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1. INTRODUCTION 

Every mother wishes to have an uncomplicated pregnancy and a healthy newborn. 
As a unique organ, the placenta is the most important link between the mother and 
the developing fetus. Placenta regulates nutrient delivery and waste elimination, 
maintaining a supportive and healthy environment for the fetus. Early placental 
growth and cellular differentiation are ‘pre-programmed’ as during the first stages 
of pregnancy, the placental structure and functional capacity have to develop 
rapidly to be able to support the growing fetus throughout gestation. Furthermore, 
it is necessary for the placenta to constantly adjust its function based on the stimuli 
from the fetus or the mother. Placenta is to be considered a key communication 
hub between the mother and the fetus. Its maldevelopment and malfunction, or 
inability to achieve a proper utero-placenta perfusion, may lead to insufficient 
support for fetal nutrient and oxygen requirements and consequently to either 
maternal and/or fetal gestational complications.  

As fetal and placental requirements depend on the stage of the pregnancy, 
placental gene expression and its regulators also must adjust correspondingly. 
The transcript levels of placental genes entering the translation process are co-
regulated by different transcription factors and post-transcriptional modifiers of 
mRNA quantities and fate, called microRNAs. As transcription factors represent 
general or cell type-specific gene expression regulators, a defined set of micro-
RNAs act in consort in fine-tuning and monitoring the levels if each specific tran-
script. 

MicroRNAs are small RNA molecules, 18–24 nucleotides in length, that regu-
late gene expression levels by halting the translational activity of mRNA. Limiting 
the number of mRNAs entering translation allows faster changes in gene expres-
sion dynamics if needed or alerted by the changing cellular or organismal environ-
ment. Importantly, microRNAs are small, and some are secreted to the circulation 
to be used as a trans-signaling molecules. Several placental microRNAs are known 
to function locally and to be secreted into the maternal circulation system with 
possible roles in modulating maternal physiology during pregnancy.  

This doctoral study aimed to profile the (co)dynamics of placental transcrip-
tome and miRNome in healthy gestations, and in term pregnancy complications. 
The level, distribution, and gestational changes of microRNA expression during 
the three trimesters of pregnancy were analyzed, and the modulatory role of ges-
tational disturbances and genetic variation on placental miRNome was evaluated.  
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2. LITERATURE REVIEW 

2.1. Placenta 

2.1.1. Evolution and function of the placenta 

The placenta is a mammalian-specific organ, existing only for a relatively short 
period (Figure 1). Placenta also represents an endocrine organ managing infor-
mation exchange between the mother and the fetus (Bowman et al., 2020). The 
main functions of the placenta are to provide sufficient nutrients and oxygen for 
the developing fetus, to support fetal programming (e.g. as a source of stem cells 
or signaling molecules), maternal-fetal communication and modulation of the 
maternal physiology during pregnancy, as well as to remove the fetal ‘waste’ 
(Turco and Moffett, 2019).  

 
Figure 1. Development of the human placenta. 
The fertilized egg develops into a blastocyst before implantation. Blastocyst trophoblast 
cells communicate with the maternal endometrial decidua to enable the invasion into the 
maternal uterine wall. By the third week of gestation, the definitive human placenta is 
formed and is composed of villous trees. At this stage of pregnancy, the placenta is not 
yet directly connected with maternal blood. Cytotrophoblast cells invade the maternal 
spiral arteries and replace maternal endothelium, enabling high blood flow. The surface 
of the villi is covered by the syncytiotrophoblast layer, which directly contacts the 
maternal blood and facilitates the transport of nutrients, gases, and waste across the pla-
cental barrier. Adapted from (Ander et al., 2019) 
 
Studies of the placenta’s functions have several challenges. The human placental 
research has ethical and clinical restrictions limited to measures that do not harm 
the mother or the fetus. The most common approach is to measure blood meta-
bolites or investigate placenta samples after delivery. Using model organisms has 
some benefits, as it allows more flexibility to study different gestational time 
points. However, the most common research models have been mice and rats with 
different placental structures and key set of genes regulating placental develop-
ment and functions compared to humans (Schmidt et al., 2015; Serman and 
Serman, 2011). In humans, only one layer of trophoblast separates mothers’ and 
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fetuses’ blood, compared to mice and rats, who have three layers of trophoblasts 
(Carter et al., 2020). This invasive nature of the placenta should trigger an immune 
response, yet the maternal immune system does not reject it. Placenta functions 
as an endocrine organ to secrete hormones for maternal circulation and adapt 
maternal physiology to adapt for required changes (Napso et al., 2018).  
 
 

2.1.2. Placental pathologies 

Placental malfunction may lead to pregnancy-related pathologies affecting the 
mother and/or the fetus. Problems with implantation (Murata et al., 2022), early 
placental development, or insufficient functional capacities in later pregnancy 
due to the growing demands of the fetus will increase the risk of gestational compli-
cations (Kosińska-Kaczyńska, 2022). The most common ‘reflections’ of pla-
cental stress during the second half of pregnancy are preeclampsia (PE) in the 
mother and intrauterine growth restriction (IUGR) in the fetus (Table 1).  

PE is a hypertensive disorder, and it is defined by high blood pressure and 
elevated protein levels in the urine (Staff, 2019). PE is diagnosed after the 20th g. 
week and may also present a range of comorbidities, such as liver and kidney 
damage and swelling in the hands and feet. In extreme cases, it may lead to 
maternal and/or fetal death (Hogan et al., 2010). A possible cause of PE is in-
sufficient placental infusion into the uterine wall, causing limiting blood flow to 
the placenta, which has been suggested (Rubin et al., 2022). The early onset PE 
(before 34th g. week) is characterized by endothelial damage that leads to maternal 
hypertension and organ damage due to vasoconstriction and micro thrombosis 
(Redman et al., 2014). Over time fetal blood supply progressively worsens due to 
placental insufficiency that may lead to IUGR. Late-onset PE (34th g. week or 
later) is associated with high cardiac output, hypertension, and weakened endo-
thelial dysfunction as the placenta ages prematurely and reaches its potential 
functional limit before the time of expected delivery (Staff, 2019).  

In IUGR fetuses, the inability to reach their full potential is suppressed (Valen-
zuela et al., 2022). The leading cause of IUGR is a critical restriction of the blood 
flow to the placenta and the fetus (Sharma et al., 2016). Newborn small-for-ges-
tational-age (SGA) are small for their gestational age, less than 10th percentile or 
two standard deviations below average for their gestational age. IUGR reflects 
fetal distress, compared to SGA, that only provides a measure of the size and not 
a direct measure of antenatal growth quality (Sacchi et al., 2020).  

A contrasting phenotype to SGA and IURG is fetal macrosomia, a large-for-
gestational-age (LGA) newborn. These newborns have a higher risk for obesity 
in their childhood and adolescence (Bammann et al., 2014). In countries with a 
growing trend for obesities, the number of children born with LGA is rising (Hildén 
et al., 2020) 
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Gestational diabetes (GD) is a condition of the mother when there is chronic 
hyperglycemia during gestation. GD is itself a risk factor for the birth of a LGA 
newborn. GD is alleviated after delivery but has been linked to cardiovascular 
diseases and metabolic syndromes (Zakaria et al., 2023). 

The premature ending of pregnancy could be at any time during gestation. In 
case it happens before 22 g.w., it is considered as a pregnancy loss with a non-
viable fetus (Sildver et al., 2015). Typically couples with three or more miscarri-
ages are considered as recurrent pregnancy loss (RPL) (Kasak et al., 2019). Spon-
taneous premature termination of pregnancy at 22 g.w. or later is referred to as a 
preterm birth (PTB), and all available clinical measures are used to guarantee the 
survival of the newborn (Sildver et al., 2015). However, PTB newborns may have 
lifelong health complications and consequences (Dauengauer-Kirlienė et al., 2023). 

Gestational diabetes and large-for-gestational-age newborn births are the most 
influenced by mother’s lifestyle and behavior. Usage of alcohol and drugs signi-
ficantly impacts the RPL and PTB, but placental malfunction can also cause these 
conditions. Insufficient nutrient supply for the fetus may lead to IUGR, SGA, or 
even PE.  
 
 

2.2. Placental transcriptome 

Many pregnancy complications could be described based on phenotypic and 
placental transcriptome changes. Placental transcriptome can be used to predict 
the fetus’s and the placenta’s health (Cox et al., 2015). Hypothesis-free methods 
to measure gene expression have shown added value in profiling placental tran-
scriptome across gestation and in pregnancy complications, helping to find new 
regulating mechanisms. When analyzing placenta transcriptome data, multiple 
factors must be considered, such as the clinical details of each recruited preg-
nancy and the collection and processing of placental samples after delivery. Also, 
factors like sex, labor status, and mode of delivery could influence sequencing 
results (Gonzalez et al., 2018; Sood et al., 2006; Tsang et al., 2017).  

Placental transcriptome studies can be broadly divided based on their primary 
focus, either aiming to bring novel insights to healthy pregnancy progression, 
analysis of placental samples of pregnancy complications, or investigating modu-
latory factors shaping the placental transcriptome (Table 2). Transcriptome stu-
dies of the normal placenta have enhanced understanding ofits formation and 
which regulatory mechanisms are required for its normal function. Comparison 
of humans with model organisms like mice has shown that first half of gestation, 
there are gene clusters with distinct co-expression patterns (Soncin et al., 2018). 
Studies focusing only on human samples have shown a distinct dynamic gene 
expression change between trimesters (Mikheev et al., 2008; Uusküla et al., 
2012). Notably, the placental transcriptome is enriched in transcripts from organ-
specific imprinted genes that are expressed only from the maternally or paternally 
derived gene copy and have targeted tasks in regulating placental development 
and function in different trimesters (Pilvar et al., 2019). 
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Studies on placental pathologies have mainly focused on the analyses of dif-
ferential placental expression in complicated and healthy pregnancies. The ‘fa-
vourite’ condition studied so far is PE. Most frequently, differentially expressed 
genes in preeclamptic pregnancies have been associated with oxidative stress, 
insufficient placental implantation, and spiral artery formation (Aplin et al., 2020; 
Eide et al., 2008; Zhang et al., 2023). Overlap between studies of differentially 
expressed genes in PE is modest, with about one-third of detected genes (Moslehi 
et al., 2013; Van Uitert et al., 2015).  

