
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
71

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
71

SIIM KARUS

Maintainability of XML Transformations

Institute of Computer Science, Faculty of Mathematics and Computer Science,
University of Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in informatics on May 13, 2011, by the Council of the
Institute of Computer Science, Faculty of Mathematics and Computer Science,
University of Tartu.

Supervisors:
Prof PhD Marlon Dumas
Institute of Computer Science
University of Tartu
Tartu, Estonia

Docent PhD Helle Hein
Institute of Computer Science
University of Tartu
Tartu, Estonia

Opponents:

Prof PhD Mehdi Jazayeri
Faculty of Informatics
University of Lugano
Lugano, Switzerland

Assistant professor PhD Martin Pinzger
Department of Software Technology
Delft University of Technology
Delft, The Netherlands

Commencement will take place on June 28, 2011, at 15.00 on Liivi 2–404

ISSN 1024–4212
ISBN 978–9949–19–695–1 (trükis)
ISBN 978–9949–19–696–8 (PDF)

Autoriõigus Siim Karus, 2011

Tartu Ülikooli Kirjastus
www.tyk.ee
Tellimus nr 325

5

CONTENTS

LIST OF ORIGINAL PUBLICATIONS ... 7

ABSTRACT ... 8

1. INTRODUCTION .. 10
1.1. Background .. 10

1.1.1. Extensible Markup Language ... 11
1.1.2. Extensible Stylesheet Language Transformations 12
1.1.3. Maintainability .. 13
1.1.4. Forward Compatibility.. 13
1.1.5. Measures of Development Effort .. 15

1.2. Problem Statement ... 15
1.2.1. Specifying Requirements on XML Transformations 16
1.2.2. Achieving Forward Compatibility of XML

Transformations .. 17
1.2.3. Building Code Churn Estimation Models 17

1.3. Approach ... 18
1.3.1. Machine Learning ... 18 r

1.3.1.1. Expectation Maximisation .. 20
1.3.1.2. Decision Trees .. 20
1.3.1.3. Neural Networks ... 20

1.3.2. Descriptive analysis .. 21
1.4. Publications and Contributions ... 21
1.5. Organisation of the Thesis ... 22

2. A STUDY OF LANGUAGE USAGE EVOLUTION IN OPEN
SOURCE SOFTWARE ... 24
2.1. Results ... 24
2.2. Related Work ... 26
2.3. Future Work .. 27

3. ENFORCING POLICIES AND GUIDELINES
IN WEB PORTALS: A CASE STUDY ... 28
3.1. Results ... 28
3.2. Related Work ... 29
3.3. Limitations of the Study and Future Work .. 30

4. DESIGNING MAINTAINABLE XML TRANSFORMATIONS 31
4.1. Results ... 31
4.2. Related Work ... 32
4.3. Future Work ... 33

5. PREDICTING THE MAINTAINABILITY OF XSL
TRANSFORMATIONS ... 34
5.1. Results ... 34

2

6

5.2. Related Work ... 36
5.3. Future Work ... 37

6. PREDICTING CODE CHURN FROM XML METRICS 38
6.1. Results ... 38
6.2. Related Work ... 39
6.3. Future Work .. 40

7. CONCLUSION ... 41

8. BIBLIOGRAPHY .. 43

9. ACKNOWLEDGEMENTS .. 48

10. KOKKUVÕTE (SUMMARY IN ESTONIAN) 49
 XML teisenduste hallatavus .. 49

PUBLICATIONS ... 53

CURRICULUM VITAE ... 137
ELULOOKIRJELDUS ... 138

7

LIST OF ORIGINAL PUBLICATIONS

1. Karus, Siim; Gall, Harald. A Study of Language Usage Evolution in Open
Source Software. In: Proceedings of the 8th International Working Confer-
ence on Mining Software Repositories, MSR 2011 (Co-located with ICSE),
May 21–22, 2011, Waikiki, Honolulu, HI, USA. IEEE, 2011.

2. Karus, S.; Dumas, M. (2007). Enforcing Policies and Guidelines in Web
Portals: A Case Study. International Workshops on Web Information Sys-
tems Engineering (WISE 2007 International Workshops). (Eds.)Mathias
Weske, Mohand-Said Hacid, Claude Godart. Berlin: Springer, 2007, (Lec-
ture Notes in Computer Science; 4832), 154–165.

3. Karus, Siim; Dumas, Marlon (2010). Designing Maintainable XML Trans-
formations. In: Software Maintenance and Reengineering, European Confe-
rence on: 14th European Conference on Software Maintenance and Reengi-
neering, 15–18 March 2010, Madrid, Spain. IEEE Computer Society, 2010,
137–145.

4. Karus, Siim; Dumas, Marlon. Predicting the maintainability of XSL transfor-
mations, Science of Computer Programming, In Press, Available online 31
December 2010, ISSN 0167-6423, DOI: 10.1016/j.scico.2010.12.006.

