Tensor Product Rings and Morita Equivalence

Kristo Väljako

Universitas Tartuensis

June 25th, 2022 AAA102 Szeged, Hungary

European Union European Regional Development Fund

Basis article

• Väljako, K., (2022). Tensor product rings and Rees matrix rings. Comm. in Algebra, published online.

Let R be an arbitrary ring and $_RP$ and Q_R arbitrary R-modules.

Let R be an arbitrary ring and RP and Q_R arbitrary R-modules. Also, let there be given an (R, R)-bilinear mapping $\langle , \rangle \colon P \times Q \longrightarrow R$.

Let R be an arbitrary ring and ${}_RP$ and ${}_RQ$ arbitrary R-modules. Also, let there be given an (R,R)-bilinear mapping $\langle , \rangle \colon P \times Q \longrightarrow R$. (R,R)-bilinearity means that, for every $p,p' \in P, q,q' \in Q$ and $r \in R$,

$$\langle p + p', q \rangle = \langle p, q \rangle + \langle p', q \rangle,$$

$$\langle p, q + q' \rangle = \langle p, q \rangle + \langle p, q' \rangle,$$

$$\langle rp, q \rangle = r \langle p, q \rangle,$$

$$\langle p, qr \rangle = \langle p, q \rangle r.$$

Let R be an arbitrary ring and ${}_RP$ and ${}_RP$ arbitrary R-modules. Also, let there be given an (R,R)-bilinear mapping $\langle , \rangle \colon P \times Q \longrightarrow R$. (R,R)-bilinearity means that, for every $p,p' \in P$, $q,q' \in Q$ and $r \in R$,

$$\langle p + p', q \rangle = \langle p, q \rangle + \langle p', q \rangle,$$

$$\langle p, q + q' \rangle = \langle p, q \rangle + \langle p, q' \rangle,$$

$$\langle rp, q \rangle = r \langle p, q \rangle,$$

$$\langle p, qr \rangle = \langle p, q \rangle r.$$

Definition 1

Tensor product of modules $Q \otimes_R^{\beta} P$ with multiplication \star defined by

$$(q \otimes p) \star (q' \otimes p') := q \otimes \langle p, q' \rangle p'$$

is called a **tensor product ring** defined by an (R, R)-bilinear mapping $\beta = \langle , \rangle$.

For any ring R and a set $A \subseteq R$, we will denote by $\langle A \rangle_s$ the subgroup generated by A in the additive group (R, +).

For any ring R and a set $A \subseteq R$, we will denote by $\langle A \rangle_s$ the subgroup generated by A in the additive group (R, +).

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle \operatorname{Im} f \rangle_{s} = R$, i.e. the additive subgroup of Rgenerated by the set $\operatorname{Im} f$ is equal to R.

For any ring R and a set $A \subseteq R$, we will denote by $\langle A \rangle_s$ the subgroup generated by A in the additive group (R, +).

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle \operatorname{Im} f \rangle_s = R$, i.e. the additive subgroup of R generated by the set $\operatorname{Im} f$ is equal to R.

Let $\psi \colon P \otimes_S Q \longrightarrow A$ a homorphism of abelian groups. Denote $\hat{\psi} := \psi \circ \otimes$, i.e., for every $p \in P$ and $q \in Q$, we have

$$\hat{\psi}(p,q) = \psi(p \otimes q).$$

For any ring R and a set $A \subseteq R$, we will denote by $\langle A \rangle_s$ the subgroup generated by A in the additive group (R, +).

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle \operatorname{Im} f \rangle_s = R$, i.e. the additive subgroup of R generated by the set $\operatorname{Im} f$ is equal to R.

Let $\psi \colon P \otimes_S Q \longrightarrow A$ a homorphism of abelian groups. Denote $\hat{\psi} := \psi \circ \otimes$, i.e., for every $p \in P$ and $q \in Q$, we have

$$\hat{\psi}(p,q) = \psi(p \otimes q).$$

If $_RP_S$ and $_SQ_R$ are (R,S)- and (S,R)-bimodules, respectively, then $\hat{\psi}$ is also (R,R)-bilinear.