Abnormalities in the number of chromosomes or changes in gene dose can lead 
to recurrent pregnancy loss (Kasak et al., 2021; Li et al., 2021; Sõber et al., 2016). 

 
 

2.3. MicroRNAs  

2.3.1 microRNAs as the modulators of gene expression levels 

MicroRNAs are small 18–24 nucleotides in length RNA molecules. These mole-
cules exist in different organisms, and orthologues exist between species (Berezi-
kov, 2011). MicroRNAs are encoded by genes located between protein-coding 
genes or in their intronic region. RNA polymerase II transcribes pri-microRNA, 
a long stem-loop structure (Figure 2).  
 

 
Figure 2. microRNAs as transcriptome regulators 
Adapted from (Wu et al., 2018). MicroRNAs are transcribed from a microRNA gene. The 
maturation starts from the production of the primary microRNA transcript (pri-micro-
RNA) by RNA polymerase II or III and cleavage of the pri-microRNA by the micro-
processor complex Drosha-DGCR8 (Pasha) in the nucleus. Then the pre-miRNA hairpin 
is exported from the nucleus by Exportin-5-Ran-GTP into the cytoplasm. The RNase 
Dicer in complex with the double-stranded RNA-binding protein TRBP cleaves the pre-
miRNA hairpin to its mature length. The mature microRNA’s functional strand is loaded 
with Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC), which 
guides the RISC to silence target mRNAs through mRNA cleavage, translational repres-
sion, or deadenylation. 
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Drosha trims the stem-loop ends to produce pre-microRNA, which is exported 
by exportin-5 to the cytoplasm. Dicer processes pre-microRNA into microRNA 
duplex. Duplex is unwound, producing two strands, indicated with –5p or –3p 
suffix (Winter et al., 2009). Strands can be incorporated into the RNA-induced 
silencing complex (RISC) that contains Argonaute (Ago) proteins at its core. The 
miRNA-RISC complex binds specific sites in the 3’-untranslated region (3’UTR) 
of target mRNAs, disabling them through destabilization and translational repres-
sion. Notably, recent studies have demonstrated extensive crosstalk between sig-
naling pathways and miRNA processing, suggesting that microRNA biogenesis 
is under tight signaling control and has been an important part of the large regu-
latory networks (Komatsu et al., 2023). 
 
 

2.3.2. microRNAs in health and disease 

MicroRNA expression can change for multiple reasons, like the circadian rhythm 
(Anna and Kannan, 2021) and an illness (Table 3). Because microRNA’s primary 
ability is to bind onto different mRNAs, microRNAs can regulate a large portion 
of the transcriptome. In cases of asthma and rheumatoid arthritis, it has been shown 
that microRNAs are differentially expressed and influence inflammation pro-
cesses. A common microRNA is miR-155, a known microRNA associated with 
multiple autoimmune diseases (Xu et al., 2022). Because microRNA can regulate 
multiple genes, their effect may be broad, like miR-1 (Safa et al., 2020). They are 
known for developmental processes in muscle tissue, regulating immune cells. 
 
Table 3. Disease-associated with microRNAs 

Selection of associated 
microRNAs 

Disease/ 
Function Effect Tissue References 

miR-17-5p, miR-24,  
miR-25, miR-29a, miR-30a, 
miR-96, miR-132,  
miR-143-3p, miR-192, 
miR-219, miR-494 

Circadian 
rhythm 

Circadian 
regulation 

Cell-lines (Anna and 
Kannan, 
2021) 

miR-21, miR-30e,  
miR-144, miR-155,  
miR-215, miR-582-3p  

Asthma Inflammation 
of the human 
lung

Lung (Albano 
et al., 2023) 

miR-16, miR-21,  
miR-132, miR-146a,  
miR-155 

Rheumatoid 
arthritis 

Inflammatory 
and immune 
processes

Cartilage (Balchin 
et al., 2023) 

miR-9, miR-15b, miR-16, 
miR-126, miR-155,  
miR-505 

Hypertension Angiogenesis 
and vascular 
integrity

Cardiac 
endothelium

(Caria et al., 
2018) 

miR-1, miR-99a, miR-100, 
miR-133a 

Skeletal 
muscle 
metabolism

Insulin 
processing 

Skeletal 
muscle 

(Sjögren 
et al., 2018) 
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2.3.3. Placental miRNome 

All of the expressed microRNAs (miRNome) in the placenta regulate many 
aspects of placental development and function, such as trophoblast invasion pro-
liferation, differentiation, apoptosis, and cellular metabolism of trophoblast cell 
populations (Doridot et al., 2013; Ren et al., 2023). Investigating placental micro-
RNA expression by sequencing all the available microRNAs has opened up new 
possibilities for microRNA research. Previous assay-based methods like qPCR 
and microassays have had a limited set of microRNAs detected. Next-generation 
sequencing (NGS) based approaches have allowed a more detailed and com-
prehensive description of the entire placental miRNome, defined as the total of 
all the microRNAs expressed in a tissue (Table 4). The number of microRNAs 
included per study has ranged from 601–2817, depending on the stringency of 
inclusion criteria. 
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2.3.3.1. Placental-specific microRNA clusters 

Two major microRNA clusters (at Chr 14 and Chr 19) are predominately expres-
sed in the placenta in the parent-of-origin dependent manner (Morales-Prieto 
et al., 2012; Pilvar et al., 2019) (Figure 3). These clusters facilitate the 
investigation of the specific roles of placenta-specific microRNA during ges-
tation. As these microRNAs are excreted from the placenta, they can also be de-
tected in the maternal system. Maternally expressed Chromosome 14 microRNA 
cluster (C14MC) spanning 250 kb (14q32.31, GRCh38) is eutherian-specific, 
containing 52 microRNA genes and encoding 94 mature microRNAs. It is pre-
dominately expressed in the placental tissue but has been shown to have an 
aberrant expression in cancers (McCarthy and Dwyer, 2021). 

Primate-specific paternally expressed Chromosome 19 microRNA cluster 
(C19MC) spans 100 kb (19q13.42, GRCh38), and contains 46 tandem repeating 
microRNA genes that encode 67 mature microRNAs. These microRNAs are 
exclusively expressed in the placenta; low levels are found in embryonic stem 
cells, testes, and some tumors (Augello et al., 2018; Kobayashi et al., 2022). 
 

 
Figure 3. Chromosome 14 and 19 placenta-specific microRNA clusters C14MC and 
C19MC. Location, composition, and known functions in pregnancy. (A) Chromosome 
14 microRNA cluster; (B) Chromosome 19 microRNA cluster.
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2.3.4. microRNAs as biomarkers for diagnostics  
and disease monitoring 

As microRNAs are secreted from tissues to the circulatory system, they can be 
detected from body liquids and could represent candidate biomarkers for organ 
pathologies. Extensive research is ongoing to identify specific microRNAs in liquid 
biopsy samples to serve as biomarkers for health conditions (Jain et al., 2023). 
As most of the microRNAs are broadly expressed in multiple tissues, it makes it 
difficult to validate the source tissue or organ. In cases where microRNAs are 
secreted directly into biofluid (Kondracka et al., 2023) or are almost exclusively 
expressed in a specific tissue (Miura et al., 2015), we can determine the tissue of 
origin. As microRNAs are transported out of the tissue in extracellular vesicles 
(EVs), EVs could be used for epigenetic programming, influencing various 
organs (Floris et al., 2016). 

MicroRNA expression correlation between tissue and biofluid hints that 
biofluids are good candidates for biomarker medium. Comparison of microRNA 
expression in serum, plasma, and urine samples from 40 different healthy human 
tissues showed a moderate correlation (Rho > 0.48) (Cui and Cui, 2020).  
 
 

2.4. Quantitative trait loci – QTLs 
Variations in the DNA sequence near or in the transcription start site can 
influence gene or microRNA expression levels (Cheung et al., 2003; Flynn and 
Lappalainen, 2022). These single nucleotide variations are called expression 
quantitative trait loci (eQTL) (Nica and Dermitzakis, 2013). The transcription of 
a mRNA or microRNA gene can be co-modulated by multiple eQTLs (Figure 4).  
 

 
Figure 4. Location and function of gene eQTL 
Schematic of an expression quantitative trait locus (eQTL). (A) Three individuals with 
different genotypes for a variant associated with altered gene expression. (B) Gene 
expression levels for individual eQTL variant genotype. 
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2.4.1. Placental eQTLs 

The profile of placental eQTLs has been only recently investigated (Apicella 
et al., 2023; Delahaye et al., 2018; Kikas et al., 2019; Peng et al., 2017). As not 
the same eQTLs are effective in all tissues, it is important to determine eQTLs 
that are functional in the placenta in order to understand the role of genetic variation 
in modulating the risks for pregnancy pathologies. Previous studies have focused 
on genes associated with pregnancy complications or other pregnancy-related 
characteristics. Genome-wide association studies (GWAS) have identified 417 
confident placental genes whose expression is modulated by eQTL and supported 
by at least two independent studies (Kikas et al., 2021). Placenta eQTLs, com-
pared to other tissues, show around 1–3% overlap with other reported GWAS loci 
for adult disorders. 

A promising placenta eQTL is rs4769613 near FLT1 gene. FLT1 is a well-
acknowledged gene associated with preeclampsia, as high blood pressure increases 
the sFlt1 circulation (Biwer et al., 2023; Srinivas et al., 2010). SNV rs4769613 
T/C within the enhancer element of FLT1 has been previously identified as a risk 
factor for preeclampsia in the genome-wide association study (GWAS) targeting 
placental genotypes (McGinnis et al., 2017).  
 
 

2.5. Summary of the literature review  

Placenta is a unique organ, only being present for a relatively short time at the 
beginning of our lives as the bridge between the mother and the developing fetus. 
Placenta has multiple functions, including nutrient and oxygen delivery, contri-
bution to fetal programming and modulation of maternal physiology, and elimi-
nation of waste generated by the fetus. It also functions as a hub for maternal-fetal 
communication and as an endocrine organ, producing and secreting hormones 
and other signaling molecules. Alterations in placental function may lead to ma-
ternal or fetal complications during the pregnancy. 

