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Does absolute or conditional convergence of the integrals

define fractional derivatives?

In this master’s thesis we analyse the class of fractionally differentiable functions. This

work is built on Gennadi Vainikko’s recent paper “Which functions are fractionally dif-

ferentiable?”, that characterises the class of fractionally differentiable functions in terms

of the pointwise convergence or equiconvergence of certain improper integrals containing

these functions. The aim of this thesis is to present and analyse an example, which shows

us that in order to obtain all fractionally differentiable functions, one may not replace

the conditional convergence of certain integrals by their absolute convergence. Also some

supporting lemmas are formulated and proved.

CERCS Code - P130. Functions, differential equations.

Keywords: integrals, fractional derivatives, integral calculus

Integraalide mitteabsoluutsest koondumisest murrulise

tuletise definitsioonis

Käesoleva magistritöö eesmärgiks on analüüsida murruliselt diferentseeruvate funktsioonide

klassi. Kuigi murruliselt diferentseeruvate funktsioonide idee ja mõiste on juba pikka aega

teada, on seesuguste funktsioonide klass põhjalikumalt uuritud ning määratletud alles

hiljutises Gennadi Vainikko artiklis “Which functions are fractionally differentiable?”, mis

on ka aluseks käesolevale magistritööle. Töö eesmärgiks on esitada ja analüüsida ühte

näidet, mis demonstreerib, et kui teatud integraalide puhul asendada tinglik koondu-

mine nende absoluutse koondumisega, siis ei saa kätte kõiki murruliselt diferentseeruvaid

funktsioone. Lisaks on sõnastatud ja tõestatud mõned abitulemused.

CERCS kood - P130. Funktsioonid, diferentsiaalvõrrandid.

Märksõnad: integraalid, murdtuletised, integraalarvutus
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1 Introduction

Fractional calculus is a field of mathematics that investigates the properties of deriva-

tives and integrals of non-integer orders [1]. This branch grows out from the traditional

definitions of the calculus of derivative and integral operators in much the same way as

a fractional exponent is an outgrowth of exponents with integer value [2].

The significance of this field of mathematics is well proposed by Nicholas Wheeler in his

book [3]: “The fractional calculus is a source of analytical power, latently too valuable to

be casually dismissed. It has demonstrable applicability to a rich assortment of pure and

applied subject areas. But it is valuable not least because it invites - indeed, it frequently

requires - one to think about old things in new ways, and to become more intimately

familiar with the resources of the ordinary calculus. It opens doors.”

The history of fractional calculus goes back for more than 300 years (it is almost the

same time when classical calculus was established) when it was first mentioned in a

letter from Leibniz to L’Hospital in 1695 [1]. In this letter the idea of semiderivative

was suggested as L’Hospital asked the question to the meaning of dny/dxn if n = 1/2;

that is “what if n is fractional?” Leibniz replied that “d1/2 will be equal to x
√
dx : x”

[2]. But fractional calculus was actually built on formal foundations by many great

and famous mathematicians, such as Liouville, Grünwald, Riemann, Euler, Lagrange,

Heaviside, Fourier, Abel, and others - they all have proposed different original approaches

(which are explained chronologically in [4]) [1].

Although fractional calculus has quite a long history, it was until 1974 when the first

book on the topic was published. It was written by Oldham and Spanier and was de-

voted exclusively to the subject of fractional calculus [5]. Today there exists at least

two international journals which are devoted almost entirely to the subject of fractional

calculus [5]:

• Journal of Fractional Calculus

• Fractional Calculus and Applied Analysis.
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The subject of fractional calculus has become more and more popular over the years,

especially during past three decades. This is due to its various applications in many

fields of science and also engineering.

The first application of fractional calculus was actually made by Abel about the tau-

tochronous problem (see e.g. [2]). But there are also many other very interesting and

useful applications such as using fractional calculus in modelling (e.g. speech signals,

cardic tissue electrode interface, etc), image proccessing (for edge detection), studying

the electric transmission lines, developing different control systems or scemes, etc. One

can read more about specific applications from article [2].

The present thesis focuses on examining fractional derivatives and what defines them.

Current work is built on the paper by Gennadi Vainikko [6], which characterises the

class of fractionally differentiable functions in terms of the pointwise convergence or

equiconvergence of certain improper integrals containing these functions.

The thesis consists of two main chapters. The first chapter is devoted to definitions and

explanations. Here the author also formulates the main theorem from Gennadi Vainikko’s

work [6], that answers the question: “which functions are fractionally differentiable?” In

addition, author presents and proves some lemmas that are needed to establish the main

result of the thesis.