For any ring R and a set $A \subseteq R$, we will denote by $\langle A \rangle_s$ the subgroup generated by A in the additive group (R, +).

Definition 2

Let R be a ring and B a set. We call a mapping $f: B \longrightarrow R$ pseudo-surjective, if $\langle \operatorname{Im} f \rangle_s = R$, i.e. the additive subgroup of R generated by the set $\operatorname{Im} f$ is equal to R.

Let $\psi \colon P \otimes_S Q \longrightarrow A$ a homorphism of abelian groups. Denote $\hat{\psi} := \psi \circ \otimes$, i.e., for every $p \in P$ and $q \in Q$, we have

$$\hat{\psi}(p,q) = \psi(p \otimes q).$$

If $_RP_S$ and $_SQ_R$ are (R,S)- and (S,R)-bimodules, respectively, then $\hat{\psi}$ is also (R,R)-bilinear. If $\psi\colon P\otimes_RQ\longrightarrow A$ is surjective, then $\hat{\psi}$ is pseudo-surjective.

Morita equivalence

Morita equivalence

Definition 3

A six-tuple $(R, S, {}_RP_S, {}_SQ_R, \theta, \phi)$, where R and S are rings and ${}_RP_S$, ${}_SQ_R$ are bimodules, is called a **Morita context**, if

$$\theta: \ _R(P \otimes_S Q)_R \longrightarrow _RR_R, \quad \phi: \ _S(Q \otimes_R P)_S \longrightarrow _SS_S$$

are bimodule homomorphisms such that

$$\theta(p \otimes q)p' = p\phi(q \otimes p'),$$

$$q\theta(p \otimes q') = \phi(q \otimes p)q'$$

for every $p, p' \in P$ and $q, q' \in Q$.

Morita equivalence

Definition 3

A six-tuple $(R, S, {}_{R}P_{S}, {}_{S}Q_{R}, \theta, \phi)$, where R and S are rings and ${}_{R}P_{S}$, ${}_{S}Q_{R}$ are bimodules, is called a **Morita context**, if

$$\theta: \ _R(P \otimes_S Q)_R \longrightarrow_R R_R, \quad \phi: \ _S(Q \otimes_R P)_S \longrightarrow_S S_S$$

are bimodule homomorphisms such that

$$\theta(p \otimes q)p' = p\phi(q \otimes p'),$$

$$q\theta(p \otimes q') = \phi(q \otimes p)q'$$

for every $p, p' \in P$ and $q, q' \in Q$.

We will call idempotent rings R and S Morita equivalent, if there exists a unitary surjective Morita context $(R, S, {}_{R}P_{S}, {}_{S}Q_{R}, \theta, \phi)$.

Let R be an idempotent ring and $_RP$, Q_R unitary R-modules. Then every pseudo-surjectively defined tensor product ring $Q \otimes_R P$ is idempotent.

Let R be an idempotent ring and $_RP$, Q_R unitary R-modules. Then every pseudo-surjectively defined tensor product ring $Q \otimes_R P$ is idempotent.

Theorem 5

Let R be an idempotent ring, ${}_RP$ and Q_R unitary R-modules and $\langle \, , \, \rangle \colon P \times Q \longrightarrow R$ a pseudo-surjective (R,R)-bilinear mapping. Then the tensor product ring $Q \otimes_R P$ defined by $\langle \, , \, \rangle$ is Morita equivalent to R.

A ring R is called **firm**, if

$$u_R \colon R \otimes_R R \longrightarrow R, \qquad \sum_{k=1}^{k^*} r_k \otimes r'_k \mapsto \sum_{k=1}^{k^*} r_k r'_k$$

is an isomorphism.

A ring R is called **firm**, if

$$u_R \colon R \otimes_R R \longrightarrow R, \qquad \sum_{k=1}^{k^*} r_k \otimes r'_k \mapsto \sum_{k=1}^{k^*} r_k r'_k$$

is an isomorphism.