Placenta function is complex and changes during gestation, a well-established 
baseline for gene and microRNA expression is needed to characterize differential 
gene expression in case of pregnancy complication. Multiple genes have been 
linked to a variety of complications, PE, GD, IUGR. Differential gene expression 
could be caused by gene expression regulators, one of which are microRNAs. 
These gene expression regulators are easily detected from the maternal system 
and have a great potential to be used to describe the wellbeing of the placenta. Some 
of these microRNAs are placenta specific and therefor their expression origin 
could be easily tracked. Knowing how transcriptome and miRNome interact, could 
give us a new insight how placenta function is regulated.  
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3. AIMS OF THE PRESENT STUDY  

The present thesis aimed to characterize the landscape of placental miRNome in 
normal and complicated pregnancies and to investigate its correlation with 
placental transcriptome and genetic variation.  
 
The specific aims were: 
 
1. to investigate placental differential gene expression in term pregnancy patho-

logies – preeclampsia, gestational diabetes mellitus, small- and -large for ges-
tational age newborns 

 
2. to explore genetic variants near the FLT1 gene as eQTL for placental gene 

expression and as risk factors for late-onset preeclampsia 
 
3. to profile placental miRNome throughout gestation and describe microRNA 

expression variations caused by eQTLs and by term pregnancy pathologies – 
preeclampsia, gestational diabetes mellitus, small- and -large for gestational 
age newborns 

 
4. to characterize the expression correlation of placental miRNome and tran-

scriptome  
 
5. to investigate placenta-specific microRNA clusters function and expression in 

our sample sets. 
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4. MATERIAL AND METHODS  

4.1. Study design 
To fulfill these thesis aims, samples from REPROMETA (full study name 
“REPROgrammed fetal and/or maternal METAbolism”; recruitment 2006–2011) 
and the HAPPY PREGNANCY study (“Development of novel non-invasive bio-
markers for fertility and healthy pregnancy”; 2013–2015) were used (Tables 5–6). 
These datasets included first, second-trimester, and term placenta samples from 
pregnancies that ended with preeclampsia, gestational diabetes, small or large for 
gestational age diagnosis, or were without complications (Figure 5).  

Gene expression was measured using RNA-Seq and validated with RT-qPCR. 
Genotypic variations were detected using microarray or qPCR. MicroRNA expres-
sion was detected using miR-Seq. 

From this data, we expected to identify genes differentially expressed in preg-
nancy complications and to validate how much, if any, overlap between compli-
cations.  

Independently verify the eQTL near FLT1 gene in our dataset and evaluate its 
role in preeclampsia development. 

Measure microRNAs expression during gestation and report the microRNAs 
with dynamical expression as microRNAs expression may change based on 
pregnancy complications and genomic variants. Aimed to report how microRNA 
expression changes based on these factors. 

Give a comprehensive overview of how microRNA and gene expression is 
correlated in term placenta samples. Describe the expression dynamics of 
placenta-specific microRNAs.  
 

 
Figure 5. Study design 
eQTL, expression quantitative loci; HAPPY PREGNANCY, study of Development of 
novel non-invasive biomarkers for fertility and healthy pregnancy; miR, microRNA; 
REPROMETA, study of REPROgrammed fetal and/or maternal METAbolism  
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4.2. Ethics 

The study subjects were recruited, and clinical samples were collected during the 
REPROMETA (full study name “REPROgrammed fetal and/or maternal META-
bolism”; recruitment 2006–2011, supported by Estonian Science Foundation) and 
the HAPPY PREGNANCY study (“Development of novel non-invasive bio-
markers for fertility and healthy pregnancy”; 2013–2015, supported by Archi-
medes Foundation) at the Women’s Clinic of Tartu University Hospital, Estonia. 
Written informed consent to participate in the study was obtained from each 
individual before recruitment. The studies were approved by the Research Ethics 
Committee of the University of Tartu, Estonia (permission no. 146/18, 
27.02.2006; 150/33, 18.06.2006; 158/80, 26.03.2007; 221/T-6, 17.12.2012; 
286/M-18, 15.10.2018). The study was carried out in compliance with the Helsinki 
Declaration, and all methods were in accordance with approved guidelines. 
 
 

4.3. Study subjects  

4.3.1. REPROMETA and HAPPY PREGNANCY pregnancy cohorts  

The REPROMETA study (n=377) focused on the recruitment of extreme cases 
of selected term pregnancy complications – PE (n=53), GDM (n=50), SGA (n=72), 
and (LGA, n=97), and normal pregnancies (n=105). Epidemiological data, repro-
ductive history, and parental lifestyle were obtained from self-reported question-
naires filled out shortly after recruitment by both parents, and the pregnancy 
outcome data were acquired from the medical records. Placental samples were 
available for 366 cases. For the transcriptome and miRNome sequencing in the 
current study, 40 placentas were selected (n=8 per clinical subgroup; Table 5; 
Ref 1, Ref 3). Experimental validation of differential expression in PE placentas 
by TaqMan RT-qPCR (Ref. 1) was carried out using an extended sample set of 
24 PE, 24 SGA, and 24 normal pregnancy cases from the REPROMETA study 
(Table 6).  

In the genetic association study (Ref. 2) placental samples were divided to PE 
cases and pregnancies with any other type of course. The study included 329 
REPROMETA (PE, n=52 and non-PE, 277) and 1768 HAPPY PREGNANCY 
cases (PE, n=44 and non-PE, n=1724). All cases represented singleton preg-
nancies with placental DNA available during genotyping (Table 6). HAPPY 
PREGNANCY cohort of 2334 pregnant women had been recruited prospectively 
during their first antenatal visit at the Women’s Clinic. The patients were asked 
to fill out three questionnaires throughout their pregnancy concerning epidemio-
logical data, reproductive history, parental lifestyle, and additional pregnancy 
course and outcome data collected from the medical records. 
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4.3.1.1. Inclusion and exclusion criteria of  
analyzed REPROMETA pregnancy cases 

The normal group was defined as uncomplicated pregnancies without previously 
mentioned conditions with a newborn between the 10th and 90th percentile on 
the growth curves calculated based on data from Estonian Medical Birth Registry 
growth standards (Sildver et al., 2015). SGA and LGA pregnancies had <10th or 
over 90th percentile newborns, respectively, on the growth curves. PE cases were 
defined as hypertensive (systolic blood pressure ≥160mmHg and/or diastolic 
blood pressure ≥110mmHg) and had proteinuria of ≥5g in 24 hours or neuro-
logical symptoms (Brown et al., 2018). PE was subdivided into early-onset 
(symptoms before 34th gestational weeks) and late-onset PE (after 34th 
gestational weeks). GD was diagnosed when a 75g oral glucose tolerance test 
(GTT) performed at 24–28 weeks of gestation indicated either a fasting venous 
plasma glucose level of ≥5.1 mmol/l and/or at one hour and two hours later 
plasma glucose level of ≥10.0 mmol/l and ≥8.5 mmol/l glucose, respectively 
(Metzger, 2012). Pregnancies with birth before the 37th gestational week were 
considered preterm. 

Cases with known fetal anomalies, chromosomal abnormalities, inherited 
diseases, pre-existing diabetes mellitus, chronic hypertension, or chronic renal 
disease were excluded from the studies. 
 
 

4.3.2. Placental sampling and extraction of nucleic acids. 

Placental sampling in REPROMETA and HAPPY PREGNANCY studies were 
conducted within one hour after cesarean section or vaginal delivery by trained 
nurses following the same protocol. In the meanwhile, placentas were kept at 
+4 °C. A full-thickness block of 2 cm was taken from the middle region of each 
placenta, avoiding the umbilical cord insertion site, large vessels, and any visible 
or palpable infarction, hematoma, or damage. In the HAPPY PREGNANCY 
study, this step was repeated for each quadrant of the placenta. Placental samples 
were washed with 1x PBS to remove maternal blood and divided into sections for 
DNA and RNA extraction. Tissue for RNA extraction (1 g or 100 mg in REPRO-
META or HAPPY PREGNANCY study, respectively) was placed into 10 ml or 
1 ml RNAlater (Thermo Fisher Scientific, Waltham, Massachusetts, United 
States). Samples were kept in RNAlater for 1–3 days at +4 °C and then stored at 
–80 °C until RNA extraction. The rest of the tissue sample was placed into a dry 
tube and stored at –80°C until DNA extraction. 



30 

4.4. Utilized placental ‘Omics’ datasets  

4.4.1. Placental RNA-Seq dataset  

The REPROMETA placental RNA sequencing dataset was first published by 
Sõber et al., 2015 (Ref 1). The dataset included 40 term placentas from various 
pregnancy outcomes (PE, SGA, LGA, GD, NORM, n=8 each). RNA from the 
placental sample (200–300mg) was extracted using the Trizol protocol and 
purified with RNeasy MinElute columns (Qiagen, Germantown, Maryland, USA) 
according to the manufacturer’s protocol. NanoDrop ND-1000 UV-Vis spectro-
photometer (Applied Biosystems, Foster City, California, USA) was used to 
determine the purity and concentration of isolated total RNA. RIN (RNA integrity 
number) was estimated by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, California, USA). Total RNA with high purity was used for rRNA deple-
tion (Ribo-Zero rRNA Removal Kit, Illumina, San Diego, California, USA) and 
library preparation with Nextera Technology (Illumina). Total RNA sequencing 
was conducted in Finland Institute for Molecular Medicine (FIMM) Sequencing 
Core Laboratory on Illumina Hiseq2000 using 46 bp paired-end reads. Initial data 
refinement was performed with RNA-Seq pipeline v.2.4 (FIMM; Helsinki, Fin-
land). Human genome assembly (GRCh37.p7/hg19) from Ensembl v67 was 37 
used as a reference. The initial dataset included gene expression data for 53,893 
genes. Gene expression was quantified by HTSeq analysis (as raw read counts) 
and later normalized for read depth using the DESeq package for R. Only non-
mitochondrial genes with sufficient expression levels (>100 normalized read 
count) were considered in the analysis (n=11,733). 
 
