Tensor Product Rings and Morita Equivalence

Kristo Väljako

Universitas Tartuensis

$$
\begin{gathered}
\text { June } 25^{\text {th }}, 2022 \\
\text { AAA102 } \\
\text { Szeged, Hungary }
\end{gathered}
$$

European Union European Regional Development Fund

Investing
in your future

Basis article

- Väljako, K., (2022). Tensor product rings and Rees matrix rings. Comm. in Algebra, published online.

Tensor Product Rings

Tensor Product Rings

Let R be an arbitrary ring and ${ }_{R} P$ and Q_{R} arbitrary R-modules.

Tensor Product Rings

Let R be an arbitrary ring and ${ }_{R} P$ and Q_{R} arbitrary R-modules. Also, let there be given an (R, R)-bilinear mapping $\langle\rangle:, P \times Q \longrightarrow R$.

Tensor Product Rings

Let R be an arbitrary ring and ${ }_{R} P$ and Q_{R} arbitrary R-modules. Also, let there be given an (R, R)-bilinear mapping $\quad\langle\rangle:, P \times Q \longrightarrow R$. (R, R)-bilinearity means that, for every $p, p^{\prime} \in P, q, q^{\prime} \in Q$ and $r \in R$,

$$
\begin{aligned}
\left\langle p+p^{\prime}, q\right\rangle & =\langle p, q\rangle+\left\langle p^{\prime}, q\right\rangle, \\
\left\langle p, q+q^{\prime}\right\rangle & =\langle p, q\rangle+\left\langle p, q^{\prime}\right\rangle, \\
\langle r p, q\rangle & =r\langle p, q\rangle \\
\langle p, q r\rangle & =\langle p, q\rangle .
\end{aligned}
$$

Tensor Product Rings

Let R be an arbitrary ring and ${ }_{R} P$ and Q_{R} arbitrary R-modules. Also, let there be given an (R, R)-bilinear mapping $\quad\langle\rangle:, P \times Q \longrightarrow R$. (R, R)-bilinearity means that, for every $p, p^{\prime} \in P, q, q^{\prime} \in Q$ and $r \in R$,

$$
\begin{aligned}
\left\langle p+p^{\prime}, q\right\rangle & =\langle p, q\rangle+\left\langle p^{\prime}, q\right\rangle, \\
\left\langle p, q+q^{\prime}\right\rangle & =\langle p, q\rangle+\left\langle p, q^{\prime}\right\rangle, \\
\langle r p, q\rangle & =r\langle p, q\rangle, \\
\langle p, q r\rangle & =\langle p, q\rangle r .
\end{aligned}
$$

Definition 1

Tensor product of modules $Q \otimes_{R}^{\beta} P$ with multiplication \star defined by

$$
(q \otimes p) \star\left(q^{\prime} \otimes p^{\prime}\right):=q \otimes\left\langle p, q^{\prime}\right\rangle p^{\prime}
$$

is called a tensor product ring defined by an (R, R)-bilinear mapping $\beta=\langle$,$\rangle .$

Pseudo-surjectivity

For any ring R and a set $A \subseteq R$, we will denote by $\langle A\rangle_{\mathrm{s}}$ the subgroup generated by A in the additive group $(R,+)$.

Pseudo-surjectivity

For any ring R and a set $A \subseteq R$, we will denote by $\langle A\rangle_{\mathrm{s}}$ the subgroup generated by A in the additive group $(R,+)$.

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle\operatorname{Im} f\rangle_{\mathrm{s}}=R$, i.e. the additive subgroup of R generated by the set $\operatorname{Im} f$ is equal to R.

Pseudo-surjectivity

For any ring R and a set $A \subseteq R$, we will denote by $\langle A\rangle_{\mathrm{s}}$ the subgroup generated by A in the additive group $(R,+)$.

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle\operatorname{Im} f\rangle_{\mathrm{s}}=R$, i.e. the additive subgroup of R generated by the set $\operatorname{Im} f$ is equal to R.

Let $\psi: P \otimes_{S} Q \longrightarrow A$ a homorphism of abelian groups. Denote $\hat{\psi}:=\psi \circ \otimes$, i.e., for every $p \in P$ and $q \in Q$, we have

$$
\hat{\psi}(p, q)=\psi(p \otimes q) .
$$

Pseudo-surjectivity

For any ring R and a set $A \subseteq R$, we will denote by $\langle A\rangle_{\mathrm{s}}$ the subgroup generated by A in the additive group $(R,+)$.

