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Abstract

Secure two-party computation problem is about two parties that want to compute some

function of their private inputs in a way that other party won’t learn it. We describe a

general way to perform secure two-party computation of a function specified as a boolean

circuit, which was proposed by A.A. Yao in 1982. This method is named Yao garbled

circuit evaluation and is secure against semi-honest adversaries. We present a new efficient

protocol for secure two-party computation Circus, that is secure against malicious adversary

in consistency model. Consistency model implies that either both parties will receive correct

output and persist privacy of their inputs or a honest party will know, that is was cheated

and that adversary potentially have learnt 1 bit of other party’s input value. We specify

all necessary sub-protocols and their security requirements and prove security of Circus in

malicious environment.
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Introduction

Digital circuits power all computations in the world. Every processor chip relies on them. Math-

ematical analog of digital circuit is boolean circuit which operates not on existence of electrical

power, but on logical values. Generally speaking boolean circuits are powerful model and very

interesting area of research about computations. On the other hand, all modern computations

are distributed and usually more than one party are involved. We combine our data to pro-

duce new results, but in the same time we put our privacy on the risk. Modern society bothers

about information being private very much. So computations should be as secure as possible. In

general problem of secure computations is widely known and a lot of research has been done to

discover possibilities to compute while preserving privacy of own data. General ways to do that

were known since 1982, when A.C.C.Yao proposed [1] way how to use boolean circuits to guard

computation against adversary who will behave honestly, but investigate information available

to find other parties inputs. However, if we allow adversary to behave at its own will, Yao’s

solution does not guarantee security. Later there were many attempts to improve this result and

several protocols that are secure against adversary with any behavior derived. Those techniques

are not only very computationally intense and require much time and computational power, but

also it is not trivial to prove that using them preserves security.

In year 2006, Mohassel and Franklin proposed another extension to originals Yao solution and

described protocol that could be secure and more efficient. However, they did not give full proof

of security of proposed construction in their paper [2]. In this thesis, we describe in details

protocol proposed by them, compare it to other existing solutions and give full proof that it is

secure. Additionally, we describe and partially created implementation of this protocol for the

Sharemind platform and give some basic overview of its performance and how much it can be

improved. In the next chapter, we describe necessary concepts and primitives to construct secure

protocol and then transition to defining protocol flow and proving that it is secure.
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1 Preliminaries

Cryptographic protocols are complex interactive computations that satisfy some security require-

ments and have desired security properties. Usually, to discuss security of a protocol quantita-

tively, a notion of adversary’s advantage against the protocol is used. Advantage characterizes

probability that given adversary succeeds at a certain attack. It would be very difficult to analyze

even midsize protocol in detail, for example, prove that some security property holds for every

possible adversary, unless we somehow abstract ourselves from low level implementation details.

Common way to decrease complexity of proofs is to use well defined cryptographic primitives

with given security properties as a black box functionality placeholders [3]. In this case, we split

complexity of the proof into having a real world implementation of the primitive and mathe-

matical proof that a protocol using this primitive is secure (satisfies needed properties). This

chapter describes concepts and cryptographic primitives that we need to construct protocols for

multiparty computation.

1.1 Time complexity

Time complexity of a computation describes how much time it takes to finish the computation.

One obvious way to quantify time complexity is to define it in terms of number of elementary

operations needed for the computation. This approach is not very usable, cause usually the

number of operation is hard to determine exactly and it what is more important it is different for

different input sizes. Thus, usually when someone speaks about time complexity they want to

asymptotically describe time behavior of a functions as size of its input goes to infinity. This is

comfortable way to define time complexity, but it not suitable for our needs. When we construct

a cryptographic primitive we assume that solving a specific problem takes a specific number of

elementary operations and conclude that those operations will take certain amount of real world

time. Our operations have a fixed input size: key length, length of a number, etc - so we do

not care about what could be function complexity on near-infinity sized inputs. Additionally,

asymptotic notations tend to hide a constant factors, which can result in orders size difference

between expected time and real-world time. We need to define some natural ordering of functions

based on their time complexity. So if we have some threshold t in number of elementary operations

that can be computed under time t, we can divide all functions with sizes of their inputs in two

groups, those that can be computed in less than t and those which cannot. In this thesis, we

mainly use only this aspect of time complexity that given a threshold t some functions cannot

be computed under time t. When we talk on a higher level of abstraction than a single function

computation it’s not always comfortable to specify this time constraint for every function. So we

say that a party is t-time if it can compute functions whose time complexity is not greater than

t. Note that this t-time is a bound on a total time of party’s computation, so it cannot compute

multiple t-time functions in parallel still being a t-time party.

Time complexity is a very convenient way to bound power of dishonest parties. We say that if
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a party that does not follow a protocol or tries to obtain some knowledge it is not supposed to

and it can compute functions which time complexity is not bigger than t is a t-time adversary.

1.2 Boolean circuit computation

Boolean function is a predicate, in other words, it is a function that takes some 1 bit values and

returns 1 bit. Basic boolean functions are not (¬), and (∧), or (∨), xor (⊕), eq (⇔), symbols

show their mathematical notations. Boolean function can be presented as a table every row of

which contains information about what is an output of the function for given argument values.

Such a table is called a truth table of a boolean (logical) function. For example following is the

truth table for and function.

α β α ∧ β
0 0 0
0 1 0
1 0 0
1 1 1

Table 1: Boolean and truth table

Combination of boolean functions is obviously also a boolean function. This fact is used to

combine several basic functions into a greater one. We just join outputs of one function to inputs

of another one, this allows us specify more sophisticated functions. Boolean circuit computation

is a way to specify computations that uses directed graphs to represent a combination of boolean

functions. Nodes of this graph are called gates and represent simple boolean functions (like and

or xor). Edges, also known as wires, in case of circuit computation can hold 1 bit value. It is

very similar how a hardware computations go, there are electrical wires that at every point of

time can either have a current or not. And a physical analogue of a gate is a computation unit

that sets current on outgoing electrical wires depending on an input wires current. So as in a

physical device incoming edges for every node in the graph correspond to input values to the

function of the gate. Outgoing edges will hold output of the function after computation.

To compute the circuit one needs to evaluate every gate’s value. Consider the following full

adder circuit as present in the Figure 1 below.

Circuit’s inputs are bits A and B, Cin is a curry bit if it exists (if there were previous addi-

tions), outputs are S which will hold bit value of (A + B) mod 2, and an output curry bit to

propagate addition further Cout. Suppose we know values of A, B, and Cin. Then to evaluate a

circuit we are evaluating its gates one by one. At each step, we evaluate one gate which inputs

are known, so for the example above we cannot evaluate or right away. But we could evaluate

gates in this concrete example in a left to right fashion. Evaluation goes straightforwardly, we

have a gate g and all its input wires contain bit values. If they does not one needs first to
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Figure 1: Full adder digital circuit [4]

evaluate gate that has wire with no value as an outgoing one. This evaluation sets bit values to

all outgoing wires of this gate according by gate’s truth table.

Boolean circuit is a very powerful computation model, for example we can do randomised com-

putation with it. All we need is just specify some input wires that will hold presampled random

bit values. We can obviously construct circuits for deterministic functions also. For instance we

will show how to construct circuit to compute greater than function: gt(α, β) = α > β, where α

and β are 32-bit integers. We name α and β bits by index, α0 is least significant bit of α and

α32 refers to a most significant bit of α. We will use following gates: and, or, eq and not - all of

them in their straightforward logical way. Gate and is true if both arguments are true, or is one

of arguments is true, eq if both arguments are of the same value, not inverts input bit.

First, we define 32 equality gates. Let eqi = αi ⇔ βi, for all i in {0, . . . , 31}. Note that

already here we can define f(α, β) = α = β as and of all eqi gates. But gt is more interesting.

Now α is greater than β if for any bit i: αi > βi and ∀j ∈ [i+ 1; 31] αj = βj . This fact allows us

to construct bit-gt gates in a very straightforward manner. We start with 31-th and 30-th bits:

gt31 = α31 ∧ ¬β31
gt30 = eq31 ∧ α30 ∧ ¬β30

Now we need to introduce more gates which will accumulate boolean value if bits greater than

given index are equal in both input values.

u30 = eq31 ∧ eq30

And in general:

ui = eqi ∧ ui+1

Now we can proceed with bit-gt gates that are left:

gti = ui+1 ∧ αi ∧ ¬βi
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Now we have values if α is greater than β because of any i-th bit, so we just or all these

values to obtain the result. In the same way, we can construct function less than lt .

Note that there are two obvious ways how to estimate the time complexity of a boolean

circuit. We can define a total time to compute a circuit as a number of gates.

ttotal = |C|, where C is a set of all gates of a circuit.

If we allow parallelization of computations then a circuit can generally be computed faster

than in a number-of-gates time, so minimal time to compute a circuit depends on a depth of the

circuit, cause all gates on a single level can be computed simultaneously:

tminimal = depth(C) where depth(C) is depth of the circuit.
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2 Cryptographic tools

2.1 Pseudorandom generators and functions

Random in common sense means unpredictable. So, say that we want to have random string

x which is n bits long. The most unpredictable way to get this string is to uniformly sample

set {0, 1}n. If n is fairly large it is very hard to get n bits with enough entropy. So we use

a pseudorandom generators and functions to emulate source of randomness. They are pseudo-

random because they produces result that is difficult to predict. Pseudorandom generator is

a deterministic function that takes seed s of size m (which is small comparing to size of the

output) and stretches that to a hard to predict output of the size n. Formally it is defined as

f : S → X , where S is a seed space and X is a stretched output space. A security requirements

for a pseudorandom generator f is that its output must be unpredictable, i.e., indistinguishable

from a random sampling. Let’s define games that describe this behavior for a pseudorandom

generator f on Figure 2.

GA0[
x←−

u
{0, 1}n

return A(x)

GA1[
s←−

u
{0, 1}m

return A(f(s))

Figure 2: Pseudorandom generator indistinguishability games

In those games, an adversary A is trying to guess index of the game it is playing. So now we

can define security of pseudorandom generator in terms of advantage of adversary A.

AdvPRGf (A) = |Pr[GA0 = 1]− Pr[GA1 = 1]|

A function f is (t, ε)-pseudorandom generator if for all t-time adversaries A advantage

AdvPRG(A) is less or equal to ε.

As real life candidates for pseudorandom generator we can mention modified version of syn-

chronous stream cipher SNOW2.0 [5]. For instance, time complexity of algebraic attacks against

modified SNOW2.0 is about 21292 operations. However, no precise estimates for (t, ε) pairs are

known and cannot be known without extensive breakthrough in complexity theory.

A pseudorandom generator is a deterministic function from cartesian product of key space

and message space to a ciphertext space: f : K ×M → C. Usually we want to run a function

many times so key part of the argument space can be fixed and referred implicitly as function

index, thus if for instance we fix a key k, pseudorandom function f will be referred as fk :M→ C.
Now, let Fall be a set of all functions f : K ×M→ C. Then we can define a function family

F ⊆ Fall as a multiset of functions F = {fk : k ∈ K} with fixed key part k. Note that it is a

multiset, cause there could exist k1 and k2 such that k1 6= k2, but fk1
≡ fk2

. Let us design two

games similarly to games for pseudorandom generator, see Figure 3.
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GA0
f ←−

u
Fall

for i ∈ {1, q} :[
yi ← f(xi)

return A(y)

GA1
k ←−

u
K

for i ∈ {1, q} :[
yi ← f(k, xi)

return A(y)

Figure 3: Cryptographic games to define pseudorandom function family

Similarly as before with pseudorandom generator, adversary is trying to guess which game is

it playing so its advantage is defined in a similar way

AdvPRFf (A) = |Pr[GA0 = 1]− Pr[GA1 = 1]|.

A function family F is (t, ε)-pseudorandom function family if for all t-time adversaries A
advantage AdvPRF (A) is less or equal to ε.

Pseudorandom permutation is defined similarly, but through families of permutations. Let

Fprm be a set of all permutations f : K ×M→M, and let P ⊆ Fprm be a permutation family.

We define pseudorandom permutation games in a similar manner as distinguishing pseudo-

random function games above. The differences are only that in game GA0 we sample a function

not from set of all function, but from a set of all permutations Fprm. Advantage is defined in

exactly the same way as with pseudorandom functions

AdvPRPf (A) = |Pr[GA0 = 1]− Pr[GA1 = 1]|.

A permutation family P is (t, ε)-pseudorandom perumation family if for all t-time adversaries

A advantage AdvPRP (A) is less or equal to ε.

