
University of Tartu

Faculty of Science and Technology

Institute of Mathematics and Statistics

Karen Danielyan

Swaption pricing with SABR model

Actuarial and Financial Engineering

Master’s thesis (30 ECTS)

Supervisor: Raul Kangro

Tartu 2020

Swaption pricing with SABR model
Master’s thesis

Karen Danielyan

Abstract. The purpose of this Master’s thesis is to present the SABR and shifted

SABR models and perform a calibration procedure on the Euribor and Libor swaptions’

volatility cube. The first chapter focuses on the mathematical preliminaries for interest

rate derivatives and money market. The second chapter tackles the classical option pricing

models, in particular Black-76 model. The third chapter introduces SABR model and

Hagan’s approximation formulas, as well as the shifted SABR and the effects of SABR

parameters on the volatility smiles and skews. Finally, the last chapter shows the detailed

procedure of calibration of the Euribor and Libor volatility cubes, validation of the fit and

some market data engineering examples referencing to the python code in the appendix.

CERCS research specialisation: P160 Statistics, operations research, programming,

actuarial mathematics.

Keywords: SABR, Python, swaption volatility cube, volatility cube calibration, volatility

surface, volatility smile, volatility skew, negative rates, Libor, Euribor, quote engineering.

2

Intressimäärade vahetusoptsioonide hinnastamine SABR

mudeliga

Magistritöö

Karen Danielyan

Lühikokkuvõte. Selle magistritöö eesmärk on anda ülevaade SABR ja nihutatud SABR

mudelist ning kalibreerida Euribori ja Libori svaptsioonide ehk intressimäära vahetus-

optsioonide volatiilsusi.Töö esimeses peatükis antakse ülevaade intressimäära derivatiivide

ja rahaturuga seotud baasmõistetest. Teine peatükk keskendub klassikaliste optsioonide

hinnastamise mudelitele, täpsemalt Black-76 mudelile. Kolmandas peatükis tutvustatakse

SABR mudelit, Hagani lähendi valemeid ja nihutatud SABR mudelit ning seletatakse

SABRi parameetrite mõju volatiilsuskõveratele. Viimases peatükis tuuakse Pythoni koodi

abil detailseid näiteid Euribori ja Libori volatiilsuste kalibreerimisprotseduurist, mudeli

sobivuse valideerimisest ning turuandmete modelleerimisest.

CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeerimine, finants-

ja kindlustusmatemaatika.

Märksõnad: SABR, Python (programmeerimiskeel), svaptsioonide volatiilsus, volatiilsuste

kalibreerimine, volatiilsuspind, volatiilsuskõver, volatiilsusnihe, negatiivne intressimäär,

Libor, Euribor, hinnapakkumise modelleerimine.

3

Acknowledgements

First of all, I want to express my gratitude and heartfelt thanks to my computational

finance course teacher and my thesis supervisor Raul Kangro for sharing his knowledge

and support throughout the writing process of my thesis.

I also want to thank Andrej Bajic for supervising my internship program in Deloitte

Audit Analytics and for suggesting the topic for my master thesis. He provided me with

insightful content and constructive feedback on my thesis.

Moreover, I want to express my appreciation to my Deloite Audit Analytics colleagues

for providing me with tools necessary for the practical application of the ideas presented

in my thesis, particularly, Sabri Dali who provided a great assistance in my undertaking

to tackle this topic.

4

Contents

Introduction 6

1 Mathematical Preliminaries 7

1.1 Money-market Preliminaries . 7

1.2 Swaptions . 13

2 Black 76 model 16

2.1 Black Scholes option pricing model . 16

2.2 Bachelier’s model . 19

2.3 Risk-neutral valuation . 20

2.4 Black 76 model for swaptions . 22

3 SABR model 26

3.1 SABR model . 27

3.2 Breaking down SABR parameters . 29

3.3 Shifted SABR model . 32

4 Results 35

4.1 Market Data: Volatility Cube . 35

4.2 Euribor volatility cube calibration with SABR 37

4.3 USD Libor volatility cube calibration with SABR 44

Conclusion 50

Appendix 52

5

Introduction

Interest rate swaptions are often priced using Black 76 model. In Black 76 model there

is one-to-one relation between the price of the swaption and the volatility parameter σB,

thus the option prices are often quoted by stating the implied volatility, i.e. the unique

value of the volatility parameter, which yields the swaption’s price when using Black 76

model. In practice, swaptions with different strikes require different volatilities to match

their market prices resulting the volatility skews and smiles. Handling these skews and

smiles are critical component of volatility modeling. One of the tools to address these

requirements is the SABR (Stochastic α, β, ρ) model. Thus, in this thesis we will cover

the SABR model and its practical application on Euribor and USD Libor swaptions, as

well as the model’s calibration on the market data related to interest rate swaptions from

these two markets as of 4 Feb 2020.

The thesis is comprised of four chapters. The first chapter tackles the mathematical

preliminaries that are necessary to lay down the theoretical basis and descriptions of

money market concepts and interest rate derivatives. The second chapter will cover the

classical Black Scholes model and its extension, which is the Black 76 model, as well as

the Bachelier model. The third chapter will discuss the SABR model and the effects of

its parameters on the volatility smiles/skews. As we are considering the Euribor market

swaptions, there is a need to cover a negative rate extension, in particular the shifted

SABR model. It is worth mentioning that the modeling will be done using the Hagan’s

approximation formulas. The last chapter will introduce the market data, calibration

concept and the results for two separate markets: Euribor and USD Libor. The fitted

models will be evaluated using the "leave one out" estimation approach and several

visualisations will be shown and discussed. Finally, in the conclusion key findings from

empirical section will be summarized and discussed upon.

6

1 Mathematical Preliminaries

This chapter is inspired from the literature by Damiano Brigo and Fabio Mercurio [2].

The chapter aims to set up the mathematical basis for the financial market and introduce

the relevant notations.

In addition, the basic financial instruments constituting the topic of the interest of this

thesis will be defined and explained.

1.1 Money-market Preliminaries

The very beginning of the discussion about the Money-market should start with the

definition of the Money-market account.

Definition 1.1 Money-market (Bank) account:

We define M(t) to be the value of a money-market account at time t ≥ 0. We assume

M(0) = 1 and the money-market account evolves according to the following differential

equation:

dM(t) = r(t)M(t)dt (1.1)

One can solve this differential equation easily and derive the expression for the money-

market account.

M(t) = exp
(∫ t

0

r(s)ds
)

(1.2)

Formula (1.1) represents the value of the money-market account at time t, where r(t)

represents the short-term interest rate(short rate). This can be viewed as the rate at

which one can borrow money for an infinitely small period of time.

We know that money has a time based value. The money received today and in a year

are not valued the same. There is some relation between the money value of different

time moments. This concept is also incorporated in the money-market account idea. We

have seen that if we deposit 1 unit of currency at time 0, then at time t > 0 we have

M(t) units of currency. Therefore, if we desire to have 1 unit of currency at time T , we

should invest A = 1/M(T) at time 0. Consequently, the value of A at time t, 0 < t < T

is AM(t) = M(t)
M(T)

. This means that the value of 1 unit currency paid at time T can be

7

seen as M(t)
M(T)

at time t. As the rate r has a stochastic nature, the M(t) is also a stochastic

process. Let us now define the idea of a discount factor.

Definition 1.2 Stochastic discount factor: The (stochastic) discount factor D(t, T)

between two time instants t and T is the amount at time t that is "equivalent" to one unit

of currency payable at time T , and is given by

D(t, T) =
M(t)

M(T)
= exp

(
−
∫ T

t

r(s)ds.
)

(1.3)

Another significant constituent related to money-market is the zero-coupon bond. Zero-

coupon bonds, in case if they are liquid for several maturities, can be the basis to construct

the term-structure of interest rates. In addition, Zero-coupon bonds can be used for

discounting purposes. In fact, the whole valuation of financial instruments is based on

the idea of discounting future cash flows.

Definition 1.3 Zero-coupon bond: A T-maturity zero-coupon bond is a contract that

guarantees its holder the payment of one unit of currency at time T . The contract value

at time t ≤ T is denoted by P (t, T).

P (T, T) = 1 ∀T .

We define R(t, T) to be the continuously-compounded interest rate at time t for the period

of [t, T].

R(t, T) = − 1

T − t
lnP (t, T) (1.4)

Therefore, the price of a zero-coupon bond can be formulated by following equation:

P (t, T) = e−R(t,T)(T−t) (1.5)

Having the definition of R(t, T) as (1.4), let us introduce the idea of a short-term rate,

which is the limit value expressed by R(t, T): r(t) = limT−→tR(t, T).

Having introduced the ideas of discount factors and zero-coupon bonds, a question arises:

What is the relationship between the discount factor D(t, T) and the zero-coupon bond

price P (t, T)? If rates r are deterministic, then necessarily they are equal. However, if

the rates are stochastic, then the discount factor is a random quantity depending on the

8

future evolution of the interest rates. On the other hand, the zero-coupon bond price has

to be known and is a deterministic value. Nevertheless, it can be proven that under a

certain probability measure the price of a zero-coupon bond can be the expectation of the

discount factor for each pair of time moments (t, T).

Let us now discuss the term structure of interest rates(also referred as yield curve). The

term structure of interest rates describes the relation between interest rates and time to

maturities(T − t). One can expect that the values of interest rates are different for the

different time horizons. The term structure of interest rates can be expressed in three

ways. Those are the yield curve, discount curve and the forward curve. Among those, the

yield curve is the most common way to express it, and it basically represents R(t, T) as a

function of t, while the discount curve expresses the relation between zero-coupon bonds

and their time to maturity.

In fact, it should be mentioned that there is a market convention to quote yield curve as

a combination of money-market and capital-market rates. Money-market rates refer to

short-term lending, typically up to one year, while capital market represents the long-term

money lending and borrowing typically with the time horizon exceeding one year. Thus,

the market standard is to quote the rates of yield curve as simply-compounded rates for

the time to maturities up to a year, and the rates for the longer maturities are quoted as

compound rates. Let us define the simply-compounded interest rate.

Definition 1.4 Simply-compounded interest rate.

Define by E(t, T) the simply-compounded interest rate at time t that applies to the period

[t, T] as follows:

E(t, T) =
1− P (t, T)

(T − t)P (t, T)
(1.6)

Thus, the price of the zero-coupon bond can be expressed in terms of simply-compounded

interest rate E(t, T)

P (t, T) =
1

1 + E(t, T)(T − t)
(1.7)

We are going to discuss the forward rates, thus we need to understand the forward-

rate-agreement (FRA). All the time variables are being measured in years in this thesis.

Forward-rate-agreements are defined by 3 points in time. Those are current time t, the

settlement date T1 and the maturity date T2. The following chain of inequalities should

9

hold T2 > T1 ≥ t. A forward-rate-agreement (FRA) is an over-the-counter contract

in which two parties agree to make payments at the maturity date T2. The holder of

FRA needs to make an interest payment based on a fixed rate rk and in return receives

a floating interest payment based on a spot interest rate, which is the actual rates of

a specific floating interest rates observed at a time. The spot rate is set two business

days prior to the settlement date T1 and has maturity T2. Thus, it can be expressed by

E(T1, T2). As a part of a FRA contract the principal amount (L) is mentioned on which

the interest rates are applied and the day-count convention is chosen. Let us for now

assume that L = 1 and there is no day-count convention applied.

We defined already that FRA holder/buyer is the one who pays the fixed leg and the

seller pays the floating leg(spot rate fixed at T1). Now, we can present the cash flow from

the holder’s perspective at time T2 as

L(E(T1, T2)− rk)(T2 − T1) (1.8)

For the valuation purposes we want to calculate the value of the contract at time t. That

procedure should be done by discounting the value at time T2 to time t. For this purpose

let us focus on the expression

(E(T1, T2)− rk)(T2 − T1).

We can use the definition (1.6) to replace E(T1, T2) with 1−P (T1,T2)
(T2−T1)P (T1,T2)

. We will have

(1− P (T1, T2)

(T2 − T1)P (T1, T2)
− rk

)
(T2 − T1).

Opening the brackets will result to the following expression

1

P (T1, T2)
− 1− rk(T2 − T1).

Now, let us find the equivalent value of the above expression at time t. We can do this

with in two parts. Firstly, the amount of money −1 − rk(T2 − T1) receivable at time T2

is equivalent to the following amount of money receivable at time t

P (t, T2)(−1− rk(T2 − T1))

where simply multiplies it with P (t, T2). Secondly, let us denote the remaining part of

the sum by A = 1
P (T1,T2)

. If we have A unit of currency at time T2, its value at time

10

T1 is obtained by multiplying A with a zero-coupon bond price P (T1, T2): P (T1, T2)A =

P (T1, T2) 1
P (T1,T2)

= 1. Thus having A at time T2 is equivalent to holding one unit of

currency at time T1. Additionally, one unit of currency at time T1 is worth P (t, T1) units

of currency at time t. Therefore, the amount 1
P (T1,T2)

in T2 is equivalent of P (t, T1) in t.

Combining two parts together we can say that the value of the (1.8) money receivable at

time T2 can be expressed by

VFRA(t) = L
[
P (t, T1)− P (t, T2)− P (t, T2)(T2 − T1)rk

]
(1.9)

The values needed to price the forward contract with the formula (1.9) are the actual

forward fixed leg rate and the zero-coupon bond values. which are given with the market

yield curve. Currently, having the basic knowledge about the FRA contracts and its value,

let us shift to the simply-compounded forward rate.

Definition 1.5 Simply-compounded forward interest rate.

