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Let R be an arbitrary ring and RP and QR arbitrary R-modules. Also,
let there be given an (R,R)-bilinear mapping 〈 , 〉 : P ×Q //R.
(R,R)-bilinearity means that, for every p, p′ ∈ P , q, q′ ∈ Q and r ∈ R,

〈p+ p′, q〉 = 〈p, q〉+ 〈p′, q〉,
〈p, q + q′〉 = 〈p, q〉+ 〈p, q′〉,
〈rp, q〉 = r〈p, q〉,
〈p, qr〉 = 〈p, q〉r.

Definition 1

Tensor product of modules Q⊗βR P with multiplication ? defined by

(q ⊗ p) ? (q′ ⊗ p′) := q ⊗ 〈p, q′〉p′

is called a tensor product ring defined by an (R,R)-bilinear mapping
β = 〈 , 〉.
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For any ring R and a set A ⊆ R, we will denote by 〈A〉s the subgroup
generated by A in the additive group (R,+).

Definition 2

Let R be a ring and B a set. We call a mapping f : B //R
pseudo-surjective, if 〈Im f〉s = R, i.e. the additive subgroup of R
generated by the set Im f is equal to R.

Let ψ : P ⊗S Q //A a homorphism of abelian groups. Denote
ψ̂ := ψ ◦ ⊗, i.e., for every p ∈ P and q ∈ Q, we have

ψ̂(p, q) = ψ(p⊗ q).

If RPS and SQR are (R,S)- and (S,R)-bimodules, respectively, then ψ̂
is also (R,R)-bilinear. If ψ : P ⊗R Q //A is surjective, then ψ̂ is
pseudo-surjective.
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Definition 3

A six-tuple (R,S,RPS , SQR, θ, φ), where R and S are rings and RPS,

SQR are bimodules, is called a Morita context, if

θ : R(P ⊗S Q)R //
RRR, φ : S(Q⊗R P )S //

SSS

are bimodule homomorphisms such that

θ(p⊗ q)p′ = pφ(q ⊗ p′),
qθ(p⊗ q′) = φ(q ⊗ p)q′

for every p, p′ ∈ P and q, q′ ∈ Q.

We will call idempotent rings R and S Morita equivalent, if there
exists a unitary surjective Morita context (R,S,RPS , SQR, θ, φ).
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Proposition 4

Let R be an idempotent ring and RP , QR unitary R-modules. Then
every pseudo-surjectively defined tensor product ring Q⊗R P is
idempotent.

Theorem 5

Let R be an idempotent ring, RP and QR unitary R-modules and
〈 , 〉 : P ×Q //R a pseudo-surjective (R,R)-bilinear mapping. Then
the tensor product ring Q⊗R P defined by 〈 , 〉 is Morita equivalent to
R.
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A ring R is called firm, if

νR : R⊗R R //R,

k∗∑
k=1

rk ⊗ r′k 7→
k∗∑
k=1

rkr
′
k

is an isomorphism.

Corollary 6

Let R be an idempotent ring. The rings R and R⊗ν̂R R are Morita
equivalent with a corresponding surjective unitary Morita context
(R,R⊗ν̂R R,R,R, ν, idR⊗R).
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Proposition 7

Let (R,S,RPS , SQR, θ, φ) be a unitary surjective Morita context

connecting idempotent rings R and S, and let Q⊗θ̂R P , P ⊗φ̂S Q be

tensor product rings defined by the mappings θ̂, φ̂, respectively. Then

the rings R, S, P ⊗φ̂S Q and Q⊗θ̂R P are all Morita equivalent.
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Definition 8

We call a homomorphism τ : R // S of rings locally injective if its
restriction to any subring of the form aRb, where a ∈ Ra and b ∈ bR,
is injective.
A locally injective homomorphism of rings, which is also surjective, is
called a strict local isomorphism.

Proposition 9

Let R be a ring, MR be an R-module and f : MR
//RR a

homomorphism of modules. If we define a multiplication on the abelian
group M by

m •m′ := mf(m′), (m,m′ ∈M),

then we obtain a ring and f is a locally injective homomorphism of
rings. If S is a right s-unital ring then all strict local isomorphisms
S //R can be obtained using this construction.
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Let R and S be rings that are connected by a Morita context

(R,S,RPS , SQR, θ, φ). Consider the tensor product ring P ⊗φ̂S Q defined

by φ̂. Then θ : P ⊗φ̂S Q //R is a locally injective homomorphism of
rings.