In the second chapter the author presents the main result of the thesis by constructing

and analysing an example of a certain function. This is an example which shows us that

to obtain all fractionally differentiable functions, one may not replace the conditional

convergence of certain integrals by their absolute convergence.

5



2 Preliminaries

2.1 Problem setting

In this section we introduce necessary definitions and the problem setting of the thesis.

The same definitions are used in Gennadi Vainikko’s paper [6].

Consider the Riemann-Liouville integral operator Jα : C[0, T ] → C[0, T ] of order α > 0,

α ∈ R, defined by

(Jαu)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds, 0 ≤ t ≤ T, u ∈ C[0, T ],

where Γ is the Euler gamma - function. In particular, (J1u)(t) =
∫ t

0
u(s)ds. For

α = m ∈ N = {1, 2, . . . }, the range of operator Jm is given by (see e.g. [7])

JmC[0, T ] = {v ∈ Cm[0, T ] : v(k)(0) = 0, k = 0, . . . ,m− 1} =: Cm
0 [0, T ],

and Jm is invertible on it, i.e., (Jm)−1v = Dm
0 v, where Dm

0 : Cm
0 [0, T ] → C[0, T ] is the

restriction of the operator Dm = (d/dt)m : Cm[0, T ] → C[0, T ]. Due to the semigroup

property (see e.g. [5, 8])

JαJβ = JβJα = Jα+β for α > 0, β > 0.

Note that Jα is invertible on its range JαC[0, T ] also for fractional (noninteger) α > 0.

Indeed, if Jαu = 0 for some u ∈ C[0, T ] then taking m ∈ N, m > α, we have

Jmu = Jm−αJαu = 0, u = 0.

The description of the range JαC[0, T ], α > 0, is closely related to the description of

the class of fractionally differentiable functions. Namely, one possible definition of the

fractional differentiation operator of order α > 0 is given by

Dα
0 v = (Jα)−1v, v ∈ JαC[0, T ].

This most natural definition is used e.g. in the Mathematical Encyclopedia [9].
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By Hα[0, T ], 0 < α ≤ 1, we mean the standard Hoelder space consisting of functions

v ∈ C[0, T ] such that

‖v‖Hα := max
0≤t≤T

|v(t)|+ sup
0≤s<t≤T

|v(t)− v(s)|
(t− s)α

<∞,

and by Hα
0 [0, T ], 0 < α < 1, we mean the closed (see e.g. [10]) subspace of Hα[0, T ]

consisting of functions v ∈ Hα[0, T ] such that

sup
0≤s<t≤T,t−s≤ε

|v(t)− v(s)|
(t− s)α

ε→0−−→ 0.

Although the concept of fractionally differentiable functions is old, the class of all frac-

tionally differentiable functions has not been described until the recent work [6]. Below

we formulate the main result of [6].

Theorem 1. For an α ∈ (0, 1) and a function v ∈ C[0, T ], the following conditions are

equivalent:

(i) v ∈ JαC[0, T ], i.e., the fractional derivative Dα
0 v := (Jα)−1v ∈ C[0, T ] exists;

(ii) a finite limit γ0 := limt→0 t
−αv(t) exists, and the improper integrals

w(t) :=

∫ t

0

(t− s)−α−1(v(t)− v(s))ds, 0 < t ≤ T, (1)

equiconverge in the sense that

lim
Θ↑0

sup
0<t≤T

∣∣∣∣∫ 1

0

(t− s)−α−1(v(t)− v(s))ds−
∫ Θt

0

(t− s)−α−1(v(t)− v(s))ds

∣∣∣∣ = 0;

(iii) a finite limit γ0 := limt→0 t
−αv(t) exists; the Riemann improper integral (1) con-

verges for any t ∈ (0, T ] and defines a function w ∈ C(0, T ] which has a finite limit

as t→ 0 (hence w ∈ C[0, T ]); moreover, there is a majorant function W ∈ L1(0, T )

such that

∣∣∣∣∫ Θt

Θ

(t− s)−α−1(v(t)− v(s))ds

∣∣∣∣ ≤ W (t) for 0 < t < T , 0 < Θ < 1;

(iv) v has the structure v = γ0t
α + v0, where γ0 is a constant, v0 ∈ Hα

0 [0, T ], v(0) = 0

and the improper integral (1) converges for any t ∈ (0, T ] and defines a function

w ∈ C(0, T ], which has a finite limit w(0) := limt→0w(t) (so w ∈ C[0, T ]).
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(v) v has the structure v = γ0t
α + v0 where γ0 is a constant, v0 ∈ Hα

0 [0, T ], v(0) = 0,

and the improper integral
∫ t

0
(t− s)−α−1(v0(t)− v0(s))ds =: w0(t) converges for any

t ∈ (0, T ] and defines with w0(0) = 0 a function w0 ∈ C(0, T ].