Now when we have defined those primitives, let us specify what could be a real life candidates

for them. For instance block ciphers are usually candidates of pseudorandom permutations

by design. Specifically we are interested in AES (Rijndael) cipher which is a pseudorandom

permutation family, where we sample a specific function by providing a key to AES.

2.2 Array encryption

Usually encryption scheme are used to encrypt messages, so encryption enc and decryption dec

are defined to operate on the following domains:

enc : K ×M −→ C ,

dec : K × C −→M ,
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where K, M and C are respectively key, message and ciphertext spaces. To simplify matters in

this thesis, we need a modified definition of encryption scheme, as we need to encrypt tables and

arrays so the single cell can be revealed by revealing keys. Assume we have the following setup

of four element array arranged in a table, see Figure 4.

Figure 4: Array encryption table

We have four key values and four messages arranged in the table. Now, we need array

encryption scheme to use two different keys to perform encryption (decryption) operation on

each message. To accommodate this fact we modify domains of encryption scheme:

enc : K ×K ×M −→ C ,

dec : K ×K × C −→M .

Notion enckx,ky (m) = c means, that message m is encrypted using keys kx and ky to produce

ciphertext c. Decryption operation keys are notioned in the same manner as indexes, not argu-

ments of the operation: deckx,ky (c) = m.

Let us now define a notion for the whole table encryption. Let m = (m00,m01,m10,m11), then

the following formula describes one of the options how to organize array encryption operation

AEk0
x,k

1
x,k

0
y,k

1
y
(m) =

(
enck0

x,k
0
y
(m00) enck0

x,k
1
y
(m01)

enck1
x,k

0
y
(m10) enck1

x,k
1
y
(m11)

)
.

Note, that opposite to encryption we want decryption operation being called on each cell

explicitly. More specifically, security requirement for such array encryption scheme is that ad-

versary which has two keys, one from each pairs k0x, k
1
x and k0y, k

1
y, should be able to decrypt

only one cell. This desired property of encryption scheme is to be secure under chosen plaintext
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attacks, so now we define formal games for IND-CPA setting, see Figure 5.

GA0

k0x, k
1
x ← K×K

k0y, k
1
y ← K×K

m0,m1, bx, by ← A
if m0[bx][by] 6= m1[bx][by] then return ⊥
c0 ← AEk0

x,k
1
x,k

0
y,k

1
y
(m0)

c1 ← AEk0
x,k

1
x,k

0
y,k

1
y
(m1)

return A(c0, k
bx
x , k

by
y )

GA1

k0x, k
1
x ← K×K

k0y, k
1
y ← K×K

m0,m1, bx, by ← A
if m0[bx][by] 6= m1[bx][by] then return ⊥
c0 ← AEk0

x,k
1
x,k

0
y,k

1
y
(m0)

c1 ← AEk0
x,k

1
x,k

0
y,k

1
y
(m1)

return A(c1, k
bx
x , k

by
y )

Figure 5: Array encryption IND-CPA games

Advantage of an adversary defined as usual as the following difference:

AdvIND−CPAAE (A) = |Pr[GA0 = 1]− Pr[GA1 = 1]|.

An encryption scheme is (t, ε)-array encryption IND-CPA secure if for all t-time adversaries A
advantage AdvIND−CPAAE (A) is less or equal to ε.

To build one-time pad array encryption scheme we need 2` bit long keys to encrypt four

element array with ` bit long messages. Namely, we can split each key k into ` bit long blocks

and use these blocks sequentially when we need to encrypt message with key k. To get rid of

the restriction on key length we use pseudorandom generator to stretch keys upto necessary

length. If keys are not long enough, we use pseudorandom generator f to stretch them upto

needed length. The result is given in Protocol 1. For clarity, let f : K →M×M, particularly

f : {0, 1}k → {0, 1}` × {0, 1}` and let f(x)[0] denote the first component of f(x) and f(x)[1] the

second component.

Input: k0x, k
1
x, k

0
y, k

1
y and message m = (m00,m01,m10,m11).

Output: ciphertext c = (c00, c01, c10, c11)

1. Compute c00 = m00 ⊕ f(k0x)[0]⊕ f(k0y)[0].

2. Compute c01 = m01 ⊕ f(k0x)[1]⊕ f(k1y)[0].

3. Compute c10 = m10 ⊕ f(k1x)[0]⊕ f(k0y)[1].

4. Compute c11 = m11 ⊕ f(k1x)[1]⊕ f(k1y)[1].

Protocol 1: Array encryption scheme using pseudorandom generator for one-time-pad AEf
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Lemma 1. If generator used to stretch keys for array encryption scheme is (t, ε)-pseudorandom

generator, one-time pad xor array encryption scheme is (t, 8 · ε)-IND-CPA indistinguishable.

Proof. (Sketch) Protocol 2 describes ideal functionality for array encryption AE◦.

Input: message m = (m00,m01,m10,m11)
Output: ciphertext c = (c00, c01, c10, c11)

1. If not provided, generate keys k0x ← {0, 1}
2`
, k1x ← {0, 1}

2`
, k0y ← {0, 1}

2`
, k1y ← {0, 1}

2`
.

2. Compute c00 = m00 ⊕ k0x[0]⊕ k0y[0].

3. Compute c01 = m01 ⊕ k0x[1]⊕ k1y[0].

4. Compute c10 = m10 ⊕ k1x[0]⊕ k0y[1].

5. Compute c11 = m11 ⊕ k1x[1]⊕ k1y[1].

Protocol 2: Ideal array encryption scheme AE◦

Remember, that advantage of the adversary A is defined in terms of winning games described

in Figure 5. Consider then, following intermediate games given on Figure 6.

GA2

k0x, k
1
x ←M×M×M×M

k0y, k
1
y ←M×M×M×M

m0,m1, bx, by ← A
if m0[bx][by] 6= m1[bx][by] then return ⊥
c0 ← AE◦k0

x,k
1
x,k

0
y,k

1
y
(m0)

c1 ← AE◦k0
x,k

1
x,k

0
y,k

1
y
(m1)

return A(c0, k
bx
x , k

by
y )

GA3

k0x, k
1
x ←M×M×M×M

k0y, k
1
y ←M×M×M×M

m0,m1, bx, by ← A
if m0[bx][by] 6= m1[bx][by] then return ⊥
c0 ← AE◦k0

x,k
1
x,k

0
y,k

1
y
(m0)

c1 ← AE◦k0
x,k

1
x,k

0
y,k

1
y
(m1)

return A(c1, k
bx
x , k

by
y )

Figure 6: Array encryption IND-CPA games with random number generator

As AE◦ uses uniformly sampled keys, so messages of the tables are xor-ed with random

bit-strings, which results in ciphertext being uniformly sampled from all possible ciphertexts.

Thus, these games are perfectly indistinguishable from each other, which means that there is no

adversary that can distinguish which of these games is it playing with significant certainty.

Let’s investigate what is the computational distance between games GA0 and GA2 . The only sig-

nificant difference in their description is that encryption is performed in GA0 using keys stretched

by pseudorandom generator and for GA2 using uniformly random bit-strings. Essentially, the only

difference is in how c0 is computed (cause adversary does not see c1). Now, in AEf ciphertext

c0 = F (m0, f(k0x), f(k1x), f(k0y), f(k1y)), where f is pseudorandom generator and F is determinis-

tic function, which actually does the same as AEf , but is written explicitly with keys as arguments.
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On the other hand in AE◦ respective ciphertext is computed as c◦0 = F (m0, k̄0x, k̄
1
x, k̄

0
y, k̄

1
y), where

keys are uniformly sampled from M×M space. To derive a computational distance between

these games consider following series of hybrid games, where ciphertext c0 is computed in the

following fashion:

G00 : c0 = F (m0, k̄0x, f(k1x), f(k0y), f(k1y)) ,

G01 : c0 = F (m0, k̄0x, k̄
1
x, f(k0y), f(k1y)) ,

G02 : c0 = F (m0, k̄0x, k̄
1
x, k̄

0
y, f(k1y)) .

Now the distance between GA0 and G00 is clearly ε, as if some adversary A can achieve better

result, we can construct distinguisher BA for PRG games on Figure 2, which achieves the same

success rate as A. This leads to a contradiction with function f being (t, ε)-pseudorandom

generator. B will query PRG game with k0x, then form all necessary input for A by uniformly

sampling three other keys, and return whatever A returns. This strategy obviously gains the

same success, as A in distinguishing GA0 from G00. By similar argument distance between G00
and G01 is ε, distance between G01 and G02 is ε and distance between G02 and GA2 is ε. Thus the

total distance between GA0 and GA2 is 4 · ε.
In the same manner we show that distance between GA1 and GA3 is 4 · ε. Thus, total computa-

tional distance between games GA0 and GA1 is then 8·ε, so encryption scheme is (t, 8·ε)-IND-CPA

indistinguishable.

2.3 Commitment schemes

Commitment scheme is usually a two-phase protocol, which allows a party to send messages to

other party and without instantly revealing their content and later also reveal the content of

messages. Usually, when one party sends message to other, it reveals content of this message

immediately. When using a commitment, this process of sending message becomes actually two-

phase: sending commitment value and then sending decommitment value. This allows sender

to send a message without immediate revealing of message content. Commitment schemes are

widely used in building cryptographic protocols since about 1982, but formally formalized first

by Brassard, Chaum, and Crepeau [6]. First of all, there is a generation procedure Gen(),

which is used to generate a shared parameters pk for a commitment scheme, two main phases of

commitment scheme are: creation Com and opening Open of a commitment. Those are defined

as Compk : R×M→ C ×D and Openpk : C ×D →M, where R is a space of randomness, M is

the message space, C and D are respectively spaces of commitment and decommitment values.

Shared parameters define behavior of the Com and Open procedures, so we usually specify them

not as an argument, but as index, like (c, d) ← Compk(m). In the notation above c is called

commitment value, d is decommitment value, and pk is a shared parameters value that were
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produced by Gen. Commitment scheme is functional iff

∀pk ← Gen(),∀m ∈M : Openpk(Compk(m)) ≡ m.

The fact that there are two values: commitment and decommitment instead of a single

message, is used hide the message from the receiver until decommitment value arrives to him.

Usually, a party that commits to a message m computes (c, d) ← Com(m) and sends c to the

receiver, then at some point of time later it sends d also to the receiver, so the last could verify

the message was Open(c, d).

Now from all properties a commitment scheme can have, we are interested in hiding and

binding. Hiding means that commitment value alone does not provide meaningful information

GA0
pk ← Gen()

(m0,m1)← A(pk)

(c, d)← Compk(m0)

return A(c)

GA1
pk ← Gen()

(m0,m1)← A(pk)

(c, d)← Compk(m1)

return A(c)

Figure 7: Commitment scheme hiding property games

to the verifier. More formally (t, ε)-hiding property of the commitment scheme means that for

any t-time adversary advantage against commitment scheme hiding property games, defined on

Figure 7, is bounded by ε where the advantage is then defined

Advhidingf (A) = |Pr[GA0 = 1]− Pr[GA1 = 1]|.

Binding means that commiter, after publishing a commitment value cannot provide decom-

mitment values that open the commitment to different messages. Formally, it is defined as

probability of adversary to win this binding game (see Figure 8).

GA0
pk ← Gen()

(c, d0, d1)← A(pk)

mi ← Openpk(c, di) for i ∈ {0, 1}
if m0 = ⊥ or m1 = ⊥ then return 0

return [m0 6= m1]

Figure 8: Commitment scheme binding property game

The advantage against binging property is simply defined as probability of the adversary to
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win the binding game

Advbindingf (A) = Pr[GA0 = 1] .

Commitment scheme is (t, ε)-binding if there exist no t-time adversaryA, such that advantage

Advbinding(A) is greater than ε.

2.3.1 Pedersen commitment scheme

Suppose we have a finite cyclic multiplicative algebraic group G. If discrete logarithm problem

in it is hard, then a group is DL-secure. Figure 9 defines the formal security games for discrete

logarithm problem. More specifically it is (t, ε)-DL-secure if no t-time adversary A can gain

GA
x←−

u
G

y = gx

x̄← A(y)

return x
?
= x̄

Figure 9: Discrete logarithm game

advantage AdvDLf (A) = Pr[GA = 1] greater than ε. Which means that adversary cannot correctly

compute discrete logarithm of a random group element with probability more than ε.