A simply-compounded interest rate is called a simply-compounded forward interest rate,

if by plugging it into the equation (1.9) the value of the FRA is exactly zero. Thus, it is

determined as a root of the equation (1.9) to zero solved for rk.

F (t, T1, T2) =
1

T2 − T1

(P (t, T1)

P (t, T2)
− 1
)

(1.10)

where t < T1 < T2 and T1 is the time of expiry, T2 is the time to maturity.

The next financial instrument to be discussed in the money-market context is the interest

rate swap. Similar to a FRA, the swap contract is meant to exchange fixed and floating legs

of payments between two parties. Unlike a FRA contract, a swap contract exchanges more

than one payment. The counterparty who pays the fixed leg and receives the floating leg

is also referred to as a swap payer and the opposite counterparty is called a swap receiver.

The payment dates should be predetermined. Let us denote them by T1, T2, . . . , Tmn.

Here m represents the frequency of payments and n denotes the time to maturity of the

contract. Thus m = 1, if the contract fixes one payment per year. Let us also denote

fixed interest rate by rk(following the option strike notation logic for rates), the principal

amount by L and the floating interest rate by E(Ti−1, Ti), which is fixed at Ti−1 and paid

11

at Ti. According the suggested notation, the floating rates set at the T0, T1, . . . , Tmn−1

succession. Note that there exist swap contracts for which the fixed and floating legs have

different time successions, but those are left out from the scope of this thesis. Based on

these notations we can formulate the payoff of the swap payer contract as follows:

Payoffpayer =
mn∑
i=1

L(Ti − Ti−1)
(
E(Ti−1, Ti)− rk

)
(1.11)

The swap receiver is obvious based on the payer formula.

One needs to discount the cash flows of the swap’s payoff in order to get its value at time

t.

V payer
swap (t) =

mn∑
i=1

P (t, Ti)L(Ti − Ti−1)
(
E(Ti−1, Ti)− rk

)
(1.12)

In addition, just thinking about the swap contract conceptually will hint us that it can

be viewed as a combination of several FRA contracts bounded together. Thus, we can

rewrite the above equations by using the FRA values. Let us rewrite the formula of a

payer swaption’s value (1.12) as follows

V payer
swap (t) = L

mn∑
i=1

P (t, Ti)L(Ti − Ti−1)
(
F (t, Ti−1, Ti)− rk

)
(1.13)

Now let us substitute F (t, Ti−1, Ti) with 1
Ti−Ti−1

(P (t,Ti−1)
P (t,Ti)

−1
)
as the formula (1.10) suggests.

Afterwards, let us note that
∑mn

i=1

[
P (t, Ti)−P (t, Ti)

]
= P (t, T0)−P (t, Tmn), because the

values in between the start and end time moments cancel each other out. Applying the

previous observations to the (1.13) we can rewrite it as follows

V payer
swap (t) = LP (t, T0)− LP (t, Tmn)− L

mn∑
i=1

P (t, Ti)(Ti − Ti−1)rk (1.14)

Similarly, the swap receiver’s value can be calculated.

Having the analytical formulas for the values of the swap payer contracts makes it straight

forward to define the forward swap rate.

Definition 1.6 Forward swap rate.

Forward swap rate is the rate rk which results the value of either payer or receiver swap

12

to be equal to zero. Therefore, in order to get the forward swap rate (1.14) equation to

zero should be solved for rk, which results to

S(t, T0, Tmn) =
P (t, T0)− P (t, Tmn)∑mn
i=1 P (t, Ti)(Ti − Ti−1)

(1.15)

where S(t, T0, Tmn) is the forward swap rate at time t, T0 and Tmn are the first reset date

and the final payment date respectively.

1.2 Swaptions

Having established some basic understanding about the interest rate market, we can now

move on to swaptions, which are the main instrument we will discuss in this thesis. A

swaption is an option on a swap. And the option itself is a right to enter into the underlying

contract (or to buy/sell the underlying instrument) at a given time and conditions. In

our case the underlying is a swap contract. Moreover, we already discussed two sides of

a swap, which are swap payer and swap receiver. Thus there are payer swaptions and

receiver swaptions. A payer swaption gives the owner the right to enter into a payer

swap contract at the option maturity/expiry date T0, where the fixed leg is paid and the

floating is received. Analogously, the receiver swaption gives the owner the right to enter

into a swap at T0, where the fixed leg is received and the floating leg is paid.

The swaption maturity is the expiry time of the option. The swaption tenor will denote

the length of the underlying swap contract Tmn − T0. As the swaption is a right but not

an obligation to enter into a swap contract, therefore the payoff of a swaption should be

the value of the underlying swap at exercise date of the swaption as long as it is a positive

number. Meaning that the swaption will be executed if and only if the underlying swap

has a positive value, otherwise the payoff of the swaption will be zero.

Payoffpayerswaption(t) = max
{
L[P (t, T0)−P (t, Tmn)]−L

mn∑
i=1

P (t, Ti)(Ti−Ti−1)rk, 0
}

(1.16)

The payer or receiver swaption is called at the money (ATM), if at the expiration date

T0 the payoff of the swaption is exactly zero. Similarly, before the expiration date, if

the current value of the underlying swap is zero, we still say that the swaption is at the

money. Thus, in order for a swaption to be at the money, the rate rk should be chosen

13

such that the V payer
swap (t) equals zero. Therefore in order to get the rate rATMk one should

just solve (1.14) equation to zero.

rATMk =
P (t, T0)− P (t, Tmn)∑mn
i=1 P (t, Ti)(Ti − Ti−1)

(1.17)

We can see that this is exactly the same formula as we derived for the forward swap rate

(1.15).

As we might be interested in different expressions of the swaption’s payoff or discounted

payoff formulas for some valuation purposes, let us go ahead and derive one now. Recall

the payer swap’s value formula (1.13) based on the concept of it being constituted as a set

of FRA contracts. If we encompass it into the scope of an option payoff, we will have the

following formula for the payer swaption’s payoff at the expiry/maturity time T0. Instead

of the usual discount factors, here as well, we use the respective bond prices.

Payoffpayerswaption(T0) = Lmax
{∑mn

i=1
P (T0, Ti)(Ti − Ti−1)(F (T0, Ti−1, Ti)− rk

)
, 0
}

(1.18)

Furthermore, having the formulas (1.10) for the forward interest rate and (1.15) for the

forward swap rate, we can make a substitution as follows

Payoffpayerswaption(T0) = L
mn∑
i=1

P (T0, Ti)(Ti − Ti−1)
[

max
{(
S(T0, T0, Tmn)− rk

)
, 0
}]

(1.19)

Similar to the payer swaption payoff formulas the receiver swaption payoff formulas are

straight forward to derive. As the topic of this thesis is to discuss swaption pricing models

and compare them, also derive the volatility surface, the swaption type of interest is going

to be the payer swaption. The payer swaption is the instrument of hedging interest rate

risk and using this instruments market prices it is possible to have insights into the interest

rate risk calculations and hedging. Moreover, for the standard practices such as interest

rate model calibration and pricing the European plain-vanilla swaptions are used as a

rule, thus we will focus on those during the thesis.

As discussed previously, a swaption is an option on a swap, which gives a right to its

owner but not an obligation, therefore it comes with an upfront cost called swaption

premium. This premium is a subject of negotiation between the counterparts. The size of

the premium depends on whether the swaption is in the money or not and how much it is

14

in the money at an agreed fixed rate and what the volatility is in the interest rate market.

Whether the option is in the money or not depends on the currently agreed fixed rate

and the term structure of the interest rates. The maximum loss occuring from holding a

swaption can be the premium of the swaption if one chooses not to exercise it.

Let us formulate the In/Out of the money concepts of a swaption. The swaption is said to

be in-the-money if rATMk is lower than the forward swap rate that applies to the contract

and out of the money in the opposite situation.

The value of the swaption depends on the strike rate rk, the length of the underlying

swap, the time to expiration of the option on the swap and the volatility of the interest

rates. In order to value swaptions financial engineers either use complex term structure

models or the Black-76 model. Black-76 is an accepted industry standard. It is simple

and easy to implement. The volatility parameter for Black-76 model is a two-dimensional

input parameter, meaning that it depends on the time to maturity of the swap and the

expirty date of the option. Later on in this thesis we will also talk about SABR model,

which is one of the most complex methods to model interest rate markets, but the next

chapter will discuss the industry standard Black-76 model.

15

2 Black 76 model

This chapter has been written based on the notations and ideas presented in the book

"Options, Futures And Other Derivatives" by John Hull, 7th edition, 2008 [3]. Black-76

is the simplest and the most basic model to value swaptions. It is developed by Black in

1976. Due to its simplicity and explainability Black-76 has become an industry standard.

Black-76 as well as many other pricing models are based on the stochastic differential

equations. However, the Black-76, especially nowadays, is so popular because of the

market convention. The current market convention for quoting the interest rate risk is to

quote volatilities of the swaptions. Those quoted volatilities are nothing more than just

implied volatilities which, if plugged in into Black-76, will return the exact market price

of a specific swaption. Basically, the Black-76 is not only a model to price a swaption

but also it is there to comfortably report the market quoted swap prices in terms of its

volatilities. This phenomenon can take place, because the Black-76 model has only two

input variables: volatility and forward rates. As the forward rates are explicitly reported

in the market for the current dates, the only variable is left to be the volatility. This

proves a one to one mapping between the price of a swaption and the volatility parameter.

Summing up, the Black-76 model is absolutely necessary not only for valuation purposes

but also for translating the market quoted volatilities into swaption prices. This chapter

will introduce the Black-76 model and the scope under which it operates. However, before

moving to Black-76 let us initially discuss the basis of Black-76, which is the renowned

Black-Scholes option pricing model.

2.1 Black Scholes option pricing model

Black and Scholes developed an option pricing model in 1973 that became the industry

standard pricing model for stock options. The model initially was designed to price only

non-dividend paying stock options, but later on the model was extended to price also

dividend paying stock options. Our thesis is focused on interest rates, thus only the

initial non-dividend stock option pricing model will be introduced. That model served as

a basis for the Black-76 model, thus this topic will cover it.

Black-Scholes model assumes that the underlying stock price has a stochastic nature and

16

views it as a stochastic process. Particular assumptions are made regarding the change

of the stock price over time. It is assumed that the change of the stock price ∆S over the

time period ∆t has a normal distribution with (µ,
√

∆tσ) mean and standard deviation.

Moreover, it is assumed that this process has Markov properties, particularly it is a

memoryless process, for which the past changes cannot affect the future changes and the

distributions for each particular non-overlapping periods are independent. Ultimately,

the process that is almost surely continuous and its independent increments are normally

distributed is called a Brownian motion or sometimes a normal random walk.

Definition 2.1 A continuous stochastic process Wt (t ≥ 0) is called a Brownian motion

if it satisfies the following properties:

1. W0 = 0.

2. If t1 < t2 ≤ t3 ≤ t4 then increments Wt2 −Wt1 and Wt4 −Wt3 are independent,

3. Wt −Ws ∼ N(0, t− s) for t ≥ s ≥ 0.

The definition above brings up the Brownian motion with a drift rate of zero. In this

particular case the expected value of the Brownian motion at any time in the future is

exactly the observed value at the current moment. Thus, in order to tackle the specifics

of the drift µ, we will need to construct a stochastic differential equation.

dXt = µt(t,Xt)dt+ σt(t,Xt)dWt (2.1)

The SDE consists of a deterministic part (µt(t,Xt)dt) and the stochastic part (σt(t,Xt)dWt).

The stochastic nature is driven by the Wt. Additionally, µ and σ account for the drift

and the volatility respectively. Note, they both are functions of time and the stock price

initially.

Now, coming back to the Black-Scholes case specifically, here is what the equation looks

in Black-Scholes case

dSt = µStdt+ σStdWt (2.2)

17

where Wt is a Brownian motion. We can go ahead and apply the Ito’s lemma and it can

be shown that ln(St) follows the process below. Note, the Ito’s lemma can be found in

book [[3] pp. 269-270]. We will have

d ln(St) =
(
µ− 1

2
σ2
)
dt+ σdWt (2.3)

The process in (2.2) is a Geometric Brownian motion. Thus the stock price follows the

Geometric Brownian motion process. However, it is worth mentioning that the logarithmic

transformation ln(St) obviously has a constant drift and volatility parameter and is a

linear process w.r.t the Brownian motion part. Hereby we have

ln(ST) ∼ N
(

ln(S0) + (µ− 1

2
σ2)T, σ2T

)
(2.4)

where ST is the stock price at some time T in the future and S0 is the stock price at

time zero. As ln(ST) has a normal distribution, ST follows a lognormal distribution by

definition. Moreover, the following properties are well known characteristics of lognormal

distribution.

ST ∼ LogNormal
(

ln(S0) + (µ− 1

2
σ2)T, σ2T

)
(2.5)

E(ST) = S0e
µT (2.6)

var(ST) = S2
0e

2µT (eσ
2T − 1) (2.7)

The basic frame of the Black-Scholes model is given. It is also worth mentioning that

most of the valuation that is done with the help of this model is based on the risk-neutral

pricign theory, which will be tackled in the subsequent subsection. Meanwhile we can

move on to the option pricing formula.

The pages 286-287 in the Hull’s book bring several assumptions which are necessary to

derive the Black-Scholes option pricing formulas. These are:

1. The risk-free interest rate,rf , is known and is constant through time.

2. The stock price follows the process in (2.5), where µ does not have to necessarily be

constant.