For v ∈ JαC[0, T ], it holds for 0 < t ≤ T that

(Dα
0 v)(t) := ((Jα)−1v)(t) =

1

Γ(1− α)

(
t−αv(t) + α

∫ t

0

(t− s)−α−1(v(t)− v(s))ds

)
;

(Dα
0 v)(0) := ((Jα)−1v)(0) = Γ(α + 1)γ0.

In the present thesis we answer the following question: in Theorem 1 in parts (iii)-

(v) can one replace the conditional convergence of the improper integrals (1) by their

absolute convergence? The answer occurs to be “no”: restricting ourselves to the absolute

convergence of those integrals, we do not obtain all functions v ∈ JαC[0, T ]. To prove

this claim, we construct a function v ∈ JαC[0, 1], satisfying (iv) such that integrals (1)

do not converge absolutely for all t ∈ (0, T ]. Namely,

v(t) = t(1− t)α(log(1− t))−1 sin(log(1− t)), 0 < t < 1, (2)

with v(0) = v(1) = 0 occurs to be such a function. To see the continuity of v(t) at points

t = 0 and t = T = 1, observe that

1)

lim
t→0

v(t) = lim
t→0

t(1− t)α sin(log(1− t))
log(1− t)

= lim
t→0

t(1− t)α · lim
t→0

sin(log(1− t))
log(1− t)

= 0,

as it is well known that (see [12])

lim
t→0

sin(t)

t
= 1; (3)

2)

lim
t→1

v(t) = lim
t→1

t(1− t)α sin(log(1− t))
log(1− t)

= lim
t→1

t(1− t)α · lim
t→1

sin(log(1− t))
log(1− t)

= 0.

In the third chapter we formulate a proposition for analysing this example.
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2.2 Lemmas supporting the main result

In this section we present and prove some lemmas that are needed to show the main

result.

To prove Lemma 2, which we are going to formulate beneath, we need to present Leibniz

theorem about the convergence of alternating series [12] and also mean value theorem for

integrals [7].

Theorem. (Leibniz theorem) An alternating series of the form

∞∑
k=1

(−1)k−1fk, where fk ≥ 0,

converges if the following two conditions are satisfied:

1) fk ≥ fk+1 for all k ≥ N , where N is some natural number

2) limk→∞ fk = 0.

Theorem. (mean value theorem for integrals) If f and g are integrable functions

on the closed interval [a, b] and g does not change the sign, then there exists a number µ

suvh that

m := inf
x∈[a,b]

f(x) ≤ µ ≤ sup
x∈[a,b]

f(x) =: M

and ∫ b

a

f(x)g(x)dx = µ

∫ b

a

g(x)dx.

For the needs of the next section let us formulate and prove the following lemma.

Lemma 2. If f ∈ C[0,∞), f(x) ≥ 0, f is monotonically decreasing for x ≥ x0 ≥ 0 and

f(x)→ 0 as x→∞, then improper integrals∫ ∞
0

f(x) sin(x)dx and
∫ ∞

0

f(x) cos(x)dx

converge, i.e. there exist finite limits∫ ∞
0

f(x) sin(x)dx = lim
b→∞

∫ b

0

f(x) sin(x)dx
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and ∫ ∞
0

f(x) cos(x)dx = lim
b→∞

∫ b

0

f(x) cos(x)dx.

Proof. Let us first look at integral
∫∞

0
f(x) sin(x)dx.

We expand integral
∫∞

0
f(x) sin(x)dx to series

∫ ∞
0

f(x) sin(x)dx =
∞∑
k=0

∫ (k+1)π

kπ

f(x) sin(x)dx =
∞∑
k=0

f(xk)

∫ (k+1)π

kπ

sin(x)dx

=
∞∑
k=0

2 · (−1)kf(xk),

with some xk ∈ [kπ, (k+1)π]. To get an equality in step 2 we use the mean value theorem

for integrals [7].

As x increases for x ≥ x0, f(x) is monotonically decreasing, so by absolute value, all

given members are non-increasing and moreover, they converge to 0.

So if we look at limit

lim
b→∞

∫ b

0

f(x) sin(x)dx,

then for every b there exists n, such that π · n ≤ b ≤ π(n+ 1) and as n→∞,∣∣∣∣∣
∫ b

0

f(x) sin(x)dx−
∫ π(n+1)

0

f(x)dx

∣∣∣∣∣ ≤
∫ π(n+1)

nπ

|f(x)| dx ≤ |f(nπ)| π → 0.