Pedersen commitment scheme [7] is set up by choosing G = 〈g〉 a q-element DL-group, where

q is prime. Take y uniformly from G, then (g, y) will be public parameters of the commitment

scheme. To commit to message m ∈ Zq, one needs to choose r ← Zq and compute commitment

value c ← gm · yr and decommitment value d ← (m, r). Pair (m, r) is a valid decommitment

value for commitment c with public parameters pk = (g, y) if c = gm · yr. This construction

gives us following security guarantees for hiding and binding properties. In this thesis we present

only sketch proofs of properties of Pedersen commitment scheme, rigorous mathematical proofs

about them, interested reader can find in Liina Kamm work about classification of commitment

schemes [8].

Theorem 1. If G it (t, ε)-DL-secure group with q elements, where q is a prime, Pedersen

commitment scheme is perfectly hiding and (t, ε)-binding commitment scheme.

Proof. (Sketch) hiding. Following is a valid argument that could be used to construct a straight-

forward proof. Note that yr is uniformly distributed over G, since r is uniformly chosen from Zq,
g is a generator of G and y = gx for some x 6= 0. And as gm ·G = G, so c is uniformly distributed

over G. So there is no way for adversary to determine which hiding game is it playing.
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binding. We can prove binding property by showing that a valid double opening to a Pedersen

commitment will reveal a discrete logarithm of gy (which is random group element), so it is

impossible for (t, ε)-adversary. Suppose (m0, r0) and (m1, r1) are valid decommitment values

for some commitment c = gm · yr, note that they must open to a different values, but:

c = gm0 · yr0 = gm1 · yr1 ⇐⇒ logg(y) =
m0 −m1

r0 − r1

As r0 6= r1, adversary who is able to break binding property can compute discrete logarithm. It

contradicts the fact that G is (t, ε)-DL-secure.

2.3.2 Split receipt commitment

For this thesis, we need another type of commitment scheme with peculiar security properties. It

has the same procedures as basic commitment scheme Gen, Com and Open. Generation procedure

Gen as usual produces public parameters. However, Com and Open work on a slightly different

domains

Com : R×M→ C ×D ×D ,

Open : C × D ×D →M .

Important feature of this type of commitment is that it produces two decommitment values for

each commited message. Requirement for this scheme to be functional is the same is usual one

pk ← Gen() ∀m : Open(Com(m)) = m.

Consider values that are produced by Com procedure c, d1, d2 ← Com(m), c is commitment value,

d1 and d2 are respectively first and second decommitment values.

Security requirements for the scheme are then the following. Pairs c, d1 and c, d2 are hiding,

meaning that one cannot learn commited message by observing only one such pair of values.

Formalising this requirement as games we have following game, see Figure 10.

GA0
pk ← Gen()

(m0,m1, r)← A(pk)

(c, d1, d2)← Compk(m0)

return A(c, dr, r)

GA1
pk ← Gen()

(m0,m1, r)← A(pk)

(c, d1, d2)← Compk(m1)

return A(c, dr, r)

Figure 10: Split receipt commitment hiding games
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With corresponding advantage definition, which is as usual

Advs−hid(A) = |Pr[GA0 = 1]− Pr[GA1 = 1]| .

Binding property of split receipt commitment stands in the fact that there should exist no

double opening possibilities if c and one of the decommitment values are fixed. The following

game on Figure 11 formalizes this property.

GA0

pk ← Gen()

(c, d1, d̂1, d2, d̂2)← A(pk)

m0 ← Openpk(c, d1, d2)

m1 ← Openpk(c, d̂1, d̂2)

if d1 6= d̂1 ∧ d2 6= d̂2 then return ⊥
if m0 = ⊥ ∨ m1 = ⊥ then return ⊥
return [m0 6= m1]

Figure 11: Split receipt commitment binding game

Advantage AdvA of adversary A is probability that it will win this game

Advs−bind(A) = Pr[GA0 = 1].

Now, split receipt commitment is (t, ε)-hiding if no t-time adversaryA’s advantage Advs−hidf (A)

is greater than ε. Also, split receipt commitment is (t, ε)-binding if no t-time adversary A’s ad-

vantage Advs−bindf (A) is greater than ε.

Now we describe how to organize a split receipt commitment scheme from a usual commitment

scheme CS such that decommitment value d produced by this commitment scheme is an element

of Abelian group (D,+). Then to perform a split receipt commitment SR-Com operation on

message m, we compute (c, d) ← Com(m), and then additively share d as a pair (d1, d2), where

d1 ← D and d1 + d2 = d.

Lemma 2. If Com is (t, ε)-hiding and (t′, ε′)-binding commitment scheme, decommitment value

of which is an element of Abelian group (D,+), split receipt commitment SR-Com based on it

and additive sharing is (t, ε)-hiding and (t′, ε′)-binding.

Proof. hiding property. We prove hiding property of such split receipt commitment scheme

with a straightforward reduction. If there exist t-time adversary A who gains advantage more

than ε, then we can construct adversary B to break hiding property of underlying commitment

scheme in the following way. Adversary B initializes A and submits messages produced by A to

hiding game. Upon receiving commitment value c, adversary B will generate random d1 ∈ D,
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and return whatever A returns on (c, d1, r). Obviously, advantage of B against underlying com-

mitment hiding is equal to A’s advantage against split receipt commitment hiding game and we

have reached a contradiction.

binding property. Proving binding property of this split receipt commitment scheme is

also straightforward. Adversary, who can provide valid double opening triples (c, d1, d2) and

(c, d1, d̂2), can double open underlying commitment with pairs (c, d1 + d2) and (c, d1, d̂2), since

d1 +d2 6= d1 + d̂2 in case of successful double opening for SR-Com. The similar argument holds if

adversary successfully attacks binding of split receipt commitment with triples that share value

of d2. This implies, that adversary B against Com binding games, that uses A to produce triples

(c, d1, d2) and (c, d1, d̂2) and returns (c, d1 + d2, d1, d̂2) will success if A would. And as Com is

(t, ε)-binding A’s advantage against SR-Com binding property is at most ε.
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3 Secure multiparty computation

Consider the following scenario, when we have several parties that have their respective inputs.

They want to compute a function on their inputs, but in the same time they want to do that in

a way so their inputs will not be learned by the other parties.

3.1 Secure two-party computation

Secure two-party computation problem differs from a multiparty computation by the fact, that

there are only two parties involved. Assume that two parties P1 and P2 want to compute function

f(x, y) = (z1, z2) from their respective inputs x and y. They want to compute it in a such way

that P1 receives z1 as the output and P2 the output z2. Privacy requirements state that no

party should learn other’s party input. Other requirements for this computation is correctness,

the output should be from corresponding to the distribution of function f outputs. This setting

is different from a multiparty setting in several ways, most severe is that one of the parties

will always be in a dominant position. Suppose that we have two parties and that they want

to compute some function in a such manner that both parties will receive some output. They

will do it by running a protocol that consists of several messages that should be sent from one

party to another. Pretend that a protocol run consist on sending four messages: α1, β1, α2, β2.

Messages noted as αi are sent from P1 to P2, messages βi in another direction from P2 to P1.

Now after exchanging those messages both parties will learn their outputs. However note, that

the last message β2 does not give any information to P2, so it can learn its output just from

first three messages. That puts it into a dominant position in a sense that P2 can exit from

protocol at a time when it has received all interesting for it information, and P1 still has not.

It can be shown that in any two-party protocol with any number of messages suffers from this

vulnerability [10]. So while investigating a two-party protocol we should have this possibility of

a dominant party to cancel early.

3.2 Security of a two-party computation

Let’s say those parties have their respective inputs x and y, and they want to compute function f ,

in a way that f(x, y) = (z1, z2) and party one, referred as P1 gets z1 as the output and party two

which will be referred as P2 gets output z2. First, we will construct an idealized version of how

can this computation can be organized. Pretend there exists a trusted third party (referred as

T), which is totally honest, does not want to learn parties’ inputs and is trusted by both parties

involved in the computing f . The ideal protocol uses T to collect inputs from the parties, then

T computes (z1, z2) ← f(x, y) and then it sends z1 to a first party and z2 to a second one. To

accommodate the possibility of dominant party to abort computation before other party receives

its output, ideal protocol incorporates a phase when dominant party sends continue/abort signal

to T. It happens after P1 receives its output but before P2 does. Protocol 3 describes this setting,

where P1 is dominant.
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1. T collects inputs from both parties: f and x1 from P1, x2 from P2.

2. T computes (z1, z2)← f(x1, x2)

3. T sends z1 to P1

4. P1 sends a signal to T. It is either halting signal that corresponds to P1’s wish not to
continue protocol run, or continue signal, that allows T to release P2’s output

5. If T received a signal to continue, it sends z to P2. Otherwise P2 receives ⊥.

Protocol 3: Ideal functionality for two-party computation with T

The outcome of such protocol run depends only on inputs that T gets from parties. We

assume that computation goes magically in T, so it is correct and no information is leaked

during computation. Thus, if any attack exist for this ideal functionality, it depends only on

submitting specifically crafted input to T or observing outputs of the computation. Note, that

in any real implementation of the protocol both these steps: submitting inputs and receiving

outputs are present. Thus any attack possible against ideal functionality is achievable against

real protocol, as corrupted party can exploit submitting same input or observe output in the

same way as against real protocol. Thus any real protocol will be less or equally secure as ideal

one. It is important to note, that it is possible that this ideal protocol could offer very little or no

security guarantees at all (we can construct ideal protocol that is totally insecure, for example, in

the sense of privacy of inputs). But then, a real protocol that implements the same functionality

will also be totally insecure, thus offer equal amount of security, which do not contradicts with

point previously stated.

In this thesis an ideal protocols are marked with a circle, like this π◦, compared to a real

protocol π. A notion π1 � π2 means that π1 is less or equally secure than π2.

Now we present a general way to proof the security of a protocol. Assume that we have a

protocol π1 that has some security guaranties (in extreme case no security guarantees, which we

denote as zero or no security case). And we have a protocol π2 that we want to prove being at

least as secure as π1. We make an assumption that there is an adversary A that is good against

protocol π2. Then we show that we can use A to construct an adversary A◦ that is at least as

good against protocol π1 as A against π2. Consequently we have shown that we can successfully

attack protocol π1 if there exist adversary which can successfully attack π2.

Figure 12 defines formal games to determine if a protocol is secure in a standalone model.

Standalone model implies that there are no pre- or post-processing context around the protocol,

so we just initialize all parties, adversary and run protocol.

Note, that in these games parties inputs φi does not necessary contains only party’s input

to the protocol, it also can contain any auxiliary information that this party can possess before

protocol execution.
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GAREAL
sample : φ1, φ2, φA ← D
init : A(φA), P1(φ1), P2(φ2)

run protocol : π

collect outputs : ϕ = (ϕ1, ϕ2, ϕA)

return B(ϕ)

GAIDEAL
sample : φ1, φ2, φA ← D
init : A(φA), P1(φ1), P2(φ2)

run ideal protocol : π◦

collect outputs : ϕ◦ = (ϕ1, ϕ2, ϕA)

return B(ϕ◦)

Figure 12: Standalone security games

Now in these games B is a success evaluation predicate, which evaluates how well adversary

A is doing against some pre-specified attack target against real protocol. If adversary A succeeds

in cheating with larger probability against real protocol than any adversary in the ideal world,

then intuitively there should exist some distinguisher for outputs of these adversaries. Thus, for

existence of reduction A 7−→ A◦ it is important that

∀A ∃A◦∀D : ϕ◦ ≡ ϕ ,

where ≡means indistinguishability of distributions. However, note that mere indistinguishability

is not enough as reduction must be efficient. To be able to prove that protocol is secure, we need

the fact that A◦ running time is not much greater that A time. So we need reduction A 7−→ A◦

by such that execution times of A and A◦ are approximately the same. So along with reduction

of adversaries we require that exist relation tA 7−→ tA◦ , where tA is execution time of A and tA◦

is execution time of A◦. And we require that tA◦ 6 fs(tA), where fs is execution time of A◦

and those times satisfy condition of tA◦ 6 fs(tA), where fs is a polynomial function. So, when

distributions ϕ◦ and ϕ coincide, then a protocol is perfectly secure with running time overhead

fs. Being a perfectly secure protocol means that for all possible attack targets real protocol is

as secure as ideal protocol and we cannot improve any more.