18

3. No dividend paid.

4. There are no transactions costs or taxes in buying or selling the stock or the option.

5. Short-selling is allowed.

6. The market has no arbitrage.

7. Security trading can be done continuously and any fraction of a security can be

bought or sold.

Having those assumptions in place, let us consider a European call option. Its payoff at

time T is given by max(St −K, 0), where K is the strike price. It has been proven that

in case the assumption hold, the fair price of the European call option with the time to

maturity T is given with this formula.

Voption = S0Φ(d1)− e−rfTKΦ(d2)

d1 =
ln(S0/K) + (rf + 1

2
σ2)T

σ
√
T

d2 = d1 − σ
√
T

(2.8)

Φ is the CDF of standard normal distribution.

2.2 Bachelier’s model

Following the same notation and assumptions, let us briefly introduce a very similar model

to Black-Scholes, which is called Bachelier’s model. The model has been looked up from

[6] Iwasawa book. Under Bachelier’s model it is assumed that financial quantity follows

the SDE:

dSt = µdt+ σdWt (2.9)

where Wt is a Brownian motion. This is the alternative equation to the Black-Scholes’

(2.2). Consequently, this is the core difference between those two modeling approaches.

Under Bachelier’s model, the European call option’s price can be expressed with the

following formula

Voption = (S0 − e−r
fTK)Φ(−d) + σ

√
T − tφ(d)

d =
K − S0

σ
√
T − t

(2.10)

19

where Φ and φ are the CDF and PDF of standard normal distribution. The proof can be

found in [6].

2.3 Risk-neutral valuation

Risk-neutral valuation is a concept used in Black-Scholes model. In risk-neutral world

the investors are insensitive towards risk. All the investment possibilities have the same

expected value, and that is what the investors rely on while considering investment

strategies. The risk-free rate rf is fixed and all the possible valid investments in the

risk-neutral world have the expected return equal to the risk-free rate. Importantly, this

only can be true as long as the money-market account is used as a numeraire. On the

contrary, the real-world is considered to be risk-averse. The investors require additional

risk premium for risky investments. Particularly, in case of the money-market numeraire,

the calculation introduced in the risk-neutral world are also valid in the real-world.

The motivation behind using the risk-neutral valuation in the first place comes from the

fact that investors in real world are risk-averse, but they all have a specific levels of risk-

aversion and the only reasonable way to construct a platform where all the investment

strategies can be valued unanimously or at least be agreed upon by the most is the risk-

neutral platform. This enables the investors to compare the investment strategies properly.

The mathematical basis for this claim is packed within the fundamental theorem of asset

pricing, which will be introduce shortly after. Meanwhile, let us define the arbitrage

related term.

Let us consider a self-financing portfolio/strategy with a value of Vt at time t (a strategy

for which no money is added or withdrawn from the portfolio and all the transactions are

financed by selling the existing assets). An arbitrage opportunity is an opportunity for

an investor to generate money by starting with a portfolio valued zero, otherwise making

money by risking nothing.

1. V0 = 0

2. Vt ≥ 0

3. P (Vt > 0) > 0

20

As stated previously, we should define the fundamental theorems of asset pricing, but

let us firstly go through the ideas of numeraires and martingales. A numeraire is a non-

negative asset within the defined set of assets of a particular construct of a market. It

serves as a basic asset by which the values of other assets existing in the same market

construct are quoted or measured. It is quite common to take the money-market account

as a numeraire for pricing purposes. Importantly, a self-financing portfolio remains self-

financing even if it is normalized by a numeraire. The next important topic is the concept

of a martingale which is a vital part of the arbitrage-free models of financial derivatives.

A martingale is a process that is measurable w.r.t. Ft and the conditional expectation,

given all past observations, is equal to the last observation. Following that idea, XT

process will be a martingale w.r.t the Ft filtration if for each t ≤ T follows:

1. E(|XT |) <∞

2. E(XT |Ft) = Xt

As we see from the definition, a martingale has no drift.

Assuming that relative price processes are martingales w.r.t some probability measure we

can start with the definition of the First Fundamental Theorem of Asset Pricing (FFTAP).

The remaining definitions and formulas are inspired by Schumacher, J.M.’s definitions [5].

Definition 2.2 First Fundamental Theorem of Asset Pricing (FFTAP).

A market given by a probability measure P and a set of asset price processes S1, . . . , ST

is arbitrage-free under the probability measure P if and only if given any numeraire N ,

there exists a probability measure QN such that:

1. P and QN are equivalent probability measures1.

2. The discounted price processes S1

N
, . . . , ST

N
are martingales under QN .

Returning back to the risk-neutral valuation concept, let us mention that the risk-neutral

valuation is done under the risk-neutral probability measure. The latter is an equivalent
1Two probability measures P and Q and are called equivalent if they agree on which events can occur

and cannot occur. More specifically, any event A that occurs with positive probability under P also has

to occur with positive probability under Q . Note that the probability that A occurs may very well differ

under P and Q.

21

martingale measure, which is, in fact, any measure that satisfies two conditions stated in

2.2 definition of FFTAP. Moving on, a complete market concept is tackled in the Second

Fundamental Theorem of Asset Pricing.

Definition 2.3 Second Fundamental Theorem of Asset Pricing (SFTAP).

A market given by a probability measure P and a set of asset price processes S1, . . . , ST

and a risk-free bond B is complete under the probability measure P if and only if there

exists a unique risk-neutral measure that is equivalent to P and has a numeraire B.

Here comes the question of choosing an equivalent martingale measure to be used as

a risk-neutral measure. Subsequently, a pricing formula for an attainable cash flow is

derived by Schumacher which is called a numeraire dependent pricing formula (NDPF).

πt = EQNt
[
Nt
h(XT)

NT

∣∣Ft] (2.11)

where πt is the value of attainable contingent claim Xt at time t, h(XT) is the payoff

of the contingent claim at time T , N represents any numeraire and EQNt stands for the

expectation under the probability measure which has N asset as numeraire. Additionally,

Ft is the natural filtration or the information available up to time t. Now, naturally, to

fit our subject of interest, we should consider the money-market account as a numeraire.

Thus, let us see the formula in that case as follows

πt = EQMt
[
Mt

h(XT)

MT

∣∣Ft] = EQMt
[
e−

∫ T
t rsdsh(XT)

∣∣Ft] (2.12)

where EQMt denotes the expectation at time t under the risk-neutral probability measure

which has the money-market account as a numeraire. Thus, it is clear why the expectation

represents the discount factor. However, one can use a different numeraire, and in fact,

the Black-76 model uses a portfolio of zero-coupon bonds as a numeraire, which we will

see in the next subsection.

2.4 Black 76 model for swaptions

As a very well known extension to the classical Black-Scholes option pricing model, the

Black-76 model was developed specifically for pricing interest rate derivatives by Fisher

22

Black in 1976. While these models are quite similar, they still have some objective

differences. Firstly, it is worth mentioning that pricing of interest rate derivatives involves

more complexity than the pricing of stock options. Secondly, Black-76 model requires the

availability of the forward-swap rates, moreover, these and not only these rates are used

both for calculating the payoff and for discounting purposes. On the top of this, there is

an extra assumption about the nature of the forward-swap rate, specifically an assumption

holds of it to be lognormally distributed.

While Black-76 model can be used for pricing interest rate caps, floors, caption, swaptions,

let us look only into the last case. Let us consider a payer swaption and try to see the

link between the Black-Scholes and Black-76 models, namely by examining the relation

of a stock and a swap as underlying asset types. Let us assume that the swap rate

is S(t, T0, Tmn) as of date t. According to the payer swaption contract the holder of

the contract can enter into a swap agreement where the holder will pay the fixed rate

and receive the floating rate. Thus, the only scenario under which the swaption will be

exercised is when the floating rate is higher than the fixed rate. Subsequently, we can

write the payoff of this swaption as follows

L

m
max{S(t, T0, Tmn)− rk, 0} (2.13)

L is the notional and m indicates the number of payments per year. Now, let us start

tackling the pricing problem by firstly introducing the risk-neutral measure. As discussed

in the previous subsection, the numeraire does not have to be the money-market account.

Moreover, the following expression is used as a numeraire in this model.

Nt = L
mn∑
i=1

P (t, Ti)(Ti − Ti−1) (2.14)

Let us also denote the expectations at time t under this measure by EQNt . The value of

the payer swaption, based on the swap value shown in the previous chapter, will be the

following expression

payoffpayerswaption(T0) = max{L[1− P (T0, Tmn)]− L
mn∑
i=1

P (T0, Ti)(Ti − Ti−1)rk, 0} (2.15)

23

Let us make it simple and denote the payer swaption payoff at time t by πt. Now,

recalling the NDPF formula by Schumacher and applying it here will yield the following

expressions:
πt

L
∑mn

i=1 P (t, Ti)(Ti − Ti−1)
=

= EQNt
[max{L[1− P (T0, Tmn)]− L

∑mn
i=1 P (T0, Ti)(Ti − Ti−1)rk, 0}

L
∑mn

i=1 P (T0, Ti)(Ti − Ti−1)
|Ft
]

=

= EQNt
[

max
{ 1− P (T0, Tmn)∑mn

i=1 P (T0, Ti)(Ti − Ti−1)
− rk, 0

}
|Ft
]

=

= EQNt
[

max
{
S(T0, T0, Tmn)− rk, 0

}
|Ft
]

(2.16)

The last expression indicates that the swaption can truly be regarded as a European call

option on a swap contract under the Nt (2.14) fixed as a numeraire. Moreover, the forward

swap rate can be proven to be a martingale under the specified numeraire. Let us also

recall the formula for the forward swap rate, which was used for the derivation of the

third expression from the second one in (2.16).

S(t, T0, Tmn) =
P (t, T0)− P (t, Tmn)∑mn
i=1 P (t, Ti)(Ti − Ti−1)

(2.17)

Please note that the forward swap rate also can be consedered as a tradable asset, namely
L[P (t,T0)−P (t,Tmn)]

Tmn−T0 , divided by the numeraire Nt.

We can rewrite the last row of (2.16) for convinience.

πt = L

mn∑
i=1

P (t, Ti)(Ti − Ti−1)EQNt
[

max
{
S(T0, T0, Tmn)− rk, 0

}
|Ft
]

(2.18)

Now, using the prior knowledge about the Black-Scholes model, we can formulate Black-

76 model. Having an assumption of the forward swap rate’s distribution being Geometric

Brownian motion under QN and the volatility being constant over time, the formula of a

payer swaption value according the Black-76 model is stated accordingly.

Vswaption(t) = L

mn∑
i=1

P (t, Ti)(Ti − Ti−1)
[
S(t, T0, Tmn)Φ(d1)− rkΦ(d2)

]
d1 =

ln(S(t, T0, Tmn)/rk) + 1
2
σ2T

σ
√
T

d2 = d1 − σ
√
T

T = T0 − t

(2.19)

24

Following the same logic and recalling Bachelier’s model (2.10), we can adjust it for the

swaption domain as follows:

Vswaption(t) = L
mn∑
i=1

P (t, Ti)(Ti − Ti−1)σ
√
T − t

(
dΦ(d) + φ(d)

)
d =

S(t, T0, Tmn)− rk
σ
√
T − t

(2.20)

25

3 SABR model

This chapter is going to be based on the original paper [1] "Managing Smile Risk" by

Patrick Hagan and others.

European options are frequently priced and hedged by Black-Scholes model or Black’s

model. In Black’s model there is a direct link between the volatility parameter (let us

denote it as σB to indicate that we refer to Black’s volatility) and the option price. The

model itself is quite simple and having the σB parameter we can price the option easily.

Similarly, we can perform the reverse operation, namely, having the market price of an

option, we can uniquely derive the volatility under which the model will result the price

equal to the market price, thanks to the monotonic increasing nature of the option price

w.r.t. volatility parameter. Subsequently, we will call this volatility an implied volatility.

In fact, in many markets it is a standard practice to quote option prices in terms of

Black’s implied volatility. The construct of Black’s formula assumes that σB parameter

is a constant across all strikes and maturities for each underlying. However, the implied

volatility nearly always varies across the strike and maturity dimensions. Thus, when

plotting all the implied volatility parameters over all possible strikes we get a graph

that is called a volatility smile. This inherent inconsistency sometimes leads to several

problems in managing large books of options or pricing some exotic options.

One example can be the pricing of an option with strike K1 which has a down-and-

out knock-out at K2 < K1. Here a natural question rises. Should we use the implied

volatility for K1 or K2 or their mean? Another problem can be seen in delta and

vega hedging strategies. Thus, the problem can be solved only if we have a single self-

consistent model that works for all strikes. An apparent solution to this was introduced

with the local volatility models, where the surface between the implied volatility points

was approximated based on some logic. The logic was usually taken to be a piecewise

constant function. Nevertheless, as mentioned in the paper, this models are giving some

conter intuitive and empirically wrong dynamical changes when applied. As a solution to

these problems SABR model is introduced by the authors of the paper.

26

3.1 SABR model

Instead of basing the model on one Brownian motion the authors of SABR model decided

to consider the volatility parameter as a separate stochastic process. The decision is

justified by the observed chaotic periods in the market, which suggest that the volatility

is a stochastic process itself. The Stochastic-αβρ model is introduced as follows

dF = αF βdW1, F (0) = f

dα = ναdW2, α(0) = α

dW1dW2 = ρdt

(3.1)

It models the forward price F , W1 and W2 are brownian motions with correlation ρ. α

is a volatility parameter, which in turn is a stochastic process with its own volatility

parameter ν, it is called volatility of volatility.

