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CDR- ja GPS-andmete võrdlus inimeste tegevusruumi hindamiseks   

Abstrakt   

Selle uurimistöö eesmärk on hinnata CDR-andmete täpsust tegevusruumi hindamisel. CDR-

andmete täpsust on hinnatud erinevate ajaühikute lõikes ning kõnetoimingute arvust ja inimeste 

sotsiaal-demograafilistest tunnustest lähtuvalt. Uurimistöös kasutatud andmed (CDR ja GPS) 

on kogutud ajavahemikus 5. september 2013 kuni 10. märts 2015. Uuringus on kasutatud 52 

inimese andmeid kokku 8961 inimpäeva. Inimeste tegevusruumi on hinnatud kuue näitaja 

alusel. CDR-andmete põhiste tegevusruumi näitajate täpsuse hindamiseks on kasutatud 

kirjeldavat statistikat, korrelatsioonanalüüsi (Spearmani astakkorrelatsiooni) ning 

kombineeritud lineaarseid mudeleid. 

CDR- ja GPS-andmete põhised näitajad on positiivses korrelatsioonis. Ringi raadiuse ala 

(radius of gyration) ja entroopia (entropy) näitajate puhul on CDR-andmete põhised näitajad 

sarnasemad GPS-andmete põhiste tegevusruumi näitajatega. Kerneli tiheduse (kernel density) 

puhul on CDR-andmete põhiste tegevusruumi näitajate täpsus absoluutarvuliste näitajate järgi 

kõige madalam. Uurimistöö tulemused osutavad sellele, et CDR-andmete põhiste 

tegevusruumi näitajate täpsust mõjutavad ajalistest tunnustest oluliselt ainult nädalapäevad. 

Lisaks sellele selgus, et kõnetoimingute arv ei mõjuta oluliselt CDR-andmete põhiseid 

tegevusruumi näitajaid, kui kõnetoimingute arv on üle nelja (st tegevusruumi näitajaid saab 

arvutada). Ü kski analüüsitud sotsiaal-demograafiline tunnus CDR-andmete põhist 

tegevusruumi täpsust ei mõjuta.   

Võtmesõnad: CDR, GPS, tegevusruum, ajaline kontekst, sotsiaal-demograafilised tunnused 

CERCS-i kood: S230 sotsiaalgeograafia  

Comparison of CDR and GPS data for estimating the individual activity space 

Abstract 

The aim of the research was to provide deeper understanding of the accuracy of CDR data for 

estimating individual activity space. The datasets (CDR and GPS) for the research had been 

collected from September 5, 2013 to March 10, 2015 and covered 52 people (8961 person-

days). The individual activity spaces were analyzed by six major indicators: minimum convex 

polygon, ellipse, radius of gyration, kernel density, distance, and entropy. The absolute 

difference method was used to evaluate the accuracy of CDR-based measurements in 

comparison with GPS-based measurements. For statistical analysis, Spearman’s rank 

correlation and linear mixed models were applied. 

CDR and GPS-based measurements were positively correlated. Gyration and entropy were 

more closely related to GPS-based measurements whereas kernel density had the lowest 

accuracy based on the absolute difference between CDR and GPS-based measurements. The 

results from the study indicate that only days of the week factor significantly affects the 

accuracy of CDR-based measurements. Moreover, the number of CDRs per day was proven 

not to have a statistically significant effect on the accuracy of CDR-based measurements if the 

number of CDRs are four or more (i.e. it is possible to calculate the activity space indicators). 

Overall, none of the socio-demographic factors was proven to be significant to influence the 

accuracy of CDR-based activity spaces.  

Keywords: CDR, GPS, Activity space, Temporal contexts, Socio-demographic factors 

CERCS Code: S230 Social geography 
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Introduction 

Human mobility and activity spaces are important to be studied because they provide a basis 

of application in urban planning and epidemic modeling. Human mobility information enables 

the government to design sustainable urban transport systems and take effective preventive 

measures in case of emergency like crowd evacuation and contagious diseases by considering 

the configuration of new buildings and public spaces (Barbosa et al., 2018; Wang et al., 2019). 

Recently, the outbreak of novel coronavirus (COVID-19) pandemic has a huge impact on the 

mobility patterns of individuals. The introduction of non-pharmaceutical interventions resulted 

in a reduction in human mobility patterns particularly in areas with a dense population (Askitas 

et al., 2020; Bryant & Elofsson, 2020). The reduction in mobility subsequently led to a decline 

in the spread of COVID-19 (Badr et al., 2020; Courtemanche et al., 2020).  

The study of human mobility in public health crisis, traffic prediction, and migration flows 

greatly depends on contemporary mobile technologies. The introduction of these new 

technologies for communication has added another dimension to the mix as new data sources 

for modelling human activities are being developed daily (Yuan & Raubal, 2016). According 

to International Telecommunication Union (ITU), there were more than 7 billion mobile 

cellular subscriptions worldwide by the end of 2015 and more than 50 percent of the global 

population used the Internet at the end of 2018 (ITU, 2015, 2018). It is an undeniable fact that 

a mobile phone has become one essential tool for communication by people in many parts of 

the world and in performing various tasks in their daily lives. Moreover, there has been a steady 

penetration of mobile phone users in Estonia over the years which shows that in 2017 there 

were about 1.9 million subscribers and the number is projected to increase in the coming years 

(ITU, 2018). 

Understanding the mobility patterns and people’s use of space has been the focus of 

geographical research for many years (Xu et al., 2016). The term activity space is widely used 

in human mobility research to describe main places of interest of people where they carry out 

their daily routines such as residential dwellings, workplaces, and shopping centers (Gong et 

al., 2020).  

In contemporary society, due to the advancement in the development of location–aware 

technologies, research on human mobility has gained popularity through access to a large 
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volume of individual tracking datasets which contributes to comprehension of an individual’s 

activity space over time (Dobra et al., 2015; Williams et al., 2015; Xu et al., 2016). Call Detail 

Record (CDR) as a type of passive mobile positioning data is used in research to ascertain 

human mobility habits. This type of data provides low-level location information of origin and 

destination of call activities with attributes such as start and end time of calls, location of caller 

and receiver, duration of the call as well as, initiator and receiver ID (Xu et al., 2016; Lind et 

al., 2017; Vanhoof, Reis, et al., 2018). CDR data provide for largescale analysis of location 

and movement patterns, but they are scanty given that they have limited information pertaining 

to the time of a call (Vanhoof, Reis, et al., 2018). CDR data have been used for planning, policy 

and infrastructural developments by conducting analysis to determine anchor points in an 

individual’s life (Amini et al., 2014). The accuracy of CDR based on mobile antennas is 

comparatively less accurate than Global Positioning System (GPS). Some researchers raise 

critiques about the accuracy of CDR data being varied in cities and rural areas because a higher 

density of population is directly related to a higher density of antennas and vice versa 

(Bengtsson et al., 2011). However, CDR data would provide information about mobility and 

activity space for more people over a longer period without additional activities for 

participants.  

Alternatively, the precision and accuracy of GPS data are higher and reliable for the 

comprehension of human behavior compared to traditional collection methods such as survey, 

self-reporting, observation, etc. (Richardson et al., 2013). There have been prior studies on 

human spatial and temporal mobility patterns by relying on high-resolution smartphone-based 

GPS location datasets (Kwan 2012; Matthews & Yang 2013; Perchoux et al., 2013). Some 

criticisms of reliance on GPS datasets in human mobility research are the expensive data 

collection mode, battery drain and is not representative of an entire population but only 

considers a sample with GPS devices (Paz-Soldan et al., 2014; Xu et al., 2015). Besides, GPS 

is considered useless in indoor conditions due to the block of radio waves by physical objects 

(Cabric, 2017). 

There appears to be no theoretical or empirical research on the comparison of CDR and GPS 

data for estimating human activity spaces. Moreover, there is a limitation of published materials 

in relation to accuracy of CDR-based activity space for various human mobility indicators. 

Therefore, the aim of the study is to provide deeper understanding of the accuracy of CDR data 

for estimating individual activity space.  
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The aim can be achieved through the following research questions: 

Q1: How are the CDR and GPS-based activity space measurements related?  

Q2: How different temporal scales affect the accuracy of CDR-based activity space? 

Q3: How the number of call activities and socio-demographic factors of the people influence         

the accuracy of CDR-based activity space? 

Q4: What is the accuracy of CDR-based activity space considering different time periods? 
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1. Theoretical overview 

1.1 Activity Space  

In the study of the spatial distribution of people’s behavior and aggregated activity patterns of 

urban systems, activity space is important (Yuan & Raubal, 2016). According to Mazey (1981), 

activity space was defined as the local areas within which people travel during their daily 

activities. Other studies in the area focused on measuring the size, geometry, and inherent 

structure of human activity space (e.g., the randomness of activity patterns), as well as the 

reasons why activity space forms (Golledge & Stimson, 1997). However, in practice, 

investigating the quantitative properties of human activities often involves model fitting and 

an appropriate mathematical model provides insights for many application areas. These 

application areas range from building a smart system in urban planning and geography to a 

deeper understanding of the basic laws of human activity in physics (González et al., 2008; 

Song et al., 2010). On the other hand, the modelling of the distribution of activity space is still 

an ongoing process (Yuan & Raubal, 2016).  

There are several related concepts to activity space. These are awareness space (Brown & 

Moore, 1970), action space (Horton & Reynolds, 1971), perceptual space (Relph, 1976) and 

mental maps (Lynch, 1960). But in general, an individual’s activity space is usually 

conceptualized as the locations that have been visited as well as the travels among these 

locations (Schönfelder & Axhausen, 2003; Gong et al., 2020). People perform their daily 

routines mainly at a few activity locations such as home, school, workplace, supermarkets, 

favorite restaurants and so forth. These locations are often considered as anchor points of 

individual activity spaces (Golledge & Stimson, 1997; Ahas et al., 2010; Xu et al., 2016). 

Mobile phone location data give information of individual footprints recorded for people’s 

major activity locations in space and time (Xu, 2015). 