Hence,

lim
b→∞

f(x) sin(x)dx =
∞∑
k=0

2 · (−1)kf(xk).

This is an alternating series absolutely converging to zero by Leibniz test, so given series

converges by Leibniz theorem, i.e. integral
∫∞

0
f(x) sin(x)dx is convergent as x→∞.

For
∫∞

0
f(x) cos(x)dx the proof is very similar, but the only difference is how we choose

the upper and lower limits. So, for cos(x) we have∫ ∞
0

f(x) cos(x)dx =
∞∑
k=0

∫ π
2

+kπ

−π
2

+kπ

f(x) cos(x)dx =
∞∑
k=0

f(xk)

∫ π
2

+kπ

−π
2

+kπ

cos(x)dx

=
∞∑
k=0

2 · (−1)kf(xk),

with some xk ∈ [−π/2 + kπ, π/2 + kπ]. The rest of this proof was done previously.
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Finally, there is one more lemma we need to formulate and prove for the next chapter.

Lemma 3. Inequality |tα − sα| ≤ |t− s|α, for 0 < α < 1 and s, t ≥ 0, holds.

Proof. First let us look at situation where s = 0 and t > 0. Then we have |tα| ≤ |t|α =

|tα|. This statement is true and the claim of Lemma 3 holds.

As we look at situation where t = 0 and s > 0, we see that the statement is very similar

as in previous step and the claim of Lemma 3 holds.

Consider the case with t > s > 0 and look at inequality tα − sα ≤ (t − s)α. First let us

set t = k · s, where k ≥ 1 and reduce the claim to

kα − 1 ≤ (k − 1)α for k ≥ 1.

For k = 1 the claim of Lemma 3 is clear, so we can take k > 1 and look at inequality

kα − 1 < (k − 1)α for k > 1.

Now let α be fixed and consider

f(k) = kα − 1− (k − 1)α

defined on [1,∞). Note that f(1) = 0 and

f ′(k) = αkα−1 − α(k − 1)α−1 = α

(
1

k1−α −
1

(k − 1)1−α

)
< 0, for k > 1.

Since 0 < k − 1 < k, we have (k − 1)1−α < k1−α. As f ′(k) < 0 for k > 1, the function

f(k) is decreasing and since

lim
k→1

f(k) = f(1) = 0,

this implies that f(k) < 0 and kα − 1 < (k − 1)α for k > 1.
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3 Main result

The main goal of the present work is to show that requiring the absolute convergence of

the improper integrals (1) in conditions (iii), (iv) or (v) of Theorem 1, we do not obtain

the whole image JαC[0, T ]. Namely we show that for the function (2)

v(t) = t(1− t)α(log(1− t))−1 sin(log(1− t)), 0 < t < 1,

for T = 1, condition (iii) is fulfilled, but the integrals (1)

w(t) :=

∫ t

0

(t− s)−α−1(v(t)− v(s))ds, 0 < t ≤ T,

do not converge absolutely for all t ∈ (0, 1], more precisely, for t = 1 the integral∫ 1

0

(t− s)−α−1(v(t)− v(s))ds

does not converge absolutely. Hence, the integral∫ 1

0

(1− s)−α−1(v(1)− v(s))ds, with

v(0) = v(1) = 0,

does not converge absolutely.
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3.1 Examining the example

For the main goal of this thesis we have presented an example (2) of function

v ∈ JαC[0, T ], in previous section, such that integrals given by (1) do not converge

absolutely for all t ∈ [0, T ]. To show that, we formulate and prove next proposition.

Proposition 1. Function (2), where 0 < t < 1 and v(0) = v(1) = 0, satisfies condition

(iv) in Theorem 1, with T = 1 and γ0 = 0, hence v ∈ JαC[0, 1], but integral∫ 1

0

(1− s)−α−1 |v(1)− v(s)| ds =

∫ 1

0

s(1− s)−1 |log(1− s)|−1 |sin(log(1− s))| ds (4)

diverges.

Proof. Let us divide this proof into four parts. We will show that

1) v ∈ Hα
0 [0, 1];

2) w(t) :=
∫ t

0
(t− s)−α−1(v(t)− v(s))ds converges for ∀ t ∈ (0, 1];

3) w ∈ C(0, 1] and there exists limt→0w(t) =: w(0), which shows that w ∈ C[0, 1];

4) the convergence of the integral w(1) =
∫ 1

0
(1−s)−α−1(v(1)−v(s))ds is non-absolute:

(4) holds true.