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle\operatorname{Im} f\rangle_{\mathrm{s}}=R$, i.e. the additive subgroup of R generated by the set $\operatorname{Im} f$ is equal to R.

Let $\psi: P \otimes_{S} Q \longrightarrow A$ a homorphism of abelian groups. Denote $\hat{\psi}:=\psi \circ \otimes$, i.e., for every $p \in P$ and $q \in Q$, we have

$$
\hat{\psi}(p, q)=\psi(p \otimes q)
$$

If ${ }_{R} P_{S}$ and ${ }_{S} Q_{R}$ are (R, S) - and (S, R)-bimodules, respectively, then $\hat{\psi}$ is also (R, R)-bilinear.

Pseudo-surjectivity

For any ring R and a set $A \subseteq R$, we will denote by $\langle A\rangle_{\mathrm{s}}$ the subgroup generated by A in the additive group $(R,+)$.

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle\operatorname{Im} f\rangle_{\mathrm{s}}=R$, i.e. the additive subgroup of R generated by the set $\operatorname{Im} f$ is equal to R.

Let $\psi: P \otimes_{S} Q \longrightarrow A$ a homorphism of abelian groups. Denote $\hat{\psi}:=\psi \circ \otimes$, i.e., for every $p \in P$ and $q \in Q$, we have

$$
\hat{\psi}(p, q)=\psi(p \otimes q) .
$$

If ${ }_{R} P_{S}$ and ${ }_{S} Q_{R}$ are (R, S) - and (S, R)-bimodules, respectively, then $\hat{\psi}$ is also (R, R)-bilinear. If $\psi: P \otimes_{R} Q \longrightarrow A$ is surjective, then $\hat{\psi}$ is pseudo-surjective.

Morita equivalence

Morita equivalence

Definition 3

A six-tuple $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$, where R and S are rings and ${ }_{R} P_{S}$, ${ }_{S} Q_{R}$ are bimodules, is called a Morita context, if

$$
\theta: \quad{ }_{R}\left(P \otimes_{S} Q\right)_{R} \longrightarrow{ }_{R} R_{R}, \quad \phi: \quad{ }_{S}\left(Q \otimes_{R} P\right)_{S} \longrightarrow{ }_{S} S_{S}
$$

are bimodule homomorphisms such that

$$
\begin{aligned}
\theta(p \otimes q) p^{\prime} & =p \phi\left(q \otimes p^{\prime}\right) \\
q \theta\left(p \otimes q^{\prime}\right) & =\phi(q \otimes p) q^{\prime}
\end{aligned}
$$

for every $p, p^{\prime} \in P$ and $q, q^{\prime} \in Q$.

Morita equivalence

Definition 3

A six-tuple $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$, where R and S are rings and ${ }_{R} P_{S}$, ${ }_{S} Q_{R}$ are bimodules, is called a Morita context, if

$$
\theta: \quad{ }_{R}\left(P \otimes_{S} Q\right)_{R} \longrightarrow{ }_{R} R_{R}, \quad \phi: \quad{ }_{S}\left(Q \otimes_{R} P\right)_{S} \longrightarrow{ }_{S} S_{S}
$$

are bimodule homomorphisms such that

$$
\begin{aligned}
\theta(p \otimes q) p^{\prime} & =p \phi\left(q \otimes p^{\prime}\right) \\
q \theta\left(p \otimes q^{\prime}\right) & =\phi(q \otimes p) q^{\prime}
\end{aligned}
$$

for every $p, p^{\prime} \in P$ and $q, q^{\prime} \in Q$.
We will call idempotent rings R and S Morita equivalent, if there exists a unitary surjective Morita context $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$.

Proposition 4

Let R be an idempotent ring and ${ }_{R} P, Q_{R}$ unitary R-modules. Then every pseudo-surjectively defined tensor product ring $Q \otimes_{R} P$ is idempotent.

Proposition 4

Let R be an idempotent ring and ${ }_{R} P, Q_{R}$ unitary R-modules. Then every pseudo-surjectively defined tensor product ring $Q \otimes_{R} P$ is idempotent.