Corollary 6

Let R be an idempotent ring. The rings R and $R \otimes_R^{\hat{\nu}} R$ are Morita equivalent with a corresponding surjective unitary Morita context $(R, R \otimes_R^{\hat{\nu}} R, R, R, \nu, \mathrm{id}_{R \otimes R})$.

Let $(R, S, {}_RP_S, {}_SQ_R, \theta, \phi)$ be a unitary surjective Morita context connecting idempotent rings R and S, and let $Q \otimes_R^{\hat{\theta}} P$, $P \otimes_S^{\hat{\phi}} Q$ be tensor product rings defined by the mappings $\hat{\theta}$, $\hat{\phi}$, respectively. Then the rings R, S, $P \otimes_S^{\hat{\phi}} Q$ and $Q \otimes_R^{\hat{\theta}} P$ are all Morita equivalent.

We call a homomorphism $\tau \colon R \longrightarrow S$ of rings **locally injective** if its restriction to any subring of the form aRb, where $a \in Ra$ and $b \in bR$, is injective.

Definition 8

We call a homomorphism $\tau \colon R \longrightarrow S$ of rings **locally injective** if its restriction to any subring of the form aRb, where $a \in Ra$ and $b \in bR$, is injective.

A locally injective homomorphism of rings, which is also surjective, is called a **strict local isomorphism**.

Definition 8

We call a homomorphism $\tau \colon R \longrightarrow S$ of rings **locally injective** if its restriction to any subring of the form aRb, where $a \in Ra$ and $b \in bR$, is injective.

A locally injective homomorphism of rings, which is also surjective, is called a **strict local isomorphism**.

Proposition 9

Let R be a ring, M_R be an R-module and $f: M_R \longrightarrow R_R$ a homomorphism of modules. If we define a multiplication on the abelian group M by

$$m \bullet m' := mf(m'), \qquad (m, m' \in M),$$

then we obtain a ring and f is a locally injective homomorphism of rings. If S is a right s-unital ring then all strict local isomorphisms $S \longrightarrow R$ can be obtained using this construction.

Theorem 10

Let R and S be rings that are connected by a Morita context $(R, S, {}_RP_S, {}_SQ_R, \theta, \phi)$. Consider the tensor product ring $P \otimes_S^{\hat{\phi}} Q$ defined by $\hat{\phi}$. Then $\theta \colon P \otimes_S^{\hat{\phi}} Q \longrightarrow R$ is a locally injective homomorphism of rings.

Theorem 10

Let R and S be rings that are connected by a Morita context $(R, S, {}_RP_S, {}_SQ_R, \theta, \phi)$. Consider the tensor product ring $P \otimes_S^{\hat{\phi}} Q$ defined by $\hat{\phi}$. Then $\theta \colon P \otimes_S^{\hat{\phi}} Q \longrightarrow R$ is a locally injective homomorphism of rings.

Corollary 11

Let R and S be two Morita equivalent idempotent rings. Then there exist pseudo-surjectively defined tensor product rings $Q \otimes_R P$, $P \otimes_S Q$ and strict local isomorphisms $Q \otimes_R P \longrightarrow S$ and $P \otimes_S Q \longrightarrow R$.

Theorem 10

Let R and S be rings that are connected by a Morita context $(R, S, {}_RP_S, {}_SQ_R, \theta, \phi)$. Consider the tensor product ring $P \otimes_S^{\hat{\phi}} Q$ defined by $\hat{\phi}$. Then $\theta \colon P \otimes_S^{\hat{\phi}} Q \longrightarrow R$ is a locally injective homomorphism of rings.

Corollary 11

Let R and S be two Morita equivalent idempotent rings. Then there exist pseudo-surjectively defined tensor product rings $Q \otimes_R P$, $P \otimes_S Q$ and strict local isomorphisms $Q \otimes_R P \longrightarrow S$ and $P \otimes_S Q \longrightarrow R$.

Proposition 12

Let R and S be idempotent rings. If R is isomorphic to some pseudo-surjectively defined tensor product ring $P \otimes_S Q$, where P_S and SQ are unitary modules, then the rings R and S are Morita equivalent.

