
1Tartu 2022

ISSN 2613-5906
ISBN 978-9916-27-114-8

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
40

M
O

H
A

M
ED

 R
A

G
A

B
	

B
ench-R

anking: A
 Prescriptive A

nalysis A
pproach for Large K

now
ledge G

raphs Q
uery W

orkloads

MOHAMED RAGAB

Bench-Ranking: A Prescriptive Analysis
Approach for Large Knowledge
Graphs Query Workloads

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

40

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

40

MOHAMED RAGAB

Bench-Ranking: A Prescriptive Analysis
Approach for Large Knowledge

Graphs Query Workloads

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Supervisor(s)

Ass. Prof. Riccardo Tommasini
LIRIS Lab, INSA de Lyon, France

Prof. Ahmed Awad
Institute of Computer Science, Tartu University, Tartu, Estonia

Opponents

Prof. Dr. Ladjel Bellatreche
Laboratory LIAS at ISAE-ENSMA

Ass. Prof. Ester Zumpano
University of Calabria

The public defense will take place on 13 Jan., 2023 at 14:15 in Narva mnt 18-
2048.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright © 2022 by Mohamed Ragab

University of Tartu Press
http://www.tyk.ee/

ISSN 2613-5906
ISBN 978-9916-27-114-8 (print) ISBN 978-9916-27-115-5 (PDF)

ISSN 2806-2345 (PDF)i(print)

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in Computer Science on Decemberi19, 2022 by the Council of
the Institute of Computer Science, University of Tartu.

http://www.tyk.ee/

To my prophet ("Muhammad" Peace be upon him), my parents "Ragab and
Soaad", my beloved kid "Anas", my sincere wife "Shaymaa", and also to my

sisters "Hala", "Ghada", and "Shaymaa"...

ABSTRACT

We are living in a world in which data are not just getting bigger, it is also getting
more and more interconnected. Graphs are the most intuitive, natural, and flex-
ible data abstraction that handles this interconnectedness in several application
domains of our daily lives, e.g., social media, computational biology and protein
networks, telecommunications, and many more.

The unprecedented volumes of graph data for these applications demand scal-
able systems for efficiently processing large amounts of graphs. There has been
a significant prevalence of graph processing work in academia and industry. This
leads to a surge in the number of systems for storing, managing, and processing
graphs. Building a native scalable engine for querying graphs is still an open prob-
lem. Thus, the current solution for large graph query analytics is to fall back on
reusing existing Big Data (BD) systems harnessing the capabilities of their mature
distributed relational interfaces.

Despite its flexibility, the relational model requires several additional design
decisions when used for representing graphs, which cannot be decided automat-
ically, e.g., the choice of the schema, the partitioning technique, and the storage
formats. Additionally, changing such design decisions in the future is not an easy
task, but it can be even very expensive and time-consuming especially with large
volumes of data. For example, changing the logical relational layout (relational
schema), or physical data storage (partitioning and storage formats) would re-
quire huge data engineering efforts if selected wrongly from the beginning, and
discovered performing inefficiently. Moreover, those design decisions may affect
each other as they have inherent trade-offs. Thus, the BD system performance is
exposed to situational performance results with those dimensions. That is, it is
hard to identify a clear winner out of the experimental solutions space that guar-
antees the best performance of those systems. Thus, it is hard to guarantee a fair
assessment of relational BD systems performance while querying large graphs.

The state-of-the-art research works centered around performance analyses of
querying large graphs are merely descriptive, i.e., they answer the question what
happened? (i.e., comparing performance results of using various experimental
configurations) or at most diagnostic, i.e., why did it happen? (i.e., rationalizing
for instance why a BD system X performed better with an experimental config-
uration C1 better than with another configuration C2) We argue that such kinds
of performance analyses are often overwhelming, and the amount of work left
for taking actionable decisions is huge. Conversely, the Prescriptive Performance
Analysis (PPA) reduces the need for human intervention even further by making
the insights actionable, answering the question what should we do?. For instance,
guiding the BD practitioners to select the experimental configurations that guar-
antee an optimal performance of BD systems when querying large graphs.

This thesis investigates the problem of enabling prescriptive performance an-
alytics of BD systems that query large (RDF) graphs. The BD PPA aims to guide

6

the practitioner directly to actionable decisions, navigating complex experimental
solution spaces (of multiple experimental dimensions, e.g., schema, partitioning,
and storage) without ignoring the underlying dimensions’ trade-offs.

In the thesis, we aim to initially make sense of BD systems’ performance while
querying large (RDF) graphs. We show the limitations of Descriptive and Diag-
nostic Performance Analysis (DDPA) and showcase how they are inconvenient to
attain clear decisions. This is shown even further when ensuring the replicability
of BD systems that query large (RDF) graphs. For example, the performance of
Spark-SQL system with RDF relational schema advancements does not general-
ize, introducing other new experimental dimensions, e.g., storage and partitioning.

Thus, this calls for designing a prescriptive framework for analyzing the BD
performance for querying large (RDF) graphs. The thesis investigates how to
enable prescriptive analytics via ranking criteria. We designed a PPA frame-
work (called "Bench-Ranking") that employs several Single-Dimensional (SD)
and Multi-Dimensional (MD) ranking criteria for ranking the system’s perfor-
mance with several experimental dimensions. Bench-Ranking provides an ac-
curate yet simple way that supports the practitioners in their evaluation tasks even
in the existence of dimensions trade-offs. Finally, the thesis provides evaluation
metrics for assessing the efficiency of the proposed ranking criteria.

The last but not least contribution of this thesis is wrapping the Bench-Ranking
PPA methodology into a reusable and extensible Python library (called PAPyA).
PAPyA aims to hide the complexity of Bench-ranking functionality and metrics
and reduces the time and effort in reaching informed decisions in the realm of BD
systems scenarios with several design decisions (e.g., querying large graphs).

The thesis concludes the work by giving insights and future directions related
to the area of querying and processing large graphs on top of Big Data relational
frameworks.

7

CONTENTS

1. Introduction 16
1.1. Problem Statement . 17
1.2. State-of-the-Art . 19
1.3. Research Questions . 20

1.3.1. Macro Level of Analysis 20
1.3.2. From Macro to Micro Analyses 21

1.4. Approach and Contributions . 22
1.5. Research Assumptions . 23

1.5.1. Making sense of Descriptive Performance Analysis (Micro 1) 23
1.5.2. Assessing the Big Data Systems Replicability (Micro 2) . . 24
1.5.3. Bench-Ranking: Deciding over Complex Solution Space (Mi-

cro 3) . 24
1.5.4. Automating Prescriptive Performance Analysis (Micro 4) . 24

1.6. Outline of the Thesis . 25

2. Preliminaries and Background 27
2.1. Big Data Analytics and Challenges 27
2.2. Big Data Systems . 27

2.2.1. Apache Hadoop . 28
2.2.2. Apache Hive . 28
2.2.3. Apache Impala . 28
2.2.4. Apache Spark & Spark-SQL 29

2.3. Big Data Distributed Storage . 29
2.4. The Semantic Web and Linked Data 31

2.4.1. Resource Description Framework (RDF) 32
2.4.2. SPARQL Protocol and RDF Query Language (SPARQL) . 33

2.5. Relational Model and Relational Algebra For SPARQL 35
2.6. RDF Processing Systems . 35

2.6.1. Native RDF Graph Processing Systems 35
2.6.2. Non-native (Relational) RDF Processing Systems 36

2.7. RDF Relational Schema Representation 36
2.7.1. Advancements of RDF Relational Schemas 37

2.8. (RDF) Graph Partitioning . 39

3. Making Sense of Big Data System Performance for Processing Large
Knowledge Graphs 41

3.1. Experimental Design Decisions 41
3.1.1. Dimensions’ Experimental Space 42

3.2. Experiments Design . 43
3.2.1. Benchmark Datasets & Query Workloads 43
3.2.2. Experimental Setup and Evaluation Environment 45

8

3.3. Results and Performance Analysis 47
3.3.1. Descriptive and Diagnostic Analyses’ Limitations 48
3.3.2. Performance Complexity Issues 55
3.3.3. Can we make sense of performance results? 56

3.4. Best Practices for Querying Large RDF Graphs Using Relational
Big Data Systems . 58

3.5. Discussion . 60

4. Big Data Systems Performance Replicability 62
4.1. Methodology and Experiments 62
4.2. Benchmark & Experimental Setup 64
4.3. Replicability Results . 65

4.3.1. WPT versus PT Schema Results 66
4.3.2. ExtVP versus VP Schema Results 68

4.4. Discussion . 71
4.4.1. Hypothesis 1: The WPT schema always outperforms PT schema 72
4.4.2. Hypothesis 2: The ExtVP always outperforms VP schema . 74

4.5. Concluding Remarks and Best Practices 75
4.5.1. Best Practices with Schema Optimizations 75

5. Bench-Ranking: A Framework BD Prescriptive Performance Analy-
sis 77

5.1. Bench-Ranking Preliminaries . 77
5.2. Single-Dimensional (SD) Ranking Criteria 78

5.2.1. Single-Dimensional Ranking Analysis Results 80
5.3. Multi-Dimensional (MD) Ranking Criteria 84
5.4. Multi-Dimensional Criteria Results 85
5.5. Evaluating Ranking Criteria . 86

5.5.1. Ranking Criteria Evaluation Results 89
5.6. Discussion . 90

5.6.1. Bench-Ranking Opportunities and Further Improvements . 90

6. PAPyA: A Tool for Automating Prescriptive Performance Analysis of
Large RDF Graphs Processing 92

6.1. PAPyA Requirements . 94
6.1.1. Architecture, Abstractions, and Internals 94

6.2. PAPyA in Practice . 99
6.2.1. Rich Visualizations . 101
6.2.2. PAPyA Flexibility & Extensibility 104
6.2.3. Checking Performance Replicability 107

6.3. Conclusion and Road-map . 108

9

7. Conclusion and Future Directions 110
7.1. Bench-Ranking Requirements & Research questions 110
7.2. Summary of Contributions . 111

7.2.1. Making sense of Big Data Descriptive Performance Analysis 111
7.2.2. Assessing Big Data Replicability 112
7.2.3. Bench-Ranking:The Big Data Prescriptive Performance Anal-

ysis (PPA) . 112
7.2.4. PAPyA: Big Data Bench-Ranking Made Easy 114

7.3. Open Challenges and Future Directions 114
7.3.1. Workload-driven Automatic Configuration Mining 114
7.3.2. Bench-Ranking alongside Multi-Query Optimization tech-

niques . 116
7.3.3. Learning to Rank (LtR): Predicting the Optimal configurations 117
7.3.4. Bench-Ranking with Costs and Energy Consumption Esti-

mation . 117
7.4. Concluding Remarks . 118

8. Appendix A: Reflections on the State-Of-The-Art of Processing and
Querying Large Knowledge Graphs 137

8.0.1. Graph Management Systems 137
8.1. Graph Analytics Systems meet Graph Querying Systems 139
8.2. Relational Graph Processing: State-of-the-Art 139

8.2.1. Querying Large (RDF) Knowledge Graphs 139
8.2.2. Examples of relational BD RDF querying solutions 140

8.3. Challenges of Relational BD Systems for Querying of Large Graphs 141
8.4. RDF Graph Processing Benchmarking Efforts 142

8.4.1. Big RDF Benchmarking Challenges 143

9. Appendix B: Benchmarks Relational Schemas & Query Workload 146
9.1. Benchmarks Relational Schemas 146
9.2. Query Workload with Relational Schema Translations 147

Acknowledgements 148

Sisukokkuvõte (Summary in Estonian) 149

Curriculum Vitae 151

Elulookirjeldus (Curriculum Vitae in Estonian) 152

List of original publications 153

10

Bibliography 120

LIST OF FIGURES

1. Performance analysis methodology. 18
2. Results disprove (i.e., contradict) while changing the experimental

configurations; latency of Query1 with the Property Tables schema
is less than Query2 with the Subject-based partitioning, but this
turns to dramatically disprove by changing to the Predicate-based
technique. 18

3. Configuration Space of experimental options composed of three di-
mensions (schema, partitioning, and storage), e.g., "a.ii.3" repre-
sents a configuration combined of the ST schema, SBP partitioning,
and the ORC storage format. 23

4. Structure of the thesis. 25
5. Row-oriented and column-oriented data formats [ada17]. 30
6. Example of an RDF graph. Prefixes are ignored for simplicity. . . 33
7. Shapes of SPARQL Queries. 33
8. SPARQL query shown as a graph model. 34
9. ST Schema and an associated SQL query sample. Prefixes are omit-

ted. 37
10. VT Schema and an associated SQL query sample. Prefixes Omitted. 37
11. PT Schema and an associated SQL query sample. Prefixes are omit-

ted. 37
12. Vertically Partitioned Tables(VP) schema 38
13. Extended Vertically Partitioned Tables(ExtVP) schema 38
14. RDF partitioning techniques, (a) HP, (b) SBP (c) PBP. 39
15. Experimental solution space highlighting an example of a config-

uration (a.ii.3) akin to a combination of the experimental options:
(ST schema, SBP partitioning, and ORC file format). 44

16. RDF relational Schema generation process. 46
17. Process of partitioning and storage formats conversion via Spark. . 46
18. Experiment design and workflow in our scenario. 47
19. Contradicting best-performing configurations across datasets (SP2Bench

100M to 250M datasets). 50
20. SP2B queries with best(worst)-performing configurations. 51
21. WatDiv queries with best(worst)-performing configurations. 53
22. Configurations Query Performance for the SP2B and WatDiv queries. 54
23. Descriptive analysis may lead to different cluster deployments. . . 55
24. Experimental dimensions’ best practices for the Spark-SQL system. 59
25. Assessing the performance of Spark-SQL with Schema advance-

ments (WPT, ExtVP) against the baseline schemas (PT, VP), when
changing alternatives of other experimental dimensions (e.g., parti-
tioning, and storage). 63

11

26. The performance of the WPT schema over PT schema in Q2 and Q4
(values below ’1’ means WPT is better than PT) 67

27. The performance of WPT over PT schema in Q8. values (below ’1’
means WPT is better than PT) . 68

28. The performance of ExtVP over VP schema in Q9. (values below
’1’ indicates that ExtVP is better than VP) 71

29. WPT Vs. PT schemata performance using different partitioning
techniques and storage formats 72

30. ExtVP Vs. VP schemata performance using different partitioning
techniques and file formats . 73

31. The configuration space C . 78
32. Single-dimensional ranking scores for the SP2B 500M triples datasets

(The higher the better). 80
33. Single-dimensional ranking scores for the WatDiv 500M triples datasets

(The higher the better). 81
34. Example of dimensions’ trade-offs effect on single-dimensional rank-

ing criteria (Rs,Rp, and R f). 84
35. Aggregated Pareto-Fronts for the SP2B and WatDiv Benchmark datasets.86
36. Ranking criteria conformance for the top-3 ranked configurations. 87
37. Ranking by Part. coherence example across dataset scales. 87
38. Coherence Heat-Maps for the SP2B experiments. 88
39. PAPyA dynamicity to provide PPA for RDF benchmarks, and datasets. 93
40. Papaya architecture and workflow. 94
41. PAPyA internal abstractions. 95
42. Configuration space C . 95
43. RDF relational schema transformations in PAPyA DP. 97
44. Examples on SD Rank Scores over different dimensions (100M),

the higher the better. 103
45. Dimensions trade-offs using single-dimensional ranking (Rs,R f , and

Rp). 103
46. Pareto Fronts, and queries best-worst configuration examples. . . . 103
47. Heatmap shows the coherence of the Rs criterion (Top-5 configura-

tions) scaling from 100M to larger dataset scales. The stacked plot
shows the Conformance of the top-3 ranked configurations. 103

48. Triangle Area criterion. 106
49. Schema Replicability across changing partitioning or storage formats. 107
50. Performance analysis methodology, and how PAPyA reduces human

intervention in BD performance analyses. 109
51. Graph processing workloads main categories, with some examples. 138
52. WatDiv Property Tables (PT) relational Schema. 146
53. SP2B Property Tables (PT) relational schema. 147

12

LIST OF TABLES

1. Summary of the challenges in state-of-the-art. 19
2. Requirements that guide our study experimental design space. . . . 42
3. SP2B & WatDiv queries (SPARQL/SQL) complexity characteris-

tics: number(#) of [J]oins, [P]rojections, and [F]ilters , Shape, i.e.,
[S]tar, [S]now[F]lake, or a single [T]riple[P]attern; (U)nbounded
Predicate Variable, w.r.t schemas (ST, VT, PT). 45

4. Dataset sizes w.r.t schemas in different storage file formats. 47
5. Spark-SQL query evaluation average run times (in seconds) over

configurations (SP2B 500M dataset). 48
6. Best and Worst configurations for the SP2Bench queries across datasets. 48
7. Best and Worst configurations for WatDiv queries across datasets. . 49
8. Domain knowledge related to our experimental dimensions. 57
9. SP2Bench-100M relational schemas size with different file formats 64

10. SP2Bench queries: Number of Joins of PT vs WPT. 66
11. Number of queries for which WPT outperforms PT for data formats

and partitioning techniques. 66
12. The effect of other partitioning techniques, and other storage for-

mats on the reproducibility of the WPT S.O.T.A findings. 67
13. Number of joins and percentage of input tables sizes reductions. . 69
14. Comparison of ExtVP schema with the VP schema in different stor-

age formats, and in different partitioning techniques. 69
15. The effect of other partitioning techniques, and other storage for-

mats on the reproducibility of the ExtVP S.O.T.A findings 70
16. Mapping the partitioning technique to the storage format best prac-

tices in the WPT schema. 75
17. Mapping the partitioning technique to the storage format best prac-

tices in the ExtVP schema. 76
18. Configurations’ query execution runtimes (in seconds). 79
19. Configurations’ rankings according to the query evaluation runtimes. 79
20. Example of Rank Scores for schema dimension. 79
21. Top-3 configurations of the rank sets (R3

f , R3
p, R3

s) across datasets.
For example the Top-3 confs ranking by format (R3

f) in 100M are
from top to down (aiii.3, aii.3, ai.3). 83

22. Top-10 Pareto solutions for the 500M dataset for SP2B and WatDiv. 85
23. Ranking criteria conformance across datasets, k=3, h=17. 89
24. Coherence results across datasets for SP2B & WatDiv benchmarks. 90
25. Summary of challenges and requirements along with PAPyA solu-

tions. 93
26. WatDiv-mini best-performing (Top-3) configurations according to

the SD and MD ranking criteria. 101

13

27. WatDiv-Full best-performing (Top-3) configurations according to
the SD and MD ranking criteria. 101

28. Ranking Coherence (Kendall distance, the lower the better) & Con-
formance across WatDivmini datasets (D1=100M, D2=250M, D3=500M).102

29. Ranking Coherence (Kendall distance, the lower the better) & Con-
formance across WatDiv f ull datasets (D1=100M, D2=250M, D3=500M).102

30. Schemas global ranking across various configurations. 104
31. Best-performing configurations, excluding the partitioning dimen-

sion. 105
32. Criteria evaluation (conform.ance, and coher.ence), excluding parti-

tioning. 105
33. The replicability of schema advancements (i.e., WPT, ExtVP) VS.

baselines (i.e., PT, VP), WatDiv 500M dataset. 108
34. Summary of research questions, the challenges that they address

(see Table 1, in Chapter 1); the related publications, and the chapters
that discuss them. 111

35. Graph Database Systems and Distributed Graph Processing Systems. 138
36. RDF relational schemas used/proposed in the state-of-the-art of RDF

querying relational systems. 142
37. Neglecting performance trade-offs in the state-of-the-art when cov-

ering the experimental dimensions, i.e., Relational Schema, Parti-
tioning, and Storage Formats. 3 Full presence, 7 Full Absence,
! exists with some limitations. 143

38. State-of-the-art Lack of Prescriptive Performance Analysis for Pro-
cessing Large KGs on top of BD Relational Systems. 3Analysis
Provided) , 7Analysis Missing, ! Analysis exists with some limita-
tions. 143

14

LIST OF ABBREVIATIONS

KGs Knowledge Graphs
BD Big Data
RDF Resource Description Framework
SPARQL Simple Protocol and RDF Query Language
SQL Standard Query Language
SW Semantic Web
ST Single Statement Table schema
VT Vertically-Partitioned Table(s) schema
PT Property Tables schema
WPT Wide Property Table schema
ExtVP Extended Vertically-Partitioned Table(s) schema
PBP Predicate-Based Partitioning
SBP Subject-Based Partitioning
SD Single-Dimensional
Rs Ranking by schema dimension
Rf Ranking by storage format
Rp Ranking by Partitioning dimension
MD Multi-Dimensional
MO Multi-Objective Optimization
ETL Extract-Transform-Load
OLAP Online Analytical Processing
OLTP Online Transactional Processing
MPPs Massive Parallel Processing systems
HDFS Hadoop Distributed File System
BI Business Intelligence
AI Artificial Intelligence
ML Machine Learning
KPIs Key Performance Indicators

15

1. INTRODUCTION

Nowadays, we are witnessing an unprecedented growth of interconnected data,
which highlights the vital role of graph analytics in our daily lives [Sak+21;
Fan+20; Bat+15]. Indeed, graph analytics handle many emerging large data man-
agement scenarios in several application domains such as social media, astron-
omy, computational biology, telecommunications, protein networks, and many
more [Bat+15; Sah+20]. Thus, large graph analytics became one of the most
effective Big Data (BD) tasks for getting insights from huge volumes of inter-
connected data [Jun+17]. One recent example on the importance of big graph
analytics is the timely Graphs4Covid-19 1 initiative that aims at alleviating the
global COVID-19 pandemic. This initiative utilized the power of Knowledge
Graphs (KGs) which are efficient means that can integrate vast amounts of vari-
ous related datasets (e.g., PubMed, DrugBank, UniProt, and many others) which
include COVID-relevant data about symptoms, protein structures, previous drug
treatments, cases, and user demographics. Integrating those relevant datasets into
one single source (i.e., the COVID KG), helped greatly to understand the problem
better and get valuable insights seeking potential treatments.

The work on graph processing has become increasingly common in both academia
and industry [Sah+20; RWE15; Jun+17; Bat+15]. As a result, the number of sys-
tems for storing, querying, and analyzing graphs to significantly increase [Sah+20].
For instance, graph database management systems are among the fastest-growing
technologies in todays data management industry [RWE15]. These systems are
mostly native, in the sense that they process a graph stored using dedicated graph
data structures that optimize graph query operations such as graph pattern match-
ing and graph traversals. However, native graph database management systems
do not show good scalability for large query workloads [RWE15; Jun+17]. In-
deed, most graph databases are centralized and require representing the graphs in
main memory to maintain nodes and references to their adjacent nodes. On the
other side, distributed graph computing engines (e.g., Apache Giraph, and Spark
GraphX, and others) can scale, but they only are dedicated for iterative graph
analytics via implementing graph algorithms (e.g., PageRank, Triangle Count-
ing, Connected Components) [Bat+15; Jun+17]. However, these systems are
not dedicated to large declarative graph query processing. Furthermore, creat-
ing a native, scalable graph query engine is still an open challenge [Sak+21].
As a result, the current approach to handling massive graph query analytics is to
rely on reusing already-existing BD systems and utilizing their relational inter-
faces [Pha+15; Sch+16; Sch+14; MAA18].

Despite its flexibility and scalability, using the relational model to query big
graphs necessitates making additional design decisions, such as selecting the re-

1https://neo4j.com/graphs4good/covid-19/

16

https://neo4j.com/graphs4good/covid-19/

lational schema, the partitioning technique, and the storage formats. Unlike the
auto-tuneable system configurations (known as knobs in autonomous database
systems) [Van+21; Van+17], it is hard to determine those design decisions auto-
matically. Furthermore, those choices may have an impact on one another due to
intrinsic trade-offs [Rag+21].

1.1. Problem Statement

The design of a full pipeline for solving BD problems is already a time-consuming
task. Indeed, BD frameworks expose hundreds of system parameters for tun-
ing. The problem aggravates even more when the processing tasks become more
complex, like in the case of querying large graphs [Sak+21], because of the ad-
ditional design decisions (e.g., relational schemas, partitioning techniques, and
storage formats, etc.) that are hard to be automatically decided [Van+21] just
given the graph dataset and workloads. Moreover, changing those design deci-
sions in the future (if selected wrongly from the first design) is extremely costly,
as it would require huge data engineering efforts. Additionally, due to the inher-
ent performance trade-offs among those design decisions, the performance results
are often situational [Rag+21]. That is, there is rarely an absolute winner of the
several available experimental options. For example, evaluating a query work-
load with a BD system with a specific underlying relational schema for represent-
ing a graph can be efficient with a specific partitioning technique and a specific
storage format. Whereas, changing the query workload, the partitioning tech-
nique, or even the underlying physical storage formats can dramatically degrade
the performance [Rag+21]. As a result, it is challenging to provide fair evaluation
or benchmarking of relational BD systems’ performance when querying massive
graphs [RAT21].

Considering existing works that use BD frameworks for querying large Re-
source Description Framework (RDF) graphs, we can notice the gap in the way
they interpret the performance results. Figure 1 shows the four levels of analy-
ses that highlight the amount of human intervention required to make a decision
and take actions (inspired by Gartners analysis taxonomy [Hag17]). The message
is intuitive: the simpler the analysis is, the more work is left to do to transform
analysis into actionable insights.

In the domain of performance analysis for BD systems, we found that pre-
vious works are merely descriptivethat is, they answer the question "what hap-
pened?"or, at most diagnostic, i.e., "why did it happen?" [Lep+20]. For instance,
it can describe that a BD system has better performance (e.g., in terms of query
latency) with a specific relational schema (for representing a graph) than with an-
other one. The diagnostic level of analysis can rationalize the reason behind: the
query workload has less joins with the first schema than with the second schema.
Such analyses of benchmarking and diagnosis also are required to apply to the
other experimental dimensions (e.g., partitioning, storage, or others). We argue

17

Figure 1: Performance analysis methodology.

that such kinds of analyses are often overwhelming, and the amount of work
left for taking actionable decisions (i.e., what experimental options to select) is
huge. Moreover, in the presence of the inherent trade-offs among the experimen-
tal dimensions, the performance results can disprove when changing experimen-
tal design decisions (schema, partitioning, and storage formats) [Rag20]. Fig-
ure 2 2 shows a simplified version of an example of results contradictions (found
in [Rag20]) that occur with changing the experimental parameters, for the perfor-
mance KPIs, e.g., query latency. The performance of the (BD) system with the
same schema (i.e., Property Tables schema) with queries (Query1 and Query2)
disproves changing the partitioning technique (from Subject-based to Predicated-
based) (details and more examples in Chapter 3). The prescriptive performance
analysis, on the other hand, decreases the need for human intervention even further
by turning the insights into actionable recommendations by relying on statistical
and mathematical models.

Figure 2: Results disprove (i.e., contradict) while changing the experimental
configurations; latency of Query1 with the Property Tables schema is less than
Query2 with the Subject-based partitioning, but this turns to dramatically dis-
prove by changing to the Predicate-based technique.

Consequently, this thesis explores the issue of providing prescriptive 3 ana-

2Details about the various RDF relational schemas and partitioning techniques can be found in
Chapter 2

3Performance predictive analysis is an orthogonal level of analysis that aims to forecast potential

18

Table 1: Summary of the challenges in state-of-the-art.

lytics in the context of BD systems that query large KGs. This type of analysis
implies recommendations while navigating a complex solution space of experi-
mental design selections without neglecting their potential trade-offs in order to
take the practitioner directly to decisions that can be put into practice. The follow-
ing section aims to discuss in more details why abstracting out from the descriptive
and diagnostic analyses, and harnessing prescriptive analysis is important for our
scenario, reflecting on the literature of large Knowledge graph processing.

1.2. State-of-the-Art

This section presents the state-of-the-art large (RDF) graph processing, highlight-
ing the challenges related to our problem statement (see Table 1 for a summary).
A more detailed background can be found in chapter 2.

The literature focuses on optimizing the performance of the BD systems (e.g.,
Apache Spark, Hive, Impala) when querying knowledge graphs [Abd+17; Sch+16;
Sch+14]. However, different experimental dimensions that affect their perfor-
mance are not systematically studied (C1) nor compared (C2), as each work fo-
cuses only on one dimension at a time, e.g., schema [al19], partitioning [ANS18],
or storage [IP19].

Focusing solely on one experimental design decision might easily neglect the
presence of dimensions’ trade-offs (C2). Thus, the proposed optimizations cannot
be replicated when introducing new experimental dimensions (C3). For instance,
changing the data partitioning techniques or storage encoding disproves the per-
formance of schema advancements [Rag+21].

Finally, prior works stop their analyses at describing or at most diagnosing the
performance results (C4). For instance, Shätzle et. al. show examples of descrip-
tive analyses in their works [Sch+14; Sch+15]. In particular, they presented ex-
amples of relational RDF processing systems that come up with proposing novel
RDF relational schemas, e.g., the Wide Property Table (WPT) schema [Sch+14],
and the Extended Vertically-Partitioned Tables (ExtVP) schema [Sch+16]. Au-
thors provide descriptive and diagnostic performance analytics of those RDF re-
lational systems’ improvements (i.e., mainly due to their novel schema designs).

performance results. (it is out of the scope of this thesis).

19

Ch. Summary References
C1 Lack of systematic performance anal-

ysis.
[Abd+17][Sch+16][Sch+14]

C2 Neglecting performance trade-offs. [ANS18; IP19; al19]
C3 Lack of replicability. [Rag+21]
C4 Descriptive or at most diagnostics per-

formance analysis.
[Sch+16; Sch+14; Cud+13]

Similarly, Cudré-Mauroux et.al., and Abdelaziz et.al., show other examples of
descriptive and diagnostic analyses comparing RDF processing systems in their
works [Cud+13; Abd+17]. In particular, [Abd+17] conducted a comprehensive
survey of several RDF processing systems, describing their performance (using
execution runtime, scalability, etc). This study is followed by diagnosing why
one RDF system outperforms another. Similarly, authors in [Cud+13] performed
an empirical evaluation of four NoSQL processing RDF systems (assessing the
metrics of query execution times, loading times). However, we argue that these
descriptive or diagnostic research efforts are limited to guide the practitioner to
choose one approach (design decisions e.g., schema, partitioning, or storage for-
mats) over another in the presence of performance trade-offs [Rag20].

Differently, Akhter et. al. [ANS18] presented an example of prescriptive per-
formance analysis of RDF data systems. The authors adopted a ranking measure
for comparing RDF partitioning techniques. Nevertheless, their analysis is lim-
ited to only one experimental dimension (i.e., partitioning). Thus, this work is not
enough for making sense of more complex situations with several experimental
dimensions with inherent trade-offs.

It is worth mentioning that, in Appendix 8 we provide detailed discussion (with
illustrative tables) of each of the literature approaches/systems and where is the
gap(s) that our current proposal aims to cover.

1.3. Research Questions

In this work, we follow the Macro, Mezzo, Micro analysis framework [LG15] for
defining the requirements and assumptions to formulate the research questions at
these three levels of analysis. The Macro level is the biggest unit of analysis and is
generally related to complex and broad questions that cannot be directly solved but
are useful for capturing the vision of analysis. The Mezzo level restricts the scope
posing some requirements. Finally, at the Micro level, we formalize questions that
can be tangibly and experimentally evaluated.

1.3.1. Macro Level of Analysis

Herein, we formulate the Macro question that frames our research. Macro: "Can

we identify the optimal way to process large graphs using relational BD frame-
works?"

The "optimality" in this context means the way(s) that achieves the best per-
formance according to certain KPIs (e.g., query latency). This question allows
multiple answers and thus, we shall reformulate it into more specific ones. Thus,
we list specific requirements which help us to narrow down the problem and vali-
date our approach.

1. (R1) The approach should apply to the problem of querying large (RDF)
graphs with latency as a reference KPI.

20

2. (R2) Choose system-agnostic experimental dimensions that directly im-
pact the (BD) systems when querying large graphs.

3. (R3) Ensure the replicability of BD systems’ performance while varying
the experimental dimensions.

4. (R4) Consider multiple experimental dimensions’ simultaneously to make
sense of their trade-offs.

The requirements state that the approach should apply to querying large (RDF)
graphs (R1). As we have mentioned, the native graph database systems or triple
stores (e.g., Neo4j, RDF-3X, Apache Jena, etc.) can easily handle the query
workloads of small to medium volumes of (RDF) graphs [Jun+17]. The prob-
lem only arises when those centralized graph DB systems tackle complex graph
query workloads against large volumes of graphs [Pha+15]. In this case, we fall
back to the distributed relational BD systems that efficiently scale to handle large
volumes of data.

However, those BD solutions still incur plenty of additional experimental de-
sign decisions that cannot be automatically decided. Seeking for generalizability
and portability, this thesis opts for system-agnostic experimental dimensions, e.g.,
schema, partitioning, and storage (R2). However, we can find a number of exper-
imental options on the bucket of each experimental dimension (see Figure 3),
creating a complicated space of experimental solutions from which practitioners
might choose.

Moreover, those design dimensions have intrinsic performance trade-offs, which
can easily impact the replicability of the performance of a relational BD system
(e.g., SparkSQL) when querying large KGs (R3). Thus, the solution we seek in
this thesis opted for considering these multiple experimental dimensions simulta-
neously to make sense of their inherent trade-offs (R4).

1.3.2. From Macro to Micro Analyses

The requirements above help us narrow down the scope of the problem. In par-
ticular, we consider focusing on querying large RDF graphs on top of relational
BD systems. Indeed, querying small-to-medium graphs can be handled by graph
databases or native RDF triple stores. Therefore, the problem of querying KGs
emerges only with large scales. Falling back to relational BD frameworks for
querying those large RDF graphs entails several design decisions where prescrip-
tive analysis can directly impact.

This thesis investigated the most common and well-studied dimensions in the
state-of-the-art that directly impact the performance of a (BD) systems when
querying large (RDF) graphs. Specifically, we started the investigation by two
core experimental dimensions, i.e., the RDF relational schemas, and storage for-
mats in a centralized environment [RTS19]. Then, we opted for considering the
dimension of partitioning techniques seeking scalability in querying large RDF
graphs [Rag+20; Rag20; RAT21]. These dimensions (i.e., relational schemas,

21

storage formats, and partitioning) directly reflect on the graph query workload op-
erators in terms of query choke-points [Sal+16]. Indeed, the relational schema im-
pacts the query joins, partitioning techniques impact data shuffling in distributed
applications whilst storage formats impact physical execution plans, data loading
times, as well as the data compression level based on their nature (i.e., colum-
nar or row-oriented) [RAT21]. Moreover, these experimental dimensions are not
system-specific, i.e., they can be tested in several BD relational systems.

Considering all these experimental dimensions alongside their underlying range
of arbitrary options, the experimental solution space is too complex. Thus, it is
hard for practitioners to make an informed decision, especially with the presence
of experimental trade-offs. Thus, we can formulate a Mezzo question as follows:

Mezzo: Can we identify the optimal setup(s) for querying large (RDF) graphs
over relational BD systems without ignoring the underlying dimensions’ trade-
offs and guaranteeing the replicability of the results?

We centered our case study around Apache Spark [Mic15] which is currently
the most active and widely used in-memory large-scale data processing system
in both industry and academia [BQ18]. In particular, Spark-SQL offers a promi-
nent relational interface for implementing the relational schemas and answering
translated SPARQL queries into SQL. Moreover, SparkSQL supports different
partitioning techniques and multiple storage formats. Last but not least, several
works in the literature use SparkSQL for processing large RDF graphs [Sch+16;
CFL18; MAA18].

Finally, we formalize specific questions at the Micro level that can be exper-
imentally evaluated in the following sections alongside an approach to answer
them.

1.4. Approach and Contributions

Before digging into the details of our investigation, we shall explain the prelimi-
naries of our experimental solution space.

Definition 1. A configuration c is a combination of parameters that represent
experimental dimensions. The configuration space C is the Cartesian product of
the possible configuration combinations.

We consider triplet dimensional configurations including relational schemas,
partitioning techniques, and storage formats. Figure 3 shows the experimental
design space and highlights the example of (a.ii.3) configuration, which is akin
to Single Triples (ST) schema, Subject-based Partitioning (SBP) technique, and
stored in ORC file format.

C = {Schema}.{Partitioning_Technique}.{Storage_Format}

We run the experiments using two accepted RDF benchmarks (e.g., WatDiv [Alu+14]
and SP2Bench [Sch+08]) that include data generators and sufficiently complex query

22

Figure 3: Configuration Space of experimental options composed of three dimen-
sions (schema, partitioning, and storage), e.g., "a.ii.3" represents a configuration
combined of the ST schema, SBP partitioning, and the ORC storage format.

workloads. In total, our experiments include 60 configurations (serializing all the com-
binations of dimension options4 in Figure 3). Moreover, we consider scalability dimen-
sions, and we conducted our experiments with different dataset sizes (i.e., 100M, 250M,
and 500M triples).

1.5. Research Assumptions

Before we dig into how we address the research questions, we list our assumptions. In
this thesis, we assume the following:

1. Assumption 1: The influence of the query workload in the experimental dimensions
(especially the schema) is enough for implementing our prescriptive analysis.

2. Assumption 2: The experimental dimensions are discrete. That is, we cannot have
hybrid options under the same experimental dimension, e.g., the RDF data stored
in a hybrid relational schema of (PT+VP) [CFL18].

1.5.1. Making sense of Descriptive Performance Analysis (Micro 1)

Micro 1: Can descriptive and diagnostic performance analyses of BD systems directly
guide actionable decisions whilst querying large (RDF) graphs?

Micro 1 investigates whether descriptive performance analysis can directly lead to
actionable decisions when applied to BD systems that query large (RDF) graphs. In our
scenario, actions could be deciding the optimal configurations for the BD system to ex-
ecute the query workload in an efficient manner. Thus, this thesis (Chapter 3) will study
the limitations of applying descriptive and diagnostic analyses to guide the practitioners
in this task. Our results of answering this research question show that, it is hard as well
as time-consuming to reach conclusions on the best-performing configurations of a BD
system for querying large KGs via merely following descriptive and diagnostic analyses.

4C.F. see Chapter 2 for details about schema options (ST, VP,PT), partitioning options (HP, SBP,
PBP) as well as storage formats (CSV, Parquet, Avro, ORC).

23

1.5.2. Assessing the Big Data Systems Replicability (Micro 2)

Micro 2: can we guarantee replicability of BD systems performance when introducing
other new experimental dimensions?

Micro 2 investigates the effect of changing one experimental dimension on the sys-
tem’s performance replicability 5. For instance, we check if the relational schema is not
the only impactful dimension for the performance of relational BD systems for processing
large RDF graphs. Changing even one parameter of the experimental setting may inval-
idate the performance results, making existing benchmarking solutions unfair [Rag+21].
Figure 2 shows a simple example of invalidating the performance of the system with the
same schema (i.e., Property Tables), whilst changing the partitioning technique. Thus, we
investigate the following hypothesis: "The replicability of the BD system’s performance
for querying large (RDF) graphs could be affected by introducing other experimental
dimensions".

The answer of this research question (in Chapter 4) shows an example of how the
performance of a BD system (i.e., Spark-SQL) with the RDF relational schema advance-
ments (i.e., ExtVP, and WPT) cannot generalize against the base-line ones (i.e., VP, and
PT) when introducing different experimental parameters (i.e., partitioning techniques, or
storage formats) [Rag+21].

1.5.3. Bench-Ranking: Deciding over Complex Solution Space
(Micro 3)

Micro 3: How can we efficiently select the best-performing configurations out of a com-
plex experimental solution space without ignoring the trade-offs?

Micro 3 considers the assumption of the query workload’s direct influence on the
experimental dimensions (assumption 1) and investigates how to select the best exper-
imental configurations. To this extent, we need to raise the level of abstraction going
beyond descriptive and diagnostic analyses. That is, instead of comparing a huge number
of experiments’ performance results (i.e., that sometimes are even contradicting due to
experimental trade-offs), we provide prescriptive performance analyses that can directly
guide the practitioners on this hard task to reach actionable decisions.

Particularly, in this thesis (Chapter 5), we aims to employ ranking functions seeking
actionable prescriptions. These ranking criteria aim to abstract from the fine-grained de-
scriptive performance metrics and enable a decision-making model. Hence, this work
adopts Single-Dimensional (SD) as well as Multi-Dimensional (MD) ranking criteria
(i.e., "Bench-Ranking" [RAT21]) for ranking the performance of dimensions’ parame-
ters. Moreover, we discuss metrics for assessing the goodness of the proposed ranking
criteria [RAT21].

1.5.4. Automating Prescriptive Performance Analysis (Micro 4)

Micro 4: How can we automate prescriptive performance analysis of BD systems for
processing large graphs with a complex experimental solution space?

The "Bench-Ranking" [RAT21]) framework (i.e., the answer for Micro 3) provides the
required methodology for attaining actionable prescriptions to BD systems’ practitioners

5It does worth mentioning that the "replicability" refers to instances in which a researcher aims to
arrive at the same scientific findings as a previous study while varying the underlying experimental
setups (e.g., data, configurations, etc.) [NM+19].

24

Querying Large (RDF) Graphs On BD Systems

Chapter 2 (Background and Preliminaries)

Descriptive and Diagnostic
Analysis (DDA)

BD Performance DDA Potentials & Limitations
(Chapter 3)- Contrib. 1

Assessing BD Systems Replicability
(Chapter 4)- Contrib. 2

Performance Prescriptive
Analysis (PPA)

Bench-Ranking: A Systematic PPA
methodology

(Chapter 5)- Contrib. 3

PAPyA: BD PPA made easy!
(Chapter 6)- Contrib. 4

Conclusions and Future Directions
(Chapter 7)

Figure 4: Structure of the thesis.

for querying large (RDF) graphs. However, the amount of experimental work required
to implement PPA is still huge. To this extent, Micro 4 investigates how to automate the
Bench-Ranking methodology to attain PPA while reducing the amount of effort and time.

The answer of this research question (in Chapter 6) is translated into "PAPyA 6", which
is a Python library for enabling PPA that allows (1) preparing RDF graphs data for a
processing pipeline over relational BD and (2) enables automatic ranking of the perfor-
mance in a user-defined solution space of multiple experimental dimensions; (3) allows
user-defined extensions in terms of systems to test, experimental dimensions, as well as
ranking methods and criteria metrics.

1.6. Outline of the Thesis

The thesis is structured as follows (see Figure 4):

• Chapter 2 defines the relevant background and preliminary concepts on big data
and its challenges, graph processing, graph querying, RDF data model, and SPARQL
query language.

• Chapter 3 discusses the experimental solution space that emerges with processing
large (RDF) graphs on top relational BD systems and shows why descriptive and
diagnostic analyses are limited for this scenario. However, it also aims at making
sense of the performance results and provides the best practices for processing
large graphs on top of relational systems (e.g., Spark-SQL).

• Chapter 4 discusses the lack of replicability aspect that occur in relational BD
systems that process large (RDF) graphs when introducing various experimental
configurations.

6https://github.com/DataSystemsGroupUT/PAPyA

25

• Chapter 5 addresses the limitations of descriptive and diagnostic analyses by pro-
viding the "Bench-Ranking" methodology that helps enabling actionable insights
on performance data of BD systems, while taking performance trade-offs into ac-
count.

• Chapter 6 presents PAPyA tool that wraps the functionality of "Bench-Ranking",
aiming to reduce the time and effort required to implement prescriptive perfor-
mance analysis.

• Chapter 7 gives concluding remarks and points out possible future research direc-
tions.

26

2. PRELIMINARIES AND BACKGROUND

In this chapter, we outline the preliminaries necessary to contextualize the information
in the remainder of this thesis for readers unfamiliar with the research of (knowledge)
graphs, Semantic Web, and relational (big) data processing.

Herein, we define the core technologies and standards of the Semantic Web, i.e., the
Resource Description Framework (RDF) graph data model, and the SPARQL graph query
language used for querying that model. To understand the terminology used in the fol-
lowing chapters, we also define the most relevant concepts to BD benchmarking efforts
for querying large graphs.

2.1. Big Data Analytics and Challenges

The Big Data phenomena is a result of today’s data explosion, which is fed by several
applications like social networking, Internet of Things (IOT), and many websites that
provide crowd intelligence features [Gha+13]. These applications are constantly gener-
ating data more than ever seen before. Therefore, BD analytics is a crucial process for
analyzing large amounts of data to find information that might assist businesses in making
wise decisions about their operations, such as hidden patterns, correlations, market trends,
and customer preferences [Han+15; Gha+13], applying various techniques like predictive
models, statistical algorithms, and what-if analysis.

Big Data can be characterized by the variety, complexity, and speed at which it must
be processed or delivered, in addition to the volume of information involved [Gha+13;
Sak+21], or as it is called the 3-Vs model: Volume, Variety, and Velocity [Lan+01].
Herein, we explain the Big Data 3V challenges model as follows.
Volume Volume is the most obvious BD challenge. It represents the amount or size of
data. In fact, volumes of data can reach unprecedented rates. It is estimated that more
than 2.5 quintillion bytes of data are created daily. As a result, there will be more than
180 zettabytes of data created by 2025 1

Velocity: Velocity refers to the speed of generating, updating, or processing data [Han+15].
In some applications, data is generated at such a pace that requires specific processing
techniques and fast update and analytics requirements (e.g., e-commerce, social net-
works, and click streams captured in web server logs). Thus, streaming systems must
process data streams in real-time to keep up with their arriving speed and update require-
ments [Gha+13].
Variety: Big Data Variety refers to the range of data types and sources from which data is
collected. The huge variety of data sources led to a diversity of data types, which includes
structured data (e.g. relational tables), unstructured data (e.g. text, images, audios, and
videos), and semi-structured data (e.g. graph and weblogs data).