Theorem 5

Let R be an idempotent ring, ${ }_{R} P$ and Q_{R} unitary R-modules and $\langle\rangle:, P \times Q \longrightarrow R$ a pseudo-surjective (R, R)-bilinear mapping. Then the tensor product ring $Q \otimes_{R} P$ defined by \langle,$\rangle is Morita equivalent to$ R.

A ring R is called firm, if

$$
\nu_{R}: R \otimes_{R} R \longrightarrow R,
$$

$$
\sum_{k=1}^{k^{*}} r_{k} \otimes r_{k}^{\prime} \mapsto \sum_{k=1}^{k^{*}} r_{k} r_{k}^{\prime}
$$

is an isomorphism.

A ring R is called firm, if

$$
\nu_{R}: R \otimes_{R} R \longrightarrow R, \quad \sum_{k=1}^{k^{*}} r_{k} \otimes r_{k}^{\prime} \mapsto \sum_{k=1}^{k^{*}} r_{k} r_{k}^{\prime}
$$

is an isomorphism.

Corollary 6

Let R be an idempotent ring. The rings R and $R \otimes_{R}^{\hat{\nu}} R$ are Morita equivalent with a corresponding surjective unitary Morita context $\left(R, R \otimes_{R}^{\hat{\nu}} R, R, R, \nu, \mathrm{id}_{R \otimes R}\right)$.

Proposition 7
Let $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$ be a unitary surjective Morita context connecting idempotent rings R and S, and let $Q \otimes_{R}^{\hat{\theta}} P, P \otimes_{S}^{\hat{\phi}} Q$ be tensor product rings defined by the mappings $\hat{\theta}, \hat{\phi}$, respectively. Then the rings $R, S, P \otimes_{S}^{\hat{\phi}} Q$ and $Q \otimes_{R}^{\hat{\theta}} P$ are all Morita equivalent.

Local injectivity and strict local isomorphisms

Local injectivity and strict local isomorphisms

Definition 8

We call a homomorphism $\tau: R \longrightarrow S$ of rings locally injective if its restriction to any subring of the form $a R b$, where $a \in R a$ and $b \in b R$, is injective.

Local injectivity and strict local isomorphisms

Definition 8

We call a homomorphism $\tau: R \longrightarrow S$ of rings locally injective if its restriction to any subring of the form $a R b$, where $a \in R a$ and $b \in b R$, is injective.
A locally injective homomorphism of rings, which is also surjective, is called a strict local isomorphism.

Local injectivity and strict local isomorphisms

Definition 8

We call a homomorphism $\tau: R \longrightarrow S$ of rings locally injective if its restriction to any subring of the form $a R b$, where $a \in R a$ and $b \in b R$, is injective.
A locally injective homomorphism of rings, which is also surjective, is called a strict local isomorphism.

Proposition 9

Let R be a ring, M_{R} be an R-module and $f: M_{R} \longrightarrow R_{R}$ a homomorphism of modules. If we define a multiplication on the abelian group M by

$$
m \bullet m^{\prime}:=m f\left(m^{\prime}\right), \quad\left(m, m^{\prime} \in M\right)
$$

then we obtain a ring and f is a locally injective homomorphism of rings. If S is a right s-unital ring then all strict local isomorphisms $S \longrightarrow R$ can be obtained using this construction.

Theorem 10

Let R and S be rings that are connected by a Morita context $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$. Consider the tensor product ring $P \otimes_{S}^{\hat{\phi}} Q$ defined by $\hat{\phi}$. Then $\theta: P \otimes_{S}^{\hat{\phi}} Q \longrightarrow R$ is a locally injective homomorphism of rings.

Theorem 10

Let R and S be rings that are connected by a Morita context $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$. Consider the tensor product ring $P \otimes_{S}^{\hat{\phi}} Q$ defined by $\hat{\phi}$. Then $\theta: P \otimes_{S}^{\hat{\phi}} Q \longrightarrow R$ is a locally injective homomorphism of rings.

Corollary 11

Let R and S be two Morita equivalent idempotent rings. Then there exist pseudo-surjectively defined tensor product rings $Q \otimes_{R} P, P \otimes_{S} Q$ and strict local isomorphisms $Q \otimes_{R} P \longrightarrow S$ and $P \otimes_{S} Q \longrightarrow R$.