Adjoint endomorphisms

Adjoint endomorphisms

Definition 13

Module endomorphisms $f \in \operatorname{End}({}_RP)$ and $g \in \operatorname{End}(Q_R)$ are called **adjoint** (with respect to $\beta = \langle , \rangle$) if, for every $p \in P$ and $q \in Q$, we have

$$\langle f(p), q \rangle = \langle p, g(q) \rangle.$$

Adjoint endomorphisms

Definition 13

Module endomorphisms $f \in \operatorname{End}(RP)$ and $g \in \operatorname{End}(QR)$ are called **adjoint** (with respect to $\beta = \langle , \rangle$) if, for every $p \in P$ and $q \in Q$, we have

$$\langle f(p), q \rangle = \langle p, g(q) \rangle.$$

Lemma 14

Let $_RP$ and Q_R be R-modules and $\beta = \langle , \rangle \colon P \times Q \longrightarrow R$ an (R,R)-bilinear mapping. For any $k^* \in \mathbb{N}$, $p_1, \ldots, p_{k^*} \in P$ and $q_1, \ldots, q_{k^*} \in Q$, the mappings

$$f := \sum_{k=1}^{k^*} \langle \underline{\ }, q_k \rangle p_k \colon \ _R P \longrightarrow _R P \quad and \quad g := \sum_{k=1}^{k^*} q_k \langle p_k, \underline{\ } \rangle \colon \ Q_R \longrightarrow Q_R$$

are adjoint endomorphisms.

Denote

$$\Sigma^{\beta} := \left\{ \sum_{k=1}^{k^*} (\langle \underline{\ }, q_k \rangle p_k, q_k \langle p_k, \underline{\ } \rangle) \middle| k^* \in \mathbb{N}; \forall k \colon \ p_k \in P, q_k \in Q \right\}.$$

Denote

$$\Sigma^{\beta} := \left\{ \sum_{k=1}^{k^*} (\langle \underline{\ }, q_k \rangle p_k, q_k \langle p_k, \underline{\ } \rangle) \middle| k^* \in \mathbb{N}; \forall k \colon p_k \in P, q_k \in Q \right\}.$$

Theorem 15

Let R be a ring. Then, for every (R,R)-bilinear mapping $\beta = \langle , \rangle \colon {}_RP \times Q_R \longrightarrow R$, there exists a strict local isomorphism $Q \otimes_R^{\beta} P \longrightarrow \Sigma^{\beta}$ of rings.

Dual mappings

Dual mappings

Definition 16

An (R,R)-bilinear mapping $\langle , \rangle \colon {}_RP \times Q_R \longrightarrow {}_RR_R$ is said to be a **dual mapping**, if

• for every finite subset $Y \subseteq Q$, there exist $p_1, \ldots, p_{k^*} \in P$ and $q_1, \ldots, q_{k^*} \in Q$ such that for every $y \in Y$

$$y = \sum_{k=1}^{k^*} q_k \langle p_k, y \rangle;$$

② for every finite subset $X \subseteq P$, there exist $p_1, \ldots, p_{h^*} \in P$ and $q_1, \ldots, q_{h^*} \in Q$ such that for every $x \in X$

$$x = \sum_{h=1}^{h^*} \langle x, q_h \rangle p_h.$$

Example 17 (Dual mapping I)

Let V be a Euclidean space. It can be considered as a right or a left \mathbb{R} -module. The inner product of V is an (\mathbb{R}, \mathbb{R}) -bilinear mapping $\langle \, , \, \rangle \colon_{\mathbb{R}} V \times V_{\mathbb{R}} \longrightarrow \mathbb{R}$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis for V. Then

$$x = \sum_{h=1}^{n} \langle x, e_h \rangle e_h,$$

for every $x \in V$. The inner product of any Euclidean space is a dual mapping.

Example 17 (Dual mapping I)

Let V be a Euclidean space. It can be considered as a right or a left \mathbb{R} -module. The inner product of V is an (\mathbb{R}, \mathbb{R}) -bilinear mapping $\langle \, , \, \rangle \colon_{\mathbb{R}} V \times V_{\mathbb{R}} \longrightarrow \mathbb{R}$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis for V. Then

$$x = \sum_{h=1}^{n} \langle x, e_h \rangle e_h,$$

for every $x \in V$. The inner product of any Euclidean space is a dual mapping.

