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Towards More Human Like Reinforcement Learning

Abstract:
Making machines more intelligent can potentially make human life easier. A lot of
research has gone into the field of artificial intelligence (AI) since the creation of first
computers. However, today’s systems still lag behind humans’ general ability to think
and learn. Reinforcement Learning (RL) is a framework where software agents learn by
interaction with an environment. We investigate possibilities to use observations about
human intelligence to make RL agents smarter. In particular, we tried several methods:
1) To use “Tagger” - an unsupervised deep learning framework for perceptual grouping,
to learn more usable abstract relationships between objects. 2) Make one RL algorithm
(A3C) more data efficient to learn faster. 3) To conduct these experiments, we built a
web based RL dashboard based on visualization tool - visdom. Finally, we provide some
concrete challenges to work on in the future.

Keywords:
Reinforcement learning, deep learning, neural networks

CERCS: P176 Artificial intelligence

Inimesele sarnasema innustusõppe suunas
Lühikokkuvõte:
Masinate targemaks muutmine võib muuta inimeste elu lihtsamaks. Alates esimeste
arvutite loomisest on palju teadustööd pühendatud tehisintellekti uurimisse. Sellest uuri-
mistööst hoolimata jäävad tänapäeva tehissüsteemid alla inimaju üldisele võimele mõelda
ja õppida. Innustusõppe raames õpivad tehisagendid keskkonna abil. Antud töös uurime,
kuidas kasutada vaatlusi inimese nutikusest, et teha ka tehislikke innustusõppe agente tar-
gemaks. Me rakendasime mitut viisi: 1) kasutasime ”Taggeri” algoritmi - juhendamiseta
sügavõppe viisi tajulise grupeerimise jaoks, et õppida kasulikumaid seoseid objektide
vahel, 2) proovisime ühte innustusõppe meetodit (A3C) teha tõhusamaks, et selle abil
kiiremini õppida, 3) Nende eksperimentide läbiviimiseks arendasime välja veebipõhise
keskkonna innustusõppe katsete visualiseerimiseks. Lõpuks pakume välja ka suundi
edasise töö jaoks.

Võtmesõnad:
Võtmesõnad: Stiimulõpe, sügavõpe, närvivõrgud

CERCS: P176 Tehisintellekt

3



Contents

1 Introduction 6

2 Reinforcement Learning 8
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Looking for optimal policy . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Deep Q-network . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Asynchronous methods . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Neural Episodic control . . . . . . . . . . . . . . . . . . . . . 14

3 Possible directions for improving AI 16
3.1 What is the AI trying to solve? . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Symbolic reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Probabilistic Machine Learning . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Model building and start-up software . . . . . . . . . . . . . . . . . . . 19
3.6 Curiosity and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Experiments 22
4.1 Testing environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 OpenAI Gym and Atari . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 A3C implementation review . . . . . . . . . . . . . . . . . . . 23

4.2 Building a live dashboard for monitoring software agents . . . . . . . . 23
4.2.1 Review of a visualization tool - visdom . . . . . . . . . . . . . 24
4.2.2 Integrating visdom with the a Deep Learning framework . . . . 24
4.2.3 Serializing the log data . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 Dashboard review . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Trying to decouple the game scene using Tagger . . . . . . . . . . . . . 26
4.3.1 Brief review of Tagger framework . . . . . . . . . . . . . . . . 28
4.3.2 Applying Tagger on image data generated by a game . . . . . . 28

4.4 Experiments with A3C . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Trying to increase data efficiency . . . . . . . . . . . . . . . . . . . . . 30

5 Discussions 33

References 39

4



Appendix 40
I. Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
II. Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
III. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



1 Introduction
The long term goal of artificial general intelligence (AGI) is to create machines that
will exhibit human-like problem solving skills in arbitrary tasks. The recent progress in
Machine Learning, primary attributed to techniques called deep learning has produced
remarkable results in many areas like classification, pattern recognition and control. The
field of reinforcement learning has been no exception. In 2013 it was demonstrated that
one algorithm which used neural networks as a function approximator could learn a
variety of Atari video games solely from pixel inputs and even get human-comparable
results in some of them [MKS+13]. Since then, the interest in deep reinforcement
learning has increased.

The excitement is easily understandable as the basic idea of reinforcement learning
is simple, yet powerful - instead of training a model in a supervised way the agent itself
interacts and learns from the environment. After all, this is how a baby learns. Fascinated
by watching agents play, one can think that they operate much the same way a human
does, but in reality today’s systems are far away from challenging powerful human
intellectual tools like thinking, planning, reasoning and transfer learning.

The goal of the thesis is to review and seek for possible ways to enrich the current
reinforcement learning algorithms based on the observations of human intelligence.

Authors of ”Building Machines That Learn and Think Like People” [LUTG16], note
that:

Just as scientists seek to explain nature, not simply predict it, we see human
thought as fundamentally a model-building activity. Children come with the
ability and the desire to uncover the underlying causes of sparsely observed
events and to use that knowledge to go far beyond the paucity of the data.

We hypothesize that some kind of intermediate representation of input frames, where
relationship between objects and their visuals are separated from each other, should be
beneficial for learning algorithms that acquire this knowledge. In this work we try to
apply the tagger framework on one Atari game.

Also, one observation pointed by [LUTG16] is that computers needs far more training
data to learn than a human does. While this may have many explanations, recent work
like [PUS+17] has tried to solve this issue by using the idea of episodic memory. The
proposed memory module helps to alleviate a problem that neural networks are slow in
integrating new experiences. We try to apply the similar idea to on-policy reinforcement
algorithm A3C.

Emulated environments especially games are great platforms for studying AI, as
they give us a simulated world which can generate unlimited amount of data. Notion of
time and reward is inherently built into such systems and they were originally built for
humans. More than that, it is possible to watch the recorded game and evaluate agents’
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behavior or compare them to human plays. Because of these reasons we use also built a
live customizable web based dashboard for monitoring how the agents learn and evolve.

The work is structured as follows - in Chapter 2 we introduce basics of reinforce-
ment learning, in Chapter 3 we discuss some ideas worth exploring to incorporate in
reinforcement learning, in Chapter 4 our experiments are described and finally we end
by discussion of possible future work in Chapter 5.
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2 Reinforcement Learning
In this chapter we will review the basics of reinforcement learning and discuss several
recent algorithms, as well as their important practical or theoretical improvements which
led to the increased benchmark scores on Atari games. Although reinforcement learning
has a long history, overlapping different disciplines and uniting many definitions or
methodologies, here we will only concentrate on computational study in a context of
Artificial Intelligence.

2.1 Basics
Reinforcement Learning (RL) is an area of Machine Learning which studies sequential
decision making process of software agents. The goal of a RL agent is to maximize
the expected total reward the agent can get over time. It can do so by interacting with
an environment - taking some action and observing the rewards (scalar values). By
trial and error an agent is supposed to improve its strategy (in reinforcement learning
terms a policy) over and over, discovering more about its environment and exploiting
the knowledge it did not have in the beginning. An important aspect to notice is that by
taking each action an agent can potentially modify the environment in which it navigates,
thus changing the outcome of its future observations and reward signals.