 

4.4.2. Placental miR-Seq dataset from the placenta 

The placental miRNome dataset generated in the current study consisted of 52 
placental samples collected from first, second-trimesters, and term pregnancy 
cases (n = 5, 7, and 40, respectively).  

Initial small-RNA libraries were prepared from 1 μg total RNA (TruSeq Small 
RNA kit, Illumina), followed by miRNA enrichment (Caliper LabChipXT, 
PerkinElmer, Waltham, Massachusetts, United States) according to the manu-
facturer’s protocols. Small RNA-Seq libraries were sequenced on Illumina HiSeq 
2000. Library preparation and sequencing were conducted in FIMM Sequencing 
Laboratory, University of Helsinki, Finland. Quality control of the raw reads  
was performed using FastQC (ver. 0.11.7) and MultiQC (ver. 1.7) (Ewels et al., 
 2016). Trimmomatic (ver. 0.38) was implemented to remove adapters and trim 
the quality of reads with the following settings – ILLUMINACLIP:2:30:9, 
LEADING:3, CROP:50, TRAILING:3, SLIDINGWINDOW:4:20, MINLEN:16. 
Reads were aligned to human genome reference GRCh38 using bowtie (ver. 1.2.2, 
settings: -n 1 -l 20 -q -m 40 -k 1 -t --best --strata) (Langmead et al., 2009). miRNA 
quantification was performed using featureCounts from the Rsubread package 
(ver. 1.20.6) (Liao et al., 2019) for R with miRNA annotations from miRBase 
22.1 as reference (Kozomara et al., 2019). 
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4.4.3. Placental whole genome genotyping dataset 

The same 40 term placental samples from the REPROMETA study with available 
RNA-Seq data from Ref.1 also underwent whole-genome genotyping (Kasak 
et al., 2015). The DNA of the placental samples was extracted using a NucleoSpin 
Tissue kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s 
instructions. The genotyping was conducted with Illumina HumanOmniExpress-
12-v1 BeadChip at the institutional genotyping core facility (Estonian Genome 
Center; http://www.geenivaramu.ee/en). The array included >733,000 SNPs with 
a median spacing of 2.1 kb. Samples were genotyped with an average overall call 
rate of >99% per individual per genotype. Variants deviating from Hardy-Wein-
berg Equilibrium (HWE; P<1×10–6) or with no minor alleles in our dataset were 
excluded from subsequent analyses. In total, 661,354 SNVs were included in the 
eQTL analysis. 
 
 

4.5. Single locus based experiments 

4.5.1. TaqMan RT-qPCR 

Gene expression was quantitated by singleplex reverse transcription-qPCR (RT-
qPCR) of the target gene sequence using premade TaqMan Gene Expression 
Assays (Applied Biosystems, Life Technologies Waltham, Massachusetts, United 
States; Ref. 1 Supplementary Table 5). In all experiments, a housekeeping gene 
Ubiquitin C (UBC), was used as the reference gene. All qPCR reactions were per-
formed in triplicate in 384 micro-well plates in ABI 7900HT Real-time PCR 
system (Applied Biosystems) using HOT FIREPol® Probe qPCR Mix (Solis Bio-
Dyne, Tartu, Estonia). 
 
 

4.5.2. eQTL genotyping with TaqMan 

Placental eQTL of rs4769613 T/C was tested using premade TaqMan genotyping 
using manufacturer’s protocol (Applied Biosystems, Assay ID: C__32231378_10). 
 
 

4.6. Bioinformatics and statistics  

4.6.1. Differential gene expression analysis  

Differential expression in RNA-Seq data was tested using DESeq, and DESeq2 
packages for R. Read counts from htseq-count were used as input, and built-in 
normalization algorithms of DESeq and DESeq2 were used. Outlier detection and 
handling were performed using the default method in DESeq. In DESeq2, outliers 
were replaced using the replace Outliers With Trimmed Mean function with 
default Cook’s distance cutoff. Statistical testing indicated that the two software 
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packages, DESeq and DESeq2 differ substantially in their sensitivity and robust-
ness in the assessment of differential expression. Compared to the seminal DESeq 
package, analysis with the more recently developed DESeq2 program produced 
more significant results for all conducted differential expression tests with our 
data (Supplementary Table S1 in Ref. 1). More stringent level of significance was 
imposed on the test results of DESeq2. A gene was considered as differentially 
expressed when the statistical tests simultaneously satisfied the following empiri-
cally set thresholds: FDR < 0.1 for DESeq and FDR <0.05 for DESeq2. Genes 
with mean normalized expression <50 reads in all samples (n = 39425 DESeq; 
n = 39345 DESeq2) were considered as transcriptional noise and filtered out from 
the analysis. No covariates were automatically included in the tested models. 
Instead, potential confounders (delivery mode, initiated labor activity, gestational 
age, gender, placental weight, birth weight/height, maternal pre-pregnancy BMI, 
weight gain, age, and parity) were tested independently for the differential expres-
sion effect on all genes included into the analysis. 
 
 

4.6.2. Single locus based data analysis 

Statistical analyses for RT-qPCR results were performed using the statistical 
package STATA version 13.1. The Wilcoxon test assessed the significance of RT-
qPCR measurements among the study groups. FDR was calculated according to 
Benjamini and Hochberg (additional information in Ref 1. Supplementary 
Methods). Association testing with placental FLT1 eQTL variants was performed 
using PLINK 1.9 (www.cog-genomics.org/plink/1.9/). Nominal P<0.05 were 
considered suggestive of association.  
 
 

4.6.3. Placental miR-QTL analysis  
(Placental whole-genome genotyping dataset) 

To avoid the potential confounding effect of gestational expression dynamics, the 
discovery analysis of placental miR-eQTLs included only term placental samples 
(n = 40). SNV genotypes were derived from the genome-wide genotyping dataset 
of the same placental samples [Illumina HumanOmniExpress-12-v1 BeadChip 
(>733,000 SNVs; median spacing 2.1 kb)] (Kasak et al., 2015; Pilvar et al., 2019). 
The analysis was targeted to a ±100 kb window extending to both directions from 
the start and end of miRNA genes, annotated based on miRBase (ver. 22.1). The 
genomic regions flanking the analyzed 417 miRNAs included 6,274 common 
SNVs (MAF > 0.1). 17,302 linear regression association tests were carried out 
between SNV genotypes and miRNA expression levels, quantified as normalized 
miRNA read counts. All tests with miR-eQTLs were implemented in PLINK v1.07 
using fetal sex and gestational age as cofactors (Purcell et al., 2007). The results 
were corrected for multiple testing using the Benjamini–Hochberg method, with 
a cutoff FDR < 0.05. All of the miR-eQTLs were tested for Hardy–Weinberg 
equilibrium. 
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4.6.4. Correlation analysis of miRNA and  
mRNA expression in placenta 

Analysis of inter-relatedness between the expression of miRNAs and mRNA/ 
lincRNA genes in 40 term placentas also utilized the above-mentioned published 
RNA-Seq data. The expressional correlation of miRNA/mRNA transcripts was 
evaluated using Spearman’s correlation coefficient (parameter rho). Correlation 
analysis included 66 miRNAs showing differential expression in PE in the miR-
Seq dataset and 16,567 genes with raw median read counts >50 in the RNA-Seq 
dataset. Spearman’s rho values for 1,093,422 miRNA-gene pairs were estimated 
in R and visualized as a heatmap using the R package heatmap.2 (Gregory et al., 
2015). Lists of genes showing confident expressional correlation with miRNA 
hierarchical cluster groups G1-G5 were formed using the following criteria: 
median Spearman’s rho across 40 term placentas <−0.3 and for individual samples 
<−0.1 (negatively correlated genes); or median rho > 0.3 and for individual samples 
higher than rho > 0.1 (positively correlated genes). These gene lists were used as 
input for the gene enrichment analysis for in silico functional profiling. 
 
 

4.6.5. Functional profiling of placental microRNAs 

In order to evaluate potential microRNA enrichment in specific functional path-
ways or pathologies, TAM 2.0 computational tool was implemented (Li et al., 
2018). TAM 2.0 microRNA dataset consists manually curated literature overview 
of selected microRNA-association pairs: microRNA family, cluster, tissue spe-
cificity, disease, function, and transcription factor. The intrinsic part of the micro-
RNA enrichment analysis is the used set of background microRNAs. In silico 
functional query included only microRNAs expressed in the placental samples 
analyzed in this study. As TAM 2.0 platform is manually curated and may be 
prone to biases, we used the option to mask cancer-related and non-standard sets 
of microRNAs to exclude off-target in silico predictions and biologically and 
physiologically irrelevant interpretations. Investigating serum microRNAs target 
genes expression correlation miRTarBase database was used. The analysis used 
only confident target genes to assemble the list of experimentally validated target 
genes (Huang et al., 2020). 

Statistical differences between subgroups were assessed using either Chi-
Squared or Fisher’s exact test. MicroRNA gestational dynamic expression was 
evaluated by using REPROMETA samples from first, second, and term samples 
miRNome expression data, calculating Z-scores. MicroRNA and target gene 
expression correlation was calculated using Kendall coefficient (parameter Tau). 
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5. RESULTS 

5.1. Placental differential gene expression  
in complicated term pregnancy (Ref. 1)  

This substudy aimed to comprehensively and systematically analyze the placental 
transcriptome in normal and complicated term pregnancies. To achieve this, an 
RNA-Seq dataset of placental transcriptomes of 40 samples over a broad range 
of pregnancy outcomes was utilized for differential expression profiling. Additio-
nally, preeclampsia (PE) risk factors that alter gene expression were explored, 
including a recently proposed genetic variant near the FLT1 gene. 
 
 

5.1.1. Profile of differential gene expression  
in complicated term pregnancy 

The study profiled placental differential gene expression profiles in prevalent 
adverse pregnancy outcomes at term, focusing on maternal late-onset PE (LO-PE), 
GD, and pregnancies ending with the birth of either SGA or LGA newborns. A 
large number of preeclamptic placentas genes had a prominent expression shift 
compared to the placentas of normal pregnancies and other term pregnancy 
complications. Whereas the change in placental gene expression in cases of SGA, 
LGA, and GD was less prominent than in PE, the overall differential expression 
profiles overlapped among pregnancy complications (Figure 6).  
 