Theorem 10

Let R and S be rings that are connected by a Morita context $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$. Consider the tensor product ring $P \otimes_{S}^{\hat{\phi}} Q$ defined by $\hat{\phi}$. Then $\theta: P \otimes_{S}^{\hat{\phi}} Q \longrightarrow R$ is a locally injective homomorphism of rings.

Corollary 11

Let R and S be two Morita equivalent idempotent rings. Then there exist pseudo-surjectively defined tensor product rings $Q \otimes_{R} P, P \otimes_{S} Q$ and strict local isomorphisms $Q \otimes_{R} P \longrightarrow S$ and $P \otimes_{S} Q \longrightarrow R$.

Proposition 12

Let R and S be idempotent rings. If R is isomorphic to some pseudo-surjectively defined tensor product ring $P \otimes_{S} Q$, where P_{S} and ${ }_{S} Q$ are unitary modules, then the rings R and S are Morita equivalent.

Adjoint endomorphisms

Adjoint endomorphisms

Definition 13

Module endomorphisms $f \in \operatorname{End}\left({ }_{R} P\right)$ and $g \in \operatorname{End}\left(Q_{R}\right)$ are called adjoint (with respect to $\beta=\langle$,$\rangle) if, for every p \in P$ and $q \in Q$, we have

$$
\langle f(p), q\rangle=\langle p, g(q)\rangle .
$$

Adjoint endomorphisms

Definition 13

Module endomorphisms $f \in \operatorname{End}\left({ }_{R} P\right)$ and $g \in \operatorname{End}\left(Q_{R}\right)$ are called adjoint (with respect to $\beta=\langle$,$\rangle) if, for every p \in P$ and $q \in Q$, we have

$$
\langle f(p), q\rangle=\langle p, g(q)\rangle .
$$

Lemma 14

Let ${ }_{R} P$ and Q_{R} be R-modules and $\beta=\langle\rangle:, P \times Q \longrightarrow R$ an (R, R)-bilinear mapping. For any $k^{*} \in \mathbb{N}, p_{1}, \ldots, p_{k^{*}} \in P$ and $q_{1}, \ldots, q_{k^{*}} \in Q$, the mappings
$f:=\sum_{k=1}^{k^{*}}\left\langle _, q_{k}\right\rangle p_{k}:{ }_{R} P \longrightarrow{ }_{R} P \quad$ and $\quad g:=\sum_{k=1}^{k^{*}} q_{k}\left\langle p_{k}, _\right\rangle: Q_{R} \longrightarrow Q_{R}$ are adjoint endomorphisms.

Denote

$$
\Sigma^{\beta}:=\left\{\sum_{k=1}^{k^{*}}\left(\left\langle _, q_{k}\right\rangle p_{k}, q_{k}\left\langle p_{k}, _\right\rangle\right) \mid k^{*} \in \mathbb{N} ; \forall k: p_{k} \in P, q_{k} \in Q\right\} .
$$

Denote

$$
\Sigma^{\beta}:=\left\{\sum_{k=1}^{k^{*}}\left(\left\langle _, q_{k}\right\rangle p_{k}, q_{k}\left\langle p_{k}, _\right\rangle\right) \mid k^{*} \in \mathbb{N} ; \forall k: p_{k} \in P, q_{k} \in Q\right\} .
$$

Theorem 15

Let R be a ring. Then, for every (R, R)-bilinear mapping $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow R$, there exists a strict local isomorphism $Q \otimes_{R}^{\beta} P \longrightarrow \Sigma^{\beta}$ of rings.

Dual mappings

Dual mappings

Definition 16

An (R, R)-bilinear mapping $\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ is said to be a dual mapping, if
(1) for every finite subset $Y \subseteq Q$, there exist $p_{1}, \ldots, p_{k^{*}} \in P$ and $q_{1}, \ldots, q_{k^{*}} \in Q$ such that for every $y \in Y$

$$
y=\sum_{k=1}^{k^{*}} q_{k}\left\langle p_{k}, y\right\rangle
$$

(2) for every finite subset $X \subseteq P$, there exist $p_{1}, \ldots, p_{h^{*}} \in P$ and $q_{1}, \ldots, q_{h^{*}} \in Q$ such that for every $x \in X$

$$
x=\sum_{h=1}^{h^{*}}\left\langle x, q_{h}\right\rangle p_{h} .
$$

Example 17 (Dual mapping I)

Let V be a Euclidean space. It can be considered as a right or a left \mathbb{R}-module. The inner product of V is an (\mathbb{R}, \mathbb{R})-bilinear mapping $\langle\rangle:, \mathbb{R} V \times V_{\mathbb{R}} \longrightarrow \mathbb{R}$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for V. Then

$$
x=\sum_{h=1}^{n}\left\langle x, e_{h}\right\rangle e_{h},
$$

for every $x \in V$. The inner product of any Euclidean space is a dual mapping.