Figure 1. (clipart from [Cli])

Reinforcement learning has some ties with Behav-
iorism - an old school view at how biological organisms
learn. Imagine a hungry chimpanzee - Mike sneaks into
an abandoned lab where crazy scientists used to do exper-
iments. While searching for some food, Mike explores
the lab by looking around and touching things (getting
observations from the environment via senses). Even-
tually, he finds a vending machine with several buttons
on it and accidentally pushes one. Suddenly a nut pops
down (positive reinforcement). Excited Mike quickly
swallows the nut and continues pushing buttons arbitrarily. This time Mike gets a small
electrical buzz (negative reinforcement). After a while he notices that pushing red buttons
gives him a nut, yellow and blue ones a buzz, so he adjusts his policy only choosing red
buttons. Soon Mike might get bored of his peanut diet and tries pushing other buttons
again, even though he expects a small buzz. After some time Mike can discover that if
he pushes the red button right after pushing the yellow button in addition to an electric
shock he gets a fine banana which of course is a good bargain!

Of course this explanation of learning is way oversimplified, especially in the case of
human beings. Nevertheless, several brain imaging experiments have shown a correlation
between responses emitted by dopamine neurons in a brain and signals predicted by
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reinforcement learning ([Niv09], [DT13]).
There are several main differences between RL and standard supervised learning.

First of all, in RL one does not have true labels (actions) to train a model. Also the future
reward and observation distributions very much depend on decisions made by the agent.
Moreover, the only feedback one obtains from the environment about how good taken
actions were, might be delayed in time so it is usually not easy to know which decisions
were beneficial. Because of these reasons RL usually falls into a semi supervised learning
category.

One important problem in RL is the "exploration exploitation dilemma" [RN95].
Even though an agent might have some idea about future rewards, sometimes it has to
take actions with unknown outcomes or even decisions leading to negative rewards in the
short term (like our Mike), hoping to learn more about the environment to maximize the
total expected reward.

2.2 Definitions
Here we will define the RL environment as a Markov decision Process (MDP) with finite
state and action space. States in MDP are expected to satisfy the Markov property that is:

P [St+1 | St] = P [St+1 | S1, S2, . . . Sn)]

In other words if an agent is in a particular state, outcome of the next state does not
depend on the previous history of visited states. This property implies that when talking
about RL in MDP, we should assume that either the environment is fully observable
(in which case agents internal state is the same as that of environment’s) or the chosen
state representation satisfies this property. In real world almost all problems are partially
observable, but these approaches can be generalized in Partially Observable Markov
Decision Process Process (POMDP).

At each time step t, the agent observes a state - st from some state space S and acts
by making some action at from A(st). Doing so, it gets a reward - rt and moves to the
next state - st+1. In episodic tasks an agent continues to do so until it encounters a state
which is defined as terminal, at which point the episode is declared to be finished.

A policy - π defines a mapping between states and actions chosen by the agent, in
other words its behavior. Policy can be stochastic as well - π(a | S), in which case it
defines a probability distribution over actions.

As we already noted the agent’s goal is to maximize the total discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1

where γ ∈ [0, 1] is a discount rate, denoting how important rewards in time are. We
assume that the terminal state infinitely generates 0 rewards. Many RL algorithms only
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deal with discounted returns because this sum is required be finite. It also makes sense
intuitively as humans and animals often seek for immediate rewards.

We also define a value function of a state, which is just an expected value of the
return from this state following a policy π:

Vπ(s) = Eπ[Rt | st,i = s]

where E[·] defines an expectation when t is any time step and i is any episode. Will see
later the value function is an important concept in RL framework. From now on, we will
drop i from state notation to make it cleaner.

Similarly an action value function Qπ(s, a) is defined as expected return when taking
an action a, in state s and then following the policy π:

Qπ(s, a) = Eπ[Rt | st = s, at = a]

The optimal action-value function is simply a maximum action-value function over all
possible policies:

Q∗(s, a) = max
π

Qπ(s, a)

2.3 Looking for optimal policy
Finding a solution for RL problem means to find an optimal policy. On a higher level
there are two classes of algorithms for achieving this goal - In model-based learning
there is a model for predicting rewards and state transition probabilities for each state
action pair. Here we briefly review basic ideas of some of the model-free algorithms,
where such model is not needed.

In order to find an optimal behavior one can try to start with a random policy, evaluate
its value function, improve the policy (for example acting greedily on evaluated function),
evaluate it again and so on. This general algorithm is known as policy iteration. For
example, if the MDP is known, one can use dynamic programming for policy evaluation.
Bellman equation expresses the recursive relationships for a value of s and its possible
successor states.

Vπ(s) = Eπ[Rt+1 + γVπ(st+1) | st = s]

Instead of solving this equation one can modify it to the iterative update rule for the state
values in a following way:

V k+1
π (s) =

∑
a∈A

π(a|s)

(
ras + γ

∑
s′∈S

P a
ssV

k
π (s

′)

)
It can be shown that greedy policy improvement according to the calculated state values
can stop if and only if Bellman optimality equation holds : Vπ(s) = maxa∈AQπ(s, a)
and it is guaranteed to converge to a deterministic optimal policy.
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An alternative approach for solving RL is to directly update action-value function to
drive it towards optimal action-value function. In this case intermediate updates might
not correspond to any policies (off policy learning). However if the optimal action-value
function is known the agent can choose an action with highest value at each step - hence
the optimal policy is also known.

Temporal difference learning is one such method. Suppose one has the way to
improve the policy based on the current action-value estimates. (In practice popular
choice is ε greedy, where with probability ε agent explores, and with 1−ε it acts greedily).
Then update rule in Sarsa which is an on-policy algorithm can be written as.

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at))

Intuitively action-value is updated a towards better estimate, under the current policy.
Notice that transition probability is not needed here, therefore the method is model
free. There are many modifications of this update rule including Sarsa(λ) which uses n
step Q-returns and other tricks to increase the efficiency and reduce the variance while
learning.

In off policy learning, behavior policy is separated from the target policy. In other
words, while the agent follows an actual strategy - µ(a|s) it tries to learn or evaluate the
different policy - π(a | s). One important motivation for off policy learning is that target
policy π can be chosen to be an optimal policy. Thus, it can be learned while an agent
tries to explore the environment with behavior policy µ. One way to learn the target
policy by learning its action-value function is the following update rule:

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, aπ)−Q(st, at)) (1)

where at+1 ∼ µ(· | st) and aπ ∼ π(· | st).
Q-learning (first introduced by Watkins in 1989 [WD92]) is an efficient and well-

known algorithm which uses this idea. Here the target policy π is an optimal policy
which is obviously greedy with respect to Q(s, a), while behavior policy (exploration)
implements ε-greedy policy mentioned above. Thus, both policy gets improved over
time. Following formula is the result of (1) when aπ is replaced according to such policy.