1.2 CDR and GPS data for measuring activity space 

In measuring activity space, the CDR captures the phone activity of subscribers on the 

operator’s network. CDR data are defined as non-continuous information because the data are 

only stored when text messages and calls are made or received (Vanhoof, Reis, et al., 2018). It 

is collected for billing and network maintenance purposes. Like the GPS, there are some studies 

conducted using the CDR data in recent times to analyze individual movement patterns 
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(regarding locations e.g., home and workplace) (Ahas et al., 2010; Xu et al., 2016). There have 

been studies in Estonia about measuring individual activity spaces based on CDR data to 

investigate the ethnic/racial segregation between different age groups as well as the monthly 

variability in the spatial travel behavior of people (Silm & Ahas, 2014a; Järv et al., 2014, 2015; 

Silm et al., 2018). Bogomolov et al., (2014) used mobile data to create a novel method to 

improve the crime prediction accuracy, and Schmitz and Cooper (2007) examined the activity 

spaces of offenders to assist investigating officers to solve criminal cases.  

The GPS on the other hand has become widely adopted in understanding various aspects of 

urban dynamics such as individual commuting patterns (Shen et al., 2013), route choice 

behavior (Papinski et al., 2009) and spread of disease (Vazquez-Prokopec et al., 2009). The 

GPS has the capability to capture human movements with high spatiotemporal accuracy 

(Richardson et al., 2013), so GPS data have been accepted as a valuable source that can help 

enhance our understanding of human mobility and activity patterns in urban settings (Bazzani 

et al., 2010; Shoval et al., 2011). GPS has become a popular means of collecting tracking data 

for studying human travel and activity patterns two decades ago (Hirsch et al., 2014; Xu, 2015). 

Since then, various approaches have been applied to derive trips and important locations from 

individual GPS trajectories. Then, Schüssler and Axhausen (2009) also developed methods to 

derive individual trips and activities from GPS data. The cumulative effect of these results 

demonstrated the feasibility of using GPS for an understanding of individual activity patterns. 

Overall, these studies indicate that using CDR and GPS data can be leveraged to understand 

the spatial distribution and movement patterns of individuals. Some comparative advantages 

and disadvantages of two data types (CDR and GPS) are summarized in Table 1.  

Table 1. Comparisons of CDR and GPS data 

Data type Advantages Disadvantages 

CDR 

Relatively cheap data collection mode 

 

Larger coverage regarding users, timespan, 

and spatial extent. 

Positioning errors 

GPS High positioning accuracy; Fine-grained 

Relatively expensive data collection mode 

 

High battery usage 
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1.3 Indicators of Activity Spaces 

There are several methods of measuring activity spaces in research based on CDR and GPS 

data. Some of these methods are appropriate and applicable for both CDR and GPS datasets. 

The characterization of activity space gives a better understanding of the method used in the 

measurement. According to Chen and Dobra (2018), an individual’s activity space includes: (i) 

estimating the spatial configuration and the frequency of the anchor locations; (ii) identifying 

other places of interest of an individual including anchor locations and assessing these places 

vis-à-vis the least visited; (iii) mapping the spatial configuration of these frequently visited 

places; and (iv) quantifying the spatial structure of the individual's activity space. Table 2 below 

gives major references that applied some indicators in CDR and GPS data analyses.  

Table 2. Major indicators in measuring activity spaces 

Metric/Indicator Description Reference 

Minimum Convex Polygon 

To describe a subscriber’s 

activity space encompassing 

the spatial distribution of all 

activity places within a 

subscriber’s movement pattern 

Sherman et al., 2005 (GPS) 

Palmer et al., 2013 (CDR) 

Hirsch et al., 2014 (GPS) 

Dong et al., 2015 (CDR) 

Lee et al., 2016 (GPS)  

Ellipse 
To describe the activity 

location distributions 

Sherman et al., 2005 (GPS) 

Chaix et al., 2012 (GPS) 

Hirsch et al., 2014 (GPS) 

Yuan and Raubal, 2016 (CDR) 

Puura, Silm, and Ahas, 2018 (CDR) 

Radius of Gyration 
To explore the individual’s 

movement span 

Yuan et al., 2012 (CDR) 

Barbosa et al., 2018 (GPS) 

Chen et al., 2018 (CDR) 

Pappalardo and Simini, 2018 (CDR, GPS) 

Kernel Density 

To measures a certain 

probability of visit to activity 

spaces which embraces all 

areas 

Schönfelder and Axhausen, 2003 (GPS) 

Yuan et al., 2012 (CDR) 

Yuan and Raubal, 2016 (CDR) 

Chen and Dobra, 2018 (GPS) 

Travel Distance 

To explore the general 

trajectories of human 

movements 

Zhao et al., 2016 (CDR) 

Burkhard et al., 2017 (CDR, GPS) 

Barbosa et al., 2018 (CDR) 

Pappalardo and Simini, 2018 (CDR, GPS) 

Entropy 
To describe individuals’ 

visitation patterns 

Yuan et al., 2012 (CDR) 

Comito et al., 2016 (GPS) 

Zhao et al., 2016 (CDR) 

Pappalardo and Simini, 2018 (CDR, GPS) 
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1.3.1 Minimum Convex Polygon 

Minimum Convex Polygon (MCP) is occasionally regarded as a home range and describes an 

individual’s activity space which shows the smallest convex polygon comprising the spatial 

distribution of all activity places within a traveler’s movement pattern (Hirsch et al., 2014; 

Patterson & Farber 2015; Chen & Dobra 2018; Sharmeen & Houston 2019). Sharmeen and 

Houston (2019) further argue that the size of the polygon largely relies on the location sample 

size and sampling standardization. Figure 1 shows the weekly size of MCP of car-owning and 

non-working individuals. 

This methodology has been widely used to study human activity spaces in order to determine 

how urban morphology affects the activity spaces of individuals (Buliung & Kanaroglou 2006; 

Fan & Khattak 2008; Lee et al., 2016). Some geographical features like river, valley, and hill 

affect the shape of activity space to be irregular since these features are usually inaccessible or 

undesirable for people (Lee et al., 2016; Chen & Dobra, 2018). Other limitations involve 

extreme vulnerability to outliers, trip chains are ignored, and only proximity to an area is 

considered (Li & Tong, 2016; Chen & Dobra, 2018).  

 

Figure 1. Example of Minimum Convex Polygon (Source: Kamruzzaman & Hine, 2012) 



12 

 

1.3.2 Ellipse 

Ellipses focus on a set of visited locations for a specific area based on knowledge of the most 

relevant anchor locations in another space such as residence and workplace (Chen & Dobra, 

2018). The confidence ellipse and home-work ellipse are two main types of ellipse (Chaix et 

al., 2012; Li & Tong, 2016). The confidence ellipse assumes that visited locations follow a 

bivariate normal distribution (Sherman et al., 2005; Chen & Dobra, 2018). The home-work 

ellipses relate to two anchor locations which become the two foci of the ellipse (Newsome et 

al., 1998).    

Spatially, a confidence ellipse is used to describe the activity location distributions. The size 

of the area of an ellipse indicates the dispersion of visited locations and may be used in 

comparison to the dispersion between the mobility pattern of one or more travelers within 

different temporal space (Schönfelder & Axhausen, 2003). Figure 2 depicts the weekly size of 

ellipse of car-owning and non-working individuals. Some limitations of representing activity 

spaces through ellipses are when locations visited are only a few and in a straight line (Wong 

& Shaw, 2011); and thereby resulting in their relatively inflexible geometry (Chen & Dobra, 

2018).  

 

Figure 2. Example of Confidence Ellipse (Source: Kamruzzaman & Hine, 2012) 
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1.3.3 Radius of Gyration 

One of the most predominantly used methods in measuring activity space is the radius of 

gyration. This is a measure that determines an individual’s travel distance on the basis of the 

distance between the specific visited locations and the time spent in each location (Barbosa et 

al., 2018). The radius of gyration focuses mostly on the center of the home and work location 

for commuters and it is reflective of the range of activity space (Golledge & Stimson, 1997; 

Zhao et al., 2016). The application of the radius of gyration to CDR data is limited because 

commuters who travel long distances rarely use mobile phones which leads to an 

underestimation of this group (Zhao et al., 2016). A person’s radius of gyration may be small 

even if the person has a longer travel distance regardless of repeated movements across all over 

different locations generally yielding a bigger radius of gyration (Chen et al., 2018).  

1.3.4 Kernel Density 

Kernel density analyzes the spatial density of a whole area by the distribution of point objects 

in the target region (Kang et al., 2018). This method can estimate activity spaces of any kind 

regardless of the shape and corresponding anchor locations (Chen & Dobra, 2018). Figure 3 

reveals the kernel density estimation analysis of geo-tagged data from GPS devices.  

It measures a certain probability or density of visit to activity spaces which includes all areas. 

Kernel densities involve a transformation of points represented continuously based on density 

in a wider area; the method generalizes the points to the area located and usually based on 

interpolation or smoothing technique (Schönfelder & Axhausen, 2003). The interpolation 

results in a value for any points in the entire area which defines the density. The shape of 

activity space could be refined to avoid unaccustomed daily activities like industrial areas, etc. 

(Schönfelder & Axhausen, 2004). 

Kernel densities are most appropriate in the application to large cross-sectional datasets (Kwan, 

2000; Buliung, 2001). However, kernel density does not always produce the most reliable 

results when applied to GPS data because it does not capture much of the underlying structure 

of the data (Chen & Dobra, 2018).  
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Figure 3. Example of Kernel Density (Source: Wu et al., 2016) 

1.3.5 Travel Distance 

Distance is usually measured in a one-dimensional way which needs knowledge of the specific 

points to measure (Sherman et al., 2005). The rationale of measuring activity space based on 

the travel distance covered by each subscriber is to mark the footprint of the subscriber and the 

distance traveled altogether considering Euclidean distance (Zhao et al., 2016). This provides 

a result of the consecutive footprints of the subscriber (Mooney et al., 2016). The longer the 

distance traveled daily by an individual could be directly related to a wider extent distance 

covered based on CDRs. One other reason is that, the longer the travel distance then it is likely 

that the number of subscribers is small (Zhao et al., 2016). The limitation in distance as a 

measure of activity space is that it generally ignores the preferences of people or other factors 

that instigate the direction of people toward a specific location (Sherman et al., 2005). There 

can also be directional bias because an individual may prefer a particular place over other 

places having equal distance due to the perception of the quality of the preferred place over 

others (Golledge & Stimson, 1997). 
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1.3.6 Entropy 

Entropy describes the heterogeneity of human movement patterns which are recorded by data 

from mobile devices (Yuan et al., 2012; Vanhoof, Schoors, et al., 2018). Song et al. (2010) 

introduced three varied methods for computing entropy. These are random entropy, temporally 

uncorrelated entropy, and real entropy. All three methods depend on visited cell towers, but 

probabilities of being in a particular cell-tower are estimated in three different ways: (i) whether 

or not a person has made a prior visit to a given cell tower; (ii) the frequency of visits to a cell 

tower; (iii) the amount of time spent in the range of a cell tower.  