If output distributions are ε-indistinguishable ϕ◦ ≡ε ϕ, then real protocol is statically secure

and respectively if distributions are computationally ε-equivalent ϕ◦ ≡ε ϕ, protocol is (fs, t,

ε)-secure. For perfectly secure real protocol no success evaluation predicate can distinguish

which game is it playing. For computationally secure protocols a smaller set of predicates cannot

distinguish games, so we must put upper bound on predicate evaluation’s t-time.

Suppose we have a real world protocol π, its ideal analogue π◦ real world adversary A attack-

ing π. Simulator SimA is an adversary against π◦, that uses A internally. Essentially, we can

think of SimA as a proxy that sits between A and T of the ideal protocol and intercepts commu-

nication between them. It is clear, that generally real world adversary A cannot communicate

with T directly because of incompatibility of their interfaces, but SimA solves this problem.
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3.3 Oblivious transfer

Oblivious transfer is a special case of secure two-party computation [12]. Consider setting party

one has database of messages m = (m0, . . . ,mn). Party two has index i, of which message

does it want. The function those parties want to compute is f(m, i) = (⊥,mi). Security

requirements are the same as for general secure two-party computation: every party gets only

output intended for it and cannot learn other party’s input values. Note that if we assume there

is no way to organize oblivious transfer, then general secure two-party computation is obviously

also unachievable, cause oblivious transfer is special case of general two-party computation.

One of the most basic settings is one-out-of-two oblivious transfer
(
1
2

)
-OT , when message

database size is 2. There are many ways to implement oblivious transfer protocol and a lot of

research has been done in this area.

3.4 Security of multiparty computation

Consider following games at Figure 13 that describe multiparty computation setting.

GAREAL
sample : φ1, φ2, . . . , φn, φA ← D
init : A(φA), P1(φ1), P2(φ2) . . . ,Pn(φn)

run protocol : π

collect outputs : ϕ = (ϕ1, ϕ2, . . . , ϕn, ϕA)

return B(ϕ)

GA
◦

IDEAL
sample : φ1, φ2, . . . , φn, φA ← D
init : A◦(φA), P1(φ1), P2(φ2) . . . ,Pn(φn)

run ideal protocol : π◦

collect outputs : ϕ◦ = (ϕ1, ϕ2, . . . , ϕn, ϕA◦)

return B(ϕ◦)

Figure 13: Multiparty computation security games

Similar to secure two-party computation setting, real protocol is secure, if distributions of

parties’ outputs in real and ideal protocol runs are indistinguishable and t-time of ideal adversary

A◦ is comparable to real world adversary A t-time. More specifically, real protocol is perfectly

secure if both following conditions hold:

∀A ∃A◦∀D : ϕ◦ ≡ ϕ ,

tA◦ 6 fs(tA) ,

for a polynomial fs.

Additionally, in the same way as for secure two-party computation, we can define ε-statically

security and (fs, t, ε)-computational security for a real protocol if, respectively, ϕ◦ ≡ε ϕ or

ϕ◦ ≡ε ϕ and tA◦ 6 fs(tA) hold.

To get an insight, how proving security of a protocol works in a multiparty computation

setting, consider a model of an protocol’s communication between several parties on the Figure

14. We have four parties that are represented by circles and double-ended arrows represent
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Figure 14: Real protocol’s communication model

communication channels that are between every pair of parties. Now to model an ideal analogue

of this protocol we substitute direct communications between parties with a communication via

trusted third party T as defined on Figure 15).

Figure 15: Ideal protocol’s communication model with T

An exact way of adversary controlling corrupted parties must be specified by the setting, but

one of the most usual settings used is static corruption of at most k parties. This means that

adversary chooses upto k parties to corrupt before protocol execution, and it gets all information

these parties have if it is a honest-but-curious adversary or gets full control over these parties in

a malicious setting. Consider a figure below, suppose parties on the right of T are corrupted and

send all their information to an adversary.

Now, to prove security of the protocol, we need to add a simulator to that model. Simulator

has two interfaces: T interface which is used to organize communication in a ideal protocol, and

adversary interface which deals with a real world protocol and adversary implementation. Look

at the Figure 16.

Dashed circles are virtual parties that simulator creates to accommodate communication
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Figure 16: Simulator fits between real world adversary and ideal protocol

between adversaries and corrupted parties. Additionally, simulator controls randomness source

and CPU of an adversary to being able to rewind adversary and execute it from the beginning to

supply it with a predefined randomness. Now, the goal of simulator construction is to put a real

world adversary against an ideal protocol. All the computation is done by ideal protocol and

must be as secure as possible. If there exist correspondence A 7−→ SimA such that outputs of

parties in the run with simulator were indistinguishable from the output of the parties without

it. Then adversary can simulate this run by itself and actual engagement of a real party does

not add knowledge of an adversary, thus protocol is secure.
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4 Introduction to Yao garbled circuits

Consider the following modified scenario of secure two-party computation. Two parties P1 and

P2 want to compute (∅, z)← f(x1, x2), where x1 and x2 are respective parties inputs. Important

difference from a general two-party computation case is that only one party is going to receive

meaningful output value, as sender P1 always receives ∅ if protocol run completes.

First general solution to such secure two party computation problem was proposed by A. A.

Yao in the seminar paper [1]. His idea consists of three main techniques:

• reordering gate’s truth table rows to hide content of the gate;

• modifying boolean circuit to operate on encryption scheme keys, not just bit values;

• using oblivious transfer to securely give evaluation party input to the circuit.

In this thesis we use xor+PRG array encryption scheme AEf described before. This simplifies

description of Yao garbled circuit construction procedure and is somewhat easier to understand

for a reader.

4.1 Yao garbled circuit construction

Flipping values on wires. We start securing boolean circuit evaluation with the following

procedure. In the evaluation process, every wire in circuit will hold one bit value. We need those

values not to provide any meaningful information to the adversary. To do that we will randomly

modify the meaning of this value. Procedure to do that is the following, for every wire we with

probability one half “flip” its values. Flipped values are then detached from actual meaning of

value on the wire, cause a wire which must hold value, for instance, 1, after being flipped can

contain either 1 or 0.

If we do not modify anything else in the circuit, obviously evaluation will not compute intended

function correctly. Thus, we must modify content of truth-tables of gates accordingly. As an

illustration of the said before, suppose we have an and gate with its ordinary truth-table. This

gate has two input wires and one output wire. Suppose then that we have flipped the value on

first input of the gate (wire x in the Table 2), then 0 on that wire actually means 1. Suppose

flipped wire x is denoted by x̄, then we modify the table in the following way.

x̄ y x ∧ y
0 0 0
0 1 1
1 0 0
1 1 0

Table 2: and gate truth table with flipped x wire

Note, that we have changed contents of result column of that table. If values on wires y or

x∧y have been also flipped, we would need to also take that into account when computing table.
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Extending values on wires. Procedure for this step of securing circuit evaluation is the

following, for every wire w of the circuit we generate two random keys for array encryption

scheme. We just create two random keys for each wire. Then we use gates’ reorganized truth-

tables from the previous step, and substitute bit values in those with corresponding wire keys.

Let k0x, k1x, k0y, k1y be keys generated for wires x and y respectively. Additionally, let k0z , k1z be

keys generated for gate’s output wire z.

Also, let f be a pseudorandom generator that we will feed to array encryption scheme to

stretch keys. Then we put those keys into the truth-table of the gate and encrypt values of the

output column (see Table 3). As in the previous example, we have wire x flipped, and denote that

x̄ y x ∧ y
k0x k0y enck0

x,k
0
y
(k0z ||0)

k0x k1y enck0
x,k

1
y
(k1z ||1)

k1x k0y enck1
x,k

0
y
(k0z ||0)

k1x k1y enck1
x,k

1
y
(k0z ||0)

Table 3: and gate encrypted truth table

by using x̄ in the gate’s truth-table. Note, that output wire key is concatenated with a bit value,

so domains for array encryption scheme are then: K = {0, 1}128, M = {0, 1}129, C = {0, 1}129;

for AES with 128-bit keys as pseudorandom generator.

Now output column of this table is filled with pseudorandom data. Garbled circuit generation

is finished now and description of the circuit will consist of:

• description of wires, from which gate it goes to which;

• description of gates: encrypted flipped truth table result column.

Note that in order to reverse the output of the circuit, which will be a key value, circuit gener-

ator, also known as generating party, must remember corresponding key to bit value transitions

and if output wire was flipped. This means that if circuit generator has flipped values on output

wires of the circuit, it must remember which wire has it flipped, cause then value produced by

circuit evaluation could be flipped one.

Transferring keys to evaluator. Now this circuit cannot be evaluated without knowing

keys corresponding to a values for input wires. Party that generated circuit can send keys

corresponding to its input with circuit description, they do not reveal bits of input, so it is still

private. On the other hand, parties need to engage in oblivious transfer protocol to get keys that

correspond to circuit evaluating party’s input to evaluator.

The setting for Yao garbled circuit protocol is such, that generating party has two keys and

evaluating party has a bit value for each input wire. After oblivious transfer circuit evaluator

will learn key value corresponding to input value and circuit generator will learn nothing.

To evaluate a garbled circuit, party receives its description and keys corresponding to party
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input. Then through oblivious transfer protocol run it obtains keys corresponding to its input

and continues with the following evaluation scheme. For every gate which input wires contain

key values, decrypt truth table. As every row of truth table is encrypted with different key pairs

it will be able to decrypt only one row. Set values from that decrypted row to outgoing wires of

this gate. Proceed with this gate by gate evaluation until no non-evaluated gates left. Collect

circuit output value from output wires. These values for every output wire w, will be in the form

of outw = key||b, where key is one of the keys generated for output wires and b is a bit value of

the output. Note, that for input and intermediate wires key values needed to proceed with circuit

evaluation. However, we do not use key values of output wires, cause nothing is encrypted with

those. So generator of the circuit can put any bit-string of corresponding length there. Array

encryption scheme works fine on any bit-strings and actually can be used to encrypt messages of

arbitrary length, so it does not limit information that can be put on an output wire. Additional

feature of Yao garbled circuit protocol is that output wires can be flipped or not. If output wires

are certainly not flipped, evaluator in addition to bit-string information will learn bit value of

the output. On the other hand, setting my be fixed so that generating party can flip values on

output wires, then, evaluator will learn just information contained in output bit-string and not

actual bit values.
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5 Security of Yao circuit evaluation

First public results about Yao garbled circuit were available from 1982, but the whole paper by

A.A.Yao [1] was not publicly disclosed. Actually only the extended abstract is publicly available.

No rigorous proof of security for garbled circuit protocol can be found there. One published proof

appeared in 2009 by Lindell and Pinkas [11]. In this paper we provide another proof that Yao

garbled circuit protocol is secure against semi-honest adversary. Semi-honest adversary follows

protocol and just tries to investigate information to learn other party’s output.

Note, that despite the fact that there must exist a dominant party in two-party computation, in

case of Yao circuit evaluation domination does not provide any additional advantage for parties.

Suppose sender P1 is in dominant position, then after receiving its output it can abort compu-

tation. Fortunately, its output is always ∅, so it cannot learn anything from it and aborting

the computation is equivalent to refusing to submit its input: in both cases sender gets null

and receiver P2 receives ⊥. If receiver is dominant it also does not change anything to abort

computation, cause sender then receives ⊥ instead of ∅, which does not play any relevant role

either. So we deliberately remove that dominance step from two-party computation process and

further do not mention it.

Now the setting for secure Yao circuit evaluation is that there are parties sender P1, receiver P2

and T in an ideal model. Let x be sender’s input, y receiver’s input and F (x, y) function P1 want

to compute. As the result of the protocol, receiver learns F (x, y), sender learns nothing.

Note a very important observation, that then there exists function f(y) = F (x, y), such function

where sender’s input is specified implicitly. We will insist on the condition that f must be a

predicate (have one-bit output) and be representable with a boolean circuit. Additional detail

is that, however we need f be a predicate, Yao garbled circuit can hold arbitrary information

attached to the output values. We let messages z0, z1 be bit-string of appropriate size be attached

to output values 0 and 1 respectively.

Now we require this computation to be correct, as in actually computing not to leak infor-

mation about other parties’ inputs, but we allow the receiver to obtain some knowledge about

the function f , more specifically it will learn skeleton of boolean circuit that specifies f . We

use notion skeleton(f) to refer to this information. If f = ⊥ or evaluation of f(y) = ⊥, then

receiver will get ⊥ as a result. Consider then, the following scheme at Figure 17, that describes

the protocol run in an ideal model.