 
Figure 6. Principal component (PCA) analysis of RNA-Seq sample data.  
LO-PE is distinctly separated from the without complications normal group. GD, SGA, 
and LGA are mixed in with the normal group. Adapted from Ref.1. 
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PE had the most prominent alteration of gene expression profile compared to the 
other investigated groups. Compared to normal pregnancies, LO-PE placentas 
exhibited differential expression of 215 genes. Notably, 80% (n = 173) of the dif-
ferentially expressed genes showed significantly lower transcript levels than cont-
rols (Figure 2 and Supplementary Data S3 in Ref 1.). Among the highest expressed 
differentially expressed genes was LEP, needed for proper pregnancy function, 
and dysregulation is associated with fetal growth and PE.  
 
 

5.1.2. Locus-specific validation of differential  
gene expression in preeclampsia 

Locus-based experimental validation of 45 differentially expressed genes pre-
dicted by the RNA-Seq data analysis was performed using TaqMan RT-qPCR and 
analysis of an extended placental sample set (PE, n = 24; normal, n =24) (Table 5). 
The differences in gene expression in PE compared to normal placentas estimated 
from the RNA-Seq and TaqMan RT-qPCR showed high correlation, R2=0.75 
(linear regression, P = 2.08 × 10−14). Concordant effect direction was observed for 
42 of 45 assessed genes (Ref. 1 Supplementary Table S3). The estimated log2(fold 
change) in transcript levels significantly correlated with the RNA-Seq dataset 
(R2 = 0.78; P = 1.22 × 10−15) (Figure 7). Among these genes were FLT1, HSD17B1, 
DLX4, ADM, associated with PE. Rest of the validated genes refer to altered 
regulation of epigenetic (DOT1L, TET3), transcriptional (ZNF469), and apoptotic 
(RELL2) mechanisms as well as disturbances in the immune (IGHA1) and endo-
crine-metabolic systems (HSD17B1, ADM, GDPD5, MC1R). The functions of 
these validated genes could describe the broader changes that have taken place in 
placental tissue in the case of PE.  
 

 
Figure 7. Estimated correlation of the 45 tested placental genes in PE placentas. 
Estimated gene expression log2(fold change) of the 45 tested placental genes in 
preeclamptic placentas between the RNA-Seq and TaqMan RT-qPCR datasets for the 
combined data of discovery and follow-up placental samples (PE, n = 24; normal, n = 24). 
Adapted from Ref.1. 
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5.1.3. Locus-specific validation of differential expression  
in other term pregnancy complications 

Only a few transcripts exhibited statistically significant placental differential 
expression in other complications: GD (STS, FAM65B, ZNF525, DNAJC3), SGA 
(RNF17, RP11-333A23.3) and LGA (MIR205HG). Principal component (PCA) 
analysis separated LO-PE from NORM placental samples (Figure 6), whereas 
the cluster of GD placentas overlapped with the NORM group. The placental gene 
expression profile in the SGA and LGA cases represented a more scattered profile 
partially overlapping with the PE and GD groups. 

As PE and SGA placentas have been suggested to share common patho-
physiology, comparison of RT-qPCR for the 45 PE-related genes for extended 
samples (SGA, n = 24; normal, n = 24; Table 5). For 78% of genes (n = 35), the 
direction of expression alteration was concordant between the PE and SGA 
placentas (Ref. 1, Supplementary Table S3). Only three genes, TMEM74B, 
FLT1, CDR2L had statistically significant differential expression in PE and 
SGA. As PE placentas exhibited a more major change in transcript levels, the 
effects in the PE and SGA groups were highly correlated (R2 =0.68, linear regres-
sion P = 3.80 × 10−12; Figure 8). Although LEP after multiple testing correction 
differentially expressed was not statistically significant, the fold change (FC) in 
PE and SGA cases was the largest (FC 10 vs. 3, respectively). The altered gene 
expression level of validated 45 genes in complicated pregnancies indicates po-
tentially altered molecular mechanisms of cellular development and differen-
tiation compared to normal pregnancies.  
 

 
Figure 8. Correlation of the 45 placental genes subjected to TaqMan RT-qPCR in PE and 
SGA group. 
Estimate correlation of the gene expression log2(fold change) of the 45 placental genes 
subjected to TaqMan RT-qPCR in small-for-gestational-age (SGA, n = 24; Y-axis) cases 
compared to normal gestation (NORM, n = 24) is correlated with gene expression shifts 
in PE placentas (n = 24; X-axis). Adapted from Sõber et al., 2015.
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5.2. FLT1 variant as a high-confidence genetic  
risk factor for preeclampsia (Ref. 2) 

Single nucleotide variants have been shown to affect gene expression levels. This 
substudy aimed to independently replicate the reported GWAS finding that the 
placental genetic variant upstream of the FLT1 gene, rs4769613, is associated with 
the risk of LO-PE (McGinnis et al., 2017). In cohort-based analysis, both inde-
pendently recruited Estonian sample sets HAPPY PREGNANCY (prospective 
study; n=1768, Table 5) and REPROMETA (retrospective study; n=329) ex-
hibited a suggestive association between the rs4769613[C] variant (Figure 9). 
Conducting a meta-analysis across two datasets (96/2001) replicated the genome-
wide association study outcome (Bonferroni corrected P=4×10–3; odds ratio, 1.75 
[95% CI, 1.23–2.49]).  

When placental rs4769613 genotypes combined placental FLT1 gene expres-
sion and maternal serum sFlt-1 measurements, significantly higher transcript and 
biomarker levels were detected in preeclampsia versus non-preeclampsia cases in 
the CC- and CT- (Student t-test, P≤0.02) subgroups. It was concluded that eQTL 
rs4769613 represents a conditional eQTL, whereby only the enhancer with the  
C-allele reacts to promote the FLT1 expression in unfavorable placental condi-
tions, highlighting the placental FLT1 rs4769613 C-allele is a preeclampsia-
specific risk factor.  

 

Figure 9. Effect of rs4769613 genotype on placental FLT1 gene expression in preeclamptic 
(PE) and nonpreeclamptic third-trimester pregnancies. 
Placental gene expression of FLT1, stratified by PE diagnosis and placental rs4769613 
genotype. Each sample’s relative gene expression level (shown in log2fc(UBC) scale) was 
estimated by normalizing RT-qPCR measurements relative to the UBC gene as an 
endogenous control. The median expression level across all placental samples from non-
PE pregnancies was used as the baseline value. Fold change of the median FLT1 expression 
in PE compared to non-PE samples is provided according to the estimates in linear scale. 
Adapted from Kikas et al., 2020. 
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5.3. Placental miRNome and its modulators 

5.3.1. Gestational dynamics of placental microRNAs expression  

As microRNAs are needed for fast-acting gene expression regulations, it was 
hypothesized that their expression dynamics evolves and depends on gestational 
age. MicroRNA levels in three gestational time points were assessed in 20 samples, 
representing the first trimester [n=5, median 60 (51–81) gestational days, g.days], 
second trimester [n=7, 121 (108–140) g.days], and term pregnancy [n=8, 284 
(260–291) g.days] cases. MiRNome sequencing resulted in 2656 mature miRNAs 
transcripts across all 20 samples, whereas 417 microRNAs had median raw read 
counts over 50 across all analyzed samples (Ref. 3. Methods). A broad variability 
in expression ranges of individual placental microRNAs was detected in all 
trimesters (Figure 10A and Supplementary Figure 1 in Ref. 3). The highest 
expressed microRNAs demonstrated different gestational dynamics, miR-143-3p 
expression level increased throughout gestation (Figure 10B). Unlike miR-30d-
5p, miR-92a-3p and miR-512-3p had the highest expression in the first trimester.  

The majority, 319 of 417 (76.5%) of tested miRNAs, exhibited significant 
gestational expression dynamics (Table 7, Supplementary Tables 8, 9 in Ref. 3). 
In total, 227 (54.4%) miRNAs were differentially expressed between first and 
second trimester [FDR < 0.05; log2(FC) from −4.91 to 2.84; 125 down- and 102 
upregulated], and 211 miRNAs (50.1%) between second trimester and term 
pregnancy placental samples [FDR < 0.05; log2(FC) from −2.41 to 2.52; 110 
down- and 101 upregulated]. More than a quarter of tested miRNAs (n = 119/417; 
28.5%) represented differentially expressed miRNAs (DEmiRs) in both compari-
sons, indicating their potential critical contribution in fine-tuning placental tran-
scriptome profile in gestational age-dependent manner until term (Supplementary 
Table 10 in Ref. 3). 
 
Table 7. Expressional patterns from first to second trimester – from the second trimester 
to term pregnancy 

Category All miRNAs (miRNA mature transcripts: n, %)a,b 
Down – Down 30 (7.2%)
Down – No change 67 (16.1%)
Down – Up 28 (6.7%)
Up – Up 35 (8.4%)
Up – No change 41 (9.8%)
Up – Down 26 (6.2%)
No change – Down 54 (13.0%)
No change – Up 38 (9.1%)
No change – No change 98 (23.5%)

a Median raw read counts over 50 across all analyzed samples; empirically determined transcript 
level for robust differential expression testing. bMajor patterns of expression dynamics are high-
lighted in bold; the expected proportion given an equal representation of each pattern is ∼11%. 



39 

Figure 10. Distribution of placental miRNome during gestation.  
(A) Transcript levels of the analyzed 417 miRNAs in the first (median 60; range 51–81 
g.days) and second trimester (121; 108–140 g.days) and term placental samples (284; 
260–291 g.days). microRNA expression was quantified in counts per million reads 
mapped (CPM). Highly expressed miRNAs (CPM > 25,000) are indicated. Full details 
are provided in Ref. 3 Supplementary Table 1. (B) Trimester-specific expression levels 
of placental miRNAs with the highest transcript levels. Differential expression testing 
between the three trimesters of pregnancy was implemented in DESeq2 (ver. 1.22.2) 
(Love et al., 2014) package for R with default settings. Log2(FC), log2 fold change in 
CPM; FDR, false discovery rate, calculated based on Benjamini–Hochberg method. 
Adapted from Inno et al., 2021. 
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The tested 417 placental microRNAs were assigned to one of nine subgroups 
representing their temporal expression dynamics pattern across three trimesters 
of pregnancy (Table 7, Supplementary Figure 2 in Ref. 3). The most general 
expression dynamics pattern represented microRNAs exhibiting specifically high 
transcript levels in early pregnancy (n = 67 miRNAs, ~16%). The second frequent 
pattern reflected microRNAs downregulated only at term (n = 54, ~13%). High 
microRNA expression restricted to the second trimester was the rarest observed 
expressional pattern (n = 26, ~6%). A stable expressional window from early 
pregnancy to term was identified for 98 miRNAs (23.5%). 

