TARTU ÜLIKOOL LOODUS- JA TÄPPISTEADUSTE VALDKOND Ökoloogia ja maateaduste instituut Geoloogia osakond

Ailar Pokk

ÜLEM-ORDOVIITSIUMI JA ALAM-SILURI KARBONAATKIVIMITE MINERAALNE JA ISOTOOPKOOSTIS LÄTI LÄBILÕIGETES

Magistritöö geoloogias (30EAP)

Juhendajad: Leho Ainsaar Olle Hints

Ülem-Ordoviitsiumi ja Alam-Siluri karbonaatkivimite mineraalne ja isotoopkoostis Läti läbilõigetes

Käesolevas töös uuriti Taurkalne ja Baltinava-17 puuraukude karbonaatsete läbilõigete mineraloogilist ja isotoopkoostist ja võrreldi tulemusi teiste uurimustega eesmärgiga kirjeldada Balti paleobasseini idaosa arengut Vara-Paleosoikumis. Mitmed globaased sündmused

Uuringu tulemused sarnanevad varasematele uurimustele ja täiendavad meie arusaamist Balti paleobasseini kujunemisest Vara-Paleosoikumis. Samuti viitavad $\delta^{13}C_{carb}$ väärtused Hirnantia süsinikuekskursiooni (HICE) ulatumist Stačiunai kihistusse.

Märksõnad: Ordoviitsium, Silur, Balti paleobassein, Läti, süsiniku isotoobid, hapniku isotoobid, korrelatsioon, HICE, stratigraafia

P420 Petroloogia, mineroloogia, geokeemia

Mineral and stable isotope composition of Upper Ordovician - Lower Silurian carbonates in drillcore sections of Latvia

Taurkalne and Baltinava-17 drill core sections of Latvia were described by means of mineralogy and isotope geochemistry in order to compare the results with other similar researches.

The results indicate similarities between the thesis and previous researches and improve our pool of knowledge on the development of Baltic basin. Furthermore, the $\delta^{13}C_{carb}$ values indicate the presence of falling limb of the Hirnantian Isotope Carbon Excursion (HICE) in Stačiunai formation.

Keywords: Ordovician, Silurian, Baltic paleobasin, Latvia, carbon isotopes. oxygen isotopes, correlation, HICE, stratigraphy

P420 Petrology, mineralogy, geochemistry

Sisukord

1. Sissejuhatus
2. Teoreetiline taust
2.1. Isotoopgeoloogia
2.1.1. Süsinik
2.1.2. Hapnik
2.2 Balti paleobassein10
3. Materjalid ja metoodika11
3.1 Proovide valik
3.2 Analüüsimetoodika kirjeldus13
4. Tulemused14
4.1 Taurkalne14
4.2 Baltinava-1717
5. Arutelu
Kokkuvõte
Summary
Kasutatud kirjandus
Lisa 1. Taurkalne puuraugu isoopkoostis
Lisa 2. Baltinava-17 puuraugu isoopkoostis
Lisa 3. Taurkalne puuraugu mineraloogiline koostis
Lisa 4. Baltinava-17 puuraugu mineraloogiline koostis

1. Sissejuhatus

Läbi Maa ajaloo on toimunud viis massilist väljasuremissündmust. Neist kuulsaim on vaieldamatult Kriidi lõpu väljasuremine, mis köidab lugudega meteoriitidest ja dinosaurustest, laastavaim aga Permi lõpu väljasuremine, mille jooksul kadus erinevate allikate andmetel 80-96% meretaksonitest ja kuni 70% maismaaelustikust. Selliste sündmuste mõjul purunes endine ökoloogiline süsteem ja biosfäär muutus tundmatuseni, näiteks sai tänu Kriidi-Paleogeeni massilisele väljasuremisele domineerivaks klassiks sisaliku asemel imetaja (Alvarez et al., 1980; Bond & Grasby, 2017; Hallam & Wignall, 1997; Lai et al., 2018).

Tegelikult muutub elukeskkond pidevalt ja kivimitesse talletub suurel hulgal informatsiooni keskkonna temperatuuri, soolsuse või keemilise koostise kohta. Näiteks raputasid muidu soojaks ja stabiilseks peetud Vara-Paleosoikumi perioodi mitmed jahenemised. Selliseid sündmusi aitab ära tunda ja kirjeldada kivimi isotoopkoostise uurimine (Brenchley et al., 1994; Marshall, 1992).

1966. aastal avaldatud teadustöös kirjeldas R. Männil Balti basseini makrostruktuuri Pihkva-Riia-Gdanski suunalist Balti nõgu, mida hiljem Liivi keeleks nimetama hakati. Võrreldes ülejäänud basseiniga oli nõgu süvaveelisem, suurema settimiskiirusega ja koges vähem settekatkestusi. Seetõttu on võrreldes Põhja-Eesti ja Leedu šelfipealsete kivimitega Liivi keelele talletatud stratigraafiline informatsioon täielikum ja parema esindatusega.

Käesoleva töö eesmärk on kirjeldada Ordoviitsiumi- ja Siluriaegse Balti Paleobasseini arengut Läti territooriumil kasutades mineraloogilist ja isotoopgeoloogilist uurimismeetodi ja võrrelda tulemusi teiste uurimustega.

2. Teoreetiline taust

2.1. Isotoopgeoloogia

Kõikidest Maal elanud liikidest on fosiilidena talletatud vaid murdosa ja kuna fossiilid ei jaotu maa ajaloos ega kivimikehades ühtlaselt, on tihti keeruline või isegi võimatu uurida kivimit biostratigraafia abil. Kõik keskkonnamuutused ei muuda kivimi mineraloogilist koostist ja seetõttu võivad kahe silma vahele jääda. Isotoopstratigraafia seevastu kujutab endast kõrgeresolutsioonilist ja tundlikku meetodi kivimite tekkimiseaegse keskkonna uurimiseks ja sobib seetõttu ka stratigraafiliste piiride täpsustamiseks ja määramiseks. Samuti on isotoopuuringute abil võimalik kirjeldada paleoaineringeid (Barili et al., 2018; Bergström et al., 2011; Kaljo & Martma, 2006).

Paljudel elementidel on enam kui üks stabiilne isotoop, mis erinevad üksteisest neutronite arvu ja seeläbi massi poolest. Raskema massiga, kuid sama keemilise koostisega molekulide sisesidemed on jäigemad ja seega stabiilsemad. Kuna kergemate elementide puhul on isotoopide masside erinevus suhteliselt suur, põhjustavad füüsikalised, keemilised ja bioloogilised protsessid intensiivsemalt ühe isotoobi rikastumist reaktsioonisaaduses ehk fraktsioneerumist võrreldes raskemate elementidega. Fraktsioneerumise ulatust võib olulisel määral mõjutada ka temperatuur (Farquhar et al., 2007; Meija et al., 2013).

Reeglina on üks isotoopidest väga levinud ja ülejäänud moodustavad vaid murdosa kõikidest antud elemendi aatomitest ja suhtarvu muutus fraktsioneerumisel on väga väike. Seetõttu väljendatakse selliseid muutuseid delta (δ) kaudu valemiga:

 δ (‰) = (Rx / Rs - 1) * 1000,

kus R väljendab raske isotoobi suhet kergemasse ning Rx on proovi isotoopsuhe ja Rs on standardi isotoopsuhe. Delta positiivne väärtus näitab proovi raskemat isotoopkoostist võrreldes standardiga ja väljendatakse promillides (Kendall & Caldwell, 1998).

Isotoopstratigraafia kasutamisel on omad piirangud. Läbilõigete uurimisel tuleb vältida selliseid kivimeid, mille keemiline koostis on settimisjärgselt oluliselt muutunud. Koostise muutumise peapõhjuseks on kivimi pooriruumis liikuv vesi, mis ioonvahetuse kaudu võib muuta kivimi isotoopkoostist. Proovide kogumisel ja analüüsimisel tuleb ka vältida lõhesid ja lõhede täiteks settinud materjali, sest see on tekkinud peale kivimi litifitseerumist ja ei oma

seetõttu mingit seost kivimi settimisaegse keskkonnaga (Brenchley et al., 2003; Schobbena et al., 2016; Vinogradov, 2009).

Ettevaatlik tuleb olla ka puhversüsteemi tõlgendamisel. Avatud süsteemi korral on fraktsioneerumist põhjustav reaktsioon süsteemi poolt puhverdatud ehk süsteemi (keskkonna) isotoopkoostis ei muutu oluliselt ja seetõttu on termodünaamiline tasakaal kogu reaktsiooni kestvuse vältel paigal ning seega ei muutu ka saaduse isotoopkoostis. Suletud süsteemi korral, näiteks vähese veevahetusega madalaveelises meres, hakkab keskkond vaesuma ühe isotoobi suhtes ja termodünaamiline tasakaal nihkub teise isotoobi sidumise kasuks (Richardson et al., 2019).

2.1.1. Süsinik

Süsinikul on kaks stabiilset isotoopi ¹²C ja ¹³C. Vanemates teadustöödes võrreldi süsiniku isotoopkoostist PDB (*Pee Dee Belemnite*) standardiga, kuid referentsmaterjali lõppemisel mindi üle normaliseeritud standardile. Levinuim tänapäevane standard süsiniku isotoopkoostise kirjeldamiseks on V-PDB (*Vienna Pee Dee Belemnite*). Kõik käesoleva magistritöö δ^{13} C väärtused on esitatud võrrelduna V-PDB standardiga (Coplen et al., 2002; Meija et al., 2013).

¹²C ja ¹³C masside suhteliselt suur erinevus põhjustab erinevate isotoopkoostisega molekulide erinevaid keemilisi ja füüsikalisi omadusi. Seetõttu toimub näiteks C₃ taimedes fotosünteesi igas etapis väike süsiniku isotoopide fraktsioneerumine, mis kulmineerub karboksüleerimisel, mille lõppsaaduse δ¹³C on ligikaudu 29‰ kergem kui reagendis. Tänapäevastele taimedele iseloomulik δ¹³C väärus jääb -9‰ ja -35‰ vahele, meresetetes on mõõdetud δ¹³C väärtusega kuni -130,3‰ ning metanogeneesi produktina võib väärtus tõusta +28‰-ni (Elvert et al., 2000; O'Leary, 1988; Whiticar, 1995).

 δ^{13} C kemostratigraafia on leidnud laialdast kasutust karbonaatsete ja orgaanilist ainet sisaldavate läbilõigete korreleerimisel. Kuna settekivimi δ^{13} C väärtus sõltub keskkonnas esineva süsiniku koostisest, jätavad järsud muutused bioloogilises tootlikkuses või süsinikuringes endast setteläbilõikes maha positiivse või negatiivse anomaalia ehk ekskursiooni. Karbonaatse süsiniku isotoopkoostist võivad mõjutada nii klimaatilised põhjused kui diageneetilised muutused kivimi koostises. Leides sarnaseid mustreid samas stratigraafilises intervallis, võib eeldada, et need viitavad samale globaalsele või regionaalsele keskkonnasündmusele ning selle abil saab läbilõikeid omavahel võrrelda ning omavahel detailsemalt korreleerida (Cramer et al., 2011; Holser, 1997; Loydell, 2007).

Joonistel 1 ja 2 on toodud vastavalt Ordoviitsiumi ja Siluri globaalsed $\delta^{13}C_{carb}$ kemostratigraafilised koondkõverad.

Joonis 1. Ordoviitsiumi ajastu üldistatud $\delta^{13}C_{carb}$ kemostratigraafiline koondkõver koos tähtsamate isotoopsündmustega (Bergström et al., 2009).

Joonis 2. Siluri ajastu üldistatud $\delta^{13}C_{carb}$ kemostratigraafiline koondkõver koos tähtsamate isotoopsündmustega (Cramer et al. 2011).