5. Karus, Siim; Dumas, Marlon. Predicting Code Churn from XML Metrics,
Under Review.

8

ABSTRACT

Contemporary software systems often rely on the Extensible Markup Language
(XML) to represent data internally and to interact with other systems and with
end users. Concomitantly, the Extensible Stylesheet Language (XSL) is com-
monly employed to define transformations between the internal XML docu-
ments manipulated by a system and XML documents used for external inter-
action. These XSL transformations need to be updated whenever the underlying
XML formats evolve, thereby raising a maintenance problem. In this setting,
this dissertation undertakes to study the usage of XML and XSL in software
systems and to devise models and guidelines to estimate and reduce the effort
needed to maintain code in software projects that use XML.

The dissertation starts with an analysis of open source software repositories
in view of unveiling usage patterns of XML files in open source projects. The
analysis of software code repositories is followed by studies of maintainability
and forward compatibility of XSL transformations (XSLT). Finally, the disser-
tation studies the influence of XML on the maintainability of software projects
by means of exploratory data analysis.

The analysis of open source software repositories shows that XML files co-
change with about 20% of files of other types (e.g. Java, C++), suggesting that
significant relations may exist between the coding effort associated to XML
code and the coding effort of the entire project. The analysis also revealed that
both usage of XML in general and usage of XSLT in particular have been
steadily increasing for the last decade, confirming the relevance of studying the
evolution and maintenance of XML and XSL code in software projects.

The maintainability of XSL transformations is first approached using con-
firmatory data analysis by putting forward and testing a set of guidelines that
encapsulate well-known principles of software maintainability – specifically
forward compatibility. The study demonstrates a relation between the use of the
guidelines and reduction in the amount of XSL code written and modified in the
context of iterative software development projects. An exploratory approach
based on machine learning and descriptive analysis on software repositories is
then used to identify additional and more specific guidelines. The guidelines
identified using the exploratory approach partially matched the guidelines tested
using confirmatory data analysis. The models built using exploratory data
analysis proved to be good estimators of XML-related code churn: the sum of
added, removed and modified code during a period of time.

Finally, XML-related metrics are shown to influence long-term cumulative
code churn of a project (including both XML and non-XML files) to a larger
extent than some well-known object-oriented code metrics. Regarding long-
term code churn estimation, the dissertation also reveals the existence of highly
accurate estimation models based on organisational data present in source code
repositories.

9

In conclusion, the dissertation advances the understanding of the factors that
influence the maintainability of XML transformations, and more generally, the
maintainability of software projects that use XML code. Based on the identified
influences, guidelines for designing maintainable XML transformations are
formulated. The predictive models developed in this study can also be useful in
the planning process of software projects.

3

10

1. INTRODUCTION

Software is ubiquitous in today’s society. Not only do we use Web-based soft-
ware systems on a daily basis for communicating, reading news, socialising and
shopping, but software also runs transportation and logistics systems, utilities,
enterprise processes, business intelligence dashboards, refrigerators, cell
phones, coffee machines and TV-sets. While traditionally much of this software
has been closed source and commercial, open source software has emerged as a
viable alternative paradigm for software production. The public nature of open
source software makes it an appealing instrument for studying the practice of
software development.

Given the ubiquity of software and the sheer size and complexity of some
contemporary software systems, estimating and reducing the cost associated
with software development and maintenance is a highly relevant problem.
Studies on the costs associated with software development and maintenance
give valuable insights for improving software development processes and aid in
planning and evaluation of software development projects.

This dissertation tackles the task of understanding and managing the main-
tainability of software, with a focus on software that makes use of the Exten-
sible Markup Language (XML) [1] and XML transformations. The dissertation
looks at source code from different angles employing case studies of closed
source software and applying data mining techniques on open source software
in order to validate and refine indicators and guidelines of maintainability of
XML transformations.

In the next sections, XML transformations and their role in software is
explained along with technologies and concepts relating to transforming XML.
This background information is followed with the introduction of the core
questions and approaches used in the dissertation. Finally, the contributions and
outline of the research are given to introduce the summaries of the contributing
studies taken to answer the questions.

1.1. Background

This subsection gives a brief introduction to XML technologies and software
maintenance concepts relevant to the dissertation, thereby setting the scene for
the formulation of the problem statement.

11

1.1.1. Extensible Markup Language

Extensible Markup Language is an increasingly popular language for storing
layout data. XML is a popular choice as an interoperable language for docu-
ments used for communicating with software services or components. XML is
also the basis of widely spread languages like XHTML (The Extensible Hyper-
Text Markup Language [2]) and RSS (either RDF Site Summary [3] or Really
Simple Syndication [4]) [5], which are focused on human users. It is also be-
coming more popular in software development as a definition language for pro-
gram, presentation or storage logic. Examples of these definition languages
include XAML (Extensible Application Markup Language [6]), Hibernate [7],
and WS-BPEL (Web Services Business Process Execution Language [8]). XML
is also used to define the structure of projects themselves as well as the software
building processes (e.g. ant and Maven configurations). In summary, XML has
become such a natural part of our digital environment that we often do not no-
tice its presence.

