
TARTU ÜLIKOOL
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1 Introduction
The goal of the current master’s thesis is to find a fast algorithm for pattern

matching for superpositional graphs.
Superpositional graphs (SPG) were introduced in [3] as a skeleton of struc-

turally synthesized binary decision diagrams, introduced by R. Ubar in [6] (see [5]
for a historical overview). L. Vohandu, A. Peder and M. Tombak defined a prob-
lem of pattern matching for SPG in [7]. They found a bijection between SPG-s
and separable permutations and posed a hypothesis, that the problems of pattern
matching for SPG and separable permutations are equivalent. Furthermore, Mati
Tombak, advisor for the current master’s thesis, had proved in a yet unpublished
paper, that for every solution to a pattern matching problem for SPGs there is a
solution to a pattern matching problem for separable permutations and vice versa,
and pattern matching for separable permutations is reducible in linear time to pat-
tern matching for SPGs. The problem of pattern matching for permutations was
posed by H. Wilf (see [1]).

Let n be a length of a text and k a length of a pattern. P. Bose, J. Buss and
A.Lubiw in [1] proved, that the general decision problem of pattern matching is
NP−complete, but the counting problem can be solved in O(kn6) time in the case,
if the pattern is a separable permutation. This result was improved by L.Ibarra in
[2] to O(kn4).

In the current master’s thesis we build an algorithm for pattern matching for
SPGs, which counts a number of matches in time O(kn). We prove, that every
solution to the problem for an SPG is a solution of a pattern matching problem
for the corresponding separable permutation and vice versa. As a consequence,
we have an algorithm for counting matches, working in time O(kn) for the case,
when the text and the pattern are both separable permutations.

In Chapter 2 we define superpositional graphs (SPGs) and show how an arbi-
trary SPG can be constructed using elementary graphs as building blocks. SPG
deconstruction into elementary graphs is an important step in SPG pattern match-
ing. In Chapter 3 we define separable permutations and present algorithms im-
plementing bijection between SPGs and separable permutations. In Chapter 4 we
present an algorithm for SPG pattern matching. We also provide a proof for algo-
rithm correctness. In Chapter 5 we present two helper algorithms and measure the
performance of given algorithms. Author’s contribution to the current master’s
thesis are pattern matching algorithms and performance calculations (Chapters 4
and 5, in close cooperation with the advisor).

The contents of this master’s thesis were submitted for publishing to a pattern
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matching conference DAGM-OAGM 2012 in Graz, Austria (Appendix A). We
expect an answer regarding acceptance from the organizers by 18 June 2012.

2 Superpositional Graphs
Definition 1. A binary graph is an oriented acyclic connected graph with a root
and two terminal nodes (sinks) labeled with T0 and T1. Every internal (i.e., not
terminal) node v has two immediate successors denoted by high(v) and low(v).
An edge a→ b is called 0-edge (1-edge) if low(a) = b (high(a) = b). 1

A path from node u to node v (u ; v) is a sequence w0, . . . ,wk of nodes where
w0 = u, wk = v and for each 0 ≤ i < k, wi+1 = high(wi) or wi+1 = low(wi). A
0-path (1-path) is a path which contains only 0-edges (1-edges).

Definition 2. A binary graph G is traceable if there exists a directed path through
all internal nodes of G (Hamiltonian path).

A binary graph is acyclic, therefore, if the Hamiltonian path exists then it is
unique. The unique Hamiltonian path gives a canonical enumeration of the nodes
of a traceable binary graph. Finding the Hamiltonian path of a binary graph G is
a special case of the classical task of topological sorting of the nodes of a graph
and can be done in time O(n).

We are interested in traceable binary graphs only. Therefore we use the canon-
ical enumeration of nodes and draw our graphs so, that the nodes are in straight
line according to the canonical enumeration, 1-edges are drawn above the line and
0-edges below the line (Figure 1).

Definition 3. A binary graph G is homogeneous if only one type of edges (i.e.
either 1-edges only or 0-edges only) enters into every node v ∈V (G) (Figure 2).

Definition 4. We say that a binary traceable graph is strongly planar if it has no
crossing 0-edges and no crossing 1-edges in its stretched drawing (Figure 3).

It is obvious that if a binary graph is strongly planar then it is also planar, while
the opposite does not hold in general.

In [4] there was proven, that every strongly planar traceable binary graph is
homogeneous.

1Binary graph is a skeleton of a Binary Decision Diagram ([4]).
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Figure 1: A traceable binary graph (a); the graph after relabeling (b); the graph
after stretching (c).
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Figure 2: A inhomogeneous binary graph (node 4 violates the condition).

Definition 5. We say that a binary traceable graph is 1-cofinal (0-cofinal) if all
1-edges (0-edges) starting between the endpoints of some 0-edge (1-edge) and
crossing it end in the same node.

Figure 4 illustrates the notion of 0-cofinality. For establishing 0-cofinality, one
of the long edges ending at 5 and 6 must be redirected to the other vertex.

Definition 6. A binary traceable graph is cofinal if it is both 1-cofinal and 0-
cofinal.

Definition 7. We call a binary graph, which is traceable, strongly planar and cofi-
nal, a superpositional graph.

Another possibility to define superpositional graphs is using a superposition.
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Figure 4: Situation forbidden by 0-cofinality.

Definition 8. Let G and E be two binary graphs. A superposition of E into G in
place of internal node v (Gv←E) is a graph, which we obtain by deleting v from G
and redirecting all edges, pointing to v, to the root of E, all edges of E pointing to
terminal node T1 to the node high(v) and all edges pointing to the terminal node
T0 to the node low(v).

