsers di�erent

mechanisms exist to achieve the same goal. Because the representation of user’s browser

comes in as a flat image with these methods, no direct interaction with the page is possible

on the screen side.

To provide interactive control to the screen user, events from input devices have to

captured and triggered on the source user’s computer. The resulting visual changes then

arrive to the screen user’s browser over the used mechanism (canvas, webrtc).

2.2.2 Using the canvas element

The canvas element provides scripts with a resolution-dependent bitmap canvas, which

can be used for rendering graphs, game graphics, art, or other visual images on the fly[4].

The canvas approach relies on two techniques:

1. It is possible to draw web page contents on <canvas> element.

13

2. It is possible to convert the contents of HTML5 <canvas> element to image data.

Example code for capturing & sending image data from <canvas> element:

function blobFromDataUrl(dataUrl) {} // http://git.io/vUyJg

function makeWebsocketConnection() {} // Stub

// Sender:

var canvasEl = document.getElementById(�some-canvas-element�)

wsocket = makeWebsocketConnection()

wsocket.binaryType = �blob�;

wsocket.send(blobFromDataUrl(canvasEl.toDataURL()));

// Receiver:

function receiveAndDisplayBlob(blob) {

imageEl = document.getElementById(�image-target�);

imageEl.src = URL.createObjectUrl(blob)

}

wsocket.addEventListener(�message�, receiveAndDisplayBlob)

More sophisticated approach (like the Html2Canvas by Niklas von Hertzen) have to use

approach where they render the current page as a canvas image, by reading the DOM

and the di�erent styles applied to the elements[5].

The main drawbacks of the canvas approach are

1. Not all CSS caused visual e�ects are captured

2. It takes time & resources to capture the page and construct the image Blob

3. When co-browsing parties are using di�erent resolutions, the image can become

stretched

4. Result is static image. So any animations are omitted

Benefits of the canvas technique are that that the generated image looks visually very

similar with on matching resolutions. The image can also be saved on the server side.

14

Since the image layer is flat, there is no way to alter or interact with its contents. Any

user input must be sent to the source and visual changes caused by it transferred back

through the canvas mechanism.

2.2.3 Using WebRTC

WebRTC is a free, open project that provides browsers and mobile applications with Real-

Time Communications (RTC) capabilities via simple APIs. The WebRTC components

have been optimized to best serve this purpose[6].

WebRTC and related API-s are implemented on Google Chrome and Mozilla Firefox

browsers and their derivatives.

The main objective of WebRTC is enabling audio and video calling between browsers. In

addition to camera being the media source, users can request desktop as video source.

Requesting desktop as video source:

constraints = {audio: false, video: {mandatory: {

chromeMediaSource: �desktop�,

chromeMediaSourceId: thestreamid,

maxWidth: window.screen.width,

maxHeight: window.screen.height,

maxFrameRate: 3,

}}};

getUserMedia(constraints, callback);

It allows capturing user’s desktop, individual windows or browser tabs as video stream

source. The video stream is compressed for transfer using VP82 or H.2643 encoding[7].
2VP8 is a video compression format owned by Google and created by On2 Technologies as a successor

to VP7
3H.264 or MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC) is a video compression format

that is currently one of the most commonly used formats for the recording, compression, and distribution
of video content

15

http://en.wikipedia.org/wiki/VP8
http://en.wikipedia.org/wiki/VP8
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

2.3 Structured content rendering

Browsers hold the web page in a DOM4 representation in memory. The structured content

rendering method relies on sending information from source to screen so that the later

one could reconstruct the DOM and thus render the original web page.

To render a web page the browser needs to combine CSSOM5 and DOM trees into a

render tree, which is then used to compute the layout of each visible element and serves

as an input to the paint process which renders the pixels to screen[8].

The most compact form to communicate existing DOM from one user to another is by

sending over the URL that current page is fetched. If the server doesn’t require cookies or

other information that is not present in the URL for returning the page, the receiving

user will get the same HTML content as the other user. Receiving user’s browser will

render it to look very similar.

Another way of getting the DOM from one user’s browser to another is to serial-

ize the DOM and send it over the network. This is more complex than just calling

JSON.serialize(document) as the resulting data structure has to be JSON serializable

(can not contain cycles) and it has to include all the necessary data for reconstructing the

DOM on the receiving browser.

Pseudocode for serializing DOM:

serializeNode = (node) ->

data = extractGeneralNodeData(node)

addNodeTypeSpecificData(node, data.nodeType)

if node.nodeType == Node.ELEMENT_NODE

addSerializedChildrenData(node, data)

Pseudocode for de-serializing DOM:

deserializeNode = (nodeData, parent, root) ->

doc = root.ownerDocument || root
4Document Object Model
5CSS Object Model

16

Node types e.g. Node.DOCUMENT_TYPE_NODE or

Node.ELEMENT_NODE etc.

node = createSpecificNodeType(nodeData.nodeType)

parent.appendChild(node) if (parent)

if nodeData.childNodes?

deserializeNode(child, node) for child in nodeData.childNodes

return node

Serializing and sending the whole DOM every time part of it changes is not practical.