Q(st, at)← Q(st, at) + α(rt+1 + γmax
a
Q(st+1, a)−Q(st, at))

For more thorough introduction to reinforcement learning please refer to the book -
"Reinforcement Learning: An Introduction" (Sutton and Barto).

2.4 Deep Reinforcement Learning
So far we have not discussed how policies or value functions are represented in computers.
A straightforward way to keep action-values is to keep them in a table. However this
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is inefficient in most cases since the state space is high dimensional or action space
is continuous. Deep reinforcement learning uses deep neural networks (DNN) for
approximating value functions, policies or both.

TD-gammon - one of the first system that could beat professional backgammon
players, successfully used neural networks in RL as early as in 1994 [Tes94]. Surprisingly,
until the introduction of Deep Q-network (DQN) in 2013, such approaches remained
rarely used in practice, for several reasons.

From theoretical view, many RL algorithms loose convergence properties when used
in conjunction with NNs. In practice the optimization process is slow and unstable. Also,
because the reward signal is sparse and delayed, it causes problems associated with
class imbalance for neural networks in standard supervised learning. Furthermore, states
encountered during online training are highly correlated.

Next, we will review some algorithms from recent history. Contribution of the
following methods are that they came up with some ways to stabilize the process and
make training data and compute efficient.

2.4.1 Deep Q-network

DQN [MKS+13] was able to successfully learn a variety of (Atari 2600) games based
only on pixel input and reward scores. Most surprising part for general audience was
that it did so without changing program or model parameters from game to game and no
feature engineering was used. In addition, these games are diverse, both by gameplay
and graphics, for example some of them are 3 dimensional. In many of them DQN was
able to play equally or better than professional human players.

The DQN algorithm is based on Q-learning and it introduced two key ideas for
training to alleviate the problems associated to neural networks. First one is using
Experience Replay [Lin93] to decorrelate samples collected during training. The second
insight is adjusting parameters for action-value function towards a slowly moving target.

During the training DQN performs an update on a batch uniformly sampled from
the experience replay which stores a buffer of recent experiences (triples of state, action,
rewards). Essentially a network is trained in a supervised manner with stochastic gradient
descent to minimize the following loss function at iteration i:

Li(θt) = E(s,a,r,s‘)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2]
Here D is an experience replay and θ−i is a target networks parameter at i th iteration.
Usage of experience replay also increases the data efficiency compared to standard

Q-learning as each sample can be used many times. However, it also has a restriction to
off-policy learning algorithms since these samples are not generated by a current policy.

DQN used a convolutional neural network (CNN) as a Q-value function approximator.
In general the success of deep neural networks in the last years could be attributed to
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CNNs. This type of network is well suited for vision, because layer by layer, it is able
to extract increasingly complex features from images. In DQN, the input to the neural
network at each time point are the last four images from the game emulator. This allows
to incorporate tiny history of time into the state.

It is interesting to know what kind of representations this network learns in Atari
games. Authors of "Graying the black box: Understanding DQNs" [ZBZM16] tried
to analyze it by visualizing activations of last hidden layer via t-Distributed Stochastic
Neighbor Embedding (t-SNE). They show that DQN maps the space to a lower dimension
not only based on pixels and value estimates, but according to temporal structure as well.
For example, in the game Breakout, clusters are distinguished by ball’s relative position
and direction. However in some special cases, like a bug in a game, there is a separate
cluster which suggests that network also captures game dynamics.

2.4.2 Asynchronous methods

Until now we were implicitly learning policies by using value functions. There is a
class of methods called policy gradient which explicitly tries to learn the desired policy
function by parametrising it π(a | s; θ) and following the gradient. One definition of an
objective function is the expected value of all states - Eπθ [r]. It is possible to transform the
gradient of this expectation using the likelihood ratio trick to the following expression:

∇θJ(Eπθ [r]) = Eπθ
[
∇θ log πθ(s, a)Qπθ(s, a)

]
To increase the value of an objective function, one can now follow the gradient ascent

of this expectation. An intuitive way to understand why it works is the following - via
the gradient of our policy functions one can increase or decrease the probability of a
particular action in a given state, based on the outcome of how good this action was
Qπθ(s, a). Calculating the gradient of the log policy function is easy (assuming the it is
differentiable), the problem is that the true action-value function under the policy is not
known. One way to estimate it is by sampling unbiased Monte-Carlo returns instead.
However, this approach yields to a very high variance. Instead, in actor-critic methods,
separate parametrized value function is used to estimate the action-values (critic), which
leads to approximate policy gradient. Another way to further reduce the variance is by
subtracting the baseline function from value estimate. If we choose a baseline to be a
state value function, the difference is called an advantage function:

Aπθ(s, a) = Qπ(s, a)− Vπ(s)

Notice that this idea does not introduce any bias, but greatly reduces the variance. Finally,
the approximated gradient becomes:

∇θJ(Eπθ [r]) ≈ Eπθ
[
∇θ log πθ(s, a)Aπθ(s, a)

]
13



In general policy based methods have better convergence properties. They are particularly
useful for partially observable and stochastic environments, as there simply might not
exist a deterministic optimal policy.

In 2016 Authors of [MBM+16] introduced a simple and lightweight framework for
deep RL by using asynchronous gradient descent for optimization. As we already saw,
experience replay was successfully able to stabilize the training for Atari games. But
experience replay has some drawbacks, namely these algorithms need more memory and
they are limited to off-policy learning.

Instead, the authors proposed to asynchronously run multiple agents in parallel, each
using separate instance of the environment. Because each agent will experience different
sequences of states, their parallel updates will have a decorrelating effect on the training.
This trick additionally enables on-policy methods like Sarsa or actor-critic to be used
with deep neural networks.

Asynchronous methods also bring great practical benefits as training time scales
linearly with respect to number of learners. While previous algorithms needed to be run
for days on GPUs [MKS+13] or distributed clusters [NSB+15] to solve Atari games,
these models can be trained on a single multi-core CPU machines with far reduced time.

Weight in the optimization process are updated using HOGWILD style methods
[RRWN11] which do not require locking mechanisms allowing the gradients to be
overwritten by each other when using parallel processes. This trick leads to an increased
performance. In addition authors used n-step Q-estimates, where for estimating the value
function in forward view, n true episode rewards are used as well -

rt + γrt+1 + . . .+ γ2rt+n−1 + γn−1Q(st+n, a)

This way rewards can propagate back faster.
In experiments reported by the paper actor-critic performed the best out of several

methods used in asynchronous manner and they named the algorithm as A3C.