2.1.2. Hapnik

Hapnikul on kolm stabiilset isotoopi ¹⁶O, ¹⁷O ja ¹⁸O. Kasutusel on ¹⁸O ja ¹⁶O võrdlemine, sest ¹⁸O on ¹⁷O-st ligi viis korda levinum ja ligi kaks korda suurema massierinevusega võrreldes ¹⁶O-ga. Vanemates teadustöödes võrreldi süsiniku isotoopkoostist SMOW (*Standard Mean Ocean Water*) standardiga. Standardiseerimise käigus võeti kasutusele VSMOW (*Vienna Standard Mean Ocean Water*) standard. Levinud on ka V-PDB standardi kasutamine. Kõik käesoleva magistritöö δ^{18} O väärtused on esitatud võrrelduna V-PDB standardiga (Coplen et al., 2002; Meija et al., 2013).

Veeringluses fraktsioneerub hapnik temperatuuri mõjul. Kergem vesi (H₂O) on volatiilsem ehk liikuvam kui raske vesi (D₂O) või raske hapnikuga vesi (H₂¹⁷O või H₂¹⁸O), mistõttu aurustub kergemate isotoopidega vesi kergemini kui raskete isotoopidega vesi. Õhumassi jahtumisel tõuseb suhteline õhuniiskus küllastumuseni ja vesi hakkab kondenseeruma. Väljasadeneva vee δ^{18} O väärus on veeaurust positiivsem ehk vihmavesi on isotoopkoostise poolest raskem võrreldes lähteauruga. Seega väheneb aja ja vahemaa möödudes veeauru δ^{18} O väärtus. Selle tulemusena jõuab kergem vesi kaugemale ja seetõttu koguneb jääaegadel kerge vesi polaarjääna (Faure & Mensing, 2005).

Enam kui 50 aastat tagasi käis H.C. Urey välja teooria, mis on, peale mõningast täiustamist, leidnud laialdast tunnustust ja kasutust tänapäevalgi. Nimelt väitis ta, et hapniku aatomite fraktsioneerumine kaltsium karbonaadi tekkimisel sõltub temperatuurist negatiivses korrelatsioonis ehk jahedamas vees toimub fraktsioneerumine intensiivsemalt. Teisisõnu leiutas Urey paleotermomeetri. Tänapäevases kasutuses uuritakse biogeenset kaltsiiti (Urey, 1947).

Paleosoikumi alguses oli δ^{18} O väärtus -10 kuni -4, lõpus aga -7 kuni 0, mis viitab kliima soojenemisele. Lisaks positiivsemaks muutuvale keskmisele lõikavad igat ajastut positiivsed ja negatiivsed hapniku isotoobi ekskursioonid, mida tõlgendatakse temperatuurianomaaliatena. Näiteks lõikab muidu stabiilseks ja soojaks peetud Silurit mitu jähedamat perioodi. Mitmed δ^{18} O ekskursioonid kattuvad ja δ^{13} C abil mõõdetud ja määratud kliimasündmustega (Trotter et al., 2016).

2.2 Balti paleobassein

Vara-Paleosoikumi Balti (Baltoskandia) paleobassein asus Ida-Euroopa kraatoni edelaosas Fennoskandia kilbi lõunaserval. Selle epikontinentaalse mere settekivimite paksus ulatub mõnekümnest meetrist Põhja-Eestis kuni mõne kilomeetrini basseini edelaosas. Balti basseini muudavad eriliseks ja teaduslikult oluliseks, selle piires levivad suurepäraselt säilinud ja hästi paljanduvad kivimid. Lisaks kivimite heale säiluvusele leidub nendes ka rohkelt hästi säilinud fossiile (Shogenova et al., 2009).

Ligikaudu sada aastat tagasi tõstatas Alfred Wegener teooria, et Maa pole tahke, jäiga pinnaga kera vaid sellel triivivad maakoore tükid ehk laamad. Teooriat ei võetud tollases teadusmaailmas omaks, sest Wegener ei suutnud välja pakkuda mehhanisme, mis seletaks laamade liikumist. Tänapäeval on laamtektoonika laialdaselt tunnustatud ja erinevate teadustööde käigus on loodud mitmeid paleogeograafilisi mudeleid. Hilisemate uurimuste käigus tehti kindlaks, et ligikaudu 80 miljoni aasta jooksul, Ordoviitsiumis ja Siluris, liikus Baltika kontinent 60-ndatelt laiuskraadidelt troopikasse (Torsvik et al., 1992).

Ordoviitsiumi iseloomustab endisest hiidmandrist Rodiiniast lahtimurdunud kontinentide ümberpaiknemine. Baltika, mis oli veel Ordoviitsiumi alguses kõrgetel lõunalaiustel, liikus jõudsalt ekvaatori poole. Umbes samal ajal murdus Avaloonia Gondwanast lahti ja alustas oma teekonda Baltika poole. Hilises Ordoviitsiumis riivas Avaloonia Baltikat, mistõttu pöördus viimane vastupäeva. Ordoviitsiumi lõpuks ühinesid Baltika ja Avaloonia moodustades kontinendi Baloonia (Torsvik & Rehnström, 2003).

Balti paleobasseini karbonaatsete setete lugu algab varases Ordoviitsiumis Tremadoci ea lõpus, kui purdsetteline bassein asendus karbonaatse basseiniga. Kesk- ja Hilis-Ordoviitsiumi setetes domineerivad lubjakivid ja merglid. Eesti aladel on valdavalt tegu madalaveeliste karbonaatidega. Basseini tsentraalses sügavamas osas, Liivi keelel, esinesid valdavalt savikamad setendid (Ainsaar et al., 2010).

Siluri ajastul jätkus Rodiiniast lahti murdunud mandrite ühinemine. Siluri alguses algas Baltika ja Laurentia ühinemine ja koos sellega ka Kaledoonia mäetekke osa Skandia orogenees, mis kulmineerus Siluri lõpuks-Devoni alguseks. Siluri keskpaigas algas ka Avaloonia ühinemine Laurentiaga ning Siluri lõpuks oli Iapetuse ookean sulgunud (Golonka & Gawęda, 2012).

3. Materjalid ja metoodika

3.1 Proovide valik

Eesti ja Leedu aladele jääv osa Balti paleobasseinist on suhteliselt hästi kirjeldatud. Lätis teostatud uurimus omab vähema uurituse tõttu kõrgemat uudisväärtust. Puuraukude valikul lähtuti vajadusest kirjeldada basseini erinevaid osi. Leedu konfaatsiese kirjeldamiseks valiti Baltinava-17 puurauk ja Liivi Keele servaala kirjeldamiseks valiti Taurkalne puurauk. Puuraukude asukohad on visualiseeritud joonisel 3. Liivi Keele sügavamast ja seetõttu ka vähem karbonaatsest osast proove ei kogutud, sest käesoleva töö eesmärk on analüüsida Balti basseini karbonaatsete kivimite isotoopkoostist.

Joonis 3. Puursüdamike asetus Balti paleobasseini konfatsiaalses kontekstis (Männil, 1966 järgi).

Valitud puursüdamikest võeti esinduslikud proovid vastavalt töörühma eesmärkidele. Võetud proovid markeeriti kastile ja mõlemad südamikud pildistati. Proovide nummerdamiseks kasutati formaati "PP-AA-Snnn", kus "PP" tähistab puurauku, "AA" proovi kogumise aastat, "S" tähistab proovi seeriat ja "nnn" tähistab proovi numbrit seerias. Proov BL-18-C008 tähistab seega puuraugu Baltinava-17 C seeria proovi number 8, mis on kogutud 2018. aastal.

Taurkalne puuraugust uuriti vahemikku 566,2 kuni 742,3 m. Taurkalne puuraugu Dobele kihistu vahemikest 583,1 kuni 603,0 m ja 608,3 kuni 619,4 m proove ei võetud, sest kõnealustes vahemiks oli puursüdamike kvaliteet halb. Baltinava-17 puuraugust uuriti vahemikku 456,3 kuni 615,7 m.

Käesolevas töös on kasutusel lühendatud formaat PP-nnn, sest käsitletakse mõlemast puuraugust ainult C seeria proove. Proovile BL-18-C008 vastab käesolevas töös seega BL-008. Puurauk BS (Taurkalne) sisaldab proove 001 kuni 120 ja puurauk BL (Baltinava-17) sisaldab proove 001 kuni 148. Tabelis 1 on toodud uuritavate puuraukude proovide jagunemine stratigraafilise liigestatuse alusel.

Baltinava-17			Taurkalne		
Kihistu	Algus	Lõpp	Kihistu	Algus	Lõpp
Halliku	BL-001	BL-014	Jonstorp	BS-001	BS-014
Baltinava	BL-015	BL-018	Jelgava	BS-015	BS-029
Ludza	BL-019	BL-029	Paroveja	BS-030	BS-058
Adila	BL-030	BL-036	Saldus	BS-059	BS-061
Taucionys	BL-037	BL-038	Stačiunai	BS-062	BS-102
Saldus	BL-039	BL-040	Remte	BS-103	BS-107
Stačiunai	BL-041	BL-073	Dobele	BS-108	BS-116
Remte	BL-074	BL-075	Jurmala	BS-117	BS-120
Dobele	BL-076	BL-104			
Jurmala	BL-105	BL-115			
Riga	BL-116	BL-148			

Tabel 1 Uuritavate proovide jagunemine stratigraafilise liigestatuse alusel.

Käesolevas töös iseloomustatakse mõlema puuraugu paarisarvuliste proovide mineraloogilist koostist röntgendifraktsioon (XRD - *X-Ray Diffractometry*) meetodil ning kõikide proovide $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ isotoopkoostist isotoopsuhte mass-spektromeetria (IRMS - *Isotope Ratio Mass Spectrometer*) meetodil. Lisaks uuriti peale puursüdamike stratigraafilist kirjeldamist valitud proovide $\delta^{13}C_{org}$ isotoopkoostist isotoopsuhte mass-spektromeetria meetodil. Selleks valiti seeriast BL 26 proovi ja seeriast BS 23 proovi.

3.2 Analüüsimetoodika kirjeldus

Kõik proovid purustati kuulveskis.

Mineraloogilise koostise uurimiseks valmistati eelnevalt purustatud proovidest preparaadid. Preparaatide mineraloogilist koostist mõõdeti Tartu Ülikooli geokeemia laboris Bruker D8 Advance difraktomeetriga kasutades Ni-filtreeritud Cu K_{α} kiirgust ja mõõtmisvahemikku 2-70° 20. Kvantitatiivne analüüs teostati Rietveld'i algoritmil põhineva programmiga Topaz.

 $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ määramiseks võeti eelenvalt purustatud proovidest 500 mg pulbrit, mida analüüsiti isotoopsuhte mass-spektromeetriga Delta V Plus, millel on ConFlo IV liides ja Flash HT analüsaator. Mass-spektromeetri sisemiste standarditena kasutati standardeid IAEA-CH-3 ja IAEA-CH-6. $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ tulemused on esitatud võrrelduna V-PDB standardiga.

 $\delta^{13}C_{org}$ määramiseks eraldati pulverisaatoris eelnevate analüüside tarbeks purustatud proovidest 100 mg pulbrit, millele lisati 5% HCl lahust kuni karbonaatne materjali täieliku lahustumiseni. Järgi jäänud orgaaniline aine loputati korduvalt läbi ja kuivatati. Analüüsimiseks mõõdeti kaalutud proovide isotoopkoostis isotoopsuhte mass-spektromeetriga Delta V Plus, millel on ConFlo IV liides ja Flash HT analüsaator. Mass-spektromeetri sisemiste standarditena $\delta^{13}C_{org}$ mõõtmisel kasutati standardeid IAEA-CH-3 ja IAEA-CH-6. $\delta^{13}C_{org}$ tulemused on esitatud võrrelduna V-PDB standardiga.

Kõik käesoleva töö $\delta^{13}C_{carb}$, $\delta^{18}O_{carb}$, $\delta^{13}C_{org}$ väärtused on esitatud võrrelduna V-PDB standardiga.