Example 17 (Dual mapping I)

Let V be a Euclidean space. It can be considered as a right or a left \mathbb{R}-module. The inner product of V is an (\mathbb{R}, \mathbb{R})-bilinear mapping $\langle\rangle:, \mathbb{R} V \times V_{\mathbb{R}} \longrightarrow \mathbb{R}$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for V. Then

$$
x=\sum_{h=1}^{n}\left\langle x, e_{h}\right\rangle e_{h},
$$

for every $x \in V$. The inner product of any Euclidean space is a dual mapping.

Example 18 (Dual mapping II)

Let R and S be s-unital rings that are connected by a unitary surjective Morita context $\left(R, S,{ }_{R} P_{S},{ }_{S} Q_{R}, \theta, \phi\right)$. The mappings

$$
\begin{array}{ll}
\hat{\theta}: P \times Q \longrightarrow R, & (p, q) \mapsto \theta(p \otimes q) \\
\hat{\phi}: Q \times P \longrightarrow S, & (q, p) \mapsto \phi(q \otimes p)
\end{array}
$$

are dual mappings.

Proposition 19

Let R be a ring and $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Σ^{β} are Morita equivalent.

Proposition 19

Let R be a ring and $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Σ^{β} are Morita equivalent.

Proposition 20

If R is a ring and $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ is a dual mapping, then Σ^{β} is isomorphic to the subring

$$
\Pi^{\beta}:=\left\{\sum_{k=1}^{k^{*}} q_{k}\left\langle p_{k},-\right\rangle \mid k^{*} \in \mathbb{N} ; \forall k: q_{k} \in Q, p_{k} \in P\right\}
$$

of the endomorphism ring $\operatorname{End}\left(Q_{R}\right)$.

Proposition 19

Let R be a ring and $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Σ^{β} are Morita equivalent.

Proposition 20

If R is a ring and $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow_{R} R_{R}$ is a dual mapping, then Σ^{β} is isomorphic to the subring

$$
\Pi^{\beta}:=\left\{\sum_{k=1}^{k^{*}} q_{k}\left\langle p_{k},-\right\rangle \mid k^{*} \in \mathbb{N} ; \forall k: q_{k} \in Q, p_{k} \in P\right\}
$$

of the endomorphism ring $\operatorname{End}\left(Q_{R}\right)$.

Corollary 21

Let R be a ring and $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Π^{β} are Morita equivalent.

Proposition 22

Let R be a ring. If $\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ is a dual (R, R)-bilinear mapping, then the tensor product ring $Q \otimes_{R} P$ defined by \langle,$\rangle is$ s-unital.

Proposition 22

Let R be a ring. If $\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ is a dual (R, R)-bilinear mapping, then the tensor product ring $Q \otimes_{R} P$ defined by \langle,$\rangle is$ s-unital.

Theorem 23

Let R be a ring and $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ be a dual (R, R)-bilinear mapping. Then the tensor product ring $Q \otimes_{R}^{\beta} P$ is isomorphic to Σ^{β} and Π^{β}.

Descriptions of Morita equivalence

Theorem 24

Let R and S be firm rings. Then R and S are Morita equivalent if and only if R is isomorphic to a pseudo-surjectively defined tensor product ring $P \otimes_{S} Q$.

Descriptions of Morita equivalence

Theorem 24

Let R and S be firm rings. Then R and S are Morita equivalent if and only if R is isomorphic to a pseudo-surjectively defined tensor product ring $P \otimes_{S} Q$.

Theorem 25

Two s-unital rings R and S are Morita equivalent if and only if there exist R-modules ${ }_{R} P, Q_{R}$, a dual (R, R)-bilinear pseudo-surjective mapping $\beta=\langle\rangle:,{ }_{R} P \times Q_{R} \longrightarrow{ }_{R} R_{R}$ and $S \cong \Pi^{\beta}$ as rings.

End

Thank you for listening!