Let A, C and D be binary graphs, whose descriptions are shown in Fig. 5.

Definition 9. A class of superpositional graphs (SPG) is defined inductively as
follows:

1◦ Graph A ∈ SPG.
2◦ If G ∈ SPG and v is an internal node of G, then Gv←C ∈ SPG and Gv←D ∈

SPG.

Note that C = Av←C ∈ SPG and D = Av←D ∈ SPG.
In [4] there was proven, that definitions 7 and 9 are equivalent.

Theorem 1 ([4]). If G,H ∈ SPG and v is an internal node of G, then Gv←H ∈ SPG
(the class of superpositional graphs is closed under superposition).

Elementary graphs C and D can be considered as constructors of superposi-
tional graphs (we use bold C,D to emphasize their role as constructors): if E and
F are SPG with different sets of nodes, then C(E,F) = (C[u← E])[v← F ] and
D(E,F) = (D[u← E])[v← F ] are SPGs. There was shown in [7] that construc-
tors of superpositional graphs C and D are associative, so it is legal to use ”long”
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Figure 5: Binary graphs A, C and D.

constructors C(E1, . . . ,En) and D(E1, . . . ,En). Next lemma was proved in [7] for
the purposes of transforming an SPG into a separable permutation. We reproduce
it here with a proof, because all algorithms for a pattern matching are using the
proof.

Lemma 1 (Decomposition Lemma [7]). If G is an SPG with nodes 1, . . . ,n (n> 1)
in canonical order, m is a least node such that m 1−→ T1 and l is a least node such
that l 0−→ T0. If l <m then G can be uniquely represented as C(G1, . . . ,Gk) (k > 1)
for some superpositional graphs G1, . . . ,Gk. If m < l then G can be uniquely
represented as D(G1, . . . ,Gk) (k > 1) for some superpositional graphs G1, . . . ,Gk.

Proof. Suppose G = C(E,F) with internal nodes 1, . . . ,n in canonical order. Let
i|i+1 be the splitting line between E and F , i. e. internal nodes of E are 1, . . . , i
and internal nodes of F are i+1, . . . ,n and i 1−→ i+1. By definition of superposi-
tion, all edges j 1−→ T1 in E were redirected to node i+1 in G. It means, that only
edges of the form j 0−→ T0 (1≤ j < i) can overcome node i+1 in G. Similarly, if
G = D(E,F), only edges j 1−→ T1 (1≤ j < i) can overcome node i+1 in G.

Let G be a superpositional graph with internal nodes 1, . . . ,n in canonical or-
der. Let l be the starting point of the leftmost 0-edge, pointing to T0 and m be the
starting point of the leftmost 1-edge, pointing to T1.

1. Suppose l < m. Let i : 1 ≤ i < m be the rightmost starting point (left from
m) of the 0-edge, pointing to T0. We claim, that i|i+ 1 is the rightmost splitting
line of G = C(G1, . . . ,Gk) between Gk−1 and Gk. (Figure 6)

The edge i −→ i+ 1 must be a 1-edge because G is a binary graph (0-edge
i 0−→ T0, starting from i already exists). There are some 0-edges j 0−→ T0 over-
coming i+ 1 (at least one – i 0−→ T0) and no 1-edges j 1−→ T1, because leftmost
such an edge is m 1−→ T1. We have to show, that there are no edges r−→s, where
1 ≤ r < i and i+ 1 < s ≤ n. Suppose it is a 0-edge r 0−→ s. Then it must cross
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the 0-edge i 0−→ T0, which violates the property of strong planarity. Suppose it is
a 1-edge r 1−→ s. Then s ≤ m, otherwise it crosses m 1−→ T1. Due to homogene-
ity only 1-edges should enter s. Consequently s− 1 1−→ s. We are dealing with
binary graphs, therefore some 0-edge must start from s−1. It can not point to the
terminal T0, because i 0−→ T0 is the rightmost such an edge. If it is s− 1 0−→ t,
where s < t ≤ n, then the 0-edges i 0−→ T0 and s−1 0−→ t are starting between the
endpoints of a 1-edge r 1−→ s, which violates the property of cofinality (Figure 7).
Consequently, G can be split into G = C(E,F) at the point i|i+1.

Superpositional graph F can not be split further using constructor C, because
inside F either m = l (then F is a 1-node SPG A) or m > l, which is the case 2 of
current proof.

We get the graph E, removing F from C(E,F) and redirecting edges, pointing
to i+ 1 in C(E,F) into T1. It means, that the starting point of the leftmost edge,
pointing to T1 in E, is the leftmost node k, for which k 1−→ i+ 1 in G. Let node
h in E be the rightmost node such that h < k and h 0−→ T0, then h < h+ 1 is the
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rightmost splitting line for constructor C in E. Proceeding recursively until no
such h exists, we receive a full decomposition of G by constructor C.

2. m < l. Dual to the previous case, gives a decomposition of G by constructor
D.

If G(1, . . . ,n) can be decomposed into C(E,F) (D(E,F)) using splitting line
i|i+ 1, then we say that type(G) is C (D), splitting point is i and designate the
components E,F in terms of G by E = G[1 : i] and F = G[i+1 : n]. See Figure 8
for an example of an decomposition of some SPG G of type C.
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3 Pattern Matching for Separable Permutations
Definition 10. Let [n] = {1, . . . ,n}. A permutation p on the set [n] is a bijection
p : [n]→ [n]. We use a traditional notation: p = p1 . . . pn, where pi = p(i). Let
Sn be a set of all permutations on [n].