Corollary 11

Let R and S be two Morita equivalent idempotent rings. Then there
exist pseudo-surjectively defined tensor product rings Q⊗R P , P ⊗S Q
and strict local isomorphisms Q⊗R P // S and P ⊗S Q //R.

Proposition 12

Let R and S be idempotent rings. If R is isomorphic to some
pseudo-surjectively defined tensor product ring P ⊗S Q, where PS and

SQ are unitary modules, then the rings R and S are Morita equivalent.

Kristo Väljako (UT) Tensor Product Rings Szeged, June, 2022 10 / 18



European Union
European Regional 
Development Fund

Investing
in your futureTheorem 10

Let R and S be rings that are connected by a Morita context

(R,S,RPS , SQR, θ, φ). Consider the tensor product ring P ⊗φ̂S Q defined

by φ̂. Then θ : P ⊗φ̂S Q //R is a locally injective homomorphism of
rings.

Corollary 11

Let R and S be two Morita equivalent idempotent rings. Then there
exist pseudo-surjectively defined tensor product rings Q⊗R P , P ⊗S Q
and strict local isomorphisms Q⊗R P // S and P ⊗S Q //R.

Proposition 12

Let R and S be idempotent rings. If R is isomorphic to some
pseudo-surjectively defined tensor product ring P ⊗S Q, where PS and

SQ are unitary modules, then the rings R and S are Morita equivalent.

Kristo Väljako (UT) Tensor Product Rings Szeged, June, 2022 10 / 18



European Union
European Regional 
Development Fund

Investing
in your futureTheorem 10

Let R and S be rings that are connected by a Morita context

(R,S,RPS , SQR, θ, φ). Consider the tensor product ring P ⊗φ̂S Q defined

by φ̂. Then θ : P ⊗φ̂S Q //R is a locally injective homomorphism of
rings.

Corollary 11

Let R and S be two Morita equivalent idempotent rings. Then there
exist pseudo-surjectively defined tensor product rings Q⊗R P , P ⊗S Q
and strict local isomorphisms Q⊗R P // S and P ⊗S Q //R.

Proposition 12

Let R and S be idempotent rings. If R is isomorphic to some
pseudo-surjectively defined tensor product ring P ⊗S Q, where PS and

SQ are unitary modules, then the rings R and S are Morita equivalent.

Kristo Väljako (UT) Tensor Product Rings Szeged, June, 2022 10 / 18



European Union
European Regional 
Development Fund

Investing
in your future

Adjoint endomorphisms European Union
European Regional 
Development Fund

Investing
in your future

Definition 13

Module endomorphisms f ∈ End(RP ) and g ∈ End(QR) are called
adjoint (with respect to β = 〈 , 〉) if, for every p ∈ P and q ∈ Q, we
have

〈f(p), q〉 = 〈p, g(q)〉.

Lemma 14

Let RP and QR be R-modules and β = 〈 , 〉 : P ×Q //R an
(R,R)-bilinear mapping. For any k∗ ∈ N, p1, . . . , pk∗ ∈ P and
q1, . . . , qk∗ ∈ Q, the mappings

f :=

k∗∑
k=1

〈 , qk〉pk : RP //
RP and g :=

k∗∑
k=1

qk〈pk, 〉 : QR //QR

are adjoint endomorphisms.
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Denote

Σβ :=

{
k∗∑
k=1

(〈 , qk〉pk, qk〈pk, 〉)

∣∣∣∣∣k∗ ∈ N;∀k : pk ∈ P, qk ∈ Q

}
.

Theorem 15

Let R be a ring. Then, for every (R,R)-bilinear mapping
β = 〈 , 〉 : RP ×QR //R, there exists a strict local isomorphism

Q⊗βR P // Σβ of rings.
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k∗∑
k=1

(〈 , qk〉pk, qk〈pk, 〉)

∣∣∣∣∣k∗ ∈ N;∀k : pk ∈ P, qk ∈ Q

}
.
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Let R be a ring. Then, for every (R,R)-bilinear mapping
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Q⊗βR P // Σβ of rings.