We will name that protocol an ideal conditional oblivious transfer COT◦. During COT◦ one

party specifies single bit output function f and two strings z0 and z1, other specifies input y and

the second party gets zf(y).

Now, when we have specified how Yao circuit evaluation goes in ideal model, let us quickly

recall how the protocol is implemented in a real world. Sender prepares garbled circuit, encrypt

it and has keys for input wires ready to be transferred to receiver. Then parties are engaged in
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Figure 17: Yao circuit evaluation in ideal model, COT◦

series of OT protocols to transfer keys corresponding to receiver’s input to receiver. Next, sender

sends circuit description to receiver, which then evaluates this garbled circuit and gets output

bit b and a bit-string that was used as a key for output wire.

In this chapter we prove the following theorem regarding the security of garbled circuit

protocol described above.

Theorem 2. If AEf is (t, ε)-array encryption scheme, COT is perfectly secure against malicious

sender and (t, |C| ·ε)-secure against malicious receiver, where |C| is number of gates in the circuit

describing function supplied by sender.

The proof is divided into several parts that we describe in next subsections. We start with

proving security against sender and then proceed with proof of security in case where circuit

receiver is corrupted.

5.1 Security against corrupted sender

5.1.1 Security against semi-honest sender

The case of corrupted generating party is trivial, but to be consistent we still present a proof of

security here.

In current setting in standalone model corrupted party gets input to the protocol as φ =

(history, f, z0, z1), where history is any information available to a party before protocol run,

and f, z0, z1 is the intended input.

It is easy to construct a simulator in this model, a SimA receives the same intended input

f, z0, z1. Then it is engaged in a series of OT protocols with P1. As a result of each of these OT
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protocol, P1 needs to receive ∅, so SimA provides these ∅. Note, that semi-honest sender cannot

modify its intended input, so SimA proceeds with sending this f, z0, z1 to T as the input to ideal

Yao circuit evaluation. Sender does not receive any more output, so SimA is done. Computation

is correct, as it is performed by T.

We proceed then with showing that distributions of the outputs of the parties are indistin-

guishable. Note that, P1’s output must be in any case ∅ as it is ∅,. . . , ∅ for OT protocols, so

it is the same as in ideal protocol. P2 will receive some output from circuit evaluation, cause

circuit generating party is semi-honest, so it follows protocol and circuit will be evaluable. And

thus, the output of P2 coincides with the P2’s output in ideal model.

Now in both ideal and real models, in the protocol run adversary sees P1’s input and all values

received by P1. As these coincide in ideal and real model, adversary behavior and output is the

same in ideal and real models. Now we showed that outputs of ideal protocol (ϕ◦1, ϕ
◦
2, ϕ
◦
A) are

equivalent to those of real protocol (ϕ1, ϕ2, ϕA), simulator overhead is negligible, thus protocol

is as secure as the ideal functionality provided by T. Note, that formally, we need to prove that

t-time of the SimA is at most polynomially larger than t-time of A. However, as SimA does not

do any computation by itself its overhead is not significant. Note, that in proofs further in this

thesis, we omit explicit specification of simulator’s t-time if a trivial intuition correctly suggests

that overhead is polynomial.

5.1.2 Security against malicious sender

The case with maliciously corrupted sender is different, case actual input to the protocol in this

case can be different from the intended input that simulator knows. Thus, we must first extract

the “actual”. This is done in the following manner.

Recall, that parties do series of OT protocols to transfer keys to receiver. Parties use ideal

OT that includes T. So sender’s input to that OT protocols for each input wire w contains both

keys, the one that corresponds to value 0 and the one for value 1.

During these OT protocols, simulator SimA collects all keys that correspond to all possible

inputs of the receiver and responds with expected ∅ to the sender. Now, sender provides garbled

circuit description. Note, that simulator has now all input keys and thus is able to fully disclose

the circuit obtaining both actual output values ẑ0, ẑ1 instead of one, and plain description of the

f (as it can trace how circuit evaluation actually went). Then SimA submits (f, ẑ0, ẑ1) as the

input to ideal Yao circuit evaluation and finishes.

Computation is correct, as it is performed by T which has received actual input values origi-

nated by malicious sender. Distributions of outputs are the same, as P1 receives ∅ and several

∅ as result of OT protocols. P2 gets one of ẑ0, ẑ1 in both ideal and real models. Exact value

which it receives depends only on its input, so for honest receiver it will be the same value in

both ideal and real models. Adversary, as in semi-honest case, sees P1 inputs (f, z0, z1) and all

values seen by P1 which includes several ∅ from OT protocol runs and ∅ as P1’s output. These

values coincide with values seen by adversary in ideal model, so adversary’s outputs in real and
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ideal models are the same.

Thus, we have shown that Yao circuit evaluation is perfectly secure against malicious sender.

5.2 Security against corrupted receiver

To prove security of Yao garbled circuit protocol against corrupted receiver, we start from an

ideal protocol implementation, which uses trusted third party and gradually replace parts of the

ideal protocol with parts of the real protocol in a way that preserves security.

We start with a showing ideal functionality of Yao garbled circuit protocol. First of all, let’s

fix the problem in detail. There are two parties P1 and P2 that have their private inputs x and

y and they want to compute a function F (x, y) = (∅, z). Moreover to simplify the construction

of protocol, let function f(y) = F (x, y) be already presented as a boolean circuit. Refer back

to Figure 17, which defines ideal Yao protocol functionality. Now we have honest sender, so the

function it incorporates into garbled protocol is the intended one, so T knows it. Additionally,

to enhance readability we explixitly specify sender P1’s input, despite the fact that it can be

hidden in the definition of function f to compute. Consider the following simplified model at

Figure 18 that describes this case.

Figure 18: Ideal Yao circuit functionality

We have two bit inputs x = x1x0 and y = y1y0 on the left side of a big box and an output z1 on

the right side. Let this box be constructed in a way that no adversary can see what is done inside

it. The computation in the box is performed by a trusted third party. This protocol is secure.

Now we start modifying this construction by implementing procedures described previously in

the section about construction of garbled circuit. We will show that doing so preserves secureness

of the protocol.

First of all, we with probability one half flip values on every wire and modify gates of a circuit
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to accommodate those flipped values. Let’s formally define and investigate properties of flipping

procedure. Flipping a wire means that we sample a fair coin and xor its result with value on the

wire. Suppose σ ← {0, 1}, then wflipped = w ⊕ σ. Note that probability that there will be a

certain value on wire is one half.

Pr[wflipped = 0] = Pr[w = 0] · Pr[σ = 0] + Pr[w = 1] · Pr[σ = 1] = Pr[w = 0] · 1

2
+ Pr[w = 1] · 1

2
=

1

2

Pr[wflipped = 1] = Pr[w = 0] · Pr[σ = 1] + Pr[w = 1] · Pr[σ = 0] = Pr[w = 0] · 1

2
+ Pr[w = 1] · 1

2
=

1

2
=

1

2

And now we can safely allow adversary to see values on the wires. Figure 19 clarifies this

setting. Assuming that P2 is corrupted, adversary can see now values that are on the wires

marked with small A boxes. We denote gates whose truth-table is modified according to wires

being flipped with ⊗ symbol.

Figure 19: Hybryd Yao protocol with T gates evaluation

Now, evaluation of the circuit goes essentially as before, but not in one step with T. Instead,

we have circuit gates that can be computed by T, and wires that are visible to an adversary.

But we have already flipped wires’ values and changed gates functionality to mirror those flips

to preserve correctness of computation. As in settings before, parties do series of OT protocols

to transfer keys corresponding to receiver’s input to receiver. Then receiver starts to evaluate

ideal gates. Hybrid protocol insists that receiver first evaluate all input gates of the circuit, to

incorporate that we will restrict circuits so that every output bit depends on all input bits, so

for every bit of output zi = F (x0, . . . , xn, y0, . . . , yn), where F is some function. This will ensure

that all input gates must be evaluated before any output gate while we, obviously, do not exclude

any functions from being computable that way.

Then receiver proceeds with opening all other gates of the circuit. Ideal gate evaluation goes in

the following manner. Receiver provides inputs for the gate to T and receives values for output

wires of that gate.
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Lemma 3. If circuit’s wire has been flipped, gates are implemented as ideal gates and adversary

can evaluate every gate only once, then evaluation is correct and perfectly secure against semi-

honest receiver.

Proof. (Sketch) Note, that protocol insists that input gates are evaluated first, so we show that

after evaluation of input gates adversary does not learn anything. Adversary cannot learn input

directly, as only one party is corrupted and other party sends its input directly to T. Any wire

evaluated by receiver contains random value from {0, 1} with equal probabilities, so it does not

leak information. So while adversary sends values of intermediate gates to T, it receives a value

for a wire which does not allow him to learn if the output wire was flipped or not. Evaluation of

the output gates reveals outputs to P2, as output wires are never flipped.

Next, we show a simulator for this protocol. As in previous case, Sim starts engaging in series

of OT protocols. With each OT Sim gets one bit of receiver’s input and to obtain “actual” input

just concatenates them appropriately. Receiver on the other hand for each OT wants to receive a

response with a key, that corresponds to his input bit. Simulator generates these keys randomly

as a circuit generating party would do when garbling a circuit, and send them to receiver.

After that simulator proceeds with ideal Yao circuit evaluation with T as now it knows

receiver’s input. As a result Sim receives from T skeleton(f) of the circuit and actual output

value. Simulator transfers skeleton(f) to receiver.

Now receiver starts to evaluate gates of the circuit. For every non-output gate Sim responds

to receiver with a randomly generated key value. Note that these values come from the same

distribution as original keys that were situated on the circuit wires. In response to evaluation of

output gate Sim sends actual output value it got from T to receiver.

Protocol run with simulator produces correct output as P1 receives correct output ∅ and P2

receives correct output as Sim just proxies output received from T. For every output wire of

intermediate gate Sim replies with random values, which have the same distribution as values

returned by T in ideal model. Thus, part of information available to the adversary, which includes

P1’s input, all messages receiver by P1, which are ∅’s, is the same in ideal and real models. The

other part on information available to the adversary, namely keys for wires of the circuit comes

from the same distribution in ideal and real models, so adversary’s outputs must be the same

in ideal and real models. Thus protocol is correct and perfectly secure against semi-honest

receiver.

Now, note very important detail that T will evaluate every gate only once. If we allow evalu-

ating party to evaluate gate more than once (for different input values), then party can evaluate

gate for all possible input sets, determine if output value was flipped or not and determine other

party’s input for this gate.

Now we need to implement this one-time evaluating gate as a real functionality. For that, consider

the Figure 20 that describes the circuit evaluation model for next step of the proof of security.

Now all wires and truth-tables of gates marked with a small box with A are visible to adversary.
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Figure 20: Real circuit visibility model

As adversary now knows content of truth-tables it could evaluate gates more than once, thus

it can deduct information about inputs. To overcome this problem we substitute bit values on

wires to a randomly generated keys for array encryption scheme (described in previous chapter)

and use input wire values to encrypt output wires values.

Let g be a pseudorandom generator, for instance we can use AES’s key stretching procedure as

such.

Suppose we will use AES with 128 bit keys as pseudorandom generator in array encryption

scheme described previously. Array encryption scheme needs to operate then on the following

domains:

enc : {0, 1}128 × {0, 1}128 × {0, 1}129 −→ {0, 1}129 ,

dec : {0, 1}128 × {0, 1}128 × {0, 1}129 −→ {0, 1}129 .

We concatenate keys of the output wires with probably flipped bit values of wires to ensure

that evaluator knows which cell of truth-table to decrypt.

As described previously array encryption scheme, when using good pseudorandom generator,

is fairly secure against chosen plaintext attacks, we now have the result that adversary can only

open one cell of the encrypted truth-tables of each gate.

Now we have all needed results to state the following compiler theorem.

Theorem 3. If AEf is (t, ε)-array encryption scheme, Yao garbled circuit protocol that uses

AEf to encrypt truth-tables of circuit’s gates is perfectly secure agaist malicious sender and (t,

|C| · ε)-secure against malicious receiver, where |C| is number of gates in the circuit.

Proof. (Sketch) As usual we start with the construction of an appropriate simulator Sim. Sim-
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ulator starts with series of OT protocols to transfer necessary keys to receiver. During every

OT run, receiver reveals one bit of his input to Sim, on the other hand Sim generates a key in

the same manner as sender would generate a wire key and send it to receiver. After all OT

protocols are completed receiver has a certain set of keys k. Simulator, on the other hand,

knows receiver’s actual input y and proceeds with ideal evaluation of Yao garbled circuit with

T, receiving skeleton(f) of the circuit and actual output value z.