An inverse of p is given by an equation p−1(p) = 12 . . .n. The pattern match-
ing problem for permutations is the following: Let t ∈ Sn (the text and p ∈ Sk, k≤
n (the pattern. The text t contains a pattern p or p matches into t, if there is a
subsequence of t, say t ′ = ti1, . . . , tik , with i1 < i2 < .. . < ik, such that the elements
of t ′ are ordered according to the permutation p – i.e. tir < tis iff pr < ps.

If t does not contain such a subsequence, we will say that t is avoiding pattern
p. Let Sn(p) be the set of all n-permutations, avoiding p.

Definition 11. A separable n-permutation is a permutation, avoiding patterns
2413 and 3142, i.e. the class of permutations Sn(2413,3142).

Theorem 2 ([7]). There is a bijection between a set of separable n-permutations
and a set of superpositional graphs with n internal nodes.

A proof of Theorem 2 was given in [7]. We will reproduce it here along with
a couple of definitions, another theorem and an algorithm.

Definition 12. Let L be a set of labels and l : [n]→ L a labeling function. A
labeled superpositional graph is a pair <G, f >, where G is a SPG with n internal
nodes and f is a labeling function. f (i) assigns a label to node i in the canonical
enumeration of internal nodes of G.

Definition 13. Let C, D be two different labels. An alternating tree T (C,D) is
an ordered tree with leaves 1 . . . ,n (from left to right) whose leaves are labeled by
a labeling function l : [n]→ L, where L is a set of labels, different from C, D. In-
ternal nodes are labeled by labels from set {C,D} so that the labels of the internal
nodes are alternating in every path from root to leaf.

Theorem 3. There is a bijection between alternating trees and labeled superpo-
sitional graphs.

Proof. =⇒. Let T be an alternating tree in prefix form whose labeling function is
l. To get a labeled SPG GT , perform all superpositions, determined by construc-
tors C and D.
⇐=. Let G, l be a labeled SPG. Decompose G into C(G1, . . . ,Gk) or D(G1, . . . ,Gk)
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using the proof of Decomposition Lemma. Proceed recursively for G1, . . . ,Gk un-
til single internal nodes.

It is easy to see, that both transformations are injections and reversing each
other Therefore we have a needed bijection. An enumeration of leaves of T trans-
forms into a canonical enumeration of internal nodes of G and vice versa. There-
fore the labeling function remains the same.

Separable permutations can be sorted by Algorithm 1.

Algorithm 1. separatingsort (tree)
begin Traverse the tree in postorder.

for every internal node i
do if label(i)=“-”

then reverse the order of subtrees of node i
fi

od
end

After applying Algorithm 1 to the separating tree of permutation p we get
the tree, whose labels of leaves are ordered and numbers of leaves (from left to
right) are in order of p−1 (the revers of p). So, if we exchange the labels of the
leaves and the numbers of the leaves in sorted tree, we get a separating tree for the
permutation p−1. If we apply the sorting algorithm to the sorted tree, we get back
the original tree of the separable permutation.

On Figure 9 are depicted a separating tree of the permutation 85673412 and a
sorted tree.

Now we are ready to show the proof of Theorem 2.

Proof. Every separable permutation p = p1, . . . , pn has an unique contracted sep-
arating tree Tp(+,−) with labeling function p(i) = pi. By Theorem 3 (taking
C = +, D = − and p as a labeling function) we have a bijection between sets
Tp(+,−) and labeled superpositional graphs. All we have to show is, that the
information about the labeling function p is represented by the structure of SPG.
Let G be an SPG. We add to G an identity labeling function id(i) = i and build a
contracted separating tree. Then we sort it using Algorithm 1, renumber leaves in
ascending order and apply sorting algorithm once more. After exchanging labels
and numbers of leaves, we get contracted separating tree for permutation p.

10
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We present here the algorithms, implementing the bijection. Let Gp denote a
superpositional graph, corresponding to a permutation p and pG be a permutation,
corresponding to a superpositional graph G.

Algorithm 2. sepperm2SPG(separable permutation p = p1 . . . pn)
//returns a superpositional graph Gp.
begin

Augment the permutation to indices T0 and T1
taking p(T0) = 0, p(T1) = n+1.
Start with n+2 isolated nodes 1, . . . ,n,T1,T0;
for i := 1 step 1 until n−1
do if p(i)< p(i+1)

then set i 1−→ i+1; set i 0−→ j, where j ∈ {i+2, . . . ,n,T0}
is a least index for which p( j)< p(i).

else set i 0−→ i+1; set i 1−→ j, where j ∈ {i+2, . . . ,n,T1}
is a least index for which p( j)> p(i).

fi
od
set n 1−→ T1; set n 0−→ T0

end

Let G be a superpositional graph with internal nodes 1, . . . ,n in canonical or-
der; let k, l be indexes: 1≤ k ≤ l ≤ n. α||β denotes a concatenation of sequences
of integers α and β.

11



Algorithm 3. seq (superpositional graph G[k : l])
// returns a sequence of integers i1, . . . , il
begin

if l = k then return k fi;
if type(G) =C
then return seq(G[k : split(G[k : l])])||seq(G[split(G[k : l])+1, l]);
else return seq(G[split(G[k : l])+1, l])||seq(G[k : split(G[k : l])]);
fi;

end

Algorithm 4. SPG2sepperm(superpositional graph G[1 : n])
// returns a permutation pG
begin

return inverse(seq(G[1 : n]));
end

A function inverse(p) calculates an inverse of the permutation p.