Kristo Väljako (UT) Tensor Product Rings Szeged, June, 2022 12 / 18



European Union
European Regional 
Development Fund

Investing
in your future

Dual mappings European Union
European Regional 
Development Fund

Investing
in your future

Definition 16

An (R,R)-bilinear mapping 〈 , 〉 : RP ×QR //
RRR is said to be a

dual mapping, if

1 for every finite subset Y ⊆ Q, there exist p1, . . . , pk∗ ∈ P and
q1, . . . , qk∗ ∈ Q such that for every y ∈ Y

y =

k∗∑
k=1

qk〈pk, y〉;

2 for every finite subset X ⊆ P , there exist p1, . . . , ph∗ ∈ P and
q1, . . . , qh∗ ∈ Q such that for every x ∈ X

x =

h∗∑
h=1

〈x, qh〉ph.

Kristo Väljako (UT) Tensor Product Rings Szeged, June, 2022 13 / 18



European Union
European Regional 
Development Fund

Investing
in your future

Dual mappings European Union
European Regional 
Development Fund

Investing
in your future

Definition 16

An (R,R)-bilinear mapping 〈 , 〉 : RP ×QR //
RRR is said to be a

dual mapping, if

1 for every finite subset Y ⊆ Q, there exist p1, . . . , pk∗ ∈ P and
q1, . . . , qk∗ ∈ Q such that for every y ∈ Y

y =

k∗∑
k=1

qk〈pk, y〉;

2 for every finite subset X ⊆ P , there exist p1, . . . , ph∗ ∈ P and
q1, . . . , qh∗ ∈ Q such that for every x ∈ X

x =

h∗∑
h=1

〈x, qh〉ph.

Kristo Väljako (UT) Tensor Product Rings Szeged, June, 2022 13 / 18



European Union
European Regional 
Development Fund

Investing
in your futureExample 17 (Dual mapping I)

Let V be a Euclidean space. It can be considered as a right or a left R-module. The
inner product of V is an (R,R)-bilinear mapping 〈 , 〉 : RV × VR // R. Let
{e1, . . . , en} be an orthonormal basis for V . Then

x =

n∑
h=1

〈x, eh〉eh,

for every x ∈ V . The inner product of any Euclidean space is a dual mapping.

Example 18 (Dual mapping II)

Let R and S be s-unital rings that are connected by a unitary surjective Morita
context (R,S,RPS , SQR, θ, φ). The mappings

θ̂ : P ×Q //R, (p, q) 7→ θ(p⊗ q),

φ̂ : Q× P // S, (q, p) 7→ φ(q ⊗ p)

are dual mappings.
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Proposition 19

Let R be a ring and β = 〈 , 〉 : RP ×QR //
RRR a pseudo-surjective

dual mapping. Then R is idempotent and the rings R and Σβ are
Morita equivalent.

Proposition 20

If R is a ring and β = 〈 , 〉 : RP ×QR //
RRR is a dual mapping, then

Σβ is isomorphic to the subring

Πβ :=

{
k∗∑
k=1

qk〈pk, 〉

∣∣∣∣∣k∗ ∈ N; ∀k : qk ∈ Q, pk ∈ P

}

of the endomorphism ring End(QR).

Corollary 21

Let R be a ring and β = 〈 , 〉 : RP ×QR //
RRR a pseudo-surjective

dual mapping. Then R is idempotent and the rings R and Πβ are
Morita equivalent.
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Proposition 22

Let R be a ring. If 〈 , 〉 : RP ×QR //
RRR is a dual (R,R)-bilinear

mapping, then the tensor product ring Q⊗R P defined by 〈 , 〉 is
s-unital.

Theorem 23

Let R be a ring and β = 〈 , 〉 : RP ×QR //
RRR be a dual

(R,R)-bilinear mapping. Then the tensor product ring Q⊗βR P is
isomorphic to Σβ and Πβ.
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Theorem 24

Let R and S be firm rings. Then R and S are Morita equivalent if and
only if R is isomorphic to a pseudo-surjectively defined tensor product
ring P ⊗S Q.

Theorem 25

Two s-unital rings R and S are Morita equivalent if and only if there
exist R-modules RP , QR, a dual (R,R)-bilinear pseudo-surjective
mapping β = 〈 , 〉 : RP ×QR //

RRR and S ∼= Πβ as rings.
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Thank you for listening!
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