2.2. Big Data Systems

In practice, the workload type and the BD challenges can characterize a big data sys-
tem [Han+15]. Traditional data management systems are inadequate for the current chal-

1How Much Data Do We Create Every Day? http://shorturl.at/bCUY4

27

http://shorturl.at/bCUY4

lenges of BD (i.e., Volume, Variety, and Velocity). Indeed, the obvious issue with BD is
the enormous data scales that cannot fit on the typical data storage systems. For instance,
the typical DB management systems struggle to operate efficiently with storing, reading,
and writing large volumes of structured data. The volume challenge is not the only prob-
lem with these typical systems. As have been mentioned, the data can come in structured
and unstructured formats, thus the relational DBs would is not a native fitting solution
with (semi) or unstructured data. Similarly, typical DBMs cannot handle processing of
large amounts of velocity data with the required minimal latency.

These limitations give the rise to new other efficient data storing and processing BD
systems. BD Systems (BDSs) are scalable tools that can efficiently manage and analyze
massive amounts of heterogeneous data (i.e., gathered from multiple sources) in a batch,
stream, or hybrid fashion, decoupling the data storage from their analytics interfaces. The
following are brief introductions of some of the selected big data analysis tools that are
relevant to this thesis, along with a brief overview.

2.2.1. Apache Hadoop

Apache Hadoop [Vav+13] is an open-source Apache framework that is widely used in the
processing of massive data. The Hadoop Distributed File System (HDFS) and Map/Re-
duce paradigm serve as the foundations of Apache Hadoop framework. HDFS is a the
primary distributed file system in Hadoop applications. The key feature of HDFS is its
ability to easily partition the massive data across different machines [Vav+13]. It depends
on the design of a master machine (i.e., NameNode) that keeps track of how and where
data blocks are split up across several data machines (i.e., DataNode(s)) on which data
blocks are chunked, distributed, and replicated. This architecture helps the HDFS to pro-
vide a high-performance access to data. The Map/Reduce computing paradigm provides
a simple distributed and parallel computing model for processing large data over a com-
modity cluster of machines. The map task divides the incoming data into key value pairs
and computes them in parallel. The map task’s output is consumed by the reduce task(s),
which aggregates the output and produces the desired results.

2.2.2. Apache Hive

Apache Hive [Cam+19] is a widely-used data warehousing infrastructure that can be used
for several BD ETL operations. Typically, Hive is designed as a programming layer on
top of the Hadoop MapReduce, loading the data from and into HDFS. In particular, it
offers a declarative query language (i.e., similar to the SQL dialect) called HiveQL to
organize, aggregate, and execute query analytics against the data. Hive transformsHiveQL
data processing instructions into distributed Map-Reduce or Apache Tez 2 jobs to run on
the Hadoop cluster. As a result, this declarative querying paradigm saves Hive users
from having to write time-consuming, difficult Map-Reduce code in order to manage
data stored in HDFS. In a metastore, which can be a relational database (like mysql or
postgreSQL) or file, Hive stores the metadata for its databases and tables.

2.2.3. Apache Impala

Apache Impala [Bit+15] is an open source Massive Parallel Processing (MPP) relational
engine for massive volumes of data that is stored in Hadoop cluster. Impala is fully inte-
grated into the Hadoop ecosystem and can perform SQL query analytics directly on data

2https://tez.apache.org/

28

https://tez.apache.org/

stored in HDFS without the need for any data movement or transformation. Additionally,
it is designed to be compatible with Apache Hive, and Hive users can use Impala with
minimal setup time. That is, Impala can shares Apache Hive’s metadata, SQL syntax
(Hive SQL), ODBC driver, and user interface, resulting in a cohesive and comfortable en-
vironment for batch or real-time query analytics. However, unlike Apache Hive, Impala is
not based on the Map/Reduce computing model. In particular, it implements a distributed
architecture based on daemon processes that are responsible for query execution that runs
on the same machines.

2.2.4. Apache Spark & Spark-SQL

Apache Spark [Zah+16; Mic15] is an in-memory distributed computing engine for large
scale data analytics. It is quickly becoming the de-facto and one of the most widely-used
large-scale distributed data processing systems [BQ18; SBB20]. Apache Spark relies
on core data abstractions called Resilient Distributed Datasets (RDDs) and DataFrames,
both are immutable distributed collections of data elements. DataFrames are, in addition,
arranged into named and data-typed columns in accordance with a predefined schema,
much like a table in a relational database..

Two key features of Apache Spark over its predecessors (e.g., Hadoop) are (1) the
availability of high-level and declarative programming models such as SQL, as well as
(2) the support for a wide variety of storage data formats (details in Section 2.3) [SBB20].
In addition, (3) Spark is a multi-language (i.e., various language bindings expressed in
Python, R, java, or Scala) BD framework for applying data engineering, data science,
and machine learning, graph analytics on centralized (single-machine) machine or in dis-
tributed clusters (of multiple machines). To this end, the Apache Spark engine is preferred
by companies and (BD) practitioners for its powerful and high-level libraries, such as
SparkSQL [Mic15] for structured and relational processing, Spark Streaming [Zah+13],
MLlib [Men+16] for machine learning, last but not least GraphX [Gon+14] for imple-
menting distributed large-scale graph analytics. Notably, this thesis focuses on the rela-
tional processing paradigm; and thus we particularly focus on the SparkSQL engine.
SparkSQL [Mic15] is a Spark high-level module for processing structured data on top
of DataFrames. It offers the DataFrame programming abstraction and functions as a dis-
tributed SQL query engine. In particular, SparkSQL enables querying data stored in the
DataFrames abstraction using SQL-like languages, optimized using the Catalyst query
optimizer3 to make queries fast. As a result, it can runs relational query analytics up to
100x faster on existing deployments and data 4. It also uses the Spark engine, which
has complete mid-query fault tolerance and scalable to hundreds of nodes and multi-hour
searches, so there is no need to worry about utilizing a different engine for historical data.
Additionally, it offers strong interoperability with the remainder of the Spark ecosystem
(e.g., integrating SQL query processing with machine learning, or graph query analytics).
Last but not least, Spark supports different storage backends for reading and writing data.

2.3. Big Data Distributed Storage

While designing and creating Big Data engineering pipelines, the storage is a core design
decision. In fact, the variety challenge of Big Data incorporates several emergent differ-

3https://databricks.com/glossary/catalyst-optimizer
4https://www.databricks.com/glossary/what-is-spark-sql

29

https://databricks.com/glossary/catalyst-optimizer
https://www.databricks.com/glossary/what-is-spark-sql

Figure 5: Row-oriented and column-oriented data formats [ada17].

ent file formats and a range of various storage backends. Thus, in Big data applications,
choosing the appropriate file format for data analytics is a crucial design decision. De-
pending on the use cases, each storage choice (i.e., data file format) has different benefits
and drawbacks and exists to fulfill one or more objectives. For example, in Business Intel-
ligence (BI), network communication, online applications, and batch or stream process-
ing, various file formats are more practical for specific usages and application situations.
Additionally, in reality, deciding on the best-performing storage is mainly dependent on
the computational load, i.e., whether analytical (OLAP) or transactional (OLTP).
Row-oriented File Formats In a row-oriented format, the values for each row are stored
contiguously in the file. In other words, the first column of a row will be adjacent to the
last column of the previous row (see Figure 5). This design makes it easier for adding
(writing) data. It is also more efficient in cases where the entire row of data needs to
be accessed or processed at once. Thus, row-oriented formats are frequently used with
Online Transactional Processing (OLTP) workloads. Indeed, this kind of transactional
workload usually processes CRUD queries (Create, Read, Insert, Update and Delete) at a
record level. Herein, we provide exemplars of row-oriented file formats.

CSV: The Comma-separated values data format is a widely used and accepted data ex-
change format that employs commas to separate values. Typically, plain text is
used to communicate tabular data across systems. Because CSV is a row-based
file format, each line of a CSV file represents a data record with one or more fields,
and each record has a consistent list of fields, resulting in a simple information
structure.

Avro: is described as a data serialization system similar to Java Serialization. It enables
storing complex objects by encoding the schema of their content. In particular,
the data is saved in binary format, whereas the Avro schema is kept in JSON for-
mat. This architecture significantly minimizes file size and maximizes efficiency.

30

Avro manages fields that have been added, removed, or altered to provide reliable
support for schema evolution.

Column-oriented File Formats A column-oriented format, on the other hand, divides a
file’s rows into row splits, with each split subsequently being stored in a column-oriented
manner. Particularly, the values for each row in the first column are stored first, followed
by the values for each row in the second column, and so on (see Figure 5). It enables
columns that are not visited in a query to be skipped, i.e. column pruning. By removing
any columns that do not pertain to a given query, columnar data storage prevents the
excessive processing delays associated with visiting or extracting irrelevant information
from a data set. Thus, columnar file formats are most efficient when performing analytical
queries that only need a portion of the columns in very large data sets to be analyzed. This
way of processing is called OLAP (Online Analytical Processing).

Parquet: Apache Parquet is an open-source columnar file format that makes use of
nested data structures that were inspired by theGoogle Dremel [Mel+10] frame-
work [IP19]. Parquet supports efficient compression and has encoding schemas
support on the columns level. Typically, Parquet works efficiently with Apache
Hive and Apache Spark as a way to store columnar data in deep storage that is
queried using SQL(-like) languages. Additionally, it relies on the Apache Thrift 5

framework to define the metadata representations (e.g., file, column, and page
header metadata).

ORC: is a type-aware columnar file format. ORC is a self-describing format that uti-
lizes metadata such as various statistical information related to the columns, which
enables input split elimination based on predicate push downs. ORC format was
first created for Hadoop workloads, but is currently used as a general-purpose stor-
age format. Compared to other columnar or row-oriented file formats, ORC offers
greater compression ratios. As a result, the ORC format significantly reduces I/O
costs to achieve exceptional read performance for a variety of applications, such
as large streaming reads, and it also has numerous advantages over its predecessor
(i.e., the RC file format) [IP19]. Last but not least, ORC offers enhanced support
for schema evolution.

2.4. The Semantic Web and Linked Data

The Semantic Web refers to the web of data, readable and processable by machines
[AV04]. The Semantic Web is one of the most essential elements involved in the notion of
Knowledge Graphs [GS21]. The main reason for its existence is to allow both humans and
machines to interpret and interact with data. It provides an account of inferring the mean-
ing in which the logical connection of terms establishes interoperability among systems.
To support this end, the Web Wide Consortium (W3C 6) working group defines standards,
technologies, and recommendations for organizations to share and publish their data.

Herein, we list the core technologies and standards for representing and querying se-
mantic linked data.

5https://thrift.apache.org/
6https://www.w3.org/groups/

31

https://thrift.apache.org/
https://www.w3.org/groups/

2.4.1. Resource Description Framework (RDF)

The Resource Description Framework (RDF 7) is the standard W3C graph data model
for establishing semantic interoperability on the Web [GS21]. It represents information
about resources on the web by assigning attributes and creating relationships among them
via Unified Resource Identifiers (URIs). RDF arranges data in the form of triples (Sub-
ject(S), Predicate(P), Object(O)). The subject represents the resource being described,
the predicate is the attribute, and the object contains the value associated to the attribute
for the given subject. More generally, the predicate represents a relationship/connection
between a subject (S) and an object (O) nodes.

RDF data can be viewed as a directed edge-labeled graph, with edge labels serving as
the predicates and vertices representing the entities. Moreover, an RDF dataset is com-
posed of RDF triples and can be described in a variety of formats and data serializations,
i.e., RDF/XML, Turtle, N-Triples, OWL, and many more. An RDF resource can take one
of the following forms:

IRI Node IRI Node provides a global identifier for a resource. It is referred to by
others on the Web. An IRI can occur in any position in the triple (s, p, o).
Definition 2 (RDF Triple). An RDF triple consists of three components:

• Subject S ∈ I ∪L∪V

• Predicate P ∈ I ∪V

• Object O ∈ I ∪L∪V

(S,P,O) ∈ (I ∪B)× I × (I ∪B∪L).
where I is the set of IRIs. B is the set of blank nodes. L is the set of literals.

Definition 3 (RDF Graph). An RDF Graph is a finite set of RDF triples. If G is an RDF
Graph, we use I(G), L(G), and B(G) to denote the set of IRIs, literals, and blank nodes.
RDF Graphs are organized into datasets.

Literal node A Literal node represents various datatype values such as strings, num-
bers, and dates. It can be only part of an object (o) in a triple. By default, a literal node
is plain (un-typed). However, it is possible to structure a literal by assigning additional
information about the interpretation of a literal. This is possible by appending the infor-
mation of the datatype to the literal value. For example, a plain literal node can be typed
as an integer number when we add the suffix "ˆˆxsd:integer".

Blank node A Blank node is a special unique identifier used to denote the existence of
an RDF entity [GS21]. Some RDF data serialization methods allow creating triples with
the blank node identifier "_:". However, only the subjects and objects are allowed to be
defined with blank node identifiers.
Definition 4 (Blank node). Blank nodes are disjoint from IRIs and literals. RDF makes
no reference to any internal structure of blank nodes.
Definition 5 (RDF Dataset). An RDF Dataset is a collection of RDF graphs. It contains
one RDF graph by default, which is either uniquely named or not. An RDF Dataset holds
one or more named graphs:

{g0,(u1,g1),(u2,g2), ...(un,gn)}
7https://www.w3.org/TR/rdf11-concepts/

32

https://www.w3.org/TR/rdf11-concepts/

type

title

journal

type

title

"1940"

" Journal 1 1940"

issued
"1940"

title
" Richer dwelling..."

:Journal

:Article :Article 1

:Journal 1

Figure 6: Example of an RDF graph. Prefixes are ignored for simplicity.

Figure 7: Shapes of SPARQL Queries.

Figure 6 shows an example of RDF graph, while Listing 2.1 shows its representation
in the N-Triples serialization.

2.4.2. SPARQL Protocol and RDF Query Language (SPARQL)

Multiple languages, like as Cypher, Gremlin, and G-CORE have been proposed for
querying property graphs [Cam+19; GS21]. Similarly, SPARQL8 is the standard query
language of RDF datasets that harnesses the simplicity of the RDF model to describe
both simple and complex queries. The simplest form of a SPARQL query is called "Basic
Graph Pattern (BGP)". In a BGP, the SPARQL query consists of a set of RDF triple
patterns that may also contain variables (i.e., unbound Subjects, Predicates, or Objects)
that may appear in multiple patterns. Terms in BGPs are split into variables, which are
preceded with question marks (like "?yr" in Figure 8 and Listing 2.2), and constants (like
"Journal 1 (1940)" in Figure 8 and Listing 2.2). Similar to triples, triple patterns are
modeled as directed graphs (Figure 8). Thus, answering a SPARQL BGP query is usually
enclosed as a sub-graph pattern-matching problem [Zou+11; GS21].

Given an RDF graph G, the evaluation of a BGP B, denoted as B(G), returns a set of
solution mappings. A solution mapping is a partial mapping from the set V of variables
to the set of RDF terms. Figure 8 provides an example of a BGP that is evaluated against
the RDF graph in Figure 6. The solution mapping in this example is composed of only
one variable (i.e., yr) with one value mapped to it, i.e., "1940".

SPARQL query shapes: In practice, the SPARQL BGP queries can have different shapes
(relying on the position of variables in the triple patterns), which can have severe impacts
on query performance [Sch+16]. Figure 7 depicts the most common BGP shapes. (1)
Star query: consists only of subject-subject joins where a join variable is the subject of all

8https://www.w3.org/TR/sparql11-query/

33

https://www.w3.org/TR/sparql11-query/

Figure 8: SPARQL query shown as a graph model.

the triple patterns involved in the query. Star patterns frequently exist in the current RDF
benchmarks and SPARQL query workloads in general. Thus, many RDF processing sys-
tems are optimized for this kind of workload [Sch+16]. (2) Linear, path-shaped or Chain
query: is also very common in RDF graph querying. It consists of subject-object (or
subject-object) joins where the triple patterns are consecutively connected like a line or
a chain. (3) Snowflake-shaped query: consists of combinations of many star shapes con-
nected by typically short paths. (4) Cycle query: contains subject-subject joins, subject-
object joins and object-object joins. (5) Tree query: consists of subject-subject joins and
subject-object joins. (6) Complex query: consist of a combination of different shapes.

1 :Journal1 rdf:type :Journal ;
2 dc:title "Journal 1 (1940)" ;
3 dcterms:issued "1940" .
4 :Article1 rdf:type :Article ;
5 dc:title "richer dwelling scrapped" ;
6 dcterms:issued "2019" ;
7 :journal :Journal1 .

Listing 2.1: RDF example in N-Triples. Prefixes are omitted for simplicity.

Listing 2.2: SPARQL Example against RDF graph in Listing 1.1. Prefixes are
omitted for simplicity.

1 SELECT ?yr
2 WHERE { ?journal rdf:type bench:Journal.
3 ?journal dc:title "Journal 1 (1940)".
4 ?journal dcterms:issued ?yr. }

SPARQL 1.1 [Con+13], which originated in 2013, is the latest stable version of the
language. It features query language operations such as aggregates, subqueries, negation,
property paths, and various new functions and operators. For a complete description and
formalization of the SPARQL language, readers may refer to the SPARQL 1.1 specifica-
tion document and also the work in [Con+13] for an exhaustive formal definition of its
semantics.

Typically, the SPARQL query consists of three main parts. The pattern matching part
that includes a set of BGP triple patterns. the second part includes several matching cri-
teria operators, like OPTIONAL, UNION of patterns, and FILTER operator for restricting

34

candidate matches. Lastly, the final result modifiers, which states operations of projec-
tion (SELECT), DISTINCT, LIMIT and OFFSET on the candidate output results. Listing
2.2 illustrates an example of SPARQL against the simple RDF graph in Figure 6. It asks
about the year of publication of journal with the title "Journal 1 (1940)".

2.5. Relational Model and Relational Algebra For SPARQL

Relational Model: The relational model, first described by Edgar F. Codd, is an approach
to managing structured data using a declarative language consistent with the first-order
logic [E09]. The relational model represents data in terms of rows (i.e., tuples) grouped
into relations (i.e., tables). A database organized in terms of the relational model is re-
ferred to as a relational database.
Relational Algebra [Cyg05] (RA) is used as the core of query language for Relational
Databases. RA is an intermediate language commonly used for interpreting the expres-
sion of SQL queries. Relational algebra is utilized in a huge portion of work on query
planning and optimizations to the SPARQL realm. More specifically, evaluating BGPs
returns solution mappings that can be viewed as relations (tables), where variables are
attributes/fields (i.e., column names) and tuples(i.e., rows) contain the RDF terms bound
by each solution mapping.

The default relational operator for the SPARQL BGPs is the natural inner join (▷◁).
While, Complex BGPs support combining and transforming the results of BGPs with lan-
guage features that include FILTER(selection:σ), SELECT(projection:Π), EXISTS(semi-
join:><), MINUS (▷), OPTIONAL(left-join:▷◁), and UNION(union: ∪). These language
features correspond to the relational algebra defined for SPARQL query clauses.

2.6. RDF Processing Systems

The wide adoption of the RDF data model has triggered the emergence of several efficient
and scalable RDF systems. Those systems have been designed to manage, store and
query RDF datasets and tackle the challenges that may come with scalability. Generally
speaking, these systems can be broadly classified into two main categories: native and
non-native RDF querying/processing systems [Bor+13; Pha+15].

2.6.1. Native RDF Graph Processing Systems

These systems, also called "triplestores" (RDF stores) are purpose-built graph databases
for managing, storing, and retrieving RDF triples using native semantic queries, i.e., using
the SPARQL language. Thus, one can consider a triplestore as the semantic graph DB of
RDF data. The next evolution of triplestores is what is called quad stores that include
information about the context or named graphs, in addition to the three main compo-
nents of the triplestores (i.e., Subject, Predicate, and Object). Examples of those native
stores are RDF-3X [NW08], 4store[HLS+09], g-store [WZZ17], and Jena TDB/SDB sys-
tems [McB01].

On one hand, RDF triplestores provide the full expressiveness of SPARQL that (tech-
nical) users may need in order to capture complex information needs. Moreover, they
fully harness the structure and semantics captured by the underlying data. In addition,
RDF triple stores are "schema-last" approaches for handling the heterogeneous nature of
data with the flexibility to handle them with the power of SPARQL (i.e., seamless graph
navigation, recursive queries, negations, as well as expressing complex BGP queries).

35

However, those RDF solutions are centralized, which means they might fall short with
large volumes of data or complex workloads [Pha+15]. Moreover, those systems come
with limited SPARQL optimizations, as well as no grip on data locality (even with using
the Hexa-storage that entails indexing all orders of RDF components) [Pha+15; Bor+13].

2.6.2. Non-native (Relational) RDF Processing Systems

Due to the triplestores limitations, the Semantic Web community started to investigate
other non-native solutions for handling RDF graphs. Indeed, there is evidence that go-
ing native pays in terms of efficiency [Bor+13; Pha+15]. In action, we cannot ignore
relational stores that come with 35+ years of research on efficient storage and query-
ing. Moreover, relational solutions provide more important features such as scalability,
compression, security, and better query optimization [Bor+13]. Talking only about the
scalability, indeed, with the huge growth of RDF data [Aba+07; Sch+16; Sch+14; SA10],
the need for large relational systems aggravates. The reason is that these large volumes
of RDF data cannot be handled efficiently with the "centralized" RDF systems [Pha+15].
While on the other hand, big relational engines are distributed and provide scalability and
data partitioning capabilities.

2.7. RDF Relational Schema Representation

It is easy to show that we have different options of representing RDF graphs in various
relational schemas. The relational schema is a crucial design decision when building
data pipelines. This choice hugely impacts the performance of the BD engines [SA10;
RTS19]. Herein, we identify the most used RDF relational schema in the state-of-the-art
of KGs processing [Abd+17; Aba+07; Cho+05; Sch+16; Sch+14].

For each schema we give an example of data using Listing 2.1, and we provide the
respective SQL translation of the SPARQL query in Listing 2.2.
Single Statement Table Schema (ST) (also commonly known as the triples table) entails
storing RDF triples in a single table with three columns that represent the three compo-
nents of the RDF triple, i.e., subject, predicate, and object. That is, each RDF statement is
represented by each table record. The ST schema is widely adopted [Aba+07; Cho+05] in
research and in RDF systems,e.g., the major open-source triplestores, i.e., Apache Jena,
RDF4J and Virtuoso. The RDF-3X system [NW08] also uses a slight variation of the
ST representation that maintains multiple copies of the ST table. Each copy has a clus-
tered index that implements a different sort order of the RDF three components, i.e.,
(S,P,O),(P,O,S), (S,O,P),..etc. Figure 9 shows the ST schema representation of the sample
in Listing 2.1, and the associated SQL translation for the SPARQL query in Listing 2.2.
Property Tables Schema (PT) This paradigm suggests the creation of relational-like
property tables from RDF data, making it a more feasible scheme for RDF organization in
relational databases. It requires to cluster multiple RDF properties as n-ary table columns
for the same subject to group predicates that are pertinent to the same entity. That is,
the subject column serves as the table key (the unique identifier for the row), while each
property column may store an object value or be null. Thus, the PT schema works per-
fectly with highly structured data, but not with the poorly structured datasets [Sch+08],
due to the high number of null values that it might incur. Moreover, due to its sparse ta-
bles representation nature, the PT schema may suffer from high storage overheads when
a large number of predicates is present in the RDF data model [Abd+17]. In practice,
several systems support property tables for RDF data management. They either derive the

36

Figure 9: ST Schema and an associated SQL query sample. Prefixes are omitted.

Figure 10: VT Schema and an associated SQL query sample. Prefixes Omitted.

Figure 11: PT Schema and an associated SQL query sample. Prefixes are omitted.

PT schema structure automatically from the ontology of the dataset (e.g., Sesame) or are
manually defined by the application (e.g., Jena). Figure 11 shows the relational flattened
property tables of the RDF graph in Listing 2.1 and the associated SQL translation for the
SPARQL query in Listing 2.2.
Vertically Partitioned Tables Schema (VT 9) is a a specialized version of the Property
Tables (PT) schema that requires storing RDF triples into binary tables of two columns
(Subject, Object) for each unique property in the RDF dataset. The VT schema was pro-
posed to speed up the queries over RDF triple stores that used to struggle with the exces-
sive ST table self-joins [Aba+07]. Figure 10 shows the VT representation of the sample
RDF graph shown in Listing 2.1, and the associated SQL translation for the SPARQL
query in Listing 2.2.

2.7.1. Advancements of RDF Relational Schemas

It is worth mentioning that there are two other advancements of the RDF relational schemata
mentioned above. In particular, the Wide Property Tables (WPT) schema [Sch+14] and
Extended Vertical Partitioning (ExtVP) [Sch+16].
Wide Property Table Schema (WPT) The entire RDF dataset is represented by this
schema into a single unified (i.e., non-normalized) table. All of the RDF graph dataset’s
predicates are used as columns in this table. The WPT schema extends the PT schema
seeking for optimizing the star-shaped SPARQL queries (see SPARQL shapes Section 2.4.2),
which are highly common in the SPARQL query workloads. Indeed, the star-shaped

9The "VT" and "VP" are two different acronyms interchangeably used through the thesis to
represent the Vertically Partitioned Tables Schema.

37

1 SELECT T2.object as year
2 FROM Title T1, Issued T2, Type T3
3 WHERE T2.subject=T3.subject AND
4 T1.subject=T2.subject AND
5 T3.object='Journal' AND
6 T1.object='Journal 1(1940)'

Figure 12: Vertically Partitioned Tables(VP) schema

1 SELECT T1.object
2 FROM issued|title T1, type|issued T2
3 WHERE T1.subject=T2.subject

Figure 13: Extended Vertically Partitioned Tables(ExtVP) schema

SPARQL queries will require no joins to be answered while using the WPT schema [Sch+14].
Unlike the PT schema, this schema does not require any kind of dedicated or ad-hoc clus-
tering algorithms (that are likely to produce sub-optimal relational schema for an arbitrary
RDF dataset [Sch+14]). Unfortunately, the WPT schema does not completely eliminate
the PT model’s drawbacks. Poorly formatted RDF data can also have a very sparse WPT
representation, which can result in significant storage costs, particularly when there are a
lot of multi-valued characteristics included in the RDF dataset. Figure 12 also shows the
WPT associated SQL query mapped from the mentioned SPARQL query in Listing 2.2.
Extended Vertical Partitioning (ExtVP) is a query-driven schema advancement that

38

Figure 14: RDF partitioning techniques, (a) HP, (b) SBP (c) PBP.

aims at minimizing the size of the input data during query evaluation. It is motivated
by the Semi-Join reductions of the possible VP tables join correlations that occur among
the SPARQL query triple patterns. The ExtVP schema speeds up query answering by pre-
computing the potential join relations between the VP tables and materializing the results
of these semi-joins as tables in the storage backend (e.g., HDFS). Particularly, for every
two VP relations ExtVP relies on computing the semi-join reductions of Subject-Subject
(SS), Subject-Object (SO), and Object-Subject (OS) join patterns. The query input tables
are reduced in size; by eliminating dangling triples that do not contribute to any join; and
will be used in query joins instead of the original VP tables [Sch+16]. However, one of
the drawbacks of the ExtVP schema is the excessive additional storage overhead of the
materialized ExtVP tables (when compared to the VP schema tables). However, this over-
head can be tuned using a selectivity threshold to control the materialization of semi-joins
tables by keeping only the ones that make significant table reductions [Sch+16]. Figure
13 also shows the ExtVP associated SQL query version of the query in Listing 2.2.

Ii is worth mentioning the we keep more details about the RDF benchmarks relational
schema in Appendix 9. Specifically, we provide our designed PT schema of them, because
unlike the other RDF relational schemas, i.e., ST, (EXT)VT, WPT, the PT schema requires
designing efforts from the (Big) Data engineers.

2.8. (RDF) Graph Partitioning

The ever-growing size of data is often too large to be efficiently managed on a single
machine [ANS18; Abb+18; Abd+17]. This challenge has called for the typical design
choice of scaling horizontally by splitting the query workload as well as the data over
several nodes in distributed systems [Lin18; SÖ18]. Data partitioning is the process of di-
viding datasets into portions to facilitate better maintenance and access. Data partitioning
is the key process used for achieving load balancing, improving system availability, and
query processing times in data management systems [ANS18]. Typically, the query exe-
cution performance in data systems can be greatly affected by the partitioning technique
used in the data store. Thus, partitioning is a key design choice in centralized as well as
distributed systems.

As we have mentioned, we witness huge RDF datasets that have been added to the
web of data and still growing, e.g., Linked TCGA (around 20 billion triples) and UniProt
(over 10 billion triples). Taming the volume of such huge data can be managed using
distributed systems and by partitioning this RDF data over several machines. Herein, we

39

explain commonly used RDF graph partitioning techniques. The RDF graph partitioning
problem is defined as follows.

Definition 6 (RDF Graph Partitioning). Given an RDF graph G = (V,E), such that V
and E are the set of all vertices and edges, respectively in the graph G, a partitioning

technique T divides the graph G into n sub-graphs G1,G2,Gn such that G =
n∪

i=1
Gi.

In other words G1∪G2∪∪Gn = G(V,E).
In this thesis, we categorize the RDF partitioning techniques into two categories de-

pending on their nature, i.e., native graph partitioning, and non-native (relational) graph
partitioning.
Relational Graph Partitioning: First, we list the following partitioning techniques that
can be applied directly to relational tables (relational schemas) generated from an RDF
graph.
- Horizontal-Based Partitioning (HP) requires partitioning the data evenly on the num-
ber of machines in the cluster. In particular, it divides the relational tables, i.e., in n
equivalent chunks where n is the number of machines in the cluster.
- Subject-Based Partitioning (SBP) requires distributing triples to the various partitions
according to the hash value computed for the subjects. As a result, all the triples with the
same subject are assumed to reside on the same partition.
- Predicate-Based Partitioning (PBP) requires, similar to the SBP, to distribute triples
to the various partitions based on the hash value computed for the predicate. As a result,
all the triples with the same predicate are assumed to reside on the same partition.
Native Graph Partitioning: On the other side, distributed native graph processing has
been widely adopted in recent years and enables knowledge extraction from large and
medium-scale graph-structured datasets using commodity clusters [Abb+18]. Native graph
partitioning can be divided into two main approaches, namely vertex partitioning and edge
partitioning. The goal of both approaches is to minimize cross-partition dependencies by
defining a minimum-cut optimization objective [Abb+18].

Underneath those two broad categories, there exist several native graph partition-
ing algorithms, techniques as well as tools [ANS18]. Particularly speaking about RDF
graph partitioning, we discuss the following native graph (RDF-specific) partitioning
techniques.
- Recursive-Bisection Partitioning is a multilevel graph bisection algorithm aiming to
solve the k-way graph partitioning problem [KK98]. The algorithm works by recursively
dividing the graph G in two halves until k blocks are present [Bul+16] passing by three
main phases, namely Coarsening, Partitioning, and Uncoarsening[ANS18].
- TCV-Min Partitioning is similar to the Recursive-Bisection technique, as it also aims
to solve the k-way graph partitioning problem. However, this technique is driven by the
objective of minimizing the total communication volume of the partitioning [Bul+16].
- Min-Edgecut Partitioning also aims to handle the k-way graph partitioning problem.
However, unlike TCV-Min, the objective is to partition the vertices by minimizing the
number of edges connected to them.
- Hierarchical Partitioning is inspired by the assumption that RDF IRIs have path hier-
archy and IRIs with a common hierarchy prefix are often queried together [JST17]. This
technique of partitioning is based on extracting path hierarchy from the IRIs and assigning
triples having the same hierarchy prefixes into one partition.

40

3. MAKING SENSE OF BIG DATA SYSTEM
PERFORMANCE FOR PROCESSING LARGE

KNOWLEDGE GRAPHS

The movement from native processing of RDF datasets (using triple stores) to the non-
native relational approaches requires incorporating BD systems for processing. Although
Big Data frameworks are not tailored to perform native RDF graphs processing, several
approaches exist for processing the RDF data using relational systems [Abd+17; Sch+16;
Sch+14; MAA18]. However, the choice of such relational systems for processing and
querying large graphs comes with several design decisions to consider while building a
BD analytical pipeline. Those additional design decisions are hard to be automatically
decided [Van+21] just given the graph dataset and workloads. Moreover, changing those
design decisions in the future (if selected wrongly from the first design) has extremely
high costs and requires huge data engineering efforts.

In this chapter, we aim at answering the first micro question (Micro 1): "Can de-
scriptive and diagnostic performance analyses of BD systems directly guide actionable
decisions whilst querying large (RDF) graphs". Particularly, we aim at making sense of
relational BD system performance for processing large (RDF) graphs in the presence of
complex experimental solution space that constitutes multiple experimental dimensions
alongside many alternatives. We consider the most impactful design decisions for pro-
cessing large RDF graphs in a distributed relational context. By the end of this chapter,
we show the limitations of the descriptive and diagnostic system performance analysis,
showing the need for prescriptive analysis that directly leads to actionable decisions.

3.1. Experimental Design Decisions

For deciding those dimensions, as well as the system that is subject to evaluation, Jim
Gray’s principles of defining a useful benchmark [Gra93] inspire us to set our require-
ments as follows:

1. R.1 Relevance: we aim to focus on relevant design decisions that emerge with the
problem of processing large RDF graphs on top of relational systems, as well as a
relevant system to handle this problem.

2. R.2 Scalability: we consider scalability aspects on the level of data and system, as
we target processing large (RDF) graphs.

3. R.3 Simplicity: we advocate for accepted benchmarks that require a well-known
language for implementing the analysis (i.e., SQL). Moreover, our study is limited
to three experimental dimensions (i.e., Schema, Partitioning, and Storage formats).

4. R.4 Portability: we focus on tasks and experimental dimensions that are not system-
specific.

Derived by the above requirements, we consider relevant design decisions for process-
ing large RDF graphs on top of a BD relational system (R.1). In particular, the relational
schemas, partitioning techniques, and storage format as our design decisions to set up an
analytical pipeline.

41

Requirement Details

(R.1) Relevance - Relevant Dimensions directly impact BD performance.
- Relevant BD system (e.g., Spark-SQL).

(R.2) Scalability - Scalable Benchmarks (Data generation).
- Data Partitioning.

(R.3) Simplicity - Simple language (SQL) for query processing.
- Few design decisions.

(R.4) Portability - Portable (System-agnostic) dimensions.
- Standard Query Language (SQL).

Table 2: Requirements that guide our study experimental design space.

Those dimensions directly impact the performance. Indeed, the relational schemas
impact the number of joins in the query workload (C.F., Table 3), and the partitioning
techniques impact data shuffling in a distributed environment (required for scaling out,
distributing data over several machines (R.2)), and the storage format impact the query
physical plan and data loading time based on their nature (i.e., columnar or row-oriented)
and their compression levels. It is also worth mentioning that the aforementioned dimen-
sions do not depend on existing systems, making our investigation system-agnostic, i.e.,
it can be replicated on any distributed BD relational engine for RDF graph processing
that supports SQL (R.4), e.g., Apache Hive [Cam+19], Apache Impala [Bit+15], Apache
Drill [HN13] to name a few.

It is also worth mentioning that those dimensions can be extended with any other
system-agnostic and performance-impactful dimensions. Chapters 5 and 6 will show that
our framework solution is flexible to be extended with arbitrary any number of experi-
mental dimensions, and dynamic to adding and removing experimental alternatives across
each dimension.

3.1.1. Dimensions’ Experimental Space

Intuitively, such experimental dimensions entail different options of choice (we call them
dimensions’ parameters/options).

Relational schema. Regarding the relational schema, it is easy to show that we have
different options and the choice hugely impacts the performance [SA10]. We identify
the most used ones in the state-of-the-art of RDF processing: (i) Single Statement Table
schema (ST) stores RDF triples in a single table with three columns that represent the
three components of the RDF triple, i.e., subject, predicate, and object; (ii) Vertically
Partitioned Tables (VT) store RDF triples into tables of two columns (subject, object) for
each unique property in the RDF dataset. Finally, (iii) the Property Tables (PT) schema
requires combining multiple RDF properties as n-ary columns table for the same subject
to group entities that are similar in structure.

Partitioning. Big Data platforms are designed to scale horizontally and, thus, data
partitioning is another relevant dimension (R.2). However, choosing the right partitioning
technique for RDF data is non-trivial, and also greatly impacts the performance. We
selected the three techniques that can be applied directly to RDF graphs while being
mapped to a relational schema. Namely, (i) Horizontal Partitioning (HP) randomly divides
data evenly on the number of machines in the cluster, i.e., n equally sized chunks, where
n is the number of machines in the cluster. (ii) Subject-Based Partitioning (SBP) (or (iii)

42

Predicate-Based Partitioning (PBP)) distributes triples to the various partitions according
to the hash value computed for the subjects (predicates). As a result, all the triples with
the same subject (predicate) reside on the same partition. Notably, Both SBP and PBP
may suffer from fairly severe skew problems and/or lack of parallelism opportunities
depending on the nature of the data.

Storage Data Formats. Serializing RDF data also offers many options such as RD-
F/XML, Turtle, JSON-LD, to name a few. On the other side, BD platforms offer many
options for reading/writing to various file formats as well as storage backends. Therefore,
we need to consider the variety of storage formats. Those that are relevant for our case
study are the various Hadoop Distributed File System (HDFS) file formats. In particular,
HDFS supports the following row-oriented formats (e.g., CSV and Avro) and columnar
formats (e.g., ORC and Parquet).

Figure 15 shows the experimental solution space of experimental choices (options/-
parameters) along side the three mentioned experimental dimensions (i.e., Schema, Parti-
tioning, and Storage).

The BD System Subject to Processing. Outside the broad landscape of relational BD
frameworks, we stick with Apache Spark which is currently the most active and widely-
used large-scale data processing system in both industry and academia [Mic15; BQ18].
In particular, Spark-SQL offers a prominent relational interface for implementing the re-
lational schemas and answering translated SPARQL queries (i.e., into SQL). Moreover,
Spark-SQL supports different partitioning techniques and multiple storage formats. Last
but not least, several works in the literature use Spark-SQL for querying and processing
large RDF graphs [Sch+16; CFL18; MAA18; Rag+20].

Table 2 summarizes how we consider the four defined requirements in terms of de-
sign decisions, benchmarks (datasets and workloads), and opted BD system subject to
experiments.

3.2. Experiments Design

In this section, we explain the experimental design used in this thesis. In particular, we
mention the used RDF graph benchmarks, and specifications of their query workloads.
We described the process of modelling graphs on top of the relational representations,
alongside the partitioning and physical storage of the logical relational layouts.

3.2.1. Benchmark Datasets & Query Workloads

Seeking simplicity (R.3), we tested our experiments with two RDF benchmarks, namely
SP2B [Sch+08], and Watdiv [Alu+14]. Both are simple and well-known synthetic RDF
benchmarks that come with scalable data generators (R.2). They are accompanied by
sufficiently complex workloads to test the designed solution with different dataset sizes.
Moreover, they are centered around simple real-world use cases (R.3), academic com-
puter science digital library (DBLP), and online-shop scenarios for the SP2B and WatDiv,
respectively.

On the first hand, the SP2B provides good coverage of the query operators and various
RDF access patterns [Sal+19; Sal+16]. Indeed, its queries cover the majority of SPARQL
constructs [Sal+16; Bon+18]. Moreover, it also has a reasonable average number of BGPs
and triple patterns compared to other SPARQL benchmarks. In addition, SP2B has the
lowest mean selectivity values of triples, which is required for challenging the relational
engine (e.g., Spark-SQL) [Sal+16]. On another hand, with the goal of seeking a variety of

43

Figure 15: Experimental solution space highlighting an example of a configura-
tion (a.ii.3) akin to a combination of the experimental options: (ST schema, SBP
partitioning, and ORC file format).

query shapes, we included the WatDiv benchmark in our experiments. WatDiv test queries
are more diverse within this basic fragment of SPARQL (BGPs) [Alu+14; Sal+19]. In-
deed, WatDiv covers more variety of query shapes than in the SP2B benchmark (i.e.,
Stars and Snow-Flake) by including other query shapes (i.e., Linear, and Complex). Ta-
ble 3 shows the two benchmarks’ query complexities in terms of number of joins, number
of filters, and number of projections. This table shows how query complexity values can
significantly change adapting the same SPARQL query for different relational schemas.
Note that, number of projections do not change by SPARQL-to-SQL mappings.

Queries: The SP2B SQL translations of the SPARQL queries are already available1

on the benchmark page, making the experimentation portable, and reducing the risk of
erroneous translation. For the WatDiv, we translated the SPARQL query templates pro-
vided by the benchmark (20 queries 2) into SQL for the ST and PT schema (can be seen in
our GitHub repository 3). For the VT schema, we used the VT-SQL translation provided
in [Sch+16]. We checked the correctness of translated SQL queries in WatDiv against
the results of the corresponding SPARQL queries over the same dataset, and the results
conform. Last but not least, we provide the SQL translations for all the relational schemas
for both of the benchmarks on our mentioned repository seeking portability aspects.

To give an indication of the query complexity, we looked at the following query fea-
tures, i.e., number of joins, number of filters, and the number of projected variables. Ta-
ble 3 summarizes these complexity measures for SP2B and WatDiv queries in SPARQL,
and for the SQL translations of the corresponding RDF relational schemas. For instance,
we use the number of variable projections in the SQL statements as an indicator for the
performance comparison between the data formats of the storage backends in terms of
being row-oriented (e.g., Avro) or columnar-oriented (e.g., Parquet or ORC).

1http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/
translations.html

2https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
3https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/

master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/watdiv/querying/
queries

44

http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/translations.html
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/translations.html
https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/watdiv/querying/queries
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/watdiv/querying/queries
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/watdiv/querying/queries

Table 3: SP2B & WatDiv queries (SPARQL/SQL) complexity characteris-
tics: number(#) of [J]oins, [P]rojections, and [F]ilters , Shape, i.e., [S]tar,
[S]now[F]lake, or a single [T]riple[P]attern; (U)nbounded Predicate Variable,
w.r.t schemas (ST, VT, PT).

3.2.2. Experimental Setup and Evaluation Environment

In this section, we describe our experimental environment. In particular, (i) we discuss
how we configured our experimental hardware and software components; (ii) we describe
how we prepared, partitioned, and stored the datasets, and (iii) we present the details of
the design of the experiment.
Hardware and Software Configurations. Our experiments have been executed on a
bare-metal cluster of four machines with a CentOS-Linux V7 OS, running on a 32-AMD
cores per node processors, and 128 GB of memory per node, alongside a high speed 2 TB
SSD drive as the data drive on each node. We used Spark V2.4 to fully support Spark-SQL

45

WatDiv
SPARQL ST-SQL VT-SQL PT-SQLQuery Shape #J #F #P #J #F #J #F #J #F

C1 C 7 0 4 7 8 7 0 6 4
C2 C 9 1 4 9 11 9 1 9 5
C3 C 5 0 1 5 6 5 0 2 4
F1 SF 5 2 5 5 8 5 2 3 3
F2 SF 7 1 7 7 9 7 1 2 3
F3 SF 5 1 6 5 7 5 1 4 4
F4 SF 8 2 8 8 11 8 2 4 4
F5 SF 5 1 6 5 7 5 1 3 1
L1 L 2 1 3 2 3 2 1 2 2
L2 L 2 2 2 2 5 2 2 2 2
L3 L 1 1 2 1 3 1 1 1 1
L4 L 1 1 2 1 3 1 1 1 2
L5 L 2 1 3 2 4 2 1 1 2
S1 S 8 1 9 8 10 8 1 3 3
S2 S 3 2 3 3 6 3 2 1 4
S3 S 3 1 4 3 5 3 1 1 3
S4 S 3 2 3 3 6 3 2 1 3
S5 S 3 2 3 3 6 3 2 1 4
S6 S 2 1 3 2 4 2 1 1 2
S7 S 2 1 3 2 4 2 1 1 2

SP2Bench
Q1 S 3 0 1 2 4 2 2 2 2
Q2 S 8 0 10 9 9 9 0 8 5
Q3 S 1 1 1 1 3 1 2 2 2
Q4 SF 7 1 2 7 9 7 3 8 3
Q5 SF 5 1 2 5 7 5 3 7 3
Q6 SF 8 3 2 8 12 8 3 6 2
Q7 SF 12 2 1 12 14 12 5 4 0
Q8 SF 10 2 1 9 13 9 7 6 4
Q9 S(U) 3 0 1 1 4 1 3 n/a n/a
Q10 TP(U) 0 0 2 0 1 0 2 5 2
Q11 TP 0 0 1 0 1 0 0 2 0

Figure 16: RDF relational Schema generation process.

Figure 17: Process of partitioning and storage formats conversion via Spark.

capabilities. We used Hive V3.2.1. In particular, our Spark cluster consists of one master
node and three worker machines, while Yarn is used as the resource manager, which in
total uses 330 GB and 84 virtual processing cores.
Data Storage: We generated synthetic RDF datasets in the Notation3 (n3) native RDF
serialization using the benchmarks’ generators. The generated n3 RDF datasets are con-
verted into CSV relational schemas using Jena TDB 4, a disk-based access repository for
storing RDF datasets. We further use the Jena ARQ 5 for querying these TDB datasets and
generating the output schemas tables in the CSV (see Figure 16). Finally, these raw textual
CSV documents are loaded to the HDFS. Moreover, we have used the Spark framework
to convert the relational schemas data tables from the CSV format into the other HDFS
file formats (i.e., Avro, Parquet, and ORC). Spark is also used for partitioning schema
tables and loading them into HDFS (See Figure 17).
Data Partitioning. In Preliminaries section, we describe the partitioning techniques we
selected, i.e., HP, SBP, and PBP. Partitioning impacts data distribution and thus, Spark-
SQL performance is greatly affected, especially reading from data backends and data-
joining operations. Therefore, when partitioning is required, the goal is to minimize data
shuffling to the minimum. One should select the technique that best suits the query work-
load. The mentioned partitioning techniques were originally designed for RDF parti-
tioning. Hence, we defined their equivalent version for tabular RDF representation. In
Spark-SQL, join operations require combining two or more DataFrames based on certain
(sortable) keys. That means that the joined data must be transferred to the same node.
Thus, we prepared the data in two phases.