4. Tulemused

4.1 Taurkalne

Taurkalne puuraugu proovide $\delta^{13}C_{carb}$, $\delta^{18}O_{carb}$, $\delta^{13}C_{org}$ väärtused on esitatud tabelina lisas 1 ja joonisel 4 ning mineraloogiline koostis tabelina lisas 3 ja joonisel 6.

Karbonaatse süsiniku isotoopkoostis varieerub Taurkalne puuraugus vahemikus -1,09 kuni +3,28‰, karbonaatse hapniku isotoopkoostis -7,59 kuni -3,65‰ ja organilise süsiniku isotoopkoostis -30,39 kuni -25,78‰.

Taurkalne puuraugu Jonstorpi kihistus, mis vastab Pirgu lademe algusele, toimub esimene positiivne $\delta^{13}C_{carb}$ ekskursioon (BS-001 kuni BS-005) tõstes väärtused 1,68‰-ni. Tõusu alguspunkt ei joonistu selgelt välja. Kihistu teine positiivne ekskursioon tuleb välja proovide BS-010 kuni BS-014 vältel, kui väärtused tõusevad 0,93-lt 1,37‰-ni. Teised isotoobid ($\delta^{18}O_{carb}$, $\delta^{13}C_{org}$) sarnast käitumist ei näita. $\delta^{18}O_{carb}$ langeb kihistu vältel -3,77-lt -5,18‰-ni. $\delta^{13}C_{org}$ väärtused langevad Jelgava kihistu alguseks -27,82-lt -29,11‰-ni. Jonstorpi kihistus jääb karbonaatide osakaal vahemikku 48,5 kuni 73,2%, millest moodustab kaltsiit valdavalt 29,0 kuni 66,7% ja dolomiit valdavalt 2,2 kuni 27,1%. Karbonaatide sisaldus on väiksem just $\delta^{13}C_{carb}$ ekskursioonide ajal. Jonstorpi kihistus leidub kipsi kuni 1,7%. Savimineraalide hulk on suhteliselt suur (14,4 kuni 28,8%).

Jelgava kihistus püsivad $\delta^{13}C_{carb}$ aeglasel tõusutrendil tõustes väärtuseni 1,30‰. $\delta^{18}O_{carb}$ väärtused varieeruvad vahemikus -5,40 kuni -4,07‰. $\delta^{13}C_{org}$ väärtused langevad kihistu lõpuks väärtusele -30,35‰. Alates proovist BS-026 tõuseb karbonaatide sisaldus 87,9%-ni ja väheneb dolomiidi osakaal karbonaatses materjalis. Samuti väheneb savimineraalide osakaal 5,6%-ni.

Paroveja kihistus tuleb välja $\delta^{13}C_{carb}$ positiivne ekskursioon (kuni 2,37‰). Peale ekskursiooni püsivad väärtused stabiilselt vahemikus 1,08 kuni 1,36‰. Sarnase positiivse ekskursiooni teeb ka $\delta^{13}C_{org}$, mis tõuseb -27,44‰-ni ja langeb kihistu lõpuks -29,17‰-ni. $\delta^{18}O_{carb}$ väärtused varieeruvad tugevalt ja tõusevad kihistu lõpuks (kuni -3,88‰), kuid ära tuntavat ekskursiooni pole. Paroveja kihistu, välja arvatud proovid BS-044, BS-050 ja BS 052, on valdavalt kõrge karbonaatsusega (üle 85%). Proovides BS-044 ja BS-052 on dolomiidi sisaldus vastavalt 20,3 ja 30,7% ning proovides BS-050 ja BS-052 on kvartsi sisaldus vastavalt 9,7 ja 11,6%.

Salduse kihistu, mis vastab Porkuni lademe ja seega ka Ordoviitsiumi lõpule, sisaldab tugevaid $\delta^{13}C_{carb}$ ja $\delta^{13}C_{org}$ ekskursioone. $\delta^{13}C_{carb}$ väärtused tõusevad 2,95‰-ni ja kihistu piires ära

tuntavat tõusu lõppu pole. $\delta^{13}C_{org}$ väärtused jõuavad haripunkti proovil BS-061 (-27,37‰). $\delta^{18}O_{carb}$ väärtused teevad väikse languse (kuni -4,29‰). Kihistule on iseloomulik puuraugu keskmisest väiksem karbonaatsus (72,4%) ja suhteliselt kõrge kvartsi sisaldus (20,0%).

Stačiunai kihistus tipneb Salduse kihistus alanud karbonaatse süsiniku ekskursioon. $\delta^{13}C_{carb}$ saavutab prooviks BS-063 väärtuse 3,28‰ ja langeb seejärel aeglaselt prooviks BS-098 väärtusele 0,13%. $\delta^{13}C_{org}$ langeb prooviks BS-070 väärtusele -29,17‰ ja püsib võrreldaval tasemel kihistu lõpuni, välja arvatud proovis BS-092, kui see saavutab väärtuse -27,78‰. $\delta^{18}O_{carb}$ väärtused varieeruvad tugevalt (-7,33 kuni -3,68‰). Kogu kihistu piires, välja arvatud proovides BS-062 ja BS-076, on karbonaatse materjali osakaal üle 90%. Alates proovist BS-090 hakkab suurenema dolomiidi hulk ja prooviks BS-094 on dolomiidi osakaal tõusnud üle 70,0%.

Remte kihistu $\delta^{13}C_{carb}$, $\delta^{18}O_{carb}$ ja $\delta^{13}C_{org}$ väärtused on võrreldes eelneva kihistu lõpuga positiivsemad. $\delta^{13}C_{carb}$ tõuseb 0,50‰-lt 1,08‰-ni. $\delta^{18}O_{carb}$ väärtustes on näha negatiivset ekskursiooni väärtuseni -7,59‰, mis on ühtlasi ka Taurkalne puuraugu uuritud vahemiku madalaim väärtus. Karbonaatsus on Remte kihistus võrreldes eelmiste kihistutega suhteliselt madal, keskmiselt 73,9%. Kui $\delta^{18}O_{carb}$ ekskursiooni peal (proov BS-104) on materjal dolomiitne, siis peale ekskursiooni (proov BS-106) on see kaltsiitne.

Dobele kihistu karbonaatseid kivimeid lõikavad savikad kildad, millest proove ei võetud. Kuni proovini BS-113 langeb $\delta^{13}C_{carb}$ saavutades väärtuse -1,09‰. Proovides BS-114 kuni BS-116 püsib $\delta^{13}C_{carb}$ väärtus -0,5‰ lähedal. $\delta^{18}O_{carb}$ väärtused on madalamad kihistu alguses (~ -7,00‰) ja tõusevad kihistu vältel. Mõlemad $\delta^{13}C_{org}$ proovid kannavad väärtuseid ligikaudu -28,50‰. Dobele kihistu kivimite mineraloogiline koostis paistab silma vähese karbonaatsusega (valdavalt alla 70%). Kaltsiiti on vaid jälgelementide tasemel.

Jurmala kihistu $\delta^{13}C_{carb}$, $\delta^{18}O_{carb}$ ja $\delta^{13}C_{org}$ väärtused joonistavad ühise positiivse ekskursiooni. $\delta^{13}C_{carb}$ väärtused tõusevad 0,24‰-lt 1,59‰-ni. $\delta^{18}O_{carb}$ ekskursioon on mõnevõrra tagasihoidlikum tõustes -4,51‰-lt -3,89‰-ni. Orgaanilise süsiniku ekskursiooni algust ei ole mõõdetud, kuid proovi BS-118 kõrgem väärtus (-26,29‰) võrreldes Dobele kihistuga (ligikaudu -28,50‰) ja prooviga BS-120 (-27,95‰) ning kõrgema väärtuse kokkulangevus teiste isotoopide ekskursioonide tippudega vihjavad ekskursiooni olemasolule. Jurmala kihistu proovid paistavad silma väga vähese karbonaatsusega (< 40) ja kõrge savimineraalide sisaldusega (> 34%).

Joonis 4. Taurkalne puuraugu proovide $\delta^{13}C_{carb},\,\delta^{18}O_{carb},\,\delta^{13}C_{org}$ väärtused.

4.2 Baltinava-17

Baltinava-17 puuraugu proovide $\delta^{13}C_{carb}$, $\delta^{18}O_{carb}$, $\delta^{13}C_{org}$ väärtused on esitatud tabelina lisas 2 ja joonisel 5 ning mineraloogiline koostis tabelina lisas 4 ja joonisel 6.

Karbonaatse süsiniku isotoopkoostis varieerub Baltinava-17 puuraugus vahemikus -0,35 kuni +4,91‰, karbonaatse hapniku isotoopkoostis -5,87 kuni -2,64‰ ja orgaanilise süsiniku isotoopkoostis -30,35 kuni -26,29‰.

Baltinava-17 puuraugu Halliku ja Baltinava kihistu $\delta^{13}C_{carb}$ väärtused püsivad stabiilsed jäädes 1,10 ja 1,81‰ vahele. $\delta^{18}O_{carb}$ püsib vahemikus -4,25 ja -3,62‰ järgides $\delta^{13}C_{carb}$ väärtuste kõikumist. Baltinava kihistu $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ väärtused näitavad langust kihistu viimases proovis võrreldes eelviimase prooviga. $\delta^{13}C_{carb}$ langus on suhteliselt vaevumärgatav langedes 1,65‰-lt 1,25‰-ni, kuid $\delta^{18}O_{carb}$ langeb -4,13‰-lt -5,05‰-ni. $\delta^{13}C_{org}$ proovid näitavad üle kahe kihistu tõusutrendi tõustes -29,39‰-lt -27,08‰-ni. Halliku kihistu karbonaatse materjali osakaal jääb vahemikku 61,9 kuni 78,9%, millest moodustab kaltsiit valdavalt 24,4 kuni 48,2% ja dolomiit valdavalt 24,8 kuni 48,7%. Batinava kihistu lõpuks tõuseb karbonaatse materjali osakaal 87,1%-ni, millest valdav enamus on kaltsiit.

Ludza kihistu, mis on stratigraafilises kontekstis võrreldav Taurkalne puuraugu Paroveja kihistuga, näitab hoolimata hüplikest väärtustest selget positiivset $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ ekskursiooni. Siiski jäävad $\delta^{18}O_{carb}$ väärtused Halliku kihistuga võrreldavale tasemele. Ekskursiooni tipus, proovil BL-021, omavad $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ väärtuseid vastavalt 2.87‰ ja -3.53‰. Ekskursiooni vältel on karbonaatse materjali osakaal kõrge, üle 90%, kuid ekskursiooni mõlemal jalamil on karbonaatide sisaldus oluliselt väiksem peamiselt kvartsi arvelt, mida on proovis BL-020 koguni 43,6% ja proovis BL-028 17,3%.

Adila ja Taucionyse kihistud näitavad $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ väärtuste tõusu ja seejärel langust. $\delta^{13}C_{carb}$ tõuseb Adila kihistu keskpaigaks (BL-033) väärtuseni 1,59‰ ja Taucionyse kihistu lõpuks kannab see väärtust 0,99‰, $\delta^{18}O_{carb}$ tõuseb samaks prooviks väärtusele -3,02‰ ja langeb Taucionyse kihistu alguseks väärtuseni 3,92‰ peale mida alustab see taas tõusmist. Kõnealustes kihistutes näitab tõusutrendi ka $\delta^{13}C_{org}$ tõustes väärtuseni -28,69‰. Adila kihistu algus paistab silma kõrge kvartsisisaldusega (43,6%). Läbi mõlema kihistu toimub kvartsi arvelt karbonaatsuse kasv 45,5%-lt 81,2%-ni. Võrreldes Adila kihistuga on Taucionyse kihistu karbonaadid oluliselt kaltsiitsemad. Salduse kihistu, nii nagu Taurkalne puurauguski näitab tugevaid ekskursiooni kõikides uuritud isotoopsuhetes. $\delta^{13}C_{carb}$ väärtused tõusevad 2,86‰-ni, $\delta^{18}O_{carb}$ väärtused langevad -4,74‰-ni ja $\delta^{13}C_{org}$ väärtused tõusevad -27.74‰-ni.