Example 18 (Dual mapping II)

Let R and S be s-unital rings that are connected by a unitary surjective Morita context $(R, S, RPS, SQR, \theta, \phi)$. The mappings

$$\begin{split} \hat{\theta} : P \times Q &\longrightarrow R, \quad (p,q) \mapsto \theta(p \otimes q), \\ \hat{\phi} : Q \times P &\longrightarrow S, \quad (q,p) \mapsto \phi(q \otimes p) \end{split}$$

are dual mappings.

Let R be a ring and $\beta = \langle \, , \, \rangle \colon {}_RP \times Q_R \longrightarrow {}_RR_R$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Σ^{β} are Morita equivalent.

Let R be a ring and $\beta = \langle \, , \, \rangle \colon {}_RP \times Q_R \longrightarrow {}_RR_R$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Σ^{β} are Morita equivalent.

Proposition 20

If R is a ring and $\beta = \langle , \rangle \colon {}_RP \times Q_R \longrightarrow {}_RR_R$ is a dual mapping, then Σ^{β} is isomorphic to the subring

$$\Pi^{\beta} := \left\{ \sum_{k=1}^{k^*} q_k \langle p_k, _ \rangle \middle| k^* \in \mathbb{N}; \, \forall k \colon \ q_k \in Q, p_k \in P \right\}$$

of the endomorphism ring $End(Q_R)$.

Let R be a ring and $\beta = \langle \, , \, \rangle \colon {}_RP \times Q_R \longrightarrow {}_RR_R$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Σ^β are Morita equivalent.

Proposition 20

If R is a ring and $\beta = \langle , \rangle \colon RP \times Q_R \longrightarrow RR_R$ is a dual mapping, then Σ^{β} is isomorphic to the subring

$$\Pi^{\beta} := \left\{ \sum_{k=1}^{k^*} q_k \langle p_k, _ \rangle \middle| k^* \in \mathbb{N}; \, \forall k \colon \ q_k \in Q, p_k \in P \right\}$$

of the endomorphism ring $End(Q_R)$.

Corollary 21

Let R be a ring and $\beta = \langle \, , \, \rangle \colon {}_RP \times Q_R \longrightarrow {}_RR_R$ a pseudo-surjective dual mapping. Then R is idempotent and the rings R and Π^β are Morita equivalent.

Let R be a ring. If $\langle , \rangle : {}_RP \times Q_R \longrightarrow {}_RR_R$ is a dual (R,R)-bilinear mapping, then the tensor product ring $Q \otimes_R P$ defined by \langle , \rangle is s-unital.

Let R be a ring. If $\langle , \rangle : {}_RP \times Q_R \longrightarrow {}_RR_R$ is a dual (R,R)-bilinear mapping, then the tensor product ring $Q \otimes_R P$ defined by \langle , \rangle is s-unital.

Theorem 23

Let R be a ring and $\beta = \langle , \rangle \colon {}_RP \times Q_R \longrightarrow {}_RR_R$ be a dual (R,R)-bilinear mapping. Then the tensor product ring $Q \otimes_R^{\beta} P$ is isomorphic to Σ^{β} and Π^{β} .

Descriptions of Morita equivalence

Theorem 24

Let R and S be firm rings. Then R and S are Morita equivalent if and only if R is isomorphic to a pseudo-surjectively defined tensor product ring $P \otimes_S Q$.

Descriptions of Morita equivalence

Theorem 24

Let R and S be firm rings. Then R and S are Morita equivalent if and only if R is isomorphic to a pseudo-surjectively defined tensor product ring $P \otimes_S Q$.

Theorem 25

Two s-unital rings R and S are Morita equivalent if and only if there exist R-modules $_RP$, Q_R , a dual (R,R)-bilinear pseudo-surjective mapping $\beta = \langle \ , \ \rangle \colon _RP \times Q_R \longrightarrow _RR_R$ and $S \cong \Pi^{\beta}$ as rings.

Thank you for listening!