First, we use custom Spark partitioners for creating DataFrames that fulfill a certain
partitioning technique. Depending on the partitioning techniques of choice (i.e., SBP,
PBP), we used as a partitioning key the subject or the predicate of the triples, respectively.
For the Horizontal approach, we re-partition the DataFrames into a specific number of
partitions according to the number of cores in the machines in our cluster (see Figure 17).
Then, we persisted the DataFrames on HDFS (i.e., kept partitioned for later subsequent
experiments). We fixed the data partition block size on HDFS as the default block size on
Spark (128MB). HDFS manages also the replication of these partitioned blocks according

4https://github.com/apache/jena/tree/master/jena-tdb
5https://github.com/apache/jena/tree/master/jena-arq

46

https://github.com/apache/jena/tree/master/jena-tdb
https://github.com/apache/jena/tree/master/jena-arq

Format 100M 250M 500M 100M 250M 500M
CSV 13GB 31GB 60GB 13.8GB 32.1 G 65.8 G
Avro ∼2GB ∼5GB 11GB 1.8GB 4.0 G 8.3 G
ORC 1.3GB 3.2GB 6.3GB ∼1GB 2.6 G 5.4 G

ST

Parquet 1.7GB ∼4GB ∼8GB 1.3GB 3.1 G 6.6 G
CSV ∼8.3GB 21GB 41GB 6.1 G 14.3 G 29.4 G
Avro ∼1.7GB ∼4.2GB 8.3GB 841.6 MB 1.8 G 3.8 G
ORC ∼1.5GB ∼3.8GB 7.3GB 638MB 1.5 G 3.1 G

VP

Parquet ∼1.6GB 4GB 7.8GB 750MB 1.7 G 3.6 G
CSV ∼6.8GB 36GB 33GB 6.2 G 14.4 G 29.6 G
Avro 1.6GB 6.2GB 7.5GB 1.0 G 2.3 G 4.8 G
ORC 1.4GB 5.5GB 6.5GB 800.9 M 1.8 G 3.8 G

Sp
2 B

PT

Parquet 1.4GB 5.8GB 7GB

w
at

D
iv

908.9 M 2.1 G 4.4 G

Table 4: Dataset sizes w.r.t schemas in different storage file formats.

Figure 18: Experiment design and workflow in our scenario.

to a configurable replication factor(RF) (i.e. we used the default RF = 3).
It is worth mentioning that, partitioning the PT tables by predicates (i.e., using PBP

technique) required splitting the tables into two columns tables/DataFrames (S, P). Those
DataFrames must be joined in the memory before executing queries against those tables.
On the other side, we depend only on the vanilla HDFS partitioning for the PBP technique
for the VP tables schema.
Performance Evaluation measure (Latency): We use the Spark.time function by pass-
ing the spark.sql() query execution function as a parameter to measure the query latency.
An experiment is defined as evaluating a query against a configuration combined of: a
relational schema, partitioned, and stored using one of the HDFS data formats (as shown
in Figure 18). We run the experiments for all queries five times. As a best practice, we
exclude the first cold start run time, to avoid the warm-up bias, and computing an average
of the other four run times.

3.3. Results and Performance Analysis

Table 5 shows part of the experiments results of running SP2B queries over the 500M
dataset and across various configurations 6. For each dataset size, we have a similar
table of results. Each query evaluation has a latency according to the underlying used
configuration (Schema, partitioning, and Storage format).

To analyze these huge results in complex scenarios like querying large RDF graphs,
we advocate the need for a decision-making framework for making sense of the perfor-
mance of BD systems. Different levels of analysis are shown in detail in the following
sections.

6Note: We keep the full results and plots of the benchmarks experiments in the GitHub project
repository.

47

First, the Descriptive analysis level enables answering factual questions regarding the
performance. At this level of analysis, we can extrapolate fine-grained insights, e.g., what
is happening at the query evaluation level. In particular, we use descriptive analysis to
identify which queries are long-running, medium-running, or short-running according to
their average run times. For each experiment, we can observe which schema, partitioning
technique, and storage backend are performing the best or the worst.

The descriptive analysis is usually complemented by diagnostic analysis that allows
answering the why questions regarding the performance phenomena. At this level, we
combine factual knowledge from the observed data with domain knowledge to make sense
of the performance results. We can enrich the descriptive analyses mentioned above with
contextual information about the query complexity and the configurations’ attributes.

3.3.1. Descriptive and Diagnostic Analyses’ Limitations

Descriptive performance analysis of the results of the experiments cannot provide final
actionable answers for the practitioners guiding them to the best-performing configura-
tions [Rag20; RAT21]. Similarly, diagnostic analysis can help understand why a specific
dimension is outperforming. For instance, the practitioner can understand why a specific
schema X outperforms another schema Y because the number of join operations entailed

48

Configuration Q1 Q2 Q3 Q4 ... Q10 Q11
a.i.1 80.4 270.1 42.5 2688.5 ... 28.5 17.9
a.i.2 208.9 793.1 139.2 2891.5 ... 61 68.7
...

b.iii.3 28.9 107.9 7.1 2381.5 ... 2.2 1.7
...

c.iii.4 123 236.7 53.9 2469.1 ... 148.6 110.1

Table 5: Spark-SQL query evaluation average run times (in seconds) over config-
urations (SP2B 500M dataset).

100M 250M 500M
Query BEST WORST BEST WORST BEST WORST

Q1 c.i.2 c.iii.4 c.ii.2 a.i.2 c.ii.2 a.i.2
Q2 b.ii.3 a.i.2 b.ii.4 a.i.2 b.iii.4 a.i.2
Q3 c.ii.3 a.i.2 c.ii.4 a.i.2 c.ii.3 a.i.2
Q4 a.ii.3 b.iii.3 c.ii.1 a.i.2 a.ii.3 a.i.2
Q5 b.ii.4 a.i.2 b.ii.4 a.i.2 b.iii.3 a.i.2
Q6 c.ii.3 a.iii.2 c.ii.3 a.iii.2 c.ii.3 a.i.2
Q7 b.ii.1 c.iii.2 b.ii.4 c.iii.2 b.ii.4 c.iii.2
Q8 c.iii.4 a.iii.4 c.iii.4 a.iii.2 c.iii.4 a.i.2
Q9 b.ii.4 c.i.2 b.iii.3 c.i.2 b.iii.4 c.i.2
Q10 b.iii.3 c.iii.4 b.iii.3 c.iii.4 b.iii.3 c.iii.2
Q11 b.i.3 c.iii.4 b.ii.4 c.iii.4 b.i.3 c.iii.2

Table 6: Best and Worst configurations for the SP2Bench queries across datasets.

with querying X is less than in Y or data accessed in X tables is less than in Y . How-
ever, due to the inherent trade-offs among the experimental dimensions, contradictions
still hinder clear decisions at this level of analysis [Rag20; RAT21].

Table 6 and Table 7 show the best and worst-performing configurations for each query
in different data scales for SP2Bench, and WatDiv respectively. The experimental re-
sults over different settings show no decisive configuration over the assessed dimensions,
making the practitioner’s setup selection a complex task. That is, although we can see
an agreement on the worst-performing configurations in both benchmarks (Tables 6 and
7), we cannot decide accurately on the best-performing configurations across queries and
across datasets.

Results of both benchmarks show that scaling up to larger datasets does not guaran-
tee decisive best-performing configurations. Indeed, most of the queries show different
configurations while moving across datasets. To name a few examples from the SP2B, all
queries (except for queries Q6, Q8, and Q10) show different configurations moving from
the 100M dataset to the 250M and 500M datasets. To give the intuition, Figure 19 shows
an example of disagreements on the best-performing configurations scaling from 100M
to 250M in the SP2B benchmark, the distance line (in red) shows the level of disagree-
ment according to the number of non-matching dimensions (i.e., query best configuration
contradicts in one(e.g., Q1, and Q2, Q3, Q7, Q9, and Q11), two (e.g., Q4, and Q11) or
all three dimensions). The green configurations in the middle of the figure represent the

49

100M 250M 500M
Query BEST WORST BEST WORST BEST WORST

C1 c.ii.2 c.iii.2 c.ii.2 a.i.2 c.ii.2 a.i.2
C2 b.i.4 a.i.2 b.i.4 a.i.2 b.ii.2 a.i.2
C3 c.ii.4 a.i.2 c.ii.3 a.i.2 c.ii.4 a.i.2
F1 c.ii.2 a.i.2 c.ii.1 a.i.2 c.ii.3 a.i.2
F2 c.i.2 a.i.2 c.ii.3 a.i.2 c.ii.1 a.i.2
F3 b.ii.2 a.i.2 c.ii.1 a.i.2 c.ii.4 a.i.2
F4 c.i.2 a.i.2 c.ii.3 a.i.2 c.ii.4 a.i.2
F5 b.ii.2 a.i.2 c.ii.2 a.i.2 c.ii.3 a.i.2
L1 c.ii.3 a.i.2 c.ii.1 a.i.2 c.ii.3 a.i.2
L2 b.iii.3 a.i.2 b.iii.2 a.i.2 b.ii.4 a.i.2
L3 b.ii.2 a.ii.2 b.ii.4 a.i.2 c.ii.4 a.i.2
L4 b.iii.3 c.iii.2 b.i.3 c.iii.1 b.i.4 a.i.2
L5 c.ii.2 a.i.2 c.i.4 a.i.2 c.ii.4 a.i.2
S1 c.ii.2 a.i.2 c.i.3 a.i.2 c.ii.4 a.i.2
S2 b.iii.2 a.i.2 c.i.4 a.i.2 c.ii.3 a.i.2
S3 c.i.2 c.iii.2 c.ii.2 a.i.2 c.i.3 a.i.2
S4 c.ii.4 c.iii.3 c.ii.4 c.iii.3 c.i.4 a.i.2
S5 c.ii.1 c.iii.3 c.i.4 a.i.2 c.ii.4 a.i.2
S6 c.ii.1 c.iii.3 c.i.3 a.i.2 c.ii.3 a.i.2
S7 c.ii.2 c.iii.4 c.ii.2 c.iii.4 c.ii.3 a.i.2

Table 7: Best and Worst configurations for WatDiv queries across datasets.

Figure 19: Contradicting best-performing configurations across datasets
(SP2Bench 100M to 250M datasets).

agreements when scaling up from the 100M to the 250M-dataset. The same observation is
also valid with the WatDiv dataset results. All WatDiv queries (except for one query,i.e.,
C1) show different configurations moving from the 100M dataset to the larger datasets
(i.e., 100M and 250M), See Table 7.

Moreover, moving to the level of queries, we can see inconsistency in the best and
worst configurations. A specific dimension option can show the best performance in
some queries while showing the worst performance in those queries changing other di-
mensions [Rag20; Rag+20]. Thus, looking at one dimension at a time might not lead to
correct decisions. The efficient performance of a specific schema, partitioning technique,
or storage format can be significantly degraded (even to be the worst-performing) when it
is used with non-performing other dimensions for query specifications [Rag20; Rag+20;
RAT21].

First, we show examples of these observations from the SP2B Benchmark. For in-
stance, changing the partitioning and storage formats can affect the efficient performance
of the relational schema. As an example, Q1 in the 100M dataset, the best performing
schema (PT) in the configuration (best=(c.i.2)), becomes the worst performing (c.iii.4)
changing the partitioning technique and storage format (see Figure 20 (a)). Also, the ST
schema shows the best and worst performance in Q4 in the 500M dataset, (best=(a.ii.3),
worst=(a.i.2)) (see Figure 20 (c)).

Similarly, changing the schema and storage dimensions degrades the performance of
the best-performing partitioning technique in Q10 in the 100M and 250M, and 500M
experiments (Figure 20 (a), (b), and (c), respectively. For example, Q10 in the 100M
and 250M dataset, best= b.iii.3 to worst= c.iii.4). The same effect occurs in Q8 in 250M
dataset in Figure 20 (b), (best= c.iii.4 to worst= a.iii.2).

Last but not least, changing the schema and partitioning dimensions affects the perfor-
mance of the storage format like in queries Q4 (100M), and Q11 (250M), see Figures 20
(a), (b), respectively.

On the second hand, the performance of two well-performing dimensions can be af-
fected by introducing a different third dimension. For example, Figure 20 (a) shows query

50

(a) (100M-SP2B)

(b) (250M-SP2B)

(c) (500M-SP2B)

Figure 20: SP2B queries with best(worst)-performing configurations.

51

Q8 (100M dataset) with the partitioning and storage performance (i.e. PBP technique and
ORC format) in the best-performing configuration (best=(c.iii.4)) is affected to become
the worst changing the schema to ST, i.e. (worst=(a.iii.4)).

Second, WatDiv results confirm the above observations. Although, there is high agree-
ment on the worst-performing configurations across queries (especially with scaling up to
the larger datasets 250M, and 500M) see Table 7. However, we still see contradictions in
the best-performing configurations.

The effect of changing the storage formats and partitioning on degrading the efficiency
of schema is still valid. For instance, in queries S5 and S6 in the 100M dataset (CF.
Table 7), the best performing schema PT (best=(c.ii.1)) turns to perform the worst by
changing the partitioning technique and the storage format (worst=(c.iii.3)). The same
effect occurs with queries S4, and S7 in the 100M and 250M datasets, respectively (see
Figures 21 (a), (b)).

Similarly, changing the schema and storage degrades the partitioning performance in
100M experiments (queries C2, L4), 250M dataset (queries C2, L5, S2, S5, and S6), and
in 500M dataset experiments (queries L4, S3), see in Figures 21 (a-c).

Last but not least, the effect of changing the schema and partitioning on the efficiency
of format dimension is shown in queries F1, F4, F5, L5, S1, S2, S3 (in the 100M dataset),
C1, F5, L2 (250M experiments), and C1 and C2 (in the 500M dataset experiments), see
in Figures 21 (a-c).

Changing even one dimension can affect the performance of the other two dimensions.
For example, in queries C1 of the 100M dataset, the best performing configuration (best=
c.ii.2) with using the PT alongside the CSV format turns to be the worst by changing the
partitioning technique (i.e., worst= c.iii.2). Similar effect is observed in query S3 of the
100M dataset, i.e., (best=(c.i.2), worst=(c.iii.2)), see (Figure 21 (a)). On the same note,
changing the schema also can affect the efficiency of the partitioning and storage formats
like in queries F2, F4, and L3 in the 100M dataset(CF. (Figure 21 (a))).

Notably, these few examples represent the most extreme case when for the same query,
changing one or two dimensions turns the best-performing dimension(s) to provide the ab-
solute worst-performing. That is, there exist some other cases in which changing dimen-
sions in well-performing configurations (not necessarily the best) significantly degrades
their performance (not necessarily to the worst).
Impact of the Query Workload: What descriptive analysis can also show is the impact of
the query workload on the system latency performance with the presence of configurations
and datasets. Each query has its own complexity and data selectivity features. Thus, the
impact of these queries on the runtimes should differ according to those features and how
they change with the underlying configurations.

Figures 22 (a) and (b) quantitatively show the impact of certain query on the system’s
performance with the presence of configurations in the SP2B and WatDiv benchmark
datasets, respectively. For conciseness, we show the plots of the largest dataset in both
of them (i.e., 500M). For all of these figures, the reading key is the lower is the better.
We indicate that a particular configuration outperforms another in a specific query when
it takes less execution time.

First, we show the results of the queries in SP2B benchmark. We can categorize the
queries into short, medium, and long-running queries. For instance, queries (Q1, Q3,
Q5, Q10, and Q11) are the short-running ones. Whereas, queries (Q2, Q5, Q6, Q9) are
medium-running queries. Last but not least, queries (Q4, Q7, Q8) are categorized as
long-running queries. The SP2B figure also shows that Q4 is the query with the highest

52

Figure 21: WatDiv queries with best(worst)-performing configurations.

(a) (100M-WatDiv)

(b) (250M-WatDiv)

(c) (500M-WatDiv)

Figure 21: WatDiv queries with best(worst)-performing configurations.

53

A
ve

ra
ge

 R
un

tim
es

 in
 s

ec
on

ds
 (l

og
 fu

nc
tio

n
ap

pl
ie

d)

0

10

20

30

a.i.1 a.i.2 a.i.3 a.i.4 a.ii.1 a.ii.2 a.ii.3 a.ii.4 a.iii.1 a.iii.2 a.iii.3 a.iii.4 b.i.1 b.i.2 b.i.3 b.i.4 b.ii.1 b.ii.2 b.ii.3 b.ii.4 b.iii.1 b.iii.2 b.iii.3 b.iii.4 c.i.1 c.i.2 c.i.3 c.i.4 c.ii.1 c.ii.2 c.ii.3 c.ii.4 c.iii.1 c.iii.2 c.iii.3 c.iii.4

Q11
Q10
Q9
Q8
Q7
Q6
Q5
Q4
Q3
Q2
Q1

(a) (500M-SP2B)

A
ve

ra
ge

 R
un

tim
es

 in
 s

ec
on

ds
 (l

og
 fu

nc
tio

n
ap

pl
ie

d)

0

25

50

75

100

125

a.i.1 a.i.2 a.i.3 a.i.4 a.ii.1 a.ii.2 a.ii.3 a.ii.4 a.iii.1 a.iii.2 a.iii.3 a.iii.4 b.i.1 b.i.2 b.i.3 b.i.4 b.ii.1 b.ii.2 b.ii.3 b.ii.4 b.iii.1 b.iii.2 b.iii.3 b.iii.4 c.i.1 c.i.2 c.i.3 c.i.4 c.ii.1 c.ii.2 c.ii.3 c.ii.4 c.iii.1 c.iii.2 c.iii.3 c.iii.4

S7
S6
S5
S4
S3
S2
S1
L5
L4
L3
L2
L1
F5
F4
F3
F2
F1
C3
C2
C1

(b) (500M-WatDiv)

Figure 22: Configurations Query Performance for the SP2B and WatDiv queries.

latency (i.e., it takes the highest running times across all the configurations), and Q8
which interestingly impacts only the ST and VT schemas, taking long running times,
while having very low running times with the PT schema.

Second, the WatDiv figure shows that the queries of the shape Complex (i.e., C1,C2,
C3) are the long-running ones across all of the configurations. The rest of the queries in
the other three query shapes (i.e., Snow-Flake, Linear, and Star) are ranging from medium

54

100M

(Q1-Q11)

Q4
<1>

ST

<4>
Q2,Q5,Q7,Q9

VT

PT

Q2,Q5,Q7,Q9, Q10, Q11
<6>

Q1,Q3,Q6,Q8

<4>

HP

SBP

PBP

Avro

CSV

ORC

Parquet

Q5,Q9

<2>

Q2
<1>

<1>
Q7

Q10
<1>

Q10
<1>

Q3,Q6

<2>

Q1<1>

Q8

<1>

Q3,Q6
<2>

Q1
<1>

<1> Q8

Q4
<1>

<1>
Q4

<1>
Q11

<1> Q11
PT VT

Schema Partitioning Storage Format

ORC Parquet

SBP

Optimal Cluster Setup

Figure 23: Descriptive analysis may lead to different cluster deployments.

to short-running, across all the configurations.
Interestingly, the performance of the system to evaluate a graph query depends not

only on the query complexity features but also according to the experimental configura-
tions. For instance, the complex query C3 has the highest impact on the system execution.
Indeed, it incurs several triple patterns with a significant low selectivity, thus including
high intermediate results that give the required high selectivity results. However, we can
notice that its impact clearly aggravates with using the VT schema (with all partitioning
techniques and storage formats), and with the PT schema (with the HP and SBP parti-
tioning techniques). However, its impact is significantly reduced with the PT schema
using the PBP partitioning technique and with all storage data formats. We have the same
observations with the complex query C2 (i.e., it shows high impact with the ST and VT
schemas, and low impact with the PT schema). On the same note, the complex query
C1 has a high impact across all the configuration combinations, with a slight low impact
(better performance) with the ST schema across its two other dimensions (partitioning
and storage formats).

In the line-shaped queries (Watdiv-L), we can observe that the PT schema shows a
remarkable competitive performance, especially with the HP and SBP partitioning tech-
niques. The VT schema performance directly follows for those queries.

We observed the same note of the PT schema efficient performance (alongside HP and
SBP) for the Watdiv-F and Watdiv-S queries with the shapes "Snow-Flake", and "Star",
respectively. In particular, these queries have a significant lower impact with these con-
figurations of PT alongside HP and SBP. However, PT schema with the PBP partitioning
has a significant negative performance effect on those query shapes. Whereas, this PBP
technique with the PT schema interestingly has a significant positive performance impact
with the S1, and L3 queries (i.e., significantly reducing their execution times).

These results affirm the limitations of relying only on descriptive and diagnostic anal-
yses to select efficient configurations from the experimental solution space. Indeed, in
such a complex solution space of experimental dimensions and big datasets, getting ac-
curate final options from the descriptive analysis is by nature a hard and time-consuming
task.

3.3.2. Performance Complexity Issues

Moreover, Figure 23 shows that the descriptive analyses of the performance results can
lead to different cluster deployments with huge redundancy of the data. That is, the con-
figurations that lead to the optimal performance of the system (optimizing the majority of

55

the queries) may require replicating the data in different schema, partitioned in different
techniques, and physically stored in multiple storage file formats on disk. For instance in
Figure 23, the best setup that guarantees the best performance of the whole query work-
load (i.e., generally cover the best-performance for the majority of the queries) requires
replicating the data in two RDF relational schema (i.e., PT, and VT), partitioning them
using one technique by subject (i.e., SBP), and physically replicating the storage on disk
using the best-performing two storage formats (i.e., Parquet, and ORC). Figure shows
that how each query is directed to the best-performing configuration options across the
figure paths. The thickness of the paths depicts the importance (i.e., the more queries the
configuration option covers, i.e., makes it take the minimum latency). For example, VT
is in generally very good option according the coverage ratio (6 out of 11 queries).

Intuitively, this replication enhances the performance the best, as the query execution
will be directed to the optimal cluster setup of configurations (schema, partitioning, and
storage). However, this significantly complicates the data-warehousing solutions of pro-
cessing large graphs on top of relational systems. Besides, wasting huge storage out of
the data replication, it requires sophisticated comprehensive data engineering efforts for
maintaining data in different logical layouts and physical storage, additionally and most
importantly, adapting the query workload for those layouts (i.e., query translation is a
schema-dependent task).

3.3.3. Can we make sense of performance results?

Now, we aim at making sense of the performance of Spark-SQL providing some reason-
ing on the performance phenomena. To this end, we aim at incorporating the domain
knowledge about the query workload complexity features, as well as the configuration
dimensions characteristics in order to understand the previously shown descriptive fine-
grained results.

To this end we list a set of hypotheses from the domain knowledge related to the query
workload and experimental dimensions (summarized in Table 8):

1. Schema. we expect the schema that reduces the number of joins in a query or the
one that reduces the input table sizes to be the best-performing one.

2. Partitioning. we expect the partitioning technique that achieves the data load bal-
ance while not ignoring efficient data locality to be the best-performing.

3. Storage. we expect the storage format that optimizes the compression of the data
to work better. We also expect that the row-oriented formats are more suitable
for the query workload with high projections. Whereas, the columnar formats are
more suitable for workloads with few projections.

First, we show the diagnostic analysis over the SP2B results. In the majority of the
results, we can notice that the ST is the worst-performing schema. Indeed, it is the schema
that requires the maximum number of self-joins alongside several Filters over the Pred-
icate and Object column values. Moreover, ST schemas single table is the largest table
even after partitioning and thus takes longer execution times. Whereas, the VT schema
is mostly the best-performing schema. The reason behind this is that VT tables tend to
be relatively smaller in size than other relational schema tables. Thus, Spark query joins
have smaller intermediate results entailed in the shuffle operations. The PT schema is yet
a competitor to the VT schema since it requires the minimum number of joins and filters
(compared to the other two schemas) while translating SPARQL into SQL (C.F., Table 3).

56

Table 8: Domain knowledge related to our experimental dimensions.

However, the PT schema joins are less than in the VT schema queries, the VT schema
is generally outperforming the PT schema. The reason behind this is that the size of the
binary VT table is less than the n-ary column PT tables. Moreover, some of the VT tables
(e.g., subClassOf, References) are small in size enough to be broad-casted while having
joins with them. The broad-cast joins have a significant positive performance impact in
Spark-SQL joins [Mic15].

The reasoning for the query level, Q4 shows as the longest-running query across all
configurations (C.F. Figure 22 (a)). Indeed, it entails several complex "joins" and filters
in all the schemas, as well as a negation filter with another choke-point of duplicate elim-
ination (i.e., DISTINCT). Moreover, it incurs a huge result set, as it touches huge data
tables (e.g., Publications, Persons) [eta09]. In this query, the ST is interestingly showing
better performance than the other two schemas with this query across all the partitioning
techniques and storage formats. The reason is that the number of joins in the ST schema is
less than in the PT schema. Nonetheless, the ST schema joins in the VT schema are equal
to the ones in the ST schema, ST outperforms the VT schema due to the high number of
filters in the ST schema that reduces the intermediary results less than in the VT schema.
Similarly, Query Q8 is the second longest-running query due to its high number of joins.
However, the PT schema significantly enhances the performance of this query due to the
lower number of joins in PT schema compared to the other two schemas. Similarly, the
complexity of Q7 makes it challenging for the system to evaluate in all configurations. It
is the query with the highest number of join operations as well as duplicate elimination.
The VT schema significantly outperforms the other schemas for evaluating this query
due to several broadcast hash joins utilized. The query includes two tables that will be
broad-casted to the other machines, i.e., (e.g., subClassOf, References).

Now, we move to the partitioning dimension impact discussions. The SBP partitioning
is generally shown as the best-performing technique. Particularly, it directly outperforms
HP, leaving the PBP technique in the worst rank. The most reasonable cause behind this
is that most of the query shapes in SP2B benchmark are stars and snow-flake which are
mostly oriented to the RDF subject as the joining key. Therefore, partitioning by the
subject key locates the triples or data rows with the same subject on the same machine
reducing data shuffling to the minimum, and maximizing the level of parallelism by all
workers. This reduces the queries’ latency to the minimum. Whereas, this is not satisfied
in the Horizontal-based (HP), nor in the Predicate-based PBP partitioning approaches.

Last but not least, regarding storage formats comparison, we can observe that the
HDFS columnar file formats mostly outperform the row-oriented file formats. In partic-
ular, the ORC is the best performing storage format followed by Parquet. Whereas, Avro
and CSV file formats of HDFS are the worst-performing file formats. The reason behind

57

Dimension When performs well ?

Schema - reduces the number of query joins.
- reduces the the input table sizes.

Partitioning - achieves the data load balance.
- considers efficient data locality.

Storage Format
- optimizes the compression of the data.
- row-oriented more suitable to workloads of high projections.
- columnar more suitable to workloads of few projections.

these results is that most of the SP2B queries are with a few numbers of projections. In-
deed, columnar file formats are able to perform better since they are efficient to scan only
a subset of columns with filtering out unnecessary columns for the query [IP19]. On
the other side, the textual uncompressed CSV and the row-oriented Avro file formats are
shown to have the lowest-performing storage options, respectively.

Second, we show the diagnosis over the WatDiv benchmark results. Similar to the
SP2B benchmark, the ST is shown as the worst-performing schema in most of the queries
(C.F., Figure 22 (b)). This is also explained by the high number of self-joins in this
schema, such in the SP2B benchmark results. Whereas, the PT schema is outperforming
the VT schema in the majority of the queries. The reason behind is two-folds. First, the
high existence of star patterns in the Star and Snow-Flake query shapes, (i.e., WatDiv has
12 out of 20 queries are mainly star-shaped (stars and snow-flakes)). Indeed, 88% of the
triple patterns in the WatDiv query workload are involved in star-shaped joins [Bor+13].
The PT schema is able to answer those star patterns with fewer joins (with no-joins even in
some star queries) than with the VT schema. The same reason is valid for the PT schema
with WatDiv-L queries. These Linear queries consist of three triple patterns two of which
can be found in the same table (i.e., User). In the PT schema, this can be achieved with
a single join between the User and Product tables. This results in fewer stages and faster
execution than the VT which entails accessing three tables and two joins in those queries.
However, the VT schema shows a closer performance to the PT schema when a group
of queries contains fewer bounded predicates. This explains why for several "L" and "S"
queries VP achieves a very closer performance than the PT schema.

Regarding the partitioning dimension impact, the SBP technique (ii) shows the best
performance in the majority of the queries. The mentioned reason above regarding the
star patterns’ commonality in the queries also explains this behavior that was similar
to the SBP behavior with the SP2B benchmark. However, Subject-based partitioning
affects the performance of the VT schema, especially with the Star patterns (in stars and
snow-flakes). It gets worse in Linear queries. The reason behind this is that there is no
guarantee that the join object variables in the VT tables reside in the same machine (that
entails more data shuffling). The SBP technique even affects the performance of the VT
schema making it perform worse than the HP partitioning technique. The HP and PBP
techniques show; in the majority of the queries; the worst performance, as they do not
consider locating the triples with the similar subject key in the same partition. Thus, they
fail in optimizing the star-pattern queries. Moreover, the PBP partitioning tends to be the
worst-performing technique with the PT schema. The reason is PBP technique requires a
cumbersome operation of re-partitioning the PT tables into its predicates and re-joining
them again in the memory while querying.

Last but not least, we explain the performance of the storage file formats in the WatDiv
benchmark. Similar to the SP2B, the columnar file formats outperform the row-oriented
file formats due to the low number of projections. However, the row-oriented file for-
mats (CSV, and Avro) outperform them in several queries that have a high number of
projections that reach the extent of accessing the full tables in those queries.

3.4. Best Practices for Querying Large RDF Graphs Using
Relational Big Data Systems

In this section, we aim to discuss specific recommendations regarding the case study of
querying large RDF graphs over a relational system, e.g., Spark-SQL (see a summary of

58

Figure 24: Experimental dimensions’ best practices for the Spark-SQL system.

best practices in Figure 24).
First, the specific recommendations regarding the dimensions of our case study can be

listed as follows:

i The Single triples table (ST) is not recommended as a relational schema for repre-
senting the RDF datasets in the relational contexts.

ii The VT and PT schema are —in general, recommended relational schema for pro-
cessing large RDF datasets.

iii The PT schema can be the best option, especially with Star and Snowflake query
workloads (fewer joins are incurred).

iv However, the PT schema comes with the burden of designing and modelling rela-
tional layout, this burden aggravates with real-world RDF datasets. Moreover, the PT
schema can not directly answer queries with unbounded predicates (e.g., Q9 in the
SP2B). Thus, this gives an advantage to the deterministic and automatically designed
VT schema.

v our experiments show that reducing the number of joins in the execution plan and
having a balanced distribution of the data among the cluster nodes are more important
than the size of the various tables accessed.

vi The subject-based partitioning is generally recommended with SPARQL queries that
include several star patterns. Nonetheless, it is not recommended with the VT schema,
especially when the query workloads are mostly linear or star-shaped.

59

vii On the other side, the Horizontal and Predicate-based partitioning techniques are gen-
erally less recommended. However, still better than the default vanilla HDFS parti-
tioning.

viii According to the storage file formats, the columnar file formats are more recom-
mended than the row-oriented file formats when the workloads come with a few num-
bers of column projections.

ix Specifically, ORC shows generally as the best-performing storage option with Spark-
SQL in our experiments across the two benchmarks and scalable evaluations, fol-
lowed by Parquet.

3.5. Discussion

To Summarize, processing large RDF graphs in a distributed relational setup is a multi-
faceted complex problem, as it includes several factors. First, the query workload has
different complexity features, i.e. different shapes, number of triple patterns, and vari-
ous selectivity values. Relying on relational BD systems like Apache Spark-SQL raises
other dimensions to consider while seeking the best performance. The relational schema,
the partitioning, and storage formats are important dimensions that directly impact the
performance. Each schema has a different representation of the data and thus impacts
the query complexity features, e.g., number of joins and number of filters. This can di-
rectly affect the intermediate results and their sizes in the query for each schema. With
the ever-growing volumes of RDF KGs, the optimal distribution in terms of data replica-
tion, as well as load balancing is getting more and more crucial in distributed and cloud
computing applications [Cur+15]. Load balancing is particularly an important aspect to
consider for achieving efficient data distribution for storage and querying evaluation. Re-
lying only on the relational layouts (schemas) of representing RDF graphs, the optimal
distribution of the data may be hard to achieve. In practice, some RDF relational schemas
are by nature skewed, e.g., the VP schema (i.e., most of the triples can be related to a few
predicates, while very few triples can be related to the majority of predicates). There-
fore, in our scenario to mitigate these issues, we consider data partitioning. Partitioning
is another crucial design decision in distributed applications for increasing system avail-
ability, and reducing query processing times [ANS18]. Indeed, graph partitioning aims
to assign portions of the graph to several machines of the distributed cluster in a bal-
anced way (as possible) so that data shuffling (i.e., the amount of data exchanged) across
machines is the minimum when executing distributed query analytics. In our work, we
aimed to study the behavior of a Big Data system (i.e. Spark-SQL) for querying large
RDF graphs with the impact of various RDF partitioning techniques (Horizontal parti-
tioning, Subject(Predicate)-based partitioning) that are different in their data distribution
nature, and directly impact the performance of the system. Last but not least, the storage
formats affect the compression levels and the data access according to the storage nature
(i.e., row and columnar formats).

Descriptive and diagnostic performance analyses in such complex experimental sce-
narios are a hard and time-consuming task. These levels of analysis cannot provide final
actionable answers on the performance analysis in such complex scenarios. Indeed they
require a prior deep understanding on the domain knowledge in all aspects, including
the workload as well as the reaction of configurations to it. Moreover, inherent trad-offs
among the experimental dimensions hinder clear final decisions.

60

Hence, a prescriptive technique that drafts a clear trade-off across all experimental
dimensions will simplify the results presentation and reliably guide selecting advanced
settings for their RDF data processing performance. We dedicate the next chapter to dis-
cussing the prescriptive analysis that addresses the previous concerns, with an emphasis
on the necessity for comprehensive ranking criteria.

61

4. BIG DATA SYSTEMS PERFORMANCE
REPLICABILITY

In this chapter, we discuss the experimental methodology that we used to answer the
Micro 2 question (defined in Section 1.5.2): can we guarantee replicability of BD systems
performance when introducing other new experimental options?. This question reflects on
the replicability of BD systems performance and validates if we can guarantee fair perfor-
mance assessment of these systems in complex scenarios like big (RDF) graph querying.
As have been mentioned in the Introduction chapter, we define the replicability in our
context with the ability of a researcher to arrive at the same scientific findings as a pre-
vious study while varying the underlying experimental setups (e.g., data, configurations,
etc.) [NM+19]. In practice, this Micro question investigates the replicability of system’s
performance under the effect of changing experimental options (e.g., Schemas, Partition-
ing techniques, or Storage formats). Thus, we test the hypothesis (mentioned in Section
1.5.2): HP0: The replicability of the BD system’s performance for querying large (RDF)
graphs could be affected by introducing other new experimental options.

In this chapter, we look at the problem from the perspective of the generalizability
of the state-of-the-art BD systems’ performance findings in such complex experimental
solution space of multiple dimensions. Chapter 3 shows the limitations of Descriptive and
Diagnostic Spark-SQL performance analyses in the complex solution space of multiple
experimental dimensions. Indeed, it showed that the relational schema is not the only
impactful dimension for the performance of relational BD systems for processing/query-
ing large RDF graphs. Herein, we further investigate the performance improvement of a
relational BD engine (e.g., Spark-SQL framework) with two recent schema optimizations
(i.e., Extended Vertically Partitioned Tables (ExtVP) and Wide Property Tables [Sch+14;
Sch+16]), w.r.t. their baseline approaches (i.e., Vertically-Partitioned (VP) Tables and
Property Tables (PT)). The state-of-the-art show that those schemata optimizations out-
perform their baselines. In this chapter, we aim to observe if the performance of the two
schema advancements generalizes (i.e., still outperform the baseline ones) over Spark-
SQL by introducing different RDF partitioning techniques and various storage data for-
mats that are different from the original configurations [Sch+14; Sch+16].

4.1. Methodology and Experiments

Our methodology assesses if we can replicate the state-of-the-art results of the schema
optimizations [Sch+14; Sch+16; al19] over the baseline relational schemas performance
when introducing different experimental options. Thus, we performed our experiments
in an as similar setup as possible to what the original authors have done [Sch+14;
Sch+16]. In this regard, we use the baseline (vanilla) HDFS partitioning technique. We
also use Parquet as the baseline storage file format (grey shaded boxes in Figure 25). We
then introduce new experimental dimensions to our experiments, such as different par-
titioning techniques and different storage file formats, testing against various SPARQL
query shapes.

Regarding the data partitioning, we introduce the Horizontal Partitioning (HP) tech-
nique and Subject-based partitioning (SBP) for the WPT and PT schema experiments.
On the other hand, Horizontal, Subject and Predicate-based partitioning techniques are

62

Parquet

ORC

AVRO

CSV

Storage
Formats

Baseline
HDFS

Horizontal
Based

Subject
Based

Predicate
Based

Partitioning
Technique

Vertical
Tables

Ext. Vertical
Tables

Property
Tables

Wide Property
Tables

Relational
Schemata

Figure 25: Assessing the performance of Spark-SQL with Schema advancements
(WPT, ExtVP) against the baseline schemas (PT, VP), when changing alternatives
of other experimental dimensions (e.g., partitioning, and storage).

used for the VP and ExtVP schema experiments.
We aim to check the impact of these partitioning techniques on the performance of

SparkSQL when evaluating SPARQL queries. These partitioning techniques can have
significant impacts due to the distribution of the data across the cluster nodes which will
force more shuffling in the presence of query joins. For example, Horizontal partitioning
should have a worse impact than Subject-based partitioning on the PT and WPT schemas,
and Predicated-based on (Ext-)VP schemas. These partitioning techniques do not take the
query shape into account and possibly place the required data in different nodes.

Regarding the storage of file formats besides the baseline Parquet, we consider an
additional columnar format, i.e., ORC, and two row-oriented ones, i.e., CSV and Avro.
We expect columnar formats to perform better for the queries with a subset of column
projections since they allow an efficient scan of tables by reading only a portion of
columns [IP19].

Finally, we aim to draft our observations and primary findings and propose some more
specific best practices related to the schema optimizations (besides the ones in the previ-
ous chapter) by discussing and analyzing the experiments’ results. Additionally, we aim
to highlight the trade-offs of combining all these dimensions at the end of this chapter. In
particular, we aim to observe the impact of introducing different configurations on these
optimizations’ and how it would impact the large SPARQL query performance on the
SparkSQL engine. Herein, we plan to verify and answer the following questions:

1. How far do RDF partitioning techniques and storage formats impact the replicabil-
ity of a BD system’s query performance in the presence of schema optimizations?

2. How can we systematically compare different RDF relational schemas on top of
BD systems in the presence of other performance impactful experimental dimen-
sions (e.g., various Storage formats or Partitioning techniques)?

63

Table 9: SP2Bench-100M relational schemas size with different file formats
SP2Bench RDF (n3) PT WPT VP ExtVP

CSV 11GB ∼9.2MB-1.9GB
-Total: 6.8GB 9.4GB 8KB-1.9GB

-Total: 8.3GB

- OS (4.9GB)
- SS (39GB)
- SO (806MB)
-Total:∼45GB

Avro 11GB 980KB-416MB
-Total: 1.6GB 1.8GB 8KB-272MB

-Total: 1.7GB

- OS (359MB)
- SS (8.8GB)
- SO (331MB)
-Total:∼9.5GB

ORC 11GB 620KB-362MB
-Total: 1.4GB 1.4GB 8KB-249MB

-Total: 1.5GB

- OS (243MB)
- SS (7.8GB)
- SO (301MB)
-Total:∼8.4GB

Parquet 11GB 620KB-382MB
-Total: 1.5GB 1.7GB 8KB-264MB

-Total: 1.6GB

- OS (319MB)
- SS (8.4GB)
- SO (318MB)
-Total:∼9GB

3. Last but not least, what are the best practices that guide BD semantic web commu-
nity towards the best performance with those schema advancements?

4.2. Benchmark & Experimental Setup

This section outlines the experimental setup and the used benchmark alongside a simple
analysis of its queries. The experimental setups (presented in Figure 25) summarizes
the experiments configurations (relational schema, Partitioning, Storage). We have per-
formed our experiments for four different relational schemas, partitioning each schema
across four various partitioning techniques, i.e., one baseline HDFS, and other three RDF-
specific techniques. Last but not least, those schemas tables are stored across four differ-
ent storage formats. In detail:
Benchmark &Dataset: In our evaluation for this chapter’s experiments, we used the
SP2B SPARQL benchmark [eta09]. Details of the benchmark and its selection criteria can
be found in Chapter 3.
Data Storage: We generated a synthetic RDF dataset with 100M triples size in Notation3
(n3) format. This scale size is enough for checking the validity of the literature findings
regarding the RDF relational schemas optimizations and maintaining their replicability in
a more complex solution space 1.

The generated n3 RDF dataset is converted into CSV relational schemas using the Jena
TDB and Jena ARQ as described in details in Chapter 3. Finally, these raw CSV tables
(relational schemas) are loaded to the HDFS. Then, we use the Spark-SQL framework to
transform the various relational schemas data tables from the CSV format into the other
HDFS file formats (i.e., Avro, Parquet, and ORC).

Table 9 shows the size of the generated native RDF dataset (i.e., 11GB), as well as the
storage sizes of each relational schema in the mentioned different file formats on top of
HDFS. It is clearly shown how the different relational schemas affect the input data sizes.

1Our previous experiments [RTS19] show that the 100M dataset scale is the minimum challeng-
ing data-load for SparkSQL on our cluster distributed setup

64

In action, the PT schema has the smallest table sizes in total, followed by the VP
schema, then the WPT table schema. In contrast, the largest storage overheads come with
the ExtVP schema. We can also notice how the storage formats affect the sizes of the
schemas significantly. In particular, columnar-oriented formats have the minimum table
sizes across all the schemas. Indeed, ORC is shown to have the minimum table sizes,
followed by Parquet. Whereas, the Avro row-oriented formats have quite larger schema
sizes, and CSV has the largest table sizes.
Queries: As have been mentioned, SP2Bench queries have different complexities and
a high diversity of features [Sal+19]. These queries implement meaningful requests on
top of RDF data. In our experiments, we reused the SQL version of the queries associ-
ated with the SP2B benchmark 2 for the mentioned RDF relational schemas. However,
for the new relational schema advancements (e.g., ExtVP, WPT) that are missing on the
benchmark website, we have manually translated these queries into SQL, and we provide
all these translated queries in our project repository 3. We have evaluated all of these
11 queries of type SELECT, except Q9 and Q11, which are not applicable (’NA’) for the
PT and the WPT relational schemas. Also, Q7 is not applicable in the VP and ExtVP
schemas. Notably, for generating the ExtVP tables, we configured the default selectivity
threshold of 1 [Sch+16] to generate the full versions of ExtVP table joins. Table 3 (in
Chapter 3) shows the SP2B benchmark query shapes besides several complexity features,
in terms of the number of joins, filters, and projections.
Environment Setup: Our experiments were executed on the bare-metal cluster of 4 ma-
chines with the same specifications mentioned in Chapter 3.
RDF Data Partitioning: We used Spark for partitioning the relational schemas. This is
required to persist those DataFrames on top of the HDFS default file blocks partitioning
level. We use the resulting DataFrames as the input for the query engine. In our exper-
iments, we have the baseline HDFS partitioning (grey partitioning box (see Figure 25).
While other RDF partitioning techniques also have been tested, namely HP, SBP, and
PBP approaches. These techniques depend on partitioning the data horizontally across
machines (i.e., HP) or based on a partitioning key of the RDF subject or predicate (i.e.,
SBP and PBP, respectively).
Performance Evaluation measure (Latency): We used the Spark.time function by pass-
ing the spark.sql() query execution function as a parameter to measure the query latency.
We run the experiments for all queries five times (excluding the first cold start run time,
to avoid the warm-up bias, and computing an average of the other four run times).

4.3. Replicability Results

In this section, we discuss the experiments’ results. Particularly, we compare the opti-
mized relational schemas (i.e., WPT and ExtVP) against their baseline schemas (i.e., PT,
and VP, respectively) according to our methodology.

65

#Joins Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11
PT 2 9 2 8 7 6 9 5 2
WPT 0 0 0 3 3 3 10 3 0

Table 10: SP2Bench queries: Number of Joins of PT vs WPT.

WPT vs. PT Avro CSV ORC Parquet
Vanilla HDFS Partitioning 2/9 2/9 8/9 9/9
Horizontal Partitioning 2/9 3/9 6/9 6/9
Subject-based Partitioning 2/9 2/9 6/9 6/9

Table 11: Number of queries for which WPT outperforms PT for data formats and
partitioning techniques.

4.3.1. WPT versus PT Schema Results

Table 10 shows the SP2Bench queries’ number of joins when translated into SQL con-
cerning the PT and WPT schemas. Except for Q8 (which requires many self-joins of the
WPT table), the number of joins always decreases, adopting the WPT schema. Moreover,
we expect that the WPT schema query performance (i.e., in terms of latency) will outper-
form other relational schemas [al19]. In this regard, the Parquet data format efficiently
handles the sparsity caused by the WPT table schema —as Null values are efficiently
ignored in this file format [Sch+14].

Table 11 shows the overall benchmark results of the WPT performance over the PT
schema across all file formats (horizontally in the table), and across the different partition-
ing techniques (vertically). Values in this table specify the number of queries in which
the WPT schema outperforms 4 the baseline PT schema. The green color indicates that
WPT performing the best, while the yellow color indicates that its performance is above
50% over the PT schema, and the red means that performance is less than 50%.

Our results confirm that the WPT schema performs better than the baseline PT schema
in all the queries (i.e., 9 queries out of 9 in the benchmark) with Parquet file format and
using the baseline HDFS partitioning technique. Indeed, these results confirm the findings
in [Sch+14; al19] assessing the replicability regarding the WPT schema optimization.