Let us look at the function (2), v(t) = t(1−t)α(log(1−t))−1 sin(log(1−t)), where 0 < t < 1

and v(0) = v(1) = 0.

1) In the first part let us show that v(t) is continuously differentiable on [0, 1).

For the derivative v′ we have the formula

v′(t) =
4∑
i=1

ui(t), (5)

where
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u1(t) = (1− t)α(log(1− t))−1 sin(log(1− t));

u2(t) = −α · t(1− t)α−1(log(1− t))−1 sin(log(1− t));

u3(t) = t(1− t)α−1(log(1− t))−2 sin(log(1− t));

u4(t) = −t(1− t)α−1(log(1− t))−1 cos(log(1− t)).

Clearly v′ ∈ C(0, 1). We want to show that v ∈ C1[0, 1) and to do that, we look,

what happens to each ui(t) separately, as t → 0. As we know that (3) holds and

using the change of variable log(1 − t) = x for x → 0, we get (here we use (3) in

step 2)

lim
t→0

sin(log(1− t))
log(1− t)

= lim
x→0

sinx

x
= 1. (6)

Knowing this, let us analyse addend’s of limits in (5).

(a) For the first addend we have

lim
t→0

u1(t) = lim
t→0

(1− t)α sin(log(1− t))
log(1− t)

= lim
t→0

(1− t)α · lim
t→0

sin(log(1− t))
log(1− t)

= 1.

(b) For the second addend we have

lim
t→0

u2(t) = lim
t→0

−αt(1− t)α−1 sin(log(1− t))
log(1− t)

= lim
t→0
−αt(1− t)α−1 · lim

t→0

sin(log(1− t))
log(1− t)

= 0.

(c) For the third addend we need to find

lim
t→0

u3(t) = lim
t→0

t(1− t)α−1 sin(log(1− t))
(log(1− t))2

= lim
t→0

sin(log(1− t))
log(1− t)

· lim
t→0

(1− t)α−1 · lim
t→0

t

log(1− t)
= lim

t→0

t

log(1− t)
.

Using L’Hospital rule we can continue

lim
t→0

u3(t) = lim
t→0

t

log(1− t)
= lim

t→0

1

− 1
1−t

= lim
t→0

(t− 1) = −1.
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(d) For the fourth addend we use again L’Hospital rule in step 4 and also note

that

lim
t→0

(1− t)α−1 = 1 and lim
t→0

cos(log(1− t) = 1,

so

lim
t→0

u4(t) = lim
t→0

−t(1− t)α−1 cos(log(1− t))
log(1− t)

= lim
t→0

−t
log(1− t)

· lim
t→0

(1− t)α−1 · lim
t→0

cos(log(1− t)

= lim
t→0

−t
log(1− t)

= lim
t→0

(1− t) = 1.

Thus, we have shown that

v′(0) := lim
t→0

v′(t) = 1 + 0− 1 + 1 = 1,

and hence, v ∈ C1[0, 1).

Further observe that

lim
t→1

(1− t)1−αv′(t) = lim
t→1

∞∑
i=1

(1− t)1−αui(t) = 0. (7)

To show (7), we need to analyse again every addend of this limit separately, as we

did in the previous step.

(a) For the first addend we get

lim
t→1

(1− t)1−αu1(t) = lim
t→1

(1− t) sin(log(1− t))
log(1− t)

= 0.

Note that the numerator of the last fraction is bounded and the denominator

tends to infinity, therefore this limit is 0.

(b) For the second addend we have

lim
t→1

(1− t)1−αu2(t) = lim
t→1

−αt sin(log(1− t))
log(1− t)

= 0.

Again we note that the numerator of the last fraction is bounded and the

denominator tends to infinity, therefore this limit is 0.
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(c) For the third addend we have

lim
t→1

(1− t)1−αu3(t) = lim
t→1

t sin(log(1− t))
(log(1− t))2

= 0.

Here we also note that the numerator of the last fraction is bounded and the

denominator tends to infinity, therefore this limit is 0.

(d) For the fourth addend we get

lim
t→1

(1− t)1−αu4(t) = lim
t→1

−t cos(log(1− t))
log(1− t)

= 0.

Once again we note that the numerator of the last fraction is bounded and the

denominator tends to infinity, therefore this limit is 0.

Now we need to check weather v ∈ Hα
0 [0, 1]. Since v ∈ C1[0, 1), we have

v ∈ Hα
0 [0, θ] for all θ ∈ (0, 1). So it remains to show that

0 ≤ sn < tn and sn, tn → 1⇒ v(tn)− v(sn)

(tn − sn)α
→ 0 as n→∞.