It can be deduced that the more active a subscriber is at different places, the higher the 

movement entropy in comparison with a subscriber who visits fewer places many times (Zhao 

et al., 2016). 

1.4 Evaluation of the accuracy of CDR data in activity space measures 

The use of CDR data can be good based on the level of accuracy or there may be some 

uncertainty issues presenting some level of biases in its use. CDR data has the benefit of being 

significantly available for a large number and cover a significant proportion of the population 

where cell phone penetration is high (Burkhard et al., 2017). The individuals whose CDR are 

being collected for use in research are unaware of this and this makes it cheap and quick to 

obtain information from a large proportion of the population in a specified area for analysis 

(Steenbruggen et al., 2015). The accuracy of CDR is greater in metropolitan areas and those 

with denser networks of roads, whereas accuracy is lower in rural areas with a low density of 

population (Ahas et al., 2008; Chen et al., 2018). Furthermore, spatial errors in human mobility 

patterns computed from CDR and GPS data are higher for sparse CDRs (Hoteit et al., 2016).  

The uncertainties surrounding the use of CDR data are numerous. It is considered that the 

spatial resolution of CDR is often limited to the specific location of a cell tower (Zhao et al., 

2016; Lind et al., 2017). Thus, the precision of CDR data is given only by the availability of 

information about calls or messages routed from a cell tower location. This limits access to 

information about the exact location of individual mobile phone users and the precise time of 

call or message (Burkhard et al., 2017). One other issue with CDR data is the spatial uncertainty 

surrounding its use due to signal jump. This signal jump occurs when a mobile device switches 
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between neighboring cell towers due to the similar intensity of signal strength or closeness of 

cell towers (Iovan et al., 2013). 

The effectiveness of CDR data in individual mobility study depends on the research question 

and the mobility measure selected to address those questions. The use of the CDR data in a 

study of human mobility is good enough in most cases when the radius of gyration measure is 

applied (Zhao et al., 2016). This radius of Gyration is good in analyzing human mobility based 

on CDR data depending on subscribers who make at least some phone communication 

throughout the day and travel frequently. The accuracy of Gyration could be enhanced for 

frequent CDR users than for rare CDR users (Chen et al., 2018). However, researchers must be 

cautious in the use of CDR data when it comes to problems relating to travel distance and 

heterogeneity of human mobility. This is because the validity of analysis largely depends on 

the activeness of subscribers engaged in phone communication. CDR data tend to significantly 

underestimate the total travel distance (Zhao et al., 2016). This is because the longer the travel 

distance, the wider the CDR data and one possible reason is that as the total travel distance 

increases, the number of subscribers decrease rapidly. CDR data can estimate the movement 

Entropy accurately for subscribers based on certain locations but may underestimate the 

movement Entropy for other subscribers in another location (Zhao et al., 2016). 

1.5 Temporal Contexts of Activity Space  

In activity space measurement, there are high movement patterns during weekend in terms of 

spatial coverage while working days have more regular and direct patterns of human spatial 

mobility (Kamruzzaman & Hine, 2012). The activity space of individuals on holidays differ 

from their daily routines (Wallendorf & Arnould, 1991; Gram, 2005). It is shown that people 

tend to travel longer distances over wider geographic extents on holidays than weekdays due 

to more time availability (Cools et al., 2009). Additionally, monthly variability in human 

movement patterns is based on seasons. Schönfelder and Axhausen (2016) found a clear 

distinction in seasonality of individual trips from their home where travel patterns are more 

spatially dispersed further away from home in spring and summer (April – July) in comparison 

to fall and winter in USA. Estonia has similar seasonal patterns regarding movements in winter 

and summer seasons since there is a higher mobility variation in summer (June – August) than 

in winter (Järv et al., 2014).  
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Time is one of the significant factors of activity space measurement research. Individual’s 

movement preferences are influenced by time available to them and purposes for their mobility. 

Time-space concepts in activity space research are categorized into four; daily, weekly, holiday, 

and monthly. It can be linked to some studies that discovered a strong connection between 

individual’s different movement patterns and their daily, weekly, monthly, and seasonal travel 

behaviors (Järv et al., 2014; Silm & Ahas, 2014b).  

Humans’ daily activities involve some activities such as work, school, home, etc. Primerano et 

al. (2008) defined as “a scheduling of activities in time and space” when it comes to daily 

human mobility from home to work and back. The space-time context of mobility of people as 

high and of particular interest to researchers in many fields such as urban planning, 

transportation, and business (Zeng et al., 2017).   

However, comprehension of human spatial mobility and temporal context over a long period 

of time is also important to understand the impact of time context on people’s spatial behaviors 

(Järv et al., 2014). 

1.6 Socio-Demographic Factors and Activity Space 

Socio-demographic factors such as gender, age, income, household composition and 

occupation, etc. have a critical impact on individual mobility patterns. Most previous empirical 

studies have proven that women tend to have shorter travel distances and smaller size of activity 

spaces compared to men (Fan & Khattak, 2008; Vich et al., 2017). However, Bajracharya and 

Shrestha (2017) discovered that women have similar travel behavior to men.  

In terms of household membership mobility patterns, the larger activity space relates to the big 

households since they tend to travel more due to the ownership of private cars and visiting their 

family over a long distance. (Rubin et al., 2014; Kim & Ulfarsson, 2015). However, Dargay 

and Clark (2012) found that single member household has a longer total travel distance in 

comparison to those in larger household.  

When it comes to age group variable as a socio-demographic aspect, young-employed and 

middle-aged groups have shown broader travel patterns; larger activity spaces and trip 

frequencies whereas older and younger groups exhibit the opposite (Yuan et al., 2012). Also, 

Fan and Khattak (2008) found that mature adults tend to have larger activity spaces than elderly 

and young adults but there is one research that indicates a similar trip pattern among people of 
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all age groups (Bajracharya & Shrestha, 2017). However, some studies found that younger 

groups have a large spatial mobility compared to elderly groups and the size of activity space 

declines with age (Silm et al., 2018; Masso et al., 2019). 

Occupation and income are somewhat intertwined in many societies. The higher the 

occupational level, the higher your income and vice versa. This affects travel behaviors 

significantly through mode of transport. Some researchers discovered that the higher income 

and well-educated people are more likely to own private cars and can afford to travel over 

larger geographical extent (Davidov, 2007; Fan & Khattak, 2008; Mercado et al., 2012; Jones 

& Pebley, 2014; Klinger & Lanzendorf 2016; Tana, Kwan, & Chai 2016).; unlike unemployed 

or low-income groups who travel less (Vich et al., 2017). However, factors such as income, 

and education do not have significant effects on the size of activity space compared to other 

groups (Schönfelder & Axhausen, 2003; Zenk et al., 2011).  
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2. Data and Methodology 

2.1 Data 

The two datasets (CDR and GPS) were provided by the Mobility Lab of the University of Tartu. 

The data covered the whole of Estonia. As the name implies, CDR data is based on calls 

whereas GPS data is collected through an android mobile application known as “MobilityLog”. 

Subscribers whose data were used in this study have the same date recorded for both CDR and 

GPS data for comparative analysis. 

2.1.1 CDR data 

In relation to the study, the timespan covering individuals in the dataset varies. The data was 

collected from September 5, 2013 to March 10, 2015. CDR data involve having a structure of 

mobile positioning identity number, unique individual identity number, the data record time, 

location, and date covering 52 people (8961 person-days) as shown in Table 3.  

Four columns in the dataset were particularly extracted for further analysis such as unique 

individual identity number, the data record time, and location. The main rationale for being 

selective is because daily individual activity spaces need to be computed. These columns in the 

dataset give a more specific and easier estimation. 

Table 3. Sample table for the CDR dataset. 

pos_id mps_usr_id pos_time lon lat x y date 

1 10 
2013-09-24 

15:21:00 
26.717558 58.372 658109 6473710 2013-09-24 

2 10 
2013-09-26 

17:30:00 
26.7150155 58.371 658851 6473252 2013-09-26 

3 10 
2013-09-26 

17:54:00 
26.7501205 58.373 660878 6473606 2013-09-26 

 

2.1.2 GPS data 

The data collected for mobile positioning spans from September 5, 2013 to March 10, 2015. It 

also varies in terms of the data coverage period for individuals. GPS data has a structure of 

mobile positioning identity number, unique individual identity number, time, point (location in 
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Well-Known Binary (WKB) format), accuracy, altitude, bearing, speed, and date for 52 people 

(8961 person-days) as depicted in Tables 4. 

Table 4. Sample table for the GPS dataset. 

mps_usr_id id counter time_system time_gps time_system_ts time_gps_ts 

10 1 768062 1.37954E+12 1.37954E+12 
24/09/2013 

15:21:00 +03:00 

24/09/2013 

15:21:00 +03:00 

10 2 768104 1.37954E+12 1.37954E+12 
26/09/2013 

17:30:00 +03:00 

26/09/2013 

17:30:00 +03:00 

10 3 765096 1.37954E+12 1.37954E+12 
26/09/2013 

17:54:00 +03:00 

26/09/2013 

17:54:00 +03:00 

 
mps_usr_id point accuracy altitude bearing speed date 

10 
0101000020E6100000184CD3D2A

2C13A40081AD8CF07314D40 
42 174.4 72 0.75 24/09/2013 

10 
0101000020E6100000C795C4A39

EC13A40F0498A3C07314D40 
30 157.6 76.4 0.5 26/09/2013 

10 
0101000020E610000007EB6247A

1C13A404959AFB707314D40 
36 128.7 40 0.5 26/09/2013 

Three attributes such as a unique individual identity number, the data record time, and location 

in the dataset were used to investigate the mobility patterns of the people. The point column is 

converted to x and y coordinates from WKB format for easy handling and analysis of the data 

(Table 5). 