To investigate how the performance difference between the WPT and PT schemas
changes, we introduce two new dimensions, i.e., various file formats and different parti-
tioning techniques. In this regard, Table 12 shows the effect of data partitioning (left of
the table) and storage formats (right of the table) considering the other new factors across
all the experiments. To this extent, we have calculated the percentages as follows, for the
partitioning factor’s impact, we pivoted on each partitioning technique and counted the
percentage of how much the WPT schema performance in SparkSQL is better than the
PT schema one across all the queries while considering all the changes of the storage file
formats (moving across them). We calculated the partitioning effect similarly by pivoting

2http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.
php

3https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/
4Notably, in this chapter when mentioning a schema outperforms another schema, we specif-

ically mean that the system (e.g., Spark-SQL) query latency with using the first schema is less
(better) than with the other schema.

66

http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/

WPT/PT Partitioning effect Storage effect
Baseline_HDFS_Part 58.33% Parquet 77.78%
Horizontal Partitioning 47.22% ORC 74.07%
Subject-based 44.44% CSV 25.93%
Predicate-based NA AVRO 22.22%

Table 12: The effect of other partitioning techniques, and other storage formats
on the reproducibility of the WPT S.O.T.A findings.

on the storage file format and moving across the partitioning techniques in all queries.
Table 12 also demonstrates that in such a complex space of different relational schema,

data partitioning, and storage file formats, schema-based query optimization is not straight-
forward. As we can see, WPT outperforms PT schema only for 58% in the queries us-
ing only the baseline default HDFS partitioning technique regarding the storage formats
and only about 78% for the Parquet file format. The determination of this result shows
the trade-off of considering alternative storage file formats and partitioning techniques
alongside the experiments’ query evaluation.

Regarding the storage, we can see that ORC, another columnar file format, performs
closer to the baseline columnar Parquet file format with 74%. However, the baseline
Parquet is yet better, as unlike ORC, Parquet can efficiently handle the WPT table’s
sparsity [Sch+14]. On the other side, we can see that the row-oriented formats have a
significant negative effect on the performance of the WPT schema. The WPT schema
performance is better than the PT schema, with only 22% and 25% in all Avro and CSV
queries, respectively. In action, SP2Bench queries only have one query (i.e., Q2) with
more than 2 column projections. This justifies why column-oriented formats (in-general)
give better results for the WPT than the row-based ones. In general, we can state that
file formats affected the replicability of the state-of-the-art results for the WPT schema.
In more specific words, the WPT schema advancement performance only replicates (i.e.,
being better than the PT baseline schema) with the baseline storage format (i.e., Parquet),
but not when changing other columnar or row-oriented storage formats.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

avro csv orc Parquet

R
at

io
 o

f W
P

T
 o

ve
r

P
T

Baseline
Horizontal

Subject
Average

(a) Q2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

avro csv orc Parquet

R
at

io
 o

f W
P

T
 o

ve
r

P
T

Baseline
Horizontal

Subject
Average

(b) Q4

Figure 26: The performance of the WPT schema over PT schema in Q2 and Q4
(values below ’1’ means WPT is better than PT)

At last, we enroll in three specific queries, namely, Q2, Q4, and Q8 . We selected
these queries as good representatives to exemplify our findings. However, the reader can
find the rest of the query figures in our mentioned GitHub repository.

Figure 26 (a), (b) and Figure 27 depict the performance of SparkSQL for these queries
under a various combination of file formats and partitioning techniques. In particular,

67

 0

 0.5

 1

 1.5

 2

 2.5

 3

avro csv orc Parquet

R
at

io
 o

f W
P

T
 o

ve
r

P
T

Baseline
Horizontal

Subject
Average

Figure 27: The performance of WPT over PT schema in Q8. values (below ’1’
means WPT is better than PT)

these figures combine the ratios of the WPT schema performance (in terms of the system’s
query latency) being better than the PT schema in those mentioned queries. Particularly,
the Y -axis shows the ratios of the system’s query latency (runtimes) with the WPT over the
query latency with using the PT schema, across various storage formats and partitioning
techniques. The ratios less than 1 indicate better performance of WPT over PT in that
query and across the different configuration settings. The ’yellow’ lines in the figures
show the average of the various partitioning techniques ratios (mentioned above, i.e.,
WPT/PT query latency) across each storage format.

There is a tremendous performance enhancement in WPT over PT in Q2 and Q4. The
reason behind this refers that the number of SparkSQL joins of WPT is significantly less
than the joins in PT schema (cf. Table 10). Particularly, in Q2 number of joins in PT
(SQL-version) is 9 compared to no-joins in WPT schema. While in Q4 with PT schema,
we have 8 SQL joins compared to 3 self-joins of the WPT table. Interestingly, we have
more joins in WPT than the baseline PT schema in Q8, i.e., 10 self-joins and 8 joins,
respectively.

Not surprisingly, we can notice that Q8 is the only query that witnesses worse perfor-
mance for the WPT compared to the PT schema. Figure 27 shows that most of the ratios
of ’WPT over PT’ is greater than 1 in the baseline-partitioned data experiments (i.e., par-
titioned only with HDFS) and other file formats instead of Parquet. Notably, all the results
(i.e., total query runtimes) and query histograms can be found on our mentioned GitHub
repository.

4.3.2. ExtVP versus VP Schema Results

According to [Sch+16], ExtVP outperforms or at least performs similarly to the VP
schema. The reason is that queries are similar, and the number of SQL joins in the VP,
and ExtVP schemas are the same. This clarification is reflected in Table 13. The perfor-
mance improvement depends mainly on the percentage of reductions in the input table
sizes that the ExtVP optimization might introduce out of the join correlations for each
query [Sch+16]. Table 13 also presents the percentage of ExtVP reductions of the pro-
cessed tables’ rows for each query over the original input tables processed rows with the
baseline VP tables. The semi-join reductions provided by the ExtVP optimization help
speeding-up the performance of SparkSQL by reducing the size of the shuffled data.

68

Query VP ExtVP Input tables size reductions
Q1 2 2 58%
Q2 9 9 77%
Q3 1 1 59%
Q4 7 7 96%
Q5 5 5 60%
Q6 9 9 31%
Q8 9 & 1 Union 9 & 1 Union 5%
Q9 2 & 1 Union 2 & 1 Union 0%
Q10 1 Union 1 Union 0%
Q11 0 0 0%

Table 13: Number of joins and percentage of input tables sizes reductions.

ExtVP VS. VP Avro CSV ORC Parquet
Baseline HDFS Partitioning 6/10 6/10 5/10 7/10
Horizontal Partitioning 3/10 3/10 3/10 3/10
Predicate-based Partitioning 2/10 3/10 6/10 6/10
Subject-based Partitioning 2/10 3/10 3/10 3/10

Table 14: Comparison of ExtVP schema with the VP schema in different storage
formats, and in different partitioning techniques.

In more details, ExtVP optimizes specific queries according to the join correlations be-
tween triple patterns in those queries [Sch+16], namely, in Subject-to-Subject(SS), Object-
to-Subject(OS), and Subject-to-Object(SO) join relations [Sch+16]. Thus, we expect some
queries to give similar results to the VP schema queries (i.e., No reductions occurred in
the VP tables by the ExtVP schema optimization). In our experiments, Q9, Q10, and
Q11 do not present any input data reductions. Thus, we state that it is expected that their
performance to be very close to the baseline VP schema performance.

We adopt the same approach of the (WPT to PT) schemas performance comparisons
for evaluating the performance of ExtVP against the VP experiments.

First, we check if our experiments’ results confirm the state-of-the-art results regarding
the ExtVP schema optimization over the baseline VP schema performance.

Table 14 shows the total number of queries in which the ExtVP performance is better
than the VP schema performance across all the benchmark queries. For our baseline
HDFS partitioning technique and with the Parquet file format, we can see that some
queries do not benefit from the optimizations of the ExtVP. Indeed, 3 queries out of
10 fail to utilize the optimized ExtVP technique. The reason behind such behavior is
that those queries have unbounded predicates that can not be optimized by the ExtVP
schema [Sch+16] (see Q9 and Q10 in Table 3), or they have no effective join reductions
(see Q9, Q10, Q11 in Table 13). The performance of these queries is a subject of in-detail
discussion in the next sections.

Second, similarly to what we have done for the WPT schema optimization, we now
investigate how generalizable the state-of-the-art results are when we introduce different
file formats or partitioning techniques over the data for both the ExtVP and VP schemas.

Similarly, Table 15 shows how far the data partitioning (left of the table) and data
formats (right of the table) impact the results of ExtVP in comparison to the VP schema

69

ExtVP/VP Partitioning effect Storage effect
Baseline HDFS _Part 67.5% Parquet 55%
Horizontal Partitioning 35% ORC 45%
Predicate-bsed 55% AVRO 42.5%
Subject-based 30% CSV 42.5%

Table 15: The effect of other partitioning techniques, and other storage formats
on the reproducibility of the ExtVP S.O.T.A findings

performance. Notably, this table’s percentage values are also calculated similarly to how
we have calculated the WPT against the PT. We pivoted on the analysis dimension of
choice, i.e., file format X or partitioning technique Y , and we calculated how many times
SparkSQL performs better using ExtVP than using the baseline VP approach.

Regarding the partitioning techniques’ effect on ExtVP, our expectations are con-
firmed. In particular, we can observe that the partitioning techniques degraded the perfor-
mance of ExtVP significantly. Only 35% and 30% of the experiments adopting Horizontal
and Subject-based partitioning, respectively, show a performance improvement in using
ExtVP over VP schema. Adopting Predicate-based partitioning slightly reduces this neg-
ative effect (i.e., 55% of the queries show that performance improvement).

From Table 15, we can also see that the ExtVP schema is only outperforming the VP
schema, with 67% of the queries using the baseline HDFS partitioning scenario. Thus,
we can see the trade-off of considering various storage file formats. We can see also that
the baseline Parquet file format is the one that has less impact on the overall performance
for ExtVP. Indeed, in 55% of the cases where Parquet is used, ExtVP outperforms the
VP performance. Additionally, the ORC columnar file format provides high performance
of ExtVP over VP schema with an overall 45% of the cases. However, there is a clear
difference from the Parquet file format with 10% better performance.

On the other hand, the row-oriented formats degrade the performance of ExtVP. For
only 42.5% of the experiments that adopt either Avro or CSV, ExtVP performance beats
the performance of the VP schema. Such behavior is related to the number of column
projections in the SP2Bench queries, which are the minimum in this benchmark scenario.
Thus, columnar file formats can fit such query workloads better than row-oriented ones.

Last but not least, herein, the most notable query examples are introduced, confirming
our previous findings but with more details. First, Q4 is revealed to be the query with the
most benefit with the ExtVP optimization. The reason behind this is that Q4 includes a
high number of joins (i.e., 7 joins) and has the maximum number of input tables’ rows
reductions while using the ExtVP schema optimization with 96% of reduced processed
rows (see Table 13). This query is directly followed by Q2 with 77%. Although Q2 has
a higher number of table joins than Q4, the reductions in input table sizes in Q4 are more
significant. On the other side, Q9, Q10, and Q11 do not benefit from the ExtVP optimiza-
tion, i.e., ExtVP does not provide any input table size reductions. In particular, Q9 and
Q10 have unbounded predicate variables in the original SPARQL queries. ExtVP cannot
directly handle this type of queries [Sch+16]. While Q11 has only a single triple pattern,
and thus it has no joins in optimizing the ExtVP optimization approach. Figures 28 (a)
and (b) show the performance of SparkSQL for Q4 and Q9, respectively, under various
combinations of formats and partitioning techniques in the ExtVP experiments. Figure 28
(a) shows that Q4 is always below the line of all the other queries’ average runtimes.
Whereas, ExtVP does not show a remarkable difference over the VP schema in Q9, i.e.,

70

Figure 28: The performance of ExtVP over VP schema in Q9. (values below ’1’
indicates that ExtVP is better than VP)

they show pretty close performance to each other.
In the next section, we discuss in further detail the experiment findings against the

current S.O.T.A regarding the superiority of ExtVP and PT.

4.4. Discussion

This chapter helps to assess the replicability of BD systems performance while intro-
ducing various new experimental dimensions. Specifically, it characterizes and classifies
the RDF relational schemas and their optimizations within the SparkSQL realm intro-
ducing new experimental dimensions (e.g., partitioning and storage). Thus, that helps
data architects and practitioners interested in large RDF processing to understand the
RDF relational schema potentials better using different partitioning techniques and stor-
age formats. This understanding will lead to a better selection of the most suitable and
performance-optimized solution that adequately suits their needs. Achieving that will
also accommodate better design and development of new SPARQL systems, leading to
reliable RDF services with high Spark performance. Taking our experiments’ findings

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

avro csv orc Parquet

R
at

io
 o

f E
xt

V
P

 o
ve

r
V

P

Baseline
Horizontal
Predicate

Subject
Average

(a) Q4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

avro csv orc Parquet

R
at

io
 o

f E
xt

V
P

 o
ve

r
V

P

Baseline
Horizontal
Predicate

Subject
Average

(b) Q9

Figure 29: WPT Vs. PT schemata performance using different partitioning tech-
niques and storage formats

into consideration, we discuss our results and give some insights on processing RDF best
practices on a large scale. Next, we place the literature assumptions on the relational
schema optimizations’ superiority against our experimental findings. We follow this by
recommendations to the large RDF processing practitioners.

4.4.1. Hypothesis 1: The WPT schema always outperforms PT
schema

According to [Sch+14; al19], we expect that the performance of the WPT schema out-
performs the PT schema, especially with the "star-shaped" queries. Star-shaped queries
can be answered when the WPT table is queried with no-joins included because all the
properties relevant to the same subject are present in the same WPT table.

The state-of-the-art findings of the WPT schema are fully reproduced with the de-
fault HDFS partitioning and with using the baseline Parquet file format. That is, the
performance of Spark using the WPT schema for representing the RDF dataset always
outperforms the baseline PT schema.

Nevertheless, our results show when we deviate from the original setup [Sch+14; al19]
introducing new experimental factors, the solution space increases in complexity. Con-
sequently, the trade-offs between relational schema, partitioning techniques, and storage
formats make the WPT optimization replicability not straightforward. Using other parti-
tioning techniques alongside the baseline Parquet format affected the replicability of the
WPT schema optimizations. Only 78% of the queries’ results conform with the fact that
WPT is better than the PT schema (Table 12).

72

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPTH PTH

(a) CSV-HP

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPTS PTS

(b) CSV-SBP

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(c) Avro-HP

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(d) Avro-SBP

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(e) ORC-HP

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(f) ORC-SBP

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(g) Parquet-HP

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(h) Parquet-SBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(a) Parquet-HP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(b) Parquet-SBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(c) Parquet-PBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(d) ORC-HP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(e) ORC-SBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(f) ORC-PBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(g) Avro-HP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(h) Avro-SBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(i) Avro-PBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(j) CSV-HP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(k) CSV-SBP

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(l) CSV-PBP

Figure 30: ExtVP Vs. VP schemata performance using different partitioning tech-
niques and file formats

Figure 29 shows the schemas’ performance when the solution adopts different parti-
tioning techniques and file formats. Figures 29 (a-h) show clearly the effect of partitioning
techniques on the replicability of the WPT optimizations across all the different file for-
mats. For instance, notably the horizontal partitioning (Figures 29 (a,c,e,g)) affected the
performance of WPT, making its performance in SparkSQL worse than the baseline PT
schema in most of the queries (i.e., Q1, Q3, Q5, Q6, Q8, Q11). Similarly, we can observe
the negative effect of the subject-based technique on WPT schema (Figures 29 (b,d,f,h))
in the same queries.

The impact of file formats aside the baseline Parquet format is even worse. Even
using the baseline (HDFS) partitioning technique affects the replicability of the WPT
schema optimizations. Overall, only 58% of the query results conform with the fact
that WPT outperforms PT schema (Table 12). The experiments show that columnar file
formats, e.g., ORC, and Parquet, are the best for representing such wide tables (WPT and
PT). Columnar file formats are the best for sparse queries (i.e., queries with few column
projections or columns to access) out of the wide tables. They perform better than the

73

row-oriented file formats, e.g., CSV and Avro, which would be only better with queries
that require full-row reading.

Figure 29 shows the performance degradation considering different file formats. For
instance, moving from Parquet and ORC in Figures 29 (e-h) to other row-oriented file
formats such as Avro and CSV in Figures 29 (a-d), we can notice the performance degra-
dation of the queries with the WPT schema optimizations.

4.4.2. Hypothesis 2: The ExtVP always outperforms VP schema

According to [Sch+16], we expect that ExtVP provides better or at least similar per-
formance gains than the VP schema, as the queries are similar, and the number of SQL
joins in the VP schema is equal to the ExtVP joins. Nevertheless, one should keep in mind
that ExtVP improvements mainly depend on the possible reductions in the table input data
size and excluding the dangling triples (rows that do not contribute to any joins) [Sch+16].
Typically, the queries for the ExtVP schema are similar to the VP ones; the only differ-
ence realizes in the queried input tables(i.e., their sizes are reduced by the ExtVP schema,
or their sizes are still equal to the original VP tables). Thus, the relational engine’s perfor-
mance, e.g., Spark with the ExtVP, should be equivalent to or better than its performance
with the VP schema.

Based on our experiments, the findings of the ExtVP schema are not fully reproduced,
even considering the default HDFS partitioning and the baseline Parquet file format. Some
queries do not benefit from the ExtVP optimizations (Q9, Q10, Q11); no input size reduc-
tions occurred in those queries) as shown in Table 13. Only on the original configurations
(except for those mentioned queries), we can confirm the state-of-the-art results regarding
the ExtVP optimization. However, our results show that schema-based query optimization
is not straightforward when changing the default configurations.

Regarding the partitioning techniques, using an alternative to the baselines technique
(HDFS) affects the replicability of the ExtVP optimizations even if the storage format is
Parquet. Only 55% of the queries’ results show that ExtVP is superior to the VP schema
(cf. Table 15). Moreover, Figure 30 shows the effect of other RDF partitioning techniques
on the replicability findings of the ExtVP optimization. For instance, deviating from the
baseline partitioning technique to other RDF-based techniques with the same baseline
Parquet, i.e., Figures 30(a-c) degrades the results of ExtVP and makes it perform worse
than the baseline VP schema in several queries (Q1, Q4, Q5, Q6, Q8) with the Horizontal
and Subject-based partitioning. The predicate-based partitioning in Figure 30(c) has a
better performance with this schema, which has a close performance to the VP schema in
the previously-mentioned queries.

Similarly, using storage formats different from Parquet affects the ExtVP optimiza-
tions’ replicability, even with the baseline (HDFS) partitioning technique. Indeed, we
have only 67.5% of the query results of ExtVP outperforming VP (cf. Table 15). Simi-
larly, Figure 30 shows the effect of other file formats other than the baseline Parquet, i.e
Figures 30 (d-l) for ORC, Avro, and CSV respectively. We can notice the queries’ per-
formance degradation with the ExtVP schema optimizations moving vertically to these
other formats.

Finally, from our experiments, we observe that columnar file formats are better than
Row-oriented ones. However, the performance difference is not significant with such
similar schemas. The table structure is the same table of two columns Predicate (Subject-
Object) in both vertical schemas. Moreover, both schemas do not have wide tables com-
pared to the WPT and PT schemas. That is, these schemas will not benefit a lot from

74

the columnar file formats. The performance gain of columnar over the row-oriented file
formats is because SP2Bench queries have a few numbers of column projections. Thus,
it would work better with columnar rather than row-based file formats.

4.5. Concluding Remarks and Best Practices

In this chapter, we evaluated the replicability of the performance of one of the BD sys-
tems (i.e., Spark-SQL) by introducing various experimental options. In particular, we
presented a comprehensive empirical evaluation of the state-of-the-art RDF relational
schemas alongside introducing three RDF partitioning techniques and four storage for-
mats. Our analysis demonstrates decisively variant trade-offs using different data par-
titioning and storage file formats against those schema optimizations. The experiments
show that the performance replicability of the SparkSQL system with the relational schema
optimizations can be easily affected by new experimental factors such as data partitioning
or using various storage data formats.

Avro CSV ORC Parquet
Baseline-HDFS 7 7 3* 3**
Horizontal 7 7 3 3

Subject-based 7 7 3 3

Where 3is good practice, 7is bad practice,and ˜ has the same
performance compared to PT.
* WPT had very competitive performance
** WPT had the best performance

Table 16: Mapping the partitioning technique to the storage format best practices
in the WPT schema.

4.5.1. Best Practices with Schema Optimizations

Herein, we discuss the best practices for keeping the best performance of the state-of-the-
art RDF relational schemas. Tables 16 and 17 provides an abstracted map of good and
bad storage format and partitioning techniques along with the schema dimension.

The results in Figure 29 and Table 16, show that partitioning the WPT table has, in the
majority, a negative effect on the WPT optimization, making it perform even worse than
its baseline approach, i.e., the PT schema. The effect of the storage formats is more signif-
icant in the WPT optimization (cf. Tables 12, 16). Therefore, this WPT schema’s storage
format selection decision should be dealt with as a first-class citizen in such experiments.

The horizontal and subject-based partitioning techniques are not recommended with
ExtVP optimization. However, Predicate-based still gives better results than those two
other RDF partitioning techniques (cf. Tables 15 and 17). Also, columnar file formats are
still recommended with the ExtVP schema optimization. However, it was noticed that the
effect of the partitioning is more significant to this optimization (cf. Figure 30, Tables 15,
and 17). Thus, the partitioning selection decision of this ExtVP schema should be highly
considered in these experiments.

Also, our analysis yields the following recommendations

1. With WPT, it is recommended to use the columnar storage formats rather than
row-oriented ones (cf. Table 16).

75

Avro CSV ORC Parquet
Baseline-HDFS 3 3 ˜ 3*
Horizontal 7 7 7 7

Subject-based 7 7 7 7

Predicate-based 7 7 3 3

Where 3is good practice, 7is bad practice, and ˜ has the same
performance compared to VP.
* ExtVP had a very competitive performance

Table 17: Mapping the partitioning technique to the storage format best practices
in the ExtVP schema.

2. With the WPT schema, Parquet is yet the best columnar file format to select be-
cause it efficiently handles its sparsity.

3. With WPT, it is recommended to use the native HDFS partitioning rather than
selecting an RDF-oriented partitioning technique.

4. With ExtVP, the baseline HDFS partitioning is more recommended than specific
RDF ones. However, larger datasets would require partitioning anyway.

5. With ExtVP, the columnar file formats are a recommended performance optimiza-
tion option.

76

5. BENCH-RANKING: A FRAMEWORK BD
PRESCRIPTIVE PERFORMANCE ANALYSIS

In this chapter, we aim to provide answers to the second micro question which is
formulated as follows:
Micro 2: How can we efficiently select the best-performing configurations out of a com-
plex experimental solution space without ignoring their performance trade-offs?

The limitations of descriptive and diagnostic analyses (shown in Chapter 3) require
comparing a huge number of experiments’ results, and sometimes the results are even
contradicting due to experimental trade-offs. We suggest raising the level of abstrac-
tion that reduces the comparative performance analysis reaching actual decision making.
Therefore, we advocate for applying various ranking functions seeking this goal (we call it
"Bench-Ranking" [RAT21]). Ranking functions show effective roles in decision support
in several application-domains [GM20]. We utilize ranking functions 1 aiming to ab-
stract from the fine-grained descriptive performance results and enable a decision-making
model.

In this chapter, we answer Micro 2 the following three phases. First, we employ
ranking functions that aggregate performance indicators of each dimension, i.e., Single-
Dimensional (SD) ranking. The SD ranking functions help assess the system’s perfor-
mance while using a specific dimension cross set of tasks (e.g., queries). We show the
results of the SD ranking criteria and their limitations (i.e., optimizing towards a single
dimension).

Second, we discuss how we mitigate these SD ranking limits via using Multi Dimen-
sional (MD) ranking criteria. MD criteria select the best-performing configurations with
any arbitrary number of dimensions while optimizing their performance simultaneously.

Last but not least, we discuss the Bench-Ranking metrics to evaluate the proposed
ranking criteria (i.e., SD and MD criteria), and we show SD and MD ranking criteria
evaluation results according to two defined metrics (i.e., conformance, and coherence).

5.1. Bench-Ranking Preliminaries

In this section, we summarize the concept of Bench-Ranking as a means for Prescrip-
tive Performance Analysis. Bench-Ranking is based on four fundamental notions, i.e.,
Configuration, Ranking Score, Ranking Function, and Ranking Set, defined below.
Definition 7. A configuration c is a combination of parameters (options) that represent
experimental dimensions. The configuration space C is the Cartesian product of the
possible configuration combinations.

In [RAT21], we consider triplet dimensional configurations, including relational schemas,
partitioning techniques, and storage formats. Figure 31 shows the experimental design
space and highlights the example of (a.ii.3) configuration, which is akin to Single Triples
(ST) schema, Subject-based Partitioning (SBP) technique, and stored in ORC file format.

Definition 8. A ranking score R is a numerical value that decides the ranking of an ele-
ment in a set according to a specific criteria (e.g., the query latency for a configuration).

1Ranking criteria and ranking functions are interchangeably used in the text.

77

Figure 31: The configuration space C .

Given two elements i and j , and Ri,R j their ranking score, we say that i has a higher
rank than j (i.e., i outperforms j) iff Ri > R j.

Herein, we will use a simple running example, we consider a set of three competitive
configurations [a.i.1, b.ii.2, c.iii.3]. Each configuration in the list represents an element of
a set. An example of a ranking score (Definition 8) can be the time required (i.e., latency)
for executing a query (e.g., Q1 of a benchmark) by each of the selected configurations
(in seconds). Let’s assume the latency values are equal to 30, 50, and 40, for the three
configurations, respectively. The association with each configuration with its ranking
score happens according to the query evaluation (runtimes). We can generalize this by
introducing the notion of ranking function (defined below).

Definition 9. Let E is the input list of elements to be ranked, the ranking function fR is a
function E → R that associates a ranking score to every element in E.

Considering the ranking scores above, the configuration set E can be sorted to produce
the sorted set R=[a.i.1, c.iii.3, b.ii.2]. The lower the execution time (latency), the better.
More formally, we denote R as a rank set.

Definition 10. A rank set R is an ordered set of elements ordered by a ranking score.
The rank index ri is the index of a ranked element i within a ranking set R, i.e., R[ri]=i.
We denote with Rk the leftmost (top-ranked) subset of R of length k, and we denote with
Rx the rank set calculated according to the Rank score Rx.

Table 19 shows an example of actual query ranks of the configurations according to
the query runtimes shown in Table 18, e.g., c.i.2 is at the first 1st rank for running Q1,
while c.iii.4 comes at the last (36st rank.

5.2. Single-Dimensional (SD) Ranking Criteria

Ranking criterion like the one proposed in [ANS18] for RDF partitioning techniques helps
to provide a high-level view of the system performance across a set of tasks. Applying
the ranking criteria independently for each dimension supports explanations of the re-
sults [ANS18]. In our work, we generalize Akhter’s proposal for calculating ranking
scores about any experimental dimensions, as shown by the following ranking function:

78

Conf.
Query

Q1 Q2 ... Q10 Q11

a.i.1 34.93 79.98 ... 10.19 5.35
a.i.2 49.61 168.67 ... 28.63 14.29
...

b.iii.4 18.63 44.10 ... 1.45 1.13
...

c.i.2 9.67 55.67 ... 17.93 7.61
c.iii.4 64.76 95.28 ... 54.08 39.27

Table 18: Configurations’ query execution runtimes (in seconds).

Conf.
Query

Q1 Q2 ... Q10 Q11

a.i.1 29th 28th ... 19th 25th

a.i.2 33th 36th ... 30th 32th

...
b.iii.4 11th 35th ... 5th 8th

...
c.i.2 1st 23th ... 29th 29th

c.iii.4 36th 33th ... 36th 36th

Table 19: Configurations’ rankings according to the query evaluation runtimes.

R =
d

∑
r=1

Odim(r)∗ (d − r)
|Q| ∗ (d −1)

,0 < R ≤ 1 (5.1)

In particular, R is the Rank Score of the ranked dimension (i.e relational schema,
partitioning technique, or storage backend). Such that, d represents the total number of
variants (options) under the ranked dimension, Odim(r) denotes the number of occurrences
of the dimension being placed at the rank r (1st , 2nd ,..) (see Table 20). In the formula, |Q|
represents the total number of queries, as we have 11 queries in our SP2B benchmark or
20 queries in WatDiv (i.e., |Q|= 11 or |Q|= 20). The Rank Score value lies between [0,1],
where "0" stands for the lowest possible score and ("1") points to the highest possible rank
score.

Schema 1st 2nd 3rd R
ST 1 3 7 0.23
VT 6 4 1 0.73
PT 4 4 3 0.55

Table 20: Example of Rank
Scores for schema dimension.

Equation 5.1 evaluates the performance of a set
of parameters across several different challenges.
In our case, the parameters correspond to configu-
rations and challenges to benchmark queries. For
example, we can use Equation 5.1 for ranking the
relational schemata, i.e., we pose d = 3, as we have
three different schemata (i.e., ST, VT, and PT) in
this paper2. Table 20 shows a simple example of applying the above formula for comput-

2It will be the same (i.e., d = 3) while applying the equation for ranking partitioning techniques,
matching the three given techniques (i.e HP, SBP, PBP). Whereas applying the equation for ranking

79

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

ST VT PT

(a) Schema ranks (SBP)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

ST VT PT

(b) Schema ranks (HP)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

ST VT PT

(c) Schema ranks (PBP)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

HP SBP PBP

(d) Partitioning ranks (ST)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

HP SBP PBP

(e) Partitioning ranks (VT)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

HP SBP PBP

(f) Partitioning ranks (PT)

 0

 0.2

 0.4

 0.6

 0.8

 1

HP SBP PBP

R
an
k
S
co
re

AVRO
CSV

ORC
PARQUET

(g) Storage ranks (ST)

 0

 0.2

 0.4

 0.6

 0.8

 1

HP SBP PBP

R
an
k
S
co
re

AVRO
CSV

ORC
PARQUET

(h) Storage ranks (VT)

 0

 0.2

 0.4

 0.6

 0.8

 1

HP SBP PBP

R
an
k
S
co
re

AVRO
CSV

ORC
PARQUET

(i) Storage ranks (PT)

Figure 32: Single-dimensional ranking scores for the SP2B 500M triples datasets
(The higher the better).

ing the rank scores of the relational schema dimension. For instance, ST was placed in
the "first" rank only once, "second" three times, and "third" seven times. Thus, its overall
ranking is 0.23. In contrast, the VT performed better with 0.73, and PT with 0.55. Intu-
itively, this means that VT schema in this example is the best (i.e., has the highest rank
score).

In the following, we will consider the ranking for each dimension independently (i.e
R as−→ Rs for ranking relational schema, R as−→ Rp for ranking partitioning techniques,
R as−→ R f for storage formats).

5.2.1. Single-Dimensional Ranking Analysis Results

In the following figures, we show the performance of each dimension’s (i.e., schema,
partitioning, and storage) parameters in terms of rank scores. For simplicity, we only
show the largest dataset scale (i.e., 500M). However, we keep all the figures of the other
two datasets (100M, and 250M) on the mentioned GitHub repository page.

Figure 32 and Figure 33 show how many times a particular dimension achieves the
highest or the lowest ranking scores, respectively, considering the results of all the ex-
periments in SP2B and WatDiv benchmarks, respectively. Particularly, Figures (a), (b),
and (c) show the ranking scores of the relational schema performance alongside various
storage formats pivoting different partitioning techniques SBP, HP, and PBP, respectively.

the storage formats, we pose d = 4, as we have four different storage file formats (i.e, CSV, AVRO,
Parquet, ORC).

80

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

ST VT PT

(a) Schema ranks (SBP)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

ST VT PT

(b) Schema ranks (HP)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

ST VT PT

(c) Schema ranks (PBP)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

HP SBP PBP

(d) Partitioning ranks (ST)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

HP SBP PBP

(e) Partitioning ranks (VT)

 0

 0.2

 0.4

 0.6

 0.8

 1

AVRO CSV ORC PARQUET

R
an
k
S
co
re

HP SBP PBP

(f) Partitioning ranks (PT)

 0

 0.2

 0.4

 0.6

 0.8

 1

HP SBP PBP

R
an
k
S
co
re

AVRO
CSV

ORC
PARQUET

(g) Storage ranks (ST)

 0

 0.2

 0.4

 0.6

 0.8

 1

HP SBP PBP

R
an
k
S
co
re

AVRO
CSV

ORC
PARQUET

(h) Storage ranks (VT)

 0

 0.2

 0.4

 0.6

 0.8

 1

HP SBP PBP

R
an
k
S
co
re

AVRO
CSV

ORC
PARQUET

(i) Storage ranks (PT)

Figure 33: Single-dimensional ranking scores for the WatDiv 500M triples
datasets (The higher the better).

Figures (d), (e), and (f) show the ranking scores of the partitioning techniques’ perfor-
mance alongside various storage formats pivoting different relational schemas ST, VT,
and PT, respectively. Last but not least, Figures (g), (h), and (i) show the ranking scores
of the storage formats’ performance alongside various partitioning techniques pivoting
different relational schemas ST, VT, and PT, respectively. Notably, when a rank score of a
dimension is zero (i.e., it always comes at the last rank [i.e., 3rd rank in the case of schema
or partitioning, 4th rank in the case of storage dimension], see Table 20), we omit it from
the figure.

SP2B SD Ranking: First, we start with the SP2B single-dimensional rankings. Specif-
ically, schema ranking scores for the 500M datasets (Figures 32 (a), (b), and (c)), we
observe that the ST schema is always the worst performing with 100% (i.e., in all cases)
when HP and SBP are chosen as partitioning techniques. However, the ST schema has
the second-highest scores after the VT schema for the PBP partitioning with 50% of all
cases. On the other side, the VT schema has the highest rank scores by 100% in the
ranking scores of the relational schemata. The PT schema performance ranking falls be-
tween the VT schema and the ST schema by more than 83%. The observations are still
confirmed for the 100M and 250M triples dataset (check the repository page).

Figures 32 (d), (e), and (f) show the different partitioning techniques rankings. In the
500M triples dataset, the SBP technique outperforms the other techniques with more than
58% of the ranking times. The HP is performing the worst in most ranking times, with
more than 83% of the ranking times. It comes as the top-ranked technique using Avro file
format. However, in the PT schema, the PBP technique always beats the HP (i.e., taking

81

its second rank position with 100%). The same pattern is still valid for the smaller datasets
(i.e., 100M, and 250M), showing that the SBP is the top-ranked technique. However, the
PBP technique interestingly performs as the worst technique. On the other hand, the
performance of the HP technique is somewhere between the other two techniques. Even
in the 100M, HP surprisingly outperforms the SBP having a higher rank using the PT
schema and Avro file format.

Last but not least, Figure 32 (g), (h), and (i) show the storage ranking scores. In the
500M triples datasets using the ST relational schema and HP and SB partitioning tech-
niques, we observe that HDFS ORC is the best performing backend with 100%. The
Parquet format performance immediately follows. On the other hand, CSV and Avro file
formats are respectively the worst performing on HDFS with 100% of the mentioned
cases. However, for the lower dataset (100M) using the ST schema and the PBP parti-
tioning technique, Avro is the second best-performing storage after ORC. Using the VT
schema and HP and SBP partitioning techniques, we can still observe that ORC and Par-
quet share the best-performing rank. HDFS CSV and Avro file formats respectively keep
performing the worst, having the lowest rank scores with 100% of these mentioned cases.
However, with the PBP partitioning in the smaller datasets (100M, and 250M) with the
VT schema, Avro is the best performing backend, followed by Parquet.

WatDiv SD Ranking: Second, we move to the WatDiv single-dimensional rankings.
Herein, we discuss the rankings of the three datasets for the three dimensions. However,
we show only the ranking figures of the largest dataset (i.e., 500M). We put the ranking
plots of the other datasets on the repository page.

Regarding the schema dimensions rankings, ST shows as the worst-performing schema
(i.e., has the lowest ranking score) with 100% using the HP partitioning technique. In-
terestingly, ST performs better than VT schema in the 100M dataset (with the SBP par-
titioning and columnar file formats ORC and Parquet). Moving to the SBP, and PBP, the
performance of the ST schema is still the worst across the different dataset scales. How-
ever, the ST schema shows a very competitive performance compared to the other two
schemas with the PBP technique and the columnar file formats, especially in the 250M
dataset. However, scaling up to the 500M dataset (Figures 32 (a), (b), and (c)), it shows as
the second best-performing schema after the VT schema with columnar file formats and
the row-oriented Avro file format. On the other side, the PT schema is the best-performing
schema with 100% of the ranking cases when using the HP or SBP techniques and with
using any storage file format across the different scales of the datasets. However, the PT
schema performance significantly degrades when using the PBP partitioning technique,
especially with the columnar file formats (ORC and Parquet). Nonetheless, in the row-
oriented file formats, it is still better than ST schema only with the CSV file format.
However, the ST schema performs better than it with the Avro file format across scales of
the datasets.

Regarding the partitioning techniques rankings, it is seen that the HP technique shows
the worst ranking scores with the ST schema with more than 92% of the ranking times
across the dataset scales. Moving to the results of HP with the VT schema, it shows a bet-
ter performance, i.e., it ranks as the second-performing technique by 50% of the ranking
cases. Interestingly, it is shown as the best-performing technique in the 250M dataset with
Parquet file format and the VT schema. On the other side, The PBP partitioning technique
showed the worst-performing technique with the PT schema with 100% of the ranking
cases and across all the dataset sizes. However, it shows a very competitive performance
with the ST schema. In particular, it showed the second best-performing technique with

82

Dataset
R3

x SP2B WatDiv

R3
f R3

p R3
s R3

f R3
p R3

s

100M
a.iii.3 a.ii.3 b.iii.2 a.ii.3 c.ii.2 b.iii.2
a.ii.3 a.ii.4 b.iii.1 a.i.3 b.iii.3 b.iii.1
a.i.3 c.ii.2 b.iii.4 b.ii.2 c.ii.1 c.i.4

250M
a.iii.3 b.ii.3 b.iii.1 a.ii.3 a.ii.1 b.iii.2
a.ii.3 c.ii.3 b.iii.2 a.i.3 a.ii.2 b.iii.1
b.ii.4 c.ii.1 b.iii.3 b.iii.2 c.i.4 c.i.4

500M
a.ii.3 c.ii.4 b.iii.1 a.ii.3 a.iii.2 b.iii.2
a.iii.3 c.ii.3 b.iii.2 a.i.3 a.iii.4 b.iii.1
c.ii.4 c.ii.1 b.iii.4 c.iii.2 c.ii.1 c.ii.4

Table 21: Top-3 configurations of the rank sets (R3
f , R3

p, R3
s) across datasets. For

example the Top-3 confs ranking by format (R3
f) in 100M are from top to down

(aiii.3, aii.3, ai.3).

the ST schema by more than 58%. Moreover, it showed the best-performing technique
with those schemata (ST, and VT) by more than 33%, and 25% for the ST and VT, re-
spectively. However, the PBP technique still shows a significant low performance with
the VT schema across all the dataset scales. In particular, it showed the worst-performing
technique by more than 66.5% of all cases.

Regarding the storage formats rankings, for all scales of the datasets and for the ST
schema, we observe that columnar file formats (ORC and Parquet) significantly outper-
form the row-oriented file formats (CSV, and Avro) with 100% of the ranking cases.
Moreover, we observe that CSV is the worst performing file format with 100% (its bar
is always absent from the ST figures for ranking the storage formats). However, mov-
ing to the VT and PT schema, we observe remarkable performance enhancement for the
row-oriented file formats over the columnar ones. The row-oriented formats showed as
the best performing formats with almost 89% of the ranking cases. In particular, CSV
shows as the best-performing one with the VT schema by more than 78% of the rank-
ings across the VT figures (data scales), directly followed by Avro (i.e., as the second
best-performing format) by more than 44% of the cases. Interestingly, Avro shows as the
best performing format with the HP and SBP partitioning techniques when scaling to the
500M dataset. On the other side, ORC and Parquet are yet competing Avro on the second
best-performing rank (i.e., coming after CSV) in this schema (i.e., VT). They beat Avro
on that goal only by 30% of the cases. The same trend is still valid for the row-oriented
file formats with the PT schema, but with less significance. In particular, CSV is the best
performing format only with 55.5% of the ranking cases. Columnar file formats show a
better performance with the PT schema than with the VT schema. In particular, the Par-
quet file format shows a very competitive performance compared to the other file formats
(i.e., it outperforms the other file formats by more than 44% of the ranking cases of the
datasets). On the other side, Avro and ORC compete to get the second position across
the data scales. However, Avro significantly outperforms ORC by more than 66% of the
ranking cases across datasets.

Table 21 shows the top-3 configuration combinations according to the single-dimensional
ranking criteria. Moreover, the table highlights the best-performing dimension (marked

83

(a) Ranking by Schema (b) Ranking by Storage (c) Ranking by Partitioning

Figure 34: Example of dimensions’ trade-offs effect on single-dimensional rank-
ing criteria (Rs,Rp, and R f).
by the green color across the same dimension, i.e., vertically). For example, in the SP2B
benchmark, ranking by schema we mark VT (b) as the best; ranking by partitioning, we
mark the SBP (ii). Finally, we can roughly mark ORC (3) followed by Parquet (4) are
the best ones when ranking by format. Similarly, in WatDiv benchmark, ranking by the
schema marks roughly the VT (b) schema as the best followed by PT (b) ranking by
partitioning also marks roughly the SBP (ii), and the following is PBP (ii) as the best-
performing techniques. Last but not least, we can roughly mark ORC (3) followed by
CSV (2) as the best ones when ranking by storage format. However, ranking over one di-
mension (using those single-dimensional criteria) and ignoring the other dimensions ends
up with selecting different configurations.

Figure 34 shows the single-dimensional ranking criteria w.r.t a simple geometrical
representation that depicts the triangle subsumed by each ranking criterion (Rs, Rp, and
R f). The triangle sides present the trade-offs ranking dimensions. The red triangles
represent the full ranking optimization, i.e, full rank scores, Rx = 1. The blue triangles
in the plots represent the actual ranking scores for the selected configurations. Single-
dimensional ranking criteria maximize the score for only one dimension while ignoring
the other two dimensions. For instance, ranking by schema dimension in Figure 34 (a)
shows how the schema dimension is perfectly optimized, while ignoring optimizations of
the other two sides (dimensions). The same effect of trade-offs is shown in Figure 34 (a)
, and (b) for ranking by storage and partitioning, respectively.

5.3. Multi-Dimensional (MD) Ranking Criteria

While single-dimensional ranking supports explanations of the results [ANS18], we ob-
served that ranking prescriptions are incoherent across dimensions. The most reasonable
explanation is that single-dimensional ranking criteria cannot capture a general view. In-
deed, single-dimensional ranking criteria neglect the presence of trade-offs as they rank
alongside a single experimental dimension (i.e., showing which parameters under a spe-
cific dimension are the best-performing). For instance, ranking by the schema (i.e., by
Rs) aims at finding the best ranking scores that optimize the performance of the schema
dimension while ignoring the other dimensions’ performance. This intuition leads to ex-
tend the Bench-ranking into a multi-objective optimization problem in order to optimize
all the dimensions at the same time.

In our experiments, we adopt the standard Pareto front optimization techniques to
consider all the experimental dimension altogether [NZE05; RK15]. The Pareto front
framework conducts the MO optimization over several dimensions in order to find the

84

SP2B
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Par_Agg c.ii.4 b.ii.4 b.iii.1 b.iii.3 b.iii.4 b.ii.3 a.ii.3 a.iii.3 b.i.4 -
50

0M
Par_Q b.ii.3 b.ii.4 b.iii.3 b.iii.4 b.iii.1 b.i.4 b.ii.1 c.ii.4 a.ii.3 c.ii.3

WatDiv
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Par_Agg c.ii.4 a.iii.4 c.ii.1 c.i.4 a.iii.3 b.iii.2 a.ii.3 c.iii.2 a.iii.2 -

50
0M

Par_Q c.ii.4 c.i.4 c.ii.3 c.ii.1 c.i.3 c.i.1 b.ii.1 b.ii.2 c.ii.2 b.i.1

Table 22: Top-10 Pareto solutions for the 500M dataset for SP2B and WatDiv.

best possible parameter configurations for the learning outcome of the highest perfor-
mance [Xu19; Bar+18; RK15]. In practice, Pareto front aims at finding a set of non-
dominated/optimal solutions if no objective can be improved without sacrificing at least
one other objective. On the other hand, a solution X is pointed as dominated by another
solution Y if, and only if, Y is equally good or better than X with respect to all the ob-
jectives. In particular, we utilized the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [Deb+02a] as one of the most popular Pareto front algorithms in order to find the
best configuration combinations in our complex experimental solution space. The NSGA-
II is a modified version of the NSGA algorithm that is widely used in many real-world
applications. Its main procedure is sorting the search space using the non-dominated
procedure [Deb+02a]. Its technique is powerful–yet simple, not only in capturing a
global search space and finding well-distributed Pareto fronts but also in reducing the
time to solve complex MO optimization problems as with further details mentioned by
Deb et.al. [Deb+02b]. Furthermore, this algorithm can handle any arbitrary number of
dimensions and objective functions.

5.4. Multi-Dimensional Criteria Results

In contrast to SD ranking criteria that optimize one dimension at a time, MO optimization
techniques (e.g., Pareto NSGA-II) aim to find the optimal non-dominated solutions (i.e.,
configuration combinations in our case) by optimizing all dimensions at the same time.

In our experiments, we calculate the Pareto fronts for our Bench-Ranking problem in
two ways. The first way, which we call (ParetoQ), applied NSGA-II algorithm considering
the rank sets obtained by sorting w.r.t each query result individually (see Table 19). The
algorithm aims at minimizing the query runtimes globally.

The second way, called (ParetoAgg.), operates on the single-dimensional ranking crite-
ria, i.e., Rs, Rp, and R f . In this case, the algorithm aims at maximizing the performance
of the three ranks altogether. Notably, for both implementations of the algorithm, the
search space is given in the form of configurations’ query runtimes (configurations query
positions, see Table 19), or in configurations’ rank scores (Rs, R f , Rp) in the aggregated
form of Pareto, instead of generating a search space. Table 22 shows the top-10 Pareto
fronts for both approaches, i.e., non-dominated solutions, which correspond to the overall
optimal configurations for the 500M dataset in both of the benchmarks. For conciseness,
we keep the results of Pareto for the other two datasets (100M, 250M) in the project
repository.