There exist API-s for observing when DOM changes and getting parts of the changed

DOM.

Mutation Events is an older API and is deprecated in newer browsers. It is slow and

synchronous. User gets updated every time a change happens. It performs worse than the

newer API Mutation Observers.

Mutation Observers is the new asynchronous API for observing DOM changes. It can

be attached to a DOM node and will provide the developer change type and changed

attributes including same information for child nodes.

2.4 Other useful technologies

Regardless of how the data describing user’s screen visual state and input devices is

collected, it needs to be sent to the other peer. Although using HTTP requests is possible,

the HTTP protocol adds quite a bit overhead introduces latency issues. Mainly because

one side would have to post to a central server and another would request the data. More

e�cient ways are WebSockets.

2.4.1 WebSockets

All modern browsers and Internet Explorer since version 10 support WebSockets. Web-

Socket is a protocol providing full-duplex communication channels over a single TCP

connection. The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011,

and the WebSocket API in Web IDL is being standardized by the W3C[9]. WebSockets

allow real time messaging with very little overhead.

17

2.4.2 WebRTC data-channels

WebRTC is a relatively new standard for exchanging real time media in browsers. It’s

value for co-browsing in the context of mechanisms is what are called data channels.

WebRTC sends media streams from browser to browser in peer-to-peer manner. The data

channels part of the api enables to send the co-browsing data without using central server

or hub. Thus getting rid of half of the latency.

Having both sides to exchange co-browsing data directly has the following benefits:

1. Reducing load on the server infrastructure.

2. Providing better responsiveness due to smaller latency as the packets travel directly

between two browsers without going through a relay WebSocket server.

2.5 Existing commercial and free implementations

There are some existing companies and projects that o�er co-browsing as part of their

functionality. 7 categories were taken as a basis of comparison.

1. Method is the implementation type of co-browsing.

• Mutation - a MutationSummary based implementation

• Image - an implementation based on encoding the observed page into image

and

• Url - URL of the co-browsed page is sent to the other participant

2. Mouse shows whether user’s mouse pointer is shown to none, one side or both.

3. Keyboard describes whether keyboard events were sent and played back to the other

user.

4. Forms is about syncing forms after non-user induced DOM change. This includes

re-filling forms after iframing the page.

5. 1 line itegration means whether the simplest way of integrating was supported -

inserting 1 script tag with src attribute containing the integration script.

6. Mobiles support means working without significant visual or functional errors on

mobile devices. Safari browser on iPhone4 was used for testing.

18

Table 1: Comparison of existing implementations and

libraries

Name Method

Mouse Keyboard Forms

1 line inte-

gration iframing

Mobiles

Cobra All 2-way 2-way Yes Yes Yes Yes

Surfly Mutations 1-way 1-way No No No No

Kandy Image No No No No No No

Firefly Mutations 2-way No No No No No

TogetherJS Url 2-way 2-way No Yes No Yes

1. Cobra - supports all the compared features

2. Surfly (https://www.surfly.com/) is a product supporting co-browsing and video. It

passive co-browsing only meaning that one user will be sent to a page where he can

passively observe what the other user does. Scrolling did not work on mobile devices.

They build a mirror page on their own domain. This means that the product is not

working directly on the potential clients’ site.

3. Kandy (https://www.kandy.io/) implements image based screen sharing. No ifram-

ing is done. Kandy works only on one page and breaks after navigation. No keyboard

or mouse support was present.

4. Firefly (http://usefirefly.com/) used MutationObservers approach. Sent mouse

mouse but not keyboard. Establishing co-browsing session was cumbersome - four

manual actions were needed (including the user having to send support ID to the

support person) before the session could begin. Only sent mouse pointer one way.

It did not support iframing which would make functionality that has to persist

between navigation hard to support.

5. TogetherJS (https://togetherjs.com/) supported only URL based co-browsing. Only

19

https://www.surfly.com/features/
https://www.kandy.io/
http://usefirefly.com/
https://togetherjs.com/

product besides Cobra that supported 1 line integration. It relies on the co-browsed

application syncing its state between multiple simultaneous users. Provides only

URL syncing and mouse pointer forwarding.

20

5 Evaluating Cobra

5.1 Performance

The apparent responsiveness of Cobra’s current implementation depends mainly on two

factors: network bandwidth and network latency.

To counter network latency, the DynamicChannel switches to WebRTC data channels

whenever possible. This avoids the messaging tra�c going through a central server and

instead flows directly between browsers.