We estimate (for sn, tn → 1):

|v(tn)− v(sn)| =
∣∣∣∣∫ tn

sn

v′(τ)dτ

∣∣∣∣ =

∣∣∣∣∫ tn

sn

(1− τ)α−1(1− τ)1−αv′(τ)dτ

∣∣∣∣
≤ max

sn≤τ≤tn
(1− τ)1−α |v′(τ)|

∫ tn

sn

(1− τ)α−1dτ.

Due to Lemma 3 we get∫ tn

sn

(1− τ)α−1dτ =
1

α
((1− sn)α − (1− tn)α) ≤ 1

α
(tn − sn)α.

So as n→∞ due to (7) we have

|v(tn)− v(sn)|
(tn − sn)α

≤ 1

α
max

sn≤τ≤tn
(1− τ)1−α |v′(τ)| → 0.

Thus we have shown that v ∈ Hα
0 [0, 1].

2) Next we need to show that (1) converges for all t ∈ (0, 1].

We know that v ∈ C1[0, 1) ∩Hα
0 [0, 1] and

|v′(t)| ≤ c
(1− t)α−1

|log(1− t)|
, 0 ≤ t < 1. (8)
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For 0 < t < 1 we integrate by parts∫ t

0

(t− s)−α−1(v(t)− v(s))ds =
1

α
(t− s)−α(v(t)− v(s)) |ts=0 +

1

α

∫ t

0

(t− s)−αv′(s)ds

= − 1

α
t−αv(t) +

1

α

∫ t

0

(t− s)−αv′(s)ds. (9)

The last integral converges for 0 < t < 1, since v ∈ C1[0, 1). We know that

v ∈ Hα
0 [0, 1] and v(0) = 0, hence

t−αv(t) =
v(t)− v(0)

tα
t→0−−→ 0,

therefore t−αv(t) is continuous in [0, 1]. Let now t = 1. We prove that the improper

integral
∫ 1

0
(1 − s)−αv′(s)dx converges. According to (5) we can write this integral

as the sum of four integrals. We next analyse these four integrals with u1(s), u2(s),

u3(s) and u4(s) separately.

For the integral with u1(s) we have∫ 1

0

(1− s)−αu1(s)ds =

∫ 1

0

(1− s)−α(1− s)α(log(1− s))−1 sin(log(1− s))ds

=

∫ 1

0

(log(1− s))−1 sin(log(1− s))ds.

We make change in variables log(1 − s) = −x which implies 1 − s = e−x and so

s = 1 − e−x and ds = e−xdx. Now while s → 0, for x we have x → 0 and from

s→ 1 we get x→∞. So we get∫ 1

0

(1− s)−αu1(s)ds =

∫ ∞
0

1

−x
sin(−x)e−xdx =

∫ ∞
0

sin(x)e−x

x
dx.

By Lemma 2 the last improper integral converges. Hence, also
∫ 1

0
(1− s)−αu1(s)ds

converges.

For integral with u2(s) we get∫ 1

0

(1− s)−αu2(s)ds =

∫ 1

0

(1− s)−αs(1− s)α−1(log(1− s))−1 sin(log(1− s))ds

=

∫ 1

0

s(1− s)−1(log(1− s))−1 sin(log(1− s))ds.

17



Making the same change in variable as for u1(s) we get∫ 1

0

(1− s)−αu2(s)ds =

∫ ∞
0

(1− e−x)(e−x)−1(−x)−1 sin(−x)e−xdx

=

∫ ∞
0

ex(1− e−x) · 1

−x
· sin(−x)e−xdx =

∫ ∞
0

1− e−x

x
sin(x)dx.

Again by Lemma 2 the last improper integral converges, hence
∫ 1

0
(1− s)−αu2(s)ds

converges.

For integral with u3(s) we get∫ 1

0

(1− s)−αu3(s)ds =

∫ 1

0

(1− s)−αs(1− s)α−1(log(1− s))−2 sin(log(1− s))ds

=

∫ 1

0

s(1− s)−1(log(1− s))−2 sin(log(1− s))ds.

Making again the same change in variable as for u1(s) and u2(s) we get:∫ 1

0

(1− s)−αu3(s)ds =

∫ ∞
0

(1− e−x)ex(−x)−2 sin(−x)e−xdx

=

∫ ∞
0

−1− e−x

x2
sin(x)dx = −

∫ ∞
0

1− e−x

x
· sin(x)

x
dx.

Again the last improper integral converges as x approaches to 0 by using (3) for
sin(x)
x

and L’Hospital rule for 1−e−x
x

. Hence
∫ 1

0
(1− s)−αu3(s)ds converges.