Figures 35 (a)-(f) show the Pareto fronts (depicted by the green shaded areas) of the
three dimensions of the Bench-ranking for ParetoAgg.

3 for both of the benchmarks, i.e.,

3ParetoQ cannot be visualized as it uses 11 dimensions one for each of the SP2B benchmark

85

(a) SP2B (100M) (b) SP2B (250M) (c) SP2B (500M)

(d) WatDiv (100M) (e) WatDiv (250M) (f) WatDiv (500M)

Figure 35: Aggregated Pareto-Fronts for the SP2B and WatDiv Benchmark
datasets.

SP2B and WatDiv. Each point of those figures represents a solution of rank scores (i.e,
configuration in our case).

5.5. Evaluating Ranking Criteria

This section focuses on answering the question of what makes a ranking criterion ade-
quate for our purposes. This problem is well-known in Information Retrieval (IR) appli-
cations, where several metrics, e.g., precision and recall, are used to validate the ranking.
Nevertheless, the existing IR approaches often require a ground truth, which may lack in
the context of performance analysis. The most reasonable solution is to employ multi-
ple ranking criteria and compare the prescriptions with the actual experimental results.
However, this approach falls back to the problem related to ranking consensus4 [LC15].

In Bench-ranking, we can consider a ranking criterion "good" if it does not suggest
a low-performing configuration. In other words, we are not interested to be the best at
any particular query as long as we are never the worst. To this extent, we identified two
evaluation metrics, namely conformance and coherence.

Definition 11. Ranking conformance is a measure of the adherence of the top-ranked con-
figurations according to the actual query positioning of those configurations. To measure
the conformance, we propose Equation 5.2.

queries.
4Ranking consensus is related to choosing between two preference sets.

86

a.
iii

.3

a.
ii.

3

a.
i.3

a.
ii.

3

a.
ii.

4

c.
ii.

2

b.
iii

.2

b.
iii

.1

b.
iii

.4

b.
ii.

4

a.
ii.

3

c.
ii.

3

b.
ii.

4

b.
ii.

3

b.
i.4

%
 o

f c
on

fo
rm

an
ce

0%

25%

50%

75%

100%

Rf Rp Rs Par.Ag Par.Q

Figure 36: Ranking criteria conformance for the top-3 ranked configurations.

Figure 37: Ranking by Part. coherence example across dataset scales.

A(Rk) = 1−
|Q|

∑
i=0

k

∑
j=0

Ā(i, j)
|Q| ∗ k

, Ā(i, j) =

{
1 Rk[j] ∈ Qiih
0 otherwise

(5.2)

Given the top-k subset of the ranking set R, we count how many times its elements
occur in the bottom-h subset of the ranking set Qi

h, which corresponds to the ranking set
obtained by using the execution time of query Qi as ranking criterion for each query (see
Table 19). For instance, let’s consider the Rs ranking and the 100M dataset evaluation.
The top-3 ranked configurations are R3

s ={b.iii.2,b.iii.1,b.iii.4} , that overlaps only with
the bottom-3 ranked configurations in query Q2. This can be checked in Table 19 that
shows sample of actual rankings of the configuration combinations based on the query
runtimes. Qh=3

2 ={b.iii.3,b.iii.4,a.iii.2}, i.e b.iii.4 is in the 35th position out of 36 ranks/-
positions (i.e., the rank before last). Thus, A(R3

s) = 1−1/(11∗3).
To give the intuition of the conformance metric, Figure 36 shows the level of con-

formance of the top-ranked three configurations (see Definition 11), such that, the green
color represents the level of conformance.

Definition 12. Ranking coherence is a measure of the level of agreement between two
ranking sets that use the same ranking criterion across different experiments (e.g., a di-
mension of scalability).

To measure the coherence of a ranking criterion, we opt for Kendall index, which is
a common measure to compare the outcomes of ranking functions [GM20]. Particularly,
it counts the number of pairwise disagreements between two rank sets: the larger the
distance, the more dissimilar the rank sets are. On a side note, we assume that rank sets
have the same number of elements. Kendalls distance between two rank sets R1 and R2,
where P represents the set of unique pairs of distinct elements in the two sets, can be
calculated using the following equation:

K (R1,R2) = ∑
{i, j}∈P

K̄i, j (R1,R2)
| P |

(5.3)

87

(a) Storage Format ranking (R f) coherence across datasets

(b) Partitioning ranking (Rp) coherence across datasets

(c) Schema ranking (Rs) coherence across datasets

Figure 38: Coherence Heat-Maps for the SP2B experiments.

K̄i, j (R1,R2) =


0 R1[r1

i] = R2[r2
i] = i ∧R1[r1

j]

= R2[r2
j] = j ∧

r1
i − r1

j = r2
i − r2

j

1 otherwise

For instance, the K index between R3
f (top-3 ranked configurations) for 100M and

250M is 0.33, i.e., one disagreement out of three pair comparisons (Table 21). Figure 37
gives the intuition of the coherence metric by showing the top-10 ranked configuration
for the same ranking criterion(Rp) (i.e., R10

p) and across three different data scales. We
can see examples of pairwise disagreements that occur by scaling from 100M to 250M,
and also from 100M to the 500M dataset. For instance, in (100M-to-250M), b.ii.3 was
at the 10th rank in 100M, while being swapped to be at the 1st position in the 250M,
and the 1st ranked configuration (a.ii.3) in the 100M swapped to be at the 8th rank in
the 250M. Similar kind of disagreements are shown in the (100M-to-500M) scale-up
transition. Moreover, Figure 38 shows heat maps of the (dis)agreements on the top con-
figurations of SD criteria (a) ranking by format (b) ranking by partitioning, and ranking
by schema while scaling up to larger datasets.

88

Criteria
SP2B WatDiv

100M 250M 500M 100M 250M 500M
R f 58% 82% 70% 67% 50% 7%
Rp 61% 70% 58% 85% 33% 37%
Rs 70% 79% 79% 82% 78% 75%
ParetoAgg 79% 100% 82% 88% 75% 68%
ParetoQ 85% 100% 97% 95% 98% 97%

Table 23: Ranking criteria conformance across datasets, k=3, h=17.

5.5.1. Ranking Criteria Evaluation Results

In this section, we discuss the results of the ranking criteria evaluation metrics, i.e. we
calculate the conformance and the coherence for these selected ranking criteria using
Equation 5.2 and Equation 5.3, respectively.

Table 23 shows the conformance of each ranking criterion top-3 configurations not
being worse than the worst 17 ranked configurations (i.e., better than the 17 ones, half of
the distribution) according to the queries’ ranked sets (C.F., Table 19). In other words, the
parameters of Equation 5.2 are arbitrary chosen to be k = 3 and h = 17, which can be of
any other choice. For instance, if the practitioner aim the top-ranked five configurations
not being worse than the lowest performing five configurations, then parameters will be
k = 5 and h = 31 (total number of configurations is 36).

All the selected ranking criteria perform very well for all the datasets. However,
the single-dimensional criteria R f , Rp, and Rs have lower conformance than multi-
dimensional ranking criteria (i.e., the ones based on Pareto). For instance in the SP2B
, in the 100M, 250M, and 500M datasets, ParetoAgg. has a conformance of 79%, 100%,
and 82%, respectively. The same pattern repeats with the ParetoQ version (with 85%,
100%, and 97%, respectively). In contrast, single-dimensional ranking criteria have rel-
atively lower conformance of 58%, 82%, and 70% for R f , 61%, 70%, and 58% for
Rp, and 70%, 79%, and 79% for Rs, accordingly. Turning to the WatDiv benchmark,
the same trend still valid for the ParetoQ criterion (i.e., having a better conformance
than the single-dimensional ones). Although this is also valid with the ParetoAgg in the
100M dataset, scaling up to the 250M, and 500M slightly degrades the conformance of
ParetoAgg in comparison to the Rs criterion. The main reason behind these results is that
single-dimensional criteria do not consider trade-offs across experimental dimensions, ul-
timately selecting the configuration that may under-perform in some queries. Meanwhile,
Pareto-based MD ranking considers those trade-offs while optimizing all the dimensions
simultaneously.

We measure the coherence of the ranking criteria across different experiments (dataset
sizes). Table 24 shows the results where the reading key is the lower is the better (i.e.,
high Kendall’s index means high disagreement across two rank sets). All the ranking
criteria show high coherence across different scales of the datasets. In particular, we
notice small distances (i.e. indicating low swaps/disagreements in the ranking ordinals,
C.F., Figure 37) for both single and multi-dimensional ranking criteria. Indeed, scaling
the datasets does not excessively impact the rank sets’ order in all the ranking criteria in
both of the SP2B and WatDiv benchmarks.

89

Coherence (Kendall) SP2B
Di-Dj R f Rp Rs ParetoAgg. ParetoQ

100M-250M 0.13 0.18 0.06 0.19 0.24
100M-500M 0.16 0.29 0.06 0.23 0.16
250M-500M 0.13 0.19 0.07 0.13 0.18

Di-Dj WatDiv
100M-250M 0.21 0.25 0.08 0.2 0.13
100M-500M 0.35 0.35 0.11 0.28 0.18
250M-500M 0.19 0.23 0.07 0.2 0.09

Table 24: Coherence results across datasets for SP2B & WatDiv benchmarks.

5.6. Discussion

There is still a lack of prescriptive and quantitative analytics in benchmarking the perfor-
mance of BD systems. Bench-ranking takes the first steps in filling this research gap. In
particular, it shows the value of ranking criteria evaluating BD frameworks. This frame-
work reveals its importance in the use cases that involve several experimental dimensions
with inherent performance trade-offs. For instance, processing large RDF datasets with a
relational BD system (e.g., Spark-SQL) that includes several dimensions, i.e., relational
schemata, partitioning techniques, and data formats.

Bench-ranking criteria provide an accurate yet simple way that supports the practi-
tioners in their evaluation task even in the existence of dimensions’ trade-offs. Moreover,
we propose two metrics to evaluate the ranking criteria goodness, i.e., the ranking confor-
mance and coherence. Looking at the problem as an MD optimization problem allows for
capturing more accurate and general reasonable configuration combinations. Indeed, the
Pareto front-ranking criteria showed more conformance for its suggested ranked configu-
rations than the single-dimensional ranking criteria. The proposed Pareto criteria handle
dimensions’ trade-offs efficiently. Moreover, the multi-dimensional ranking using such
techniques is scalable to any arbitrary number of dimensions for optimization.

5.6.1. Bench-Ranking Opportunities and Further Improvements

There are several ways to build on top of the Bench-ranking framework for further im-
provements. We discuss these opportunities in this section with three possible scenarios.

The first is regarding the used case study that is categorical and very coarse. In other
words, we did not investigate configurations that combine hybrid schemata or storage
formats; due to their complexity. Nevertheless, this can be taken into consideration as a
new parameter under the schema dimension. For example, we can have a mix of RDF
relational schemata, i.e., VP and PT [CFL18], or a mixture of storage formats for reading
the data tables from HDFS.

The second point relates to the ranking functions, where the proposed approach is
not workload-aware. Several alternative ways exist to model the workload within the
ranking. For instance, further investigation could consider some query complexity di-
mensions. However, consideration related to the query algebra would require examining
the actual query plan, which is inherently system-specific, which contradicts the porta-
bility requirement (Chapter 3 R.4). In the future, we plan to design a workload-aware

90

ranking based on benchmark choke-points 5 [Sal+16], which are sufficiently high-level to
remain system-agnostic. Moreover, we aim to employ other ranking functions as well as
MD optimization techniques and algorithms. For instance, we aim to enrich the Bench-
Ranking framework with implementing other techniques based on the Bayesian strategy
or the Nelder and Mead algorithms [SN09].

The last possible improvement relates to the ranking criteria evaluation metrics. In-
terestingly, such metrics do not leverage any prior knowledge about the workload. For
instance, we know that configuration using columnar file formats, e.g., ORC should out-
perform those using the row-oriented formats for queries with few projections. Hence, we
plan to design a hypothesis-based evaluation metric that leverages such domain knowl-
edge for evaluating ranking functions. For example, distance metrics can be enriched
with penalization/rewarding criteria when a hypothesis is rejected/confirmed.

5https://projects.ics.forth.gr/isl/RDF-Benchmarks-Tutorial/
DiscussingRDFBenchmarks.pdf

91

https://projects.ics.forth.gr/isl/RDF-Benchmarks-Tutorial/DiscussingRDFBenchmarks.pdf
https://projects.ics.forth.gr/isl/RDF-Benchmarks-Tutorial/DiscussingRDFBenchmarks.pdf

6. PAPYA: A TOOL FOR AUTOMATING
PRESCRIPTIVE PERFORMANCE ANALYSIS OF

LARGE RDF GRAPHS PROCESSING

In this chapter, we answer to the fourth micro question that is formulated as follows:
Micro 4: How can we automate prescriptive performance analysis of BD systems for
processing large graphs with a complex experimental solution space?

The previous chapter introduced the concepts and techniques of Bench-Ranking as a
means for enabling Prescriptive Performance Analysis for BD systems. PPA is an alter-
native to descriptive/diagnostic discussions that aims to answer the question What should
we do? [Lep+20]. In practice, Bench-Ranking has shown to be more useful than descrip-
tive and diagnostic analyses, enabling informed decision-making without neglecting the
complexity of the performance analysis [RAT21]. Nevertheless, we remark that still de-
termining the best way to execute a SPARQL workload over a large RDF graph using
a BD framework is a time-consuming task. Our direct experience with big RDF graphs
processing shows that the most time-consuming phases were the data preparation and
performance analytics. Although the Bench-Ranking methodology (Chapter 5) simplifies
the performance analyses, its current implementation is still limited as it does not follow
any specific software engineering best practices. Thus, practitioners who implement the
Bench-Ranking methodology may face the following challenges:

1. Experiment Preparation (C1) requires huge data engineering efforts to build the
full pipeline for processing large graphs on top of BD systems, to put the data in the
logical and physical representations that adapt with relational distributed environ-
ments. Moreover, the current experimental preparation in Bench-Ranking requires
incorporating several systems, e.g., Apache Jena 1 (i.e., for logical schema defini-
tions), and Apache SparkSQL [Mic15] (i.e., for physical partitioning and storage).

2. Portability and Usability (C2): deciding new requirements in the Bench-Ranking
framework’s current implementation (e.g., changes over the number of tasks (i.e.,
queries) or changes over the experimental dimensions/configurations.) would lead
to repeating vast parts of the work.

3. Flexibility and Extensibility (C3) : the current implementation of the Bench-
Ranking framework does not fully reflect the flexibility and extensibility of the
framework in terms of experimental dimensions and ranking criteria extensibility.

4. Complexity and Compoundnesss (C3): practitioners may find Bench-Ranking
criteria and evaluation metrics quite complex to implement. Moreover, the current
implementation does not provide an interactive interface that eases interconnec-
tions of various modules of the framework (e.g., data and performance visualiza-
tion).

To mitigate these problems, we design and implement an open-source library called
PAPyA (Prescriptive Analysis in Python Actions), which contributes with (1) reducing the
engineering work required for graph processing preparations and data loading; (2) repro-
ducing existing experiments (according to user needs and convenience) for relational pro-
cessing of SPARQL queries using SparkSQL. This will lead to reducing massive efforts

1https://jena.apache.org/

92

https://jena.apache.org/

Challenges Requirements PAPyA Solutions

C1: Experiments Preparation R4, R5

- Data Preparator that generates
and loads graph data for dis-
tributed relational setups.
- User-defined YAML configu-
rations files.

C2: Portability and Usability R2, R3, R4,
R5

- Data Preperator prepares
graphs data ready for process-
ing with any arbitrary rela-
tional BD system.
- Internals & abstractions en-
able plugin-in new modules
and programmable artifacts.
- Checking performance repli-
cability whilst configuration
changes.

C3: Flexibility and Extensibility R1, R3, R5

- Allow adding/excluding ex-
perimental dimensions.
- Allow adding new ranking al-
gorithms.
- Flexibility in shortening and
enlarging the configuration
space.

C4: Compoundness and Complexity R1, R4 - Interactive Jupyter Notebooks.
- Variety of data and ranking visualizations

Table 25: Summary of challenges and requirements along with PAPyA solutions.

Figure 39: PAPyA dynamicity to provide PPA for RDF benchmarks, and datasets.

for building analytical pipelines from scratch for relational BD systems that are subject
to the experiments. Moreover, PAPyA also aims at (3) automating the Bench-Ranking
methods for prescriptive performance analysis (described in chapter 5), In practice, PA-
PyA facilitates navigating the complex solution space via packaging the functionality of
different ranking functions as well as Multi-Optimization (MO) techniques into interac-
tive programmatic library interfaces. Moreover, (4) PAPyA demonstrates the applicability
and re-usability of the Bench-ranking methods in actual scenarios. Last but not least, (5)
checking the replicability of the relational BD systems’ performance for querying large
(RDF) graphs within a complex experimental solution space.

The focus of this chapter is to show the internals and functionality of PAPyA as
a means for providing PPA for BD relational systems that query large (RDF) graphs.

93

Figure 40: Papaya architecture and workflow.
Thanks to PAPyA, we can easily perform the PPA for any RDF benchmark, pointing
out to the performance results, and specifying the experimental configurations (see Fig-
ure 39).

6.1. PAPyA Requirements

In this section, we first present the requirement analysis for the design of our PAPyA li-
brary, and then we present its architecture. We elicit our requirements for the library based
on the above mentioned challenges, and relying on existing research efforts on bench-
marking BD systems for processing and querying large RDF graphs [Sch+16; Sch+14;
RAT21; Rag+20; CFL18]. Thus, the requirements analysis comprises:

1. Support for Prescriptive Performance Analysis (R1): PAPyA shall support the
necessary abstractions required to support PPA. Moreover, by default, it shall sup-
port existing Bench-Ranking [RAT21] techniques in chapter 5.

2. Independence from the Key Performance Indicators (KPIs) (R2): PAPyA must
enable PPA independently from the chosen KPI. In [RAT21] we opted for query
latency, yet one may need to analyze the performance in terms of other metrics
(e.g., memory consumption).

3. Independence from Experimental Dimensions (R3): PAPyA must allow the
definition of an arbitrary number of dimensions, i.e., allow the definition of n-
dimensional configuration space. In Bench-Ranking, we opted for relational schemas,
partitioning, and data formats, which lead to a 3-dimensional solution space (C.F.,
Figure 42).

4. Usability (R4): PAPyA supports decision making, simplifying the analysis of per-
formance data. To this extent, data visualization techniques as well as a simplified
API are both of paramount importance.

5. Extensibility (R5): PAPyA should be extensible both in terms of architecture and
programming abstractions. It should decouple data and processing abstractions to
ease the integration of new components, tools and techniques.

6.1.1. Architecture, Abstractions, and Internals

This section presents the PAPyA’s main components and shows how they fulfill the re-
quirements. Table 25 summarizes the requirements to challenges mappings alongside
the PAPyA solutions. PAPyA allows its user to build an entire pipeline for querying big
RDF datasets and analyzing the performance results. In particular, it facilitates building
the experimental setting considering the configuration space (described in Definition 1

94

Figure 41: PAPyA internal abstractions.

in Chapter 1) specified by users. This entails preparing and loading the graph data in
a user-defined relational configuration space, then performing experiments (executing a
query workload on top of a relational BD framework), and finally analyzing and providing
prescriptions of the performance.

Figure 42: Configuration space C .

To achieve that, PAPyA includes three core
modules depicted in Figure 40, i.e., the Data
Preparator, the Executor, and the Ranker.
Moreover, PAPyA relies on few core abstrac-
tions depicted in Figure 41, i.e., Configura-
tion, Experiment, Result, and Rank. While de-
tailing each module’s functionalities, we intro-
duce PAPyA workflow, which also appears in
Figure 40, starting with the input is a configu-
ration file that points to the input N-Triple file
with the RDF graph (Figure 40 step (A)).

The first actor in the pipeline is the Data Preparator (DP), which takes as input the
configuration files, looks up the experimental dimensions of interest, and loads the RDF
dataset. The configuration file is represented by the configuration abstraction (see Fig-
ure 41), which enables extensibility (R.R5). Indeed, DP allows defining an arbitrary
number of dimensions with as many options as necessary (R.R3). In particular, it con-
siders the dimensions specified in Bench-Ranking framework in chapter 5 (R.R1), i.e.,
relational schemas, storage format, and partitioning technique. Therefore, the DP au-
tomatically generates the relational schemas for the input RDF dataset according to the
specified configurations.

More specifically, DP currently includes three relational schemas commonly used for
RDF processing, i.e., (i) Single Statement (ST) which prescribes to store triples using a
ternary relation (subject, predicate, object), often requires many self-joins. ST is used by
several native triple-stores like Apache Jena, RDF4J, and Virtuoso [Cho+05], (ii) Vertical-
Partitioned Table (VP) proposed by Abadi et.al. [Aba+07] to mitigate issues of self-joins
in ST schema proposing to use binary relations (subject, object) for each unique predicate
in the dataset, (iii) the Wide Property Table (WPT) schema that attempts to encode the
entire dataset into a single denormalized table. WPT is initially proposed for Sempala
system by schatzle et.al. [Sch+14], who also proposed (iv) an extended version of the VP
schema (ExtVP) [Sch+16] that precomputes semi-join VP tables to reduce data shuffling.
For partitioning, DP currently supports three partitioning techniques, i.e., (i) horizontal
partitioning that divides data evenly over n equivalent chunks where n is the number of
machines in the cluster, (ii) subject-based, (iii) predicate-based, that distribute data across
various partitions according to the hash value computed for the subject or predicate keys,
respectively. Finally, DP allows to store data using various HDFS file formats (i) CSV

95

1 from papya import D a t a P r e p e r a t o r
2 class S p a r k D a t a P r e p a r a t o r (D a t a P r e p a r a t o r) :
3 def __init__ (self , RDFGraph g) :
4 def g e n e r a t e S T (self , g) : # Step (1) in Figure 43
5 ST=map (lambda x : x . s p l i t (" \ t ") , g)
6 def g e t U n i q u e P r e d i c a t e s (self , ST) : # unique property list
7 runSQL ("SELECT DISTINCT p from ST") . t o L i s t ()
8 def gene ra t eVP (self , ST) : # Step (2) in Figure 43
9 u n i q u e P r e d i c a t e s = g e t U n i q u e P r e d i c a t e s (ST)

10 for p in u n i q u e P r e d i c a t e s :
11 VPTable=runSQL (f "SELECT s , o From ST WHERE p={p} ")
12 def generateWPT (self , ST) : # Step (3) in Figure 43
13 u n i q u e P r e d i c a t e s = g e t U n i q u e P r e d i c a t e s (ST)
14 for p1 in u n i q u e P r e d i c a t e s :
15 for p2 in u n i q u e P r e d i c a t e s :
16 if (p1 != p2) :
17 q = f "SELECT s , Pr1 . o , Pr2 . o
18 FROM (SELECT T1 . s , T1 . o
19 FROM ST T1 WHERE T1 . o={p1 }) Pr1
20 LEFT JOIN (SELECT T2 . s , T2 . o
21 FROM ST T2 WHERE T2 . o={p2 }) Pr2 "
22 w p t a b l e =runSQL (q)
23 def g e t R e l a t e d P r e d i c a t e s (self , pred1 , r e l T y p e) :
24 RelPredsCmd = ("SELECT DISTINCT p FROM ST t 1
25 LEFT SEMI JOIN "+
26 if (r e l T y p e == " SS ") {
27 RelPredsCmd += " (t 1 . s= t 2 . s) " }
28 else if (r e l T y p e == "OS") {
29 RelPredsCmd += " (t 1 . s= t 2 . o) " }
30 else if (r e l T y p e == "SO") {
31 RelPredsCmd += " (t 1 . o= t 2 . s) " }
32 runSQL (RelPredsCmd) . t o L i s t ()
33 # Step (4) in Figure 43
34 def ge ne r a t eEx tVP (self ,VP [] , r e l T y p e) :
35 r e l p r e d s = g e t R e l a t e d P r e d i c a t e s (p1 , r e l T y p e)
36 for p2 in r e l p r e d s :
37 extVPcommand = ("SELECT t 1 . s , t 1 . o
38 FROM { p1 } t 1
39 LEFT SEMI JOIN { p2 } t 2 ON")
40 #VP tables joined subject -to-subject
41 if (r e l T y p e == " SS ") {
42 extVPcommand += " (t 1 . s= t 2 . s) "
43 } else if (r e l T y p e == "OS") { #object-to-subject
44 extVPcommand += " (t 1 . o= t 2 . s) "
45 } else if (r e l T y p e == "SO") { #subject -to-object
46 extVPcommand += " (t 1 . s= t 2 . o) " }
47 ex tVpTab le s = runSQL (extVPcommand)

Listing 6.1: RDF relational schema generation in PAPyA Data Perperator.

96

Figure 43: RDF relational schema transformations in PAPyA DP.
or (ii) Avro, which are row-oriented, and (iii) ORC or (iv) Parquet, which are column-
oriented.

The DP interface is generic, and the generated data are agnostic to the underlying re-
lational system. Seeking scalability, the current DP implementation relies on SparkSQL,
which allows implementing RDF relational schema generation using the SQL transfor-
mations shown in Listing 6.1. Notably, Apache Hive or Apache Impala could be potential
candidates for an alternative implementation executors. However, SparkSQL also sup-
ports different partitioning techniques and multiple storage formats, making it ideal for
our experiments.

Figure 43 shows sample of schema generation in PAPyA DP component. First, the DP
transforms the input RDF graph (N-Triples file(s)) into an ST table schema (i.e., Figure
43 Step(1)), and then other schemas are generated using parameterized SQL queries. For
instance, VP and WPT schemas are generated using SQL queries against the ST table
(i.e., Figure 43 Step(2), and (3), respectively). While, ExtVP schema generation relies
on VP tables to exist first (i.e., Step(4) in Figure 43).

1 from abc import ABC, a b s t r a c t m e t h o d
2 class E x e c u t o r (ABC) :
3 @abs t r ac tme thod
4 def run (self , exp e r imen t , runs , d a t a P a t h , l o g s P a t h) :
5 pass

Listing 6.2: Abstract Executor definition in PAPyA.

The Executor is the following module in PAPyA workflow, which is the system that
is subject to experimentation (see Figure 40 step B). For instance, in [Rag+21; RAT21;
Sch+16; CFL18] the considered system is Apache SparkSQL. The executor offers an
abstract API to be extended (R5). In practice, it (i) starts the execution pipeline in the
external system, (ii) it collects the performance logs (R2), and currently, it persists them
on a file system, e.g., HDFS. The Executor expects a set of experiments to run defined in
terms of (i) a set of queries, (ii) an RDF dataset (size), and (iii) a configuration (defined
in Definition 1 in Chapter 1). The Experiment abstraction is defined in Figure 41. We
decide to wrap the running experiments in a SparkSQL-based executor (SparkExecutor).
The experiment specifications (alongside the configurations) are passed to this wrapper

97

1 from papya import Rank
2 class SDRank (Rank) :
3 def __init__ (self , d imens ion , q) : #q is number of queries
4 def eval (self) :
5 d = len (self . d imens ion . i n d e x)
6 r a n k _ s c o r e = []
7 for _ , row in self . d imens ion . i t e r r o w s () :
8 for r in range (d) :
9 s = s + (row [r + 1] * (d −(r + 1)) / (self . q * (d − 1)))

10 r a n k _ s c o r e . append (s)
11 return r a n k _ s c o r e
12 def p l o t (self , r a n k _ s c o r e) :
13 d i s p l a y (r a n k _ s c o r e)

Listing 6.3: SD Ranking Function w.r.t Equation (5.1) in Chapter 5.

as parameters. It is worth mentioning that the Executor assumes the query workload is
available in the form of the SQL queries 2.

The results logs are then loaded by the Ranker component into python Dataframes to
make them available for analysis (see Figure 40 step (C)). The Ranker reduces the time
required to calculate the rankings, obtain useful data visualizations, and determine the
best-performing configurations while checking the performance replicability. To fulfill
R2, i.e., the Ranker component operates over a log-based structure whose schema shall
be specified by the user in the input configurations. Moreover, to simplify the usage and
the extensibility (R5), we decoupled the performance analytics (e.g., ranking calculation)
from its definitions and visualization. In particular, the Rank class abstraction reflects
on the ranking function (Definition 9 in Chapter 5) that takes as input data elements and
returns a ranking set. To fulfill R4, a default data visualization for the rank shall be speci-
fied. However, this is left for the user to specify due to the specificity of the visualization.

1 from papya import Rank
2 class MDRankPareto (Rank) :
3 def eval (self , ds , dims) : # ds:dataset; dims:dimensions
4 # renkSet , function to get ranks of dataframe
5 a l lDim = r a n k S e t (ds , dims) . r e s e t _ i n d e x () . v a l u e s
6 i n p u t P n t = np . a r r a y (r a n k S e t (ds , dims) [:]) . t o l i s t ()
7 # pass nsga algorithm with prtQ function
8 p a r e t o P n t s , d o m i n a t e d P n t s = nsga2 (i n p u t P n t , p r tQ)
9 # getConfs sort pareto solutions from best to worst

10 pa re toQ = s o r t (p a r e t o P n t s , a l lDim)
11 # pass nsga algorithm with prtAgg function
12 p a r e t o P n t s , d o m i n a t e d P n t s = nsga2 (i n p u t P n t , pr tAgg)
13 pare toAgg = s o r t (p a r e t o P n t s , a l lDim)
14 return pare toQ , pare toAgg
15 def p l o t (self , p a r e t o T y p e) :
16 d i a g r a m P a r e t o (p a r e t o T y p e)

Listing 6.4: MD Ranking criterion (Pareto Frontier).

The Rank call allows defining additional ranking criteria (R.R5). In addition, to fulfill
R.R1, PAPyA already implements SD as well as Multi-Dimensional (MD). Listing 6.3
and Listing 6.4 respectively present the implementation of the generalized ranking for-

2In the current stage, PAPyA does not support SPARQL query translation nor SQL query map-
pings.

98

1 from papya import Ranker
2 class BenchRanker (Ranker) :
3 def conformance (r a n k S e t , q , k , h) :
4 c r i t e r i a _ t a b l e = r a n k S e t . l o c [bestOfSD (k)]
5 c r i t e r i a _ t a b l e = c r i t e r i a _ t a b l e [c r i t e r i a _ t a b l e >h]
6 c o u n t = c r i t e r i a _ t a b l e . c o u n t (a x i s =1)
7 sum = c o u n t . sum (a x i s =0)
8 conformance = 1 −(sum / (k*q))
9 return conformance

10 def c o h e r e n c e (r ankSe t1 , r a n k S e t 2) :
11 # count number of (dis)agreements in two rank sets.
12 n = len (r a n k S e t 1)
13 a s s e r t len (r a n k S e t 2) == n , # equal size of lists.
14 i , j = np . meshgr id (np . a r a n g e (n) , np . a r a n g e (n))
15 a = np . a r g s o r t (r a n k S e t 1)
16 b = np . a r g s o r t (r a n k S e t 2)
17 k e n d a l l _ i d x = np . l o g i c a l _ o r (np . l o g i c a l _ a n d (a [i]
18 < a [j] , b [i] > b [j])
19 , np . l o g i c a l _ a n d (a [i] > a [j] , b [i] < b [j])) . sum ()
20 return k e n d a l l _ i d x / (n * (n − 1))

Listing 6.5: Ranking criteria evaluation as per the conformance and coherence
metrics (Chapter 5).

mula presented in Equation (5.1) and the implementation of the Pareto front MD ranking
criterion. The Equation and in implementation details discussed in Chapter 5.

PAPyA allows its users to interact with the experimental environment (R5) using
Jupyter Notebook. To facilitate the analysis, it integrates data visualization (R4) that
can aid decision-making. Thus, the Rank class includes a specific method to implement,
where to specify the default visualization.

Finally, to evaluate the raking criteria, we introduced the notions of coherence and
conformance (R1) in Chapter 5. Ranking criteria evaluation metrics are employed to
select which ranking criterion is effective (i.e., if it is not suggesting low-performing con-
figurations). In our experiments, we use such metrics by looking at all ranking criteria
and comparing them with the results across different scales, e.g., dataset sizes (100M,
250M, and 500M). Notably, to minimize the dependencies, we implemented the ranking
algorithms and evaluation metrics from scratch.

6.2. PAPyA in Practice

In this section, we explain how to use PAPyA in practice, showcasing its functionalities
with a focus on performance data analysis and visualization. In particular, we design our
experiments in terms of (i) a set of queries (originally in SPARQL and manually trans-
lated into SQL accordingly with the different relational schemas), (ii) RDF datasets of
different sizes automatically prepared using our Spark-based DataPreparator, and (iii) a
configuration based on three dimensions as in chapter 5 (i.e., Bench-Ranking framework),
i.e., schema, partitioning techniques, and storage formats. We present the results of exper-
iments that use the WatDiv benchmark. In our experiments, we evaluate the performance
of SparkSQL as a relational engine for evaluating the query workload. In particular, our
KPI of choice is query latency, but it could be easily extended to other metrics, e.g., mem-
ory consumption or throughput (triple per second). Our analyses are based on the average

99

1 from papya import C o n f i g u r a t i o n , S p a r k E x e c u t o r
2 from papya import d a t a _ p r e p a r a t o r a s dp
3

4 #Configurations
5 c o n f s = C o n f i g u r a t i o n ({
6 " schemas " : ["ST" , "VP" , "WPT" , " ExtVP "] ,
7 " p a r t i t i o n " : ["HP , SBP" , "PBP"] ,
8 " s t o r a g e " : ["CSV" , " Avro " , " P a r q u e t " , "ORC"] })
9

10 #Executor
11 QW_ST_Schema=[q_ST_1 , q_ST_2 , . . , q_ST_20]
12 exp = dp . e x p e r i m e n t (d a t a s e t =" 100M" , QW_ST_Schema , c o n f s)
13 spe = S p a r k E x e c u t o r (m a s t e r =" l o c a l [*] ")
14 r e s = spe . run (exp , r u n s =5 , d a t a P a t h =" h d f s : . . "
15 , l o g s P a t h =" h d f s : . . ")
16

17 #Bench-Ranking
18 #(1) SD-Ranking Criteria
19 schemaSDRanks = SDRank (r e s , dim=list (con f . keys ()) [0] ,
20 q=len (Q) , d=len (list (con f . v a l u e s ()) [0]) #schema SDranking
21 p a r t i t i o n i n g S D R a n k s = . . . #partitioning SDRanking
22 s to rageSDRanks = . . . #storage SDRanking
23

24 #(2) MD-Ranking (Pareto)
25 p a r e t o F r o n t s _ Q =MDRankPareto (ds=" 100M" , dims=Q)
26 p a r e t o F r o n t s _ A g g =MDRankPareto (ds=" 100M"
27 , dims =[schemaSDRanks , p a r t i t i o n i n g S D R a n k s , s to rageSDRanks])
28

29 #Visualization
30 SDRank . p l o t (schemaSDRanks) #plot SDRanking for schema
31 MDRrankPareto . p l o t (p a r e t o F r o n t s) #plot MD-Ranking Pareto
32 #Ranking Criteria evaluation
33 co n f =Ranker . conformance (schemaSDRanks , q =20 , k =3 , h =45)
34 coh=Ranker . c o h e r e n c e (schemaSDRanks_100M , schemaSDRanks_250M)

Listing 6.6: Experiment design example in PAPyA.

results of five different experiment runs 3.
Listing 6.6 shows a full example of PAPyA pipeline, starting by deciding the configu-

rations (in terms of three dimensions and their options, e.g., list of schemas, partitioning
techniques, storage formats to prepare, load, and benchmark) (Listing 6.6 lines 5-10).
Then, an experiment is set up for running, defining the dataset size (e.g., "100M" triples),
a list of queries to execute or exclude from the workload, and the configurations (List-
ing 6.6 line 12). An executor is defined for running the experiment along with the number
of times experiments will be run (Listing 6.6 line 13). The results (runtime logs) are
kept in log files in a specified path (e.g., HDFS or a local disk). The Bench-Ranking
phase starts when we have the results in logs (Listing 6.6 line 17). It is worth noting that
the performance analyses, e.g., Bench-Ranking, could start directly if the performance
data (logs) are already present. For instance, we call the SDRank (Listing 6.6 line 19)
for calculating rank scores for the "schema" dimension, alongside specifying the num-
ber of queries ("q"), and number of options under this dimension ("d" in Equation (5.1)
Chapter 5). The MD-Ranking(i.e., Pareto fronts) is applier in two ways. The first one is
called ParetoQ (Listing 6.6 line 25), which applies the NSGA-II algorithm by considering
the ranking sets obtained while sorting each query results individually. Using the first

3experiments and queries: https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking

100

WatDivmini
Di

Rf Rp Rs ParetoQ ParetoAgg Rta
a.ii.3 a.ii.3 c.i.4 c.ii.2 a.ii.3 a.ii.3
b.ii.2 a.ii.4 c.ii.2 c.i.2 c.ii.2 c.ii.2100M
a.i.3 a.ii.2 c.i.3 b.ii.2 b.ii.2 b.ii.2
a.ii.3 a.ii.3 c.i.4 c.i.4 c.i.4 c.i.4
a.i.3 a.ii.4 c.i.3 c.ii.2 b.ii.2 b.ii.2250M
c.i.4 a.ii.2 c.i.2 c.i.2 a.ii.3 a.ii.3
a.ii.3 a.ii.3 c.ii.4 c.ii.3 b.ii.2 b.ii.2
a.i.3 a.ii.4 c.i.4 c.ii.4 c.ii.3 c.ii.3500M
c.i.3 a.ii.2 c.i.3 c.i.3 c.ii.4 c.ii.4

Table 26: WatDiv-mini best-performing (Top-3) configurations according to the
SD and MD ranking criteria.

WatDivfull
Di

Rf Rp Rs ParetoQ ParetoAgg Rta
a.ii.3 c.ii.2 d.iii.4 d.iii.2 c.ii.2 c.ii.2
a.i.3 b.iii.3 d.iii.1 d.iii.3 d.iii.3 d.iii.3100M
b.ii.2 c.ii.1 d.iii.3 d.iii.4 b.ii.2 b.ii.2
a.ii.3 a.ii.1 d.iii.4 d.iii.2 d.iii.3 d.iii.3
a.i.3 d.iii.3 d.iii.3 d.iii.3 c.i.4 c.i.4250M

b.iii.2 a.ii.2 d.iii.2 c.i.4 a.iii.4 a.iii.4
a.ii.3 c.ii.2 d.iii.2 d.ii.2 d.ii.2 c.ii.3
a.i.3 a.iii.2 d.iii.4 c.ii.3 c.ii.3 d.ii.2500M

c.iii.2 a.iii.4 d.iii.1 a.iii.4 a.iii.4 a.iii.4

Table 27: WatDiv-Full best-performing (Top-3) configurations according to the
SD and MD ranking criteria.

method, the algorithm aims at minimizing the query runtimes across all dimensions. The
second one is called the ParetoAgg (Listing 6.6 line 26), which operates on the SD ranking
criteria. By using the second method, the algorithm aims to maximize the rank scores
of the three SD-ranking criteria altogether, i.e., Rs, Rp, and R f . The user can plot the SD
rank scores and the MD Pareto ranking criterion (Listing 6.6 line 29). In addition, the user
can evaluate the effectiveness of the ranking criterion using conformance and coherence
metrics (Listing 6.6 line 32).

Tables 26 and 27 show the top-3 ranked configuration according to the various ranking
criteria, i.e., Single-Dimension and Multi-Dimensional (Pareto) for the WatDiv datasets
(i.e., 100M, 250M, 500M triples). In addition, Tables 29 and 28 provide the ranking
evaluation metrics.

6.2.1. Rich Visualizations

To fulfill R4, PAPyA decouples data analytics from visualizations. Meaning that the
user can specify his/her visualizations of interest with the performance data. Neverthe-
less, PAPyA yet provides several interactive and extensible default visualizations that help

101

WatDivMini
Conformance Coherence

D1 D2 D3 D1-D2 D1-D3 D2-D3
Rs 88.33% 91.67% 93.33% 0.09 0.12 0.06
Rp 38.33% 13.33% 5.00% 0.14 0.14 0.14
Rf 63.33% 46.67% 35.00% 0.16 0.39 0.3
paretoQ 95.00% 98.33% 95.00% 0.14 0.25 0.14
paretoAgg 88.33% 73.33% 93.33% 0.16 0.25 0.2
Rta 88.33% 73.33% 93.33% 0.2 0.24 0.17

Table 28: Ranking Coherence (Kendall distance, the lower the better) & Confor-
mance across WatDivmini datasets (D1=100M, D2=250M, D3=500M).

WatDifull
Conformance Coherence

D1 D2 D3 D1-D2 D1-D3 D2-D3
Rs 96.00% 94.00% 93.00% 0.1 0.13 0.07
Rp 73.00% 39.00% 36.00% 0.09 0.28 0.17
Rf 64.00% 32.00% 43.00% 0.14 0.25 0.15
paretoQ 92.00% 98.00% 98.00% 0.1 0.15 0.07
paretoAgg 87.00% 71.00% 76.00% 0.17 0.24 0.15
Rta 89.00% 84.00% 76.00% 0.15 0.22 0.13

Table 29: Ranking Coherence (Kendall distance, the lower the better) & Confor-
mance across WatDiv f ull datasets (D1=100M, D2=250M, D3=500M).

practitioners rationalize the performance results and final prescriptions. In addition, visu-
alizations are simple and intuitive for understanding several Bench-Ranking definitions,
equations, and evaluation metrics. For instance, Figure 44 (a-c) shows three samples of
SD-ranking criteria plots. In particular, they show how many times a specific dimension’s
(e.g., schema in Figure 44 (a)) alternatives/options (ST, VP, PT,..etc) achieve the high-
est or the lowest ranking scores. Figure 34 shows the SD ranking criteria w.r.t a simple
geometrical representation (detailed in the following sections) that depicts the triangle
subsumed by each dimension’s ranking criterion (i.e., Rs, Rp, and Rf). The triangle sides
present the trade-offs ranking dimensions and show that the SD-ranking criteria may only
optimize towards a single dimension at a time. The MD-ranking criteria, i.e., ParetoAgg

4

results are depicted using a 3D plot in Figure 46 (a). Pareto fronts are depicted by the
green shaded area of the three experimental dimensions of the Bench-Ranking (for Wat-
Div 500M triples dataset 5). Each point of this figure represents a solution of rank scores
(i.e., a configuration in our case).

PAPyA visualizations allow explaining the conformance and coherence results using
simple plots. For instance, Figure 47 (a) shows the coherence of the top-3 ranked con-
figurations of the Rs criterion in the 100M dataset while scaling to the larger datasets,
i.e., 250M and 500M. PAPyA explains the conformance of the Bench-Ranking criteria by
visualizing the conformance of the top-3 ranked configurations (or any arbitrary number
of configurations) with the actual query rankings (Table 19 in Chapter 5). The green color
represents the level of conformance, and the red depicts a configuration is performing
worse than the h worst rankings. Thus, this may explain why Rp and R f criteria have
low conformance results in Tables 26 and 27 , while the other criteria have relatively

4ParetoQ cannot be visualized, i.e., as it uses more than three dimensions, one for each query of
the workload [RAT21].

5see other Pareto figures in Chapter 5

102

(a) SD Schema Ranks (b) SD Partition Ranks (c) SD Storage Ranks

Figure 44: Examples on SD Rank Scores over different dimensions (100M), the
higher the better.

(a) Ranking by Schema (b) Ranking by Partition (c) Ranking by Storage
Figure 45: Dimensions trade-offs using single-dimensional ranking (Rs,R f , and
Rp).

(a) Pareto Fronts for WatDiv f ull

(b) Best and worst-performing configuration
for each query

Figure 46: Pareto Fronts, and queries best-worst configuration examples.

(a) Coherence (b) Conformance
Figure 47: Heatmap shows the coherence of the Rs criterion (Top-5 configura-
tions) scaling from 100M to larger dataset scales. The stacked plot shows the
Conformance of the top-3 ranked configurations.

103

Schema Full conf. Space PBP !PBP CSV !CSV
Extvp 0.82 0.96 0.75 0.78 0.83
PT 0.60 0.32 0.74 0.69 0.57
VP 0.55 0.71 0.46 0.74 0.48
ST 0.32 0.52 0.23 0.20 0.37
WPT 0.21 0.00 0.31 0.09 0.25

Table 30: Schemas global ranking across various configurations.

higher conformance values.
Practitioners can also use PAPyA visualizations for fine-grained ranking details. For

instance, showing the best and worst configurations for each query (as shown in Figure 46
(b) for example of three queries of the WatDiv workload). Such detailed visualizations
could help the user rationalize the final prescriptions of PAPyA.

6.2.2. PAPyA Flexibility & Extensibility

1 #(1)Full-WatDiv Configurations
2 d i m e n s i o n s :
3 schemas : [" s t " , " vp " , " p t " , " e x t v p " , " wpt "]
4 p a r t i t i o n : [" h o r i z o n t a l " , " s u b j e c t " , " p r e d i c a t e "]
5 s t o r a g e : [" Avro " , "CSV" , "ORC" , " P a r q u e t "]
6 query : 20
7 #(2) Mini-WatDiv Configurations
8 d i m e n s i o n s :
9 schemas : [" s t " , " vp " , " p t "]

10 p a r t i t i o n : [" h o r i z o n t a l " , " s u b j e c t "]
11 s t o r a g e : [" csv " , " o r c " , " p a r q u e t "]
12 query : 10
13 #(3)WatDiv without Partitioning (i.e.,Centralized)
14 d i m e n s i o n s :
15 schemas : [" s t " , " vp " , " p t " , " e x t v p " , " wpt "]
16 p a r t i t i o n : n u l l
17 s t o r a g e : [" Avro " , "CSV" , "ORC" , " P a r q u e t "]
18 query : 20

Listing 6.7: Configurations yaml file for different experi-
ments in PAPyA.