An experiment was also conducted to measure CPU load added by Cobra. The experiment

was set up as follows:

1. DOM tree of depth 10 with 2046 nodes was generated

2. A repeating function that swaps 10 DOM nodes every second

3. Measure CPU load without co-browsing

4. Measure CPU load with co-browsing

Table 3: CPU load with and without co-browsing

Screen Source

Idle 4.6% 5.1%

With co-browsing 9.9% 7.0%

The test was conducted on a Mid 2013 Macbook Air with 1.7 GHz i7 CPU, base CPU

load of 12%. The DOM changes frequency in the test is greater than real user activity.

Real human caused DOM activity happens in spikes (i.e. it isn’t constant load) when

navigating to a new page or opening a subsection from an application. Author considers

the increase in CPU load, seen from the test results in Table 3 too small to a�ect usability

in any negative way.

37

5.2 Browser compatibility

Browser compatibility is definitely a concern for Cobra, as it has to work on almost any

browser. Because of the universal support for the API used by UrlDriver, Cobra is usable

on all recent browsers. As of April 2015, 97.7% of users are using a browser that supports

Cobra9. Comparison of support for various features used by Cobra can be seen from Table

4.

Table 4: Browser compatibility of technologies supporting

co-browsing

Browser Mutation Events WebRTC UrlDriver Mutation Summary

Google Chrome Yes Yes Yes Yes

Mozilla FireFox Yes Yes Yes Yes

Internet Explorer 9 Yes No Yes No

Internet Explorer 10 Yes No Yes No

Internet Explorer 11 Yes No Yes Yes

5.3 Testing

One of the goals of building Cobra was it to be modular and testable. The tests are

written using Mocha10 testing framework.

Many parts of Cobra have two sides: source and screen. Because of this it is often useful

and more e�cient to not strictly unit test but to write integration tests instead.

5.3.1 Testing drivers

Current implementation of Cobra has two drivers: UrlDriver and MutationSummaryDriver.

UrlDriver’s only responsibility is to send the window.location.href to the other side. In

the test source iframe is navigated to an url, after a short delay assertion against display

side’s location will be made.
9http://www.w3schools.com/browsers/browsers_stats.asp

10http://mochajs.org/

38

MutationSummaryDriver has to send initial dom and after that dom changes. The generic

way of testing it is working quite well: add an element to the source iframe’s DOM and

after a short delay observe that change in display side’s DOM.

5.3.2 Testing features

All Features contain two components: source and display. Because of this property it is

more useful to test the interaction of both parts instead of unit testing each separately.

The basic testing flow is as follows:

1. Create 2 iframes, one with ad-hoc DOM

2. Create the display part of the object. Attach it to iframe 1

3. Create the source part of the object. Attach it to iframe 2

4. Connect source & display parts over ad-hoc channel

5. Simulate change in DOM on the source side

6. Assert feature specific result on the display side

39

6 Conclusions

Co-browsing is screen sharing in browsers. Browsers can be used as a platform for

developing universal co-browsing functionality that works on all web pages. Developing

the library in browser has additional benefit of being available on all the platforms that

the browser is, getting standardized networking API support and having access to the

structured contents of the web page (DOM).

The thesis investigated di�erent requirements of a good co-browsing library and compared

number of currently available solutions. All existing solutions are missing features or

are unstable in some common scenarios. A new library, called Cobra was proposed and

developed.

Cobra implements co-browsing through Drivers and Features. Drivers get the visual

representation of the page to another user. Features add interactivity like mouse cursor

and keyboard support. This separation allows easier way of reasoning, testing and

configuring the functionality.

Cobra is part of the SaleMove platform. Together with Multicom11 they make up the

interactive communications part of the system. As of May 2015, there have been ~33127

co-browsing sessions with average duration of 7.5 minutes.

11Multicom is unified in-browser video, audio and phone calling library of SaleMove, leveraging the
latest WebRTC technology, developed also by the author.

40

7 Future improvements and ideas

The chosen approach for developing Cobra has proven to be very successful. The imple-

mentation is stable and has been in production use for almost one year (as of May 2015).

It has been easy to understand and explain to new developers and issues can be reasoned

about and localized quickly because of the modular approach.

Some ideas for making Cobra even more useful and more featured would be:

• Implementing recording & playback of co-browsing session. Users might be interested

in reviewing their interaction. This feature can be useful also for debugging reasons.

• Implementing other drivers besides the current UrlDriver and MutationSummaryDriver.

The CanvasDriver and WebRtcDriver could provide some interesting capabilities.

CanvasDriver would allow taking screenshots very easily. WebRtcDriver’s current

holdback is that it requires the installation of chrome extension. When implemented

however, it can provide pixel perfect representation of users browser tab.