Stačiunai kihistu $\delta^{13}C_{carb}$ väärtused, sarnaselt Taurkalne puuraugu samale kihistule, jätkavad Salduse kihistu positiivset ekskursiooni kandes seda kihistu esimese poole vältel. Alates proovist BL-062 toimub $\delta^{13}C_{carb}$ pidev langus saavutades Remte kihistu lõpuks väärtuse -0,35‰. $\delta^{18}O_{carb}$ aga teeb tugeva lühiajalise ekskursiooni väärtuseni -3,52‰ langedes peale seda väärtuseni -5,87‰, mis on Baltinava-17 puuraugu vaadeldava vahemiku madalaim väärtus jäädes kõikuma vahemikus -5,57 kuni -4,21‰. $\delta^{13}C_{org}$ väärtused aga näitavad püsivat langustrendi jõudes -30,39‰-ni. Stačiunai kihistu karbonaatse materjali osakaal on valdavalt üle 80%. Eranditeks on BL-042 ja BL-062 omades väärtuseid vastavalt 72,6% ja 79,4%. Remte kihistu karbonaatse materjali sisaldus on 54,9%.

Dobele kihistu, mis kuulub Raikküla lademesse, alguses joonistub välja tugev $\delta^{13}C_{carb}$ ja $\delta^{13}C_{org}$ ekskursioon. $\delta^{13}C_{carb}$ väärtused tõusevad 4,91‰-ni ja langevad seejärel 0,65‰-ni. Seejärel hakkab $\delta^{13}C_{carb}$ tasapisi tõusma. $\delta^{13}C_{org}$ tõuseb -26,52‰-ni ja peale langust hakkab jälle tõusma. $\delta^{18}O_{carb}$ väärtused kõiguvad vahemikus -5,36‰ kuni 4,13‰ omamata mingit selget trendi. Kuni proovini BL-086 on karbonaatse materjali osakkal valdavalt üle 65%. Peale mainitud proovi aga langeb karbonaatide sisaldus väga madalale olles kohati 6,2%. Mainitud proovist alates leidub kaltsiiti kõrvalelemendi tasemel. Märkimisväärne on madala karbonaatsusega proovide kõrge (kuni 34,3%) K-päevakivi sisaldus.

Jurmala ja Riia kihistud näitavad kõikide uuritud isotoopide väärtuste kasvu jätkates Dobele kihistus alanud $\delta^{13}C_{carb}$ ja $\delta^{13}C_{org}$ ning alustades jurmala kihistu alguses $\delta^{18}O_{carb}$ kasvutrendi. Kihistu lõpus esineb $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ väärtuste järsk langus. Mõlema kihistu vältel kasvab dolomiidi sisaldus kvartsi ja savimineraalide arvelt, kuid kaltsiidisisaldus jääb endiselt nullilähedaseks.

Joonis 5. Baltinava-17 puuraugu proovide $\delta^{13}C_{carb}$, $\delta^{18}O_{carb}$, $\delta^{13}C_{org}$ väärtused.

Joonis 6. Uuritud läbilõigete lihtsustatud mineraloogiline koostis. Hall tähistab terrigeenseid setteid, kollane kaltsiiti, sinine dolomiiti, oranž tähistab kõrge päevakivisisaldusega vahemikku.

Mõlema läbilõike süsiniku ja hapniku isotoopväärtused jäävad tavapäraste hästisäilinud Palaeosoikumi karbonaatkivimite väärtuste piiridesse ning puudub selge korrelatsioon C ja O isotoopväärtuste vahel. Seejuures on Taurkalne C ja O isotoopväärtused keskmiselt selgelt madalamad kui Baltinava läbilõikes, mis võib viidata Taurkalne kivimite puhul veidi suuremale diageneetilisele muutusele võrreldes Baltinava-17 läbilõikega. Kuigi Taurkalne asub Jelgava sünekliisile lähemal, ei ole Siluri kihtide tänapäevane lasumissügavus siiski oluliselt erinev nendes läbilõigetes. Taurkalne asub ligikaudu 100 m sügavamal kui Baltinava-17.

Joonis 6. Uuritud läbilõigete $\delta^{13}C_{carb}$ ja $\delta^{18}O_{carb}$ isotoopväärtused.

5. Arutelu

Uuritud läbilõigete $\delta^{13}C_{carb}$ korrelatsioon Ruhnu 500 (Martma 2003) ja Jurmala R-1 (Ainsaar et al. 2010) läbilõigetega on esitatud joonisel 6. Läti läbilõigetes on võimalik ära tunda viis varemkirjeldatud isotoopsündmust: Moe, Paroveja, Hirnantia, Vara-Aeroni ja Vara-Sheinwoodi.

1. Pirgu lademes aset leidnud $\delta^{13}C_{carb}$ ekskursioonid vastavad L. Ainsaar jt. (2010) poolt kirjeldatud ja korreleeritud isotoopsündmustele. Taurkalne läbilõike Jonstorpi kihistu alumises osas olev kõvera tipp vastab nii intensiivsuselt kui kujult Jurmala ja Ruhnu läbilõigetes esineva Moe ekskursiooniga.

2. Paroveja ekskursioon on ära tuntav nii Taurkalne kui Baltinava-17 läbilõikes vastavalt Paroveja ja Ludza kihistikus ning korreleerub hästi Jurmala läbilõikega (Ainsaar et al., 2010). Sama isotoopsündmus Ruhnu läbilõikes langeb Pirgu/Porkuni lademe vahelisse lünka (Ainsaar et al. 2010).

3. Hirnantia Ekskursiooni (HICE) algus on kõigis läbilõigetes selgelt määratletav. Eraldi käsitlemist väärib Salduse kihistus algav ja üle Stačiunai kihistu veniv ekskursioon, mis ei sarnane paljudele varasemates uurimustes kirjeldatud Balti paleobasseini läbilõigetele, sest esiteks piigi tipp on madal ja teiseks väärtused püsivad kõrgel peaaegu kogu Stačiunai kihistu vältel. Võimalik, et uuritud läbilõigete Hirnantia ekskursiooni puhul näeme me ainult selle lõppu, mis omakorda seletab ekskursiooni suhteliselt madalaid väärtuseid (Ainsaar et al., 2010; Kaljo et al., 2004).

 $\delta^{13}C_{carb}$ väärtused Stačiunai kihistus vastavad väga hästi trendile, mida on võimalik täheldada ka Jurmala R-1 puuraugus. Isotoopsündmuse "veniv" kuju tuleneb Stačiunai kihistu suhteliselt suurest paksusest võrreldes kogu uuritava vahemikuga. (Ainsaar et al., 2010; Kaljo et al., 2004). Hints jt. (2014) ja Ainsaar jt (2015) on Eesti läbilõigete juures näidanud, et Hirnantia Ekskursioon ulatub selgelt Juuru lademesse, ehk kihtidesse, mida on traditsiooniliselt peetud Siluri vanuseks. Seega on Ordoviitsiumi ja Siluri ladestute piir nihutatud kõrgemale Juuru lademe sisse. Sarnaselt on peetud ka Stačiunai kihistusse ulatuvat Hirnantia tipu langevat osa HICE sündmuseks, ehk osaks Porkuni lademest ning ladestu piir võiks paikneda Stačiunai kihistu sees (Ainsaar et al. 2015). Seda seisukohta toetavad hästi ka mõlema siinuuritud Läti läbilõike isotoopkõverad.

Joonis 7. Baltinava-17, Taurkalne, Jurmala R-1 (Ainsaar et al., 2010) ja Ruhnu 500 (Martma, 2003) läbilõigete $\delta^{13}C_{carb}$ kemostratigraafiline korrelatsioon. Halliga on tähistatud isotoopekskursioonid (1 - Moe, 2 - Paroveja, 3 - Hirnantia, 4 - Vara-Aeroni, 5 - Hilis-Aeroni).

4. Kaljo ja Martma (2000) poolt kirjeldatud Raikküla ealine Vara-Aeroni ekskursioon (nt. Ruhnu läbilõige) joonistub selgelt välja Baltinava-17 puuraugus Dobele kihistu alumises osas, kuid Taurkalne puuraugus seda märgata ei ole. Viimases on paraku puursüdamiku kvaliteet selles intervallis halb.

5. Baltinava-17 puuraugus on aga märgata positiivset ekskursiooni Jurmala kihistule järgnevas Riia kihistus, mis vastab Ruhnu puuraugus Jaani kihistule. Kõnealune ekskursioon, mis on tuntud Vara-Sheinwoodi ekskursioonina annab tunnistust Irevikeni väljasuremissündmusega seotud positiivse ekskursiooni ülatumist Balti paleobasseini idaossa. (Kaljo & Martma, 2000; Munnecke et al., 2003)

Kõrvutades $\delta^{13}C_{org}$ väärtuseid $\delta^{13}C_{carb}$ väärtustega, on märgata, et nendevaheline korrelatsioon on mõlemas puuraugus olemas. Enamasti viitab nende ühine ekskursioon muutustele globaalses või lokaalses süsinikuringes ja vähesele või puuduvale diageneesile. Ühiseid negatiivseid ekskursioone, näiteks Baltinava-17 puuraugu Stačiunai kihistu lõppu ja Remte kihistu negatiivne ekskursioon, võib seletada ka magevee mõjul toimuva settimisjärgse diageneesiga. Sellesse väitesse tasub aga suhtuda ettevaatlikult, sest Siluri alguses toimus pidev eustaatiline veetaseme tõus ja väide vajab enne esitamist täiendavat uurimist (Kaljo et al., 1998; Oehlert & Swart, 2014).

 $\delta^{18}O_{carb}$ isotoopkõverad näitavad suurt varieeruvust. Kui Taurkalne puuraugu $\delta^{18}O_{carb}$ järgis osaliselt $\delta^{13}C_{carb}$ trendi, siis Baltinava-17 puuraugus sellist käitumist ei täheldatud. Põhjuseks võib pidada nii $\delta^{18}O_{carb}$ tundlikkust diageneesile kui ka erineva ulatusega hapniku isotoopide fraktsioneerumist kaltsiidi ja dolomiidi tekkimisel.

Mineraloogilise koostise muutused kaasnevad mitmete isotoopsündmustega, mis annab alust arvata, et see on põhjustatud veetaseme muutustest. Näiteks kaasnes Hirnantia jäätumisega märgatav veetaseme langus, mis omakorda väljendus proovide vähemas karbonaatsuses. Tähelepanuväärne on Baltinava-17 läbilõike Dobele kihistu, mille proovide BL-088 kuni BL-102 päevakivide sisaldus oli väga kõrge küündides isegi 34,3%-ni. Sellise muutuse selgitamiseks tuleb teostada täiendavaid uurimusi.

Baltinava-17 ja Taurkalne läbilõigete isotoopkõverate erinevusi on võimalik seletada uuritud puuraukude asukohtadega Balti paleobasseinis. Taurkalne puurauk, mis asub basseini sügavamas ja avatumas osas, näitab ühtlasemaid väärtuseid ja mõningast korrelatsiooni kõikide isotoopide trendide vahel. Baltinava-17 puuraugus aga seevastu näitavad ainult $\delta^{13}C_{carb}$ ja $\delta^{13}C_{org}$ sarnaseid trende. Selle põhjal võib järeldada Taurkalne puuraugu settimiskeskkonna paremat puhverdatust võrreldes Baltinava-17 puurauguga. Erinevustest hoolimata kajastasid mõlemad puuraugud Balti paleobasseini settelugu täiendades seniseid teadmisi basseini tekkimisest ja kujunemisest.

Kokkuvõte

Käesoleva töö eesmärk on kirjeldada Ordoviitsiumi- ja Siluriaegse Balti Paleobasseini arengut Läti territooriumil kasutades mineraloogilist ja isotoopgeoloogilist uurimismeetodi ja võrrelda tulemusi teiste uurimustega.