Adding/Removing Configurations/Queries. To show an example of the extensibility
of PAPyA, we implement the Bench-Ranking criteria over a subset of the configurations
and subset of the WatDiv benchmark tasks (i.e., queries); we call it WatDivmini. In par-
ticular, we run PAPyA Bench-Ranking with WatDiv excluding two schemas (i.e., schema
advancements: ExtVP, and WPT), one partitioning technique (i.e., Predicate-based), and
one storage format (i.e., Avro). Then, we include all the configurations back to test the
extensibility with the WatDiv experiments (see Tables 27 and Tables 26). The configu-
rations’ exclusion and inclusion is specified easily from the YAML configuration file (as
shown in Listing 6.7 lines 7-12), i.e., PAPyA considers only the specified configurations
and rank according to them.

Tables 27 and Tables 26 shows the top-ranked three configurations according to the
specified configurations in WatDiv-full and WatDiv-mini, respectively. Intuitively, results
differ according to the available ranked configuration space. For instance, with the in-
clusion of the ExtVP schema (i.e., ’d’), it dominates instead of the PT schema (i.e., ’c’)

104

105

in WatDivmini for ranking by schema (Rs) criterion. In WatDivmini, excluding the Pred-
icate partitioning (’iii’), the subject-based partitioning (’ii’) completely dominates (one
exception) in the Rp criterion across the different dataset sizes. Including it back, the
predicate-based partitioning (’iii’) significantly competes with the subject-based parti-
tioning technique in most of the ranking criteria, i.e., Rp, Rs, ParetoAgg/Q, and Rta.

With such flexibility, PAPyA also provides several dynamic views on the ranking crite-
ria. For example, Table 30 shows the SD ranking of the schema dimension with changing
the configuration space. Particularly, it shows how the global ranking of each relational
schema (or any other specified dimension) could change by including/excluding configu-
rations of the other dimensions. The table shows that the order of the global schema ranks
changes by including all configurations ("Full Conf. Space") than including/excluding the
predicate partitioning or CSV format, i.e., "PBP/!PBP", "CSV/!CSV", respectively. For
instance, the PT schema global ranking is interestingly oscillating with those changes in
the available configurations.

Di Rs R f ParetoQ ParetoAgg

d.i.1 a.i.3 c.i.2 c.i.2
c.i.2 b.i.2 d.i.2 b.i.2100M
d.i.2 e.i.4 d.i.4 d.i.1
c.i.1 a.i.3 d.i.2 d.i.2
d.i.2 e.i.4 c.i.4 c.i.1250M
c.i.3 d.i.2 c.i.2 e.i.4
d.i.2 a.i.3 d.i.2 d.i.2
c.i.3 d.i.2 c.i.3 a.i.3500M
c.i.1 e.i.4 c.i.4 c.i.3

Table 31: Best-performing configurations, excluding the partitioning dimension.

Metric D Rs R f ParetoQ ParetoAgg

100M 97.50% 67.50% 95.00% 92.50%
250M 97.50% 30.00% 100.00% 97.50%Conform.
500M 100.00% 52.50% 100.00% 52.50%
100M-250M 0.11 0.17 0.11 0.19
100M-500M 0.28 0.16 0.30 0.18Cohere.
250M-500M 0.17 0.08 0.15 0.09

Table 32: Criteria evaluation (conform.ance, and coher.ence), excluding partition-
ing.

Adding/Removing Full Experimental Dimension. PAPyA’flexibility extends to the ex-
perimental dimensions, i.e., it is possible to add/remove dimensions easily. For instance,
we can fully exclude the partitioning dimension in case experiments are executed on a
single machine (see Listing 6.7 lines 13-18). In [RTS19], we run experiments on Spark-
SQL with different relational schemas and storage backends yet without data partitioning.
Table 31 shows the best-performing (top-3) configurations in WatDiv experiments when
excluding the partitioning dimension. Table 32 shows the conformance and coherence
metrics’ results for the various ranking criteria 6.

6Notably, the Rp and Rta criteria cannot be calculated when excluding the partitioning dimen-

1 from papya import Rank
2 #SD Ranker (Implementation of Equation (1))
3 class SD_Ranking (Rank) :
4 . . .
5 #MD Ranker (Pareto-NSGA2)
6 class MD_Ranking (Rank) :
7 . . .
8 #Add Triangle_Area as a new ranking criterion.
9 class R t a C r i t e r i o n (Rank) :

10 def c a l c u l a t e _ r t a (self) :
11 r _ s c o r e s = SDRank (. . .) . c a l c u l a t e R a n k ()
12 r t a _ s c o r e s = []
13 for i in range (len (r _ s c o r e s)) :
14 r s = r _ s c o r e s [0] [i]
15 rp = r _ s c o r e s [1] [i]
16 r f = r _ s c o r e s [2] [i]
17 # RTA Formula (Equation 4)
18 y = (math . s i n (math . r a d i a n s (1 2 0))) / 2
19 o u t e r _ t r i a n g l e _ a r e a = y * (1+1+1)
20 r t a = y * (r f * rp + r s * rp + r f * r s)
21 r t a _ s c o r e s . append (r t a)
22 return r t a _ s c o r e s
23 def p l o t (self) : # plots (Figure 7)
24 . . .

Listing 6.8: Plugin the Triangle-Area as new Ranking criterion.

Adding Ranking Criterion. PAPyA abstractions enable users to plug-in new ranking cri-
terion besides the already existing ones (i.e., the abstract Rank class, Section 6.1). Let’s
assume we seek usage of a simple ranking criterion that leverages a geometric interpreta-
tion of the SD rankings of the three experimental dimensions based on the triangle area
subsumed by each ranking criterion (Rs, Rp, and R f).

0.73

0.75 0.77

Partitioning (Rp)Storage (Rf)

Schema (Rs)

1.00

1.00

1.00

AB

C

120
120

120

D

Figure 48: Triangle Area criterion.

In Figure 48, the triangle sides rep-
resent the SD-ranking dimensions’ rank
scores. Thus, this criterion aims to max-
imize this triangle’s area (i.e., the blue tri-
angle). The closer to the ideal (outer red
triangle), the better it scores. In other
words, the bigger the area of this triangle
covers, the better the performance of the
three ranking dimensions altogether. The
red triangle represents the case with the
maximum/ideal rank score, i.e, R = 1 for
the three dimensions (as, 0 < R <= 1). Equation (5.1, Chapter 5) defines the blue triangle
area; named as ranking by triangle area (Rta).

TriangleArea(Rta) =
1
2

sin(120)∗ (R f ∗Rp +Rs ∗Rp +R f ∗Rs) (6.1)

The formula (Cf. Equation 6.1) computes the actual triangle area. Simply, it sums
up the triangle area of the three triangles A, B, and C by two of its sides which are the
rank scores of each dimension, i.e., Rs, Rp, or R f (dashed triangle sides), and the angle
between both of them (i.e 120 in this case). For example, the actual area of the blue

sion.

106

0.00%

20.00%

40.00%

60.00%

80.00%

Extvp PT VP ST WPT

PBP SBP HP

(a) Impact of partitioning on the schema per-
formance

0.00%

20.00%

40.00%

60.00%

80.00%

Extvp PT VP ST WPT

AVRO CSV ORC Parquet

(b) Impact of storage on the schema perfor-
mance

Figure 49: Schema Replicability across changing partitioning or storage formats.

triangle is Rta =
1
2 sin(120)(0.75 ∗ 0.771+ 0.73 ∗ 0.77+ 0.75 ∗ 0.73) = 0.73. In addition

to the SD and MD ranking criteria classes, Listing 6.8 shows how to extend PAPyA with
a new Ranker class, i.e., RtaCriterion.

It is worth mentioning that the idea behind Rta is intuitively similar to ParetoAgg be-
cause both aim to maximize the rank scores of the three dimensions altogether. However,
unlike ParetoAgg that is multi-dimensional, Rta cannot extend to dimensions above three.
For simplicity, we used Rta as an exemplar to showcase that PAPyA abstractions enable
extending new ranking algorithms/criteria. Tables 26 and 27 show the best-performing
(top-3) configurations ranked by Rta. Results show that ParetoAgg results perfectly con-
form with Rta top-ranked configurations (especially in the top-3 ranked configurations).
Table 28 and 29 also show that Rta criterion scores high conformance ratios across Wat-
Div benchmark datasets. It also scores high coherence (few disagreements) through the
scalability of WatDiv datasets. In both WatDiv experiments (i.e., with mini and full di-
mensions inclusion), the Rta conformance and coherence values are very close to the
ParetoAgg criterion.

6.2.3. Checking Performance Replicability

PAPyA also activates the functionality of checking the BD system’s performance replica-
bility when introducing different experimental dimensions. In particular, it enables check-
ing the system’s performance with one specific dimension while changing the parameters
of the other dimensions. For example, Figures 49 (a) and (b) respectively show the impact
of the partitioning and storage on the performance of the schema dimension. The Figures
show how the performance of the system with a configuration can significantly change
with changing other dimensions.

PAPyA can also check the performance replicability by comparing two configura-
tions [Rag+21], as discussed in Chapter 4. For instance, PAPyA can compare the schema
optimizations (i.e., WPT, and ExtVP) w.r.t their baseline ones (i.e., PT, and VP) while
introducing different partitioning techniques and various HDFS storage formats that are
different from the baseline configurations [Sch+16; Sch+14].

Table 33 shows the effect of introducing partitioning techniques (right of the table)
and different file formats (left of the table) different from the baseline configurations (i.e.,
Vanilla HDFS partitioning, and Parquet as storage format). The trade-offs effect is clear
on the replicability results. Indeed, WPT outperforms PT schema only with 54.16% in the
queries using the baseline Vanilla HDFS partitioning technique across all storage formats
and only about 39% for the baseline Parquet format across all partitioning techniques. On

107

Partitioning ExtVP VS.VP WPT VS. PT Storage ExtVP VS. VP WPT VS. PT
V. HDFS 97.5% 54.16% Parquet 75.0% 38.8%
Horizontal 67.5% 8.3% ORC 73.33% 18.5%
Predicate 61.4% NA Avro 63.3% 16.6%

Pa
rt

iti
on

in
g

Subject 66.25% 6.9%

St
or

ag
e

CSV 93.3 % 16.6 %

Table 33: The replicability of schema advancements (i.e., WPT, ExtVP) VS. base-
lines (i.e., PT, VP), WatDiv 500M dataset.
the other side, we observe significant degradation of WPT schema optimization moving
to other configurations with both partitioning and storage dimensions. For instance, WPT
outperforms PT only with about 8% and 7% using other different partitioning techniques,
i.e., Horizontal and Subject, respectively. The same occurs with changing the storage for-
mats different from baseline Parquet. Similarly, ExtVP versus VP schema performance
results confirm our observations. PAPyA enables showing those trade-offs of consider-
ing alternative storage file formats and partitioning techniques alongside the experiments
query evaluation.

6.3. Conclusion and Road-map

In this chapter, we present PAPyA, an extensible library that reduces the efforts needed to
analyze the performance of BD systems used for processing large (RDF) graphs. PAPyA
implements the performance analytics methods adopted in [Sch+14; Sch+16; RTS19] in-
cluding an novel approach for prescriptive performance analytics we presented in [RAT21].

Inspired by Gartner’s analysis methodology [Hag17], Figure 50 reflects the amount
of human intervention required to make a decision with the descriptive and diagnostic
analyses of the performance results. Descriptive and diagnostic analytics are limited, and
cannot guide practitioners directly to the best-performing configurations in a complex
solution space. This is shown in this paper with the lack of performance replicability
(shown Section 6.2.3). Indeed, the performance of the BD system is affected by chang-
ing the configurations, e.g., oscillating schema performance with changing partitioning,
and storage options (Figure 49). On the other side, PAPyA reduces the amount of work
required to interpret performance data. It adopts the Bench-ranking methodology with
which practitioners can easily decide the best-performing configurations given an exper-
imental solution space with an arbitrary number of dimensions. Although, descriptive
discussions are limited, PAPyA still provides several descriptive analytics and visualiza-
tions on the performance to explain the final decisions given by PAPyA. PAPyA also aims
to reduce the engineering work required for building an analytical pipeline for processing
large RDF graphs. In particular, PAPyA prepares, generates, and loads data ready for big
relational RDF graph analytics.

PAPyA is developed considering the ease of use and the flexibility aspects allowing
extending the library with an additional arbitrary number of experimental dimensions
to the solution space. Moreover, PAPyA provides abstractions on the level of ranking
criteria, meaning that the user can use his/her ranking functions for ranking the solution
space. Seeking availability, we provide PAPyA as an open-source library under MIT
license and published at a persistent URI. PAPyA’s GitHub repository includes tutorials
and documentation on how to use the library.

As a maintenance plan, PAPyA’s roadmap includes:

1. covers the phase of query evaluation into PAPyA pipeline. In particular, we plan to

108

Figure 50: Performance analysis methodology, and how PAPyA reduces human
intervention in BD performance analyses.

provide native support of SPARQL via incorporating native triple stores for query
evaluation.

2. incorporate SPARQL into SQL translation using advancements of R2RML map-
ping tools (e.g., OnTop) [Bel+21].

3. wraps other SQL-on-Hadoop executors to PAPyA; thus, the performance of the
engines could also be compared.

4. use orchestration tools (such as Apache Airflow) to monitor the PAPyA pipelines.

5. enable predictive analysis in PAPyA, to predict the performance of BD systems for
processing (RDF) graphs, based on previous experiments, and query workloads.

6. integrate PAPyA with other tools like gmark [Bag+16] that generates graphs and
workloads, making them ready for distributed relational setups.

109

7. CONCLUSION AND FUTURE DIRECTIONS

Leveraging relational Big Data (BD) processing frameworks to process large knowl-
edge graphs yields a great interest in optimizing query performance. Modern BD sys-
tems are yet complicated data systems, where the configurations notably affect the per-
formance. Benchmarking different BD frameworks and configurations provides the com-
munity with best practices for better performance. However, most of these benchmarking
efforts are classified as descriptive and diagnostic analytics. In this thesis, we discuss
how we abstract from the complexity of descriptive and diagnostic performance analy-
ses, guiding the practitioner directly to actionable informed decisions. Particularly, we
investigate how to enable prescriptive analytics for BD systems when querying large
KGs, via ranking functions, as well as multi-dimensional optimization techniques (called
Bench-Ranking framework). This Bench-Ranking framework builds on the state-of-the-
art benchmarking efforts in the area of querying large (RDF) graphs.

7.1. Bench-Ranking Requirements & Research questions

This work follows the Macro, Mezzo, Micro framework for framing the research prob-
lem [LG15], which requires to formulate the research questions at three levels of analysis.

"Can we guarantee fair benchmarking assessment of relational BD systems perfor-
mance while querying big graphs?" is the Macro question that frames our research. The
question is open to numerous interpretations and answers; thus, we shall reformulate it
into more specific ones. Thus, we list few specific requirements which enable us to narrow
down the problem and validate our approach.

1. (R1) The approach should apply to the problem of querying large (RDF)
graphs with latency as a reference KPI.

2. (R2) Choose system-agnostic experimental dimensions that directly impact
the (BD) systems when querying large graphs.

3. (R3) Ensure the replicability of BD systems’ performance while varying the
experimental dimensions.

4. (R4) Consider multiple experimental dimensions’ simultaneously to make sense
of their trade-offs.

Thus, we formulated the Mezzo question based on the aforementioned requirements
as follows: Can we aid decision making for benchmarking big (RDF) graph processing
over relational systems? The objective is to provide guidance to practitioners in choosing
the best-performing configurations (Definition 1 in Chapter 1) of a BD system for query-
ing large (RDF) KGs from a complex solution space of experimental dimensions with
arbitrary multiple options and inherent trade-offs.

In the following sections, the Micro questions are mentioned alongside the summary
and conclusions of the contribution(s) regarding those questions.

110

7.2.1. Making sense of Big Data Descriptive Performance Analysis

The state of the art research works that adopt large (RDF) graph processing is limited in
terms of the systematic coverage experimental dimensions that impact the performance
(see Table 1, in Chapter 1). Moreover, those research efforts are limited in the maturity
level of performance analysis. They provide mere descriptive and diagnostic performance
analytics.

Thus, Chapter 3 provides answers to the Micro 1 question (formulated in the Introduc-
tion chapter, Section 1.5.1). Chapter 3 discusses the comprehensive experimental solution
space of the design decisions that emerge with querying large (RDF) knowledge graphs
on top relational BD systems, i.e., schema, partitioning, and storage formats. It also dis-
cusses other experimental options, such as the BD system dedicated to the experiments
(i.e., Apache Spark-SQL) and the RDF benchmarking datasets and workloads (i.e., SP2B
and WatDiv). We approached answering the research question(s) in this chapter via:

1. performing extensive benchmarking experiments on the performance of the com-
bination of the configurations.

2. making sense of the performance results following the descriptive and diagnostic
analyses.

3. giving best practices for processing large KGs alongside mentioned dimensions
(see Chapter 3 Figure 24)).

4. showcasing the limitations of the descriptive and diagnostic analyses.

Thus, this chapter shows that the descriptive performance and diagnostic analyses
are insufficient to provide actionable indicators. That is, comparing descriptive results
in such complex scenarios to reach a decision can be an overwhelming task. Although,
it is possible to utilize diagnostic analysis to rationalize the performance utilizing the
knowledge attained around the workload and the experimental dimensions, experiments
showed that those dimensions trade-offs still hinder clear directions towards selecting
the best-performing configurations. Moreover, following the descriptive and diagnostic
analyses may result in multiple cluster configuration setups/deployments with huge data
redundancy to ensure the most efficient execution of the query workload (see Figure 23
in Section 3.3.1 in Chapter 3). This thesis provides a framework (i.e., Bench-Raking)

111

7.2. Summary of Contributions

This section offers an overview of the thesis contributions regarding the problems solved
and how they offer a valid solution for the research questions (see Table 34 for a sum-
mary).

RQs Chllenges Publication Chapters
Micro 1 C1,C2 [RTS19],[Rag+20] Chapter3
Micro 2 C2,C3 [Rag+21] Chapter 4
Micro 3 C4 [RAT21] Chapter 5
Micro 4 C4 Under Review [RAT22] Chapter 6

Table 34: Summary of research questions, the challenges that they address (see
Table 1, in Chapter 1); the related publications, and the chapters that discuss them.

that aims to guide the practitioners directly to the best-performing configurations with
minimum costs in terms of cluster management.

7.2.2. Assessing Big Data Replicability

Chapter 4 continues to show the current big graph performance analytics limitations. It
provides answers to the Micro 2 question (formulated in the introduction Chapter 1, Sec-
tion 1.5.2). The Micro 2 question investigates the effect of changing one or more experi-
mental dimension(s) and their options/alternatives on the replicability of the performance
of a BD system for querying large (RDF) graphs.

To answer the Micro 2 question in this thesis, we followed the following approach.
We check the validity of the hypothesis mentioned in (Chapter 1, Section 1.5.2). Partic-
ularly, we investigate the performance improvement of one of BD systems (i.e., Spark-
SQL) with two recent schema optimizations (i.e., Extended Vertically-Partitioned Tables
(ExtVP)[Sch+16] and Wide Property Tables [Sch+14]), w.r.t. their baseline approaches
(i.e., Vertically-Partitioned (VP) Tables and Property Tables (PT)). We observe if the per-
formance of the two schemas advancements generalizes (i.e., still outperform the baseline
ones) over Spark-SQL with introducing different RDF partitioning techniques and various
HDFS storage data formats that are different from the studied baseline configurations (i.e.,
Vanilla HDFS partitioning, and Parquet as storage format) [Sch+16; Sch+14; Rag+21].

Answering Micro 2 unveils the replicability issue in Big Data systems performance
when querying large graphs. The results of our replicability experiments show that we
cannot even guarantee the optimal performance of BD system with one of the dimensions
(e.g., schema optimizations)if we changed or introduced other experimental options (e.g.,
partitioning techniques, or storage formats). In practice, we show that the RDF relational
schema optimizations outperform the baseline ones (table percentages) [Sch+16; Sch+14]
only with the vanilla configurations. However, this performance behavior does not gener-
alize while introducing other new partitioning techniques (e.g., Horizontal, Subject(Predicate)-
based partitioning), or other storage file formats (e.g., Avro, CSV, or ORC) [Rag+21].
Thus, the outcomes of this contribution can be summarized as follows:

1. The schema dimension is not the only design decision to consider while processing
large KGs on top relational systems.

2. The Partitioning and storage formats are key factors that directly impact the BD
system’s performance.

3. BD systems replicability is indeed affected by introducing different experimental
dimensions.

4. Descriptive and diagnostic performance analyses are limited in the presence of
replicability lack.

The results of this chapter showed the effect of experimental configurations trade-offs.
Therefore, we aim for a framework to mitigate these issues and guide optimal solutions
while considering the performance trade-offs.

7.2.3. Bench-Ranking:The Big Data Prescriptive Performance
Analysis (PPA)

Motivated by the limitations of descriptive analysis (shown in Chapter 3 and chapter 4),
Chapter 5 proposes a "Bench-Ranking" framework. The Bench-Ranking framework frame-

112

work aims to enable prescriptive performance analysis that can help decide the best-
performing configurations over the complex solution space alongside considering the
inherent trade-offs. In particular, the contribution answers the Micro 3 question (for-
mulated in the introduction Chapter 1, Section 1.5.3). The Micro 3 question investigates
the level of abstraction required for selecting the best-performing experimental configura-
tions instead of comparing a huge number of experiments’ performance results (i.e., that
sometimes are even contradicting due to experimental trade-offs). To guide the practi-
tioners on this hard task, the contributions of the Bench-ranking framework (Chapter 5)
are summarized as follows:

1. Employing SD ranking Criteria seeking actionable prescriptions, aiming to ab-
stract from the fine-grained descriptive performance metrics and enable a decision-
making model.

2. designing the Bench-ranking as Multi-Dimensional (MD) optimization problem
for optimizing the performance of dimensions’ parameters altogether.

3. Proposing metrics for assessing the efficiency of the proposed ranking criteria
[RAT21].

SD Ranking Criteria generalize the ranking function proposed in [ANS18] that ranks
several RDF partitioning techniques across different datasets. Our generalized ranking
function enables calculating the ranking scores for the experimental dimensions’ options
of the mentioned dimensions. The rank scores of the SD ranking criteria help to pro-
vide a high-level view of the system performance across a set of tasks (e.g., workload
queries) [RAT21]. However, our experiments show that the SD ranking prescriptions are
not coherent across experimental dimensions [RAT21]. Indeed, the SD ranking criteria
cannot generalize as they neglect the presence of trade-offs as they rank (i.e., optimize)
alongside a single experimental dimension [RAT21] neglecting the other ones.
MD Ranking Criteria. The limitations of SD criteria led to extending the Bench-Ranking
into a Multi-Dimensional (MD) optimization problem to optimize all the dimensions at the
same time. We adopt the standard Pareto frontier technique to consider the experimental
dimensions altogether [Deb+02]. In particular, we utilized the Non-dominated Sorting
Genetic Algorithm (NSGA-II) [Deb+02]. The algorithm operates on the ranking scores of
the SD ranking criteria (i.e., we call them Rs, Rp, and R f).
Evaluating Ranking Criteria. In Bench-Ranking framework, we consider a ranking
criterion "good" if it does not suggest low-performing configurations. Herein, we discuss
how we measure the ranking criteria goodness using two metrics. The first metric is the
Conformance that measures the adherence of the top-ranked configurations w.r.t actual
query rankings (i.e., positioning of those configurations 1) [RAT21]. The second metric
is the Coherence which measures the level of agreement between two ranking sets that
use the same ranking criterion across different experiments (e.g., different dataset scales).
To measure how coherent the ranking criteria are while scaling up to larger datasets, we
employ Kendall’s index 2

Our experimental results3 [RAT21] show that all the ranking criteria achieve high Co-
herence across different scales of the datasets. This shows that scaling the datasets does
not excessively impact the rank sets’ order in all the ranking criteria, whereas MD ranking

1Each configuration C has a rank according to its running time of the queries.
2Kendall’s index is a common measure to compare the ordering of ranking functions.
3Conformance and Coherence results [RAT21] are omitted due to space limits.

113

criteria (i.e., Pareto fronts) show better Conformance results than the SD ranking crite-
ria. Indeed, the Pareto ranking technique considers optimizing the performance of all
dimensions simultaneously, whereas the SD considers only one dimension at a time while
ignoring the other dimensions.

7.2.4. PAPyA: Big Data Bench-Ranking Made Easy

Prescriptive Performance Analysis (PPA), in particular utilizing ranking functions, has
shown to be more useful than traditional descriptive and diagnostic analyses for making
sense of Big Data frameworks’ performance. Bench-Ranking criteria (i.e., SD and MD)
draw the guidelines toward actionable insights. However, the amount of experimental
work required to implement BD PPA is still huge.

To this end, Chapter 6 answers the Micro 4 question (formulated in the introduction
Chapter 1, Section 1.5.4) by introducing PAPyA 4, an open-source python library for en-
abling and providing PPA for Big Data systems when querying large KGs. The require-
ments for PAPyA are based on the existing research efforts on benchmarking BD sys-
tems for processing and querying large RDF graphs [Sch+16; Sch+14; RAT21; Rag+20;
CFL18].

PAPyA wraps the functionality proposed in Bench-Ranking [RAT21] (Chapter 5) in
one single tool that reduces the efforts needed to select the best-performing configurations
that guarantee the optimal performance of BD systems for large RDF graphs processing.
In Bench-Ranking Chapter 5, we used the query latency as the Bench-Ranking KPI, yet
PAPyA supports analyzing the performance in terms of other metrics (e.g., memory con-
sumption, CPU usage). In Bench-Ranking, we also opted for the relational schemas,
partitioning, and data formats, which lead to a 3-dimensional solution space. Hiding
the complexity of Bench-Ranking, PAPyA provides an interactive environment that eases
interconnections of various modules of the framework (e.g., data and performance visu-
alization). Moreover, PAPyA also aims to reduce the time required to build an analytical
BD pipeline to process large RDF graphs. In particular, PAPyA prepares, generates, and
loads data ready for big relational RDF graph analytics.

7.3. Open Challenges and Future Directions

We believe the work presented so far opens up several interesting research directions.
Here, we highlight key directions for future research.

7.3.1. Workload-driven Automatic Configuration Mining

Our current proposed SD and MD ranking criteria (i.e., "Bench-Ranking") do not explic-
itly consider the query workload. This means that "Bench-Ranking" framework cannot
provide prescriptions across different benchmarks’ query workloads [RAT21].

On another side, the flexibility of RDF graphs (i.e., schema-last data model) brings
challenges to the storage and management of RDF graphs in a relational environment
[Pha+15]. Indeed, the relational model requires several design decisions when used for
representing and processing graphs, which cannot be decided automatically, e.g., the
choice of the schema, the partitioning technique, and the physical storage formats. There
is no One-Solution-Fits-All on the level of these experimental dimensions. That is, the
configurations made of several experimental dimensions cannot fit all the query shapes.

4https://github.com/DataSystemsGroupUT/PAPyA

114

Indeed, our experiments have demonstrated that no configuration is dominant for the dif-
ferent families of RDF SPARQL queries [RAT21].

For instance, when considering the schema dimension, we find that each RDF rela-
tional schema is excellent for a particular class of queries [AÖD14]. One RDF relational
schema may outperform others while evaluating a particular family of queries, but it in-
creases the sparsity of the data and results in space waste. The most popular relational
schemas for RDF graphs are (i) Single Statement (ST) Table, (ii) Vertical Table (VT), and
(ii) Wide Property Table (WPT) [Hog+21] (detailed specifications in Chapter 2). Such
schemas are designed according to different requirements that are often in contrast. For
example, the ST schema is triple-based, i.e., it is agnostic from the underlying graph
structure. This approach eases data integration (i.e., merging two datasets does not require
any schema change) but increases the number of self-joins required to answer complex
queries. The WPT is dataset-based schema, i.e., the schema attempts to encode the en-
tire dataset into a single denormalized relation. The schema strictly depends on the graph
structure and aims at reducing the cost of star-shaped queries [Rag+21]. It allows answer-
ing this family of queries with no joins [Sch+14]. However, it significantly degrades the
performance of the relational system for other query shapes that require several joins over
the large sparse WPT table [Rag+21; Sch+14]. Moreover, the WPT schema suffers from
huge redundancy and sparsity (i.e., containing many NULL values), and thus it incurs
large storage overhead. Last but not least, the VT schema is graph-based, i.e., it requires
one binary relation (Subject,Object) for each unique predicate (labeled edge) in the graph
structure. The VT schema aims at reducing redundancy by normalizing the relational
graph structure. However, it may incur huge data skewness over the predicate tables and
low performance with complex SPARQL queries (i.e., too many VT table joins).

On the other side, combining multiple schemas (partitioning techniques or storage
formats) to attain hybrid configurations that obtain the best of the underlying alternatives
represents a valuable research direction. We also argue that building such hybrid con-
figurations requires tailored solutions that consider the underlying dataset characteristics
and the query workload adjustments, entailing huge data engineering efforts. To this end,
we aim to propose algorithms that automate designing hybrid configurations that adapt
to the query workload covering a wide range of graph query shapes without ignoring the
loading times and the storage overheads.

Therefore, we propose investigating such research direction in the future. We start
with the hybrid schema generation, as it is the most studied dimension in the literature
and the one directly reflects on the query workload complexity. The investigation process
will take the following steps.
Designing algorithms for Automated Hybrid Schema migration A major problem in
hybrid schema definition for graph data is the lack of an automated procedure for schema
definition and migrations. Considering the schemas ST, VT, and WPT as starting schema
points, we will develop an algorithm for schema migration that considers the dataset char-
acteristics and the impact on the workload. Therefore, defining a dataset profile that re-
flects the graph-specific workloads is a crucial step.

The algorithm should take as an input a dataset profile and the workload, which con-
sists of a set of SPARQL queries and their SQL translations. The algorithm will be iter-
ative and attempts to modify the input schema for the given query workload to reach an
optimal hybrid schema. As an extension of such an algorithm, we plan to employ the re-
inforcement learning methods [SB18] to automatically tune the hybrid relational schema
migrations to adapt to the prospective changes in the query workload. Investigating hy-

115

brid relational schema generation for graph streaming applications is one of our future
directions to check its feasibility and challenges.
Empirically Validate the Performance To validate the effectiveness of the designed al-
gorithm, we plan to re-use the state-of-the-art RDF benchmarks like LUBM, SP2Bench,
WatDiv, and LDBC. These benchmarks include a data generator and sufficiently complex
workloads to test the designed solution with different dataset sizes. Moreover, we also
plan to test the approach on real-world datasets like Wikidata and Yago [Hog+21] that
present additional challenges in data preparation and consistency. Last but not least, har-
nessing scalability in our experiments, we plan to use Apache Spark the de-facto standard
for Big Data analytics.

7.3.2. Bench-Ranking alongside Multi-Query Optimization
techniques

Typically, the query optimization is a challenging task in database systems. Although
typical relational DBs have the luxury of using indexes that eases the mission of query
optimizers, most of the current Big Data management systems lack this feature. Moreover,
the schema-free nature of RDF graphs with complex SPARQL workloads (i.e., several
joins) aggravates the problem of query optimization for processing the large knowledge
(RDF) graphs [SA10; Pha+15]. Several techniques have been proposed to solve this
problem such as query rewriting [Cor+10; CMC16], vertical partitioning [Aba+07], as
well as scalable join processing [NW09]. On another side, several works tackled such
problem via the classical Multi-Query Optimization (MQO) technique in the context of
RDF and SPARQL [RW16; GGZ19; Zer+20; Pen+19]. The main idea of MQO is to
identify and exploit common sub-expressions across a set of running queries in order
to reduce evaluation cost. In particular, MQO generates a global optimized plan (via
query rewriting, join reorders, or sharing the intermediate results within the same group
of queries) aiming for reducing the evaluation costs of multiple queries.

To reflect on our work in this thesis, we aim to study the reflection of MQO techniques
on guiding the design decisions of querying large KGs on top of relational BD systems.
In particular, we aim to investigate how the graph layouts and partitioning across a dis-
tributed storage can be re-designed with applying MQO techniques and detecting the
SPARQL query templates [Has+16] on the given query workload. We aim also to fur-
ther investigate how we can periodically and automatically re-partition the RDF graph to
optimize the query evaluation to adapt with the query workload changes.
Automatic Query Workload Translation. The state-of-the-art proposes several ap-
proaches for the problem of SPARQL into SQL mappings/translations [CLF09; PCS14;
RR15]. However, most of these works pre-assume a predefined relational schema for
query translation. Indeed, Translating SPARQL query workload into SQL is a schema-
dependent task. For instance, in this thesis, the process of translating the native SPARQL
query workload into SQL for each RDF relational schema is done manually or reused ex-
isting benchmarks (WatDiv, and SP2Bench) query translations for the specified schemas
[Sch+16; Sch+14]. However, to the best of our knowledge, there is no automatic approach
for translating the SPARQL query workload based on the underlying hybrid relational
schema (i.e., a mixture of ST, VT, PT,.., etc). Therefore, we plan to design mapping algo-
rithms that automatically translate the query workload according to the designed relational
layout. This will be more beneficial for the hybrid relational schema generation because
the query translation process will automatically adapt to the generated underlying hybrid
schema. As an initial step, the automatic translation will follow the generic relational

116

algebra transformations [Cyg05], as an intermediary abstract dialect for the workload op-
erators and clauses. Further, the underlying schema specifications are employed with the
existing advancements of SPARQL-to-SQL translations such as R2RML mapping (e.g.,
OnTop) [Bel+21].

7.3.3. Learning to Rank (LtR): Predicting the Optimal configurations

The Bench-Ranking methodology is a post-hoc prescriptive performance analytics frame-
work. It analyzes the performance results and aims to guide the practitioner directly to
the optimal configurations that guarantee the best performance of a BD system for query-
ing large (RDF) graphs. This means that the practitioner should first execute experiments
and get the performance results of the experimental dimensions, and then Bench-Ranking
(with the help of our PAPyA tool [RAT22]) points to the best-performing configurations.
To reduce the experiments needed for Bench-Ranking, we aim for enabling pre-hoc pre-
scriptive performance analysis by predicting the best-performing configurations for a new
query workload. To achieve this, we plan to employ Machine Learning (ML) [MRT18]
techniques that utilize the previous performance results (as a labeled training dataset)
and learn about the best configurations for executing new different instances of the query
workload.

To this end, we aim to employ the Learning-to-Rank (LtR) ML techniques for this
problem [Liu+09]. LtR is the state-of-the-art Information Retrieval (IR) technique that
develops ranking models from the labeled training data. Thus, we aim to utilize query-
independent (dataset profile characteristics) and query-dependent LtR techniques aiming
to learn the ranking function of the best configurations for querying graphs in distributed
relational environments [Dal+12]. Therefore, the query profiling [Has+16] is a crucial
phase in this scenario, as it enables extracting query features of the existing training work-
load [MSO12]. Most of Big Data systems (e.g., Apache Spark-SQL, Impala, Apache
Drill, and Hive) provide a query "explain" service that enables understanding the exe-
cution approach taken by the engine for evaluating the query. Thus, we aim to elicit a
query profile (i.e., query execution features) from the query execution plans using such
services. Additionally, query similarity techniques [Arz+19; Has+16] and clustering tech-
niques such as K-Nearest-Neighbour (KNN) can be employed to detect which query (in
the training dataset) is the nearest to the features of the test query.

As a result, the LtR models, alongside the domain knowledge (i.e., query complexity
features, dataset features/statistics, cluster specifications, etc.), can tune that ranking for
the new test queries and directly recommend optimal solutions (configurations) for the
given query workload.

7.3.4. Bench-Ranking with Costs and Energy Consumption
Estimation

Benchmarking is a crucial task that checks the performance capabilities of systems under
specific tasks evaluating their potentials and bottlenecks [Bon+18; Szá19]. Benchmarking
efforts can push technological progress turning research into a competition with clearly-
defined goals. This stimulates a research community to produce more and better results
where the end users can understand and decide on the basis of those defined objectives.

However, benchmarking Big Data solutions to select the best setup(s) in cloud services
can come with huge costs, as it would require huge data engineering efforts [Wan+14].
For example, in our scenario selecting the best-performing configurations (relational schema,

117

partitioning technique, and storage format) for a BD for querying and processing vast
amounts of is not a trivial task. Changing those design decisions in the future (if selected
wrongly from the first design) would come with several burdens and huge costs at the
production level. For instance, deciding to change the relational schema of such large
datasets require huge engineering efforts [DL20]. These efforts can be exerted for adapt-
ing the data to the new data layouts, as well as for adapting the query workload to work
with the new schema structures.

Our Bench-Ranking framework can jump to the scene, providing prescriptive analysis
for practitioners that can guide them in such tasks. Nonetheless, it is still important to
develop analytical models for estimating how much costs Bench-Ranking would save by
deciding the best-performing configurations, especially after enabling the pre-hoc analy-
ses in Bench-Raking framework with applying LtR techniques [Liu+09] mentioned above.
On another side, with such intensive BD analytical computations, the attention to the en-
ergy consumption, energy-aware query optimizations, and green computing should be
more and more considered [GBB21]. Indeed, in recent years, computer systems’ energy
consumption has sharply increased [Tu+14; GBB21]. One key factor in energy greed-
iness is thought to be lowering of query processors energy consumption using several
techniques such as selecting Bitmap Join Indexes (BJIs) with query analytics [GBB21].
Therefore, it is also interesting to investigate the energy consumption estimation (as a
Non-Functional Requirement (NFR))in cloud services and cluster distributed setups in
general when processing and querying large KGs, and implementing the Bench-Ranking
framework for relational BD systems.

7.4. Concluding Remarks

In this thesis, we discussed how and why it is important to enable and provide prescriptive
performance analysis for Big Data systems, focusing on ranking the complex solution
space of the experimental dimensions that emerge with querying large (RDF) graphs over
relational BD systems.

The Bench-Ranking criteria that we provide in this work is an accurate yet simple
way that supports the practitioners in their evaluation tasks even in the existence of ex-
perimental dimensions trade-offs. It aims at abstracting away from the complexity of de-
scriptive and diagnostic BD performance analyses that are shown to be limited and might
require huge human interventions to provide accurate actionable insights on the problem
of querying large KGs (Chapters 3 and 4). On the other side, the prescriptive perfor-
mance analysis in Bench-Ranking framework reduces the need for human intervention
by making the insights actionable, utilizing Single-Dimensional and Multi-Dimensional
ranking techniques for making sense of the BD systems performance analyses. Thus, it
can directly guides the practitioner to the best-performing configuration combinations of
complex solutions space of various multiple experimental dimensions.

The SD ranking criteria seek actionable indicators via employing ranking functions
of the experimental dimensions (i.e., schema, partitioning, and storage) that abstract out
from fine-grained performance observations and benchmarking and lead to actual deci-
sion making. The results show that the SD ranking are efficient for guiding the prac-
titioner to the best-performance across one dimension. For instance, if the practitioner
aims solely for the optimizing the schema dimension ignoring the other dimensions, SD
ranking criteria would be an option. However, the SD criteria cannot generalize over
multiple dimensions as they neglect the presence of trade-offs as they rank (i.e., opti-

118

mize) alongside a single experimental dimension neglecting the other ones. Therefore,
this thesis recommends extending the BenchRank into a Multi-Dimensional optimization
problem in order to optimize all the dimensions at the same time.

Evaluating the ranking criteria themselves is a core pillar in the Bench-Ranking frame-
work. In particular, we discuss that it is important to measure the ranking criteria goodness
to opt for one. Our Bench-Ranking framework provides two metrics, the first metric is
the Conformance that measures the adherence of the top-ranked configurations w.r.t ac-
tual query rankings (i.e., ranking positioning of those configurations). The second metric
is the Coherence which measures the level of agreement between two ranking sets that
use the same ranking criterion across different experiments (e.g., different dataset scales).

Last but not least, we aim to provide the hook rather than providing the fish. That
is, we do not focus much on providing prescriptive analysis for a specific KG, nor a
specific RDF dataset (though, we provide general best-practices from the previous work
as well as our experiments 3). However, we rather provide the tool (i.e., PAPyA) that the
practitioner can utilize for his/her own use-case, scenario and RDF datasets, and still can
directly guide him/her with prescriptive analysis, seeking optimal performance results.

In particular, PAPyA tool wraps up the Bench-Ranking ranking techniques as well as
the evaluation metrics in one ope-source python library (Chapter 6). Big Data practition-
ers can utilize this tool when processing and querying large graphs to (1) prepare the so-
lution space of various experimental dimensions (e.g., schema, partitioning, and storage),
and load data for experimentation, (2) run experiments with a BD system (e.g., Spark-
SQL), (3) automatically collect performance results from logs, and provide prescriptive
analysis on the best-performing configurations. PAPyA is extensible and flexible tool
in terms of removing or adding (new) experimental dimensions, or alternatives/options
alongside each experimental dimension. Moreover, it can extend the ranking techniques,
as well as the ranking criteria evaluation metrics.

119

BIBLIOGRAPHY

[Aba+07] Daniel J Abadi et al. “Scalable semantic web data management us-
ing vertical partitioning”. In: VLDB. 2007.

[Aba+09] Daniel J Abadi et al. “SW-Store: a vertically partitioned DBMS
for Semantic Web data management”. In: The VLDB Journal 18.2
(2009), pp. 385–406.

[Abb+18] Zainab Abbas et al. “Streaming Graph Partitioning: An Experimen-
tal Study”. In: Proc. VLDB Endow. 11.11 (2018), pp. 1590–1603.
ISSN: 2150-8097. DOI: 10.14778/3236187.3236208. URL: https:
//doi.org/10.14778/3236187.3236208.

[Abd+15] Ibrahim Abdelaziz et al. “SPARTex: A Vertex-Centric Framework
for RDF Data Analytics”. In: PVLDB 8.12 (2015), pp. 1880–1883.
DOI: 10.14778/2824032.2824091. URL: http://www.vldb.
org/pvldb/vol8/p1880-abdelaziz.pdf.

[Abd+17] Ibrahim Abdelaziz et al. “A survey and experimental comparison of
distributed SPARQL engines for very large RDF data”. In: Proceed-
ings of the VLDB Endowment (2017).

[ada17] adarsh-timepasstechies. row-oriented and column-oriented file for-
mats in hadoop. https://timepasstechies.com/row-oriented-
column-oriented-file-formats-hadoop/. [Online; accessed
9-Nov-2022]. 2017.

[AES22] Hanan E Alhazmi, Fathy E Eassa, and Suhelah M Sandokji. “To-
wards big data security framework by leveraging fragmentation and
blockchain technology”. In: IEEE Access 10 (2022), pp. 10768–
10782.

[Aga+18] Giannis Agathangelos et al. “RDF Query Answering Using Apache
Spark: Review and Assessment”. In: 34th IEEE International Con-
ference on Data Engineering Workshops, ICDE Workshops 2018,
Paris, France, April 16-20, 2018. 2018, pp. 54–59. DOI: 10.1109/
ICDEW.2018.00016. URL: https://doi.org/10.1109/ICDEW.
2018.00016.

[Ahm+18] Yousuf Ahmad et al. “LA3: A scalable link-and locality-aware linear
algebra-based graph analytics system”. In: Proceedings of the VLDB
Endowment 11.8 (2018), pp. 920–933.

[al19] Arrascue Ayala et al. “Relational schemata for distributed SPARQL
query processing”. In: Proceedings of the International Workshop
on Semantic Big Data. 2019, pp. 1–6.

[Ala19] Khadija Alaoui. “A categorization of RDF triplestores”. In: Pro-
ceedings of the 4th International Conference on Smart City Appli-
cations. 2019, pp. 1–7.

120

https://doi.org/10.14778/3236187.3236208
https://doi.org/10.14778/3236187.3236208
https://doi.org/10.14778/3236187.3236208
https://doi.org/10.14778/2824032.2824091
http://www.vldb.org/pvldb/vol8/p1880-abdelaziz.pdf
http://www.vldb.org/pvldb/vol8/p1880-abdelaziz.pdf
https://timepasstechies.com/row-oriented-column-oriented-file-formats-hadoop/
https://timepasstechies.com/row-oriented-column-oriented-file-formats-hadoop/
https://doi.org/10.1109/ICDEW.2018.00016
https://doi.org/10.1109/ICDEW.2018.00016
https://doi.org/10.1109/ICDEW.2018.00016
https://doi.org/10.1109/ICDEW.2018.00016

[Ale+01] Sofia Alexaki et al. “On Storing Voluminous RDF Descriptions: The
Case of Web Portal Catalogs”. In: Proceedings of the Fourth Inter-
national Workshop on the Web and Databases, WebDB 2001, Santa
Barbara, California, USA, May 24-25, 2001, in conjunction with
ACM PODS/SIGMOD 2001. Informal proceedings. 2001, pp. 43–
48.

[Alu+14] Güne Aluç et al. “Diversified stress testing of RDF data management
systems”. In: International Semantic Web Conference. Springer. 2014,
pp. 197–212.

[Ang+17] Renzo Angles et al. “Foundations of modern query languages for
graph databases”. In: ACM Computing Surveys (CSUR) 50.5 (2017),
pp. 1–40.

[Ang+18] Renzo Angles et al. “G-CORE: A core for future graph query lan-
guages”. In: Proceedings of the 2018 International Conference on
Management of Data. 2018, pp. 1421–1432.

[Ang+20] Renzo Angles et al. “The LDBC social network benchmark”. In:
arXiv preprint arXiv:2001.02299 (2020).

[Ang+21] Renzo Angles et al. “Pg-keys: Keys for property graphs”. In: Pro-
ceedings of the 2021 International Conference on Management of
Data. 2021, pp. 2423–2436.

[ANS18a] Adnan Akhter, Axel-Cyrille Ngonga Ngomo, and Muhammad Saleem.
“An Empirical Evaluation of RDF Graph Partitioning Techniques”.
In: EKAW. 2018. DOI: 10.1007/978-3-030-03667-6_1. URL:
https://doi.org/10.1007/978-3-030-03667-6%5C_1.