The authors of the paper propose that SABR can be a very good tool to fit the volatility

curves observed in the market for any singe exercise date with a very high accuracy.

However, they also mention that for some underlying instruments SABR model is not the

best choice, pointing out that the model is not very useful for the underlying instruments

for which the exercise dates can be more than one. These type of instruments include

FX rates and most of the stocks. Therefore, the perfect environment where SABR can

perform the finest is the interest rate market. And the prominent instruments within

the interest rate market are swaptions, caplets and floorlets. The paper introducing

SABR shows that by using a singular perturbation techniques, it is possible to derive an

approximate solution for the model. Moreover, the upshot of the paper’s analysis is that

the solution is actually returned as a volatility estimate which then needs to be fed into

the Black’s formula to get the price of the option. This approach is chosen to adjust to

the market convention, which is to quote prices in terms of Black’s volatility. Similarly,

another formula is derived for quoting the Bachelier volatility parameter, which in turn

should be used in Bachelier’s model to price an option. The latter will be mentioned later

on. Currently, having the Black’s formulas (2.8) the following expression can be used to

approximate the Black’s volatility parameter σB(K, f), where K is the strike price and f

27

is the forward price of the underlying.

σB(K, f) =
α

(fK)(1−β)/2
{

1 + (1−β)2

24
ln2 f/K + (1−β)4

1920
ln4 f/K + . . .

} · (z

x(z)

)
·

{
1 +

[(1− β)2

24

α2

(fK)1−β +
1

4

ρβνα

(fK)(1−β)/2
+

2− 3ρ2

24
ν2
]
T + . . .

} (3.2)

where

z =
ν

α
(fK)(1−β)/2 ln(f/K) (3.3)

and

x(z) = ln
{√1− 2ρz + z2 + z − ρ

1− ρ
}

(3.4)

If we consider a special case, when the option is at the money (a.k.a. K = f), we can

reduce the formula down to the following

σBATM = σB(f, f) =
α

f (1−β)

{
1 +

[(1− β)2

24

α2

f 2−2β
+

1

4

ρβαν

f (1−β)
+

2− 3ρ2

24
ν2
]
T + . . .

}
(3.5)

The omitted terms "+ . . . " are much smaller. Indeed, even though more accurate expressions

were derived in the original paper by continuing the perturbation expansion to higher

order, the (3.2) and (3.5) are the formulas being used to value and hedge vanilla swaptions,

caps and floors. The higher order results have not been implemented, believing that the

increased precision of the higher order results is superfluous. (Hagan et al., 2002)

There are two special cases to be noted: β = 1 represents the stochastic log-normal model

and β = 0 normal model. The implied volatility formulas for these special cases will be

introduced later.

Similar to the Black’s implied volatility formula, Patrick Hagan has derived an implied

volatility formula for Bachelier’s model. It is also referred to as a Normal volatility formula

and is presented as follows

σN(K, f) = α(fK)β/2
1 + 1

24
ln2 f/K + 1

1920
ln4 f/K + . . .

1 + (1−β)2

24
ln2 f/K + (1−β)4

1920
ln4 f/K + . . .

·
(z

x(z)

)
·

{
1 +

[−β(2− β)α2

24(fK)1−β +
ρανβ

4(fK)(1−β)/2
+

2− 3ρ2

24
ν2
]
T + . . .

} (3.6)

28

where z and x(z) are the expressions from (3.3) and (3.4). Here the at the money case

can also be shown as a simplified expression like

σNATM = σN(f, f) = αfβ
{

1 +
[−β(2− β)α2

24(f)2−2β
+

ρβαν

4f (1−β)
+

2− 3ρ2

24
ν2
]
T + . . .

}
. (3.7)

3.2 Breaking down SABR parameters

As the underlying’s forward price varies throughout the trading day, the curve that ATM

volatility (3.5) σB(f, f) traces is known as the backbone, while the smile and skew refer

to the implied volatility σB(K, f) as a function of strike K for a fixed forward price f .

The backbone is affected by the parameter β. While the backbone curve takes a downward

sloping shape when β = 0, it starts to become less and less downward when β increases

and becomes completely horizontal at β = 1.

Let us now see how each part of the expression affects the shape of the volatility smile.

For that reason, let us introduce a slightly simplified version of the volatility expression

(3.2).

σB(K, f) =
α

f 1−β

{
1− 1

2
(1− β − ρλ) lnK/f

+
1

12

[
(1− β)2 + (2− 3ρ2)λ2

]
ln2K/f + . . .

} (3.8)

where

λ =
ν

α
f 1−β (3.9)

provided that the strike K is not too far from the forward price f .

While this version will not be very accurate, it is still enough to understand the dependency

of the implied volatility from the parameters more easily.

As discussed previously, the volatility smile gives a snapshot of the market volatility

(equivalently the prices) for different strikes for a given forward price. Now, looking into

the simplified volatility expression (3.8) let us break it down to the core. The first factor

− α
f1−β

is roughly the implied volatility for ATM options. Thus, the backbone mainly

relies on this part, hence, the relation mentioned w.r.t. β is justified. The second term
1
2
(1 − β − ρλ) lnK/f stands for the skew, the slope of the implied volatility curve w.r.t.

the strike price. This effect, in particular, can be split into two effects: −1
2
(1− β) lnK/f

29

known as beta skew (it is downward sloping since 0 ≤ β ≤ 1) and 1
2
ρλ lnK/f known

as the vanna skew, which is caused by the correlation parameter ρ. Empirically, that

correlation has mostly been negative, meaning the higher the forward price the lower the

implied volatility. The latter results the vanna skew being downward sloping. Finally,

the last term, which in turn breaks down to two effects. The first part 1
12

(1− β)2 ln2K/f

is the smile (quadratic term), but it is dominated by the downard sloping beta skew

and at reasonable strikes it just affects that skew to some extent. The second part
1
12

(2 − 3ρ2)λ2 ln2K/f is the smile induced by the volga (vol-gamma) effect. This smile

is caused by the fact that extremely large movements of the forward price happen more

often when the volatility α increases and less often otherwise. Thus, the strikes too far

from the current forward price represent the high volatility environments.

Let us discuss the parameters’ effects separately. For that we will again consider a

volatility smile for a fixed forward. The parameter β controls the skew. The same

does the parameter ρ and it is quite difficult to differentiate the effects of β and ρ on

a static smile. Thus, it is a common practice to usually choose β in advance, based on

either the hostorical observations of the backbone or select based on preferences or a priori

considerations. The latter is usually a choice between β = 0 (Bachelier model, normal

distribution), β = 0.5 (stochastic CIR) or β = 1 (Black’s model, log-normal distribution).

β = 0 is usually preferred by the practitioners working with the Euribor products where

the interest rates can go below zero. β = 0.5 is usually used by the US interest rate

desks and β = 1 is supported by the majority of derivative traders with a very basic and

standard underlyings, as it is considered to be more natural model to some people.

Subsequently, we are left with the need to calibrate ρ, α, ν. Luckily, these three parameters

are responsible for very specific augmentations on the smile. ρ shapes the curve’s skew

(see figure 1) , α mainly controls the overall height of the curve (see figure 2) and ν change

controls how much smile the curve exhibits (see figure 3). As the three parameters have

a strictly separated roles in the model, it should be easier to maintain stable calibration

results despite the market noise, which occur mostly on the far away strikes.

30

Figure 1: An example of the curve change when ρ is changed, while other parameters are

constant.

Figure 2: An example of the curve change when α is changed, while other parameters are

constant.

31

Figure 3: An example of the curve change when ν is changed, while other parameters are

constant.

3.3 Shifted SABR model

The Hagan’s approximation formulas for Black and Normal implied volatility estimation

(3.2) and (3.6) are quite useful and very well accepted among practitioners. However,

they have some drawbacks as well. In the current situation of the negative Euribor

rates, Hagan’s formulas become invalid, because of the logarithms in them. Thus, several

approaches have been developed to overcome this issue. Some of them are quite straight-

forward and some are complex. Among the more complex approaches is the Free Boundary

SABR model proposed by Alexandre Antonov in 2015. We will not cover that approach

in this thesis. However, we will cover a simpler and more straight-forward approach called

Shifted SABR model. It has some benefits and drawbacks, which we will discuss in this

chapter.

Shifted SABR is the first and simplest extension of SABR model towards the negative

interest rates. It inherits all the advantages and intuitive parameters of the SABR model.

Similar to the original SABR (3.1), under the shifted SABR model the forward rate has

32

the following dynamics:

dF = α(F + s)βdW1, F (0) = f

dα = ναdW2, α(0) = α

dW1dW2 = ρdt

(3.10)

with one difference: s is a positive deterministic shift.

The idea of the shift is to change the lower boundary from 0 to −s. This in turn, will

allow the underlying F go negative down till the boundary. The shift parameter s can be

chosen either based on the preference or by some calibration process. In this thesis, we

will choose s = 3% in the next chapter for the Euro market.

This choice is justified because of the current situation and expectations of the Eurbior

curve. The shift is set such that we do not expect Euribor to go below the shift, but on

the other hand, the shift itself is not very large.

Nevertheless, in general the shift should be chosen such that it complies with the following:

• F + s > 0, ∀F

• K + s > 0, ∀K

Going further, we define the shifted forward rate as : X = F + s.

Let’s take a payoff of a call option with maturity T .

max(FT −K, 0) = max((FT + s)− (K + s), 0)

= max(XT − (K + s), 0)
(3.11)

We can see that the payoff of a call option on F with the strike K is equal to the payoff

of call option on X with the strike K + s.

Moreover, let us note that dF = d(F + s) for deterministic shift s. Thus, we can rewrite

the first equation from (3.10) in terms of X as follows:

dX = αXβdW1

resulting to the conclusion, thatX follows SABRmodel dynamics with the same parameters

as F :

33

dX = αXβdW1, X(0) = f

dα = ναdW2, α(0) = α

dW1dW2 = ρdt

(3.12)

As a conclusion, we can have that the call option payoff of a shifted SABR model with the

forward f and strike K is equal to the corresponding SABR model call option payoff with

forward f + s and strike K + s at the time of maturity. Let us also note that we do not

have different approaches or assumptions about the discount process, which means that

if the payoffs are equal, then we should apply the exact same principles of discounting on

both cases. Therefore, we can also say that the values of these particular options will also

be equal.

Now, assuming the forward swap rate follows shifted SABR dynamics, let us derive

Hagan’s approximation formulas. Let BS(f, T,K, σ) denote the Black-Scholes call option

price with forward f , time to maturity T , strike K, volatility σ. The price of a call option

of F will be given as:

BS(f + s, T,K + s, σB(K + s, f + s))

where the volatility is given by Hagan’s Black volatility approximation formula as σB(K+

s, f + s), note that the arguments are shifted.

Summing up, we can say that shifted SABR model was quite straight-forward and easy to

understand, if we know the SABR model. As discussed previously it has a drawback. We

have to fix the shift, which results to some problems. In particular, a change in the shift

may be required if the rate goes below the shift. This can result to a jump in calibration

parameters, which in turn might affect the Greeks.

34

4 Results

This section will discuss the SABR model’s calibration on the market data. The chosen

markets are Euribor and USD Libor. The valuation date is taken to be 4 Feb 2020. Along

with the calibration, some market data engineering is also done, which will be discussed

under the Euribor subsection.

Let us first discuss the market data.

4.1 Market Data: Volatility Cube

As discussed in the first chapter, in a specific market the swaption is a contract that

can be identified by three attributes: time to maturity/expiry time, tenor and the strike.

Volatility cube is a set of volatility quotes for each combination of these three attributes.

If we denote the expiry, tenor and strike as Tm, Tn and K, we can denote the respective

volatility quote as σmn(K). Volatility cube is the data that represents the volatility

quotes for several Tm, Tn and K values, where m and n represent the indices of the two

dimensions of the volatility cube: expiry and tenor. This directly means that the expiry

and tenor are treated as a predefined set of limited values. K, in fact, also is limited in the

volatility cube, but it is not limited by SABR model. If we fix the strike to some K, we

will get a volatility surface on that level. The fixed strike can be also fixed conceptually,

e.g. the fixed strike can be the forward rate for that specific expiry, tenor combination.

In that case the volatility surface is called At the money volatility surface. Similarly

the fix can be relative to the forward rate, e.g. ATM+50 bps volatility plane or surface.

It is worth to note, that the notation in the interest rate domain is different from the

stock options’ domain, where the volatility surface is the surface on maturity and strike

dimension. Alternatively, if we fix the expiry and tenor, we get the well known volatility

smile. Ironically, the volatility smiles in the interest rate market usually look like skews

and even sometimes they are referred to as a volatility skew.

Here is an example of a volatility cube expressed in the table 1.

Other than the volatility cube, we need the market rates. Market rates can be expressed

in different ways. The data used in this thesis represents the discount factors of Euribor

6M curve and USD Libor 3M curve as of 4 Feb 2020.