With placental role changing during pregnancy, microRNAs are suitable for 
fine-tuning evolving requirements. These changes could also transpire in case of 
complications where placental function changes compared to a normal placenta.  
 
 

5.3.2. Expression variation of PE associated microRNAs 

Placental miRNomes representing term cases of late-onset preeclampsia (LO-
PE), gestational diabetes (GD), and small- and large-for-gestational-age new-
borns (SGA, LGA) were tested for differential expression in comparison to normal 
pregnancies (n = 8 in each group; all cases after 37th g.week). Only PE placentas 
demonstrated a major shift in their miRNome profile that affected 66 of 417 
(15.8%) microRNAs (FDR < 0.05; Figure 11 and Supplementary Tables 21, 22 
in Ref. 3).  

Seven significantly upregulated microRNAs overlapped with the placental 
DEmiRs reported in early-onset PE cases (EO-PE, before 34th g.week) (Awamleh 
et al., 2019). Several of these showed large changes in their expression level: 
miRNAs miR-210-3p (FC = 2.64), miR-193b-3p (2.53), miR-193b-5p (2.29), 
miR-365b-3p (1.93), miR-365a-3p (1.92), miR-520a-3p (1.82) (Supplementary 
Table 21 in Ref. 3).  

Differentially expressed miRNome in PE was comprised of both dynamic and 
stable miRNAs. No specific pattern of normal gestational dynamics was prefe-
rentially altered (Figure 12). Several miRNAs normally downregulated at term 
were characterized by increased transcript levels in PE placentas corresponding 
to their typical mid-gestation values (e.g., miR-210-3p, miR-31-5p, miR-96-5p, 
miR-193a-3p, miR-519a/b-5p; Figure 11). On other occasions, microRNA ex-
pression in PE placentas was significantly downregulated compared to other 
analyzed samples (e.g., miR-196b-5p, miR-411-3p, miR-1247-5p). PE miRNome 
also showed aberrant upregulation of several microRNAs typically stably ex-
pressed across gestation (e.g., miR-365a/b-3p). 
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 Figure 11. Examples of the most significant differentially expressed microRNAs in PE. 
microRNA expression was quantified in counts per million mapped reads (CPM). FDR, 
false discovery rate, calculated based on Benjamini–Hochberg method; GD, gestational 
diabetes; NORM, normal term pregnancy; PE, preeclampsia; LGA, large-for-gestational-
age; FC, fold change in CPM; SGA, small-for-gestational-age. Adapted from Inno et al., 
2021. 
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Figure 12. Differentially expressed microRNAs in preeclampsia (PE).  
Distribution of differentially expressed microRNAs in PE placentas according to their 
gestational dynamics patterns. microRNAs transcribed from placental-specific C14MC 
and C19MC clusters are highlighted in blue and red, respectively. Adapted from Inno 
et al., 2021. 
 
 

5.3.3. microRNA eQTL regulating microRNA expression  

The effect of genetic variation on the placental miRNome was analyzed. Placental 
eQTLs for 417 miRNAs were assessed through genetic association testing between 
their transcript levels in 40 term placental samples (Table 4) and genotypes of 6,274 
common SNVs located ±100 kb from the microRNA genes. In total, 66 miR-
eQTLs for 16 microRNAs were detected (FDR < 0.05; 3.8% of tested miRNAs; 
Figure 13, Supplementary Table 33 and Supplementary Data 2 in Ref. 3).  

Four of 16 placental microRNAs modulated by eQTLs were also identified as 
DEmiRs in PE (miR-30a-5p, miR-210-3p, miR-490-3p, miR-518-5p). Despite 
the limited sample size, the effect of miR-eQTL on some microRNAs was ob-
served in all three trimesters of pregnancy (e.g., pairs rs447001 and miR-130b-
3p/5p, rs2427554 and miR-941, rs12642661 and miR-1269a). The most extreme 
SNV-miRNA identified pair was rs7046565 (A/G) and miR-3927-3p. The major 
allele AA-homozygosity completely suppressed the expression of miR-3927-3p. 
This effect was also detected in second-trimester placental samples (Figure 13). 
Among 66 identified placental miR-eQTLs, 18 eQTLs were unique to placental 
microRNAs, and 48 have also been reported in the GTEx database as expressional 
modulators of 53 coding genes (Aguet et al., 2020).  
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In our placental RNA-Seq dataset, 32 of them were expressed. Statistically signi-
ficant associations (FDR < 0.05) were detected with transcript levels of the 
KLHL3 (rs10515496), SNX11 (rs11651097), ANO9, and PTDSS2 (rs12420868) 
genes (Supplementary Table 34 in Ref 3). However, these statistical associations 
were weaker than the initially detected effect on the adjacent miR-874-3p, miR-
152-3p, and miR-210-3p. 

Three miR-eQTLs (SNVs: rs12420868, rs12985296, rs7046565) showed 
nominal associations in the discovery dataset (n = 40, Supplementary Table 35 in 
Ref. 3). These variants were used in replication testing with pregnancy traits in 
the REPROMETA (n = 326) and HAPPY PREGNANCY (n = 1,772) pregnancy-
related cohorts (Supplementary Table 3 and Supplementary Methods in Ref. 3). 
No statistically significant associations were identified with the height, weight, 
head and chest circumference of newborns, placental weight and PE or GD in-
cidence in independent cohorts or their meta-analyses (all tests, FDR > 0.05; 
Supplementary Table 36 in Ref. 3). A non-significant trend was detected between 
rs12420868 (eQTL for miR-210-3p) and newborns’ head circumference (meta-
analysis: nominal P < 0.05; Supplementary Figure 3 in Ref. 3). 

 

5.4. Expression of placental miRNome is correlated  
with the transcriptome  

MicroRNAs, as the gene expression regulator, have regulatory influence over 
multiple genes. Correlation analysis between the expression levels of 66 placental 
DEmiRs identified in PE and placental transcriptome was performed using the 
corresponding miR-Seq and RNA-Seq datasets of 40 term pregnancy samples. 
Hierarchical clustering based on the expressional correlation with the transcript 
levels of 16,567 genes assigned the tested microRNAs into five groups, G1-G5, 
each containing 6–22 miRNAs (Figure 14, Supplementary Data 1 in Ref. 2). 
In these groups, there was a highly non-random distribution of microRNAs from 
C19MC (G1:10 miRNAs, G5:3) and C14MC (G4:9, G3:2, G5:1) clusters  
(χ2-test, p = 1.5 × 10–5), providing further support to their distinct roles in the 
modulating placental transcriptome. The C14MC cluster outlier microRNA that 
did not correctly fit in either groups G4 or G5 was miR-376a-5p. Furthermore, 
this microRNA already stood out in the differential expression analysis with an 
opposite behavior compared to the rest of the C14MC microRNAs (Figure 14). 
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Figure 14. Correlation analysis between microRNAs altered in preeclampsia and the 
whole transcriptome of 40 term placental samples. The heatmap shows the hierarchical 
clustering of microRNAs based on the expressional correlation with mRNA transcripts 
of coding/lincRNA genes. Each row represents one microRNA, and each column one 
gene. Expressional correlation is presented from –1 (maximum negative correlation, blue 
color) to 1 (maximum positive correlation, red). The value 0 indicates no correlation. 
microRNAs groups G1-G5 were formed based on their clustering. Adapted from Inno 
et al., 2021. 

 



46 

5.5. Dynamics of placenta-specific C14MC and C19MC  
in normal and aberrant pregnancy 

In the placental miRNome dataset, a notably high fraction, 125 out of 417 (∼30%) 
expressed microRNAs, belonged to the primate-specific microRNA cluster 
C19MC (detected mature placental microRNAs, n = 65; 15.6%) or to the eutherian-
specific clusters C14MC (n = 58; 13.9%) (Table 8, Table 2A and Supplementary 
Table 1 in Ref. 3).  
 
Table 8. Placenta-specific microRNA cluster C14MC and C19MC description 

 miRNA categories 
Category C19MCa 

chr19q13.42 
C14MCb 

chr14q32.31 
Comparative general profile of miRNA categories 
Gene cluster size (kb) ~100kb ~250kb 
Placenta-specific  All All 
Parent of origin expression Paternal Maternal 
All miRNA genesc (n) 46 52 
All mature miRNA transcriptsc (n) 67 94 
All identified placental mature microRNA transcripts 
in Ref. 3 (n) 

67 93 

Placental mature miRNA transcripts with adequate 
expression level for confident statistical testing (n)d 

65 58 

a Primate-specific miRNA cluster; b Eutherian-specific miRNA cluster; c Data from miRBase 
version 22.1 (Kozomara et al., 2019); d median raw read counts over 50 across all analyzed samples; 
empirically determined transcript level for robust differential expression testing; C14MC, chromo-
some 14 microRNA cluster; C19MC, chromosome 19 microRNA cluster 
 
These clusters showed markedly different patterns of gestational expression 
dynamics. About ∼2/3 of C19MC cluster microRNAs are specifically highly 
transcribed in early pregnancy, with a significant drop in the second trimester and 
a slight increase at term (Figure 15 and Table 2B, Supplementary Tables 8, 9 in 
Ref. 3). The C14MC cluster showed diverse expression in the first trimester, but 
more coordinated transcript levels in later gestational ages. The majority of 
C14MC microRNAs showed high expression in the second trimester and signi-
ficant downregulation before term. Only five C14MC but 22 C19MC microRNAs 
exhibited stable expression levels from early pregnancy until delivery.  
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Figure 15. C19MC and C14MC microRNA expression compared with target genes trough 
out gestation.  
Expression dynamics of C19MC and C14MC microRNA clusters across gestation com-
pared to the transcript levels of their miRTarBase target genes. Placental transcript levels 
were confidently quantified for 63/76 and 215/262 predicted target genes of C19MC and 
C14MC, respectively. microRNA and gene expression levels during pregnancy are pre-
sented in Z-scores; expression data for microRNAs are shown in red, and for target genes 
in blue. Adapted from Inno et al., 2021. 
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6. DISCUSSION  

6.1. Preeclamptic placenta shows a substantial shift  
in gene and microRNA expression  

Placenta is an irreplaceable organ for mammalian pregnancy (Turco and Moffett, 
2019). This thesis investigated gene expression changes in pregnancies with com-
plications (Ref 1.), eQTL as a preeclampsia risk factor, and set forward to provide 
a comprehensive overview of the placental miRNome, its expression dynamics 
across gestation and in term pregnancy complications, and the correlation of pla-
cental microRNA levels with the transcriptome and genetic variations. 