Definition 14. The pattern matching problem for superpositional graphs is the
following: Let T (text) and P (pattern) be superpositional graphs with internal
nodes 1, . . . ,n and 1, . . . ,k (k ≤ n). We say, that P matches into T if there exists a
sequence of integers i1, . . . , ik such that:

1. For every arrow l 1−→ T 1 in P there exists a 1-path il ; T 1 in T , which
consists of nodes from the set {il, il +1, . . . , il+1−1}.

2. For every arrow l 0−→ T 0 in P there exists a 0-path il ; T 0 in T , which
consists of nodes from the set {il, il +1 . . . , il+1−1}.

3. For every arrow l 1−→ m (m≤ k) in P there exists a 1-path il ; im or there
are indexes r,s : r < im < s such that there exists a 1-path il ; r and r−1 0−→ s
in T .

4. For every arrow l 0−→ m (m≤ k) in P there exists a 0-path il ; im or there
are indexes r,s : r < im < s such that there exists a 0-path il ; r and r−1 1−→ s
in T .

Lemma 2. Let t = t1 . . . tn be a separable permutation and Gt its SPG, built using
Algorithm 2. Let 1≤ l < m≤ n. Then:

1. t(l)< t(m) iff there is a 1-path l ; m in Gt or there exist r,s: l < r < m < s

such that there is a 1-path l ; r and r−1 0−→ s in Gt .

12



2. t(l)> t(m) iff there is a 0-path l ; m in Gt or there exist r,s: l < r < m < s

such that there is a 0-path l ; r and r−1 1−→ s in Gt .

Proof. We prove the first assertion, the proof of the second assertion is dual.
1a. (⇐). If there is a 1-path l ; m in Gt , then by Algorithm 2 t(l) < t(m).

Let l ; r be a 1-path and r− 1 0−→ s in Gt , where r < m < s. We show, that
if under these conditions t(l) > t(m) then t is not a separable permutation. If
t(l)> t(m), then low(l)< r, otherwise low(r−1) = s≤ low(l) (strong planarity
of Gt), m < low(l) and by Algorithm 2 t(l) < t(m). We have t(m) > t(r− 1),
otherwise low(r−1)=m instead of low(r−1)= s. Also we know, that t(l)< t(r).
If t(m)< t(l), then we have four indices l < r−1 < r < m and t(r−1)< t(m)<
t(l)< t(r), which is a forbidden subsequence for a separable permutation.

1b. (⇒). Let t(l) < t(m) for some l,m: 1 ≤ l < m ≤ n. We show, that every
attempt to find m, which does not satisfy the conditions ends up with the subse-
quence of indexes, matching forbidden pattern 2413, i.e. t is not a separable per-
mutation. Let r <m be greatest index such that there is a 1-path l ; r. t(r)> t(m),
otherwise r 1−→ m and, consequently, we have a 1-path l ; m. r must be greater
than low(l), otherwise we have a forbidden subsequence t(l), t(r), t(low(l)), t(m).
Let h ≤ r be a maximal index, such that p(h) > p(l) and p(h− 1) < p(l) (such
node h always exists, because low(l) < r, p(low(l)) < p(l) and p(r) > p(l)).
There exists a 1-path l ; p(h), otherwise there must be a node k : l < k <
h− 1 such that p(k) > p(h) and p(l), p(k), p(h− 1), p(h) is a forbidden subse-
quence. Let h− 1 0−→ s. Due to the construction we have s > r. If s < m, then
p(l), p(r), p(s), p(m) is a forbidden pattern. If s > m, then there is a 1-path l ; h

and h−1 0−→ s, which means that the conditions of the lemma are fulfilled for m.

Theorem 4. A separable permutation p matches into a separable permutation t
iff Gp matches into Gt .

Proof. =⇒. Let p matches into t. Then there exists a sequence i1, . . . , ik such that
til < tim iff p(l) < p(m). Match of Gp into Gt is a subgraph of Gt , induced by
nodes i1, . . . , ik (according to the Definition 14).
⇐=. Let Gp matches into Gt , i. e there exists a subsequence of nodes i1, . . . , ik

in Gt , which determines a match. The same subsequence is a match of p into t.
The conditions of matching are fulfilled in both directions due to Lemma 2.

13



Pattern matching for separable permutations can thus be reduced to SPG pat-
tern matching in linear time.

4 Pattern Matching for Superpositional Graphs
We need some preliminary denotations for presenting an algorithm for pat-

tern matching. We denote by G[k : l] a subgraph of G, induced by nodes k,k+

1, . . . , l,T 1,T 0 in which every edge i 1−→m (i 0−→m) for m > l is redirected to T 1
(T 0) If A and B are sets of sequences of integers, then A∪B denotes a union and
A×B a Cartesian product of A and B. Note, that A× /0 = /0×A = /0; {r r+1 . . . s}
is a set which consists of a single sequence r r+1 . . . s and {r,r+1, . . . ,s} consists
of s− r+1 sequences, each of length 1. Variables X ,Y,Z,V,W in Algorithm 5 are
local variables of type set of integer sequences. A function equivalent checks if its
arguments are equivalent up to the labels of internal nodes and function split(G)
returns a leftmost splitting point of G.