35

Expiry Tenor Strike Black Vola Expiry Tenor Strike Black Vola

1M 1Y 0 27.24 1M 7Y 0 49.24

1M 1Y -50 17.85 1M 7Y -50 19.13

1M 1Y -25 8.04 1M 7Y -25 7.3

1M 1Y 25 -5.85 1M 7Y 25 -3

1M 1Y 50 -8.06 1M 7Y 50 -3

1M 2Y 0 43.15 1M 10Y 0 46.43

1M 2Y -50 12.67 1M 10Y -50 16.48

1M 2Y -25 4.47 1M 10Y -25 6.28

1M 2Y 25 -1.48 1M 10Y 25 -2.54

1M 2Y 50 -1.16 1M 10Y 50 -2.44

1M 3Y 0 49.53 1M 20Y 0 41.12

1M 3Y -50 16.5 1M 20Y -50 13.63

1M 3Y -25 5.84 1M 20Y -25 5.16

1M 3Y 25 -1.82 1M 20Y 25 -1.79

1M 3Y 50 -1.24 1M 20Y 50 -1.22

1M 4Y 0 52.02 1M 30Y 0 40.08

1M 4Y -50 18.95 1M 30Y -50 12.56

1M 4Y -25 7.01 1M 30Y -25 4.78

1M 4Y 25 -2.71 1M 30Y 25 -1.78

1M 4Y 50 -2.62 1M 30Y 50 -1.43

1M 5Y 0 50.67 3M 1Y 0 32.24

1M 5Y -50 20.81 3M 1Y -50 19.08

1M 5Y -25 7.94 3M 1Y -25 8.51

1M 5Y 25 -3.28 3M 1Y 25 -6.48

1M 5Y 50 -3.32 3M 1Y 50 -10.02

Table 1: Volatility cube for USD libor, volatility is in percentage, additive relative to

ATM volatility.

The discount factors are enough to construct the spot rate curve and forward swap rate

curve. Additionaly, it is an accepted market convention to use Overnight Interest Swap

36

curves for the discounting of future cash flows. Thus, the data also includes EUR OIS and

USD OIS curves as of 4 Feb 2020. Before starting any valuation process, it is important

to fix the day-count convention. In this thesis, ACT/365 day-count convention is chosen,

which means that the time interval between two dates will be calculated by counting the

actual days in between those two dates, where we include the first date and exclude the

last one, and dividing the result on 365.

Let us now discuss separately EUR and USD calibration cases.

4.2 Euribor volatility cube calibration with SABR

Let us note that similar to Black volatility cube, there can be Bachelier or normal volatility

cube quotes in the market. As a matter of fact, the volatility for Euribor is either quoted

by normal implied volatility cube or by shifted Black volatility cube. The latter is harder

to find in practice. The data for this thesis includes normal volatility cube for Eurbor as

of 4 Feb 2020. Additionally, it turns out that in order to utilize Hagan’s approximation

formulas, the rates/strikes cannot go negative. This makes the application for Euribor

harder than for USD Libor. As discussed in the chapter covering SABR model extensions

on negative rates, the easiest way would be to use shifted SABR model. However, for the

calibration of shifted SABR, the cube should express the implied volatilities for shifted

Black model.

In order to solve this issue a market data engineering type of approach is undertaken.

The goal of that intermediate step is to retrieve the shifted Black volatility cube out of a

normal volatility cube for Euribor swaptions. The process can be described as follows:

• calculate Swaption prices for each quoted normal volatility using Bachelier model.

• set up a shifted Black 76 model with 3% shift.

• Imply the volatility for each swaption price using the shifted Black 76 model and a

root finding minimization technique.

• Get the volatility cube for 3% shifted Black volatilities for Euribor swaptions.

The python code implementation of this process can be found in the appendix.

This approach is a quick workaround in cases when the market data is not very easy to

37

get. And in reality, the market data on specific financial products are quite expensive

and rare, so this approach can be viewed as a possibility to use financial engineering

techniques in order to overcome the data shortage and be more robust in the highly

limited environment.

It should also be noted that in order to skip some numerical precision errors, some of the

shifted volatility points are omitted from the analysis due to the fact that the swaption

prices were either zero or too close to zero (< 10−9). The latter is done because of a

concern about the numerical operations’ precision in the programming environment. The

code in appendix bears that procedure.

Next step will be to preform the calibration of the SABR model for each (expiry, tenor)

combination and fitting a smile on the strike dimension. It is worth noting that for each

Tm, Tn we fit a separate set of parameters α, ν, ρ. In this thesis it was decided to fix the

beta as an a priori parameter. Specifically for the Euro market, β is taken to be 1.

Thus, the calibration procedure includes a function that is minimized for each separate

combination of expiry and tenor across all strikes. The function to minimize can be

expressed as follows:

L(β, α, ν, ρ, Tn, K̄, S(t, Tm, Tn)) =
∑
k∈K̄

(σ̂B(β, α, ν, ρ, Tn, S(t, Tm, Tn), k)− σB)2 (4.1)

where K̄ is the set of available strikes for the expiry Tm and tenor Tn in the volatility

cube, S(t, Tm, Tn) is the forward swap rate. is calculated with the Black’s volatility

approximation formula by Hagan (3.2). Note, we use forward swap rate S as f and the

tenor Tn as T in the formula (3.2).

And the calibration process is the multiparameter optimization of the Loss function L:

L(β, α, ν, ρ, Tn, K̄, S(t, Tm, Tn)) −→
α,ρ,ν

min (4.2)

Having all the data, we can perform the calibration and report the results in the following

table 2. Each row in the table represents a separate volatility smile/skew for a specific

combination of expiry and tenor.

In order to see the results better, we can visualize the fitted smiles for each expiry and

tenor combination and the actual points of the volatility in the figure 4.

38

Figure 4: EUR smiles fitted by 3% shifted SABR model. The red dots represent the

actual volatility points and the line represents the fitted smile.

39

Expiry Tenor α ν ρ Loss Expiry Tenor α ν ρ Loss

1M 2Y 0.034 1.396 -0.105 0.022 2Y 2Y 0.101 0.438 -0.054 0.000

1M 5Y 0.082 0.932 -0.026 0.000 2Y 5Y 0.122 0.411 -0.157 0.000

1M 10Y 0.099 0.826 -0.173 0.000 2Y 10Y 0.131 0.445 -0.376 0.000

1M 20Y 1.433 8.596 -0.669 0.003 2Y 20Y 0.768 2.347 -0.585 0.000

1M 30Y 0.084 0.728 -0.378 0.000 2Y 30Y 0.129 0.459 -0.488 0.000

3M 2Y 0.059 0.993 0.145 0.001 5Y 2Y 0.145 0.337 -0.357 0.000

3M 5Y 0.093 0.804 -0.032 0.001 5Y 5Y 0.148 0.280 -0.370 0.000

3M 10Y 0.094 0.877 -0.204 0.000 5Y 10Y 0.147 0.304 -0.456 0.000

3M 20Y 0.092 0.772 -0.396 0.000 5Y 20Y 0.622 1.315 -0.561 0.000

3M 30Y 0.087 0.707 -0.399 0.000 5Y 30Y 0.159 0.336 -0.572 0.000

6M 2Y 0.060 0.731 0.172 0.001 10Y 2Y 0.148 0.191 -0.500 0.000

6M 5Y 0.096 0.703 -0.058 0.000 10Y 5Y 0.147 0.226 -0.477 0.000

6M 10Y 0.100 0.784 -0.249 0.000 10Y 10Y 0.149 0.274 -0.493 0.000

6M 20Y 0.095 0.721 -0.400 0.000 10Y 20Y 0.151 0.295 -0.533 0.000

6M 30Y 0.091 0.667 -0.411 0.000 10Y 30Y 0.160 0.305 -0.552 0.000

9M 2Y 0.066 0.629 0.142 0.000 20Y 2Y 0.150 0.165 -0.650 0.000

9M 5Y 0.101 0.627 -0.076 0.000 20Y 5Y 0.152 0.200 -0.590 0.000

9M 10Y 0.107 0.695 -0.262 0.000 20Y 10Y 0.159 0.252 -0.566 0.000

9M 20Y 0.102 0.654 -0.413 0.000 20Y 20Y 0.161 0.284 -0.577 0.000

9M 30Y 0.975 4.656 -0.640 0.003 20Y 30Y 0.164 0.304 -0.554 0.000

1Y 2Y 0.074 0.526 0.109 0.000 30Y 2Y 0.163 0.126 -0.908 0.000

1Y 5Y 0.106 0.547 -0.070 0.000 30Y 5Y 0.166 0.243 -0.544 0.000

1Y 10Y 0.116 0.604 -0.304 0.000 30Y 10Y 0.170 0.155 -0.838 0.001

1Y 20Y 0.849 3.421 -0.622 0.002 30Y 20Y 0.164 0.087 -0.999 0.001

1Y 30Y 0.111 0.545 -0.446 0.000 30Y 30Y 0.165 0.107 -0.999 0.001

Table 2: Euribor calibration results of 3% shifted volatility cube.

From the first glance it looks fine. And the losses are quite well minimized. However, our

aim of calibrating the SABR on a volatility cube has a practical reason of filling in the

strikes that are not actually present in the market data. Thus, we are interested in how

40

well the calibrated model can reflect the volatility point in case it was not included in the

calibration set.

Aiming to show how the calibrated model behaves on the unseen points, we will perform a

"leave one out" approach for each strike point available for each (expiry, tenor) combination

and compare the left out strike’s actual volatility to the fitted volatility which was

calibrated without that point.

The procedure is available in the appendix and the results can be seen with the barplot

5.

We can see that the leave one out approach gives in general a quite well fit. Exceptions

are the very short expiry and tenor smiles and the strike points that are at the edge,

which requires the SABR model to extrapolate, as there is no other points further than

that.

Another interesting approach will be to take a surface and see how the fitted surface

looks like w.r.t. the actual volatility cube points. The most important surface withing

the volatility cube is considered to be the at the money surface. This shows all the points

where the strike is equal to the respective forward swap rate. Thus, let us look into the

fitted ATM surface plot. 6.

Note that the volatility surface is derived by performing a linear interpolation on fitted

points. The linear interpolation is done to show the surface, otherwise the plot would be

a scatter plot and not convenient to observe. Similarly, it is interesting to see the surface

on actual points. It is plotted as figure 7

41

Figure 5: Leave one out approach performed for each strike of each smile on EUR 3%

shifted Black volatility cube. The bars on the left are actual values, the bars on the right

are fitted values.

42

Figure 6: Eur Black fitted volatility ATM surface. The points represent the actual

volatility quotes, the surface is fitted.

Figure 7: Eur Black actual volatility ATM surface. The points represent the actual

volatility quotes, the surface is fitted. Linear intepolation is performed

43

4.3 USD Libor volatility cube calibration with SABR

In the USD Libor case, the data to be used is Libor 3M curve for forward swap curve

derivation, Libor OIS curve for discounting purposes and a Black volatility cube.

In case of Libor, the rates are positive, thus it reduces the amount of work and complexity

to get the right data or to use shifted models. Here we will use the straight forward Hagan’s

approximation formulas for implied Black volatility (3.2). The loss function is the same

as in Euribor case (4.1) and we minimize with the same principle (4.2). As the data for

Libor appears to be more noisy and volatile in our particular case, a judgement call is

made in terms of taking the a priori β parameter. We know that the β = 0 or β = 1

are more limited and special cases, while β ∈ (0, 1) is a more general case. Thus, in USD

Libor case, the β parameter is taken to be 0.5, which is the middle point of the (0, 1)

interval and a more or less standard value for the parameter other than 0 and 1. The code

for it is available in the appendix. Having all the data, we can perform the calibration

and report the results in the following tables 3 for part 1 and 4 for part 2. The results

are broken into two tables because of the size of the Libor data, it happens to be larger

compared to the Euribor data.

The results can also be checked by plotting the smiles and the actual points of volatility:

figure 8. some expiry, tenor combinations have empty graphs because the market data is

not provided for them. However, the aim of plotting them even though the smile does

not exist is to keep the tabular form of the possible expiry and tenor time crosses.

Subsequently, in order to test the out of the sample performance of the calibration, similar

to the Euribor case, we perform a leave one out approach and plot the barplots 9.

Here as well, we see some odd market data which is a bit hard to fit. Also we observe that

the points on the edges of the strike dimension are harder to match than the ones in the

middle. The possible reasons of poor fitting capacity for some rare cases are the market

noise and the liquidity. Market noise can cause some quotes to have odd values, and the

lack of liquidity for some particular positions in the Libor market can cause the volatility

quotes to be non reliable. There are some techniques that include adding weights to

the quotes based on the bid-ask spread size and some other liquidity indicators. These

approaches tend to smoothen the fits and not be affected by outliers. Unfortunately,

the data used in this thesis does not cover these liquidity indicators, therefore the above

44

Figure 8: USD smiles fitted by SABR model. The red dots represent the actual volatility

points and the line represents the fitted smile.

45

Figure 9: Leave one out approach performed for each strike of each smile on USD Black

volatility cube. The bars on the left are actual values, the bars on the right are fitted

values.