The development of a pregnancy complication is a complex process, encom-
passing multiple biological pathways regulating fetal development, placental 
function, and maternal physiology. To enhance the understanding of the occurrence 
and underlying causes of pregnancy complications, this study employed a placental 
multi-omics research approach, leading to novel insights. Statistically significant 
differential expression of 215 genes and 66 microRNAs was identified in LO-PE 
placental transcriptomes and miRNomes, respectively (Ref. 1 and Ref. 3). This 
shift of the placental transcriptome was only observed in PE, but not in the 
placentas of other term pregnancy complications. When comparing published 
placental transcriptome-based studies of PE cases, only around half of detected 
differentially expressed genes overlap between studies (Van Uitert et al., 2015). 
Therefore, it can be concluded that PE placentas represent a diverse set of 
functional errors and are not confined to specific molecular pathways or bio-
logical functional categories. A broader shift in gene expression in PE placentas 
observed in this study (Ref. 1) has also been reported by others (Kondoh et al., 
2022). 

Opposed to that, we identified little or no transcriptome shift in gestational 
diabetes (GD) or cases with a too-large or too-small newborn for their gestational 
age (LGA and SGA, respectively)(Ref. 1). Interestingly, SGA placentas showed 
a moderate change in the expression of the similar set of genes. This data contri-
butes to increasing knowledge of the different origin and etiologies of pregnancy 
pathologies.  

microRNAs are among the main transcriptome regulators, and multiple factors 
such as gestation, altered biological need, and genetic variations possibly modu-
late their placental expression levels. This study brings essential added value to 
understanding the dynamics and function of miRNome in normal and compli-
cated pregnancy. In total, 66 differentially expressed microRNAs in PE were 
detected (Ref. 3). Circovic and colleagues conducted a meta-analysis for studies 
investigating microRNA expression in PE cases compared to healthy individuals 
(Cirkovic et al., 2021). Meta-analysis was performed for the most common 14 
microRNAs in those datasets, and seven of them were upregulated in the case of 
PE. In comparison with Ref 3. only miR-210 overlapped in our studies. The mini-
mum overlap between different studies could be caused by how samples are 
collected, cases and controls matched, or additional variables in the study design 
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and methods. Importantly, as microRNAs regulate more than one gene at a time 
and multiple microRNAs regulate one gene, the contribution of a single micro-
RNA to pathology is considered modest (Komatsu et al., 2023). Notably, 23 out 
of 66 differentially expressed microRNAs in PE have been previously described 
in the context of pregnancy complications, representing potential non-invasive 
biomarkers when analyzed from maternal biofluids. 

  
 

6.2. Genetic variations modulate placental gene  
and microRNA expression  

Both genes and microRNAs are modulated by expression quantitative loci (eQTLs) 
(Xi et al., 2022). It has been shown that some of the eQTL are tissue- or even 
condition-specific (Zhang and Zhao, 2023). Placental eQTLs are analyzed in only 
a few studies (Kikas et al., 2021). Most studies have used a candidate gene-based 
approach for a known gene associated with pregnancy complications. Four stu-
dies have used a hypothesis-free approach for detecting placental eQTLs (Api-
cella et al., 2023; Delahaye et al., 2018; Kikas et al., 2019; Peng et al., 2017). Due 
to differences in the study design (number and nature of included pregnancies, 
different analysis methods), the profile of reported placental eQTLs has differed 
between studies, and the number of overlapping eGenes (regulated by eQTLs) is 
limited to less than 20.  

This study robustly replicated the genetic association between LO-PE and 
SNP rs4769613 (T/C) in the expression regulatory region of the FLT1 gene 
(Ref. 2). Importantly, this variant was shown to act as a conditional eQTL in  
LO-PE placentas whereby C-allele was associated with significantly higher FLT1 
transcript levels. Recently, it was also shown that the placental FLT1 rs4769613 
(T/C) genotype could be incorporated into the prognostic models and clinical and 
serum biomarker data to estimate the risk of developing PE (Ratnik et al., 2022).  

For the first time, the study set forward to identify placental miR-eQTLs, SNPs 
modulating placental microRNA levels (Ref. 3). Previous microRNA eQTL 
studies have focused on candidate microRNA analysis (Konwar et al., 2019; Lu 
et al., 2021). This study used a hypothesis-free approach to detect microRNA 
eQTLs located in ±100 kb from the miRNA genes in placental tissue and 
identified 66 miR-eQTLs for 16 microRNAs. It has been discussed that miR-
eQTLs may influence the expression of multiple genes due to the broad number 
of microRNAs target genes (Sonehara et al., 2022). However, even though miR-
eQTLs could drastically affect single microRNA levels, other microRNAs could 
compensate for this change to guarantee required mRNA levels. Therefore, detect-
able changes are minuscule compared to eQTLs affecting protein-coding gene 
expression with potentially a more meaningful phenotypic effect. Also, in this 
study, miR-eQTL effects did not transfer to an apparent clinical phenotype – only 
a trend between one miR-eQTL and newborn head circumference was detected. 
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6.3. Placenta gene and microRNA expressions  
are interconnected 

This study demonstrated that microRNAs have dynamic expression during 
gestation and can be subgrouped based on their expression patterns (Ref. 3). 
These dynamic expression changes represent placenta requirements that are 
changing during gestation. Pathways regulated by microRNAs are overlapped, as 
one microRNA can regulate more than one gene at a time, allowing a group of 
microRNAs to have a significant role in gene expression (Berezikov, 2011). The 
placenta needs cohesive and timely regulated gene expression (Suryawanshi 
et al., 2022). As microRNAs bind to mRNA and halt its translational activity, 
allowing higher accuracy in a shorter time (Winter et al., 2009).  

When studying placenta transcriptome and miRNome, it would be prudent to 
consider their joint action in guiding the roles of the placental tissues. Studies that 
have been focused only on either transcriptome (Kaartokallio et al., 2016; Kim 
et al., 2012) or miRNome (Awamleh et al., 2019; Guo et al., 2011; Östling et al., 
2019) have added substantial knowledge in advancing the understanding on the 
placental function. However, combining different omics datasets in this study 
allowed us more precise insight into the regulation of placental gene expression. 
This approach was previously also used by (Biró et al., 2016), incorporating avail-
able microRNA and gene expression microarray datasets to create a network of 
microRNA interactions. One of the limitations faced in this past study was the 
unavailable transcriptome and miRNome datasets generated from the same bio-
logical samples and insufficiently characterized clinical cases. Our datasets over-
come these limitations, being generated from the same samples with a detailed 
clinical profile facilitating interpretation and drawing several novel conclusions, 
such as tight co-dependency between the placental transcriptome and microRNA 
expression profiles across pregnancy. Gong and fellows used a broader approach 
and aimed to describe the whole placental RNA landscape (Gong et al., 2021). 
They described different types of RNAs in the placenta, finding that the most 
common types were mRNA (81.4%) and microRNA (86.2%) based on total 
RNA-Seq and small RNA-Seq, respectively.  

One challenge in analyzing gene-microRNA interactions is correctly inter-
preting the nature of the observed expression correlations. Altered gene and micro-
RNA expression in term samples could reflect the compensation mechanism for 
the attempt to maintain functional homeostasis of the placenta (Torres-Torres 
et al., 2023). In addition to the expected negative expression correlation (Stavast 
and Erkeland, 2019), significant positive correlations between expression levels 
of a high number of genes and microRNAs were detected in this study. Two 
alternative scenarios could explain this. Firstly, high microRNA expression levels 
may reflect their rising concentrations before the actual effect on inhibition of the 
mRNA quantities. Secondly, these observations may also represent molecularly 
unlinked genes and microRNA. High levels of both are important to guarantee 
the required cellular transcriptome at each timepoint – inhibition of mRNA levels 
of some target genes by highly expressed microRNAs may indirectly enhance the 
transcripts levels of other genes. 
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6.4. Placenta-specific microRNAs clusters C14MC and 
C19MC have distinct functions in gestation 

Two microRNA clusters, C14MC and C19MC, are predominantly expressed in 
placental tissue (Malnou et al., 2018). C14MC is mammalian-specific and mater-
nally expressed. It is believed to regulate normal placental development (Morales-
Prieto et al., 2013). In our study dataset, C14MC microRNA expression stayed 
high during most of the gestation and lowered at the end. As C14MC function is 
associated with fetal growth and neurological development, these systems develop 
at earlier pregnancy stages (Labialle et al., 2014). This fits with the expression 
pattern detected in our study.  

C19MC is primate-specific and needed for more precise regulations of 
placental development (Malnou et al., 2018). The primate placenta has complex 
structures, and more regulatory elements are needed for cell invasion and the end 
of the pregnancy. C19MC has a vital role at the beginning and the end of ges-
tation. This functional pattern is also detected in Ref. 3, where C19MC micro-
RNA expression is highest in our first trimester and term samples. C19MC has 
previously been associated with the development of preeclampsia (Hromad-
nikova et al., 2015). As pregnancy complications development varies based on 
the time of onset, microRNA gestational expression could be an important factor 
for monitoring the progression of placental development (Jaszczuk et al., 2022).  