Then simulator populates gates of skeleton(f) with arbitrary boolean functions, for example ∧,

thus getting a full circuit for function f̂ with the same skeleton, i.e., skeleton(f̂) = skeleton(f).

Then simulator uses functionality of a honest garbled circuit sender with inputs (f̂ , z, z). Ad-

ditionally Sim makes sure that keys for input wires that correspond to receiver’s input are the

ones from k. Then Sim reveals description of this garbled circuit to receiver.

Note, as receiver knows keys from k it is able to evaluate that circuit (open one value of each

gate’s truth-table until the output wires). Moreover, as circuit was prepared with both output

values equal to z, after evaluation receiver will gets z as the output.

It is not trivial to rigorously prove, that receiver cannot distinguish between description of

garbled circuit received in real world run and the one supplied by simulator. However note,

that output values of receiver in both models coincide, as they are equal to z. Additionally,

skeleton(f̂) = skeleton(f), so receiver cannot easily distinguish between those. An actual proof

can be done using mathematical induction by showing that after evaluation of every gate receiver

does not learn information that helps him to distinguish those circuits with probability more than

ε. We leave complete proof of this fact as an exercise for a interested and intelligent reader1.

These probabilities are accumulated for every gate producing in total |C| · ε probability that

these circuits can be distinguished. Note, that P2 in the real protocol does not interact with P1

except for OT-s, which are handled by T, and input submission. So there is no interaction where

malicious behavior can achieve any benefits compared to semi-honest behavior. So while we have

not said about adversary being malicious, the conclusion does not change and distributions of the

outputs for both parties and adversary remains indistinguishable from distribution of outputs in

ideal model.

Having shown that real protocol is simulatable, provides correct computation and its outputs

are indistinguishable from an ideal protocol run, we conclude that Yao garbled circuit protocol

is secure against malicious receiver.

5.3 Remark on security against malicious adversary

Note an interesting fact, in the previous section we have proven, that Yao garbled circuit evalu-

ation shaped as we did it (recall Figure 17) is secure against malicious adversary. Careful reader

would notice that it is different from the original problem setting for secure two-party compu-

tation. For secure two-party computation problem the setting is usually fixed in such way, that

both parties know what function F (x, y) they want to compute. However, we have modelled

1An interested and intelligent reader who has roughly 8 hours of free time and lots of tea or coffee to spare.
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ideal world so, that only sender specifies a function that will be computed. So, actually, Yao

garbled circuit protocol described above does not solve secure two-party computation problem

even for receiver only output functions (∅, z) ← F (x, y). The reason is that sender can specify

its input (fx, z0, z1) such that fx(y) 6= F (x, y).

However, modelling Yao garbled circuit in this way allows us to present a protocol using

symmetric Yao circuit evaluation to achieve security against malicious adversary in standard

secure two-party computation setting.
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6 Consistent Yao circuit evaluation, Circus protocol

There exist several ways to increase security of Yao Circuit evaluation protocol to achieve security

against malicious adversary. Usually we sacrifice performance for that. Here we would like to

describe one common way to do that by including randomness into protocol by using technique

is called cut-and-choose.

Main idea of this technique is that circuit generator must prepare many circuits instead of one.

Evaluating party will choose some of them to evaluate and request sender to prove that leftover

circuit were produced correctly. After that receiver evaluates chosen circuits and majority of

theirs outputs is taken as final output value. Mohassel and Franklin state [2] that this approach

allows circuit evaluation to be secure with inverse exponential probability. However obviously

amount of computation and network resources needed to perform such protocol grow linearly

with number of circuits generator constructs. There are constant attempts to invent modified

protocols to secure Yao circuit evaluation against malicious adversary, but their performance tend

to suffer. For instance Abhi Shelat and Chih-Hao Shen derive [15] protocol that is faster than

usual cut-and-choose approach, but still with severe time overhead over plain Yao garbled circuit

evaluation protocol. In this thesis we present a protocol with better theoretical computational

performance.

6.1 Security models

First of all, we need to specify a security model that we will use. Recall a description of standard

ideal model presented earlier in Protocol 3. This is a strong model, where no information is

leaked to an adversary. We want to describe two more models that are weaker in the sense that

there exists possibility for adversary to get some additional information regarding other party’s

input.

K-leaked model. A weaker model that allows adversary, which we will denote as P1 to be

consistent with figures below, to learn k bits of other party’s input. This model was introduced by

Mohassel and Franklin [2], when they presented a protocol idea that became a base for protocol

presented in this thesis. Therefore for historical reasons and overall better understanding of

security properties of protocol presented further, we need to describe such model here. More

specifically, we show a 1-leaked model, where adversary gets to know 1 bit about other party’s

output. The computation in this model goes as described at Figure 21.

Note that we speak about 1-leaked model, if function g that P1 submits to T is a predicate.

If it is instead a k-bit output function this figure then describes 1-leaked model. Essentially, the

main difference from the standard ideal model lies in the fact, that corrupted party asks T a

predicate about other party’s input, receives the output of specified predicate. Presumably, P1

is in the dominant position here, as it can abort computation early, in which case P2 will receive

⊥ as the output.
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Figure 21: Two-party computation in k-leaked model

Consistency model. Consistent computation guarantees that malicious participants cannot

learn anything beyond their intended outputs and honest participants can detect malicious be-

havior that alters their outputs [16]. Consider the Figure 22 for description of computation in

the consistency model. The predicate π() is called halting predicate, cause if it is true T halts

Figure 22: Two-party computation in consistency model

and broadcasts ⊥ for every output value. Note, that it is very similar to a function g(y) in the

1-leaked model, however we note it differently to emphasize it’s predicate nature of returning a

single bit. Additionally, note that this model is stronger than 1-leaked model described before,

as in case of consistent computation, corrupted party may learn 1 bit about other party’s input,

however it may occur that he does not. For symmetric function evaluation, where both parties

need to receive meaningful outputs, not ⊥, consistency model is equivalent to 1-leaked model, as

sender which received ⊥ will know that π(y) was evaluated to true.

Note, that if we restrict ourselves to asymmetric functions, where sender receives ∅ as the

output, then consistent model satisfies privacy requirements of standard ideal model against

corrupted sender. As the only way for corrupted party to learn information is to submit a

specific predicate to T and observe its further behavior. If T sends normal value as the output

of the protocol, then predicate was evaluated to false, also, sender will receive ⊥ if predicate
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was true. However, as sender receives no output, then he cannot determine to which value was

predicate evaluated. Another interesting property is that if specified predicate is true, receiver

will also get ⊥ instead of a normal output value, which will indicate that sender was malicious.

In this thesis, we present a protocol for secure two-party computation problem that is secure

against malicious adversary in consistency model. To describe the protocol, we need several

subprotocols be defined as a black-box ideal functionality.

6.2 Subprotocols

To simplify analysis of the protocol we assume that several protocols exist and are implemented

either by specification provided with description below or using T.

Commitment scheme. First of all, we need a split receipt commitment scheme SR-Com.

Detailed description of security properties for such scheme based on some usual commitment

scheme Com was provided earlier in this thesis, so now we just specify how SR-Com imple-

mentation works. For futher analysis, assume that SR-Com split receip commitment scheme is

(t1, εhiding)-hiding and (t2, εbinding)-binding. Previously, we have shown how to construct a split

receipt commitment scheme from usual commitment scheme Com, which is (t1, εhiding)-hiding

and (t2, εbinding)-binding. Namely, to commit to message m, a party generates (c, d) = Com(m),

then splits decommitment value d additively into two parts (d1, d2) such that d = d1 + d2. To

commit to a message, party sends c to a receiver, and a triple (c, d1, d2) is a decommitment

value. Sender will leave one part of the decommitment d1 to himself, thus allowing to open the

commitment only when he provides it.

Disclose when equal. Another block needed for protocol construction is modified conditional

disclosure of secrets with equality check protocol DWE. For this protocol parties fix some condi-

tion and specify inputs. If condition specified is met by input values, then parties receive output,

which can be either directly specify by them or received during computation inside DWE.

We need a specific version of DWE, where parties specify parts of split receipt commitment

values in hope that they both can open other’s party commitment to the same value. In this

case, they will receive this value as the output. This behavior is described at Figure 23.

Notion of the variables used in Figure 23 is that barred value, for instance, c̄m0 is originally

produced by P2, while normal variables without a bar, for instance dm1
1 are originally produced

by P1. The upper index on the variable shows during commitment of which message was this

value produced, for example, cm0 was produced in SR-Com(m0).

Now, this version of DWE◦ protocol does the following, each party provides parts of two

decommitment triples for SR-Com and the second decommitment value d2. Trusted third party

tries to open each of the commitment values of a party with decommitment value d2 provided

by other party. If T finds a pair of decommitment values that open to the same message, this

message becomes an output value. If parties fail to open each other’s split receipt commitment to
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Figure 23: DWE◦ protocol

the same value they both will receive ⊥. Note, that for consistency model we need asymmetric

version of DWE◦, where sender do not receive any output values, as opposite to a symmetric

DWE◦ pictured in the figure above.

6.3 Circus protocol description

Word circus refer to a series of choreographed acts given by travelling clowns, acrobats, trained

animals etc. The word also describes the performance that they give, which is usually a series

of acts that are choreographed to music and introduced by a “ringmaster”. We hope that such

name properly resembles the flow of values in the protocol, that we will define further, and pro-

vides appropriate mnemonic experience.

We assume that all primitives mentioned above exist and treat them as an ideal black-box im-

plementations. Additionally parties have fixed a function F (x, y) they want to compute before

protocol run. From a bird’s eye view Circus protocol can be describes as following. Parties

execute split receipt commitment protocols and obtain commitments to messages “0” and “1”.

Then they execute two rounds of COT protocols P1 with P2 on receiving end and the other way

around (some details on this will follow). Then parties use DWE providing commitments from

the beginning and results of corresponding COT-s. Then they output whatever DWE output was.

Figure 24 describes Circus with black-box implementations of subprotocols defined above.

Consistently with the notion used before, every value with a bar, i. e. f̄() is originated at

the receiver’s side, and values without bar on the sender’s side. Additionally note, that however
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Figure 24: Circus protocol

parties have fixed a boolean function F (x, y) to compute, they submit other functions to COT◦

protocols. A honest P1 will submit function f̄(y) = F (x, y) and a honest P2 is expected to submit

function f̂(x) = F (x, y). Let us also assume that the function F (x, y) is such, that both parties

want to obtain the same value: zi = F (x, y). Also both parties know that function F (x, y) is

a predicate, so output can be either 0 or 1, so honest parties will specify m0 = 0 and m1 = 1.

Now we have fixed all important details and can prove the following lemma.

Lemma 4. If SR-Com is a (t, εbinding)-split receipt commitment scheme, the following statements

hold. If P1 is malicious, P2 receive either F (x, y) or ⊥, where x is the message submitted to

second instance of COT◦, with probability 1−εbinding. If P2 is malicious, P1 receive either F (x, y)

or ⊥, where y is the message submitted to first instance of COT◦, with probability 1− εbinding.

Proof. First, we investigate malicious P1 case. Consider the following decommitment triples that
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are involved in DWE◦ protocol:

t0 = (c̄m0 , d̄1
m0 , d̄2

m0) ,

t1 = (c̄m0 , d̄1
m0 , ˆ̄d

mf̄(y)

2 ) ,

t2 = (c̄m1 , d̄1
m1 , d̄2

m1) ,

t3 = (c̄m1 , d̄1
m1 , ˆ̄d

mf̄(y)

2 ) .

Decommitment triples t0 and t2 are constructed by honest P2 and thus open to respectively

m0 and m1. As split receipt commitment scheme SR-Com is εbinding-binding, each of the triples

t1 and t2 can only be opened to respectively m0, m1 or ⊥. If malicious P1 can, for instance, open

triple t1 to another value, we can straightforwardly construct adversary winning split receipt

commintment binding game. Additionally, both those triples can be open to non-⊥ values with

negligible probability, so only one of these triples will produce a non-⊥ value.

Thus, using value provided by malicious P1, which is ˆ̄d
mf̄(y)

2 , DWE◦ can open exactly one of

the triples generated by P2 to exactly the value P2 has commited to.

Now, note that, P2 is honest, so when it provides value d
mf̄(x)

2 it opens right commitment

triple generated by P1 as f̄(x) = F (x, y).