46

Expiry Tenor α ν ρ Loss Expiry Tenor α ν ρ Loss

1M 1Y 0.035 1.138 -0.783 0.000 6M 10Y 0.043 0.778 -0.426 0.001

1M 2Y 0.046 0.989 -0.190 0.001 6M 20Y 0.036 0.652 -0.409 0.000

1M 3Y 0.047 1.102 -0.218 0.001 6M 30Y 0.034 0.612 -0.438 0.000

1M 4Y 0.047 1.119 -0.298 0.001 1Y 1Y 0.053 0.926 -0.761 0.003

1M 5Y 0.045 1.146 -0.367 0.002 1Y 2Y 0.058 0.826 -0.760 0.003

1M 7Y 0.042 1.049 -0.350 0.001 1Y 3Y 0.058 0.776 -0.645 0.002

1M 10Y 0.038 0.935 -0.317 0.001 1Y 4Y 0.054 0.817 -0.564 0.003

1M 20Y 0.030 0.781 -0.269 0.000 1Y 5Y 0.055 0.844 -0.587 0.004

1M 30Y 0.047 1.210 -0.665 0.013 1Y 7Y 0.053 0.796 -0.562 0.001

3M 1Y 0.042 1.112 -0.807 0.001 1Y 10Y 0.047 0.722 -0.495 0.001

3M 2Y 0.056 1.272 -0.781 0.003 1Y 20Y 0.041 0.607 -0.491 0.000

3M 3Y 0.049 1.253 -0.533 0.003 1Y 30Y 0.039 0.571 -0.492 0.000

3M 4Y 0.047 1.087 -0.431 0.002 2Y 1Y 0.056 0.655 -0.605 0.002

3M 5Y 0.050 1.047 -0.543 0.002 2Y 2Y 0.058 0.710 -0.667 0.002

3M 7Y 0.045 1.002 -0.482 0.002 2Y 3Y 0.057 0.646 -0.567 0.001

3M 10Y 0.038 0.936 -0.386 0.001 2Y 4Y 0.057 0.643 -0.573 0.001

3M 20Y 0.032 0.700 -0.313 0.000 2Y 5Y 0.058 0.684 -0.635 0.001

3M 30Y 0.028 0.693 -0.380 0.000 2Y 7Y 0.056 0.662 -0.616 0.001

6M 1Y 0.046 0.848 -0.841 0.001 2Y 10Y 0.053 0.633 -0.589 0.001

6M 2Y 0.057 1.038 -0.785 0.003 2Y 20Y 0.046 0.619 -0.587 0.001

6M 3Y 0.053 0.904 -0.542 0.002 2Y 30Y 0.043 0.578 -0.561 0.001

6M 4Y 0.050 0.869 -0.465 0.001 3Y 2Y 0.058 0.582 -0.652 0.001

6M 5Y 0.054 0.889 -0.570 0.002 3Y 3Y 0.058 0.608 -0.616 0.001

6M 7Y 0.049 0.846 -0.516 0.001 3Y 4Y 0.057 0.608 -0.621 0.001

Table 3: USD Libor calibration results of Black volatility cube. Part 1

mentioned techniques are not applied in here.

Subsequently, it is interesting to plot the ATM fitted volatility surface as figure 10. Along

with the fitted surface, it is interesting to see how the actual at the money volatility

surface looks like as figure 11.

47

Figure 10: USD Black fitted volatility ATM surface. The points represent the actual

volatility quotes.

Figure 11: USD Black actual volatility ATM surface. The points represent the actual

volatility quotes.

48

Expiry Tenor α ν ρ Loss Expiry Tenor α ν ρ Loss

3Y 5Y 0.058 0.641 -0.667 0.001 10Y 1Y 0.049 0.399 -0.535 0.000

3Y 7Y 0.057 0.620 -0.651 0.001 10Y 2Y 0.049 0.417 -0.580 0.000

3Y 10Y 0.054 0.598 -0.629 0.000 10Y 3Y 0.048 0.428 -0.584 0.000

3Y 20Y 0.046 0.665 -0.610 0.001 10Y 4Y 0.048 0.431 -0.605 0.000

3Y 30Y 0.043 0.564 -0.570 0.001 10Y 5Y 0.049 0.478 -0.622 0.000

4Y 2Y 0.058 0.590 -0.637 0.001 10Y 7Y 0.048 0.461 -0.631 0.000

4Y 3Y 0.057 0.619 -0.602 0.001 10Y 10Y 0.049 0.457 -0.652 0.000

4Y 4Y 0.056 0.627 -0.613 0.001 10Y 20Y 0.047 0.521 -0.645 0.000

4Y 5Y 0.056 0.725 -0.650 0.001 10Y 30Y 0.043 0.536 -0.587 0.002

4Y 7Y 0.055 0.706 -0.647 0.001 15Y 1Y 0.178 3.466 -0.907 0.012

4Y 10Y 0.054 0.704 -0.647 0.001 20Y 1Y 0.045 0.473 -0.628 0.001

4Y 20Y 0.046 0.644 -0.612 0.001 20Y 2Y 0.049 2.137 -0.783 0.138

4Y 30Y 0.041 0.617 -0.580 0.002 20Y 5Y 0.046 0.547 -0.671 0.001

5Y 1Y 0.057 0.535 -0.539 0.001 20Y 10Y 0.047 0.602 -0.691 0.001

5Y 2Y 0.056 0.521 -0.610 0.001 20Y 20Y 0.042 0.651 -0.618 0.005

5Y 3Y 0.055 0.522 -0.587 0.000 20Y 30Y 0.033 0.735 -0.570 0.025

5Y 4Y 0.054 0.501 -0.591 0.000 30Y 2Y 0.055 0.612 -0.763 0.001

5Y 5Y 0.054 0.525 -0.623 0.000 30Y 5Y 0.058 0.628 -0.734 0.001

5Y 7Y 0.053 0.502 -0.630 0.000 30Y 10Y 0.063 0.578 -0.760 0.001

5Y 10Y 0.053 0.493 -0.649 0.000 30Y 20Y 0.055 0.452 -0.652 0.006

5Y 20Y 0.048 0.546 -0.624 0.000 30Y 30Y 0.049 0.542 -0.556 0.016

5Y 30Y 0.045 0.514 -0.580 0.001

Table 4: USD Libor calibration results of Black volatility cube. Part 2

49

Conclusion

In the scope of the thesis we have discussed the mathematical preliminaries required

for introducing the concepts of money-market derivatives. Subsequently, Black 76 and

Bachelier models were discussed with their extensions for pricing the swaptions. As a last

theoretical part, the SABR model is introduced and the Hagan’s approximation formulas

for implied Black and normal volatilities are shown, as well as the impact of the SABR

parameters on the volatility smile is measured. As the thesis aims to cover both Euribor

and USD Libor swaptions, the shifted SABR model is also introduced.

The last chapter covers the practical applications of SABR in terms of fitting the volatility

cube of the Euribor and USD Libor swpations, as well as the calibration procedure. An

extra step is performed for the Eurbor volatility cube calibration, as the market quotes

are in terms of normal volatility and for negative rates and strikes, while the Hagan’s

approximation formulas are suited for the positive ones. The extra step involves shifting

the normal volatility cube to a shifted Black volatility quotes.

The results of the calibration are then evaluated by leaving one strike out and estimating

the fitted and actual volatility quotes differences. The evaluation shows an acceptable fit

and can possible be used for pricing actual swaptions using the calibrated volatility cube.

Some larger errors appear for the strikes that are on the right and left edges of the actual

strike intervals, which can be explained by the fact that they are on the edges of the strike

interval and the model is naturally expressing worse fit for those areas. Another reason for

non perfect fits is the market liquidity and the possible bid-ask spreads that occur for the

illiquid parts of the volatility cube, as well as some market data noise. Summing up the

results of the thesis, we can conclude that the SABR model is a powerful tool for fitting

the market volatility cube and can, indeed, be used for pricing swaptions in practice.

50

References

[1] Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski and Diana E. Woodward (2002)

Managing Smile Risk, Wilmott

[2] Damiano Brigo, Fabio Mercurio (2001) Pricing of Commodity Contracts, Interest Rate

Models Theory and Practice, Journal of Financial Economics, 167-179 pp.

[3] John Hull (2008) Options, Futures And Other Derivatives, 7th edition

[4] E.H. Soerensen and T.F. Bollier (1994) Pricing Swap Default Risk. Financial Analysts

Journal

Interest Rate Models Theory and Practice 2001 edition by Damiano Brigo, Fabio

Mercurio, Pricing of Commodity Contracts, Journal of FinancialEconomics 3 (1976)

167-179 pp

[5] Schumacher, J.M. (2010). Financial Models. Tilburg University, the Netherlands

[6] Kazuhiro Iwasawa. Analytic formula for the european normal black scholes formula.

51

Appendix

1

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 import math

6 import datetime

7 import scipy as sp

8 from scipy.stats import norm

9 from scipy.optimize import minimize , minimize_scalar , fsolve #, rosen ,

rosen_der

10 import seaborn as sns

11 from scipy.interpolate import interp2d

12 from matplotlib import cm

13 from mpl_toolkits import mplot3d

14 sns.set(style="whitegrid")

15 import matplotlib.pyplot as plt

16 from mpl_toolkits.mplot3d import Axes3D

17

18

19 def standard_time(t):

20 # is used for the plot titles only.

21 if t<1:

22 if np.abs(t*365 - 30) <5:

23 result = ’1M’

24 elif np.abs(t*365 - 90) <10:

25 result = ’3M’

26 elif np.abs(t*365 - 180) <15:

27 result = ’6M’

28 elif np.abs(t*365 - 270) <20:

29 result = ’9M’

30 else:

31 result = t

32 else:

33 result = ’{}Y’.format(int(t))

34 return result

52

35

36

37 #Black76 For EUR

38 def Annuity(T_0 , T_mn , tenordelta):

39 return tenordelta * np.sum(DF(np.arange(T_0 , T_0 + T_mn , tenordelta)

+ tenordelta , eurois))

40

41

42 def SwaptionB76(t, T_0 , T_mn , r_k , sigma , S_t , tenordelta):

43 T = T_0 - t

44 d1 = (np.log(S_t / r_k) + 1/2* sigma **2*T) / (sigma*np.sqrt(T))

45 d2 = d1 - sigma*np.sqrt(T)

46

47 A_0_mn = Annuity(T_0 , T_mn , tenordelta)

48

49 return A_0_mn * (S_t * norm.cdf(d1) - r_k * norm.cdf(d2))

50

51

52 #Bachelier

53 def SwaptionBachelier(t, T_0 , T_mn , r_k , sigma , S_t , tenordelta):

54 T = T_0 - t

55 d = (S_t - r_k) / (sigma * np.sqrt(T))

56

57 A_0_mn = Annuity(T_0 , T_mn , tenordelta)

58

59 return A_0_mn * sigma * np.sqrt(T) * (d*norm.cdf(d) + norm.pdf(d))

60

61

62 def sigma_B_general(K, f, alpha , nu , rho , T):

63 def x(z):

64 return np.log((np.sqrt (1-2*rho*z + z**2) + z - rho)/(1 - rho))

65 z = (nu/alpha) * (f*K)**((1- beta)/2)*np.log(f/K)

66 sigma = (alpha /((f*K)**((1- beta)/2) * (1 + ((1-beta)**2/24)* (np.log

(f/K))**2 + ((1-beta)**4/1920)* (np.log(f/K))**4))) * (z/x(z)) * (

67 1 + (((1-beta)**2/24) * (alpha **2/(f*K)**(1- beta)) + 1/4* (rho*beta

*nu*alpha)/(f*K)**((1 - beta)/2) + (2-3*rho **2) /24*nu**2)*T)

68 return sigma

53

69

70

71 def sigma_B_atm(f, alpha , nu, rho , T):

72 sigma = alpha/f**(1- beta)*(1 + (

73 (1-beta)**2/24* alpha **2/f**(2 -2* beta) + 1/4* rho*beta*alpha*nu/f

(1- beta) + (2-3*rho **2) /24*nu2)*T)

74 return sigma

75

76

77 def sigma_B(K, f, alpha , nu, rho , T):

78 if K==f:

79 return sigma_B_atm(f, alpha , nu , rho , T)

80 else:

81 return sigma_B_general(K, f, alpha , nu, rho , T)

82

83

84 def sigma_N_general(K, f, alpha , nu , rho , T):

85 def x(z):

86 return np.log((np.sqrt (1-2*rho*z + z**2) + z - rho)/(1 - rho))

87 z = (nu/alpha) * (f*K)**((1- beta)/2)*np.log(f/K)

88 sigma = alpha *(f*K)**(beta /2) * (1 + 1/24*np.log(f/K)**2 + 1/1920 *

np.log(f/K)**4) / (

89 1 + (1-beta)**2 * 1/24 * np.log(f/K)**2 + (1-beta)**4/1920 * np.

log(f/K)**4) * (z/x(z)) * (

90 1 + ((-beta*(2-beta)*alpha **2) /(24*(f*K)**(1- beta)) + 1/4* (rho*

beta*nu*alpha)/(f*K)**((1- beta)/2) + (2-3*rho **2) /24*nu**2)*T)

91 return sigma

92

93

94 def sigma_N_atm(f, alpha , nu, rho , T):

95 sigma = alpha*f**beta * (1 + (

96 (-beta*(2-beta)*alpha **2) /(24*f**(2 -2* beta)) + 1/4* rho*beta*

alpha*nu/f**(1- beta) + (2-3*rho **2) /24*nu**2)*T)

97 return sigma

98

99

100 def sigma_N(K, f, alpha , nu, rho , T):

54

101 if K==f:

102 return sigma_N_atm(f, alpha , nu , rho , T)

103 else:

104 return sigma_N_general(K, f, alpha , nu, rho , T)

105

106

107 # Read the data

108 vols = pd.read_csv(’VCUB_20200204.csv’, sep=’;’, decimal=’,’)

109 eur = pd.read_csv(’EUR6M.csv’)

110 eur.Maturity_Date = pd.to_datetime(eur.Maturity_Date)

111 eurois = pd.read_csv(’EUROIS.csv’)

112 eurois.Maturity_Date = pd.to_datetime(eurois.Maturity_Date)

113 eurois[’tenor’] = eurois.Maturity_Date.apply(lambda x: (x - eurois.