For the integral with u4(s) we get∫ 1

0

(1− s)−αu4(s)ds =

∫ 1

0

(1− s)−αs(1− s)α−1(log(1− s))−1 cos(log(1− s))ds

=

∫ 1

0

s(1− s)−1(log(1− s))−1 cos(log(1− s))ds.

Making the same change in variable as for u1(s) and u2(s) and u3(s) we get:

∫ ∞
0

(1− e−x)ex · 1

−x
· cos(−x)e−xdx = −

∫ ∞
0

1− e−x

x
cos(x)dx.

By Lemma 2 the last improper integral converges, hence
∫ 1

0
(1 − s)−αu4(s)ds con-

verges.

In conclusion, we have shown that the improper integral
∫ 1

0
(1−s)αv′(s)ds converges,

hence
∫ 1

t
(1− s)αv′(s)ds→ 0 as t→ 0.
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Now we also need to show that
∫ t

0
(t− s)−αv′(s)ds→

∫ 1

0
(1− s)−αv′(s)ds as t→ 1.

We already have
∫ 1

t
(1− s)−αv′(s)ds→ 0 as t→ 1, thus it is sufficient to show, that

∣∣∣∣∫ t

0

[(t− s)−α − (1− s)−α]v′(s)ds

∣∣∣∣→ 0, as t→ 1.

For that it is sufficient to show that

∫ t

0

[(t− s)−α − (1− s)−α]ds max
0≤s≤t

|v′(s)| → 0, as t→ 1. (10)

First we look at integral
∫ t

0
[(t− s)−α − (1− s)−α]ds and write

∫ t

0

[(t− s)−α − (1− s)−α]ds =
1

1− α
[(1− s)1−α − (t− s)1−α]|t0

=
1

1− α
[
(1− t)1−α − (t− t)1−α − (1− 0)1−α + (t− 0)1−α]

=
1

1− α
[
(1− t)1−α − 1 + t1−α

]
≤ 1

1− α
(1− t)1−α, (11)

because t1−α − 1 < 0.

Now let’s look at the factor max0≤s≤t |v′(s)| in (10). From the previous we know

that (8) holds. If s ≤ t, then (1− s) ≥ (1− t), (1− s)α−1 ≤ (1− t)α−1 and when

s ≤ t, then |log(1− s)| ≥ |log(1− t)|. Therefore we get

(1− s)α−1

|log(1− s)|
≤ (1− t)α−1

|log(1− t)|
for 0 < s ≤ t,

and (8) implies that

max
0≤s≤t

|v′(s)| ≤ c(1− t)α−1

|log(1− t)|
.

Together with (11) we obtain (10) and have that w ∈ C[0, 1].

3) In this part we need to show that w ∈ C[0, 1] and for this we show that w ∈ C(0, 1]

and ∃ limt→0w(t) =: w(0) = 0. We recall here that (see (9))

w(t) =

∫ t

0

(t− s)−α−1(v(t)− v(s))ds = − 1

α
t−αv(t) +

1

α

∫ t

0

(t− s)1−αv′(s)ds.
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From the part 2) of this proof it is clear that w(t) ∈ C(0, 1], so we only need to

show that limit

w(0) = lim
t→0

w(t) = lim
t→0

∫ t

0

(t− s)−α−1(v(t)− v(s))ds

exists.

As we previously showed in the part 2) of this proof, the integral∫ t

0

(t− s)−α−1(v(t)− v(s))ds

converges as t → 0, moreover it converges to 0, and thus we know that this limit

indeed exists and w(0) = 0.

4) It remains to show that for some t the integral
∫ t

0
(t−s)−α−1(v(t)−v(s))ds, 0 < t ≤ 1

does not converge absolutely. It occurs that this holds true for t = 1.

For our example, since v(1) = 0, we can write

∫ 1

0

(1− s)−α−1 |v(1)− v(s)| ds =

∫ 1

0

(1− s)−α−1 |v(s)| ds

=

∫ 1

0

s(1− s)−1 |log(1− s)|−1 |sin(log(1− s))| ds.

The divergence of the last integral may be caused by the singularity of the integrand

at the point s = 1. So we analyse the integral

I =

∫ 1

1/2

(1− s)−1 |log(1− s)|−1 |sin(log(1− s))| ds.

As we make the change in variables s̃ = 1− s and after that write again s instead

of s̃, we have

I =

∫ 1/2

0

s−1 |log(s)|−1 |sin(log(s))| ds.