Uuritud läbilõigetes on võimalik ära tunda viis isotoopsündmust: Moe, Paroveja, Hirnantia, Vara-Aeroni ja Vara-Sheinwoodi.

HICE sündmus ja seetõttu ka Ordoviitsiumi ja Siluri ladestute piir ulatub Stačiunai kihistusse.

Mõlema puuraugu $\delta^{13}C_{carb}$ ja $\delta^{13}C_{org}$ väärtused, hoolimata erinevatest asukohtadest basseinis, kannavad sarnaseid trende.

Mõlema puuraugu mineraloogilised ja isotoopgeoloogilised tulemused kajastavad Balti paleobasseini settelugu täiendades seniseid teadmisi basseini tekkimisest ja kujunemisest.

Summary

The aim of this thesis is describing the composition of Upper Ordovician - Lower Silurian developments of Baltic basin in Latvia by means of mineralogy and isotope geochemistry and to compare the results to other similar researches.

Despite different facies settings of the drill core sections $\delta^{13}C_{carb}$ ja $\delta^{13}C_{org}$ values indicate comparable trends.

Five isotope events (excursions) are recognized: Moe, Paroveja, Hirnantia, Early-Aeron, Early Sheinwoodian.

The falling limb of HICE and therefore the O/S boundary have shifted into Stačiunai formation.

The mineralogical and isotope geochemical results of both drill cores reflect the development of Baltic basin thus expanding the pool of knowledge of the region.

Kasutatud kirjandus

Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J., Tinn, O., 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology 294 pp. 189–201.

Ainsaar, L., Truumees, J. and Meidla, T., 2015. The position of the Ordovician–Silurian boundary in Estonia tested by high-resolution δ^{13} C chemostratigraphic correlation. In: M. Ramkumar (Editor), Chemostratigraphy. Elsevier, Oxford, pp. 395-412.

Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V., 1980. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science Vol. 208, Issue 4448, pp. 1095-1108.

Barili, R., Neilson, J., Brasier, A.T., Goldberg, K., Bardola, T., de Ros, L., Leng, M., 2018, Carbon isotopes, stratigraphy and environmental change: the Middle/Upper Cambrian Positive Excursion (SPICE) in Port-au-Port Group, Western Newfoundland, Canada. Canadian Journal of Earth Sciences. 55. 10.1139/cjes-2018-0025.

Bergström, S.M., Chen, X., Gutiérrez-Marco, J.C. & Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regionals eries and stages and to δ 13C chemostratigraphy. Lethaia, Vol. 42, pp. 97–107.

Bergström, S.M., Kleffner, M., Schmitz, B., Cramer, B.D, 2011. Revision of the position of the Ordovician-Silurian boundary in southern Ontario: regional chronostratigraphic implications of δ^{13} C chemostratigraphy of the Manitoulin Formation and associated strata. Canadian Journal of Earth Sciences 2011, 48 (11), pp. 1447-1470.

Brenchley, P.J., Marshall, J.D., Robertson, D.B.R. Carden, G.A.F., Long, D.G.F., Meidla, T., Hints, L. and Anderson, T.F., 1994. Bathymetric and isotopic evidence for a short-lived late Ordovician glaciation in a greenhouse period. Geology, 22, 295-298.

Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., Nõlvak, J., 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. GSA Bulletin 115 (1): 89-104.

Bond, D.P.G., Grasby S.E. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 478, pp. 3-29.

Coplen, T.B., Hopple, J.A., Böhlke, J.K., Peiser, H.S., Rieder, S.E., Krouse, H.R., Rosman, K.J.R., Ding, T., Vocke, Jr., R.D., Révész, K.M., Lamberty, A., Taylor, P., de Bièvre, P., 2002. Compilation of Minimum and Maxium Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. U.S. Geological Survey Water-Resources Investigations Report 01-4222.

Cramer, B.D., Brett, C.E., Melchin, M.J., Männik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R., Saltzman, M.R., 2011. Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and $\delta^{13}C_{carb}$ chemostratigraphy. Lethaia, Vol. 44, pp. 185-202.

Elvert, M., Suess, E., Greinert, J., and Whiticar, M.J., 2000. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Organic Geochemistry, v. 31, pp. 1175-1187.

Farquhar, G.D., Cernusak L.A., Barnes, B., 2007. Heavy Water Fractionation during Transpiration. Plant Physiol. 143(1), pp. 11-18.

Faure, G., Mensing, T.M., 2005. Isotopes Principles and applications. John Wiley & Sons Inc., Hoboken, New Jersey.

Golonka, J., Gawęda, A., 2012. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic, Tectonics - Recent Advances, Evgenii Sharkov, IntechOpen, DOI: 10.5772/50009

Hallam, A., Wignall, P.B., 1997. Mass extinctions and their aftermath. Oxford University Press.

Hints, O., Martma, T., Männik, P., Nõlvak, J., Põldvere, A., Shen, Y.A. and Viira, V., 2014. New data on Ordovician stable isotope record and conodont biostratigraphy from the Viki reference drill core, Saaremaa Island, western Estonia. GFF, 136(1): 100-104.

Holser, W.T., 1997. Geochemical events documented in inorganic carbon isotopes. Palaeogeography Palaeoclimatology Palaeoecology, 132, 173-182.

Kaljo, D., Kiipli, T., Martma, T., 1998. Correlation of carbon isotope events and environmental cyclicity in the East Baltic Silurian. Silurian Cycles, Linkages of Dynamic Stratigrphy with Atmospheric, Oceanic, and Tectonic Changes, Publisher: New York State Museum Bulletin 491 pp. 297-312.

Kaljo, D., Martma, T., 2000. Carbon Isotopic Composition of Llandovery Rocks (East Baltic Silurian) with Environmental Interpretation. Proc. Estonian Acad. Sci. Geol. 49, 4 pp. 267-283.

Kaljo, D., Hints, L., Martma, T., Nõlvak, J., Oraspõld, A., 2004. Late Ordovician carbon isotope trend in Estonia, its significance instratigraphy and environmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 210 pp. 165–185.

Kaljo, D., Martma, T., 2006. Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. GFF, 128:2, pp. 123-129.

Kendall, C., Caldwell, E.A., 1998, Chapter 2 - Fundamentals of Isotope Geochemistry, Isotope Tracers in Catchment Hydrology pp. 51-86.

Lai, X., Jianga, H., Wignall, P.B. 2018. A review of the Late Permian - Early Triassic conodont record and its significance for the end-Permian mass extinction. Revue de micropaléontologie 61, pp. 155-164.

Loydell, D.K., 2007. Early Silurian positive δ^{13} C excursions and their relationship to glaciations, sea-level changes and extinction events. Geol. J. 42 pp. 531–546.

Marshall, J.D., 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine Volume 129, Issue 2.

Martma, 2003. Carbon and oxygen isotopes. In: Põldvere, A. (ed.) Ruhnu (500) drill core. Estonian geological Sections, Bull. 5., Eesti Geoloogiakeskus, Tallinn, pp. 28-30.

Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., de Bièvre, P., Gröning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., Prohaska, T., 2013. Isotopic compositions of the elements 2013, IUPAC Technical Report.

Munnecke, A., Samtleben, C., Bickert, T., 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden - relation to similar Palaeozoic and Proterozoic events. Palaeogeography, Palaeoclimatology, Palaeoecology 195, pp. 99-124.

Oehlert, A.M., Swart, P.K., 2014. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record. Nature Communications volume 5, Article number: 4672.

O'Leary, M.H., 1988. Carbon Isotopes in Photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants.

Richardson, J.A., Keating, C., Lepland, A., Hints, O., Bradleya, A.S., Fike, D.A, 2019. Silurian records of carbon and sulfur cycling from Estonia: The importance of depositional environment on isotopic trends. Earth and Planetary Science Letters Volume 512, pp. 71-82.

Schobbena, M., Ullmannb, C.V, Ledaa, L., Korna, D., Strucka, U., Reimolda, W.U., Ghaderie, A., Algeo, T.J., Korte, C., 2016. Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: An example from the Permian-Triassic boundary of Iran. Chemical Geology, Volume 422, pp. 94-107.

Shogenova, A., Sliaupa, S., Shogenov, K., Šliaupienė, R., Pomeranceva, R., Vaher, R., Uibu, M., Kuusik, R., 2009. Possibilities for geological storage and mineral trapping of industrial CO₂ emissions in the Baltic region. Energy Procedia. 1. 2753-2760.

Torsvik, T.H., Smethurst, M.A., Van der Voo, R., Trench, A., Abrahamsen, N., Halvorsen, E., 1992. Baltica. A synopsis of vendian-permian palaeomagnetic data and their palaeotectonic implications. Earth-Science Reviews Volume 33, Issue 2, pp. 133-152.

Torsvik, T.H., Rehnström, E.F., 2003. The Tornquist Sea and Baltica–Avalonia docking. Tectonophysics 362 pp. 67–82.

Trotter, J.A., Williams, I.S., Barnes, C.R., Männik, P., Simpson, A., 2016. New conodont δ^{18} O records of Silurian climate change: Implications for environmental and biological events. Palaeogeography, Palaeoclimatology, Palaeoecology Volume 443, pp. 34-48.

Urey, H.C., 1947. The thermodynamic properties of isotopic substances. Journal of Chemical Society.

Vinogradov, V.I., 2009. Possibilities and Limitations of Isotopic Chemostratigraphy, Litologiya i Poleznye Iskopaemye, No. 3, pp. 270-283.

Whiticar, M.J., Hovland, M., Kastner, M., Sample, J., 1995. Organic geochemistry of gases, fluids, and hydrates at the Cascadia Accretionary Margin, in Carson, B., and Westbrook, G., eds. Ocean Drilling Program Scientific Results, v. 146, pp. 385-398.

Lisa 1. Taurkalne puuraugu isoopkoostis

		Sügavus	δ^{13} Ccarb	$\delta^{18}O$	$\delta^{13}Corg$
Nr	Kihistu	(m)	(‰V-PDB)	(‰V-PDB)	(‰V-PDB)
BS-18-C120	Jurmala	566.20	-0.20	-4.35	-27.95
BS-18-C119	Jurmala	568.80	1.44	-4.12	
BS-18-C118	Jurmala	576.35	1.59	-3.89	-26.29
BS-18-C117	Jurmala	583.00	0.24	-4.51	
BS-18-C116	Dobele	603.10	-0.51	-4.82	
BS-18-C115	Dobele	606.65	-0.67	-5.18	
BS-18-C114	Dobele	608.20	-0.47	-5.22	-28.50
BS-18-C113	Dobele	619.45	-1.09	-5.97	
BS-18-C112	Dobele	621.80	-0.08	-6.77	
BS-18-C111	Dobele	623.20	0.73	-7.11	
BS-18-C110	Dobele	624.20	0.83	-6.87	-28.38
BS-18-C109	Dobele	625.40	0.53	-6.71	
BS-18-C108	Dobele	627.20	0.79	-6.99	
BS-18-C107	Remte	628.80	1.08	-4.93	
BS-18-C106	Remte	629.80	0.90	-5.16	-28.02
BS-18-C105	Remte	630.80	0.99	-7.59	
BS-18-C104	Remte	631.80	0.72	-6.64	
BS-18-C103	Remte	632.80	0.50	-5.27	
BS-18-C102	Stačiunai	634.25	0.49	-7.32	
BS-18-C101	Stačiunai	635.60	0.46	-7.25	
BS-18-C100	Stačiunai	636.65	0.59	-7.33	
BS-18-C099	Stačiunai	637.80	0.30	-6.24	
BS-18-C098	Stačiunai	638.80	0.13	-6.93	-29.88
BS-18-C097	Stačiunai	639.80	0.36	-6.02	
BS-18-C096	Stačiunai	640.80	0.27	-6.80	
BS-18-C095	Stačiunai	641.80	0.41	-6.37	
BS-18-C094	Stačiunai	642.80	0.76	-6.22	
BS-18-C093	Stačiunai	643.70	0.84	-5.80	
BS-18-C092	Stačiunai	644.50	0.92	-5.58	-27.78
BS-18-C091	Stačiunai	645.30	1.02	-4.92	
BS-18-C090	Stačiunai	646.30	1.08	-5.50	
BS-18-C089	Stačiunai	647.30	0.96	-5.67	
BS-18-C088	Stačiunai	648.30	1.18	-5.44	
BS-18-C087	Stačiunai	649.30	1.22	-5.47	
BS-18-C086	Stačiunai	650.20	1.25	-5.84	-29.76
BS-18-C085	Stačiunai	651.30	1.56	-4.95	
BS-18-C084	Stačiunai	652.30	1.72	-5.92	
BS-18-C083	Stačiunai	653.40	1.92	-5.83	
BS-18-C082	Stačiunai	654.40	1.74	-5.63	
BS-18-C081	Stačiunai	655.50	1.70	-5.37	
BS-18-C080	Stačiunai	656.50	1.74	-5.18	
BS-18-C079	Stačiunai	657.70	1.78	-5.25	