2.4.3 Neural Episodic control

As discussed by authors of [PUS+17], even though previous algorithms were effective
in learning Atari games, they still have one common drawback as they need far more
game interactions than a human does. For example DQN needs 200 hours of video
frames for 47 Atari games to get more or less the same results obtained by human player
in 2 hours [LUTG16]. While there are many possible explanations as reviewed in a
previous chapter, there are several issues : 1) Gradient descent optimization requires
use of small learning rates, also common for other deep learning methods 2) There is
an imbalance between low and high rewards, thus neural network performs worse while
predicting larger rewards 3) reward signal propagates back slowly, even when using
n-step Q-estimates.
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Lengyel and Dayan [LD08] argued that the episodic memory has an important role in
biological decision making process, but it is rather neglected in software control systems.
Idea of episodic memory is that compared to semantic memory which can be looked as a
general accumulated statistics about the environment from multiple events (for example
we know that when it is raining, we will get wet), episodic memory is about concrete past
experiences (it was raining on yesterday when I went outside). Authors also strengthened
their argument by showing experiments on a simple task.

Blundell et all, [BUP+16] extended the idea and applied it on more challenging
tasks like the Atari environment and Labyrinth (3D test environment by DeepMind). As
expected [BUP+16] significantly increased data utilization, outperforming DQN and
A3C as well as other algorithms on limited number of game frames.

Neural Episodic Control continues on the same direction, but instead of using Q-
table for "episodic memory", authors propose to use module called differentiable neural
dictionary (DND). DND is placed on top of convolutional network and tries to map
state embeddings to its value estimates. This architecture looks more like table based
Q-learning, and learning rate can be higher. Convolutional network serves as stable
representation of states.

For review of other recent ideas in reinforcement learning see [Li17].
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3 Possible directions for improving AI
Humans have been imagining "thinking" machines for a long time. The idea became
somewhat less fictional after the introduction of programmable digital computers in
1940s [Buc05]. In the last years, Great progress has been made towards using neural
networks to solve various problems, partly because of increased computational power and
renewed interest in AI research. However, we agree with those who feel that important
parts are missing from human like intelligence [LUTG16]. Since there is still no clear
directions to follow, it should be vital to think about what these crucial parts are and
how they can be implemented in machines. In this chapter we discuss some of the issues
related to this topic.

3.1 What is the AI trying to solve?
Before we move to exploring ideas, it is first interesting to discuss what an AI is and what
goals researchers are trying to achieve. Unlike systems that mimic specific capabilities
of humans - like playing chess, we will mostly focus on something that is defined as a
long term goal of AI: Artificial General Intelligence.

For categorizing different definitions of AI throughout the history, authors of [RN95]
suggest to take a look at the following table:

Thinking Humanly Thinking Rationally
Acting Humanly Acting Rationally

Table 1. Categorizing different definitions of AI according to [RN95].

On top there are goals concerned with thought process and reasoning, while on the
bottom we have ones dealing with behavior. In the left column success is defined in
terms of human performance and on the right it is rationality - always doing "the right"
thing.

Out of these four, probably acting humanly is the easiest to comprehend: if a person
cannot distinguish machine from a human being in a well designed test, the problem
would be considered as solved. On the other hand thinking like a human implies
understanding the thought process in our minds. According to the same authors - "there
are three ways to do this: through introspection - trying to catch our own thoughts as they
go by; through psychological experiments - observing a person in action; and through
brain imaging - observing the brain in action." These are some of the problems cognitive
science tries to solve, therefore results obtained from this field should be valuable.

Thinking rationally can be referred to using mathematical logic and formal proofs to
solve some of the common world problems. We will briefly review this approach in the
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next section. Agent acting rationally tries to achieve the best expected outcome, based
on defined utilities. This approach is more plausible from mathematical viewpoint as the
expectation maximization is a well defined term and it does not strictly require any human
like reasoning. Many computer science researchers choose to work on this definition
(for example, RL framework discussed in 2.4). There can be thousands of interesting
philosophical discussions about each points, for some see the chapter "Philosophical
Foundations" [RN95]. Finally it should be noted that these definitions do not necessarily
exclude each other and one can try to build systems that satisfy each condition to certain
degrees.

In general we think, that cognitive modeling approach is worth exploring more. It
might even be surprising that despite the abundant experiment results accumulated in the
field, it is hard to come up with a feasible computational frameworks.

Of course one could work on a completely different path, where this theoretical
modeling is not needed and directly try to simulate the brain on a molecular or lower
level. There has been some work toward this direction, for example Blue Brain project
[Wik] tried to simulate a part of the rat neocortex. But current computational power and
resolution of brain imaging technologies does not look very promising to accurately map
human brain on a machine.

3.2 Symbolic reasoning
When AI research started in 1950s, the main paradigm was using mathematical logic
to express and manipulate knowledge with symbols. John McCarthy created the LISP
programming language which became a popular tool to develop these programs. For
example one such formal system is First-order logic, where objects (Apple, Tree),
relations (HangsOn, Red) and functions (root) are represented with symbols. There is
also a syntax defined and some natural sentences can be represented in this language.
For example:

There are some red apples that hang on a tree.

Then, humans can enter facts into a knowledge base - there are some apple trees,
an apple can have a color, color can be red and so on. And a program could answer
questions like - is there a red apple? Of course such kind of formal systems were much
more useful. For example the General Problem Solver [NSS59] developed in 1959
was theoretically able to solve any kind of problem where the input was expressed as
well-formed formulas, but in practice it was limited to simple problems such as Hanoi
Tower, because A) There are only handful amount of problems which can have such
formulation B) while solving, many of them will lead to a combinatorical explosion C)
Generalizing or learning function in such kind of system seems unclear.

Over the years interest in symbolic AI has declined, primarily because the hand-
crafted representations could not capture the rich statistics humans get while observing
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the continuous world around us. On the other hand neural networks excel at learning
patterns from data, but how to convert this knowledge to more abstract level stays a hard
problem.

3.3 Probabilistic Machine Learning
On a very basic level learning in Machine Learning can be seen as making better
predictions via the model as more and more data becomes available. Anything is rarely
certain during this process. Probability theory in mathematics provides a framework to
express and manipulate this uncertainty in a consistent way. This approach in machine
learning is known as probabilistic modeling and it has been one of the major area
of research in the past years. It is important to note a distinction from deep neural
network models, where usually the uncertainty is not explicitly tracked. For example
Bayesian learning depends on the Bayes rule to update the prior distributions into
posterior distributions according to the following formula:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

where m is a model, θ model parameters and D - observed data. Most recent Bayesian
approaches can be seen as using this transformation to build more complex models
(such as graphical models) where probability distributions of random variables and their
conditional dependencies are expressed. Such examples include Bayesian networks
or Markov networks. One practical challenge in this type of systems is calculating
marginal probabilities as they involve integrals for which no polynomial algorithms exist.
Sometimes methods like Markov chain Monte Carlo can be used to approximate them,
but they are usually computationally expensive. Another issue is that the model needs
to be flexible enough so that it continues learning. There are two ways to achieve the
latter - number of parameters needs to be large enough for the problem or non-parametric
models should be used. There are some experimental observations that the neural circuit
in a brain is implementing something similar to Bayesian learning [TKGG11] but as of
now it is not known exactly how.