Table 5. Sample table for the conversion WKB format to x and y coordinates. 

mps_usr_id point x y 

10 
0101000020E6100000184CD3D2

A2C13A40081AD8CF07314D40 
26.756390740000001 58.383050900000001 

10 
0101000020E6100000C795C4A39

EC13A40F0498A3C07314D40 
26.756326900000001 58.383033339999997 

10 
0101000020E610000007EB6247A

1C13A404959AFB707314D40 
26.756367170000001 58.383048019999997 

The geographic coordinate system for both original datasets was WGS84. So, it was 

appropriate to convert to the Estonian national projected system (EPSG: 3301) in order to apply 

linear units in terms of meters, kilometers, and miles in measuring the activity spaces.  
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2.1.3 Socio-demographic data 

Based on the purpose of this study, five demographic variables are selected. Gender has two 

main labels – male and female. Age group to which a person belongs, occupation, marital status, 

and the number of household members (Table 6). Table 6 has categories such as the number of 

people, person-days, and percentages based on the number of people. 

Table 6. The description of socio-demographic factors 

Socio-demographic 

factor 
 

The number of 

people 

The number of 

Person-days 

Percentages 

per people 

Gender 
Male 16 2221 30.77% 

Female 36 6740 69.23% 

Age Group 

Young Adults 

(17 - 30) 
23 4221 44.23% 

Middle-aged 

Adults 

(31 – 45) 

11 2695 21.15% 

Old-aged Adults 

(Above 45) 
18 2045 34.62% 

Marital Status 

Married 22 3847 42.31% 

Cohabitation 18 3342 34.62% 

Without partner 10 1728 19.23% 

Partnership without 

living together 
2 44 3.85% 

Occupation 

Staff 18 3018 34.62% 

Students 11 2376 21.15% 

Unknown 23 3567 44.23% 

The number of 

household members 

One person 5 1075 9.62% 

Two people 15 2586 28.85% 

Three people 6 1358 11.54% 

Four people 2 350 3.85% 

Unknown 24 3592 46.15% 
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2.2 Methodology 

2.2.1 Defining Individual Activity Space  

This part gives all attention to assessing the representativeness of CDRs in an analysis of 

persons’ daily patterns of movements. The primary target was to compute various measures of 

subscriber’s mobility patterns to answer the research questions. The following six most 

common methods were selected: (i) minimum convex polygon; (ii) ellipse; (iii) gyration; (iv) 

kernel density; (v) distance; and (vi) entropy. These were chosen because they are commonly 

used methods in activity space measurements applied for both CDR and GPS data by other 

researchers.  

In the assessment process, some steps were conducted to handle the set of CDR footprint and 

the set of GPS footprint in order to gain a general overview. Individual activity spaces were 

computed using RStudio software for both CDR and GPS data for each person on the same 

date using mentioned methods to analyze their daily movement pattern. A daily activity space 

was classified based on temporal patterns of days of the week, months, and holidays. This 

process aggregates the call activities of all 52 people. For instance, days are days of the week 

(Monday to Sunday) and months (January to December). Consequently, holiday data were 

extracted based on 9 national holidays in Estonia (Estonian Government Office, 2018) (Table 

7).  

Table 7. National holidays in Estonia 

Public holidays and days off 

New Year’s Day 

(January 1) 

Easter Sunday 

(March 31, 2013) 

(April 20, 2014) 

Victory Day 

(June 23) 

Christmas Eve 

(December 24) 

Independence Day 

(February 24) 

Labor Day 

(May 1) 

Midsummer Day 

(June 24) 

Christmas Day 

(December 25) 

Good Friday 

(March 29, 2013) 

(April 18, 2014) 

Pentecost 

(May 19, 2013) 

(June 8, 2014) 

Independence 

Restoration Day 

(August 20) 

Boxing Day 

(December 26) 

The activity space indicators were also constructed for a longer period so as to find out the 

period giving the best results. A different length of a period was categorized into seven such as 

1-day, 5-days, 7-days, 10-days, 1-month, and 2-month in this study. All the points during each 

period were considered in the calculation when estimating the activity space. 
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2.2.2 Calculating activity space indicators 

Minimum Convex Polygon 

In the study, a 95 percent confidence level was used in order to alleviate the impact of large 

data points like outliers. Thus, MCP was more appropriate to estimate in individual activity 

spaces because it could better depict the shape of polygon based on the irregular range of data. 

The built-in function in R package called “adehabitatHR” was employed for the calculation 

(Calenge, 2006).  

Ellipse 

The confidence ellipse is determined by the following formula: 

         𝑠𝑥𝑦 =
1

𝑛−2
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛

𝑖=1                      (Eq.1) 

                           S = [
𝑠𝑥𝑥 𝑠𝑥𝑦

𝑠𝑦𝑥 𝑠𝑦𝑦
]                              (Eq.2) 

                      𝐸𝑙𝑙𝑖𝑝𝑠𝑒 𝑠𝑖𝑧𝑒 (𝐴𝑟𝑒𝑎) = 6𝜋|𝑆|1/2                     (Eq.3) 

where x and y are referred to the arithmetic mean of all unique coordinates and n is the total 

number of activity locations (Schönfelder & Axhausen, 2003). In the study, a 95 percent 

confidence Ellipse was applied to describe the distribution of activity locations in space for 

both CDR and GPS data. The “car” package in R was adopted to estimate the area of an ellipse 

for individuals (Fox & Weisberg, 2019).  

Radius of Gyration 

In order to explore the individual’s movement span, the radius of gyration was computed to 

determine how mobile phone subscribers moved widely along their travel trajectories:  

          𝑟𝑔(𝑡) = √
1

𝐾(𝑡)
∑ (𝑟𝑥 − 𝑟𝑐𝑚)2𝐾

𝑥=1                      (Eq.4) 

where K stands for the total number of detected sites, 𝑟𝑥 indicates the x = 1, 2, …, K(t) location 

of an individual user, and 𝑟𝑐𝑚  states the centre of all observed locations during the 

experimental period (González et al., 2008; Chen et al., 2018). The author of the thesis 

developed the R script based on equation 4 to calculate the radius of gyration in measuring 

activity space.  
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Kernel Density 

In this study, epanechnikov kernel function was used for comparison of subscribers’ activity 

space size because its performance is considered the most efficient kernel function (Silverman, 

1986; Wand & Jones, 1995).  

An epanechnikov function is given by: 

                         𝐾(𝑥) =  
3

4
(1 − 𝑥2) ∗ 1 𝑖𝑓 𝑥 < 1                   (Eq.5) 

which leads to the following kernel density: 

                         𝑓(𝑥) =  
1

𝑛𝑠2
∑ 𝐾𝑛

𝑗=1 {
1

𝑠
(𝑥 −  𝑋𝑗)}                   (Eq.6) 

where n is the number of point observation, 𝑋𝑗 is the location of 𝑗𝑡ℎ observation, and s is the 

smoothing parameter respectively (Vokoun, 2003; Vadrevu et al., 2018). Since the overlapping 

values are summed that produces the density, the smoothing parameter s is significant in the 

model where it manipulates the width of the kernel functions placed over each point 

(Schönfelder & Axhausen, 2003). In this research, a spatial bandwidth was calculated as 

follows: 

                  s = 1.77 × σ × 𝑛−
1

6 𝑤ℎ𝑒𝑟𝑒 𝜎 = 0.5 × (𝜎𝑥 + 𝜎𝑦)            (Eq.7) 

where 𝜎𝑥  and 𝜎𝑦  are the standard deviations of the x and y coordinates of the locations, 

respectively (Silverman, 1986; Brunsdon & Singleton, 2015). The estimation of kernel density 

of individuals was done by using the R package called “adehabitatHR” (Calenge, 2006). 

Total Travel Distance 

The Euclidean distance method was employed to determine the general movement trajectories 

of subjects. It was calculated as follow: 

                      𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝐴1 − 𝐵1)2 + (𝐴2 − 𝐵2)2               (Eq.8) 

where A and B represent each pair of consecutive points of X and Y; 𝑋 = (𝐴1, 𝐴2) and 𝑌 =

(𝐵1, 𝐵2) (Kim et al., 2018). In this research, the summation of the subsequent recorded 

positions on the same trajectory was done based on the Euclidean distances between them. The 
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author of the thesis created the R script on the basis of equation 8 to calculate the total travel 

distance of each individual.  

Entropy 

Entropy was selected to analyze subscriber’s visitation patterns. The formula of entropy was 

followed:  

                             E = − ∑ 𝑝𝑥𝑙𝑜𝑔𝑞𝑝𝑥
𝑛
𝑥=1                        (Eq.9) 

where 𝑝𝑥 stands for the probability of visiting the location x, q indicates the number of unique 

locations, and n represents the total number of specific locations visited by users in the given 

movement pattern (Song et al., 2010; Zhao et al., 2016; Pi et al., 2018; Vanhoof, Schoors, et 

al., 2018). For CDR, the total number of visited locations was determined by estimating the 

number of times a person used mobile phones whereas the number of unique locations was 

calculated by quantifying the number of times an individual used mobile phones from a 

different cell tower than the previous cell tower. For GPS, the total number of visited locations 

was the overall GPS points for a user in a defined mobility range. The number of unique 

locations was estimated by a defined area of coverage by the user to determine the number of 

times the user performs activities within this defined scope. The defined area used for this 

calculation was the radius of 50m because it could be more appropriate to measure entropy. 

The author of the thesis came up with the script according to equation 9 for the calculation.  

2.2.3 Data Wrangling 

Prior to statistical analysis, pre-processing of data was conducted to filter data for both CDR 

and GPS. The filtering was done to remove data which have no values for activity space 

measurement methods and those who had a mobility coverage greater than the total area of 

Estonia. Individuals’ CDRs recorded by a single cell tower are not considered for estimation 

but rather calculations made are based on CDRs collected for more than three different places. 