Nr	Kihistu	Sügavus (m)	δ ¹³ Ccarb (‰V-PDB)	δ ¹⁸ O (‰V-PDB)	δ ¹³ Corg (‰V-PDB)
BS-18-C078	Stačiunai	658.50	1.93	-4.63	-29.02
BS-18-C077	Stačiunai	659.50	2.04	-5.15	
BS-18-C076	Stačiunai	660.50	1.98	-5.65	
BS-18-C075	Stačiunai	661.50	2.36	-5.79	
BS-18-C074	Stačiunai	662.50	2.40	-5.39	
BS-18-C073	Stačiunai	663.50	2.31	-4.92	
BS-18-C072	Stačiunai	664.50	2.34	-4.78	
BS-18-C071	Stačiunai	665.50	2.52	-4.98	
BS-18-C070	Stačiunai	666.50	2.43	-4.97	-29.17
BS-18-C069	Stačiunai	667.50	2.86	-5.32	
BS-18-C068	Stačiunai	669.00	2.75	-5.33	
BS-18-C067	Stačiunai	672.30	3.14	-5.22	
BS-18-C066	Stačiunai	673.30	3.12	-5.08	
BS-18-C065	Stačiunai	674.20	2.96	-5.17	
BS-18-C064	Stačiunai	675.20	3.16	-4.25	-28.56
BS-18-C063	Stačiunai	676.20	3.28	-4.44	
BS-18-C062	Stačiunai	677.10	2.57	-3.68	-27.70
BS-18-C061	Saldus	677.65	2.95	-4.17	-27.37
BS-18-C060	Saldus	678.20	2.58	-4.29	
BS-18-C059	Saldus	678.60	1.71	-3.65	-28.70
BS-18-C058	Paroveja	679.00	1.21	-3.88	
BS-18-C057	Paroveja	680.00	1.34	-4.01	
BS-18-C056	Paroveja	681.50	1.36	-3.92	-29.17
BS-18-C055	Paroveja	682.40	1.08	-5.34	
BS-18-C054	Paroveja	683.40	1.32	-3.97	
BS-18-C053	Paroveja	684.55	0.97	-4.46	
BS-18-C052	Paroveja	685.60	1.17	-4.53	
BS-18-C051	Paroveja	686.60	1.30	-4.63	
BS-18-C050	Paroveja	687.60	1.39	-5.46	-28.41
BS-18-C049	Paroveja	688.75	1.50	-5.57	
BS-18-C048	Paroveja	689.80	1.62	-4.83	
BS-18-C047	Paroveja	690.90	1.66	-4.45	
BS-18-C046	Paroveja	692.00	1.66	-4.91	
BS-18-C045	Paroveja	693.00	1.88	-4.91	
BS-18-C044	Paroveja	693.95	1.96	-4.17	-27.44
BS-18-C043	Paroveja	695.00	1.75	-5.02	
BS-18-C042	Paroveja	696.00	1.78	-4.18	
BS-18-C041	Paroveja	697.10	1.92	-4.58	
BS-18-C040	Paroveja	698.15	2.02	-6.13	
BS-18-C039	Paroveja	699.20	2.34	-5.12	
BS-18-C038	Paroveja	700.30	2.37	-4.97	
BS-18-C037	Paroveja	701.45	2.03	-4.90	
BS-18-C036	Paroveja	702.60	2.08	-5.21	-28.51
BS-18-C035	Paroveja	703.65	2.20	-5.14	

Nr	Kihistu	Sügavus (m)	δ ¹³ Ccarb (‰V-PDB)	δ ¹⁸ O (‰V-PDB)	δ ¹³ Corg (‰V-PDB)
BS-18-C034	Paroveja	704.50	1.92	-5.09	
BS-18-C033	Paroveja	705.60	1.82	-5.49	
BS-18-C032	Paroveja	706.70	1.66	-5.67	
BS-18-C031	Paroveja	707.80	1.61	-5.21	
BS-18-C030	Paroveja	708.90	1.49	-5.28	
BS-18-C029	Jelgava	710.00	1.30	-4.26	
BS-18-C028	Jelgava	711.10	1.58	-4.07	-30.35
BS-18-C027	Jelgava	712.25	1.54	-4.33	
BS-18-C026	Jelgava	713.35	1.42	-4.97	
BS-18-C025	Jelgava	714.30	1.41	-4.16	
BS-18-C024	Jelgava	715.40	1.46	-4.10	
BS-18-C023	Jelgava	716.40	1.17	-4.73	
BS-18-C022	Jelgava	717.50	0.86	-5.00	-28.46
BS-18-C021	Jelgava	718.50	1.20	-4.46	
BS-18-C020	Jelgava	720.70	1.02	-4.83	
BS-18-C019	Jelgava	723.00	1.20	-4.61	
BS-18-C018	Jelgava	724.85	1.28	-4.74	
BS-18-C017	Jelgava	726.20	1.12	-5.08	
BS-18-C016	Jelgava	727.40	1.12	-5.40	-29.11
BS-18-C015	Jelgava	728.40	1.17	-5.24	
BS-18-C014	Jonstorp	729.60	1.08	-5.18	
BS-18-C013	Jonstorp	730.40	1.29	-4.89	
BS-18-C012	Jonstorp	731.40	1.37	-4.93	
BS-18-C011	Jonstorp	732.40	1.22	-4.81	
BS-18-C010	Jonstorp	733.40	0.93	-4.77	
BS-18-C009	Jonstorp	734.40	1.01	-4.85	
BS-18-C008	Jonstorp	735.40	0.93	-4.53	-28.08
BS-18-C007	Jonstorp	736.40	1.03	-4.61	
BS-18-C006	Jonstorp	737.40	0.89	-4.49	
BS-18-C005	Jonstorp	738.35	0.91	-4.51	
BS-18-C004	Jonstorp	739.40	1.55	-4.33	
BS-18-C003	Jonstorp	740.35	1.52	-4.35	
BS-18-C002	Jonstorp	741.40	1.68	-4.35	-27.82
BS-18-C001	Jonstorp	742.30	1.27	-3.77	

Lisa 2. Baltinava-17 puuraugu isoopkoostis

		Sügavus	δ^{13} Ccarb	$\delta^{18}O$	$\delta^{13}Corg$
Nr	Kihistu	(m)	(‰V-PDB)	(‰V-PDB)	(‰V-PDB)
BL-18-C148	Riia	456.30	1.23	-4.85	-25.78
BL-18-C147	Riia	457.20	2.81	-2.74	
BL-18-C146	Riia	458.50	3.34	-2.79	
BL-18-C145	Riia	459.70	3.65	-2.64	
BL-18-C144	Riia	461.00	3.49	-2.68	
BL-18-C143	Riia	462.30	3.78	-2.91	
BL-18-C142	Riia	463.25	3.76	-3.79	
BL-18-C141	Riia	464.25	3.71	-4.45	
BL-18-C140	Riia	465.25	3.77	-4.79	
BL-18-C139	Riia	466.20	3.97	-4.87	
BL-18-C138	Riia	467.20	3.80	-5.02	
BL-18-C137	Riia	468.15	3.74	-4.74	
BL-18-C136	Riia	469.10	4.01	-3.72	
BL-18-C135	Riia	470.00	3.95	-3.31	
BL-18-C134	Riia	470.90	3.82	-3.31	-26.21
BL-18-C133	Riia	471.90	4.05	-3.70	
BL-18-C132	Riia	472.90	3.96	-3.87	
BL-18-C131	Riia	473.90	3.89	-3.75	
BL-18-C130	Riia	474.95	3.80	-3.77	
BL-18-C129	Riia	475.90	3.84	-3.68	
BL-18-C128	Riia	476.90	3.70	-4.33	
BL-18-C127	Riia	477.80	3.93	-4.28	
BL-18-C126	Riia	478.70	3.81	-4.48	-26.18
BL-18-C125	Riia	479.60	3.68	-3.94	
BL-18-C124	Riia	480.50	3.51	-3.80	
BL-18-C123	Riia	481.30	3.90	-4.11	
BL-18-C122	Riia	482.40	3.41	-4.02	
BL-18-C121	Riia	483.45	3.41	-4.20	
BL-18-C120	Riia	484.40	3.35	-3.99	-26.65
BL-18-C119	Riia	485.60	3.38	-3.69	
BL-18-C118	Riia	487.35	3.26	-4.13	
BL-18-C117	Riia	489.10	3.16	-4.01	
BL-18-C116	Riia	490.70	3.06	-3.62	
BL-18-C115	Jurmala	491.70	2.52	-3.61	
BL-18-C114	Jurmala	493.70	2.51	-4.24	
BL-18-C113	Jurmala	493.60	2.37	-3.50	
BL-18-C112	Jurmala	494.60	2.13	-3.52	-27.37
BL-18-C111	Jurmala	495.60	1.96	-3.51	
BL-18-C110	Jurmala	496.55	2.12	-3.75	
BL-18-C109	Jurmala	497.65	1.94	-4.08	
BL-18-C108	Jurmala	498.80	2.06	-4.22	
BL-18-C107	Jurmala	499.95	1.81	-4.25	

Nr	Kihistu	Sügavus (m)	δ ¹³ Ccarb (‰V-PDB)	δ ¹⁸ O (‰V-PDB)	δ ¹³ Corg (‰V-PDB)
BL-18-C106	Jurmala	501.10	2.11	-4.60	-27.40
BL-18-C105	Jurmala	502.30	2.09	-4.67	
BL-18-C104	Dobele	503.25	1.87	-5.13	
BL-18-C103	Dobele	504.70	1.50	-4.63	
BL-18-C102	Dobele	505.80	1.51	-4.13	
BL-18-C101	Dobele	506.95	0.86	-5.16	
BL-18-C100	Dobele	508.25	1.48	-4.31	-27.48
BL-18-C099	Dobele	509.50	1.44	-4.66	
BL-18-C098	Dobele	510.75	1.69	-4.64	
BL-18-C097	Dobele	512.00	1.37	-4.33	
BL-18-C096	Dobele	513.05	1.03	-4.58	
BL-18-C095	Dobele	514.30	1.02	-5.01	
BL-18-C094	Dobele	515.50	0.80	-4.33	-28.59
BL-18-C093	Dobele	516.40	0.48	-4.57	
BL-18-C092	Dobele	517.40	0.69	-4.45	
BL-18-C091	Dobele	518.10	0.66	-4.77	
BL-18-C090	Dobele	519.40	0.80	-5.09	
BL-18-C089	Dobele	520.40	0.83	-5.36	
BL-18-C088	Dobele	521.40	0.65	-4.33	-29.73
BL-18-C087	Dobele	522.40	3.05	-4.25	
BL-18-C086	Dobele	523.40	4.54	-4.81	
BL-18-C085	Dobele	524.40	4.56	-5.21	
BL-18-C084	Dobele	525.40	4.91	-4.97	
BL-18-C083	Dobele	526.40	2.80	-4.14	
BL-18-C082	Dobele	527.40	2.40	-4.31	-26.52
BL-18-C081	Dobele	528.40	2.28	-4.49	
BL-18-C080	Dobele	529.40	1.57	-4.83	
BL-18-C079	Dobele	530.40	1.33	-5.00	
BL-18-C078	Dobele	531.40	1.14	-4.86	-28.21
BL-18-C077	Dobele	532.40	0.90	-4.88	
BL-18-C076	Dobele	533.40	0.48	-4.91	
BL-18-C075	Remte	534.40	-0.35	-4.91	
BL-18-C074	Remte	535.40	-0.03	-4.21	
BL-18-C073	Stačiunai	536.40	0.03	-4.64	
BL-18-C072	Stačiunai	537.40	0.22	-5.18	-30.39
BL-18-C071	Stačiunai	538.40	0.32	-5.53	
BL-18-C070	Stačiunai	539.40	0.33	-5.22	
BL-18-C069	Stačiunai	540.40	0.22	-5.39	
BL-18-C068	Stačiunai	541.40	0.28	-4.87	
BL-18-C067	Stačiunai	542.40	0.90	-4.40	
BL-18-C066	Stačiunai	543.40	1.14	-5.49	
BL-18-C065	Stačiunai	544.40	1.43	-5.57	
BL-18-C064	Stačiunai	545.40	1.99	-5.22	-29.54
BL-18-C063	Stačiunai	546.40	2.02	-5.24	