Algorithm 5. match(T [r : s],P[u : v])
//returns a set of integer sequences, which are matches of SPG P[u : v] into SPG
T [r : s].
begin

if s− r < v−u then return /0 fi;
if s− r = v−u
then if equivalent(T [r : s],P[u : v])

then return {r r+1 . . . s}
else return /0

fi
fi;
if u = v then return {r,r+1, . . . ,s} fi;
dt = split(T [r : s]); d p = split(P[u : v]);
X := match(T [r : dt],P[u : v]); //all matches of P[u : v] in the left part.
Y := match(T [dt +1,s],P[u : v]); //all matches of P[u : v] in the right part.
Z := X ∪Y
while type(T [r : s]) = type(P[u : v]) & dt− r ≥ d p−u
//a cycle over splitting points of P[u : v].
do

if s−dt ≥ u−d p then
V := match(T [r : dt],P[u : d p);

14



W := match(T [dt +1,s],P[d p+1 : v]);
Z := Z∪ (V ×W );

fi:
d p := split(P[d p+1 : v]) :

od
return Z;

end

To prove the correctness of Algorithm 5 we need two lemmas first.

Lemma 3. Let G be an SPG, l be a splitting point of G and 1≤ u < l < v≤ n.
If G is of type C then:

(a) There does not exist a 1-path u 1
; v;

(b) Every 0-path u 0
; v contains a node l +1.

If G is of type D then:
(c) There does not exist a 0-path u 0

; v;
(d) Every 1-path u 1

; v contains a node l +1.

Proof. Follows immediately from Decomposition Lemma.

Lemma 4. 1. If pattern P is of type C and text T = D(T1, . . . ,Th), where T1, . . . ,Th
are of type C then every match of P into T lies entirely inside some Ti (1≤ i≤ h).

2. If pattern P is of type D and text T = C(T1, . . . ,Th), where T1, . . . ,Th are of
type D then every match of P into T lies entirely inside some Ti (1≤ i≤ h).

Proof. We prove 1., the proof of 2. is dual.
Let (i1, . . . , ik) be a match of P into T . Let us assume on the contrary, that there

is m (1≤m < k) such that im is a node of Tr and im+1 is a node of D(Tr+1, . . . ,Th).
Due to Decomposition Lemma there must be a splitting point l of type D between
nodes im and im+1 that splits T into D(T1, . . . ,Tr) and D(Tr+1, . . . ,Th). By De-
composition Lemma we have l 0−→ l + 1, l 1

; T 1 and only edges j 1−→ T 1 can
overcome node l + 1. Suppose m 1−→ m+ 1 in P. By the definition of match-
ing im

1
; im+1, which violates (a) of Lemma 3, or im

1
; u and u 1−→ v, where

u < im+1 < v. Node u must be left from l + 1, otherwise we had a 1-path over-
coming l + 1. Then an edge u 1−→ v overcomes a splitting point. which is also
impossible. Suppose m 0−→m+1. As P is a binary graph, there must be a 1-edge
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m 1−→ v, where m+ 1 < v. If v ≤ n, then the existence of a path im
1
; v violates

(a) of Lemma 3. If v = T 1, then there must exist a node u < m such that u 0−→ T 0,
otherwise P is not of type C. By definition of pattern matching there must be a
path iu

0−→ T 0 which does not contain any node from match. As m 0−→ m+ 1,
there must be also a path im

0
; im+1 By (b) of Lemma 3, both paths have a com-

mon node l+1 and, therefore all nodes from l+1 to im+1 are common. It means,
that the path iu

0−→ T 0 contains a node im+1from the pattern, which violates the
definition. This is a contradiction.

Theorem 5. Algorithm 5 is correct.

Proof. Let T (1, . . . ,n) (text) and P(1, . . . ,k) (pattern) be two superpositional graphs.
We have to show, that there exists a sequence of integers i1, i2, . . . , ik (1 ≤ i1 <
i2 < .. . < ik ≤ n) such that conditions of Definition 14 are fulfilled if and only if
(i1, i2, . . . , ik) ∈ match(T [1 : n],P[1 : k]).

1. (⇒). Let (i1, i2, . . . , ik) fulfill the conditions of Definition 14.
We prove by induction on k, that then (i1, i2, . . . , ik) ∈match(T [1 : n],P[1 : k]).
The case k = 1 is obvious. By Lemma 4 we can assume, that (i1, i2, . . . , ip)

lies entirely in some (minimal) subgraph T [r,s]. Let the type of T [r,s] and P[1 :
k] be C (case D is dual) and split(T [r,s] = l. Let m (1 ≤ m < k) be an index
such that nodes i1, . . . , im are nodes of T [r, l] and nodes im+1, . . . , ip are nodes of
T [l + 1,s]. By induction hypothesis (i1, . . . , im) ∈ match(T [r : l],P[1 : m]) and
(im+1, . . . , ik) ∈ match(T [l +1 : s],P[m+1 : k]). We have to show, that m is some
splitting point of P. The conditions for m to be an splitting point of type C are:
(a) m 1−→m+1; (b) m 0−→ T 0; (c) There does not exist an 1-edge u 1−→ v, where
u < m < m+1 < v. All the conditions can be checked by considerations, similar
to the proof of Lemma 4. According to Algorithm 5 (i1, i2, . . . , ik) ∈ match(T [1 :
l],P[1 : m])×match(T [l +1,n],P[m+1,k])⊆ match(T [1 : n],P[1 : k]).