Recent promising extension to graphical modeling is probabilistic programming,
where instead of graph structure, computer programs (code) represent probabilistic
models.

For thorough review of probabilistic methods in machine learning please refer to
[Gha15].

3.4 Language
It is not hard to notice an inner voice going in our mind. It looks like that we think in a
natural language, but it may only be a conscious experience - according to the language
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of thought hypothesis thinking takes place in an underline mental language with its own
syntax and semantics [Fod75]. One can wonder how important language is for human
intelligence. The evidence says it is critical and understanding how it is processed in the
brain can be a huge leap towards general AI.

Experiments show that brain activity in language related centers can be detected by
functional MRI scans in infants as young as five days old. In the first weeks babies can
distinguish a melody of the native language from other language [DLDHP02]. Contrary
to the intuition, it turns out that deafness has far greater consequences on development of
a child than blindness. This is not due to the any special property of the sound signal, but
rather because language development is crucial in early ages. Deaf children who have no
signing parents might develop a language deficiency, even with cochlear implants which
partially recovers speech perception. Also, if a hearing impaired baby is exposed to the
signing language earlier (in addition to the spoken one) they even outperform hearing
controls in theory of mind and lexical comprehension tests [TVDR+12].

Natural language has a central role in a paper - "Roadmap towards Machine Intelli-
gence" [MJB15]. The authors suggest an interactive way of training agents, where the
primary means of communication is language. After all, if we have intelligent machines,
reasonable ways for humans to give commands to or ask questions from them is to use
a spoken language. Besides, large part of humanity’s knowledge about the world is
represented as a text. If machines can learn from a text they can potentially use all this
knowledge.

3.5 Model building and start-up software
Now we will discuss few insights from a paper - Building Machines That Learn and
Think Like People [LUTG16]. Authors note the limitations of current research trends in
AI, but instead of criticizing the deep learning methods, they suggest to use them in a
smarter way.

The central idea of the work is to look learning as the process of model building, In
other words one should seek to explain the observed data through a construction of causal
model. To achieve this goal, according to authors we need a developmental "start-up
software" - cognitive capabilities that are early present in human development. There
is an argument that if they are presented in humans even earlier than a language, there
should be something special about them that makes us able to learn. The two proposed
components of such software are:

1. Intuitive physics - even infants have understanding of some object properties and
very basic physics. For example they expect the objects to follow some path and
not suddenly disappear. Toddlers might look very surprised when if they see a
simple magic trick. (It even seems to be true for animals, there are anecdotal
videos of dogs being scared by a levitating sausage.)
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2. Intuitive psychology - infants understand beliefs and goals of other people, for
example children watching games, can guess the objectives of player and what the
enemies are trying to achieve.

If end-to-end trained deep learning models can extract mentioned causal dependencies
it is not clear how to reuse, represent or generalize them. One question is - should one
try to perform object segmentation, represent extracted objects as symbols along with
their spacial positions and then process this information for example with relational
reinforcement learning [DDRD01]? This approach seems to have some considerable
problems. In the real world object projections are entangled in many ways. It is not
clear in what level they should be separated or what counts as a background. On the
other hand, humans clearly perceive objects separately. For example consider a woman
enjoying a nice view in nature: grass, stones, trees. After some time, something black
moves in the grass. The person directs her focus and also sees a chasing cat behind.
Now the scene for her becomes live, she sees that there is a hole under the tree, and
predicts that mouse might be running towards that place. Suddenly these three objects
are in the center of attention and other things move to the background. Thus attentional
mechanism, behavioral context and curiosity all had the effect in which way the objects
were separated and tracked. It might look like a trivial example, but actual number of
objects humans can track at a time is not much higher [AF07].

3.6 Curiosity and motivation
When introducing RL in section 2, we looked at reward as an external signal, computed
by the environment. In a biological system however this computation is a part of an
agent itself - brain releases neurotransmitters for a rewarding stimulus. Also, in many
cases humans do not act for getting any "external" rewards. For example unlike eating
food, we play games for enjoyment. This kind of behavior is also known as intrinsic
motivation, because it is intrinsically rewarding [Sch10]. Another interesting thing to is
that, many of our actions are guided by curiosity. Hoping to get some insights, we did a
small experiment and recorded how a very young child would explore and navigate in
one game.

The classic NES game - Super Mario Bros (shown in 2a) was chosen, because of
its simplicity and gameplay. Mario moves to the right and encounters moving enemies
which either he should jump or squash. On top, there is a score shown, but goal of the
game is to travel and go through different levels (Mario worlds).

The subject was a typical 39 month old boy. He had previously no experience with
video games, not even on a smartphone or on a tablet. Hence, this was the very first time
he ever tried a game. Because the subject had never held a gamepad, to make it easier for
him, we restricted controls to two buttons - jump and move forward. Prior to the game the
boy was not explained how the game works, he was only told "here is a game, you can
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(a) Super Mario Bros. Mario meets an enemy (b) Episode 9 strategy

Figure 2. Two visually different but conceptually similar game scenarios.

push these two buttons, just try pushing them". It was not explained which character the
gamepad controls or what is the goal of the game. During the game he looked engaged,
but it was unclear whether he understood what was going on. However, after playing
for 2 minutes, he gave a spontaneous explanation: "I made the boy jump and there were
ghosts". When asked about why he needed to jump the boy said: "To get over the barriers
... to get higher". After 3 minutes, he was able to play fairly well. In the later episodes, it
was interesting to see that the boy was always trying to jump on a higher ground. For
example on 2b movement is denoted by dashed yellow line. There is no enemy on the
ground and the shortest path would be to just walk and jump over a green barrier. The
player even spent considerable time trying to get on the highest brick.

The game score was not a guide for the player, as he could not even read these
numbers. Also, even the goal of the character was not known. This is also true for many
adult persons playing action games. One factor of motivation in adventure games like
this is probably curiosity to see new scenes and game characters. Another factor can be
the pleasure of defeating enemies. For these reasons, we think that future generation
of RL algorithms will not even use explicit reward score from the game emulator, and
instead it will be based on intrinsic motivation.
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4 Experiments
In this chapter we review the work done for building a dashboard and some of our
experiments along with the results.

4.1 Testing environment
In the Introduction, we already reviewed the benefits of using games as test environments
for RL algorithms. Initially, we were planning to use Nintendo Entertainment System
(NES) [Nin] as a test platform for several reasons. Compared to the most common
emulator used in RL benchmarks (Atari 2600 [BNVB13]), in NES gameplay is richer
and there are many objects to interact with (Figure 5). An agent also has time to explore
the environment without dying soon. Furthermore, in most of the games graphics still
stays 2D, removing extra work for model to handle 3D scenes. Above all, games have a
storyline, visual appearance of the world changes from level to level (but physics stays
the same) and sometimes agent even has a sidekick (hence there is a possibility for
intuitive psychology experiments) subsection 3.5.