Nr	Kihistu	Sügavus (m)	δ ¹³ Ccarb (‰V-PDB)	δ ¹⁸ O (‰V-PDB)	δ ¹³ Corg (‰V-PDB)
BL-18-C062	Stačiunai	547.40	2.16	-4.92	• · · ·
BL-18-C061	Stačiunai	548.40	1.74	-5.01	
BL-18-C060	Stačiunai	549.40	1.62	-5.29	
BL-18-C059	Stačiunai	550.40	2.08	-5.19	
BL-18-C058	Stačiunai	551.40	2.36	-5.15	-30.00
BL-18-C057	Stačiunai	552.40	1.76	-5.37	
BL-18-C056	Stačiunai	553.40	2.21	-4.96	
BL-18-C055	Stačiunai	554.40	2.89	-4.46	
BL-18-C054	Stačiunai	555.40	1.96	-4.83	
BL-18-C053	Stačiunai	556.40	1.82	-5.27	
BL-18-C052	Stačiunai	557.40	2.08	-4.98	
BL-18-C051	Stačiunai	558.40	2.41	-5.23	
BL-18-C050	Stačiunai	559.40	2.17	-5.29	-29.44
BL-18-C049	Stačiunai	560.40	2.22	-5.44	
BL-18-C048	Stačiunai	561.40	2.03	-5.26	
BL-18-C047	Stačiunai	562.40	2.41	-5.32	
BL-18-C046	Stačiunai	563.40	2.72	-5.05	
BL-18-C045	Stačiunai	564.40	2.49	-5.87	
BL-18-C044	Stačiunai	565.30	2.52	-5.08	
BL-18-C043	Stačiunai	565.40	2.09	-3.82	
BL-18-C042	Stačiunai	566.40	2.29	-3.52	-28.35
BL-18-C041	Stačiunai	567.00	2.41	-3.58	
BL-18-C040	Saldus	567.40	2.86	-4.74	-27.74
BL-18-C039	Saldus	567.65	2.32	-4.64	
BL-18-C038	Taucionys	567.95	0.99	-4.51	-28.69
BL-18-C037	Taucionys	568.40	0.79	-3.92	
BL-18-C036	Adila	569.40	1.12	-3.63	-29.94
BL-18-C035	Adila	570.60	1.34	-3.43	
BL-18-C034	Adila	572.50	1.39	-3.33	
BL-18-C033	Adila	574.30	1.59	-3.02	
BL-18-C032	Adila	575.90	0.96	-4.76	
BL-18-C031	Adila	577.60	0.99	-5.43	
BL-18-C030	Adila	579.45	1.27	-4.67	
BL-18-C029	Ludza	581.15	1.14	-4.55	
BL-18-C028	Ludza	582.25	1.36	-4.34	-28.60
BL-18-C027	Ludza	584.30	1.55	-4.02	
BL-18-C026	Ludza	586.10	2.65	-3.49	
BL-18-C025	Ludza	587.70	1.78	-3.91	
BL-18-C024	Ludza	589.30	2.39	-3.65	
BL-18-C023	Ludza	590.65	2.30	-4.24	
BL-18-C022	Ludza	591.90	2.42	-3.70	-29.60
BL-18-C021	Ludza	593.10	2.87	-3.53	
BL-18-C020	Ludza	594.30	1.64	-4.59	
BL-18-C019	Ludza	595.35	2.71	-3.62	

		Sügavus	δ ¹³ Ccarb	$\delta^{18}O$	δ ¹³ Corg
Nr	Kihistu	(m)	(‰V-PDB)	(‰V-PDB)	(‰V-PDB)
BL-18-C018	Baltinava	596.40	1.25	-5.05	
BL-18-C017	Baltinava	597.40	1.65	-4.13	
BL-18-C016	Baltinava	598.40	1.56	-4.00	-27.08
BL-18-C015	Baltinava	599.10	1.81	-3.63	
BL-18-C014	Halliku	600.25	1.45	-3.73	
BL-18-C013	Halliku	601.50	1.24	-3.95	
BL-18-C012	Halliku	602.50	1.31	-3.75	
BL-18-C011	Halliku	603.50	1.50	-3.68	
BL-18-C010	Halliku	604.50	1.34	-4.18	
BL-18-C009	Halliku	605.50	1.21	-4.05	
BL-18-C008	Halliku	606.70	1.31	-3.79	-28.31
BL-18-C007	Halliku	608.00	1.44	-3.62	
BL-18-C006	Halliku	609.40	1.48	-3.72	
BL-18-C005	Halliku	611.00	1.39	-3.88	
BL-18-C004	Halliku	612.40	1.37	-3.88	
BL-18-C003	Halliku	613.40	1.20	-4.06	
BL-18-C002	Halliku	614.65	1.10	-4.25	-29.39
BL-18-C001	Halliku	615.65	1.32	-3.88	

T ·)		1		• 1		1 4.
1159 3	anr	kaine	niiiraiioii	minera	INNGILINE	konstis
	Laur	Maine	puuraugu	minuta	loognine	ROOSUS

Nr	Kihistu	Sügavus (m)	Kvarts (%)	Päevakivid (%)	Savid (%)	Kaltsiit (%)	Dolomiit (%)	Püriit (%)	Muu (%)
BS-18-C120	Jurmala	566.20	19.8	5.8	34.8	0.0	36.2	0.9	2.3
BS-18-C118	Jurmala	576.35	20.7	6.2	39.9	0.0	31.3	0.4	0.5
BS-18-C116	Dobele	603.10	16.7	5.1	37.8	0.0	39.9	0.2	0.0
BS-18-C114	Dobele	608.20	8.4	3.1	20.1	0.0	67.8	0.4	0.0
BS-18-C112	Dobele	621.80	9.6	6.8	22.6	0.0	60.3	0.4	0.0
BS-18-C110	Dobele	624.20	2.7	1.6	4.8	0.0	90.2	0.5	0.0
BS-18-C108	Dobele	627.20	8.8	5.3	20.6	0.7	64.0	0.7	0.0
BS-18-C106	Remte	629.80	8.2	2.0	12.1	62.6	14.7	0.4	0.0
BS-18-C104	Remte	631.80	7.7	4.6	16.4	0.2	70.3	0.6	0.0
BS-18-C102	Stačiunai	634.25	0.9	1.1	1.3	0.3	95.8	0.6	0.0
BS-18-C100	Stačiunai	636.65	1.8	2.2	1.5	1.7	91.8	1.0	0.0
BS-18-C098	Stačiunai	638.80	3.2	3.4	0.5	12.1	79.6	0.8	0.0
BS-18-C096	Stačiunai	640.80	0.7	1.5	0.2	3.2	93.1	0.9	0.0
BS-18-C094	Stačiunai	642.80	1.3	0.9	0.4	23.6	72.8	0.7	0.0
BS-18-C092	Stačiunai	644.50	0.9	0.0	0.3	70.8	27.4	0.4	0.0
BS-18-C090	Stačiunai	646.30	1.2	0.5	0.6	63.3	33.7	0.6	0.0
BS-18-C088	Stačiunai	648.30	1.0	0.7	0.5	91.7	5.4	0.4	0.0
BS-18-C086	Stačiunai	650.20	2.3	0.6	0.7	78.3	17.5	0.3	0.0
BS-18-C084	Stačiunai	652.30	1.3	0.0	0.8	92.1	5.1	0.4	0.0
BS-18-C082	Stačiunai	654.40	0.9	0.7	1.0	92.8	4.0	0.3	0.0
BS-18-C080	Stačiunai	656.50	2.6	3.5	1.5	83.8	8.2	0.4	0.0
BS-18-C078	Stačiunai	658.50	2.6	2.8	1.5	82.3	10.2	0.3	0.0
BS-18-C076	Stačiunai	660.50	5.1	5.4	4.2	70.3	14.5	0.0	0.0
BS-18-C074	Stačiunai	662.50	3.2	1.8	2.7	80.1	11.2	0.7	0.0
BS-18-C072	Stačiunai	664.50	1.0	0.7	1.0	93.4	3.4	0.3	0.0
BS-18-C070	Stačiunai	666.50	2.1	1.2	1.0	90.5	4.6	0.4	0.0
BS-18-C068	Stačiunai	669.00	3.5	2.1	1.4	82.6	10.0	0.3	0.0
BS-18-C066	Stačiunai	673.30	0.9	0.2	0.9	96.6	0.8	0.6	0.0
BS-18-C064	Stačiunai	675.20	1.5	0.3	1.3	94.9	1.4	0.6	0.0
BS-18-C062	Stačiunai	677.10	14.5	5.8	27.7	12.8	38.8	0.2	0.0
BS-18-C060	Saldus	678.20	20.0	2.1	4.5	61.2	11.2	0.3	0.5
BS-18-C058	Paroveja	679.00	2.6	1.1	2.4	91.8	0.9	0.3	0.8
BS-18-C056	Paroveja	681.50	3.6	2.4	3.1	89.1	1.4	0.3	0.0
BS-18-C054	Paroveja	683.40	2.8	1.7	2.0	91.9	1.2	0.3	0.0
BS-18-C052	Paroveja	685.60	11.6	3.6	23.3	30.4	30.7	0.3	0.0
BS-18-C050	Paroveja	687.60	9.7	4.0	5.7	76.8	3.6	0.0	0.0
BS-18-C048	Paroveja	689.80	3.0	2.4	2.9	80.5	10.8	0.3	0.0
BS-18-C046	Paroveja	692.00	1.2	0.4	0.8	95.9	1.1	0.4	0.0
BS-18-C044	Paroveja	693.95	4.1	3.6	11.6	59.6	20.3	0.7	0.0
BS-18-C042	Paroveja	696.00	1.5	0.8	1.7	91.2	4.3	0.4	0.0
BS-18-C040	Paroveja	698.15	3.2	2.3	4.7	75.4	13.4	0.8	0.0
BS-18-C038	Paroveja	700.30	2.2	0.5	2.4	82.6	11.7	0.5	0.0