2. (⇐). Let (i1, i2, . . . , ip) ∈ match(T [1 : n],P[1 : m]).
We have to show, that the conditions of Definition 14 are fulfilled. Let m ∈

{1, . . . , p} and m 1−→m+1 in P (case m 0−→m+1 is dual. Indexes im and im+1 can
be adjacent in a sequence (i1, i2, . . . , ip) ∈ match(T [1 : n],P[1 : m]) in two cases.

a) There are subgraphs T [r : s] and P[u : v] which are equivalent. In this case
im

1−→ im+1 follows immediately.
b) P[u : v] is a maximal subgraph of P[1 : k] whose split point is m, T [r : s] is

a subgraph of T [1 : n], whose leftmost split point is l and (ii, . . . , ik) ∈match(T [r :
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l],P[u : m])×match(T [l +1 : s],P[m+1 : v]). By Theorem 3 in [4] there exists a
1-path from every internal node of an SPG into T 1. Applying this result to T [r : l]

we can claim, that there exists a 1-path im
1
; T 1. According to a definition of

superposition this path transforms into im
1
; l+1 in T [r : s] =C(T [r : l],T [l+1,s].

IF im+1 = l + 1 then the first part of condition 3 of the Definition 14 is fulfilled.
If im+1 < l + 1, then we have im

1
; l + 1 and l 0

; T 0 (again because T [r : s] =
C(T [r : l],T [l +1,s]) and the second part of condition 3 is fulfilled.

An obvious modification of Algorithm 5 counts the number of matches. Vari-
ables X ,Y,Z,V,W are of type integer.

Algorithm 6. #match(T [r : s],P[u : v])
//returns a number of matches of SPG P[u : v] into SPG T [r : s].
begin

if s− r < v−u then return 0 fi;
if s− r = v−u
then if equivalent(T [r : s],P[u : v])

then return 1
else return 0
fi;

fi;
if u = v then return s− r+1 fi;
dt = split(T [r : s]); d p = split(P[u : v]);
X := #match(T [r : dt],P[u : v]);
Y := #match(T [dt +1,s],P[u : v]);
Z := X +Y
while type(T [r : s]) = type(P[u : v]) & dt− r ≥ d p−u
do

if s−dt ≥ u−d p then
V := #match(T [r : dt],P[u : d p);
W := #match(T [dt +1,s],P[d p+1 : v]);
Z := Z +(V ·W );

fi:
d p := split(P[d p+1 : v]) :

od
return Z;
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end

5 Performance
Obviously, the performance of Algorithm 5 equals to the performance of Al-

gorithm 6 plus the number of matches. Therefore we concentrate on estimating of
the performance of Algorithm 6.

We represent a superpositional graph G(1, . . . ,n) by a two-dimensional array
G[0 : 1,1 : n], where G[0, i] = j iff there is a 0-edge i 0−→ j and G[1, i] = j iff there
is a 1-edge i 1−→ j (both terminal nodes are designated by n+1). If we are dealing
with a subgraph G[r : s], then we can extract it from an array G just by indexes r,s.
So, there is no need to duplicate subgraphs for recursive calls.

Function equivalent(T [r : s],P[u : v]), where T [r : s] and P[u : v] are SPG-s of
equal length is obviously linear in the length. Function split can be in advance
calculated for every subgraph, which occurs in recursive decomposition of the
SPG and the results can be stored in a two-dimensional array S[1 : n,1 : n]. As
our algorithm only splits graph into subgraphs and does not contain ”joins”, every
line i|i+1 (1≤ i < n) is used exactly once. Therefore we need to use only n−1
elements of an array S[1 : n,1 : n]. Algorithm 7 calculates splitting points for all
subgraphs G[k, l], needed for the full decomposition of G.

Algorithm 7. read(k,m)
//uses global arrays G[0 : 1,1 : n], representing an SPG and S[1 : n,1 : n] for stor-
ing the splitting points.
begin

i:=k; //current node.
t:=0; //0, if current long edge is 0-edge, 1 otherwise.
if G[1,k]> k+1 then t := 1 fi; //if first 1-edge is longer.
while i < m
do r := min{G[t, i]−1,m};//r is an endpoint of a subgraph

S[k,r] := i;
if r− i > 1 then read(i+1,r) fi; //read nodes under the current edge.
i := r;
t := XOR(t,1); //switches between 1 and 0.

od
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end

Before we prove the correctness of algorithm 7, we need to define split points
for superpositional graph G.

Definition 15. Split points are points i|i+1 for superpositional graph G, where in-
ternal nodes 1, . . . ,n of G are in canonical order and G is a superposition C(E,F)
or D(E,F), where internal nodes of E and F are 1, . . . , i and i+ 1, . . . ,n respec-
tively.

Next we will state a lemma that will help us to prove the correctness of algo-
rithm 7.

Lemma 5. i|i+1 is a split point for superpositional graph G if and only if all the
edges of G of one type (0- or 1-edges) crossing the split point direct to i+ 1 and
all the edges of G of the opposite type crossing the split point direct to a terminal
node.

Proof. Let G be a superposition C(E,F) and i|i+ 1 its split point. According to
the definition of superposition, all edges of E pointing to T1 are redirected to i+1.
Since the only 1-edges crossing the split point are the redirected edges, which now
point to i+1, and the only 0-edges crossing it are pointing to T0, the condition is
satisfied. The case for superposition D(E,F) is analogous.

It is also easy to see that when the all the edges of one type crossing i|i+ 1
point to i+ 1 and all the edges of opposite type point to a terminal node, then
the superpositional graph G with internal nodes 1, . . . ,n can be decomposed into
graphs E and F with internal nodes 1, . . . , i and i+ 1, . . . ,n respectively, using
either constructor C(E,F) or D(E,F).