Unfortunately, even Atari games take many hours to train on a modern computer.
So using NES would need powerful computing resources for current RL algorithms.
Besides, there is no known open source RL wrapper of a NES emulator, and making
one where rewards are provided would take some time. So we decided to go back and
experiment with a well tested Atari environment for this work.

4.1.1 OpenAI Gym and Atari

OpenAI Gym [BCP+16] is an open source toolkit for developing and comparing RL
algorithms. In essence, it provides a simple and standardized API for different environ-
ments. For example, the following snippet creates a new FrozenLake environment. gym
then processes an action chosen by the agent and returns a new observation along with a
reward and a boolean flag weather the episode is finished or not - done.

env = gym.make("FrozenLakev0")
observation = env.reset() # get an initial observation
action = my_agents_policy(observation)
observation, reward, done, _ = env.step(action)

Internally gym uses Arcade Learning Environment platform to emulate Atari games
[BNVB13]. Observation is an RGB image (210 X 160 X 3) of a game frame. To
make a game stochastic, random number of frames (2 - 5) are skipped. There are also
deterministic versions of some environments, but their solutions are rather uninteresting
as an agent sometimes learns to repeat the same sequence of winning moves for every
episode.
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In addition gym provides a way to wrap some functions. For example to change the
observations or rewards which agent gets. This way it is possible to normalize or stack
the game frames conveniently.

4.1.2 A3C implementation review

We decided to use PyTorch [Pyt] as a deep learning framework mainly because its
dynamic nature of computation. Numerical gradients makes debugging easier than other
deep learning frameworks that use static computational graphs.

Baseline implementation for A3C algorithm in PyTorch (subsubsection 2.4.2) was
taken from github [iko]. Repository for our modifications and additions can be found
publicly on github as well [sci]. The implementation uses processes to run agents in
separate instances of an environment. Agents keep their own networks and after each
episode, gradients are applied to the shared network via the Adam [KB14] optimizer.
Neural network architectures are defined separately in models/ directory. Training
scripts can be found in algorithms/ folder. envs.py hosts the gym wrapper functions.
For efficiency, we convert the frames to 42X42 greyscale images and use the running
normalization. Also LSTM network [HS97] is used after the convolution layers.

4.2 Building a live dashboard for monitoring software agents
Because training a deep neural network is slow and sparse rewards in RL problems make
it even slower, it is useful to have a good live visualization of the process and keep logs
in an effective way. In this way one can detect whether there is something wrong with
the run and save both their own and computing time. Next we will describe how we built
such live dashboard in python using Visdom [Vis] and SQLite [SQL].

In the past few years several great deep learning frameworks such as Theano, Keras,
Caffe, Torch have been released, however the task of visualization and logging is usually
left to users. One of the exceptions was Tensorflow, which came with a tool for training
visualization called Tensorboard [Ten], but at the time of writing one can find following
problems with it:

• There is no way to see all parameters corresponding to the specific run.

• Tensorboard supports scalar and histogram summaries, but in practice many differ-
ent plots might be needed for better visualization.

• For different projects different layout of dashboard can be useful. For example
sometimes it is helpful to see two heatmaps next to each other.
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4.2.1 Review of a visualization tool - visdom

As we already mentioned, one of the main advantage of working on RL from the gaming
perspective is that one can observe what problem an agent has or how it evolves over time.
So a powerful visualization tool is even more important than in typical deep learning
scenarios and we decided to try an software by Facebook research.

Visdom is an open source live visualization tool powered by Plotly [Inc15] windows
are composed of independent panes, which can be easily dragged, resized or closed.
Each pane can host an interactive graph, for example, it is possible to zoom in or change
the perspective of 3D scatter points. There can be many windows and it is easy to switch
between them.

4.2.2 Integrating visdom with the a Deep Learning framework

Unlike Tensorboard, Visdom does not yet come with live file log. So directly calling
visdom from the evaluation function during training is probably a bad idea. When visdom
server shuts down, all evaluation data is lost. There was a need for some intermediate
live storage where the logs would be safe. We decided to use SQLite [SQL] because of
its server-less and simple design.

In the beginning of each experiment, the database file corresponding to that run
is initialized, say - run.sqlite3 and then each time there is something to log, one just
serializes data in the code, turn it to a byte string and save it as a BLOB (Binary large
object) in a database. If the database ID is incremental, it is possible to follow the same
order when other script reads the log file later.

Figure 3. flowchart of our simple logging architecture [Dra]

We then have a separate script (dashboard.py 3) which connects to these databases,
waits for an update and if there is something new, deserializes it and immediately calls
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visdom API to update plots in a real time. Other advantages of this approach are the
following:

• The project does not depend on a visualization framework.

• Instead of running on a same server to render plots, visdom can be run on a local
machine which has access to the database.

• There is no need to browse in folders, all of training history - model checkpoints,
run parameters, videos, will be contained as a single .sqlite file.

• SQLite is easy to install on most systems.

4.2.3 Serializing the log data

We give our logs an event name, for example it can be a string like QuickEval (for quick
evaluation test) or SlowEval (For slow evaluation which might have images or videos as
a data). When logging the data is needed, we construct a Python dictionary with desired
keys and values in addition to an event name. In the code it might look something like
this:

data = {'evtname' : 'QuickEval', 'std' : std, 'result' : np.random.rand(2, 3)}
dblogger.log(data)

dblogger instance of our class will internally use Pythons in-built serialization library
pickle to convert this dictionary into a bytestring or further compresses it. The main
requirement is that dictionary values are recognized by pickle, which is true for at least
Python standard object types and numpy [Num] arrays. dblogger will then commit to
database (eventname, objectstr) pairs. An advantage of using standard dictionary instead
of creating our own class is that a reader class will not depend on any schema changes
and always will be able to deserialize the object. It is better to still validate the data
before logging, for example with python package voluptuous [ale], where schema for the
dictionary above will look like this:

Schema({
'evtname': 'QuickEval' # we force it to be a correct name
'std': float,
'result': np.ndarray,

}, required=True) # all fields are required

4.2.4 Dashboard review

Experiments can be run on a cluster and logs are written to live files. dashboard.py can
be run locally if it has a way to connect to database files. On Linux it can be done by
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(a) main window (b) specific run window

Figure 4. Screenshots of a dashboard opened in Firefox

mounting a remote log directory to local folder. We can then run visualization script with
the arguments shown in Table 2.

After that, navigating to visdom address (default - localhost:8097) will bring up a
web dashboard. We use main window (4b ) to compare data from different runs like -
average data, computation speed, used actions, game length, entropy and so on. If we are
interested to see more detailed view of a certain run, we can switch to it from the top
left corner - for each experiment there is a separate window named after a log file. On
the left side of this window (4b) there is a pane listing all of the experiment parameters,
including a link to source code which generated the results. There are also gradually
recorded videos of agent’s play.