Maturity_Date [0]).days /365)

114 eur[’tenor ’] = eur.Maturity_Date.apply(lambda x: (x - eur.Maturity_Date

[0]).days /365)

115 eur[’spot’] = eur.apply(lambda x: x[’DiscFactor ’]**(-1/x[’tenor’] if x[’

tenor’]>0 else 0) -1, axis =1)

116 eurois[’spot’] = eurois.apply(lambda x: x[’DiscFactor ’]**(-1/x[’tenor’]

if x[’tenor’]>0 else 0) -1, axis =1)

117

118

119 def spot(tenor , curve):

120 return np.interp(tenor , xp=curve[’tenor’], fp=curve[’spot’])

121

122

123 def DF(tenor , curve):

124 return 1/(1 + spot(tenor , curve))** tenor

125

126

127 def F(T1, T2, curve):

128 # Forward rate

129 # this is actually F(t, T1, T2), t is 2020 -02 -04

130 return 1/(T2 - T1)*(DF(T1, curve)/DF(T2, curve) - 1)

131

132

133 def S(T1, T2, curve , step =0.5):

55

134 # Forward -Swap rate

135 # this is actually S(t, T1, T2), t is 2020 -02 -04

136

137 dots = np.arange(T1,T2,step) + step

138 denominator = np.sum(DF(dots , curve)*step)

139 return (DF(T1 , curve) - DF(T2 , curve)) / denominator

140

141

142 # shifting the inputs

143 def implied_black_loss(sigma , t, T_0 , T_mn , r_k , S_t , tenordelta , price)

:

144 #sigma = sigma_array [0]

145 return (SwaptionB76(t, T_0 , T_mn , r_k +0.03 , sigma , S_t +0.03,

tenordelta) - price)

146

147

148 vols[’BlackVol ’] = np.nan

149 vols[’Price ’] = np.nan

150 vols[’B76Price ’] = np.nan

151 vols[’Loss’] = np.nan

152 implied_volas = dict()

153 loss_implied = dict()

154 for i, v in vols.iterrows ():

155

156 expiry = v[’Term’]

157 tenor = v[’Tenor ’]

158 sigma = v[’NVol’]/10000

159 strike = v[’Strike ’]/10000

160 price = SwaptionBachelier (0, expiry , tenor , S(expiry , expiry + tenor

, eur) + strike , sigma , S(expiry , expiry + tenor , eur), 0.5)

161 solution = fsolve(implied_black_loss , 0.5, args=(0, expiry , tenor ,

S(expiry , expiry + tenor , eur) + strike , S(expiry , expiry + tenor ,

eur), 0.5, price)

162 , xtol =0.000001)

163

164 vols.loc[((vols.Term == expiry) & (vols.Tenor == tenor) & (vols.

Strike == v[’Strike ’])), ’B76Price ’] = SwaptionB76 (0, expiry , tenor ,

56

strike+S(expiry , expiry + tenor , eur)+0.03, solution , S(expiry ,

expiry + tenor , eur)+0.03 , 0.5)

165 vols.loc[((vols.Term == expiry) & (vols.Tenor == tenor) & (vols.

Strike == v[’Strike ’])), ’BlackVol ’] = solution

166 vols.loc[((vols.Term == expiry) & (vols.Tenor == tenor) & (vols.

Strike == v[’Strike ’])), ’Price’] = price

167 vols[’Loss’] = vols[’Price ’] / vols[’B76Price ’] -1

168

169

170 # # Fitting SABR

171 def smile_loss(x, expiry , tenor , vols , sigma_function , volatility_name ,

s=0, curve=eur):

172 alpha = x[0]

173 nu = x[1]

174 rho = x[2]

175 loss = 0

176

177 atm = S(expiry , expiry + tenor , curve)

178

179 smile = vols[(vols.Term == expiry) & (vols.Tenor == tenor)][[’Strike

’, volatility_name]]

180 result = np.array([sigma_function(s+k/10000+atm , s+atm , alpha , nu,

rho , tenor) for k in smile[’Strike ’]. values])

181

182 loss += sum((result - smile[volatility_name])**2)

183 return loss

184

185 #fix some params

186 beta = 1

187

188 # filter the volatilities for which the price is too small

189 vols_filtered = vols[vols.Price > 1/ 10**9]. copy()

190

191

192 START = datetime.datetime.now()

193 x0 = [0.6, 0.4, -0.2]

194 expiry_list = []

57

195 tenor_list = []

196 alpha_list = []

197 nu_list = []

198 rho_list = []

199 loss_list = []

200 for expiry in vols_filtered.Term.unique ():

201 for tenor in vols_filtered.Tenor.unique ():

202 solution = minimize(fun=smile_loss , x0=x0 , args=(

203 expiry , tenor , vols_filtered , sigma_B , ’BlackVol ’, 0.03, eur

), bounds = (

204 (0.001 , None), (0.001 , None), (-0.999, 0.999)), method="SLSQP", tol

=1e-20)

205 expiry_list.append(expiry)

206 tenor_list.append(tenor)

207 alpha_list.append(solution.x[0])

208 nu_list.append(solution.x[1])

209 rho_list.append(solution.x[2])

210 loss_list.append(solution.fun)

211 calibration_result = pd.DataFrame ({’expiry ’: expiry_list

212 , ’tenor’: tenor_list

213 , ’alpha’: alpha_list

214 , ’nu’: nu_list

215 , ’rho’: rho_list

216 , ’loss’: loss_list })

217 print(’duration: ’, datetime.datetime.now() - START)

218

219

220 calibration_result.to_csv(’EUR_Calibration.csv’)

221

222

223 [k for k in vols_filtered [(vols_filtered.Term == expiry) & (

vols_filtered.Tenor == tenor)][’Strike ’]/10000]

224

225

226 fig , ax = plt.subplots(len(calibration_result.expiry.unique ()), len(

calibration_result.tenor.unique ())

227 , sharex=True , sharey=True , figsize =(15 ,15))

58

228 for i, expiry in enumerate(calibration_result.expiry.unique ()):

229 for j, tenor in enumerate(calibration_result.tenor.unique ()):

230

231 params = calibration_result [(calibration_result.expiry == expiry

) & (calibration_result.tenor == tenor)]

232 alpha = params.alpha.values [0]

233 nu = params.nu.values [0]

234 rho = params.rho.values [0]

235 atm = S(expiry , expiry+tenor , eur)

236 sns.lineplot(x=[k for k in vols[(vols.Term == expiry) & (vols.

Tenor == tenor)][’Strike ’]]

237 , y=[sigma_B (0.03 + atm + k ,0.03 + atm , alpha , nu,

rho , tenor) for k in vols[(vols.Term == expiry) & (vols.Tenor ==

tenor)][’Strike ’]/10000]

238 , ax=ax[i, j])

239 sns.scatterplot(x=[k for k in vols_filtered [(vols_filtered.Term

== expiry) & (vols_filtered.Tenor == tenor)][’Strike ’]]

240 , y=[vol for vol in vols_filtered [(vols_filtered.

Term == expiry) & (vols_filtered.Tenor == tenor)][’BlackVol ’]]

241 , ax= ax[i, j], color=’red’)

242 ax[i, j]. set_title(’{}x{}’.format(standard_time(expiry),

standard_time(tenor)))

243 fig.savefig(’EUR_smiles.png’)

244

245 # # Leave one out

246 idx = vols_filtered [(vols_filtered.Term ==2) & (vols_filtered.Tenor ==5) &

(vols_filtered.Strike ==-50)]. index

247 START = datetime.datetime.now()

248 x0 = [0.6, 0.4, -0.2]

249 expiry_list = []

250 tenor_list = []

251 alpha_list = []

252 nu_list = []

253 rho_list = []

254 loss_list = []

255 strike_list = []

256 for expiry in vols_filtered.Term.unique ():

59

257 for tenor in vols_filtered.Tenor.unique ():

258 for strk in vols_filtered [(vols_filtered.Term== expiry) & (

vols_filtered.Tenor ==tenor)]. Strike:

259 # index to leave out

260 idx = vols_filtered [(vols_filtered.Term== expiry) & (

vols_filtered.Tenor ==tenor) & (vols_filtered.Strike ==strk)].index

261

262 solution = minimize(fun=smile_loss , x0=x0 , args=(

263 expiry , tenor , vols_filtered.drop(index=idx), sigma_B , ’

BlackVol ’, 0.03, eur), bounds = (

264 (0.001 , None), (0.001 , None), (-0.999, 0.999)), method="SLSQP",

tol=1e-20)

265 expiry_list.append(expiry)

266 tenor_list.append(tenor)

267 strike_list.append(strk)

268 alpha_list.append(solution.x[0])

269 nu_list.append(solution.x[1])

270 rho_list.append(solution.x[2])

271 loss_list.append(solution.fun)

272 leave_one_out_result = pd.DataFrame ({’expiry ’: expiry_list

273 , ’tenor’: tenor_list

274 , ’strike ’: strike_list

275 , ’alpha’: alpha_list

276 , ’nu’: nu_list

277 , ’rho’: rho_list

278 , ’loss’: loss_list })

279 print(’duration: ’, datetime.datetime.now() - START)

280

281

282 # calculate errors for each left one out

283 leave_one_out_result[’sigma_hat ’] = leave_one_out_result.apply(lambda x:

sigma_B(

284 0.03 + S(x[’expiry ’], x[’expiry ’]+x[’tenor ’], eur) + x[’strike ’

]/10000 , 0.03 + S(x[’expiry ’], x[’expiry ’]+x[’tenor’], eur), x[’alpha

’], x[’nu’], x[’rho’], x[’tenor’])

285 , axis =1)

286

60

287

288 leave_one_out_result = pd.merge(leave_one_out_result , vols_filtered [[’

Term’, ’Tenor’, ’Strike ’, ’BlackVol ’]]

289 , left_on = [’expiry ’, ’tenor’, ’strike ’], right_on =[’Term’, ’

Tenor’, ’Strike ’]

290 , how=’left’).drop(columns =[’Term’, ’Tenor ’, ’Strike ’])

291

292

293 actual_df = leave_one_out_result.drop(columns=’sigma_hat ’)

294 fitted_df = leave_one_out_result.drop(columns=’BlackVol ’).rename(columns

={’sigma_hat ’: ’BlackVol ’})

295 actual_df[’vola’] = ’actual ’

296 fitted_df[’vola’] = ’fitted ’

297

298 data_to_plot = pd.concat ([actual_df , fitted_df], ignore_index=True)

299

300

301 sns.barplot(x=’strike ’, y=’BlackVol ’, hue=’vola’, data=data_to_plot [(

data_to_plot.expiry == 5) & (data_to_plot.tenor == 5)])

302

303

304 fig , ax = plt.subplots(len(data_to_plot.expiry.unique ()), len(

data_to_plot.tenor.unique ())

305 , sharex=True , sharey=True , figsize =(22 ,22))

306

307

308 for i, expiry in enumerate(calibration_result.expiry.unique ()):

309 for j, tenor in enumerate(calibration_result.tenor.unique ()):

310 sns.barplot(x=’strike ’, y=’BlackVol ’, hue=’vola’, ax=ax[i, j]

311 , data=data_to_plot [(data_to_plot.expiry == expiry)

& (data_to_plot.tenor == tenor)])

312 ax[i, j]. set_title(’{}x{}’.format(standard_time(expiry),

standard_time(tenor)))

313 if expiry <30:

314 ax[i, j]. set_xlabel(’’)

315 if tenor >2:

316 ax[i, j]. set_ylabel(’’)

61

317 fig.savefig(’EUR_barplot.png’)

318 plt.show()

319

320

321 # surface plots

322 data3 = data_to_plot [(data_to_plot.strike ==0) & (data_to_plot.vola==’

fitted ’)]

323 zdata = data3[’BlackVol ’]

324 xdata = data3[’tenor’]

325 ydata = data3[’expiry ’]

326 X_fitted = xdata.values

327 Y_fitted = ydata.values

328 Z_fitted = zdata.values

329

330 data3 = data_to_plot [(data_to_plot.strike ==0) & (data_to_plot.vola==’

actual ’)]

331 zdata = data3[’BlackVol ’]

332 xdata = data3[’tenor’]

333 ydata = data3[’expiry ’]

334 X_actual = xdata.values

335 Y_actual = ydata.values

336 Z_actual = zdata.values

337

338

339 fig = plt.figure(figsize =(20, 10))

340 ax = fig.add_subplot (111, projection=’3d’)

341 ax.set_xlabel(’Expiry ’)

342 ax.set_ylabel(’Tenor’)

343 ax.set_zlabel(’Implied Volatility ’)

344 ax.set_title(’Actual ATM Black Volatility Surface ’)

345

346 ax.scatter3D(X_actual , Y_actual , Z_actual +0.0001 , c=20*np.ones(len(

Z_actual)), cmap=’gist_heat ’, s=50, marker=’x’)

347

348 surf = ax.plot_trisurf(X_actual , Y_actual , Z_actual , cmap=’gist_heat ’,

alpha =0.6)

349 fig.colorbar(surf , shrink =0.5, aspect=5, alpha =0.4)

62

350 fig.savefig(’EUR_Surface_actual.png’)

351

352 fig = plt.figure(figsize =(20, 10))

353 ax = fig.add_subplot (111, projection=’3d’)

354 ax.set_xlabel(’Expiry ’)

355 ax.set_ylabel(’Tenor’)

356 ax.set_zlabel(’Implied Volatility ’)

357 ax.set_title(’Fitted ATM Black Volatility Surface ’)

358 surf = ax.plot_trisurf(X_fitted , Y_fitted , Z_fitted , cmap=’gist_heat ’,

alpha =0.6)

359

360

361 ax.scatter3D(X_actual , Y_actual , Z_actual +0.0001 , c=20*np.ones(len(

Z_actual)), cmap=’gist_heat ’, s=50, marker=’x’)

362 fig.colorbar(surf , shrink =0.5, aspect =5)

363 fig.savefig(’EUR_Surface_fitted.png’)

364

365

366

367

368

369 ###### USD LIBOR CASE

370 def Annuity(T_0 , T_mn , tenordelta):

371 return tenordelta * np.sum(DF(np.arange(T_0 , T_0 + T_mn , tenordelta)

+ tenordelta , usdois))

372

373

374

375 usd = pd.read_csv(’USD3M.csv’, sep=’;’, decimal=’,’)

376 usd.Maturity_Date = pd.to_datetime(usd.Maturity_Date)

377 usdois = pd.read_csv(’USDOIS.csv’, sep=’;’, decimal=’,’)

378 usdois.Maturity_Date = pd.to_datetime(usdois.Maturity_Date)

379 usdois[’tenor’] = usdois.Maturity_Date.apply(lambda x: (x - usdois.