Therefore, based on this premise, most daily data were not sufficient to use kernel density and 

MCP indicators because they had a few number of CDRs (less than four). Since it is necessary 

to compare the accuracy of CDR-based measurements for all activity space indicators, data 

was subsequently reduced from 8961 to 477 (18.79%). 
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On the other hand, a definite age number of individuals was computed from the subtraction of 

data period from birth year (Table 6). Subjects were classified into three categories: “Young 

Adults”, “Middle-aged Adults”, and “Old-aged Adults”. For easier comparison, occupation 

was grouped into staff and students where staff includes head of the company, middle manager, 

top professionals, middle professionals, skilled worker, and office worker (Table 6). This was 

done because there are few data in specific occupation classes, so it is worth comparing 

between staff and students. Furthermore, the number of CDR data was categorized into four 

different groups to have a better understanding of the CDR data: (CDR <= 10), (11 <= CDR 

<= 20), (21 <= CDR <= 30), and (31 <= CDR). 

2.2.4 Statistical Analysis 

Descriptive statistics 

Mean was deduced to identify the center of estimated activity space measurements. The 

formula of mean is as follows: 

    Mean =
1

𝑛
∑ 𝑥𝑛

𝑖=1                         (Eq.10) 

where n indicates the sample size of each individual and x is the estimated activity space 

measurement (Holcomb, 2016). 

Standard deviation was computed to explore the spread of the activity space measurements. If 

all estimated activity space measurements were closed to its mean, then the standard deviation 

would be smaller and vice-versa (Holcomb, 2016). This was calculated using the formula: 

                      Standard deviation = √
1

𝑛−1
∑ (𝑥 − 𝑥̅)2𝑛

𝑖=1              (Eq.11) 

where n is the sample size, x stands for the estimated activity space measurement, and 𝑥̅ 

indicates the mean of all the estimated activity space measurements, respectively.  

A 95% confidence interval is a range of values in which there is 95% certainty that the true 

value falls within. The confidence interval was employed to describe the reliability of the 

measurements. It was calculated as follow: 

                      𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  𝑥̅ − 1.96 ∗
𝑠

√𝑛
              (Eq.12) 
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where n is the sample size, x stands for the standard deviation, and 𝑥̅ indicates the mean of all 

the estimated activity space measurements, respectively (Siegel, 2012).  

Absolute Difference (AD) was computed to determine how the accuracy of CDR-based activity 

space compares to that of GPS-based measurement. In the research, AD was deduced by the 

difference between CDR and GPS-based activity spaces for all indicators. The AD was 

calculated using the formula:  

                 AD = |𝑉𝐶𝐷𝑅 − 𝑉𝐺𝑃𝑆|                        (Eq.13) 

where 𝑉𝐶𝐷𝑅 𝑎𝑛𝑑 𝑉𝐺𝑃𝑆  indicate the CDR and GPS-based measurements (Oracle, 2011; 

Weisstein, 2007). If AD is closer to 0, it could be concluded that the accuracy is higher; 

otherwise, the accuracy is lower.  

Correlation Analysis 

Spearman’s rank correlation is regarded as more robust compared to Pearson’s correlation 

coefficient because it is less sensitive to skewed data and outliers (Lehman et al., 2005; Dodge, 

2008). Therefore, in this study, Spearman’s rank correlation was employed to assess whether 

two different sorts of mobile positioning data (CDR and GPS) are correlated with each other 

and also measure the strength of association between the number of CDRs and the accuracy of 

CDR-based activity spaces.  

Regression Analysis 

To investigate factors affecting the accuracy of CDR-based human mobility patterns, linear 

mixed models (LMMs) were employed. LMMs are widely used to determine a causal 

relationship between variables when there is non-independence in the data (Van Dongen et al., 

2004; Harrison et al., 2018). The linear mixed model incorporates both fixed and random 

factors in which fixed factors that are of interest in the research and can be controlled whereas 

random factors cannot be controlled experimentally (West et al., 2007; Winter, 2013). 

In this study, measurements were obtained repeatedly from the same subjects and variables 

were not independent of each other. Accordingly, interesting factors on the accuracy of CDR-

based measurements such as temporal variability, the number of CDR, and socio-demographic 

characteristics were referenced as fixed factors and the subjects were used as random factors, 

respectively. The absolute difference variables of each activity space indicator were used as 
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dependent variables and log-transformed because they did not contain negative values and 

showed right-skewed distributions. However, entropy was not used in this regression analysis 

because it does not show the extent of the activity space but the internal structure of data. So, 

it would not be appropriate to identify the effect of varied factors on the accuracy of CDR-

based measurements.  

Two linear mixed models were constructed regarding the types of interesting factors. All 

temporal factors (days of the week, months, and holidays) were put in LMM together for the 

analysis of the temporal effect on the accuracy of CDR-based measurements (Eq.14) whereas 

the number of daily CDR variables is added in the model of socio-demographic factors (gender, 

age group, marital status, occupation, and the number of household members) for the analysis 

of personal characteristics effect on the accuracy of CDR-based computations (Eq.15).  

The following are the detailed model specifications: 

   log(𝑌𝐴𝐷) =  𝛽0 + 𝛽𝐷𝑎𝑦𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑒𝑘 ∗ 𝑋𝐷𝑎𝑦𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑒𝑘 + 𝛽𝑀𝑜𝑛𝑡ℎ𝑠 ∗ 𝑋𝑀𝑜𝑛𝑡ℎ𝑠 + 

                  𝛽𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠 ∗ 𝑋𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠 + 𝑍𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ∗ 𝑈𝑆𝑢𝑏𝑗𝑒𝑐𝑡 + 𝜖             (Eq.14) 

 

𝑙𝑜𝑔(𝑌𝐴𝐷) = 𝛽0 + 𝛽𝐶𝐷𝑅 ∗ 𝑋𝐶𝐷𝑅 + 𝛽𝐺𝑒𝑛𝑑𝑒𝑟 ∗ 𝑋𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽𝐴𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 ∗ 𝑋𝐴𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 + 

            𝛽𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 ∗ 𝑋𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝛽𝑂𝑐𝑐𝑢𝑝𝑝𝑎𝑡𝑖𝑜𝑛 ∗ 𝑋𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 + 

            𝛽𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 ∗ 𝑋𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 + 

            𝑍𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ∗ 𝑈𝑆𝑢𝑏𝑗𝑒𝑐𝑡 + 𝜖                                (Eq.15) 

where 𝑌𝐴𝐷 is  a vector of the continuous absolute difference of measurements for the subjects, 

 𝛽0  represents the intercept, 𝛽𝑘  is the regression coefficient for a specific fixed variable, 

𝑋𝐷𝑎𝑦𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑒𝑘  is a variable based on days of the week, 𝑋𝑀𝑜𝑛𝑡ℎ𝑠  is a month variable, 

𝑋𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠 is a holiday variable, 𝑋𝐶𝐷𝑅 is the number of CDRs, 𝑋𝐺𝑒𝑛𝑑𝑒𝑟 is a gender variable, 

𝑋𝐴𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 is an age variable, 𝑋𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 is a marital status variable, 𝑋𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 is an 

occupation variable, and 𝑋𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑚𝑒𝑚𝑏𝑒𝑟𝑠  represents the family size 

correspondingly. Furthermore, 𝑍𝑆𝑢𝑏𝑗𝑒𝑐𝑡  is a random intercept, 𝑈𝑆𝑢𝑏𝑗𝑒𝑐𝑡  shows a random 

effect for each subject, and 𝜖 represents a general error term, respectively.  
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In linear mixed-effects models, all fixed variables were transformed into dummy variables. To 

avoid the dummy variables trap, one feature from each of those dummy variables was used as 

a reference group. For example, CDR <= 10, female, young adults, single status, staff, and 

single household size features were not used for the regression analysis.  

The perfect multicollinearity was identified while assessing an equation using IBM SPSS 

Statistics software which gives a correlation coefficient value of 1 or -1 if the model suffers 

from the perfect multicollinearity. However, the Variance Inflation Factor (VIF) was used to 

detect the imperfect multicollinearity which was computed as:  

1

(1−𝑅2)
                            (Eq.16) 

The model having the largest value of VIF greater than 10 or the mean of VIFs significantly 

larger than 1 is considered as evidence of the problem of the imperfect multicollinearity 

(Chatterjee & Hadi, 2012). Thus, if VIF exceeds 10 or its mean is greater than 1, the 

independent variables should be examined individually or removed from the model.  

In this research. there was no sign that linear mixed models suffered from an imperfect 

multicollinearity problem since their mean VIFs were not significantly larger than 1 (2.1 for 

temporal factors and 3.4 for personal characteristics). Therefore, the linear mixed models were 

performed without regressing the independent factors on the dependent variable for each 

indicator separately. Furthermore, a five percent significance level was used to confirm or 

reject our tests. The significant level explains the probability of rejecting the null hypothesis 

when it is true (Stock & Watson, 2014). Correspondingly, an independent variable is 

significantly different from zero if its p-value is lower than 0.05.  
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3. Results 

3.1 Activity spaces based on CDR and GPS data 

Overall, all indicators show skewed distributions and the density of asymmetric graphs (Figure 

4). All distributions of activity space indicators are positively skewed, in which more values 

fall toward the lower side of the scale and there are very few higher values. In general, CDR 

data have a longer peak and skinny tail which means that CDR based measurements would be 

smaller than GPS data. However, the distribution of Entropy is negatively skewed and both 

CDR and GPS-based measurements are similar to each other.  

 

Figure 4. The density graph on activity space indicators regarding both CDR and GPS data 

The positive relation appears for all indicators in which both CDR and GPS move in the same 

direction (Table 8). The apparent correlations are observed for the most indicators except 

entropy. The kernel density indicator had the highest correlation value of 0.734, followed by 
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gyration, ellipse, distance, MCP, and entropy. Besides, four indicators like kernel density, 

gyration, ellipse, and distance had similar correlation values to each other. The relation existing 

between CDR and GPS-based measurements regarding entropy was proven to be a weak 

positive association between variables as 0.170. However, the correlation coefficients were 

proven to be significant for all activity space indicators since the p-values were less than 0.05.  