Some logged data, needs to be rendered as video files. Openai Gym provides a way to
record a game played by the agent, however the agent usually sees preprocessed frames.
It is sometimes very useful to see this video itself, because maybe some important details
in the original input frames are lost during preprocessing. We log array of exact states
agent encounters and then in visualization script they are rendered as a video file. We also
render the value estimate from the network, action distributions and one convolutional
filter layer outputs (middle video on a bottom row of figure 4b). They are useful because
if a particular action of an agent is strange, we can pause the video and see why exactly
agent choose that action, or what other options it was considering.

4.3 Trying to decouple the game scene using Tagger
In section 3 we reviewed some observations about how humans perceive objects and
how understanding a relationship between them might be very beneficial for future
AI algorithms. Although, as we saw in Chapter 2 DQNs can learn such relations to
some extent, it can be argued that this knowledge only exists on pixel level and it is not
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Argument Description
–env Gym environment name to visualize e.g ’Pong-v0’.

–dbdir
Location where environment database logs are located
(mounted).

–heavy-ids
List of log ids needed to visualize which take a long
time to render. (i.e converting to mpeg).

–env-count
Number of last database logs to read from folder and
simultaneously visualize.

–max-steps Maximum number of steps for each logs to read.

Table 2. Argument list for dashboard

clear how to generalize or use it in other tasks. Consider an example on Figure 5. In
both games agents have to jump over, or jump on the enemies. There are also pits and
obstacles. It is safe to say that if a child knows how to play the first game, he or she
will not have much trouble understanding the other one. But in our experiments while
training with A3C algorithm (subsubsection 2.4.2) the network did not benefit much
from learning the first game before. (Note: because NES game episodes last long, we
only trained on a small part of the game).

(a) NES game - Super Mario Bros. (b) NES game - Tiny Toon Adventures

Figure 5. Two visually different but conceptually similar game scenarios.

In addition there is a general problem in Deep Learning known as catastrophic
forgetting ([KPR+17]). After the agent learns a second game, the first one is totally
forgotten. Even recent network architecture modifications struggle to have significant
progress in using experiences from previous games ([FBB+17]).

As we see, objects and background on these pictures visually look different, but
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semantically they are very similar. It is worth to look for approaches where there is a sep-
arate network which first tries to decouple the scene, and separates object representations
from their structure. Then there is a separate network which tries to learn dynamics of
this structure. If done so there might be a chance to incorporating progress in symbolic
or analogical reasoning (SME framework [FFLG16]). Also learning "intuitive physics"
(subsection 3.5) should probably become easier.

However this is easier said than done. Should flowers or clouds be a separate object
in 5b? Probably no, but balloons on the other hand can be picked up, so it should be!
Also what to do about the ground?

Next, we will try to investigate the possibility of using one unsupervised perceptual
inference method for this task on one Atari game.

4.3.1 Brief review of Tagger framework

Authors of Tagger [GRB+16] recently proposed an iterative inference for perceptual
grouping, called iTerative Amortized Grouping (TAG). The goal is to make a neural
network separate its input into K different groups. The model also needs to learn
representation of each individual group. Thus network needs to make an inference on
two sets of variables - first, the discrete random variables for each element of input to
denote in which group it belongs and, second, the reconstructed representation for each
group.

The method is completely unsupervised as amortizing posterior inference happens
via the task to denoise the corrupted input. For an intuition, training starts with some
probabilities of group assignments and reconstructions of each group. Over the iterations
this estimates are refined by parameter mapping - a neural network (ladder [RBH+15])
which in addition to these values takes a corrupted input and tries to improve these
estimates so that denoising the input becomes easier. It is interesting that the network
does not know anything about image segmentation, it learns to do so because it is
beneficial for the to model to learn representations separately. Although K is fixed,
Tagger significantly outperformed convolutional network in constructed 2 digit MNIST
test. These digits had cluttered textures and were overlapping each other, but the network
achieved surprisingly good results [GRB+16].

4.3.2 Applying Tagger on image data generated by a game

It was interesting to see how tagger would group objects in Atari games. We used
original source code of Tagger for training and evaluation published with the paper.
We took 40 000 (42 X 42 greyscale) frames recorded by A3C agent on playing Atari
game KungFuMaster-v0. This game was chosen for specific purposes, because of
computation limits we could not afford number of groups in Tagger -K to be big, In this
game the character fights with enemies from right and left side, so natural number of
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grouping would be 4 - background, character, left enemies, right enemies. After trying
out several parameters for the network, we chose the ladder encoder projection to be -
(2000, 1000, 500), Gaussian noise of 0.1, batch size - 100, learning rate - 0.0004, number
of epochs - 250. Training wall time for this parameters was around 11 hours on NVIDIA
Tesla K20 GPU.

Figure 6. Tagger framework applied on images generated by Atari KungFuMaster game

In the left two column of Figure 6 there are original frames (collected by the agent)
and their grouping visualized by different colors. In the following columns there is
an iteration process (1 − 5) shown, which is done by the network for one concrete
video frame. First row shows the full reconstruction of the image by grouping. Next
rows show, mask -mi (probabilities that the pixel belongs to that group) and visual
reconstruction of that specific group zi. We see that the first grouping - m0 is a floor
and ceiling representation on the image. m1 separates the left character, m2 probably
takes responsibility for some part of the background. And the last group represents the
character itself.

In general the network does a pretty good job, but sometimes there seems to be
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unwanted groupings. For example, in the image where a character and enemy are
close to each other, they are processed as a whole. The next steps we planned for our
experiments, was to train an another agent where states for it would be these generated
masks. Unfortunately, processing one frame takes fair computational time (10s of
seconds) and RL algorithms needs to be fast at processing them. One option would be
to think about tagger modification, to make it more effective for RL, but we chose to
temporarily abandon this idea and try something else.

4.4 Experiments with A3C
We first tried to run several Atari games for testing A3C algorithm and a dashboard.
Most of the experiments were run on high frequency Intel Xeon E5 (16-core) cpus.

One observation based on recorded videos was that, in some games the agent can
get relatively high score within an hour, but might need 3-4 hours more to improve it by
a little. From intermediate video recordings of Pong-v0, it seems that when the agent
looses the ball it does everything right according to its strategy. After hitting the ball
the agent goes somewhere in the side, where it waits to kick the ball from sideways to
increase the speed and unpredictability. But sometimes it misses the last moment and is
just a little bit late. We think that it can be related to stochastic nature of an environment
which can make a speed of a ball non uniform.

4.5 Trying to increase data efficiency
The main idea of NEC [PUS+17] discussed in 2.4 was to effectively use past episodic
experiences. We were interested to try the same thing in A3C. Unfortunately A3C, unlike
Q-learning used in NEC is an on-policy algorithm, meaning that if one is not careful
while updating the policy, an agent might learn a bad behavior from which it can not
recover.