Maturity_Date [0]).days /365)

380 usd[’tenor ’] = usd.Maturity_Date.apply(lambda x: (x - usd.Maturity_Date

[0]).days /365)

381 usd[’spot’] = usd.apply(lambda x: x[’DiscFactor ’]**(-1/x[’tenor’] if x[’

63

tenor’]>0 else 0) -1, axis =1)

382 usdois[’spot’] = usdois.apply(lambda x: x[’DiscFactor ’]**(-1/x[’tenor’]

if x[’tenor’]>0 else 0) -1, axis =1)

383 vols = pd.read_csv(’VCUB_USD_20200204.csv’, sep=’;’, decimal=’,’)

384 vols = pd.merge(vols , vols[[’Term’, ’Tenor ’, ’BlackVol ’]][vols.Strike

==0]. rename(

385 columns ={’BlackVol ’: ’ATM’}), on=[’Term’, ’Tenor ’], how=’left’)

386 vols.loc[(vols.Strike ==0), ’ATM’] = 0

387 vols[’BlackVol ’] = vols[’BlackVol ’] + vols[’ATM’]

388 vols = vols.drop(columns=’ATM’)

389 vols[’BlackVol ’] = vols[’BlackVol ’]/100

390 vols = vols.dropna ()

391 vols = vols.sort_values(by=’Strike ’)

392

393

394 # # Fitting SABR

395

396 def smile_loss(x, expiry , tenor , vols , sigma_function , volatility_name ,

s=0, curve=usd):

397 alpha = x[0]

398 nu = x[1]

399 rho = x[2]

400 loss = 0

401

402 atm = S(expiry , expiry + tenor , curve)

403

404 smile = vols[(vols.Term == expiry) & (vols.Tenor == tenor)][[’Strike

’, volatility_name]]

405 result = np.array([sigma_function(s+k/10000+atm , s+atm , alpha , nu,

rho , tenor) for k in smile[’Strike ’]. values])

406

407 loss += sum((result - smile[volatility_name])**2)

408 return loss

409

410

411

412 #fix some params

64

413 beta = 0.5

414

415 START = datetime.datetime.now()

416 x0 = [0.6, 0.4, -0.2]

417 expiry_list = []

418 tenor_list = []

419 alpha_list = []

420 nu_list = []

421 rho_list = []

422 loss_list = []

423 for i, v in vols[[’Term’, ’Tenor’]]. drop_duplicates ().iterrows ():

424 expiry = v[’Term’]

425 tenor = v[’Tenor ’]

426 solution = minimize(fun=smile_loss , x0=x0 , args=(

427 expiry , tenor , vols , sigma_B , ’BlackVol ’, 0, usd), bounds = (

428 (0.001 , None), (0.001 , None), (-0.999, 0.999)), method="SLSQP", tol=1e

-20)

429 expiry_list.append(expiry)

430 tenor_list.append(tenor)

431 alpha_list.append(solution.x[0])

432 nu_list.append(solution.x[1])

433 rho_list.append(solution.x[2])

434 loss_list.append(solution.fun)

435 calibration_result = pd.DataFrame ({’expiry ’: expiry_list

436 , ’tenor’: tenor_list

437 , ’alpha’: alpha_list

438 , ’nu’: nu_list

439 , ’rho’: rho_list

440 , ’loss’: loss_list })

441 print(’duration: ’, datetime.datetime.now() - START)

442

443 calibration_result = calibration_result.sort_values(by=[’expiry ’, ’tenor

’])

444

445 calibration_result.to_csv(’USD_calibration.csv’)

446

447

65

448 fig , ax = plt.subplots(len(calibration_result.expiry.unique ()), len(

calibration_result.tenor.unique ())

449 , sharex=True , sharey=True , figsize =(15 ,15))

450 for i, expiry in enumerate(calibration_result.expiry.unique ()):

451 for j, tenor in enumerate(calibration_result.tenor.unique ()):

452

453 try:

454 params = calibration_result [(calibration_result.expiry ==

expiry) & (calibration_result.tenor == tenor)]

455 alpha = params.alpha.values [0]

456 nu = params.nu.values [0]

457 rho = params.rho.values [0]

458 atm = S(expiry , expiry+tenor , usd)

459 sns.lineplot(x=[k for k in vols[(vols.Term == expiry) & (

vols.Tenor == tenor)][’Strike ’]]

460 , y=[sigma_B(atm + k, atm , alpha , nu, rho ,

tenor) for k in vols[(vols.Term == expiry) & (vols.Tenor == tenor)][’

Strike ’]/10000]

461 , ax=ax[i, j])

462 sns.scatterplot(x=[k for k in vols[(vols.Term == expiry) & (vols

.Tenor == tenor)][’Strike ’]]

463 , y=[vol for vol in vols[(vols.Term == expiry

) & (vols.Tenor == tenor)][’BlackVol ’]]

464 , ax= ax[i, j], color=’red’)

465 ax[i, j]. set_title(’{}x{}’.format(standard_time(expiry),

standard_time(tenor)))

466 except:

467 ax[i, j]. set_title(’{}x{}’.format(standard_time(expiry),

standard_time(tenor)))

468 pass

469 fig.savefig(’USD_smiles.png’)

470

471 # # Leave one out

472 START = datetime.datetime.now()

473 x0 = [0.6, 0.4, -0.2]

474 expiry_list = []

475 tenor_list = []

66

476 alpha_list = []

477 nu_list = []

478 rho_list = []

479 loss_list = []

480 strike_list = []

481 for expiry in vols.Term.unique ():

482 for tenor in vols.Tenor.unique ():

483 for strk in vols[(vols.Term== expiry) & (vols.Tenor== tenor)].

Strike:

484 # index to leave out

485

486 idx = vols[(vols.Term== expiry) & (vols.Tenor ==tenor) & (vols

.Strike ==strk)].index

487

488 solution = minimize(fun=smile_loss , x0=x0 , args=(

489 expiry , tenor , vols.drop(index=idx), sigma_B , ’BlackVol ’

, 0, usd), bounds = (

490 (0.001 , None), (0.001 , None), (-0.999, 0.999)), method="SLSQP",

tol=1e-20)

491 expiry_list.append(expiry)

492 tenor_list.append(tenor)

493 strike_list.append(strk)

494 alpha_list.append(solution.x[0])

495 nu_list.append(solution.x[1])

496 rho_list.append(solution.x[2])

497 loss_list.append(solution.fun)

498 leave_one_out_result = pd.DataFrame ({’expiry ’: expiry_list

499 , ’tenor’: tenor_list

500 , ’strike ’: strike_list

501 , ’alpha’: alpha_list

502 , ’nu’: nu_list

503 , ’rho’: rho_list

504 , ’loss’: loss_list })

505 print(’duration: ’, datetime.datetime.now() - START)

506

507

508 # calculate errors for each left one out

67

509 leave_one_out_result[’sigma_hat ’] = leave_one_out_result.apply(lambda x:

sigma_B(

510 S(x[’expiry ’], x[’expiry ’]+x[’tenor ’], usd) + x[’strike ’]/10000 ,

S(x[’expiry ’], x[’expiry ’]+x[’tenor ’], usd), x[’alpha ’], x[’nu’], x[’

rho’], x[’tenor’])

511 , axis =1)

512

513

514 leave_one_out_result = pd.merge(leave_one_out_result , vols[[’Term’, ’

Tenor’, ’Strike ’, ’BlackVol ’]]

515 , left_on = [’expiry ’, ’tenor’, ’strike ’], right_on =[’Term’, ’

Tenor’, ’Strike ’]

516 , how=’left’).drop(columns =[’Term’, ’Tenor ’, ’Strike ’])

517

518

519 actual_df = leave_one_out_result.drop(columns=’sigma_hat ’)

520 fitted_df = leave_one_out_result.drop(columns=’BlackVol ’).rename(columns

={’sigma_hat ’: ’BlackVol ’})

521 actual_df[’vola’] = ’actual ’

522 fitted_df[’vola’] = ’fitted ’

523 data_to_plot = pd.concat ([actual_df , fitted_df], ignore_index=True)

524 data_to_plot = data_to_plot.sort_values(by=[’expiry ’, ’tenor’])

525 sns.barplot(x=’strike ’, y=’BlackVol ’, hue=’vola’, data=data_to_plot [(

data_to_plot.expiry == 5) & (data_to_plot.tenor == 5)])

526

527 fig , ax = plt.subplots(len(data_to_plot.expiry.unique ()), len(

data_to_plot.tenor.unique ())

528 , sharex=True , sharey=True , figsize =(22 ,22))

529

530

531 for i, expiry in enumerate(calibration_result.expiry.unique ()):

532 for j, tenor in enumerate(calibration_result.tenor.unique ()):

533 try:

534 sns.barplot(x=’strike ’, y=’BlackVol ’, hue=’vola’, ax=ax[i, j

]

535 , data=data_to_plot [(data_to_plot.expiry ==

expiry) & (data_to_plot.tenor == tenor)])

68

536 ax[i, j]. set_title(’{}x{}’.format(standard_time(expiry),

standard_time(tenor)))

537 except:

538 ax[i, j]. set_title(’{}x{}’.format(standard_time(expiry),

standard_time(tenor)))

539 pass

540

541 if expiry <30:

542 ax[i, j]. set_xlabel(’’)

543 if tenor >1:

544 ax[i, j]. set_ylabel(’’)

545

546 plt.show()

547 fig.savefig(’USD_barplot.png’)

548

549 # surface plots

550 data3 = data_to_plot [(data_to_plot.strike ==0) & (data_to_plot.vola==’

fitted ’)]

551 zdata = data3[’BlackVol ’]

552 xdata = data3[’tenor’]

553 ydata = data3[’expiry ’]

554 X_fitted = xdata.values

555 Y_fitted = ydata.values

556 Z_fitted = zdata.values

557

558 data3 = data_to_plot [(data_to_plot.strike ==0) & (data_to_plot.vola==’

actual ’)]

559 zdata = data3[’BlackVol ’]

560 xdata = data3[’tenor’]

561 ydata = data3[’expiry ’]

562 X_actual = xdata.values

563 Y_actual = ydata.values

564 Z_actual = zdata.values

565

566

567 fig = plt.figure(figsize =(20, 10))

568 ax = fig.add_subplot (111, projection=’3d’)

69

569 ax.set_xlabel(’Expiry ’)

570 ax.set_ylabel(’Tenor’)

571 ax.set_zlabel(’Implied Volatility ’)

572 ax.set_title(’Actual ATM Black Volatility Surface ’)

573

574 ax.scatter3D(X_actual , Y_actual , Z_actual +0.0001 , c=20*np.ones(len(

Z_actual)), cmap=’gist_heat ’, s=50, marker=’x’)

575

576 surf = ax.plot_trisurf(X_actual , Y_actual , Z_actual , cmap=’gist_heat ’,

alpha =0.6)

577 fig.colorbar(surf , shrink =0.5, aspect=5, alpha =0.4)

578 fig.savefig(’USD_surface_actual.png’)

579

580

581 fig = plt.figure(figsize =(20, 10))

582 ax = fig.add_subplot (111, projection=’3d’)

583 ax.set_xlabel(’Expiry ’)

584 ax.set_ylabel(’Tenor’)

585 ax.set_zlabel(’Implied Volatility ’)

586 ax.set_title(’Fitted ATM Black Volatility Surface ’)

587 surf = ax.plot_trisurf(X_fitted , Y_fitted , Z_fitted , cmap=’gist_heat ’,

alpha =0.6)

588

589

590 ax.scatter3D(X_actual , Y_actual , Z_actual +0.0001 , c=20*np.ones(len(

Z_actual)), cmap=’gist_heat ’, s=50, marker=’x’)

591 fig.colorbar(surf , shrink =0.5, aspect =5)

592 fig.savefig(’USD_surface_fitted.png’)

70

Non-exclusive licence to reproduce thesis and make thesis public

I, Karen Danielyan,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright,

Swaption Pricing with SABR model,

supervised by Raul Kangro.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available

to the public via the web environment of the University of Tartu, including via the

DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0,

which allows, by giving appropriate credit to the author, to reproduce, distribute

the work and communicate it to the public, and prohibits the creation of derivative

works and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Karen Danielyan

26/05/2020

71

	Introduction
	Mathematical Preliminaries
	Money-market Preliminaries
	Swaptions

	Black 76 model
	Black Scholes option pricing model
	Bachelier's model
	Risk-neutral valuation
	Black 76 model for swaptions

	SABR model
	SABR model
	Breaking down SABR parameters
	Shifted SABR model

	Results
	Market Data: Volatility Cube
	Euribor volatility cube calibration with SABR
	USD Libor volatility cube calibration with SABR

	Conclusion
	Appendix