Table 8. Correlation between activity spaces based on CDR and GPS data 

 MCP Ellipse Gyration 
Kernel 

Density 
Distance Entropy 

Correlation coefficient 0.587* 0.722* 0.730* 0.734* 0.702* 0.170* 

* indicates 5% significance level  

To have a clear understanding of the relationship between CDR and GPS-based measurements, 

the scatter plot and summary of a given data set were constructed (Figure 5 and Table 9). As 

more points deviated above the diagonal line, CDR-based measurements were underestimated 

when it comes to MCP, ellipse, and distance compared to using GPS data. There was a similar 

pattern of estimation for gyration and entropy in both CDR and GPS. On the other hand, the 

activity space of kernel density was overestimated by CDR than GPS. Moreover, kernel density 

had such a large deviation in CDR data. 

In general, entropy and gyration provide the lowest average absolute difference of the 

measurement as 0.1 and 8.3, respectively with low deviations in measurements followed by 

distance (60.1), MCP (527.6), ellipse (1191.7), and kernel density (5448.7). Kernel density had 

the lowest accuracy of CDR-based activity space and there was a large deviation (9588.5) in 

measurements as well.  
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Figure 5. The scatter between CDR and GPS-based measures 

Table 9. Descriptive statistics of CDR and GPS-based indicators 

  
MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel 

Density (𝐤𝐦𝟐) 

Distance 

(km) 
Entropy 

CDR 
Mean 163.9 1191.3 17.2 6542.0 63.9 0.9 

S.D. 432.8 2551.2 20.8 11399.9 73.8 0.1 

GPS 
Mean 628.8 1735.7 18.9 1753.0 110.9 0.9 

S.D. 432.8 3324.6 22.0 2882.1 100.3 0.1 

Absolute 

Difference 

Mean 527.6 1191.7 8.3 5448.7 60.1 0.1 

S.D. 1123.6 2550.1 14.6 9588.5 69.9 0.1 
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3.2 Effects of Temporal variability 

3.2.1 The days of the week 

It can be observed that Mondays, Fridays, Saturdays, and Sundays have comparatively higher 

values for all indicators rather than Tuesdays, Wednesdays, and Thursdays (Figure 6). A 

similar pattern is depicted in Table 10 when comparing weekends to weekdays; weekends’ 

values are noticeably higher. As depicted in Table 10, kernel density has the highest absolute 

difference among other indicators, in which the weekends have a value of 6585.3 while the 

weekdays are represented by the value of 5180.7. Moreover, there was enough statistical 

evidence that days of the week factors like Tuesday, Wednesday, and Thursday had lower 

absolute differences of the measurement for all activity space indicators compared to the 

reference factor of Sunday (Table 12).  

 

Figure 6. The mean value and confidence interval (CI, 95%) of the absolute difference on days of the 

week; red points - mean value and whiskers - confidence interval 
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Table 10. Descriptive statistics of the accuracy of CDR-based measurements on weekdays and 

weekends 

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel 

Density (𝐤𝐦𝟐) 

Distance 

(km) 

Weekdays 
Mean 468.0 1102.6 8.1 5180.7 56.6 

S.D. 944.7 2404.1 14.8 9575.6 64.7 

Weekends 
Mean 780.4 1569.7 9.1 6585.3 75.0 

S.D. 1667.1 3080.8 13.6 9612.7 87.5 

 

3.2.2 Months and Season 

MCP has similar values for all months with the exception of January having the highest 

absolute difference value (Figure 7). Gyration and ellipse illustrate a similar monthly irregular 

pattern but show higher values for January. Kernel density seems to have closely related values 

across all months with September, October, November, and December having relatively higher 

values. Distance had higher values for January, July, and May respectively, but September and 

October had the lowest absolute difference values. However, the months of the year factors 

had a significant effect on the absolute difference of the measurement only for the distance 

indicator, while it was proven not to be significantly different from 0 at the 5% level for other 

indicators (Table 12). The absolute difference in distance was higher for January and August 

than for the reference factor of December.  
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Figure 7. The mean value and confidence interval (CI, 95%) of the absolute difference in months; red 

points - mean value, whiskers - confidence interval. 

In terms of the absolute difference for seasons, MCP revealed the highest value for winter 

(December – February), spring (March – May), summer (June – August), and autumn 

(September – November) individually (Figure 8). Ellipse depicted a high absolute difference 

values for summer, spring, winter, and autumn. Gyration showed the highest value for summer 

followed by winter, autumn, and spring, respectively. Kernel density had the highest values in 

autumn, winter, summer, and spring. Distance indicated the highest value for summer followed 

by spring, winter, and autumn, respectively.  
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Figure 8. The mean value and confidence interval (CI, 95%) of the absolute difference for seasons; 

red points - mean value, whiskers - confidence interval 

3.2.3 Holidays 

There are similar trends in ellipse, kernel density, and MCP which showed the largest absolute 

difference happening on Good Friday and Easter Sunday, but lowest values were on New 

Year’s Day, Independence Day, and Boxing Day (Figure 9). In terms of the gyration indicator, 

it shows a similar pattern with the Distance indicator, but the highest value occurred on Good 

Friday and other days such as New Year’s Day, Independence Day, Christmas Eve, and Boxing 

Day were similar to each other. In terms of the distance indicator, Labor Day had the largest 

absolute difference followed by Good Friday and Easter Sunday, while the lowest value was 

on New Year’s Day. However, the holiday factor of Good Friday had a significant effect on 

the absolute difference in the measurement at the 5% level regarding MCP, gyration, and kernel 
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density (Table 12). Good Friday had a higher absolute difference on average for these three 

indicators compared to the reference factor of Boxing Day.  

 

Figure 9. The mean absolute difference of the measurement on holidays 

It can be seen that holidays tend to have low accuracy for all activity space indicators except 

distance (Table 11). Regarding gyration, it showed lower absolute difference with a value of 

9.9 for holidays and 8.3 for regular days whereas kernel density indicated higher absolute 

difference with a value of 6813.0 for holidays and 5422.6 for regular days. Also, there was a 

large deviation in measurements for kernel density.  
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Table 11. Descriptive statistics of the accuracy of CDR-based measurements on holidays and regular 

days  

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel 

Density (𝐤𝐦𝟐) 

Distance 

(km) 

Holidays 
Mean 623.9 1106.7 9.9 6813.0 44.7 

S.D. 712.7 1493.7 12.9 12425.9 43.5 

Regular days 
Mean 525.7 1193.3 8.3 5422.6 60.4 

S.D. 1130.4 2567.1 14.7 9541.0 70.3 

 

Table 12. The summary of the linear mixed model: Absolute Difference of the measurement  

 

Log 

 (MCP) 

𝛃 

Log  

(Ellipse) 

𝛃 

Log 

(Gyration) 

𝛃 

Log  

(Kernel Density) 

𝛃 

Log 

(Distance) 

𝛃 

Days of the week 

(ref.: Sunday) 
     

Monday -1.531* -1.022 -0.576 -0.902 -0.487 

Tuesday -2.093* -2.147* -1.172* -1.672* -0.431 

Wednesday -2.379* -1.955* -1.049* -1.634* -0.736* 

Thursday -2.143* -2.041* -1.353* -1.666* -0.585* 

Friday -1.120* -0.948 -0.402 -0.751 -0.313 

Saturday -1.232* -1.072 -0.587 -0.239 -0.251 

Months of the year 

(ref.: December) 
     

January 1.167 1.789* 1.036 1.209 0.666 

February 0.080 0.314 -0.774 -0.077 0.062 

March 0.504 1.010 0.180 -0.031 0.274 

April -0.560 0.183 -0.423 -0.358 0.132 

May -0.040 0.883 -0.011 0.069 0.067 

June 0.341 0.630 0.063 0.315 0.488 

July 0.244 0.956 0.236 0.558 0.175 

August 1.017 1.766* 0.616 1.224 0.216 

September -0.363 0.367 -0.378 -0.126 0.037 

October 0.143 0.703 -0.073 0.619 0.050 

November 0.446 0.921 -0.279 0.519 0.364 

Holidays 

(ref.: Boxing Day) 
     

New Year’s Day -3.156 -3.641 -2.318 -4.391 -1.978 

Independence Day -0.411 0.047 0.313 0.306 0.108 

Labor Day 0.828 1.129 1.908 0.770 0.541 

Good Friday 4.080* 3.484 3.102* 4.261* 0.591 

Easter Sunday 2.389 2.375 1.865 3.747 -0.152 

Christmas Eve 0.653 2.553 -0.594 1.245 -0.930 

-2LL 2226.224 2292.698 2000.200 2334.017 1526.243 

Observations 477 

* indicates 5% significance level  
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3.3 Effects of personal characteristics  

3.3.1 The number of CDRs 

Closer inspection of Figure 10 shows there is a positive association between the number of 

CDRs and accuracy of CDR-based measurements. As the number of CDRs increase, absolute 

differences of each activity space indicator decrease. However, it is not such a strong 

relationship. Nevertheless, the general tendency that the accuracy and the number of CDR 

increase together is indisputably present.  

 
Figure 10. Relationship between the number of CDR and Absolute difference based on the number of 

CDRs 

The downward trend appears for all indicators as the number of CDR gets bigger, but the 

correlation coefficients are proven to be very weak (Table 13). Additionally, only the 

correlation coefficient of distance was proven to be significantly different from zero. However, 
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the correlation does not imply a cause-and-effect relationship between variables. Thus, the 

regression analysis was conducted to investigate whether the number of CDR leads to an 

increase in the accuracy of CDR-based measurements or not.  

Table 13. Correlation between the number of CDRs and accuracy of CDR-based measurements 

 MCP  Ellipse Gyration  Kernel Density  Distance 

Correlation coefficient -0.08 -0.064 -0.056 -0.066 -0.116* 

* indicates 5% significance level 

In the subsequent table, the values related to the accuracy of activity space based on five 

indicators are going to be compared within these four above-mentioned groups (Table 14). 

Group 3 has the best estimation of activity spaces because they produce the smallest in the 

absolute difference of all indicators. However, the number of CDRs were proven not to be 

significantly different from 0 at the 5% level for all activity space indicators. The number of 

CDRs had no causal effect on the absolute difference of the measurement in general (Table 20).  