Nevertheless, we thought whether one can increase the data efficiency and learn
effective policies faster. To take the Pong’s example, the agent does not get any explicit
reward when it hits the ball. It only gets one if an enemy cannot bounce it back. But
since in-built opponent plays rather well, the agent has to wait long time before sparsely
won points change the policy parameters little by little, so it learns that hitting a ball is a
beneficial action.

We decided to speed up this process by generating artificial intermediate rewards.
As we saw in a Chapter 2, A3C uses an n-step value estimates, so an episode reward in
advantage function is already biased. Thus, our generated rewards during training might
further increase this bias. To make it less damaging, we do not generate the artificial
rewards at every steps, but we do it randomly (in our experiments 2% times).

This reward is generated by the following logic:
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First, We keep the experiences an agent encounters - triplets of (h, a, rn) in p
different tables (Ta1 , Ta2 · · · , Tap), where p is the number of possible actions. h is some
embedding of a state - we chose it to be the concatenation of LSTM hidden and cell units.
rn is an n step value estimate from the critic (it was set to 20). We keep the maximum
size of a table and when the table is full, we delete it and start rebuilding a new one.
This has some advantages, agent’s episodic memory is refreshed by more recent and
better experiences after it learned for some time. But, on the other hand, this increases
computation and as during the time this table is not filled sufficiently, new artificial
rewards can not be generated.

As we already saw, in A3C advantage calculated as:

A(s, a) = Rt − V (s)

Now, we add an additional reward terms x while calculating Rt:

Rt = rt + xt + γ(rt+1 + xt+1) + . . .+ γ2(rt+n−1 + xt+n−1) + γn−1Q(st+n, a)

These x s are generated by weighted (distance) sum of k nearest neighbors of (ht)
and their corresponding rewards.(we used k = 30). ht is an embedding of a state before
getting reward rt.

Because these experience tables are large, in practice we used library faiss [Fac] by
Facebook research. This library provides a way for an efficient similarity queries on
high dimensional vectors. Because it is better if the dimensionality of a vector is low, we
chose to reduce the number of hidden units in a recurrent network. We used L2 distance
for similarity metric.

Effect between choosing size of 256 and 64 can be seen on figure 7. On the x axis
there is a number of steps, and on the y axis an average score (over 3 runs) achieved by
the agent. Maximum score in Pong is 20, minimum: −20. As we see there is a decreased
performance.

We then took these two runs as a baseline solution and compared them with our
modified A3C algorithm with experience tables. We set a hidden layer size to 64 and limit
of records in a table 100 000 and 10 000. These runs are visualized in 8. Both of these
modification (ep-100K and ep-10K) used 64 hidden units. As we see our modification of
A3C ep-100k-mem in this game outperforms a baseline solution with 64 hidden units
and performs similarly with a baseline solution which uses 256 hidden units. Figure 9
shows entropy comparison of action distributions during training. However, it should
be investigated more where this improvement comes from and what happens on other
games.
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Figure 7. Comparison between 256 and 64 hidden units, on a Pong-v0 game

Figure 8. Score comparison

Figure 9. Entropy comparison
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5 Discussions
Unlike other science fields, where at least some initial directions and formal method-
ologies are known, the correct way for approaching AGI is still a mystery even for
researchers on the field. Thus, before committing to the specific branch of research, it
should be beneficial to get a good overview of what has been done and what is known
about the inner workings of human mind so far. The interdisciplinary field of cognitive
science provides a promising way to do so. Since, there have been many books titled like
"How to create a mind" [Kur12], maybe there already even exists a published cognitive
architecture, unknown to researchers which would lead to successful AGI. The work
done during writing of this thesis has been only a small step towards this review.

It might be argued that the cognitive modeling approach of AI can be misleading,
just like trying to invent an airplane by observing birds. But ultimately, if there is an
AGI, we will need to communicate with it and it will be easier if we work the similar
way. Somewhat surprisingly it turns out that the current convolutional neural networks
perform visual object recognition quite similarly to the human visual system [KVP+17].
Hence, there are anyhow similarities between the modern AI systems and the biological
brains.

We reviewed RL algorithms because of their fundamental idea to learn from the
interaction with the environment. So far, gaming platforms still seem to be the good ways
to experiment with new ideas. Thus no matter which direction we choose, our dashboard
will be useful for later research [sci].

Our primary motivation to improve the current RL algorithms was by a model building
view of the world [LUTG16]. In particular, this approach suggests to explain the observed
data by physical and psychological relationships between objects. We decided to try
tagger [GRB+16] for games, because we think that some intermediate representation
of visual perception is needed, because higher level knowledge of game dynamic gets
blended with pixel patterns and it becomes hard to extract later. Unfortunately we
encountered several problems when experimenting with tagger 1) Training time does
not scale well with the input dimension and number of grouping - this makes it hard
to experiment with games that need higher resolution. 2) Tagger has a very good
convergence speed on test samples, but it is still slow for live RL training. If an agent
takes 10 seconds for grouping the scene before making an action it cannot process
millions of frames. 3) Tagger grouping seems to be good for many images, however for
some, we had unwanted inference. It seems instead of only static images, tagger needs
more context, like motion. We plan to investigate the possibility of fixing these 3 issues
in the near future.

We also analyzed a game recording of a child to see how he would explore the
environment and learn to navigate. Based on observations we think rewards from game
emulators will soon be an obsolete part and agents in such games should exhibit some
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level of curiosity and intelligent navigation. This time we only had 9 episode game play
of one player, but later we intend to do similar study on many subjects, where we will
systematically analyze location trajectories and actions tried by children unaware of
game rules. In general, we also think that the study of cognitive development is important
for getting machines to learn like humans.

Finally, we experimented policy gradient method to make it data efficient and use an
episodic memory. We used the k-nearest neighbors search to extract similar states from
past experience and based on them generate artificial rewards for the agent, Initial results
look promising but need further evaluation on more challenging environments. Also, in
this experiment we completely deleted tables and started building new ones, when they
reached their maximum allowed memory, it is interesting to try what happens when the
least used records are replaced by the new one, as done by NEC [PUS+17].
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Appendix

I. Dashboard

Figure 10. Main view of a dashboard for two environments
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Figure 11. Specific window of the environment
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II. Source code
All our software implementations can be found on github at http://github.com/
scientist1642/bombora. Particularly, to reproduce the A3C experiment discussed in
subsection 4.5, one can checkout the epilog branch and run the program with following
parameters:

python main.py --lr 0.0001 --gamma 0.99 --tau 1.0 --seed 1 --num-processes 15 --num-steps 20 --max-
episode-length 10000 --env-name Pong-v0 --no-shared false --debug False --algo epilog --arch
lstm_universe --num-test-episodes 3 --test-simple-every 1 ----test-heavy-every 20 --hidden-size 64 -
-episodic-every 50

After running the following command, dashboard can be seen by navigating to
http://localhost:8097. Recommended browsers are Firefox and Chrome:

python dashboard.py --dbdir dblogs --env 'Pong-v0'
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