So now, DWE◦ will produce correct output, cause P1’s commitment will be opened using

correct decommitment value computed by P2 and P1 cannot open commitment values originated

at the receiver’s side to anything else, but intended values with probability more than εbinding.

In case P1 tries to maliciously open commited values, DWE◦ will result in ⊥ as an output for P2.

Exactly the same reasoning shows that in case of malicious P2, P1 will receive correct output

or ⊥ from DWE◦, if P2 does not succeed in double opening commitment values which occurs

with probability εbinding.

6.4 Security of symmetric circuit evaluation

There are opinions that this protocol proposed by Mohassel and Franklin [2] is flawed and does

not provide security against malicious adversary even in k-leaked model. Kiraz and Schoenmakers

[14] propose the following case where malicious adversary can learn a bit of other’s party input

without revealing being corrupted. Assume parties want to compute which 3-bit input is greater.

Let P1 be corrupted and P2 a honest one. Suppose they have respectively inputs x = 4 = 100b

and y = 7 = 111b, where notion nb stands for number n in binary. Now P1 constructs a garbled

circuit and submits 100b as its input there. Then, when it receives another garbled circuit

(constructed by P2) for evaluation it sets 5 = 101b as its input. Both circuits evaluations will

return that P2’s input is greater, so conditional disclosure of secrets won’t find corruption and

P2 will not know that P1 was cheating. On the other hand P1 now concludes that P2’s input is

greater than 100b and 101b and thus second bit of P2’s input is 1. Information leaks, protocol is

flawed [14]. However, we must notice, that this is not actually an attack, and this trick can be
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pulled also in the ideal model.

Let’s say that adversary want to use this modifying input technique to learn a bit from other

party’s input in consistency model. So let an adversary A be engaged in computing function

gt(x, y), where x and y are three bit numbers. Adversary submits 4 = 101b as its input value to

T. Now it forms a halting predicate π(y) = gt(4, y) 6= gt(5, y) and checks if T response afterwards

is ⊥ or not. As receiver’s input was 7, predicate is false, and parties will know that receiver’s

input is greater. But by the same reasoning as in real protocol attack described above, adversary

knows that P2’s input is greater that 5 and can deduce information about receiver’s input. So

this attack exists also in ideal model and thus do not reduce security of real protocol compared

to ideal one.

Now we have shown that most straightforward accusations of insecurity of the protocol do

not hold, so we proceed with proving security of Circus protocol and proving that it provides

consistency of computation.

6.4.1 Simulator construction

In this section we show how to construct simulator SimP1 with which P1 could communicate

such that the output of protocol run is indistinguishable from a run without simulator. Let’s say

parties want to compute function F (x, y) of their respective inputs x and y. As we are dealing

with consistency model, Sim relies on halting predicate for T to provide consistency of outputs

in real model.

Before anything else, Sim generates randomness r1 to initialize malicious P̂1, that Sim will use

internally and randomness r2 that will be used to simulate actions that real world P2 would have

taken in the real protocol run. These values will ensure, that we can align every real protocol

run to a specific run of ideal protocol, where parties are initialized with exactly those values as

randomness source.

Protocol starts with parties creating commitments for messages m0 = 0 and m1 = 1 and then

proceeds with parties sending commitment values to each other. As the adversary is malicious it

can send arbitrary values instead of properly generated ones, so Sim receives from P1 values ĉm0 ,

ĉm1 . We will use hatted values to denote that this message can contain arbitrary value. Then

Sim generates valid commitment triples (c̄m0 , d̂1
m0
, d̂2

m0
)← SR-Com(0) and (c̄m1 , d̂1

m1
, d̂2

m1
)←

SR-Com(1) and sends c̄m0 and c̄m1 to P1.

At this point sender is ready to start with COT◦ protocols, so Sim receives d̂2
m0
, d̂2

m1
, f().

P1 does not want anything in response here, so Sim just proceeds with second instance of COT◦.

For the second instance of COT◦ sender specifies its input x. Note, that sender is malicious,

and this submitted value can be different from intended input, but that just makes this x an

“actual” input of sender. In response Sim sends d̄2
m0 to P1. As split receipt commitment scheme

is εhiding-hiding, adversary do not know to which bit value was f(y) evaluated. Additionally,

note that it is not important which decommitment value will be sent to P1, as following DWE◦

is also simulated and not actually computed.
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At this point Sim knows sender’s actual input, so Sim can perform ideal protocol run with T.

So Sim submits x to T as sender’s input. Then Sim constructs the following halting predicate:

π(y) = Circus(P̂1(xi, r1),P2(y, r2))
?
= (?,⊥) ,

where ? means, that we are not interested in sender’s output value, predicate just makes sure

that receiver will get ⊥ as the result, and xi is the intended input for P1. Note, that this

predicate is efficient as it takes the same time to evaluate predicate as Circus protocol run takes,

so predicate’s overhead is polynomial, which is acceptable.

This predicate can be constructed cause Sim knows description of corrupted P1 and descrip-

tion of how honest P2 must behave. Now if we are in 1-leaked model, then Sim will receive either

an output value or ⊥ from the T. Then Sim proceeds with receiving five values from the sender

for DWE◦. To finish the protocol Sim responds to P1 with whatever value it received from T at

the previous step.

Similarly, if we are talking about consistency model where Sim does not receive anything

from T after submitting halting predicate. But, as we are in the consistency model, sender does

not want to receive anything as a result of final DWE◦ protocol run. So after submitting halting

predicate to T, Sim just receives five values as sender’s input to DWE◦ and does not do anything

else.

Such simulator obviously implements interface to successfully communicate with real world

P1, so to prove security of the protocol we need to prove that outputs of parties coincide in real

and ideal models. Proving equivalence of outputs is trivial due to the specific nature of halting

predicate. Note, that after receiving such halting predicate T evaluates if this protocol run must

finish with output values or ⊥ values. Note, that in any case P2 will receive the same output

value. If the protocol run must end with ⊥ value as output for P2, halting predicate will be true,

so T halts and sends ⊥ to P2. If protocol must end with an actual value output for P2, halting

predicate will be false, and T will return actual value F (x, y) as the output for P2. Note, that

as we have aligned randomness before protocol run, every run of the real protocol is matched to

exactly one run of the ideal protocol with equivalent outputs for receiver. Thus distribution of

receiver’s output coincide in both real and ideal models.

To prove equivalence of the sender’s outputs, note, that as the result of DWE◦ simulator

submits whatever value T responded as protocol output for P1. So P1’s output is the same in

real and ideal models. Note, that before DWE◦ protocol, P1 sees only commited values, which,

as split receipt commitment is εhiding-hiding, ensure, that does not know actual values involved

in current computation, so its output in real model will coincide with the output in ideal model.

Adversary sees all values corrupted P1 knows, but except P1’ inputs and output, all intermediate

values are generated randomly by Sim. So adversary’s output must also be the same in real and

ideal models. Thus distributions of the outputs coincide in real and ideal models, which proves

that protocol is secure.

Similarly for consistency model, P2’s output in the same in both real and ideal models.
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Sender does not receive any output, so its output ∅ is the same in both models. Due to the same

argument as for 1-leaked model, output of the adversary also coincides in both models.

Note, that 1 bit about other party’s input is leaked due to halting predicate nature. If function

F (x, y) is symmetric, the same halting predicate leaks 1 bit to the adversary in the consistency

model also.

Note that, however we do not provide exact specification of simulator for the corrupted

receiver case, one can construct a simulator similar to one above that uses the same technique

for halting predicate construction to ensure equivalence of outputs in real and ideal models.

6.5 Circus construction scheme

Constructing a general scheme implementing Circus for predicates is straightforward. We need a

split receipt commitment scheme, which can be constructed from a usual commitment scheme.

Asymmetric Yao garble circuit protocols boxes can be constructed as described above with one-

time-pad array encryption scheme, using, for example, AES as pseudorandom generator.

We also can construct a DWE protocol, as a special case of Conditional Disclosure of secrets

protocol, for reference, how to construct that refer to Sven Laur and Helger Lipmaa paper [17].

Additionally note, that however we do not present a rigorous proof, but, intuitively, Circus

protocol is parallelly composable. To prove this fact, we must show a simulator construction

for parallel execution of several Circus protocol runs. Such a simulator can be constructed using

several simulators for a single Circus protocol run, however exact prove of such simulator existence

is left beyond the scope of current thesis to preserve its space and readability. Next, we show

the Circus protocol can be constructed and provide experimental result of its implementation.
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7 Experimental results

We investigate possible implementation of Circus protocol as a case study. First, we describe how

we could have implemented necessary subprotocols and then discuss the implementation and its

performance.

7.1 Adaptation for MPC-platform

Descrined by Dan Bogdanov, Sven Laur and Jan Willemson [18], Sharemind is implemented as

a platform for privacy preserving computations [19]. Basically, Sharemind is a virtual machine

that consist of three miner machines that can perform math operations on additively shared

integers. It does so in a such way, that private values (those that no individual miner must

know) before being put into a virtual machine are shared between miners. Additive sharing

of integer n between miners P1, P2 and P3 means that three random integers s0, s1 and s2

such that n = s0 + s1 + s2 are created (s0 and s1 are generated randomly and s2 computed

as s2 = n − s0 − s1) and sent to respective miners. Now it is easy to perform basic math

operations on shared values. For instance to add two shared values x and y shared as sx0 , sx1 ,

sx2 for x and sy0, sy1, sy2 for y each miner just computes its share of z = x + y as sum of its

shared for x and y. Indeed, sx0 + sy0 + sx1 + sy1 + sx2 + sy2 = x + y = z. In a similar manner

subtraction and multiplication can be performed. However, computing more difficult functions

on additively shared values, consider division for example, needs trickier protocols. We will use

envelope notation [[x]] to denote operations performed on shared value x. A result of operation

on shared values is also a shared value, so, for example, notion [[z]] = [[x]]+[[y]] means that parties

compute shared value z as a sum of shared values x and y.

A shared value becomes publicly available when all miners send their shares for this value to all

other miners. This is known as publishing a value, which we will denote as pubPi
([[x]]), where

index shows to which miner value is published. If no index is specified, it means that value is

made public and available to all miners.

Having this multiparty computation platform we can construct protocols with more ease than

by using other cryptographic primitives. Note, that due to the fact that consistent computation

cannot be ensured in three-party computation against maliciously corrupted party [16], this pro-

tocol cannot be securely implemented in current Sharemind platform.

Obviously, slow versions of protocols described below, that are based on some two-party

computation schemes and involve only two out of three miners are possible in Sharemind, however

such implementation does not interest us in the scope of current thesis.

7.1.1 Commitment scheme in MPC-platform

Commitment among miners that additively share values goes in the following manner. Assume

that miner P1 wants to commit message m. It generates random d ← Z2n , where n is length
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of value that can be shared. Sharemind operates on 32-bit integers, so in its case n = 32.

Additionally, every commitment operation gets a public identifier id, just for miners to be sure

that they all operate on the same commitment. When this id and d are ready, P1 shares d and

m, and notifies other miners what is current commitment id.

To open a commitment miner, let’s say it is P2, shares its version of decommitment value d∗,

then miners compute message as:

[[m∗]] = [[[d]]
?
= [[d∗]]] · [[m]] ,

pubP2
(m∗) .

So now, if P2 knew or guessed correctly decommitment value it gets message m. This com-

mitment scheme is only statistically hiding, as P2 can guess value of d.

7.1.2 Oblivious transfer in MPC-platform

Oblivious transfer in MPC platform that uses additive shares can be achieved in the following

way. Let’s name three miners of Sharemind as P1, P2 and P3. Suppose P1 has two values x0 and

x1 and P2 knows bit b. We want to perform an oblivious transfer so P2 learns xb, but not x1−b

and no miner learns b. To do so, P1 shares x0 and x1 between miners and P2 shares b. Then

miners compute message m.

[[m]] = [[x0]] · ([[1]]− [[b]]) + [[x1]] · [[b]] =

[[m0]] if b = 0

[[m1]] if b = 1

After this computation all miners have their shares of m and after pubP2
(m), P2 learns mb.