• Group co-browsing would be interesting addition. It could allow teacher-class kind

of setups where one person broadcasts his screen and multiple people join to see.

41

References

[1] Wikipedia, Remote desktop protocol - wikipedia, the free encyclopedia. [Internet].

http://en.wikipedia.org/wiki/Remote_Desktop_Protocol.

[2] Wikipedia, Screen sharing - wikipedia, the free encyclopedia. [Internet]. http://en.

wikipedia.org/wiki/Screen_Sharing.

[3] T. Richardson et al., Virtual network computing, Internet Computing, IEEE, kd 2, nr

1, lk 33–38, Jan 1988.

[4]HTML living standard, May-2015. [Internet]. https://html.spec.whatwg.org/multipage/

scripting.html#the-canvas-element.

[5] N. von Hertzen, HTML to canvas, May-2015. [Internet]. https://github.com/niklasvh/

html2canvas/blob/master/readme.md.

[6] google chrome team, WebRTC. [Internet]. WebRTC is a free, open project that provides

browsers and mobile applications with Real-Time Communications (RTC) capabilities via

simple APIs. The WebRTC components have been optimized to best serve this purpose.

[7] Infoworld, Browsers must support h.264 and vP8 as part of real-time communi-

cations e�ort. [Internet]. http://www.infoworld.com/article/2847248/web-browsers/

webrtc-compromise-on-video-codec-standards.html.

[8] I. Grigorik, Render tree construction, layout and paint. [Internet]. The CSSOM and

DOM trees are combined into a render tree, which is then used to compute the layout

of each visible element and serves as an input to the paint process which renders the

pixels to screen. Optimizing each of these steps is critical to achieve optimal rendering

performance.

[9] W. contributors, WebSocket, Wikipedia, 2015. [Internet]. http://en.wikipedia.org/wiki/

WebSocket.

[10] M. developer network, Window.postMessage(). [Internet]. https://developer.mozilla.

org/en-US/docs/Web/API/Window/postMessage.

[11] Wikipedia, JQuery - wikipedia, the free encyclopedia. [Internet]. http://en.wikipedia.

42

org/wiki/JQuery.

[12]Reactive-extensions/RxJS, May-2015. [Internet]. https://github.com/Reactive-Extensions/

RxJS.

[13] Wikipedia, Underscore.js - wikipedia, the free encyclopedia, May-2015. [Internet].

http://en.wikipedia.org/wiki/Underscore.js.

[14]Socket.IO - wikipedia, the free encyclopedia. [Internet]. http://en.wikipedia.org/wiki/

Socket.IO.

43

Extras

I Terms used

Co-browsing

The activity of sharing screen in a browser

Source

the user of the co-browsing process whose page is being co-browsed. This side

produces the co-browsing updates. Also the object that governs DriverSlave and

FeatureManager in that browser on the source side.

Screen

the side that displays the co-browsing updates. Also the object that governs

DriverMaster and FeatureManager in that browser on the screen side.

44

II Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Madis Nõmme (date of birth: 2. mai 1984)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term

of validity of the copyright, and

1.2. make available to the public via the university’s web environment, including

via the DSpace digital archives, as of May 1st, 2017 until expiry of the term

of validity of the copyright, Implementing in-browser screen sharing

library for robust, high-performance co-browsing supervised by Satish

Narayana Srirama, PhD

2. I am aware of the fact that the author retains these rights.

3. This is to certify that granting the non-exclusive licence does not infringe the

intellectual property rights or rights arising from the Personal Data Protection Act.

Tartu, May 21, 2015

45

	Introduction
	Outline

	State of the art
	Screen sharing based on platform
	Operating system
	Application specific
	Browser based

	Sharing screen based on image reconstruction
	Pixel info based screen sharing
	Using the canvas element
	Using WebRTC

	Structured content rendering
	Other useful technologies
	WebSockets
	WebRTC data-channels

	Existing commercial and free implementations

	Goals and issues to solve
	Dynamic features
	Content filtering
	Navigation and page reloads
	User presence and disconnects
	Visual outlook and CSS in the wild
	Latency and responsiveness
	Security issues

	Implementing Cobra - unified robust library for cobrowsing
	Architecture
	Screen
	Source
	ScreenControl
	DriverMaster
	DriverSlave
	FeatureManager
	Features

	Drivers
	UrlDriver
	MutationSummaryDriver

	Co-browsing process
	Initialization
	Iframing
	Switching modes
	Teardown

	Used tools and libraries
	jQuery
	RxJS
	Underscore
	Messaging

	Evaluating Cobra
	Performance
	Browser compatibility
	Testing
	Testing drivers
	Testing features

	Conclusions
	Future improvements and ideas
	References
	Extras
	I Terms used
	II Licence