		Sügavus	Kvarts	Päevakivid	Savid	Kaltsiit	Dolomiit	Püriit	Muu
Nr	Kihistu	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
BS-18-C036	Paroveja	702.60	1.6	0.3	3.4	89.8	3.2	0.4	1.1
BS-18-C034	Paroveja	704.50	1.9	0.2	2.0	91.3	4.0	0.4	0.0
BS-18-C032	Paroveja	706.70	1.7	0.5	2.0	89.3	6.0	0.4	0.0
BS-18-C030	Paroveja	708.90	1.7	0.7	1.5	89.3	6.2	0.6	0.0
BS-18-C028	Jelgava	711.10	5.1	0.9	5.6	85.6	2.3	0.3	0.0
BS-18-C026	Jelgava	713.35	9.6	2.5	9.3	68.6	9.7	0.3	0.0
BS-18-C024	Jelgava	715.40	9.8	2.8	18.3	60.2	8.3	0.4	0.0
BS-18-C022	Jelgava	717.50	11.3	3.6	13.4	47.8	23.5	0.3	0.0
BS-18-C020	Jelgava	720.70	11.1	3.2	18.2	44.8	21.9	0.7	0.0
BS-18-C018	Jelgava	724.85	11.7	2.7	17.2	49.4	18.4	0.5	0.0
BS-18-C016	Jelgava	727.40	10.0	2.8	13.8	47.7	25.3	0.3	0.0
BS-18-C014	Jonstorp	729.60	13.5	3.9	24.9	29.5	27.1	0.0	0.6
BS-18-C012	Jonstorp	731.40	13.6	4.2	28.8	29.0	23.9	0.3	0.5
BS-18-C010	Jonstorp	733.40	17.5	5.0	27.4	13.6	34.9	0.0	1.2
BS-18-C008	Jonstorp	735.40	10.6	1.2	14.4	66.7	6.5	0.0	0.7
BS-18-C006	Jonstorp	737.40	12.0	3.3	23.9	39.3	20.3	0.0	1.3
BS-18-C004	Jonstorp	739.40	15.6	5.5	18.3	56.3	2.2	0.0	1.7
BS-18-C002	Jonstorp	741.40	9.3	2.3	14.6	54.7	18.5	0.5	0.0

Lisa 4. Baltinava-17 puuraugu mineraloogiline koostis

N.	Vibiatu	Sügavus	Kvarts	Päevakivid	Savid	Kaltsiit	Dolomiit	Püriit	Muu
BI-18-C148	Riga	456 30	(%) 10 3	12.6	<u>(%)</u> 19 5	(%)	<u>(%)</u> 573	(%)	
BL-18-C146	Riga	458 50	10.5	10.6	18 5	0.0	59.7	0.4	0.0
BI -18-C144	Riga	461.00	10.4	13.4	19.6	0.0	56.0	0.7	0.0
BI -18-C142	Riga	463.25	12.1	12.4	22.0	0.0	51.0	0.7	0.0
BI -18-C140	Riga	465.25	14.4	10.8	32.2	0.0	41 1	0.0	0.0
BI -18-C138	Riga	467.20	14 1	10.3	27.4	0.0	46.9	1.2	0.0
BL-18-C136	Riga	469.10	14.1	9.8	31.4	0.3	43.4	0.9	0.0
BL-18-C134	Riga	470.90	16.3	10.4	29.7	0.2	42.3	1.0	0.0
BL-18-C132	Riga	472.90	15.1	10.2	27.4	0.4	45.8	1.1	0.0
BL-18-C130	Riga	474.95	16.3	10.3	30.2	0.4	41.0	1.6	0.0
BL-18-C128	Riga	476.90	15.9	8.0	27.2	0.4	47.5	0.9	0.0
BL-18-C126	Riga	478.70	16.8	7.7	26.7	0.3	47.1	1.1	0.0
BL-18-C124	Riga	480.50	16.8	7.7	26.7	0.3	47.1	1.2	0.0
BL-18-C122	Riga	482.40	20.2	7.6	30.3	0.4	39.9	1.3	0.0
BL-18-C120	Riga	484.40	19.5	7.6	33.1	0.4	37.9	1.2	0.0
BL-18-C118	Riga	487.35	20.8	7.4	37.1	0.3	33.0	1.1	0.0
BL-18-C116	Riga	490.70	18.2	7.5	36.6	0.4	36.0	1.3	0.0
BL-18-C114	Jurmala	493.70	22.9	8.6	42.0	0.5	25.6	0.3	0.0
BL-18-C112	Jurmala	494.60	21.4	9.3	40.2	0.2	28.1	0.5	0.0
BL-18-C110	Jurmala	496.55	24.4	10.1	44.9	0.2	19.8	0.4	0.0
BL-18-C108	Jurmala	498.80	23.9	8.4	46.9	4.6	15.7	0.4	0.0
BL-18-C106	Jurmala	501.10	24.0	11.8	48.5	5.6	9.2	0.6	0.0
BL-18-C104	Dobele	503.25	23.9	15.6	45.4	7.7	6.6	0.5	0.0
BL-18-C102	Dobele	505.80	12.9	33.2	44.1	3.7	5.3	0.9	0.0
BL-18-C100	Dobele	508.25	23.9	21.6	37.4	4.1	12.3	0.7	0.0
BL-18-C098	Dobele	510.75	19.3	34.3	39.3	2.2	4.0	0.8	0.0
BL-18-C096	Dobele	513.05	15.5	24.3	30.9	15.3	13.3	0.5	0.0
BL-18-C094	Dobele	515.50	19.0	24.4	36.2	8.0	11.6	0.6	0.0
BL-18-C092	Dobele	517.40	18.6	29.6	25.6	12.9	12.9	0.0	0.0
BL-18-C090	Dobele	519.40	16.6	23.3	26.4	24.5	8.6	0.3	0.0
BL-18-C088	Dobele	521.40	18.8	32.8	32.9	6.4	8.1	0.8	0.0
BL-18-C086	Dobele	523.40	2.7	1.2	9.5	83.9	2.4	0.2	0.0
BL-18-C084	Dobele	525.40	14.7	1.9	2.3	66.2	14.4	0.4	0.0
BL-18-C082	Dobele	527.40	11.9	9.5	10.5	24.2	42.3	1.5	0.0
BL-18-C080	Dobele	529.40	9.6	11.6	13.6	48.9	15.5	0.4	0.0
BL-18-C078	Dobele	531.40	7.5	10.7	13.4	41.8	25.7	0.7	0.0
BL-18-C076	Dobele	533.40	7.2	7.6	10.8	71.3	2.7	0.3	0.0
BL-18-C074	Remte	535.40	13.0	12.1	18.9	36.7	18.2	0.8	0.0
BL-18-C072	Stačiunai	537.40	1.5	0.7	0.5	73.7	23.0	0.6	0.0
BL-18-C070	Stačiunai	539.40	0.7	0.0	0.4	90.0	6.4	0.4	1.9
BL-18-C068	Stačiunai	541.40	0.8	1.0	0.7	95.9	1.1	0.3	0.0

Nr	Kihistu	Sügavus (m)	Kvarts (%)	Päevakivid (%)	Savid (%)	Kaltsiit (%)	Dolomiit (%)	Püriit (%)	Muu (%)
BL-18-C066	Stačiunai	543.40	2.4	0.3	0.8	89.6	6.3	0.3	0.0
BL-18-C064	Stačiunai	545.40	5.9	2.2	1.4	62.1	27.8	0.5	0.0
BL-18-C062	Stačiunai	547.40	17.3	1.3	1.3	57.0	22.4	0.6	0.0
BL-18-C060	Stačiunai	549.40	3.3	0.9	0.7	89.3	5.3	0.3	0.0
BL-18-C058	Stačiunai	551.40	4.8	9.4	1.8	49.9	33.4	0.6	0.0
BL-18-C056	Stačiunai	553.40	8.9	3.9	1.0	63.7	22.0	0.3	0.0
BL-18-C054	Stačiunai	555.40	12.0	0.3	0.6	84.6	1.9	0.3	0.0
BL-18-C052	Stačiunai	557.40	5.8	1.8	0.5	86.6	4.8	0.3	0.0
BL-18-C050	Stačiunai	559.40	0.8	0.3	0.2	91.0	7.0	0.4	0.0
BL-18-C048	Stačiunai	561.40	1.1	0.0	0.0	96.4	2.0	0.2	0.0
BL-18-C046	Stačiunai	563.40	1.0	0.2	0.9	93.0	4.7	0.2	0.0
BL-18-C044	Stačiunai	565.30	2.5	0.2	0.3	94.0	2.5	0.4	0.1
BL-18-C042	Stačiunai	566.40	8.1	7.1	11.4	36.7	35.9	0.7	0.0
BL-18-C040	Saldus	567.40	20.9	0.0	1.5	69.9	3.7	0.7	3.1
BL-18-C038	Taucionys	567.95	7.3	6.2	5.1	76.9	4.3	0.0	0.0
BL-18-C036	Adila	569.40	9.7	4.1	4.7	67.8	12.9	0.4	0.0
BL-18-C034	Adila	572.50	10.4	4.3	8.0	55.9	20.9	0.3	0.0
BL-18-C032	Adila	575.90	13.1	8.2	12.0	46.4	19.6	0.6	0.0
BL-18-C030	Adila	579.45	43.6	2.4	7.9	28.4	17.1	0.4	0.0
BL-18-C028	Ludza	582.25	17.3	8.3	15.9	32.3	25.5	0.7	0.0
BL-18-C026	Ludza	586.10	3.1	0.5	1.3	93.5	1.2	0.0	0.0
BL-18-C024	Ludza	589.30	4.3	0.5	2.2	91.0	1.7	0.0	0.0
BL-18-C022	Ludza	591.90	5.5	0.3	2.1	90.5	1.4	0.0	0.0
BL-18-C020	Ludza	594.30	43.6	4.5	5.5	37.6	6.6	0.7	1.5
BL-18-C018	Baltinava	596.40	8.3	1.3	2.8	79.8	7.3	0.3	0.0
BL-18-C016	Baltinava	598.40	10.5	4.6	8.8	48.2	27.4	0.3	0.0
BL-18-C014	Halliku	600.25	8.3	3.7	8.7	39.5	39.4	0.3	0.0
BL-18-C012	Halliku	602.50	10.6	7.1	8.7	24.4	48.7	0.3	0.0
BL-18-C010	Halliku	604.50	12.5	4.2	4.4	66.4	12.2	0.2	0.0
BL-18-C008	Halliku	606.70	11.2	5.9	10.3	35.2	37.1	0.3	0.0
BL-18-C006	Halliku	609.40	12.0	5.6	7.3	29.4	45.3	0.3	0.0
BL-18-C004	Halliku	612.40	12.1	6.6	5.9	31.3	43.9	0.3	0.0
BL-18-C002	Halliku	614.65	16.6	11.4	9.5	37.1	24.8	0.5	0.0

Lihtlitsents lõputöö reprodutseerimiseks ja üldsusele kättesaadavaks tegemiseks

Mina, Ailar Pokk,

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) minu loodud teose

"Ülem-Ordoviitsiumi ja Alam-Siluri karbonaatkivimite mineraalne ja isotoopkoostis Läti läbilõigetes"

mille juhendajad on Leho Ainsaar ja Olle Hints,

reprodutseerimiseks eesmärgiga seda säilitada, sealhulgas lisada digitaalarhiivi DSpace kuni autoriõiguse kehtivuse lõppemiseni.

- 2. Annan Tartu Ülikoolile loa teha punktis 1 nimetatud teos üldsusele kättesaadavaks Tartu Ülikooli veebikeskkonna, sealhulgas digitaalarhiivi DSpace kaudu Creative Commonsi litsentsiga CC BY NC ND 3.0, mis lubab autorile viidates teost reprodutseerida, levitada ja üldsusele suunata ning keelab luua tuletatud teost ja kasutada teost ärieesmärgil, alates 01.06.2022 kuni autoriõiguse kehtivuse lõppemiseni.
- 3. Olen teadlik, et punktides 1 ja 2 nimetatud õigused jäävad alles ka autorile.
- 4. Kinnitan, et lihtlitsentsi andmisega ei riku ma teiste isikute intellektuaalomandi ega isikuandmete kaitse õigusaktidest tulenevaid õigusi.

Ailar Pokk **03.06.2019**