C14MC and C19MC microRNAs have been of great interest in pregnancy 
research as biomarkers for gestational complications. Multiple studies have used 
serum or plasma samples to detect differential microRNA expression in preg-
nancy pathologies (Aplin et al., 2020). Knowing the microRNA expression level 
and its dynamical change in the placenta could increase the accuracy of tests 
based on microRNA expression levels (Sørensen et al., 2022). 
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7. CONCLUSIONS 

In framework of current doctoral thesis placental whole transcriptome and miR-
Nome dynamics during gestation and late pregnancy complications was profiled. 
The results can be summarized as follows: 

1. In RNA-Seq based analysis, preeclamptic (PE) compared to normal placentas 
showed differential expression of 215 genes. In locus-based experimental 
validation using TaqMan RT-qPCR, 42 out of 45 tested differentially expressed 
genes exhibited concordant expressional change with the original dataset. As 
a large set of genes are differentially expressed in PE, the reason for these 
could be present in an earlier stage of pregnancy. Knowing the changes in 
genes expression could be used to focus on diagnostic studies. 

 
2. In unfavorable placental conditions, single nucleotide variant rs4769613 near 

the FLT1 genes was validated in combined datasets of the REPROMETA and 
HAPPY PREGNANCY to be a conditional eQTL. This risk factor could be 
integrated into a prognostic test for more precise risk evaluation.  

 
3. Placental microRNA expression can change based on gestation progression, 

genetic variants near microRNA genes, or pregnancy complications influencing 
placental function can alter microRNA expression. In future studies, it is 
crucial to match study samples for gestational age and identify potential variants 
causing the change in microRNA expression.  

 
4. A comparison of transcriptome and miRNome shows a significant correlation 

between certain microRNA subgroups and functionally linked sets of the 
placenta genes, potentially indicating a co-dependent expression regulation. 
Grouping microRNAs with genes that share functional pathways may help to 
find new gene expression regulators among microRNAs not detected by the 
microRNA target gene prediction approach.  

 
5. The gestational expression profile of placenta-specific microRNA clusters 

C14MC and C19MC refer to their critical roles in different gestational stages. 
C14MC microRNAs have a broader range of expression at the beginning of 
pregnancy and with gradually reduced expression towards the delivery, whereas 
C19MC microRNAs exhibit high transcript levels in early and late pregnancy, 
with a slope in the mid-gestation. The unique role of these microRNA clusters 
makes them potential candidates for biomarkers in different stages of preg-
nancy. 
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SUMMARY IN ESTONIAN  

Platsenta transkriptoom ja miRNoom tervete  
ja komplikatsioonidega raseduste korral 

Probleemideta rasedus on oluline igale emale, selle eelduseks on korrektne plat-
senta töö.  

Platsenta omab raseduse ajal tähtsat rolli, olles oluline toit- ja jääkainete vahen-
daja ema ja loote vahel. Lisaks sellele täidab platsenta ka endokrinoloogilist funkt-
siooni tootes raseduse kestvuseks vajalikke hormoone ja teisi signaalmolekule, 
mis sekreteeritakse ema organism.  

Platsenta funktsioneerimist mõjutavad mitmed tegurid, nii raseda elustiili 
harjumused kui erinevad sisemised ja välimised stiimulid. Selleks, et platsenta 
suudaks oma rolli täita, peab ta olema emaka seinaga põimunud ning saavutanud 
korrektse verevarustuse ema organismiga. 

Kuna platsenta eksisteerib ainult lühikese ajaperioodi jooksul võrreldes teiste 
organitega, on tema areng samuti kiire. Esimese trimestri lõpuks peab platsenta 
olema välja arenenud ja võimeline toetama loote arengut. Platsenta kiire areng 
nõuab ajaliselt reguleeritud geenide ekspressiooni, platsenta transkriptoomi, 
regulatsiooni. Rasedusega suureneb mitmete kasvuhormoonide ja rasedusega 
seotud molekulide tase ema organismis. Nende geenide ekspressiooni kiireks 
reguleerimiseks on mitmeid erinevaid viise, milleks üks on mikroRNAd. Plat-
sentas ekspresseeruvate mikroRNAde kogum, miRNoom, on üheks osaliseks 
geenide ekspressiooni tasemete regulatsioonis. Inimese organismis eksisteerib 
kaks raseduse spetsiifilist mikroRNA klastrit. Üks asub kromosoomil 14 ja teine 
kromosoomil 19. Lisaks nende asukohale genoomis, eristab neid ka nende spet-
siifilisus. Kromosoomil 14 paiknev mikroRNAde klaster on imetajate spetsiifi-
line ning omab ortolooge teistes liikides. Kromosoomil 19 paiknev kromosoomide 
klaster on primaatide spetsiifiline ning on evolutsiooniliselt palju noorem. 

Üks sagedasemad raseduse komplikatsioone on seotud vastsündinu sünni-
kaaluga, olles kas liiga suur või väikegestatsiooniaja kohta. Kui naisel esineb 
suurenenud rasedusaegne kaalutõus või on varasemalt olnud probleeme dia-
beediga, võib raseduse jooksul välja kujuneda gestatsioonidiabeet. Selle taga-
järjel on häiritud loote ainevahetus ning on soositud liigne üsasisene kaalutõus. 
Osadel juhtudel on häiritud platsenta võime tagada lootele sobilik üsasisene elu-
keskkond ning varustada loodet vajalike toitainetega. Selline olukord toob kaasa 
suurenenud stressi ema organismile, väljendudes kõrgenenud vererõhu ning häi-
runud neerude funktsiooniga. Sellises olukorras võib välja areneda preeklampsia, 
mille üheks tunnuseks on ema uriinist tuvastatav normist suurem kogus valku. 
Ema organismile suurenenud stress võib viia ka tõsisemate sümptomite tekkeni 
ning ainuke ravivõimalus on sünnituse esilekutsumine. Peale raseduse lõppu ja 
platsenta eemaldamist sümptomid taanduvad. 

Parimaks meetodiks platsentas esinevate kõrvalekallete analüüsimiseks on 
järgmise põlvkonna sekveneerimine (NGS). NGS võimaldab hüpoteesi vabalt 
hinnata platsentas eksisteerivate geenide ja mikroRNAde tasemeid. Hüpoteesi 
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vaba lähenemise eelis varasemate meetodite üle seisneb saadavas informatsiooni 
hulgas. Kui varasemate meetodite kasutamisega oli piiravaks faktoriks uurin-
gusse kaasatud geenide ja mikroRNAde hulk, siis NGS-il piirang puudub, 
võimaldades tuvastada ja analüüsida kõigi proovis esinevate geenide ja mikro-
RNAde lugemit. 

Antud doktoritöö põhieesmärk oli kirjeldata platsenta transkriptoomi ja 
miRNoomi, ning nende muutumist raseduskomplikatsioonide korral. 
 
Püstitatud eesmärgid: 

1. Leida platsentas raseduskomplikatsioonide korral diferentsiaalselt ekspres-
seerunud geenid. 

2. Kirjeldata mikroRNAde ekspressiooni profiili muutust raseduse kulgemise 
jooksul ning leida diferentsiaalselt ekspresseerunud mikroRNAd rasedus-
komplikatsioonide korral. 

3. Hinnata genoomis eksisteerivate ühenukleotiidsete variatsioonide mõju 
preeklampsia riskile ning mikroRNAde ekspressiooni tasemele. 

 
Doktoritöö peamised tulemused on:  

1. Võrdlesime raseduskomplikatsioonideta platsentade transkriptoomi preek-
lampsia (PE), gestatsioonidiabeedi (GD), ning liiga suure või liiga väikese 
sünnikaalu diagnoosiga raseduste (LGA ja SGA) platsentade trasnskrip-
toomiga. Leidsime, et preeklampsia erines selgelt teistest gruppidest, omades 
kõige enam diferentsiaalselt ekspresseerunud gene (n=215). Ülejäänud 
gruppide transkriptoomid olid üldiselt väga sarnased komplikatsioonideta 
platsentade transkriptoomidega, mis omakorda näitab platsenta olulisust PE 
puhul. 

2. Valideerides 45 PE korral differentsiaalselt ekspresseerunud geeni ekspres-
siooni taset RT-qPCRiga, tuvastasime 42 geeni, mis omasid geenide sekve-
neerimisandmestikuga samasuunalist ekspressiooni taseme muutust. Lisaks 
tuvastasime 35 geeni, mis omasid samasuunalist ekspressiooni muutust nii PE 
kui ka SGA grupis, viidates PE ja SGA sarnasusele kuid siiski omades erineva 
suurusega transkriptoomi ekspressiooni kõrvalekallet. 

3. Tuvastasime, et FLT1 geeni lähedal paiknev ekspressiooni mõjutav lookuse 
rs4769613 [C] alleel reguleerib geeni ekspressiooni taset platsentas ebasobi-
vate tingimuste korral. Antud riskifaktori hindamise kaasamine võimaldab 
parandada diagnostiliste meetmete võimekust. 

4. Platsentas ekspresseeruvate mikroRNAde tasemed muutuvad raseduse jooksul. 
mikroRNAde ekspressiooni tasemete hindamise juures on oluline arvesse 
võtta proovi võtmise aega, vältimaks vale diferentsiaalse ekspressiooni tuvas-
tamist.  
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5. PE korral on mikroRNAde ekspressiooni tase kõige enam normist kõrvale 
kaldunud (66 mikroRNAd), võrreldes teiste uuringusse kaasatud rasedus-
komplikatsioonidega (GD, LGA, SGA).  

6. Transkriptoomi ja miRNoomi omavahelises võrdluses tuvastasime seose 
mikroRNAde ja platsentas ekspresseeruvate geenide vahel, moodustades kindla 
funktsiooniga gruppe. 

 
Käesoleva doktoritööga on antud märgatav panus platsenta transkriptoomi ja 
miRNoomi paremaks mõistmiseks nelja erineva raseduskomkplikatsiooni, ges-
tatsiooni aja ning DNA variatsioonide mõju kontekstis. Raseduskomplikat-
sioonide korral asetleidvate geenide ja mikroRNAde ekspressiooni kõrvalekallete 
avastamine annab võimaluse potentsiaalselt uute diagnostiliste lähenemiste 
loomiseks. 
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