7.1.3 Conditional disclosure of secrets in MPC platform

Conditional disclosure of secrets protocol also is available between machines that additively share

values. For Circus protocol we need disclose when equal DWE version of conditional disclosure

of secrets, which releases secret if both parties can open other party commitment for the same

value. Due to the fact that opening a commitment leaves message shared between miners makes

DWE very straightforward. Assume that commitment was done as described above, cm is just a

publicly available identifier of the commitment, message m is shared between miners into [[m]],

and a decommitment value dm is generated. Now this decommitment values is additively shared

into two parts dm = dm1 + dm2 , and values dm1 and dm2 are shared between all miners. A party

that wants to open commitment using decommitment value d∗2, shares it, then parties compute

[[m∗]] = [[[dm2 ]]
?
= [[d∗2]]] · [[m]] and publish m∗ to that party.

So P1 has commitment values cm0 , dm0
1 and cm1 , dm1

1 , and decommitment value d∗12 to some

P2’s commited value. On the other hand, P2 has its commitment values c̄m0 , d̄1
m0 and c̄m0 , d̄1

m0

and decommitment for P1’s commitment d∗22 . Parties then share all these values between all min-
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ers and proceed with opening four possible triples of decommitment values and obtain commited

messages.

[[
z01
]]

= [
[[
d̄2
m0
]] ?

=
[[
d̄2
∗1]]] · [[m0]][[

z02
]]

= [[[dm0
2 ]]

?
=
[[
d̄2
∗2]]] · [[m0]][[

z11
]]

= [
[[
d̄2
m1
]] ?

=
[[
d̄2
∗1]]] · [[m1]][[

z12
]]

= [[[dm1
2 ]]

?
=
[[
d̄2
∗2]]] · [[m1]]

[[m]] = [
[[
z01
]] ?

=
[[
z02
]]
∧
[[
z01
]]
6= 0] ·

[[
z01
]]

+ [
[[
z11
]] ?

=
[[
z12
]]
∧
[[
z11
]]
6= 0] ·

[[
z11
]]

Now, [[m]] is shared value of the output of DWE so miners either publish it to one of the

parties P1 and P2 or to both, depending on intentions of DWE.

7.2 Implementation of COT

One of the most important parts of Circus protocol is COT◦ subprotocol, which implements,

actually, Yao garbled circuit protocol functionality.

Practical part consists of two main problems: implement COT and incorporate COT function-

ality into Sharemind platform. Here we provide an overview of how we solved these problems, for

finer details refer to Appendix A, which includes source code of our solution and documentation

about it.

We have implemented COT in Python 2.7 as a single program that implements functionality

for both sender and receiver parties involved in COT. Despite the fact that this thesis mainly

concerns evaluation of predicates, our solution can be used to evaluate functions with more than

1 bit output.

Boolean circuit description for a specific function is provided with a file that follows following

format, which is best described on an example. Fulladder function takes input bits a, b and curry

bit c and evaluates expression a+ b+ c. Such evaluation produces two-bit result. Consider the

following circuit description for Fulladder function.

g1 : xor a b

g2 : xor g1 c

g3 : and a b

g4 : and c g1

g5 : or g3 g4

adder g2 g5

Elementary boolean functions, for example, and are specified using prefix notation and literal
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name of the function and , so to specify expression a∧ b∧ c one can write andandabc into circuit

description. Supported elementary functions are and, or, xor, eq, not and nand. For every such

elementary function a gate in the final circuit will be created. Each line of the circuit description

file starts with some gate name followed by “:“, where gate name is a single strings that does

not contain spaces. On the right side of such “:“ goes the description of gate functionality. Line

g1 : xor a b, specifies that gate g1 will compute function a ⊕ b. As circuit file parser have

no information what a and b are, it will assume these are names of input wires of the circuit.

Gate description can contain input wires names and names of other gates, so gate g5 : or g3 g4

computes or function of outputs of gates g3 and g4. Additionally, every gate can be specified to

compute more complex boolean functions, for example g1 : or and x y not z is a valid declaration

of a gate. Last line of circuit description file is a space delimited string, where first element is

circuit name and all other elements specify outputs of which gates are considered circuit outputs.

In the example above, circuit name is adder and it outputs two bits: one from gate g2 and one

from gate g5. Such format allows to construct sufficiently complex boolean circuits.

Our solution parses such description file and if a given file does not follow the convention

described above will notify user about it. If circuit file is successfully parsed, we construct a

boolean circuit and can proceed with garbling it.

Implemented procedure for construction of garbled circuit precisely follows the description of

Yao garbled circuit construction given previously in this thesis. Namely, for every wire of the

circuit we generate two random bit-strings 128 bit long. We flip every wire, except output wires

with probability one half. And then encrypt truth-tables of the gates according to flipped wires

values.

We use array encryption scheme with 128− bit AES as pseudorandom generator. Sender then

can send description of garbled circuit and input keys that correspond to his input values to the

receiver.

Receiver needs to get keys that correspond to his input values. To accommodate that, we have

incorporated into our solution some sort of OT protocol that uses RSA encryption mechanism

to encrypt keys. We do not claim that this mechanism is secure, however, it is quite intense

computationally, which is desired property for us to be able be more sure in our performance

results and serves its goal to transfer keys to the receiver. Note, that because of this you will

need freely available rsa-2.0-py2.7.egg Python module to be able to run our solution.

Evaluation of the garbled circuit also follows the description given previously in this thesis.

Receiver evaluate the circuit gate by gate until all output wires will get values. Then receiver

collects those values and outputs them.

Now we describe how to integrate our python solution into Sharemind platform. Sharemind

is a stack based virtual machine. This enables easy integration of several protocols together.

Protocol takes input values from virtual machine stack, performs necessary computation and

puts output values to stack. Additionally, as Sharemind essentially consists of three miner

machines that run the same code, it provides MPI -like syntax and templates for sending and
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receiving messages between miners and for synchronization of miners.

Sharemind platform is not publicly available, so we provide just source files that integrate

with our solution. For more details, refer to Appendix A.

To use Python code from C++ code of the Sharemind one needs to provide link to “Python.h”

header file at compilation time of the Sharemind and link it to a Python dynamic libraries.

For information about how exactly this must be done refer to Python specification. Further

integration with Sharemind is very straightforward, we call Python functions by name and can

transfer information from Python objects to C++ code.

For testing purposes Sharemind provides to our solution just a platform for networking be-

tween miner machines. The setting is then such that first miner is the sender P1, second miner

is the receiver P2. Third miner does not perform computation.

7.2.1 Performance results and notes about implementation

Tests were performed on a single machine with Intel(R) Core(TM) i5 CPU M560 @2.67GHz

2.67Ghz processor and 3.83 GB of usable RAM. Python version is 2.7.1, Sharemind version is

2.0.0.

Tests include construction of garbled circuit for function gt(x, y), which outputs 1, if x > y

and 0 otherwise. Both inputs x and y are 32-bit integers. Giver boolean circuit for this function

consists of about 250 gates. Tests were performed as standalone application, when one Python

process performed actions of both parties, and in Sharemind platform, where one of the miners

was playing role of the sender and other of the receiver.

Standalone application. Tests were run by execution of the main program from file expres-

sions.py, which results in performing actions of both parties of the protocol by a single Python

process. Additionally, it provides some profiling information which parts of the program take

most of the time.

Tests included 10 independent runs with randomly generated input values, whose average

time to complete was 4.5 seconds. Almost half of this time were spent in OT protocols to

transfer keys to the receiver and about 20 percent of the time were spent by stretching keys for

array encryption scheme.

Sharemind platform. Tests on Sharemind platform were run using file TestingProtocol.cpp.

We count only time spent in the protocol itself, without any virtual machine or miners initial-

ization time. Similar to standalone application tests, 10 independent runs of evaluation gt(x, y)

were performed. Average time taken by protocol run was about 8.2 seconds. We conclude that

about 4 seconds were spent on networking and serialization of information about circuit. Net-

work consumption were about 200KB per test. This consists mainly of description of garbled

circuit and sender’s and receiver’s keys.
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Notes. First of all, we need to say, that timing results that we produced are low compared to

results of benchmarking solution Shelat and Shen solution [15]. There are two big reasons for that,

first of all we have used a function which is almost twice smaller than the one used by Shelat and

Shen. Additionally, we have benchmarked only a part of the protocol that is secure in malicious

model. The whole protocol will consist of two such evaluations and some additional overhead

for other subprotocols. Despite the fact that efficient implementation of those subprotocols is

possible, as we described above, they still will provide noticeable overhead. Another important

detail to note is that Python is considered about hundred times slower that C++. So without

doubt, performance of the solution created within this thesis can be dramatically improved by

switching to a faster programming language. Additionally, our code is, probably, not as efficient

as possible, so some improvement can be gained there. Moreover, created application implements

a secure protocol, but by no means claims to be secure. There are number of reasons why it is

insecure, for instance, it uses Python’s module pickle for serialization, which leads to security

issues by design.

This is a proof-of-concept piece of software and it needs to be treated as such. However,

performance results that we provided above were stable enough and can be used as rough estimate

of performance of our protocol.
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8 Conclusion and future work

In this thesis we presented an independent proof that Yao garbled circuit protocol is secure

against semi-honest adversary. We proposed a new protocol Circus, based on Yao garbled circuit

protocol, for secure two-party computation problem. We proved that Circus is secure against

malicious adversary in consistency model. We implemented the trickiest of subprotocols for

Circus in Python and integrated this solution with Sharemind platform. Performance results, that

we achieved, give hope, that properly implemented Circus can be compared by speed with the

newest and fastest protocols known before. Obvious continuation of this paper will be improving

performance of the implemented COT protocol and implementation of other subprotocols for

Circus that we left beyond scope of this thesis.
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Tõeväärtusskeemide evalueerimise tehnikad turvaliste arvutuste jaoks

Magistritöö (30 EAP)

Oleg Šelajev

Resümee

Tõeväärtusskeemide arvutamine on võimas arvutuste mudel, milles arvutamiseks kasutatakse

tõeväärtustabelitega väravaid, mis realiseerivad elementaarseid loogika funktsioone nagu ja, või

jne. 1982. aastal pakkus A. A. Yao välja uldise protokolli, kuidas saab kasutada modifitseeritud

skeemi kahe osapoole turvaliseks arvutamiseks. See sai nimeks Yao krüpteeritud arvutusskeem.

Kahe osapoole vahel turvalise arvutamise ülesanne koosneb sellest, et kaks osapoolt tahavad

arvutada funktsiooni privaatsete sisenditega nii, et kumbki osapool ei saa teada, milline oli teise

osapoole sisend.

Yao krüpteeritud arvutusskeem on turvaline pool-ausas mudelis, kus ründaja käitub protokolli

järgi ning lihtsalt uurib saadud andmeid vastasosapoole sisendi leidmiseks. Juhul, kui ründaja

ei järgi protokolli, saab ta turvalisust rikkuda ja informatsiooni sisendi kohta leida. Viimase

vältimiseks on leiutatud erinevaid tehnikaid, mis tavaliselt kasutavad mitme Yao krüpteeritud

arvutusskeemi korraga.

Antud töö põhitulemus on Yao krüpteeritud arvutusskeemi protokollil põhineva Circus pro-

tokolli kirjeldus ning tõestus, et ta on turvaline konsistentses mudelis. Konsistentses mudelis

arvutamisel kas mõlemad osapooled saavad korrektse tulemuse ja nende sisendid jäävad privaat-

seteks või aus osapool saab teada, et teine osapool ei käitunud protokolli järgi.

Töös esitatakse range tõestus, et Yao krüpteeritud arvutusskeem on turvaline pool-ausas

mudelis ning kirjeldatakse kõik vajalikud alamprotokollid Circus protokolli koostamiseks. Lisaks

tõestatakse antud töös Circus protokolli turvalisuse omadused ja nende olemasolu jaoks vajalikud

eeldused. Teoreetiliselt ei ole Circus protokoll aeglasem, kui kõige paremad protokollid kahe

osapoole vahel turvalise arvutamise puhul, kus üks osapool on kuritahtlik.

Praktilises osas luuakse Yao krüpteeritud arvutusskeemi implementatsioon, mis võib olla

aluseks Circus protokolli realisatsiooni jaoks. Vaatamata sellele, et töö raames luuakse kontsept-

siooni tõestav rakendus, siis selle implementatsiooni jõudlustestid näitavad, et Circus protokoll

võib olla tõesti kiirem, kui olemasolevad lahendused. Lisaks luuakse Sharemind platvormi

moodul, mille abil saab integreerida krüpteeritud skeemide arvutamise protokolli Sharemindiga.
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Appendices

Appendix A

Source code for experimental part of this work is available from a CD attached to a hard copy of

this thesis. The CD contains “README” file, which explains how to treat this piece of software.
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