Theorem 6. Algorithm 7 finds the split points for superpositional graph G, its
subgraphs E and G, and recursively for all their subgraphs down to elementary
graphs A (which consist of just one node and thus cannot be decomposed further).

Proof. The algorithm searches for the leftmost point i|i+1 that satisfies the con-
ditions of lemma 5. Since there are exactly two edges leaving any internal node
and they cannot point to the same internal node, the node i we are looking for
must have one of its edges point to a terminal node. Algorithm starts its search
from node 1 (let us call this node d1). If high(1) or low(1) points to a terminal
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node, then i = 1 satisfies conditions of lemma 5 and obviously it is the leftmost
such node.

Let us assume that high(1) and low(1) both point to internal nodes of G. Algo-
rithm finds the longer of the two edges (let us denote this by long(1)) and records
the endpoint of it. Let us call the node just left of it d2. It is clear that none of the
nodes left of d2 can satisfy the conditions of lemma 5. However, node d1 is the
split point for a subgraph E1 consisting of nodes 1, . . . ,d2 for the reasons given
in the previous paragraph. The split point allows us to split E1 into its subgraphs
E0 and F0 whereas we already know that E0 has just one node and thus cannot be
split further. If F0 has more than one node then the algorithm continues to find its
split point and subgraphs until it reaches elementary graphs.

Once the algorithm has found a splitpoint di for a subgraph Ei consisting of
nodes 1, . . . ,di+1, the next split point is di+1 = long(di)− 1, unless long(di) is a
terminal node in which case Ei = G.

Edges crossing the split point di|di + 1 direct to exactly two nodes. We can
show that recursively. We have already shown that it is so for i = 1. Now, if this
is true for di−1, then one of the nodes edges coming from left of di−1 direct to is
the node di−1 +1 and the other one is the node di +1. All the edges of the same
type as the edge long(di−1) coming from the nodes di−1 + 1, . . . ,di and crossing
di|di +1 have to direct to di +1 because of the strong planarity requirement. All
the edges of the opposite type coming from the nodes di−1+1, . . . ,di and crossing
di|di +1 have to direct to long(di) because of the cofinality requirement.

If long(di) is a terminal node, then we have found the split point for G, else
the algorithm records di as a split point for a subgraph and continues.

Since there is no overlap between subgraphs E and F , all split points are only
used once by the algorithm and there are exactly n - 1 split points in total. The
number of steps for Algorithm 7 is thus obviously linear in the length of an SPG.
The algorithm moves from the first node of an SPG to the end using long edges,
until one finds a long edge, pointing out of the limits. As shown in the proof, this
is a leftmost splitting point.

The decomposition type of a subgraph G[k,m] is C if a short edge from
split(G[k,m]) to the next node is a 1-node and D otherwise.

Algorithm 6 makes multiple recursive calls with the same text and pattern in
some cases.

Example. Let us look for number of matches of P = (4,4,4)(2,3,4) into
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Figure 10: Every subsequence of (1,2,3,4,5) of length 3 is a match of P into T ,
so there are

(5
3

)
= 10 matches.

T = (6,6,6,6,6)(2,3,4,5,6) (see Figure 10). Then algorithm read gives us

SP[1,3] = 1,SP[2,3] = 2,

ST [1,5] = 1,ST [2,5] = 2,ST [3,5] = 3,ST [4,5] = 4

and

#match(T [1 : 5],P[1 : 3])
= #match(T [1 : 1],P[1 : 3])+#match(T [2 : 5],P[1 : 3])

+#match(T [1 : 1],P[1 : 1])∗#match(T [2 : 5],P[2 : 3])
= 0+#match(T [2 : 2],P[1 : 3])+#match(T [3 : 5],P[1 : 3])

+#match(T [2 : 2],P[1 : 1])∗#match(T [3 : 5],P[2 : 3])
+1∗ (#match(T [2 : 2],P[2 : 3])+#match(T [3 : 5],P[2 : 3])
+#match(T [2 : 2],P[2 : 2])∗#match(T [3 : 5],P[3 : 3]))

= 0+(0+1+1∗ (#match(T [3 : 3],P[2 : 3])+#match(T [4 : 5],P[2 : 3])
+#match(T [3 : 3],P[2 : 2])∗#match(T [4 : 5],P[3 : 3])))
+1∗ (0+(#match(T [3 : 3],P[2 : 3])+#match(T [4 : 5],P[2 : 3])
+#match(T [3 : 3],P[2 : 2])∗#match(T [4 : 5],P[3 : 3])+1∗3))

= 0+(0+1+1∗ (0+1+1∗2))+1∗ (0+(0+1+1∗2)+1∗3)
= 10

In this example #match(T [3 : 5],P[2 : 3]) had to be calculated twice.

To avoid multiple calls we have to store the number of matches for every
combination of text and pattern. There are n−1 splitting points in the text and p−
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1 splitting points in the pattern, so we need a two-dimensional array COUNT [1 :
n−1,1 : k−1]. We assume, that we have prepared global arrays T [0 : 1,1 : n] for
a text, ST [1 : n−1,1 : n] for splitting points of the text, P[0 : 1,1 : k] for a pattern,
SP[1 : k−1,1 : k] for splitting points of the pattern and COUNT [1 : n−1,1 : k−1],
filled in with constants −1.