[ANS18b] Adnan Akhter, Axel-Cyrille Ngomo Ngonga, and Muhammad Saleem.
“An empirical evaluation of RDF graph partitioning techniques”. In:
European Knowledge Acquisition Workshop. 2018.

[AÖD14] Güne Aluç, M Tamer Özsu, and Khuzaima Daudjee. “Workload
matters: Why RDF databases need a new design”. In: Proceedings
of the VLDB Endowment 7.10 (2014), pp. 837–840.

[Ard+18] Danilo Ardagna et al. “Performance prediction of cloud-based big
data applications”. In: Proceedings of the 2018 ACM/SPEC Inter-
national Conference on Performance Engineering. 2018, pp. 192–
199.

[Arz+19] Natalia Arzamasova et al. “On the usefulness of SQL-query-similarity
measures to find user interests”. In: IEEE Transactions on Knowl-
edge and Data Engineering 32.10 (2019), pp. 1982–1999.

[ATT19] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. “RDF and
Property Graphs Interoperability: Status and Issues.” In: AMW 2369
(2019).

[AV04] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer.
MIT press, 2004.

121

https://doi.org/10.1007/978-3-030-03667-6_1
https://doi.org/10.1007/978-3-030-03667-6%5C_1

[AVS17] Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter. “Dief-
ficiency metrics: measuring the continuous efficiency of query pro-
cessing approaches”. In: International Semantic Web Conference.
2017, pp. 3–19.

[Awa+20] Feras M Awaysheh et al. “Next-generation big data federation ac-
cess control: A reference model”. In: Future Generation Computer
Systems 108 (2020), pp. 726–741.

[Awa+21] Feras M Awaysheh et al. “Big Data Resource Management & Net-
works: Taxonomy, Survey, and Future Directions”. In: IEEE Com-
munications Surveys & Tutorials (2021).

[Bag+16] Guillaume Bagan et al. “gMark: Schema-driven generation of graphs
and queries”. In: IEEE Transactions on Knowledge and Data Engi-
neering 29.4 (2016), pp. 856–869.

[Bar+18] Cristóbal Barba-González et al. “jMetalSP: a framework for dy-
namic multi-objective big data optimization”. In: Applied Soft Com-
puting 69 (2018), pp. 737–748.

[Bat+15] Omar Batarfi et al. “Large scale graph processing systems: survey
and an experimental evaluation”. In: Cluster Computing 18.3 (2015),
pp. 1189–1213.

[BDA18] Angela Bonifati, Stefania Dumbrava, and Emilio Jesús Gallego Arias.
“Certified graph view maintenance with regular datalog”. In: Theory
and Practice of Logic Programming 18.3-4 (2018), pp. 372–389.

[Beb+18] Bradley R Bebee et al. “Amazon Neptune: Graph Data Management
in the Cloud.” In: ISWC (P&D/Industry/BlueSky). 2018.

[Bee+16] Wouter Beek et al. “LOD Laundromat: Why the Semantic Web Needs
Centralization (Even If We Don’t Like It)”. In: IEEE Internet Com-
put. 20.2 (2016), pp. 78–81.

[Bel+21] Matteo Belcao et al. “Chimera: A Bridge Between Big Data Ana-
lytics and Semantic Technologies”. In: International Semantic Web
Conference. Springer. 2021, pp. 463–479.

[BH18] Maciej Besta and Torsten Hoefler. “Survey and taxonomy of lossless
graph compression and space-efficient graph representations”. In:
arXiv preprint arXiv:1806.01799 (2018).

[Bit+15] MKABV Bittorf et al. “Impala: A modern, open-source sql engine
for hadoop”. In: Proceedings of the 7th biennial conference on in-
novative data systems research. 2015.

[BMT20] Angela Bonifati, Wim Martens, and Thomas Timm. “An analytical
study of large SPARQL query logs”. In: The VLDB Journal 29.2
(2020), pp. 655–679.

[Bon+18] Angela Bonifati et al. “A survey of benchmarks for graph-processing
systems”. In: Graph Data Management. Springer, 2018, pp. 163–
186.

122

[Bor+13] Mihaela A. Bornea et al. “Building an Efficient RDF Store over a
Relational Database”. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’13.
New York, New York, USA: Association for Computing Machin-
ery, 2013, pp. 121–132. ISBN: 9781450320375. DOI: 10 . 1145 /
2463676.2463718. URL: https://doi.org/10.1145/2463676.
2463718.

[BQ18] Luciano Baresi and Giovanni Quattrocchi. “Towards vertically scal-
able spark applications”. In: European Conference on Parallel Pro-
cessing. Springer. 2018, pp. 106–118.

[Bul+16] Aydn Buluç et al. “Recent advances in graph partitioning”. In: Algo-
rithm engineering (2016), pp. 117–158.

[Cam+19] Jesús Camacho-Rodrguez et al. “Apache Hive: From MapReduce
to Enterprise-grade Big Data Warehousing”. In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019. 2019, pp. 1773–1786. DOI: 10.1145/3299869.3314045.
URL: https://doi.org/10.1145/3299869.3314045.

[Car+15] Paris Carbone et al. “Apache flink: Stream and batch processing in a
single engine”. In: Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 36.4 (2015).

[CFL18] Matteo Cossu, Michael Färber, and Georg Lausen. “Prost: Distributed
execution of SpaRQL queries using mixed partitioning strategies”.
In: arXiv preprint arXiv:1802.05898 (2018).

[Cho+05] Eugene Inseok Chong et al. “An efficient SQL-based RDF querying
scheme”. In: Proceedings of the 31st international conference on
Very large data bases. 2005, pp. 1216–1227.

[CLF09] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. “Semantics pre-
serving SPARQL-to-SQL translation”. In: Data & Knowledge Engi-
neering 68.10 (2009), pp. 973–1000.

[CMC16] Jean-Paul Calbimonte, Jose Mora, and Oscar Corcho. “Query rewrit-
ing in RDF stream processing”. In: European semantic web confer-
ence. Springer. 2016, pp. 486–502.

[Cod89] Edgar F Codd. “Relational database: A practical foundation for pro-
ductivity”. In: Readings in artificial Intelligence and Databases. El-
sevier, 1989, pp. 60–68.

[Con+13] World Wide Web Consortium et al. “SPARQL 1.1 overview”. In:
(2013).

[Cor+10] Gianluca Correndo et al. “SPARQL query rewriting for implement-
ing data integration over linked data”. In: Proceedings of the 2010
EDBT/ICDT Workshops. 2010, pp. 1–11.

123

https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/3299869.3314045
https://doi.org/10.1145/3299869.3314045

[Cud+13] Philippe Cudré-Mauroux et al. “NoSQL databases for RDF: an em-
pirical evaluation”. In: International Semantic Web Conference. Springer.
2013.

[Cur+15] Olivier Curé et al. “On the evaluation of RDF distribution algorithms
implemented over apache spark”. In: arXiv preprint arXiv:1507.02321
(2015).

[Cyg05] Richard Cyganiak. “A relational algebra for SPARQL”. In: Digital
Media Systems Laboratory HP Laboratories Bristol. HPL-2005-170
35.9 (2005).

[Dai+20] Yuanfei Dai et al. “A survey on knowledge graph embedding: Ap-
proaches, applications and benchmarks”. In: Electronics 9.5 (2020),
p. 750.

[Dal+12] Lorand Dali et al. “Query-independent learning to rank for rdf en-
tity search”. In: Extended Semantic Web Conference. Springer. 2012,
pp. 484–498.

[Dav+16] Ankur Dave et al. “Graphframes: an integrated api for mixing graph
and relational queries”. In: Proceedings of the fourth international
workshop on graph data management experiences and systems. 2016,
pp. 1–8.

[Dav19] Timothy A Davis. “Algorithm 1000: SuiteSparse: GraphBLAS: Graph
algorithms in the language of sparse linear algebra”. In: ACM Trans-
actions on Mathematical Software (TOMS) 45.4 (2019), pp. 1–25.

[Deb+02a] K. Deb et al. “A fast and elitist multiobjective genetic algorithm:
NSGA-II”. In: IEEE Transactions on Evolutionary Computation 6.2
(2002), pp. 182–197. DOI: 10.1109/4235.996017.

[Deb+02b] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algo-
rithm: NSGA-II”. In: IEEE Trans. Evol. Comput. 6.2 (2002), pp. 182–
197.

[Del+14] Daniele Dell’Aglio et al. “RSP-QL semantics: A unifying query
model to explain heterogeneity of RDF stream processing systems”.
In: International Journal on Semantic Web and Information Systems
(IJSWIS) 10.4 (2014), pp. 17–44.

[Deu+19] Alin Deutsch et al. “Tigergraph: A native MPP graph database”. In:
arXiv preprint arXiv:1901.08248 (2019).

[Dev14] Ramalingam Devakunchari. “Analysis on big data over the years”.
In: International Journal of Scientific and Research Publications 4.1
(2014), pp. 1–7.

[DL20] Ali Davoudian and Mengchi Liu. “Big data systems: A software en-
gineering perspective”. In: ACM Computing Surveys (CSUR) 53.5
(2020), pp. 1–39.

[Dua+11] Songyun Duan et al. “Apples and oranges: a comparison of RDF
benchmarks and real RDF datasets”. In: Proceedings of the 2011

124

https://doi.org/10.1109/4235.996017

ACM SIGMOD International Conference on Management of data.
2011, pp. 145–156.

[Dwi+20] Vijay Prakash Dwivedi et al. “Benchmarking graph neural networks”.
In: arXiv preprint arXiv:2003.00982 (2020).

[DX15] Lian Duan and Ye Xiong. “Big data analytics and business analyt-
ics”. In: Journal of Management Analytics 2.1 (2015), pp. 1–21.

[E09] EF E F. Codd. “Derivability, redundancy and consistency of relations
stored in large data banks”. In: ACM SIGMOD Record 38.1 (2009),
pp. 17–36.

[Ein05] Albert Einstein. “Zur Elektrodynamik bewegter Körper. (German)
[On the electrodynamics of moving bodies]”. In: Annalen der Physik
322.10 (1905), pp. 891–921. DOI: http : / / dx . doi . org / 10 .
1002/andp.19053221004.

[eta09] Michael Schmidt et.al. “SP
2Bench: A SPARQL Performance Benchmark”. In: ICDE 2009. Ed.
by Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng. 2009,
pp. 222–233.

[Fan+20] Yixiang Fang et al. “A survey of community search over big graphs”.
In: The VLDB Journal 29.1 (2020), pp. 353–392.

[Fan+21] Wenfei Fan et al. “GraphScope: a unified engine for big graph pro-
cessing”. In: Proceedings of the VLDB Endowment 14.12 (2021),
pp. 2879–2892.

[Fer+17] Javier D. Fernández et al. “LOD-a-lot - A Queryable Dump of the
LOD Cloud”. In: The Semantic Web - ISWC 2017 - 16th Interna-
tional Semantic Web Conference, Vienna, Austria, October 21-25,
2017, Proceedings, Part II. Ed. by Claudia d’Amato et al. Vol. 10588.
Lecture Notes in Computer Science. Springer, 2017, pp. 75–83.

[Fra+18] Nadime Francis et al. “Cypher: An evolving query language for
property graphs”. In: Proceedings of the 2018 International Con-
ference on Management of Data. 2018, pp. 1433–1445.

[FRP15] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M Patel. “The
Case Against Specialized Graph Analytics Engines.” In: CIDR. 2015.

[Gao+18] Libo Gao et al. “Stream WatDiv: A streaming RDF benchmark”. In:
Proceedings of the International Workshop on Semantic Big Data.
2018, pp. 1–6.

[GBB21] Issam Ghabri, Ladjel Bellatreche, and Sadok Ben Yahia. “Energy
Efficiency vs. Performance of Analytical Queries: The case of Bitmap
Join Indexes”. In: 2021 IEEE International Conference on Big Data
(Big Data). 2021, pp. 3066–3074. DOI: 10.1109/BigData52589.
2021.9671307.

[GGZ19] Xintong Guo, Hong Gao, and Zhaonian Zou. “Leon: A distributed
rdf engine for multi-query processing”. In: International Conference

125

https://doi.org/http://dx.doi.org/10.1002/andp.19053221004
https://doi.org/http://dx.doi.org/10.1002/andp.19053221004
https://doi.org/10.1109/BigData52589.2021.9671307
https://doi.org/10.1109/BigData52589.2021.9671307

on Database Systems for Advanced Applications. Springer. 2019,
pp. 742–759.

[Gha+13] Ahmad Ghazal et al. “Bigbench: Towards an industry standard bench-
mark for big data analytics”. In: Proceedings of the 2013 ACM SIG-
MOD international conference on Management of data. 2013, pp. 1197–
1208.

[GM20] Abraham Gale and Amélie Marian. “Explaining monotonic ranking
functions”. In: Proceedings of the VLDB Endowment 14.4 (2020),
pp. 640–652.

[GMS93] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The
LATEX Companion. Reading, Massachusetts: Addison-Wesley, 1993.

[Gon+14] Joseph E Gonzalez et al. “{GraphX}: Graph Processing in a Dis-
tributed Dataflow Framework”. In: 11th USENIX symposium on op-
erating systems design and implementation (OSDI 14). 2014, pp. 599–
613.

[Goy+19] Palash Goyal et al. “Benchmarks for graph embedding evaluation”.
In: arXiv preprint arXiv:1908.06543 (2019).

[Gra+16] Damien Graux et al. “Sparqlgx: Efficient distributed evaluation of
sparql with apache spark”. In: International Semantic Web Confer-
ence. Springer. 2016, pp. 80–87.

[Gra93] Jim Gray. “Database and Transaction Processing Performance Hand-
book”. In: The Benchmark Handbook for Database and Transaction
Systems (2nd Edition). 1993.

[GS21] Claudio Gutierrez and Juan F Sequeda. “Knowledge graphs”. In:
Communications of the ACM 64.3 (2021), pp. 96–104.

[Hag17] John Hagerty. Planning Guide for Data and Analytics. https://
www.cartagena99.com/recursos/alumnos/apuntes/2017_
planning_guide_for_data_analytics.pdf. [Online; accessed
4-Sep-2021]. 2017.

[Hal+16] Mara Hallo et al. “Current state of Linked Data in digital libraries”.
In: Journal of Information Science 42.2 (2016).

[Han+15] Rui Han et al. “Benchmarking big data systems: State-of-the-art and
future directions”. In: arXiv preprint arXiv:1506.01494 (2015).

[Has+16] Ali Hasnain et al. “Sportal: profiling the content of public sparql
endpoints”. In: International Journal on Semantic Web and Infor-
mation Systems (IJSWIS) 12.3 (2016), pp. 134–163.

[Has+17] Mohamed S. Hassan et al. “Empowering In-Memory Relational Database
Engines with Native Graph Processing”. In: CoRR abs/1709.06715
(2017). arXiv: 1709 . 06715. URL: http : / / arxiv . org / abs /
1709.06715.

[Has+18] Mohamed S Hassan et al. “Grfusion: Graphs as first-class citizens
in main-memory relational database systems”. In: Proceedings of

126

https://www.cartagena99.com/recursos/alumnos/apuntes/2017_planning_guide_for_data_analytics.pdf
https://www.cartagena99.com/recursos/alumnos/apuntes/2017_planning_guide_for_data_analytics.pdf
https://www.cartagena99.com/recursos/alumnos/apuntes/2017_planning_guide_for_data_analytics.pdf
https://arxiv.org/abs/1709.06715
http://arxiv.org/abs/1709.06715
http://arxiv.org/abs/1709.06715

the 2018 International Conference on Management of Data. 2018,
pp. 1789–1792.

[HB19] Mahmudul Hassan and Srividya K. Bansal. “Data Partitioning Scheme
for Efficient Distributed RDF Querying Using Apache Spark”. In:
2019 IEEE 13th International Conference on Semantic Computing
(ICSC). 2019, pp. 24–31. DOI: 10.1109/ICOSC.2019.8665614.

[HL14] H Howie Huang and Hang Liu. “Big data machine learning and
graph analytics: Current state and future challenges”. In: 2014 IEEE
international conference on big data (Big Data). IEEE. 2014, pp. 16–
17.

[HLS+09] Steve Harris, Nick Lamb, Nigel Shadbolt, et al. “4store: The de-
sign and implementation of a clustered RDF store”. In: 5th Inter-
national Workshop on Scalable Semantic Web Knowledge Base Sys-
tems (SSWS2009). Vol. 94. 2009.

[HMF15] Antonio Hernández-Illera, Miguel A Martnez-Prieto, and Javier D
Fernández. “Serializing RDF in compressed space”. In: 2015 Data
Compression Conference. IEEE. 2015, pp. 363–372.

[HN13] Michael Hausenblas and Jacques Nadeau. “Apache drill: interactive
ad-hoc analysis at scale”. In: Big data 1.2 (2013), pp. 100–104.

[Hog+21] Aidan Hogan et al. “Knowledge graphs”. In: Synthesis Lectures on
Data, Semantics, and Knowledge 12.2 (2021), pp. 1–257.

[Hu+20] Weihua Hu et al. “Open graph benchmark: Datasets for machine
learning on graphs”. In: Advances in neural information processing
systems 33 (2020), pp. 22118–22133.

[Hua+14] Yin Huai et al. “Major technical advancements in apache hive”. In:
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 2014, pp. 1235–1246.

[Ios+20] Alexandru Iosup et al. “The LDBC Graphalytics Benchmark”. In:
arXiv preprint arXiv:2011.15028 (2020).

[IP19] Todor Ivanov and Matteo Pergolesi. “The impact of columnar file
formats on SQL-on-hadoop engine performance: A study on ORC
and Parquet”. In: Concurrency and Computation: Practice and Ex-
perience (2019), e5523.

[JS22] Guodong Jin and Semih Salihoglu. “Making RDBMSs Efficient on
Graph Workloads Through Predefined Joins”. In: Proc. VLDB En-
dow. 15.5 (2022), pp. 1011–1023. URL: https://www.vldb.org/
pvldb/vol15/p1011-jin.pdf.

[JST17] Daniel Janke, Steffen Staab, and Matthias Thimm. “Koral: A Glass
Box Profiling System for Individual Components of Distributed RDF
Stores.” In: BLINK/NLIWoD3@ ISWC. 2017.

127

https://doi.org/10.1109/ICOSC.2019.8665614
https://www.vldb.org/pvldb/vol15/p1011-jin.pdf
https://www.vldb.org/pvldb/vol15/p1011-jin.pdf

[Jun+15] Martin Junghanns et al. “Gradoop: Scalable graph data management
and analytics with hadoop”. In: arXiv preprint arXiv:1506.00548
(2015).

[Jun+17] Martin Junghanns et al. “Management and analysis of big graph
data: current systems and open challenges”. In: Handbook of Big
Data Technologies. Springer, 2017, pp. 457–505.

[Kan+17] Chathura Kankanamge et al. “Graphflow: An active graph database”.
In: Proceedings of the 2017 ACM International Conference on Man-
agement of Data. 2017, pp. 1695–1698.

[Kha+16] Mahmoud Abo Khamis et al. “Joins via geometric resolutions: Worst
case and beyond”. In: ACM Transactions on Database Systems (TODS)
41.4 (2016), pp. 1–45.

[Kim+15] Jinha Kim et al. “Taming subgraph isomorphism for RDF query pro-
cessing”. In: arXiv preprint arXiv:1506.01973 (2015).

[KK98] George Karypis and Vipin Kumar. “A fast and high quality multi-
level scheme for partitioning irregular graphs”. In: SIAM Journal on
scientific Computing 20.1 (1998), pp. 359–392.

[KNT15] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. “Perfor-
mance and scalability of indexed subgraph query processing meth-
ods”. In: Proceedings of the VLDB Endowment 8.12 (2015), pp. 1566–
1577.

[Knu] Donald Knuth. Knuth: Computers and Typesetting. URL: http://
www- cs- faculty.stanford.edu/%5C~%7B%7Duno/abcde.
html.

[LA15] Juan C Leyva Lopez and Pavel A Alvarez Carrillo. “Accentuating
the rank positions in an agreement index with reference to a consen-
sus order”. In: International Transactions in Operational Research
22.6 (2015), pp. 969–995.

[Lan+01] Doug Laney et al. “3D data management: Controlling data volume,
velocity and variety”. In: META group research note 6.70 (2001),
p. 1.

[Lan01] Douglas Laney. 3D Data Management: Controlling Data Volume,
Velocity, and Variety. Tech. rep. 2001.

[LBV18] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. “Be-
yond macrobenchmarks: microbenchmark-based graph database eval-
uation”. In: Proceedings of the VLDB Endowment 12.4 (2018), pp. 390–
403.

[LC15] Juan Carlos Leyva López and Pavel Anselmo Álvarez Carrillo. “Ac-
centuating the rank positions in an agreement index with reference to
a consensus order”. In: Int. Trans. Oper. Res. 22.6 (2015), pp. 969–
995.

128

http://www-cs-faculty.stanford.edu/%5C~%7B%7Duno/abcde.html
http://www-cs-faculty.stanford.edu/%5C~%7B%7Duno/abcde.html
http://www-cs-faculty.stanford.edu/%5C~%7B%7Duno/abcde.html

[Le+12] Wangchao Le et al. “Scalable multi-query optimization for SPARQL”.
In: 2012 IEEE 28th International Conference on Data Engineering.
IEEE. 2012, pp. 666–677.

[Lep+20] Katerina Lepenioti et al. “Prescriptive analytics: Literature review
and research challenges”. In: International Journal of Information
Management 50 (2020), pp. 57–70.

[LG15] Jeffrey R Lacasse and Eileen Gambrill. “Making assessment deci-
sions: Macro, mezzo, and micro perspectives”. In: Critical Thinking
in Clinical Assessment and Diagnosis. 2015.

[Lin18] Jimmy Lin. “Scale up or scale out for graph processing?” In: IEEE
Internet Computing 22.3 (2018), pp. 72–78.

[Liu+09] Tie-Yan Liu et al. “Learning to rank for information retrieval”. In:
Foundations and Trendső in Information Retrieval 3.3 (2009), pp. 225–
331.

[LM09] Justin J Levandoski and Mohamed F Mokbel. “RDF data-centric
storage”. In: 2009 IEEE International Conference on Web Services.
IEEE. 2009, pp. 911–918.

[Low+14] Yucheng Low et al. “Graphlab: A new framework for parallel ma-
chine learning”. In: arXiv preprint arXiv:1408.2041 (2014).

[Lu+19] Jiaheng Lu et al. “Speedup your analytics: Automatic parameter
tuning for databases and big data systems”. In: Proceedings of the
VLDB Endowment (2019).

[MAA18] Amgad Madkour, Ahmed M Aly, and Walid G Aref. “Worq: Workload-
driven rdf query processing”. In: International Semantic Web Con-
ference. Springer. 2018, pp. 583–599.

[Mal+10] Grzegorz Malewicz et al. “Pregel: a system for large-scale graph
processing”. In: Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of data. 2010, pp. 135–146.

[Mar+15] Claudio Martella et al. Practical graph analytics with apache gi-
raph. Vol. 1. Springer, 2015.

[Mar14] Volker Markl. “Breaking the chains: On declarative data analysis
and data independence in the big data era”. In: Proceedings of the
VLDB Endowment 7.13 (2014), pp. 1730–1733.

[McB01] Brian McBride. “Jena: Implementing the RDF Model and Syntax
Specification.” In: SemWeb. Vol. 1. 2001, pp. 23–28.

[Mel+10] Sergey Melnik et al. “Dremel: interactive analysis of web-scale datasets”.
In: Proceedings of the VLDB Endowment 3.1-2 (2010), pp. 330–339.

[Men+16] Xiangrui Meng et al. “Mllib: Machine learning in apache spark”. In:
The Journal of Machine Learning Research 17.1 (2016), pp. 1235–
1241.

[Mic15] Reynold S. Xin et.al. Michael Armbrust. “Spark SQL: Relational
Data Processing in Spark”. In: Proceedings of the 2015 ACM SIG-

129

MOD International Conference on Management of Data, Australia.
2015, pp. 1383–1394.

[Mil13] Justin J Miller. “Graph database applications and concepts with Neo4j”.
In: Proceedings of the southern association for information systems
conference, Atlanta, GA, USA. Vol. 2324. 36. 2013.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foun-
dations of machine learning. MIT press, 2018.

[MS19] Amine Mhedhbi and Semih Salihoglu. “Optimizing subgraph queries
by combining binary and worst-case optimal joins”. In: arXiv preprint
arXiv:1903.02076 (2019).

[MSO12] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. “On the use-
fulness of query features for learning to rank”. In: Proceedings of the
21st ACM international conference on Information and knowledge
management. 2012, pp. 2559–2562.

[MW95] Alberto O Mendelzon and Peter T Wood. “Finding regular simple
paths in graph databases”. In: SIAM Journal on Computing 24.6
(1995), pp. 1235–1258.

[Ngo+14] Hung Q. Ngo et al. “Beyond worst-case analysis for joins with-
minesweeper”. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS’14,
Snowbird, UT, USA, June 22-27, 2014. Ed. by Richard Hull and
Martin Grohe. ACM, 2014, pp. 234–245. DOI: 10.1145/2594538.
2594547. URL: https://doi.org/10.1145/2594538.2594547.

[Ngo+18] Hung Q Ngo et al. “Worst-case optimal join algorithms”. In: Journal
of the ACM (JACM) 65.3 (2018), pp. 1–40.

[NM+19] Engineering National Academies of Sciences, Medicine, et al. “Re-
producibility and replicability in science”. In: (2019).

[NW08] Thomas Neumann and Gerhard Weikum. “RDF-3X: a RISC-style
engine for RDF”. In: Proceedings of the VLDB Endowment 1.1 (2008),
pp. 647–659.

[NW09] Thomas Neumann and Gerhard Weikum. “Scalable join process-
ing on very large RDF graphs”. In: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. 2009,
pp. 627–640.

[NZE05] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. “Pareto multi
objective optimization”. In: Proceedings of the 13th International
Conference on, Intelligent Systems Application to Power Systems.
IEEE. 2005, pp. 84–91.

[OG+08] Alisdair Owens, Nick Gibbins, et al. “Effective benchmarking for
RDF stores using synthetic data”. In: (2008).

[OS16] Dan Olteanu and Maximilian Schleich. “Factorized databases”. In:
ACM SIGMOD Record 45.2 (2016), pp. 5–16.

130

https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/2594538.2594547

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics
and complexity of SPARQL”. In: ACM Transactions on Database
Systems (TODS) 34.3 (2009), pp. 1–45.

[PAG10] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “nSPARQL: A
navigational language for RDF”. In: Journal of Web Semantics 8.4
(2010), pp. 255–270.

[Par15] Marcus et. al. Paradies. “GRAPHITE: an extensible graph traversal
framework for relational database management systems”. In: Pro-
ceedings of the 27th International Conference on Scientific and Sta-
tistical Database Management. 2015, pp. 1–12.

[PCS14] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. “Formalisation
and experiences of R2RML-based SPARQL to SQL query transla-
tion using morph”. In: Proceedings of the 23rd international confer-
ence on World wide web. 2014, pp. 479–490.

[Pen+19] Peng Peng et al. “Optimizing Multi-Query Evaluation in Federated
RDF Systems”. In: IEEE Transactions on Knowledge and Data En-
gineering (2019).

[Per+15] Yonathan Perez et al. “Ringo: Interactive graph analytics on big-
memory machines”. In: Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data. 2015, pp. 1105–
1110.

[Pha+15] Minh-Duc Pham et al. “Deriving an emergent relational schema from
RDF data”. In: Proceedings of the 24th International Conference on
World Wide Web. 2015, pp. 864–874.

[PMV22] George Papastefanatos, Marios Meimaris, and Panos Vassiliadis. “Re-
lational schema optimization for RDF-based knowledge graphs”. In:
Information Systems 104 (2022), p. 101754.

[Rag+20] Mohamed Ragab et al. “Towards Making Sense of Spark-SQL Per-
formance for Processing Vast Distributed RDF Datasets”. In: Pro-
ceedings of The International Workshop on Semantic Big Data@
Sigmod’20. New York, NY, USA, 2020. ISBN: 9781450379748.

[Rag+21] Mohamed Ragab et al. “An In-depth Investigation of Large-scale
RDF Relational Schema Optimizations Using Spark-SQL”. In: Pro-
cessing of Big Data (DOLAP) co-located with the 24th (EDBT/ICDT
2021), Nicosia, Cyprus,2021. 2021.

[Rag20] Mohamed Ragab. “Large Scale Querying and Processing for Prop-
erty Graphs”. In: Proceedings of the 22nd International Workshop
on Design, Optimization, Languages and Analytical Processing of
Big Data (DOLAP) co-located with EDBT/ICDT 2020 Joint Confer-
ence , Copenhagen, Denmark, March 30, 2020. Ed. by Il-Yeol Song,
Katja Hose, and Oscar Romero. Vol. 2572. CEUR Workshop Pro-

131

ceedings. CEUR-WS.org, 2020, pp. 79–83. URL: http://ceur-
ws.org/Vol-2572/short3.pdf.

[RAT21] M. Ragab, F. M. Awaysheh, and R. Tommasini. “Bench-Ranking: A
First Step Towards Prescriptive Performance Analyses For Big Data
Frameworks”. In: 2021 IEEE International Conference on Big Data
(Big Data). Los Alamitos, CA, USA: IEEE Computer Society, 2021,
pp. 241–251. DOI: 10 . 1109 / BigData52589 . 2021 . 9671277.
URL: https://doi.ieeecomputersociety.org/10.1109/
BigData52589.2021.9671277.

[RAT22] Mohamed Ragab, Adam Satria Adidarma, and Riccardo Tommasini.
PAPyA: Performance Analysis of Large RDF Graphs Processing
Made Easy. 2022. DOI: 10 . 48550 / ARXIV . 2209 . 06877. URL:
https://arxiv.org/abs/2209.06877.

[RK15] M Janga Reddy and D Nagesh Kumar. “Elitist-Mutated multi-objective
particle swarm optimization for engineering design”. In: Encyclo-
pedia of Information Science and Technology, Third Edition. IGI
Global, 2015, pp. 3534–3545.

[RN11] Marko A Rodriguez and Peter Neubauer. “A path algebra for multi-
relational graphs”. In: 2011 IEEE 27th International Conference on
Data Engineering Workshops. IEEE. 2011, pp. 128–131.

[Rod15] Marko A Rodriguez. “The gremlin graph traversal machine and lan-
guage (invited talk)”. In: Proceedings of the 15th Symposium on
Database Programming Languages. 2015, pp. 1–10.

[RR15] Mariano Rodriguez-Muro and Martin Rezk. “Efficient SPARQL-to-
SQL with R2RML mappings”. In: Journal of Web Semantics 33
(2015), pp. 141–169.

[RTS19] Mohamed Ragab, Riccardo Tommasini, and Sherif Sakr. “Bench-
marking Spark-SQL under Alliterative RDF Relational Storage Back-
ends.” In: QuWeDa@ ISWC. 2019, pp. 67–82.

[Rud+13] Michael Rudolf et al. “The graph story of the SAP HANA database”.
In: Datenbanksysteme für Business, Technologie und Web (BTW)
2037 (2013).

[RW16] Xuguang Ren and Junhu Wang. “Multi-query optimization for sub-
graph isomorphism search”. In: Proceedings of the VLDB Endow-
ment 10.3 (2016), pp. 121–132.

[RWE15] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new
opportunities for connected data. " O’Reilly Media, Inc.", 2015.

[SA10] Sherif Sakr and Ghazi Al-Naymat. “Relational processing of RDF
queries: a survey”. In: ACM SIGMOD Record 38.4 (2010), pp. 23–
28.

[Sag+22] Tomer Sagi et al. “A design space for RDF data representations”. In:
The VLDB Journal 31.2 (2022), pp. 347–373.

132

http://ceur-ws.org/Vol-2572/short3.pdf
http://ceur-ws.org/Vol-2572/short3.pdf
https://doi.org/10.1109/BigData52589.2021.9671277
https://doi.ieeecomputersociety.org/10.1109/BigData52589.2021.9671277
https://doi.ieeecomputersociety.org/10.1109/BigData52589.2021.9671277
https://doi.org/10.48550/ARXIV.2209.06877
https://arxiv.org/abs/2209.06877

[Sah+20] Siddhartha Sahu et al. “The ubiquity of large graphs and surprising
challenges of graph processing: extended survey”. In: The VLDB
Journal 29.2 (2020), pp. 595–618.

[Sak+21a] Sherif Sakr et al. “The future is big graphs: a community view on
graph processing systems”. In: Communications of the ACM 64.9
(2021), pp. 62–71.

[Sak+21b] Sherif Sakr et al. “The future is big graphs: a community view on
graph processing systems”. In: Communications of the ACM 64.9
(2021), pp. 62–71.

[Sak09] Sherif Sakr. “GraphREL: A Decomposition-Based and Selectivity-
Aware Relational Framework for Processing Sub-graph Queries”.
In: DASFAA. 2009.

[Sal+16] Muhammad Saleem et al. “SPARQL Querying Benchmarks”. In:
Tutorial at ISWC (2016).

[Sal+19] Muhammad Saleem et al. “How Representative Is a SPARQL Bench-
mark? An Analysis of RDF Triplestore Benchmarks?” In: The World
Wide Web Conference. ACM. 2019, pp. 1623–1633.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[SBB20] Filippo Schiavio, Daniele Bonetta, and Walter Binder. “Dynamic
speculative optimizations for SQL compilation in Apache Spark”.
In: Proceedings of the VLDB Endowment 13.5 (2020), pp. 754–767.

[Sch+08a] Michael Schmidt et al. “An Experimental Comparison of RDF Data
Management Approaches in a SPARQL Benchmark Scenario”. In:
The Semantic Web - ISWC 2008, 7th International Semantic Web
Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008.
Proceedings. 2008, pp. 82–97.

[Sch+08b] Michael Schmidt et al. “An Experimental Comparison of RDF Data
Management Approaches in a SPARQL Benchmark Scenario”. In:
The Semantic Web - ISWC 2008, 7th International Semantic Web
Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008.
Proceedings. Ed. by Amit P. Sheth et al. Vol. 5318. Lecture Notes in
Computer Science. Springer, 2008, pp. 82–97. DOI: 10.1007/978-
3-540-88564-1_6.

[Sch+14] Alexander Schätzle et al. “Sempala: Interactive SPARQL query pro-
cessing on hadoop”. In: ISWC. 2014.

[Sch+15] Alexander Schätzle et al. “S2X: graph-parallel querying of RDF
with GraphX”. In: Biomedical Data Management and Graph On-
line Querying. Springer, 2015, pp. 155–168.

[Sch+16] Alexander Schätzle et al. “S2RDF: RDF querying with SPARQL
on spark”. In: Proceedings of the VLDB Endowment 9.10 (2016),
pp. 804–815.

133

https://doi.org/10.1007/978-3-540-88564-1_6
https://doi.org/10.1007/978-3-540-88564-1_6

[Sch+19] Guilherme Schievelbein et al. “Exploiting Wide Property Tables Em-
powered by Inverse Properties for Efficient Distributed SPARQL
Query Evaluation.” In: ISWC (Satellites). 2019, pp. 81–84.

[Sid+08] Lefteris Sidirourgos et al. “Column-store support for RDF data man-
agement: not all swans are white”. In: PVLDB 1.2 (2008), pp. 1553–
1563. DOI: 10.14778/1454159.1454227. URL: http://www.
vldb.org/pvldb/1/1454227.pdf.

[Sim+14] David Simmen et al. “Large-scale graph analytics in aster 6: bring-
ing context to big data discovery”. In: Proceedings of the VLDB En-
dowment 7.13 (2014), pp. 1405–1416.

[SN09] Saa Singer and John Nelder. “Nelder-mead algorithm”. In: Scholar-
pedia 4.7 (2009), p. 2928.

[SÖ18] Semih Salihoglu and M Tamer Özsu. “Response to Scale Up or
Scale Out for Graph Processing”. In: IEEE Internet Computing 22.5
(2018), pp. 18–24.

[SPL11] Alexander Schätzle, Martin Przyjaciel-Zablocki, and Georg Lausen.
“PigSPARQL: Mapping SPARQL to pig latin”. In: Proceedings of
the International Workshop on Semantic Web Information Manage-
ment. 2011, pp. 1–8.

[SS15] Reza Shokri and Vitaly Shmatikov. “Privacy-preserving deep learn-
ing”. In: Proceedings of the 22nd ACM SIGSAC conference on com-
puter and communications security. 2015, pp. 1310–1321.

[Ste18] US Stefan Plantikow. “Summary Chart of Cypher, PGQL, and G-
Core”. In: (2018).

[Sun+15] Wen Sun et al. “Sqlgraph: An efficient relational-based property
graph store”. In: Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data. 2015, pp. 1887–1901.

[Szá19] Gábor Szárnyas. “Query, analysis, and benchmarking techniques for
evolving property graphs of software systems”. In: (2019).

[Tah+19] Ruby Y Tahboub et al. “Towards compiling graph queries in rela-
tional engines”. In: Proceedings of the 17th ACM SIGPLAN Inter-
national Symposium on Database Programming Languages. 2019,
pp. 30–41.

[Tan+15] Mingjie Tang et al. “Similarity group-by operators for multi-dimensional
relational data”. In: IEEE Transactions on Knowledge and Data En-
gineering 28.2 (2015), pp. 510–523.

[Tia+20] Yuanyuan Tian et al. “IBM db2 graph: Supporting synergistic and
retrofittable graph queries inside IBM db2”. In: Proceedings of the
2020 ACM SIGMOD International Conference on Management of
Data. 2020, pp. 345–359.

[Tu+14] Yi-Cheng Tu et al. “A system for energy-efficient data manage-
ment”. In: ACM SIGMOD Record 43.1 (2014), pp. 21–26.

134

https://doi.org/10.14778/1454159.1454227
http://www.vldb.org/pvldb/1/1454227.pdf
http://www.vldb.org/pvldb/1/1454227.pdf

[Van+17] Dana Van Aken et al. “Automatic database management system tun-
ing through large-scale machine learning”. In: Proceedings of the
2017 ACM International Conference on Management of Data. 2017,
pp. 1009–1024.

[Van+21] Dana Van Aken et al. “An inquiry into machine learning-based au-
tomatic configuration tuning services on real-world database man-
agement systems”. In: Proceedings of the VLDB Endowment 14.7
(2021), pp. 1241–1253.

[Vav+13] Vinod Kumar Vavilapalli et al. “Apache hadoop yarn: Yet another
resource negotiator”. In: Proceedings of the 4th annual Symposium
on Cloud Computing. 2013, pp. 1–16.

[Wan+14] Lei Wang et al. “Bigdatabench: A big data benchmark suite from
internet services”. In: 2014 IEEE 20th international symposium on
high performance computer architecture (HPCA). IEEE. 2014, pp. 488–
499.

[Wil+03] Kevin Wilkinson et al. “Efficient RDF Storage and Retrieval in Jena2.”
In: SWDB. Vol. 3. Citeseer. 2003, pp. 131–150.

[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. “Hexa-
store: sextuple indexing for semantic web data management”. In:
PVLDB 1.1 (2008).

[WS19] Marcin Wylot and Sherif Sakr. “Framework-Based Scale-Out RDF
Systems”. In: Encyclopedia of Big Data Technologies. 2019. DOI:
10.1007/978-3-319-63962-8_225-1. URL: https://doi.
org/10.1007/978-3-319-63962-8%5C_225-1.

[Wyl+18] Marcin Wylot et al. “RDF data storage and query processing schemes:
A survey”. In: ACM Computing Surveys (CSUR) 51.4 (2018), p. 84.

[WZZ17] Dong Wang, Lei Zou, and Dongyan Zhao. “g-store: Querying Large
Spatiotemporal RDF Graphs”. In: Data and Information Manage-
ment 1.2 (2017), pp. 84–103.

[XD17] Konstantinos Xirogiannopoulos and Amol Deshpande. “Extracting
and analyzing hidden graphs from relational databases”. In: Pro-
ceedings of the 2017 ACM International Conference on Manage-
ment of Data. 2017, pp. 897–912.

[Xio+13] Wen Xiong et al. “A characterization of big data benchmarks”. In:
2013 IEEE international conference on big data. IEEE. 2013, pp. 118–
125.

[XKD15] Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Desh-
pande. “Graphgen: Exploring interesting graphs in relational data”.
In: Proceedings of the VLDB Endowment 8.12 (2015), pp. 2032–
2035.

135

https://doi.org/10.1007/978-3-319-63962-8_225-1
https://doi.org/10.1007/978-3-319-63962-8%5C_225-1
https://doi.org/10.1007/978-3-319-63962-8%5C_225-1

[Xu19] Chonghuan Xu. “A big-data oriented recommendation method based
on multi-objective optimization”. In: Knowledge-Based Systems 177
(2019), pp. 11–21.

[Zah+13] Matei Zaharia et al. “Discretized streams: Fault-tolerant streaming
computation at scale”. In: Proceedings of the twenty-fourth ACM
symposium on operating systems principles. 2013, pp. 423–438.

[Zah+16] Matei Zaharia et al. “Apache Spark: a unified engine for big data
processing”. In: Commun. ACM 59.11 (2016), pp. 56–65. DOI: 10.
1145/2934664. URL: http://doi.acm.org/10.1145/2934664.

[Zer+20] Eleftherios Zervakis et al. “Efficient Continuous Multi-Query Pro-
cessing over Graph Streams”. In: 23rd International Conference on
Extending Database Technology, EDBT 2020. OpenProceedings. org.
2020, pp. 13–24.

[Zha+19] Kangfei Zhao et al. “Sql-g: Efficient graph analytics by sql”. In:
IEEE Transactions on Knowledge and Data Engineering 33.5 (2019),
pp. 2237–2251.

[Zha17] Yan Zhang. “Efficient Structure-aware OLAP Query Processing over
Large Property Graphs”. MA thesis. University of Waterloo, 2017.

[Zou+11a] Lei Zou et al. “GStore: Answering SPARQL Queries via Subgraph
Matching”. In: Proc. VLDB Endow. 4.8 (2011), pp. 482–493. ISSN:
2150-8097. DOI: 10 . 14778 / 2002974 . 2002976. URL: https :
//doi.org/10.14778/2002974.2002976.

[Zou+11b] Lei Zou et al. “gStore: answering SPARQL queries via subgraph
matching”. In: Proceedings of the VLDB Endowment 4.8 (2011),
pp. 482–493.

[ZY17] Kangfei Zhao and Jeffrey Xu Yu. “All-in-one: graph processing in
RDBMSs revisited”. In: Proceedings of the 2017 ACM International
Conference on Management of Data. 2017, pp. 1165–1180.

136

https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
https://doi.org/10.14778/2002974.2002976
https://doi.org/10.14778/2002974.2002976
https://doi.org/10.14778/2002974.2002976

8. APPENDIX A: REFLECTIONS ON THE
STATE-OF-THE-ART OF PROCESSING AND
QUERYING LARGE KNOWLEDGE GRAPHS

In this appendix, we present more details about the state-of-the-art related work in
the area of big (graph) data processing and benchmarking. We opted to put these details
here as reference point for the readers who may keen to know more about the underlying
details of this area of research.

8.0.1. Graph Management Systems

There has been a significant prevalence of the work on graph processing in both academia
and in industry[Sak+21b]. This led to a surge in the number of different commercial and
research systems for storing, querying, processing, and managing graphs [Sah+20]. It
is important to understand that the graph management systems can be divided into two
main categories, based on their design purpose and type of workloads [Sah+20]. The first
category includes graph processing engines, which analyze the graph iteratively to gain
global insights. The second category includes graph databases to query graphs.

Table 35 summarizes a simple comparison between those two categories of graph
computation systems. Nonetheless, we discuss in detail the two categories with example
systems from both academia and industry in the following sections.

1. Graph Query Systems (Graph Databases): Recently, graph databases are the
most popular choice for performing querying and local computations over graphs [Sah+20;
Jun+17]. In such systems, data is typically stored natively in the form of graphs in-
stead of relational tables. Thus, data manipulation is expressed by graph-oriented
operations and type constructors. Graph Databases mainly use declarative query
languages for interacting with graph query workloads [Ang+17]. The nature of
graph query language (e.g., Cypher, SPARQL, Gremlin, PGQL, and GraphQL) de-
pends on the underlying nature of graph model that the graph DB supports [Ang+17].
Currently, the most two popular graph data models are Edge-Labeled Graphs (i.e.,
RDF data model), where nodes are connected by directed, labeled edges, and Prop-
erty Graphs, where both nodes and edges can further embed attributes [Sak+21b].
Examples of popular graph databases designed for managing property graphs are
Neo4j 1, Amazon Neptune 2, Microsoft CosmosDB 3, Titan 4, and Apache Tin-
kerPop 5. Other popular RDF graph databases also exist, e.g., Allegrograph 6,
Stardog 7, Virtuoso 8, and Blazegraph 9.

1https://neo4j.com/
2https://aws.amazon.com/neptune/
3https://azure.microsoft.com/en-us/products/cosmos-db/
4https://titan.thinkaurelius.com/
5https://tinkerpop.apache.org/
6https://allegrograph.com/
7https://www.stardog.com/platform/features/high-performance-graph-database/
8https://virtuoso.openlinksw.com/
9https://blazegraph.com/

137

https://neo4j.com/
https://aws.amazon.com/neptune/
https://azure.microsoft.com/en-us/products/cosmos-db/
https://titan.thinkaurelius.com/
https://tinkerpop.apache.org/
https://allegrograph.com/
https://www.stardog.com/platform/features/high-performance-graph-database/
https://virtuoso.openlinksw.com/
https://blazegraph.com/

Graph Database Systems Graph Analytics Systems
Purpose Querying Analytical (algorithms)
Workloads Excel In OLTP Workloads ((local traversals) OLAP & iterative, recursive workloads
Interact with Typically, limited portion of the graph Entire graph (can be more than once)
Response Real Time Long Running (large graphs)
Computation Nature Centralized Distributed
Declarative Graph Querying Yes No
Large Query Workloads Limited No
System Examples Neo4j, Neptun, StarDog, CosmosDB Apache Giraph, Gelly, Spark GraphX

Table 35: Graph Database Systems and Distributed Graph Processing Systems.