If we make a change in variable and say that t = − log(s), then e−t = s. Since

0 ≤ s ≤ 1/2, for t we have − log(1/2) = log(2) ≤ t ≤ ∞ and thus also dt = −1
s
ds,

we get that

I = −
∫ ∞

log(2)

et · t−1 |sin(t)| e−tdt =

∫ ∞
log(2)

|sin(t)|
t

dt.
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This is well known integral (see e.g. [7]) that diverges and so∫ 1

0

s(1− s)−1 |log(1− s)|−1 |sin(log(1− s))| ds =∞.

The proof of Proposition 1 is complete.
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3.2 Behaviour of function v(t)

Let us illustrate the behaviour of the function v(t) = t(1− t)α(log(1− t))−1 sin(log(1− t))

as 0 < t < 1. The function v(t) oscillates between the “envelope” function

v̄(t) = ±t(1− t)α(log(1− t))−1.

As the graphs of v(t) and v̄(t) depend on how we choose the parameter α, we are going

to give α three different values between 0 < α < 1. So we choose α close to 0, between 0

and 1 and finally close to 1.

All graphs are made using mathematical program MathCad15.

Figure 1: Graphs of v(t) and v̄(t) for α = 0.1
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In Figure 1 we have shown the behaviour of functions v(t) and v̄(t) as α = 0.1. The red

lines represent the function v(t) and green lines represent the function for v̄(t). We can

see that function v(t) oscillates more rapidly as t gets close to point 1.

Figure 2: Graph of v(t) and v̄(t) as α = 0.5

In Figure 2 we have shown the behaviour of functions v(t) and v̄(t) as α = 0.5. The red

lines represents again the function v(t) and green lines represent the function v̄(t). And

again we can see that function v(t) oscillates more rapidly as it gets close to point 1.
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Figure 3: Graphs of v(t) and v̄(t) for α = 0.9

In Figure 3 we have shown the behaviour of functions v(t) and v̄(t) as α = 0.9. As in

previous two figures, the red lines represent the function v(t) and green lines represent

v̄(t). Here we see as well that function v(t) oscillates more as it gets close to point 1.

24



References

[1] Tomaš Kisela, Fractional differential equations and their applications, Diploma the-

sis, 2008, https://www.researchgate.net/publication/249993249_Fractional_

Differential_Equations_and_Their_Applications.

[2] Mehdi Dalir, Majid Bashour, Applications of Fractional Calculus, Applied Mathe-

matical Sciences, Vol. 4, No. 21, 2010, http://www.m-hikari.com/ams/ams-2010/

ams-21-24-2010/bashourAMS21-24-2010.pdf.

[3] Nicholas Wheeler Construction and physical application of the fractional calculus,

Reed College Physics Department, February, 1997.

[4] Keith B. Oldham, Jerome Spanier, The Fractional Calculus, London: Academic Press,

1974.

[5] Anatoly A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, Theory and applications of

fractional differential equations, North Holland mathematics studies 204, 2006.

[6] Gennadi Vainikko, Which functions are fractionally differentiable?, Zeitschrift für

Analysis und ihre Anwendungen, to appear.

[7] Gunnar Kangro, Matemaatiline analüüs I, Tallinn, Valgus, 1978.

[8] Kai Diethelm, The analysis of fractional Differential Equations. An Application-

oriented Exposition Using Differential Operators of Caputo Type, Lect. Notes Math.

2004, Springer 2010.

[9] Mathematical Encyclopedia, Vol. 1-5 (in Russian). Moscow: Soviet Encyclopedia,

1977-1985.

[10] Gennadi Vainikko, First kind cordinal Volterra integral equations 2. Numer. Funct.

Anal. Optim. 35 (2014), 1607-1637.

[11] Arvet Pedas, Gennadi Vainikko, Harilikud diferentsiaalvõrrandid, Tartu Ülikooli Kir-

jastus, 2009.

25



[12] Leiki Loone, Virge Soomer, Matemaatilise analüüsi algkursus, Tartu Ülikooli Kirjas-

tus 2009.

26



Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üld-

susele kättesaadavaks tegemiseks

Mina, Britt Kalam (sünnikuupäev 22.12.1989),

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose „Absolute or con-

ditional convergence of the integrals defining fractional derivatives?“, mille juhendaja on

Gennadi Vainikko,

1.1. reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil, seal-

hulgas digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja

lõppemiseni; 1.2. üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna

kaudu, sealhulgas digitaalarhiivi DSpace´i kaudu kuni autoriõiguse kehtivuse tähtaja

lõppemiseni.

2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest tulenevaid õigusi.

Tartus, 21.04.2016

27