Algorithm 8. count(r,s,u,v)
//returns a number of matches of SPG P[u : v] into SPG T [r : s] .
begin

dt = ST [r,s]; d p = SP[u,v]);
if COUNT [dt,d p] 6=−1 then return COUNT [dt,d p]
if s− r < v−u then COUNT [dt,d p] := 0; return 0 fi;
if s− r = v−u
then if equivalent(T [r : s],P[u : v])

then COUNT [dt,d p] := 1; return 1
else COUNT [dt,d p] := 0; return 0
fi;

fi;
if u = v then COUNT [dt,d p] := s− r+1; return s− r+1 fi;
X := count(T [r : dt],P[u : v]);
Y := count(T [dt +1,s],P[u : v]);
Z := X +Y
while type(T [r : s]) = type(P[u : v]) & dt− r ≥ d p−u
do

if s−dt ≥ u−d p then
V := count(T [r : dt],P[u : d p);
W := count(T [dt +1,s],P[d p+1 : v]);
Z := Z +(V ·W );

fi:
d p := split(P[d p+1 : v]) :

od
COUNT [dt,d p] := Z; return Z;

end

It is easy to see, that it takes O(kn) steps to compute the number of matchings.
An obvious modification of Algorithm 8 allows us to compute all matches in time
O(kn+ p), where p is a number of matches.
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6 Conclusion
We can conclude, that superpositional graphs are useful formalism for a pat-

tern matching problem for separable permutations. For investigating more general
problems – if text is a Baxter permutation or a general permutation – we need
a bijection between permutations and homogeneous binary graphs, which gives
strongly planar binary graph, if limited to Baxter permutations and agrees with
the bijection, defined by Algorithms 2 and 4, if limited to separable permutations.
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7 Kokkuvõte

7.1 Mustrite leidmine superpositsioonigraafides
Käesoleva magistritöö eesmärgiks on leida võimalikult kiire algoritm mustrite

leidmiseks superpositsioonisgraafides.
Superpositsioonigraafi (SPG) mõistet kasutati esmakordselt artiklis [3] sktruk-

tuurselt sünteesitud binaarsete otsustusdiagrammide skeleti kohta. Artiklis [7] de-
fineeriti mustrite leidmine superpositsioonisgraafides ja leiti ka bijektsioon SPGde
ja lahutatavate permutsioonide vahel. Mati Tombak, käesoleva magistritöö juhen-
daja, oli tõestanud veel avaldamata töös, et mustrite leidmine superpositsioonis-
graafides ja lahutatavates permutsioonides on samaväärne ning mustrite leidmine
lahutatavates permutsioonides on taandatav lineaarse ajaga mustrite leidmisele su-
perpositsioonisgraafides.

Olgu n teksti pikkus ja k mustri pikkus. P. Bose, J. Buss and A. Lubiw näitasid
artiklis [1], et üldine mustrite leidmise probleem on NP−täielik, aga loendamise
probleem on lahenduv O(kn6) ajaga juhul kui muster on lahutatav permutsioon.
L. Ibarra näitas artiklis [2], et see on teostatav ajaga O(kn4).

Käesolevas magistritöös leitakse algoritm kiirusega O(kn) mustrite leidmiseks
superpositsioonisgraafides. Me näitame ka, et iga lahendus mustri leidmiseks su-
perpositsioonisgraafides on ka lahenduseks sellelevastava mustri leidmiseks lahutata-
vates permutsioonides ja vastupidi. Tulemuseks saame algoritmi, mis loendab
mustri sobivusi ajaga O(kn), mustrite leidmiseks juhul kui nii tekst kui ka muster
on lahutatavad permutsioonid.

Peatükis 2 defineerime superpositsioonisgraafid ja näitame SPGde konstrueer-
imist ja lahutamist elementaargraafideks. SPGde lahutamisel on oluline osa SPGde
mustrite leidmises. Peatükis 3 defineerime lahutatavad permutatsioonid ja esitame
algoritmid SPGde ja lahutatavate permutatsioonide bijektsiooni jaoks. Peatükis 4
anname SPGde mustrite leidmise algoritmi ja esitame tõestuse selle õigsuse ko-
hta. Peatükis 5 esitame paar abialgoritmi ja määrame mustrite leidmise algoritmi
töökiiruse. Autori panus antud töös on SPGde mustrite leidmise algoritmid ja
töökiiruse arvutused (peatükid 4 ja 5, tihedas koostöös magistritöö juhendajaga).

Käesoleva magistritöö sisu on esitatud mustrite leidmise konverentsile DAGM-
OAGM 2012, Grazis, Austrias (lisa A). Vastust töö vastuvõtmise kohta ootame 18.
juuniks 2012.

24



References
[1] Bose, P., Buss, P.J., Lubiw, A.; Pattern Matching for Permutations. Informa-

tion Processing Letters, 65, 277–283 (1998).

[2] Ibarra, L.; Finding Pattern Matchings for Permutations. Information Process-
ing Letters, 61, 293-295 (1997).

[3] Jutman, A., Peder, A., Raik, J., Tombak, M., Ubar, R.; Structurally Syn-
thesized Binary Decision Diagrams. 6th International Workshop on Boolean
Problems, Freiberg University, 271–278 (2004).

[4] Peder, A., Tombak, M.; Superpositional graphs. Acta et Commentationes Uni-
versitatis Tartuensis de Mathematica, 13, 51–64 (2009).

[5] Stankovic, R.S., Ubar, R., Astola, J.T; Decision Diagrams: From a Mathemat-
ical Notion to Engineering Applications. Facta Universitatis - series: Elec-
tronics and Energetics, Niš, 2011 24(3):281–301.
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