2. Graph Analytics Systems: Although the fact that, graph databases excel at query-
ing graphs, they usually cannot efficiently process large graphs in an iterative man-
ner [Jun+17]. Thus, graph processing engines are used mainly for implement-
ing graph algorithms such as PageRank, Triangle Counting or Connected Com-
ponents, and many more. These algorithms require iterative processing over the
whole graph, while other algorithms such as Single Source Shortest Path might
require touching a large portion of the graph (i.e., OLAP graph processing).
Graph analytical engines are mainly distributed, and they can be divided into
two main categories based on their programming model. The first category is
the "Vertex-Centric" ("Think-Like-A-Vertex") processing programming paradigm.
This defines graph computations as an iterative process between communicating
vertices in the graph. This model defined the Pregel [Mal+10] model firstly devel-
oped by Google and afterwards was adopted by several graph processing frame-
works such as Apache Spark GraphX [Gon+14], Apache Flink (i.e., Gelly [Car+15]
and Gradoop [Jun+15] systems), and the Apache Giraph [Mar+15]. The second
category is the linear algebra-based systems, which defines the graph computation
with matrix operations. Graph processing systems that reside in this category are
such as GraphBLAS [Dav19] and LA3 [Ahm+18].

Graph Prcessing Workloads

Graph Querying Workloads Graph Analytics Workloads

Community Detection
(e.g.,(strongly, and Weakly)

connected components,
Triangle Counting)

 Centralitry
(e.g., PageRank, Degree
Centrality, Betweenness

Centrality)

Navigational (Path)
Queries

Graph Pattern
Matching

Connectivity & Path
Finding

(e.g.,A* Shortest Paths, BFS,
DFS, Random Walk)

Complex Graph Patterns
(CGPs)Basic Graph Patterns (BGPs)

Figure 51: Graph processing workloads main categories, with some examples.

138

8.1. Graph Analytics Systems meet Graph Querying Systems

With the enormous growth in volumes of graph data, the data community aims to ad-
dress all aspects of graph query and processing workloads (see Figure 51). One of the
common challenges of large-scale graph processing is the efficient evaluation of graph
queries [Sak+21; Rag20]. The distributed nature of large graph processing systems fu-
eled the need for large graph analytics. However, the area of querying large graphs is still
under development [Sak+21]. Indeed, a distributed native graph solution for querying
large graphs is still missing [Sak+21].

There are two attempts towards filling this gap. First, GraphFrames [Dav+16] is a
package10 designed on top of Sparks DataFrames. GraphFrames benefits from the scal-
ability and high performance of Spark DataFrames. This package provides an interface
for implementing graph algorithms on top of DataFrames, as well as incorporating sim-
ple graph pattern matching with fixed-length patterns (i.e., called motifs). Thus, Graph-
Frames provides an interface for querying large graphs but in a limited (non-declarative)
manner. Another project was launched by Neo4j in a system called "Morpheus". Mor-
pheus 11 aimed at enabling large graph querying over large volumes of graphs. Particu-
larly, it was designed to enable the evaluation of a declarative graph query language (i.e.,
Cypher [Fra+18]) over large property graphs using the capabilities of DataFrames on top
of Apache Spark. Nevertheless, Neo4j declared that this project is no longer actively
maintained.

Thus, the area of enabling graph querying over large graphs using declarative lan-
guages is not fully mature [Sak+21; Rag20]. Currently, practitioners seeking large graph
query workloads can only use the already existing limited large graph querying systems
such as GraphFrames, or Morpheus (with no support).

8.2. Relational Graph Processing: State-of-the-Art

The increasing demand for querying large graphs has triggered the BD community to di-
rect attention to falling back to the mature relational (BD) systems for performing large
graph querying using declarative capabilities of SQL [Sch+16; Sch+14; CFL18; Aba+07].
These relational solutions come with 35+ years of research on efficient storage and query-
ing. More importantly, relational-backed stores offer important features that are mostly
lacking from native graph querying systems, namely, scalability, industrial-strength trans-
action support, compression, and security, to name a few.

8.2.1. Querying Large (RDF) Knowledge Graphs

The same challenges of finding a suitable native graph system for querying large graphs
exist in the realm of (RDF) Knowledge Graphs (KGs). The KGs empower several appli-
cations via representing large collections of structured knowledge. Vast RDF KGs (e.g.
DBPedia, WikiData, Yago, and Bio2RDF), and are now publicly available, and have bil-
lions of triples.

Centralized RDF engines, e.g., Apache Jena [McB01], RDF- 3X [NW08], and gStore
[WZZ17], provide native graph processing and querying of RDF datasets with the full ex-
pressive capabilities of the SPARQL for capturing complex information needs, as well as

10https://github.com/graphframes/graphframes
11https://github.com/opencypher/morpheus.

139

https://github.com/graphframes/graphframes
https://github.com/opencypher/morpheus.

harnessing the underlying data semantics. Moreover, those SPARQL triplestores are flex-
ible and have the power of graph navigation with recursive queries and applying negations
and other complex Basic Graph patterns (BGPs).

Nonetheless, those native solutions are centralized and thus cannot handle large-scale
RDF datasets effectively [Bor+13; Pha+15]. They are also limited in terms of optimizers.
SPARQL optimization is limited after exceeding a specific number of triple pattern joins
(e.g., 12 in Virtuoso) [Pha+15]. RDF architect has no grip on data locality, even Hexa-
storage (i.e., indexing all orders of RDF components permutations) does not save from
lack of locality. Thus, the need for processing large RDF datasets calls for innovative
solutions to store, analyze, and query these massive RDF datasets. This call leads the Se-
mantic Web community to leverage Big Data (BD) processing frameworks (e.g., Apache
Spark, Hive, and Impala) to process large RDF datasets.

8.2.2. Examples of relational BD RDF querying solutions

Spark-based RDF querying solutions: Many systems exploited the relational interface
of the Spark framework (i.e., Spark-SQL) for building scalable RDF querying engines.
For example, S2RDF (SPARQL on Spark for RDF) [Sch+16] introduced a relational
schema for encoding RDF data called ExtVP (the Extended Vertical Partitioning) that
extends the Vertical Partitioning (VP) schema introduced by Abadi et.al. [Aba+07]. The
ExtVP uses a semi-join-based reduction technique in order to minimize the query in-
put size regardless of its pattern shape (i.e., Star-shaped, Linear-Shaped, Snowflake, or
any other Complex(i.e. Hybrid) shapes). In S2RDF, based on this schema the SPARQL
queries are easily mapped into SQL queries using Jena ARQ framework. On the same
side of S2RDF, WORQ [MAA18] is a query workload-driven framework that optimizes
the performance of Spark-SQL for querying large RDF graph datasets represented in the
VP relational schema. In particular, WORQ utilized Bloom filters for computing online
join reductions (among VP tables) of frequent triple patterns in the workload. In addition,
this framework showed that caching those intermediate join reductions excel caching fi-
nal results. Last but not least, Prost [CFL18] is another spark-based system that used the
relational (SQL) interface of Spark for querying large RDF graphs. In particular, Prost
combined a mixture of two existing RDF relational schemas, i.e., Vertical Partitioning
tables (VP) with the Property Table (PT) schema.
Other relational RDF querying solutions: relied on the distributed nature of other big
relational systems, such as Hadoop, Impala, Hive. For example, Sempala [Sch+14] is a
distributed RDF query system that translates SPARQL into SQL which runs on top of
Apache Impala 12. The Sempala system stores the whole RDF graph in a unified rela-
tional layout (table) called "Wide Property Table" (WPT). In order to mitigate the effect
of WPT sparsity, Sempala stored this unified sparse table in the columnar Parquet file
format over HDFS. Parquet is very efficient in storing wide schemes with hundreds of
columns while accessing only a few of them in a request. Moreover, NULL values are not
stored explicitly in Parquet as they can be determined by the definition levels [Sch+14].
PigSPARQL [SPL11] follows a similar approach as Sempala but uses Pig as the un-
derlying system. It stores RDF data in a vertically partitioned schema (VP) similar to
S2RDF [Sch+16].

12https://impala.apache.org/

140

https://impala.apache.org/

8.3. Challenges of Relational BD Systems for Querying of
Large Graphs

Although it may seem logical to implement graph processing within relational systems,
the difference among the relational and graph representations, and functional mismatch
among graph traversal algebra and relational algebra bring several challenges while pro-
cessing graphs on top of relational systems [Has+18; Tan+15]. Indeed, the design space
for processing graphs in the relational realm is different, and several performance fac-
tors need to be considered (i.e., the core of this thesis). Moreover, graph workloads, by
their nature, are iterative and depend extensively on efficient traversal of adjacency struc-
tures that are not typically implemented in relational interfaces including the SQL query
language. Relational systems are not optimized for fast graph traversals [Par15]. Im-
plementing such adjacency structures in relational systems is also challenging due to the
complexity of the under-hood relational system’s implementation internals.

Moreover, this thesis discussed that processing and querying large RDF graphs over
the non-graph (relational) BD systems require several additional design decisions [RTS19;
RAT21]. Relational RDF systems that target large RDF querying mainly focus on the
dimensions that directly affect the performance, (1) Relational schema: indeed the rela-
tional layout directly affect the performance of systems as it affects the number of joins,
filters of the query workloads.

The most common schemas for representing RDF graphs in the relational world are
the ST, VP, WPT, PT, and ExtVP. For example, systems like RDFMATCH [Cho+05],
Apache Jena 1 [McB01], and RDF-3X [NW08] utilize the Single Statement (ST) schema.
Whereas, the binary Vertically-Partitioned (VP) tables schema is used to represent RDF
graphs in several other relational systems like PigSPARQL and SW-Store [Aba+09].
Moreover, the extension of this schema (ExtVP) is used in systems like S2RDF [Sch+16],
and WORQ [MAA18] providing some join reductions using the semi-join reductions, and
Bloom filters, respectively. Sempala used the unified WPT schema for representing the
RDF graphs over HDFS. Whereas, the Property Tables (PT) schema is used in RDF rela-
tional systems such Db2RDF [Bor+13] and Apache Jena2 [Wil+03]. Last but not least a
hybrid schema of PT and VP is used by the Prost system over HDFS ans using Spark-SQL
for querying them. Table 36 shows the relational RDF schemas used to represent RDF
graphs in relational RDF query systems and databases.

The Schema dimension is followed by data (2) Partitioning as the second considered
dimension of relational systems for querying large RDF graphs. The effect of partition-
ing over relational systems for querying large RDF datasets was not neglected in the
state-of-the-art. for instance, Akhter et.al. [ANS18] evaluated the performance of seven
RDF partitioning techniques (i.e., Horizontal, Subject-Based, Predicate-Based, Hierar-
chical, Recursive-Bisection, TCV-Min, and Min-Edgecut Partitioning)over federated and
non-federated systems. Anthony et.al. [al19] showed the effect of the subject-based parti-
tioning technique for partitioning different RDF relational schemata over the Spark-SQL
framework. Last but not least, Mohamed Ragab et.al. [Rag+20; Rag20; RAT21], showed
the effect of three partitioning techniques (i.e., Horizontal, Subject-based, Predicate-
based) on the performance of relational schema advancements for querying large RDF
datasets over Spark-SQL engine.

Last but not least, we cannot ignore the effect of the (3) Storage dimension. For
instance, Ivanov et.al. [IP19] evaluated the impact of two different columnar file formats
(i.e., ORC and Parquet) over SQL-on-Hadoop engines (e.g., Spark-SQL, Hive). On the

141

same note, Ragab et.al. [RTS19] evaluated the performance of Spark-SQL for querying
RDF datasets stored over HDFS in both row-oriented file formats (i.e., Avro, CSV), and
Columnar file formats (i.e., ORC, Parquet). Moreover, Mohamed Ragab et.al. [Rag20]
showed the impact of those different row-oriented and column-oriented storage formats on
the performance of two RDF relational schema advancements (i.e., WPT and ExtVP) for
querying large RDF datasets on top of the Spark-SQL engine. The experiments showed
that storage is indeed an impactful dimension to consider for querying RDF graphs over
relational systems, and it impacts the replicability of those schema advancements.

8.4. RDF Graph Processing Benchmarking Efforts

Benchmarking is a crucial task that checks the performance capabilities of systems un-
der specific tasks evaluating their potentials and bottlenecks [Bon+18; Szá19]. In fact,
benchmarking efforts can push technological progress turning research into a compe-
tition with clearly-defined goals. This stimulates the research community to produce
more and better results where the end users can understand and decide on basis of those
defined objectives. For example, the KGs community is synergizing efforts pushing
technological progress through benchmarking initiatives like the Linked Data Bench-
mark Council (LDBC13). Research-wise, the community proposed datasets like LOD-a-
lot[Fer+17], test-beds like LOD-Laundromat [Bee+16], and full-fledge benchmarks like
SP2Bench [eta09], LUBM 14, WatDiv15 and many more. Recently, the community started
studying benchmarking methodologies [Sal+19] and metrics [AVS17], and it is question-
ing whether SPARQL benchmarks are or not representative of the actual workload [Dua+11].

13ldbcouncil.org
14http://swat.cse.lehigh.edu/projects/lubm/
15https://dsg.uwaterloo.ca/watdiv/

142

RDF Relational Querying System ST VP PT ExtVP WPT
RDF-3X [NW08] ✓
S2RDF [Sch+16] ✓
Sempala [Aba+09] ✓
DB2RDF [Bor+13] ✓
WORQ [MAA18] ✓
PigSPARQL [SPL11] ✓
SPARQL-GX [Gra+16] ✓
SW-Store [Aba+09] ✓
Prost [CFL18] ✓ ✓
Hassan et.al. [HB19] ✓ ✓
Schievelbein et.al. [Sch+19] ✓
RaxonDB [PMV22] ✓
Apache Jena 1 [McB01] ✓
Apache Jena 2 [Wil+03] ✓
Pham et.al. [Pha+15] ✓

Table 36: RDF relational schemas used/proposed in the state-of-the-art of RDF
querying relational systems.

http://swat.cse.lehigh.edu/projects/lubm/
https://dsg.uwaterloo.ca/watdiv/

8.4.1. Big RDF Benchmarking Challenges

In the introduction (Chapter 1), we briefly mentioned the challenges of benchmarking
efforts of BD relational systems for querying large knowledge graphs (see Chapter 1 Ta-
ble 1). In this section, we aim at expanding the details of the research gap that this thesis
covers, reflecting on those challenges.
Neglecting Performance Trade-offs & Lack of Replicability: First, the state-of-the-art
research focused on optimizing the RDF systems’ performance rather than systematically
benchmarking the underlying experimental dimensions that affect their performance. For
instance, Abdelaziz et.al. [Abd+17], Sakr et.al. [SA10], and Mauroux et.al. [Cud+13]
conducted comprehensive surveys of benchmarking several distributed RDF processing
systems, comparing their performance without investigating the underlying impactful di-

143

DimensionReference Partitioning Schema Storage
Abdelaziz et.al [Abd+17] 7 7 7

Sakr et.al. [SA10] 7 7 7

Mauroux et.al. [Cud+13] 7 7 7

Sempala [Sch+14] 7 ! (WPT) 7

S2RDF [Sch+16] !(HDFS) 3 ! (Parquet)
Ayla et.al. [al19] !(Subj.) 3 ! (Parquet)
Ragab et.al. [RTS19] 7 3 3

Ivanov et.al. [IP19] 7 7 ! (Parquet and ORC)
Akther et.al. [ANS18] 3 7 7

Bench-Ranking [RAT21] 3 3 3

Table 37: Neglecting performance trade-offs in the state-of-the-art when covering
the experimental dimensions, i.e., Relational Schema, Partitioning, and Storage
Formats. 3 Full presence, 7 Full Absence, ! exists with some limitations.

Analysis classReference Desc. Diag. Pres. Multi-Dim.
Abdelaziz et.al [Abd+17] 3 3 7 7

Sakr et.al. [SA10] 3 7 7 7

Mauroux et.al. [Cud+13] 3 3 7 7

Sempala [Sch+14] 3 3 7 7

S2RDF [Sch+16] 3 3 7 7

Ayla et.al. [al19] 3 3 7 7

Ragab et.al. [RTS19] 3 3 7 7

Ivanov et.al. [IP19] 3 3 7 7

Akther et.al. [ANS18] 3 3 !(Partition) 7

Bench-Ranking [RAT21] 3 3 3 3

Table 38: State-of-the-art Lack of Prescriptive Performance Analysis for Process-
ing Large KGs on top of BD Relational Systems. 3Analysis Provided) , 7Analy-
sis Missing, ! Analysis exists with some limitations.

mensions (e.g., schema, partitioning, or storage). Moreover, even the research efforts that
investigate those dimensions focused only on one dimension at a time (even with limited
coverage of alternatives), e.g., relational schema [RTS19; al19], partitioning [ANS18],
or storage [IP19]. For instance, Sempala system [Sch+14] proposed the WPT schema
advancement for enhancing the performance of Apache Impala relational system when
querying massive RDF datasets, while neglecting other dimensions such as partitioning,
storage options. Similarly, DB2RDF [Bor+13], a system proposed by IBM research, also
proposed an efficient clustering algorithm for designing a relational Property Tables (PT)
schema for representing KGs. However, this work also neglects the other dimensions
(e.g., storage and partitioning). The S2RDF system [Sch+16] for querying large RDF
datasets over Spark-SQL also suggested a novel schema advancement (i.e., a extension
of VP schema) called "ExTVP" for optimizing the performance of Spark without con-
sidering the other dimensions that directly impact the performance. Table 37 shows the
dimensions covered in the literature. It shows the gap of covering a benchmarking study
of the three dimensions altogether.

As we have shown through this thesis, focusing solely on one experimental dimension
neglects the presence of other dimensions trade-offs. Thus, introducing one new experi-
mental dimension, or even changing one experimental option can affect the BD systems’
performance to generalize. Chapter 4 discussed extensive experiments that shows the
significant impact of changing experimental options on the BD systems replicability for
querying large (RDF) graphs.
Lack of Systematic Prescriptive Performance Analysis: Second, there is a gap in the
performance analysis maturity in existing works that use BD frameworks for querying
large RDF graphs. The studies show that the descriptive and diagnostic analyses are the
most common in the literature [Abd+17; Cud+13; Sch+16; Sch+14]. Prior works stop
their analyses at describing the performance of engines around a specific experimental di-
mension. For instance, Shätzle et.al. [Sch+14; Sch+15] described the performance of big
relational systems (i.e., comparing loading times and query execution time). In particular,
they show why systems e.g., S2RDF [Sch+16] and Sempala [Sch+14] outperform other
RDF systems in those metrics due to their proposed schema optimizations, i.e., the Wide
Property Table (WPT) schema [Sch+14], and the Extended Vertically-Partitioned Tables
(ExtVP) schema [Sch+16]. Moreover, Abdelaziz et.al. [Abd+17] conducted a compre-
hensive descriptive and diagnostic survey of several RDF processing systems, describing
their performance in terms of scalability, query efficiency, and workload adaptability met-
rics. The authors followed their analysis by diagnosing why a distributed RDF system X
outperforms another system Y without giving prescriptions over the underlying experi-
mental dimensions. Similarly, authors in [Cud+13] performed an empirical evaluation
of four NoSQL processing RDF systems describing and comparing their query execution
times, and loading times. However, none of these works provide prescriptions over the
level of the mentioned experimental dimensions altogether without neglecting their trade-
offs.

In this thesis, we argue that the Prescriptive analysis reduces the need for human in-
tervention by making the descriptive insight actionable. The prescriptive analysis relies
on statistical and mathematical models that aid in answering the question of ’what should
be done?’. Regarding benchmarking, the prescriptive analysis provides the criteria for
selecting the best possible given approaches. A promising example of prescriptive per-
formance analysis of RDF data systems was introduced by Akhter et.al. [ANS18]. The
authors adopted a ranking measure to decide which RDF partitioning techniques have the

144

best performance over various RDF datasets. Nonetheless, prescriptive analysis that have
been provided in that work is limited to one experimental dimension (i.e., partitioning).
Table 38 shows the shows the gap of providing prescriptive performance analysis for large
KGs processing in top of BD relational systems.
How Bench-Ranking Framework handles those limitations: To the best of our knowl-
edge, the work done in this thesis [RAT21; Rag+20] is the only work that covers bench-
marking the combination of three impactful dimensions (see last row in Table 37), i.e.,
relational schema, storage, and partitioning dimensions into unified experiments while
assessing the performance of relational systems (e.g., Apache Spark-SQL) for querying
large RDF datasets. Moreover, the Bench-Ranking framework; with means of ranking
techniques; provides prescriptive performance analysis for large KGs practitioners to
guide them to select the best performing experimental options over the complex solution
space of multiple dimensions. The framework also models the trade-offs of the experi-
mental dimensions as a Multi-Dimension (MD) optimization problem aiming to find those
optimal experimental options across multiple dimensions (e.g., schema, partitioning, and
storage), see last row in Table 38.

145

9. APPENDIX B: BENCHMARKS RELATIONAL
SCHEMAS & QUERY WORKLOAD

9.1. Benchmarks Relational Schemas

In this section, we describe the relational schema of the the two used RDF benchmarks of
this thesis (i.e., SP2B and WatDiv).

More Specifically, we show here the Property Tables (PT) schema. The reason of
showing only the PT schema is that the other RDF graphs relational schemas in this thesis
are deterministic in their design (e.g., ST, WPT, VT and ExtVT). In other words, those
schemas are agnostic from the underlying graph structure. For instance, The ST is a
ternary single relation (table) of the three components of RDF statements (i.e., Subject,
Predicate, and Object). The WPT encodes the entire dataset into a single denormalized
relation of all predicates in the graph. the VT and ExtVT are graph-based schemas, i.e.,
these schemas require one binary relation (Subject, Object) for each unique predicate
(labeled edge) in the graph structure.

In contrast, the PT schema requires designing efforts from the (Big) Data engineer.
Therefore, as a reference we provide our designed PT schema for the two RDF bench-
marks as depicted in the simplified ERD diagram of Figures 52, and 53 for WatDiv and
SP2B RDF benchmarks, respectively.

Figure 52: WatDiv Property Tables (PT) relational Schema.

146

Figure 53: SP2B Property Tables (PT) relational schema.

9.2. Query Workload with Relational Schema Translations

In this section, we provide the set queries in the two RDF Benchmarks (i.e., SP2B and
WatDiv) in native SPARQL, as well as when translated into the different relational schemas
(i.e., ST, (Ext)VT, PT, and WPT).

1. WatDiv Query workload alongside SQL translations: The WatDiv SPARQL query
workload 1 consists of 20 templates that can generate arbitrary any number of
queries replacing the placeholders with parameter values. We provide SQL trans-
lations for each of the above mentioned schemas in our GitHub repository 2.

2. SPARQL Query Workload alongside SQL Translations: The SP2B SPARQL query
workload [Sch+08] 3 consists of 11 SPARQL queries. We provide the SQL trans-
lations of those queries for each of the above mentioned schemas in our GitHub
repository 4.

1WatDiv SPARQL query templates: https://dsg.uwaterloo.ca/watdiv/
basic-testing.shtml

2WatDiv SQL translations: https://github.com/DataSystemsGroupUT/
SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/
ut/cs/bigdata/watdiv/querying/queries

3SP2B SPARQL queries: https://dbis.informatik.uni-freiburg.de/index.php?
project=SP2B/queries.php

4SP2B SQL translations: https://github.com/DataSystemsGroupUT/
SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/
ut/cs/bigdata/sp2b/querying/queries

147

https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/watdiv/querying/queries
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/watdiv/querying/queries
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/watdiv/querying/queries
https://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
https://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/sp2b/querying/queries
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/sp2b/querying/queries
https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking/tree/master/ProjectSourceCode/src/main/scala/ee/ut/cs/bigdata/sp2b/querying/queries

ACKNOWLEDGEMENTS
First and foremost, I thank Almighty God for giving me the opportunity and ability to
pursue this research. In addition, may peace and salutation be given to our beloved and
our ultimate role model; prophet Muhammad (PBUH) who has taken all human beings
from the darkness to the lightness.

I dedicate this thesis to the soul of my previous supervisor Prof. Sherif Sakr who unfor-
tunately passed away during the pandemics (2020). Sherif was a respected professor and
first-class researcher at Tartu Universitys Institute of Computer Science in the field of Big
Data technologies. I would say that Sherif greatly helped me to develop and grow on
several levels, academic and personal.

I also express my thanks to my current supervisor Prof. Ahmed Awad for his guidance,
support and feedback. I also thank him for his time and discussions related to my PhD
topic, and even beyond it.

Special thanks and gratitude go to my supervisor Ass. Prof. Riccardo Tommasini who al-
ways had time for me, devoting much time to ensuring that I am aiming high and pushing
me to maximize my potential during my Ph.D. research journey.

I am grateful to the reviewers of this work (Prof. Bellatreche, and Ass. Prof. Zumpano)
for their valuable comments and rich feedback that have significantly improved my thesis.

I would not forget to thank my friends and colleagues at the university of Tartu, for their
support. I want to thank my colleague Kristo Raun for helping me with the Estonian
translations in this thesis.

Words cannot express my deepest gratitude and appreciation to my family for their uncon-
ditional love and emotional support. I say special thanks to my parents (my father "Ragab"
and my mother "Sooad"), and my beloved sisters ("Hala", "Ghada", and "Shaimaa"). I
thank my wife "Shaymaa Heidr" for her constant support and care, and my fabulous kid
"Anas", for his hugs and laughs that brighten my days. They were always around and
accompanied me in moments of hardships and frustration.

Thank you all.

148

SISUKOKKUVÕTE

149

Me elame maailmas, kus ei suurene mitte ainult andmemahud, vaid ka andmete vahelised
seosed. Graafid on kõige intuitiivsemad, loomulikumad ja paindlikumad andmeabstrakt-
sioonid mis käsitsevad antud seoseid mitmetes rakendustes meie igapäevaelus.

Antud rakenduste graafiandmete enneolematud mahud nõuavad suure hulga graafide
tõhusaks töötlemiseks skaleeritavaid süsteeme. Graafi töötlemine on laialt levinud nii aka-
deemilistes ringkondades kui ka tööstuses. See on tinginud graafide töötlemise, hoiusta-
mise ja haldamise süsteemide arvu tõusu. Loomulikult skaleeruva graafide pärimise süs-
teemi ehitamine on veel lahtine probleem. Seega tuleb suurte graafipäringute analüüsi
jaoks endiselt taaskasutada olemasolevaid suurandmete (BD) süsteeme ja nende relat-
sioonilisi liideseid.

Vaatamata oma paindlikkusele nõuab relatsioonimudel graafide esitamisel mitmeid
täiendavaid disainiotsuseid, mida ei saa automaatselt otsustada: skeemi valik, jaotusteh-
nika ja salvestusvormingud. Lisaks võivad need disainiotsused üksteist mõjutada, kuna
nõuavad omavahelisi kompromisse. Seega on BD süsteemi jõudlus sõltuvuses antud ot-
sustest, mis tähendab et selget võitjat on raske kindlaks teha. Sellest tulenevalt on suurte
graafide pärimisel raske tagada relatsiooniliste BD süsteemide jõudluse õiglast hindamist.

Tipptasemel uurimistööd, mille keskmes on suurte graafide pärimise tulemuslikku-
se analüüs, on vaid kirjeldavad nad vastavad küsimusele "mis juhtus?"või paremal juhul
diagnostilised miks see juhtus?. Meie väidame, et sedalaadi tulemusanalüüsid on sageli
üle jõu käivad ja otsuste tegemiseks jääb suur hulk tööd. Tõepoolest, mainitud eksperi-
mentaalsete konfiguratsioonide sisemised kompromissid põhjustavad vastuolusid ja seega
ei saa sellise ebaküpse analüüsi taseme järel otsustada lõplike parimate konfiguratsiooni-
de üle. Vastupidiselt, ettekirjutav jõudlusanalüüs (PPA) vähendab inimsekkumise vajadust
veelgi, muutes teadmise teostatavaks, vastates küsimusele "mida me peaksime tegema?".

See lõputöö uurib ettekirjutava analüütika võimaldamise probleemi BD süsteemide
kontekstis, mis pärivad suuri (RDF) graafe. PPA eesmärk on suunata praktik otse raken-
datavate otsuste juurde, navigeerides keerulistes eksperimentaalsetes lahendusruumides,
jätmata tähelepanuta aluseks olevate mõõtmete vajalikke kompromisse.

Käesolevas töös püüame esialgu mõista BD süsteemide jõudlust suurte (RDF) graa-
fipäringute tegemise ajal. Näitame kirjeldava ja diagnostilise jõudlusanalüüsi (DDPA)
piiranguid ja demonstreerime kuidas need on selgete otsuste tegemisel ebamugavad. Seda
veelgi enam kui on tarvis tagada (RDF) graafe pärivate BD süsteemide taasesitus. Näi-
teks Spark-SQL-i süsteemi jõudlust RDF-i relatsiooniskeemi täiustustega ei ole võimalik
üldistada, kuna see lisab uusi eksperimentaalseid mõõtmeid, näiteks andmete salvestuse
ja jaotuse osas.

Seega on vaja koostada ettekirjutav raamistik analüüsimaks BD süsteemide jõudlust
suurte (RDF) graafipäringute teostamiseks. Lõputöös uuritakse, kuidas võimaldada ette-
kirjutavat analüütikat järjestuskriteeriumide abil. Töötasime välja PPA raamistiku Bench-
Ranking, mis kasutab mitut ühemõõtmelist (SD) ja mitmemõõtmelist (MD) järjestamise
kriteeriumi süsteemi jõudluse järjestamiseks mitme eksperimentaalse mõõtmega. Varase-
mate SD-järjestusmeetodite eesmärk on järjestada eksperimentaalsed mõõtmed, arvuta-
des eksperimentaalsete mõõtmete valikute jaoks paremusjärjestuse skoorid. Hilisem MD-
tehnika laiendab Bench-Rankingi mitme eesmärgi optimeerimise probleemiks, et opti-

Bench-Ranking: ettekirjutav analüüsimeetod
suurte teadmiste graafide päringutele

150

de olemasolul. Viimaks pakub lõputöö hindamismõõdikud välja pakutud järjestuskritee-
riumide tõhususe hindamiseks. Lisaks pakume välja pakutud järjestuskriteeriumide tõ-
hususe hindamise mõõdikud. Esimene mõõdik on Vastavus, mis mõõdab kõrgeima ase-
tusega konfiguratsioonide vastavust tegelikele päringujärjestustele (st nende konfigurat-
sioonide paigutusele). Teine mõõdik on "sidusus", mis mõõdab kahe järjestuskomplekti
kokkuleppe taset, mis kasutavad erinevates katsetes sama järjestuskriteeriumi (nt erinevad
andmestiku skaalad).

Selle lõputöö viimane, kuid mitte vähem oluline panus on Bench-Ranking PPA me-
toodika pakkimine korduvkasutatavasse ja laiendatavasse Pythoni teeki (PAPyA).

PAPyA eesmärk on varjata Bench-Ranking funktsionaalsuse ja mõõdikute keerukust
ning vähendab aega ja vaeva teadlike otsuste tegemiseks BD-süsteemide stsenaariumide
valdkondades kus on vaja teostada mitu disainiotsust, nt suurte graafide pärimine. Lisaks
võimaldab see ette valmistada andmeid töötlemiskonveieri jaoks relatsioonilise suurand-
mete raamistiku kaudu; mis võimaldab konfiguratsioonide automaatset järjestamist.

Lõputöö võtab tehtu kokku, arutades teadmust ja tulevikusuundi mis on seotud suurte
graafide pärimise ja töötlemisega BD relatsiooniliste raamistike peal.

meerida kõiki mõõtmeid korraga. Eksperimentaalsete mõõtmete täielikuks arvestamiseks
kasutame standardset Pareto piiri tehnikat. Bench-Ranking pakub täpset kuid lihtsat viisi,
mis toetab praktikuid nende hindamisülesannete täitmisel isegi mõõtmete kompromissi-

CURRICULUM VITAE

Personal data
Name: Mohamed Ragab Moawad Mohamed
Date of Birth: 25.08.1992
Nationality: Egyptian
Language Skills: Arabic(Native), English
Email: mohamed.ragab@ut.ee

Education
2018–2022 University of Tartu, Estonia, Ph.D. in Computer Science
2013–2018 Cairo University, Egypt, Masters (M.Sc) in Information Systems
2009–2013 Fayoum University, Egypt, Bachelors (B.SC) in Information

Systems.

Employment

2018–2022 Junior Research Fellow, University of Tartu, Estonia.
2014–2018 Teaching Assistant, Nahda University, BeniSuef, Egypt.
2013–2014 Web Developer, ITIS Company for Development.

Scientific work

Main fields of interest

• Big Data Management

• Semantic Web

• Large Graph Data Processing

151

ELULOOKIRJELDUS

Isiklikud andmed
Nimi: Mohamed Ragab Moawad Mohamed
Sünniaeg: 25.08.1992
Kodakondsus: Egiptuse
Keeleoskus: Araabia (emakeel), inglise keel
E-post: mohamed.ragab@ut.ee

Haridus
2018-2022 Tartu Ülikool, Eesti, Ph.D. arvutiteaduses
2013-2018 Kairo Ülikool, Egiptus, magistrikraad (M.Sc) teabe alal Süstee-

mid
2009-2013 Fayoumi ülikool, Egiptus, informaatika bakalaureuseõpe (B.SC)

süsteemid.

Teenistuskäik
2018-2022 nooremteadur, Tartu Ülikool, Eesti.
2014-2018 õppeassistent, Nahda ülikool, BeniSuef, Egiptus.
2013-2014 veebiarendaja, ITIS arendusettevõte.

Teadustegevus

Peamised uurimisvaldkonnad:

• Suurandmete haldus

• Semantiline veeb

• Suure graafiku andmetöötlus

152

LIST OF ORIGINAL PUBLICATIONS

Publications included in the thesis

I Mohamed Ragab. "Towards Prescriptive Analyses of Querying Large Knowledge
Graphs". The 26th European Conference on Advances in Databases and Informa-
tion Systems (ADBIS). Springer, Cham, September 2022. P.639–647 (Best Doctoral
Symposium Award). Lead author. The author performed the implementation and
the analysis of the experiments and contributed substantially to the ideas and the
writing.

II Mohamed Ragab, Adam Satria, Riccardo Tommasini. "PAPyA: a Library for Per-
formance Analysis of SQL-based RDF Processing Systems". Semantic Web Journal
(SWJ), 2022, DOI: 10.48550/ARXIV.2209.06877.URL: https://arxiv.org/abs/2209.06877.
(Under Review). Lead author. The author performed the implementation and the
analysis of the experiments and contributed substantially to the ideas and the writing.

III Mohamed Ragab, Feras M. Awaysheh, and Riccardo Tommasini. "Bench-Ranking:
A First Step Towards Prescriptive Performance Analyses For Big Data Frameworks".
2021 IEEE International Conference on Big Data (Big Data). IEEE Computer Soci-
ety, December 2021, P.241–251. Lead author. The author performed the implemen-
tation and the analysis of the experiments and contributed substantially to the ideas
and the writing.

IV Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo
Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuzaima
Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard Hasl-
hofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri,
Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plantikow, Mo-
hamed Ragab, Matei R. Ripeanu, Semih Salihoglu, Christian Schulz, Petra Selmer,
Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini, Antonino
Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets,
Da Yan, Eiko Yoneki. "The future is big graphs: a community view on graph pro-
cessing systems". Communications of the ACM (CACM), September 2021, P.62–71.
Co-Author: Contributed in writing the initial draft of the paper in two sections, i.e.,
System Requirements (Scale-up vs. scale-out) for large graph processing. Relational
meets Graphs.

V Mohamed Ragab, Riccardo Tommasini, Feras M. Awaysheh, Ramos JC. "An In-
depth Investigation of Large-scale RDF Relational Schema Optimizations Using
Spark-SQL". Proceedings of the 23rd International Workshop on Design, Optimiza-
tion, Languages and Analytical Processing of Big Data (DOLAP) co-located with
the 24th International Conference on Extending Database Technology and the 24th
International Conference on Database Theory (EDBT/ICDT), CEUR-WS.org, March
2021, P.71–80. Lead author. The author performed the implementation and the anal-
ysis of the experiments and contributed substantially to the ideas and the writing.

153

VI Mohamed Ragab, Riccardo Tommasini, Sherif Sakr. "Comparing Schema Ad-
vancements for Distributed RDF Querying Using SparkSQL". Proceedings of the
ISWC 2020 Demos and Industry Tracks, CEUR-WS.org, November 2020, P.30–34.
Lead author. The author performed the implementation and the analysis of the ex-
periments and contributed substantially to the ideas and the writing.

VII Mohamed Ragab, Riccardo Tommasini, Sadiq Eyvazov, Sherif Sakr. "Towards
making sense of Spark-SQL performance for processing vast distributed RDF datasets".
Semantic Big Data (SBD) co-located with SIGMOD PODS, ACM, June 2020, P.1–6.
Lead author. The author performed the implementation and the analysis of the ex-
periments and contributed substantially to the ideas and the writing.

VIII Mohamed Ragab. "Large Scale Querying and Processing for Property Graphs".
Proceedings of the 22nd International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data co-located with EDBT/ICDT joint
conference, CEUR-WS.org, March 2020, P.79–83. Lead author. The author per-
formed the implementation and the analysis of the experiments and contributed sub-
stantially to the ideas and the writing.

IX Mohamed Ragab, Riccardo Tommasini, Sherif Sakr "Benchmarking Spark-SQL
under Alliterative RDF Relational Storage Backends". Proceedings of the QuWeDa
2019 co-located with 18th International Semantic Web Conference (ISWC), CEUR-
WS.org, October 2019, P.67–82. Lead author. The author performed the implemen-
tation and the analysis of the experiments and contributed substantially to the ideas
and the writing.

Publications not included in the thesis

I Riccardo Tommasini, Mohamed Ragab, Alessandro Falcetta, Emanuele Della Valle,
Sherif Sakr. "A First Step Towards a Streaming Linked Data Life-Cycle". The 19th
International Semantic Web Conference(ISWC), Springer, November 2020, P.634–
650). Co-Author: Contributed with the implementations and the analysis of the ex-
periments, with reviewing the final manuscript before submission.

II Mohamed Ragab, Mohamed Maher, Ahmed Awad, Sherif Sakr "MINARET: A
Recommendation Framework for Scientific Reviewers". The 22nd International
Conference on Extending Database Technology, EDBT, OpenProceedings.org, March
2019, P.538–541. Lead author. The author performed the implementation and the
analysis of the experiments and contributed substantially to the ideas and the writing.

III Riccardo Tommasini, Mohamed Ragab, Alessandro Falcetta, Emanuele Della Valle,
Sherif Sakr. "Bootstrapping the Publication of Linked Data Streams". Proceedings
of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Out-
rageous Ideas) co-located with 18th International Semantic Web Conference (ISWC
2019), CEUR-WS.org, October 2020, P.29–32. Co-Author: Contributed with the im-
plementations and the analysis of the experiments, with reviewing the final manuscript.

154

155

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

156

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

157

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

8. Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

9. Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

12. Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

13. Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

14. Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

15. Adriano Augusto. Accurate and Efficient Discovery of Process Models
from Event Logs. Tartu 2020, 194 p.

16. Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs
and Commitments. Tartu 2020, 245 p.

17. Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p.

18. Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p.
19. Ilya Kuzovkin. Understanding Information Processing in Human Brain by

Interpreting Machine Learning Models. Tartu 2020, 149 p.
20. Orlenys López Pintado. Collaborative Business Process Execution on the

Blockchain: The Caterpillar System. Tartu 2020, 170 p.
21. Ardi Tampuu. Neural Networks for Analyzing Biological Data. Tartu

2020, 152 p.

158

22. Madis Vasser. Testing a Computational Theory of Brain Functioning with
Virtual Reality. Tartu 2020, 106 p.

23. Ljubov Jaanuska. Haar Wavelet Method for Vibration Analysis of Beams
and Parameter Quantification. Tartu 2021, 192 p.

24. Arnis Parsovs. Estonian Electronic Identity Card and its Security Challen-
ges. Tartu 2021, 214 p.

25. Kaido Lepik. Inferring causality between transcriptome and complex
traits. Tartu 2021, 224 p.

26. Tauno Palts. A Model for Assessing Computational Thinking Skills. Tartu
2021, 134 p.

27. Liis Kolberg. Developing and applying bioinformatics tools for gene
expression data interpretation. Tartu 2021, 195 p.

28. Dmytro Fishman. Developing a data analysis pipeline for automated pro-
tein profiling in immunology. Tartu 2021, 155 p.

29. Ivo Kubjas. Algebraic Approaches to Problems Arising in Decentralized
Systems. Tartu 2021, 120 p.

30. Hina Anwar. Towards Greener Software Engineering Using Software
Analytics. Tartu 2021, 186 p.

31. Veronika Plotnikova. FIN-DM: A Data Mining Process for the Financial
Services. Tartu 2021, 197 p.

32. Manuel Camargo. Automated Discovery of Business Process Simulation
Models From Event Logs: A Hybrid Process Mining and Deep Learning
Approach. Tartu 2021, 130 p.

33. Volodymyr Leno. Robotic Process Mining: Accelerating the Adoption of
Robotic Process Automation. Tartu 2021, 119 p.

34. Kristjan Krips. Privacy and Coercion-Resistance in Voting. Tartu 2022,
173 p.

35. Elizaveta Yankovskaya. Quality Estimation through Attention. Tartu
2022, 115 p.

36. Mubashar Iqbal. Reference Framework for Managing Security Risks
Using Blockchain. Tartu 2022, 203 p.

37. Jakob Mass. Process Management for Internet of Mobile Things. Tartu
2022, 151 p.

38. Gamal Elkoumy. Privacy-Enhancing Technologies for Business Process
Mining. Tartu 2022, 135 p.

39. Lidia Feklistova. Learners of an Introductory Programming MOOC: Back-
ground Variables, Engagement Patterns and Performance. Tartu 2022, 151 p.

	Introduction
	Problem Statement
	State-of-the-Art
	Research Questions
	Macro Level of Analysis
	From Macro to Micro Analyses

	Approach and Contributions
	Research Assumptions
	Making sense of Descriptive Performance Analysis (Micro 1)
	Assessing the Big Data Systems Replicability (Micro 2)
	Bench-Ranking: Deciding over Complex Solution Space (Micro 3)
	Automating Prescriptive Performance Analysis (Micro 4)

	Outline of the Thesis

	Preliminaries and Background
	Big Data Analytics and Challenges
	Big Data Systems
	Apache Hadoop
	Apache Hive
	Apache Impala
	Apache Spark & Spark-SQL

	Big Data Distributed Storage
	The Semantic Web and Linked Data
	Resource Description Framework (RDF)
	SPARQL Protocol and RDF Query Language (SPARQL)

	Relational Model and Relational Algebra For SPARQL
	RDF Processing Systems
	Native RDF Graph Processing Systems
	Non-native (Relational) RDF Processing Systems

	RDF Relational Schema Representation
	Advancements of RDF Relational Schemas

	(RDF) Graph Partitioning

	Making Sense of Big Data System Performance for Processing Large Knowledge Graphs
	Experimental Design Decisions
	Dimensions' Experimental Space

	Experiments Design
	Benchmark Datasets & Query Workloads
	Experimental Setup and Evaluation Environment

	Results and Performance Analysis
	Descriptive and Diagnostic Analyses' Limitations
	Performance Complexity Issues
	Can we make sense of performance results?

	Best Practices for Querying Large RDF Graphs Using Relational Big Data Systems
	Discussion

	Big Data Systems Performance Replicability
	Methodology and Experiments
	Benchmark & Experimental Setup
	Replicability Results
	WPT versus PT Schema Results
	ExtVP versus VP Schema Results

	Discussion
	Hypothesis 1: The WPT schema always outperforms PT schema
	Hypothesis 2: The ExtVP always outperforms VP schema

	Concluding Remarks and Best Practices
	Best Practices with Schema Optimizations

	Bench-Ranking: A Framework BD Prescriptive Performance Analysis
	Bench-Ranking Preliminaries
	Single-Dimensional (SD) Ranking Criteria
	Single-Dimensional Ranking Analysis Results

	Multi-Dimensional (MD) Ranking Criteria
	Multi-Dimensional Criteria Results
	Evaluating Ranking Criteria
	Ranking Criteria Evaluation Results

	Discussion
	Bench-Ranking Opportunities and Further Improvements

	PAPyA: A Tool for Automating Prescriptive Performance Analysis of Large RDF Graphs Processing
	PAPyA Requirements
	Architecture, Abstractions, and Internals

	PAPyA in Practice
	Rich Visualizations
	PAPyA Flexibility & Extensibility
	Checking Performance Replicability

	Conclusion and Road-map

	Conclusion and Future Directions
	Bench-Ranking Requirements & Research questions
	Summary of Contributions
	Making sense of Big Data Descriptive Performance Analysis
	Assessing Big Data Replicability
	Bench-Ranking:The Big Data Prescriptive Performance Analysis (PPA)
	PAPyA: Big Data Bench-Ranking Made Easy

	Open Challenges and Future Directions
	Workload-driven Automatic Configuration Mining
	Bench-Ranking alongside Multi-Query Optimization techniques
	Learning to Rank (LtR): Predicting the Optimal configurations
	Bench-Ranking with Costs and Energy Consumption Estimation

	Concluding Remarks

	Appendix A: Reflections on the State-Of-The-Art of Processing and Querying Large Knowledge Graphs
	Graph Management Systems
	Graph Analytics Systems meet Graph Querying Systems
	Relational Graph Processing: State-of-the-Art
	Querying Large (RDF) Knowledge Graphs
	Examples of relational BD RDF querying solutions

	Challenges of Relational BD Systems for Querying of Large Graphs
	RDF Graph Processing Benchmarking Efforts
	Big RDF Benchmarking Challenges

	Appendix B: Benchmarks Relational Schemas & Query Workload
	Benchmarks Relational Schemas
	Query Workload with Relational Schema Translations

	Acknowledgements
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