Table 14. Descriptive statistics of the accuracy of CDR-based measurements based on the number of 

CDRs 

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel Density 

(𝐤𝐦𝟐) 

Distance 

(km) 

Group 1 

(CDR <= 10) 

Mean 589.9 1220.2 8.4 5831.8 64.0 

S.D. 1267.3 2425.7 14.4 9826.6 63.7 

Group 2 

(11 <= CDR <= 20) 

Mean 501.5 1266.7 9.1 5240.3 59.0 

S.D. 968.1 2788.4 15.8 9370.3 83.2 

Group 3 

(21 <= CDR <= 30) 

Mean 149.9 246.6 2.5 3176.3 32.3 

S.D. 315.6 379.4 4.3 7743.5 17.8 

Group 4 

(CDR >= 31) 

Mean 452.5 2063.0 9.1 5748.6 56.5 

S.D. 957.7 4549.7 17.8 12388.2 58.2 

 

3.3.2 Socio-demographic Factors 

The result of the absolute difference value for different gender indicated that the accuracy of 

the mean value of females by each indicator is lower than males (Table 15). Regarding kernel 

density, the absolute difference has the biggest value of 5761.8 for females and 4816.6 for 

males, while gyration has the smallest absolute difference value of 8.9 for females and 7.1 for 

males. There was not enough statistical evidence that the regression coefficient for gender was 
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significantly different from 0 at the 5% level (Table 20). The mean absolute differences of all 

indicators for males and females were not statistically different from each other in general.  

Table 15. Descriptive statistics of the accuracy of CDR-based measurements based on gender 

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel 

Density (𝐤𝐦𝟐) 

Distance 

(km) 

Female  
Mean 591.7 1343.0 8.9 5761.8 63.9 

S.D. 1176.6 2739.7 14.9 9434.0 75.1 

Male  
Mean 398.2 886.3 7.1 4816.6 52.4 

S.D. 999.0 2091.1 13.9 9893.3 57.4 

The absolute difference value of Old-aged adults is smaller in all the indicators and on the sharp 

contrast, the Young Adults group has higher values except in kernel density and distance (Table 

16). The Middle-aged Adults group has the highest absolute difference values of 7384.8 and 

63.4 in terms of kernel density and distance, respectively. From the regression analysis, middle-

aged adults had a lower absolute difference on average compared to young adults at the 5% 

level regarding only gyration and distance, while it was proven not to be statistically significant 

for other indicators (Table 20).  

Table 16. Descriptive statistics of the accuracy of CDR-based measurements based on the age group 

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel Density 

(𝐤𝐦𝟐) 

Distance 

(km) 

Young Adults 
Mean 577.2 1333.2 9.2 5475.0 61.3 

S.D. 1237.6 2792.0 16.1 9794.6 74.7 

Middle-aged Adults 
Mean 520.3 1076.8 6.8 7384.8 63.4 

S.D. 895.3 2496.6 12.2 12643.3 69.3 

Old-aged Adults 
Mean 335.2 702.1 5.7 4114.2 53.1 

S.D. 675.5 1145.6 7.8 5571.1 47.1 

Overall, the absolute difference values have a similar pattern for all activity space indicators. 

All groups except partners not living together have closely related values for all indicators 

(Table 17). Cohabitation group has the absolute difference values in terms of gyration, ellipse, 

and MCP as 9.4, 1337.9, and 594.1, respectively, whereas the single group has the highest 

values with respect to distance and kernel density as 68.0 and 5978.0 individually. However, 

the group of Partners (not living together) shows the lowest absolute difference values for all 

indicators except ellipse which is the lowest for Married people. On the other hand, none of the 

marital status factors were proven to be significantly different from 0 at the 5% level for all 

activity space indicators (Table 20).  
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Table 17. Descriptive statistics of the accuracy of CDR-based measurements based on marital status 

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel 

Density (𝐤𝐦𝟐) 

Distance 

(km) 

Married 
Mean 422.3 886.8 6.1 5151.7 59.5 

S.D. 782.8 1824.3 9.7 8269.7 56.6 

Cohabitation 
Mean 594.1 1337.9 9.4 5491.3 58.5 

S.D. 1342.3 2869.6 16.2 10002.5 69.4 

Without partner 
Mean 501.6 1270.4 9.1 5978.0 68.0 

S.D. 755.2 2556.1 16.7 10700.9 93.9 

Partners  

(Not living together)  

Mean 210.0 1049.0 5.2 2820.1 28.4 

S.D. 175.2 1284.9 5.0 2436.8 18.3 

The staff has the highest absolute difference values for all indicators compared to students. The 

difference in measurements is largest for kernel density as 11266.4 with a higher deviation 

(14362.7) in measurement whereas the gyration indicator represents the lowest difference for 

these two groups (12.4 for staff and 7.5 for students) (Table 18). However, students had a lower 

absolute difference on average compared to staff only for the gyration indicator, while it was 

proven not to be statistically significant at the 5% level for other indicators (Table 20).  

Table 18. Descriptive statistics of the accuracy of CDR-based measurements based on occupation 

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel 

Density (𝐤𝐦𝟐) 

Distance 

(km) 

Staff 
Mean 800.4 1854.9 12.4 11266.4 80.5 

S.D. 1336.9 3353.3 17.5 14362.7 101.2 

Student 
Mean 442.1 1107.0 7.5 4445.4 55.3 

S.D. 817.1 2338.3 14.6 8485.1 64.4 

Looking through the detail of table 19, it has been apparent that the absolute difference values 

based on each indicator follow a similar pattern. The absolute difference value for the single-

family is significantly lower than families with more than two members. On the other hand, 

the family with three members tends to show the lowest accuracy of CDR-based measurements 

for all indicators except for distance which is the highest for the family with four members. 

However, the regression analysis indicated that the family with three members had a higher 

absolute difference of the measurement than for the single-family regarding only gyration and 

kernel density (Table 20).   
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Table 19. Descriptive statistics of the accuracy of CDR-based measurements based on the family size 

 
Absolute 

Difference 

MCP 

(𝐤𝐦𝟐) 

Ellipse 

(𝐤𝐦𝟐) 

Gyration 

(km) 

Kernel Density 

(𝐤𝐦𝟐) 

Distance 

(km) 

One Person 
Mean 202.3 308.0 4.2 2494.2 41.8 

S.D. 456.5 828.9 9.5 7431.4 51.4 

Two People 
Mean 451.2 1125.2 7.5 4520.9 56.2 

S.D. 844.2 2423.4 14.4 8555.7 65.8 

Three People 
Mean 917.2 1983.8 13.3 12783 75.6 

S.D. 1527.0 3232.7 16.8 14459.6 74.6 

Four People  
Mean 659.0 1898.5 11.9 8213.8 81.7 

S.D. 869.5 3225.8 20.1 12581.5 117.7 

Table 20. The linear mixed model analysis of accuracy the measurement; Absolute Difference 

 

Log 

(MCP) 

𝛃 

Log 

(Ellipse) 

𝛃 

Log 

(Gyration) 

𝛃 

Log 

(Kernel Density) 

𝛃 

Log 

(Distance) 

𝛃 

Number of CDR 

(ref.: CDR <= 10) 
     

11 <= CDR <= 20 -0.155 -0.115 0.230 -0.215 -0.026 

21 <= CDR <= 30 -0.752 -0.633 -0.639 -0.683 -0.246 

31 <= CDR -0.578 -0.221 -0.163 -0.217 -0.245 

Gender 

(ref.: Female) 
     

Male -0.910 -0.387 -0.446 -0.826 -0.401 

Age Group 

(ref.: Young Adults) 
     

Middle-aged Adults -1.589 -2.130 -2.225* -2.357 -1.371* 

Old-aged Adults 2.607 -0.516 -0.538 0.205 1.630 

Marital status 

(ref.: Without partner) 
     

Married -0.647 -0.961 -0.869 -1.128 -0.029 

Cohabiting -1.917 -1.495 -1.293 -2.193 -0.969 

Partnership 

(Not living together) 
-3.411 -0.042 -0.990 -0.348 -3.218 

Occupation 

(ref.: Staff) 
     

Student -1.456 -1.803 -1.786* -1.295 -0.955 

The size of family 

(ref.: 1 person) 
     

2 people 3.619 3.059 2.110 3.337 1.277 

3 people 4.300 4.308 3.098* 5.690* 1.431 

4 people 2.368 2.359 0.899 1.958 0.578 

-2LL 1586.153 1626.353 1416.143 1652.559 1068.190 

Observations 477 

* indicates 5% significance level  
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3.4 Activity space indicators for a longer period 

The higher the length of the period, the higher absolute differences of CDR-based 

measurements except for kernel density which shows the opposite (Figure 11). In kernel 

density, the absolute difference is the highest on a 5-days period and it starts declining as the 

length of the period becomes longer.  

 

Figure 11. Graph of the mean value and confidence interval (CI, 95%) of the absolute difference; red 

points - mean value, whiskers - confidence interval. 
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4. Discussion 

This study focused on CDR-based individual activity spaces in comparison with GPS-based 

measurements. The general relationship between CDR and GPS-based activity spaces was 

explored and analyzed the accuracy of CDR-based measurements based on selected activity 

space indicators. Moreover, how temporal factors and personal characteristics impact on the 

accuracy of CDR-based measurements were investigated. Previous research generally focused 

on the usage of CDR data to estimate the individual movement patterns and paid less attention 

to the empirical consensus on the comparison of CDR and GPS data for estimating individual 

activity spaces (Ahas et al., 2010; Järv et al., 2015; Xu et al., 2016; Vanhoof, Reis, et al., 2018). 

The results from this research can contribute to the existing studies related to CDR data and 

enhance the understanding of the individual spatial movement patterns as well.  

This study has underlined four key discoveries. First, the general analysis shows both CDR and 

GPS-based measurements have similar skewed distributions for all activity space indicators 

and positive associations as well. In comparison to other indicators of CDR-based 

measurements, gyration and entropy were more closely related to GPS-based measurements. 

Similarly, Zhao et al. (2016) argued that CDR data are good enough to explore the human 

mobility pattern concerning gyration and entropy. Kernel density has the lowest accuracy and 

large deviations based on the absolute difference between CDR and GPS-based measurements. 

This is because the number of CDR is not frequent enough to capture the underlying movement 

patterns of subsets when kernel density is applied.  

Second, the impact of different temporal scales on the accuracy of CDR-based activity spaces 

was considered. The results show that the accuracy of the measurements is generally observed 

higher during the weekdays compared to the weekends regarding all activity space indicators. 

This result coincides with previous findings (Kamruzzaman & Hine, 2012) that individuals 

tend to have higher movement patterns during the weekend compared to the weekday. This 

could make the accuracy of the measurement lower for the weekend as people tend to move 

around more. One other reason would be that people make fewer call activities on weekends, 

which means that they have less CDR location points (Abeele et al., 2016). On the other hand, 

the monthly factor was not proven to have a statistically significant effect on the accuracy of 

CDR-based activity spaces in general. This is in contrast with previous findings whereby they 

discovered apparent seasonality in the activity space (Järv et al., 2014; Schönfelder & 
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Axhausen, 2016). This is because people have a predictable lifestyle whereby, they visit places 

of interest regularly regardless of the month. Moreover, in terms of the overall outlook on the 

temporal analysis, it does not show any significant differences in the factor of holidays 

regarding the accuracy of CDR-based measurements. The results could be related to the limited 

number of holidays data. 

Third, the role of the number of CDRs over defined categorized CDR groups in the accuracy 

of CDR-based measurements was investigated. There is a positive association between the 

number of CDRs and the accuracy of CDR-based activity space for all indicators. This means 

that the accuracy of the measurement increases as individuals use their phones more frequently, 

but its correlations were not statistically significant. This could be attributed to data wrangling 

regarding eliminating CDR location points having less than four per day. The correlation may 

have been higher assuming all CDRs were included. In the regression analysis, the number of 

CDRs was proven not to have a statistically significant effect on the accuracy of the 

measurements. This result is contrary to previous studies (Hoteit et al., 2016; Zhao et al., 2016; 

Chen et al., 2018). They argue that spatial errors in individual movement patterns are lower for 

people having more frequent CDRs.  

Fourth, the role of socio-demographic factors in the accuracy of CDR-based measurements was 

explored. Overall, none of the factors was proven to be significant to influence the accuracy of 

CDR-based activity spaces. This could be attributed to a reduced amount of data and a small 

number of people in different categories. Also, there could be factors that can impact the 

accuracy of the CDR-based measurements but were unavailable to be used for this study. On 

the other hand, the activity space for a longer period tends to have a higher absolute difference 

probably due to absolute numbers being large for a longer period.  

Lastly, we conclude the accuracy of CDR-based measurements depends on the type of activity 

space indicators applied as some indicators give higher accuracy of the measurements in 

comparison with others. Additionally, the accuracy of CDR-based measurements across 

different temporal scales is significantly influenced by only days of the week. On the other 

hand, personal characteristics are not considered important factors to explain the variability in 

the accuracy of CDR-based measurements.  

Due to the encountered limitation in the process of research completed in this study, there is 

still room for improvement in further studies. Data was drastically reduced in order to make it 



47 

 

applicable to the scope of this research in terms of the activity space indicators. This could be 

resolved when we consider calculating individual activity spaces over a longer period such as 

weekly activity spaces or monthly activity spaces. Besides, the minimum value of the area of 

the mobile antenna could be taken to calculate the activity space if the person has been 

stationary so that there are more days with activity space values in the analysis.  

Additionally, more socio-demographic factors like ethnicity, location of residential housing, 

etc. can be employed as a basis for assessing the accuracy of CDR-based measurements in the 

future. It would be possible to show a clearer causal connection between personal 

characteristics and the accuracy of CDR-based activity space.  

Furthermore, it should be careful to generalize the findings of this study due to the limited 

scope of this research regarding the sample size and study area. Further research could focus 

on different countries, especially, the ones that are in Asia or America, to see if those countries 

have the same effect as in Estonia. It would give more reliable results when many countries are 

involved.   
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Conclusions 

Many researchers in human mobility focus on measuring activity spaces using mobile 

positioning data due to its advantages compared to GPS data (Ahas et al., 2010; Järv et al., 

2015; Xu et al., 2016; Vanhoof, Reis, et al., 2018). However, there are inadequate studies that 

investigated how CDR and GPS-based activity spaces are related and the accuracy of CDR-

based measurements in comparison with GPS-based measurements. This is why the research 

explored the relationship between CDR and GPS-based activity spaces and investigated factors 

affecting the accuracy of CDR-based measurements regarding temporal factors and personal 

characteristics.  

The researcher employed the six major activity space indicators such as MCP, ellipse, gyration, 

kernel density, distance, and entropy to determine the individual activity space on a daily basis 

and also the absolute difference method was used to evaluate the accuracy of the CDR-based 

activity spaces in comparison with GPS-based activity spaces. Spearman’s rank correlation and 

linear mixed models were adopted for the statistical analysis. These two techniques were 

applied to find solutions for the research questions in this study.  

It can be seen that both CDR and GPS-based measurements are positively correlated and have 

similar skewed distributions for all activity space indicators. In comparison to other indicators 

of CDR-based measurements, gyration and entropy were more closely related to GPS-based 

measurements. Kernel density has the lowest accuracy and large deviations based on the 

absolute difference between CDR and GPS-based measurements. Thus, the accuracy of CDR-

based measurements depends on the type of activity space indicators applied as some indicators 

give higher accuracy of the measurements in comparison with others. 

The temporal factor of days of the week in relation to the accuracy of CDR-based activity 

spaces proved that the accuracy of the measurements is generally higher during the weekdays 

compared to the weekends regarding all activity space indicators. However, other temporal 

factors such as months of the year and holidays have no statistically significant effect on the 

accuracy of the measurements. Thus, it can be concluded that only days of the week factor is 

considered a significant factor to explain the variability in the accuracy of CDR-based 

measurements in terms of the temporal scales.  
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The number of CDRs is negatively associated with the accuracy of CDR-based measurements, 

but its correlations are not statistically significant enough. The statistical analysis shows that 

the effect of the number of CDRs on the accuracy of CDR-based measurements is not 

statistically significant as well. It is therefore conclusive to say that the number of CDRs has 

no significant impact on the accuracy of CDR-based activity spaces.  

Socio-demographic factors like gender, age, marital status, occupation, the family size can be 

concluded that they have no significant impact on the accuracy of CDR-based measurements. 

Therefore, the accuracy of CDR-based activity spaces does not vary among different socio-

demographic factors in this study.   
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Kokkuvõte 

CDR- ja GPS-andmete võrdlus inimeste tegevusruumi hindamiseks 

Inimeste tegevusruumi uurimine võib aidata kaasa inimeste käitumise mõistmisele ning on 

olnud inimgeograafia fookuses juba palju aastaid (Xu et al., 2016). Tegevusruum on 

geograafilise terminina laialdaselt kasutusel, kirjeldamaks peamisi kohti, kus inimesed 

igapäevaselt oma asju ajavad (Gong et al., 2020).  

Inimeste liikumise uurimisele on kasuks tulnud info- ja kommunikatsioonitehnoloogia areng, 

mis võimaldab koguda andmeid suure hulga inimeste liikumiste kohta ning täpse asukohaga. 

Seetõttu on CDR- ja GPS-andmeid inimeste tegevusruumi uurimiseks laialdaselt kasutatud ( 

Richardson et al., 2013; Amini et al., 2014; Dobra et al., 2015; Williams et al., 2015; Xu et al., 

2016; Vanhoof, Reis, et al., 2018). Siiski on ebapiisavalt uurimistöid, mis käsitleksid kuidas 

on CDR- ja GPS-andmete põhised näitajad seotud ning millised tegurid mõjutavad CDR-

andmete põhisete tegevusruumi näitajate täpsust. 

Selle uurimistöö eesmärk on hinnata CDR-andmete täpsust tegevusruumi hindamisel. CDR-

andmete täpsust on hinnatud erinevate ajaühikute lõikes ning kõnetoimingute arvust ja inimeste 

sotsiaal-demograafilistest tunnustest lähtuvalt. 

Mõlemad andmestikud (CDR ja GPS) on saadud Tartu Ü likooli Mobiilsusuuringute laborist. 

Uurimistöös kasutatud andmed on kogutud ajavahemikus 5. september 2013 kuni 10. märts 

2015. Uuringus on kasutatud 52 inimese andmeid kokku 8961 inimpäeva. Analüüsis on 

kasutatud 477 inimpäeva andmeid, mis võimaldasid võrrelda CDR-andmete täpsust kõigi 

valitud tegevusruumi näitajate puhul.  

Inimeste igapäevast ruumilist käitumist uuriti järgmise kuue tegevusruumi näitaja alusel: (1) 

minimaalne kumer polügoon (minimum convex polygon (MCP)), (2) ellips (ellipse), (3) ringi 

raadiuse ala (radius of gyration), (4) kerneli tihedus (kernel density), (5) vahemaa (distance) ja 

(6) entroopia (entropy). CDR-andmete põhiste tegevusruumi näitajate täpsuse hindamiseks on 

kasutatud kirjeldavat statistikat, korrelatsioonanalüüsi (Spearmani astakkorrelatsiooni), et 

hinnata CDR- ja GPS-andmete põhiste tegevusruumi näitajate vahelise seose tugevust ning 

kombineeritud lineaarseid mudeleid, et leida, kuidas mõjutavad CDR-andmete põhiste 

näitajate täpsust ajalised ja inimeste tunnused. 
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Analüüsi tulemused näitavad, et CDR- ja GPS-andmete põhised näitajad on positiivses 

korrelatsioonis ning neil on sarnane asümmeetriline jaotus kõigi tegevusruumi näitajate lõikes. 

Ringi raadiuse ala (radius of gyration) ja entroopia (entropy) näitajate puhul on CDR-andmete 

põhised näitajad sarnasemad GPS-andmete põhiste tegevusruumi näitajatega. Kerneli tiheduse 

(kernel density) puhul on CDR-andmete põhiste tegevusruumi näitajate täpsus 

absoluutarvuliste näitajate järgi kõige madalam. Statistiline analüüs näitas, et CDR-andmete 

põhiste tegevusruumi näitajate täpsust mõjutavad üksnes nädalapäevad. Lisaks sellele selgus, 

et kõnetoimingute arv ei mõjuta oluliselt CDR-andmete põhiseid tegevusruumi näitajaid, kui 

kõnetoimingute arv on üle nelja (st tegevusruumi näitajaid saab arvutada). Ü kski analüüsitud 

sotsiaal-demograafiline tunnus CDR-andmete põhist tegevusruumi täpsust ei mõjuta.   
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