Some of XML’s popularity can be attributed to its simple design. XML
document is composed of nodes structured as a tree. The nodes in the tree can
be of only five different types: element, attribute, processing instruction, com-
ment, and text. Each of these nodes has a value, the first three (cf. element,
attribute, and processing instruction) also have a name, and element nodes can
also have other nodes as children. Apart from a few restrictions on node names,
this is all anyone wanting to use XML has to know to begin with. An example
of XML file and its nodes tree structure layout is shown on Figure 1. This clear,
simple and expressive structure is relatively easy to process by both humans and
computers.

<?xml version="1.0" encoding="utf-8"?>
<links>
 <!-- The following two elements will
be selected by XPath expression
"//a[@class = 'web']" -->
 <a class="web"
href="http://vabavara.eu"/>
 <a class="web"
href="http://www.ut.ee"/>
 <!-- The next element will
additionally be selected by XPath
expression "//*[string-length(@class) =
3]" -->
 <a class="wmi"
href="\\Machine1\root\cimv2:Win32_Logic
alDisk.DeviceID='C:'">
 Drive C:

 <!-- The next element will not be
selected by either XPath expression -->
 <a class="file"
href="file://D:/Documents/Intro.docx"/>
</links>

Figure 1. An example XML file and its tree representation

12

XML is the base for many languages (e.g. XHTML, RSS, WS-BPEL) and
document formats such as HL7 (Health Level 7 [9]) – a widely used document
format for data exchange in the domain of healthcare solutions – and ebXML
(Electronic Business using Extensible Markup Language [10]) – a widely used
document format for trading data exchange between companies. The existence
of multiple XML languages and formats – an unavoidable requirement given
the open (multidisciplinary) nature of the web – raises the need for developing
transformations to and from XML document formats and languages. Recent
trends such as Service-Oriented Architecture and Web 2.0 [11] – which rely on
XML for data exchanges across software systems and sub-systems – have
heightened the role of XML transformations in web information systems to
unprecedented levels.

1.1.2. Extensible Stylesheet Language Transformations

Extensible Stylesheet Language Transformations (XSLT) [12] is often the pre-
ferred choice for specifying XML transformations due to its platform-inde-
pendence and performance [13,14,15]. Even graphical editors used for defining
XML transformations often generate XSLT code [16]. In many cases, XSLT is
used in a supportive role as a language for accomplishing specific tasks and
amounts to a rather small percentage of the total code base of a project [17].
However, considerable amounts of XSLT code can be found in projects that
rely heavily on document transformation and data viewing. Reportedly, some
applications in the financial domain contain libraries with tens of thousands
lines of XSLT code1. This and similar examples show that the amount of XSLT
is non-negligible and maintaining these transformations is an issue worth con-
sideration.

XSLT belongs to the Extensible Stylesheet Language family (XSL) [18]. In
addition to the transformations language XSLT, XSL also contains formatting
language XSL Formatting Objects (XSL-FO) [19] and an expression language
XPath (The XML Path Language) [20]. Unlike XSL-FO and XPath, which are
stand-alone languages, XSLT is dependent on XPath for its need for addressing
and selecting nodes in XML documents.

In our research we differentiate between simple and complex XPath expres-
sions. Complex expressions are expressions that match a wide set of source
structures, as opposed to expressions which only match very specific source
structures (simple expressions). Simple expressions are all expressions that can
be written without wildcards or function calls. For example “//a[@class =
‘web’]” (select all elements <a> which have attribute “class” value “web” – see
Figure 1 for an example) is a simple expressions while “//*[string-
length(@class) = 3]” (select all elements which have a value of length 3 for

1 http://www.nycircuits.com/xml/xsl-consulting.html

13

attribute “class” – see Figure 1 for an example) is a complex expression. Com-
plex expressions are more generic and we show that this genericity has an effect
on maintainability [21,22].

1.1.3. Maintainability

Maintainability is the ease with which a software system or component can be
modified to correct faults, improve performance or other attributes, or adapt to a
changed environment [23]. In other words, maintainability is the ease with
which maintenance can be accomplished. Maintenance of information system is
defined as the effort of keeping information system operational and responsive
to users after it is installed and in production [24]. This can also be applied to
software systems and components (including source code).

According to [25] maintainability in (information) systems development is
indicated by:

 The level of the methods and tools employed (compatibility condition);
 Software’s compliance with quality standards and the number of bugs

(integrity condition);
 Modularisation and composition of software (simplicity condition);
 Motivation and apprehension of user requests for new functionality

(usability condition);
 Amount of changes needed for addition of new modules (extensibility

condition);
 Number of faults introduced by modifications (stability condition); and
 Experience of software maintainers with the information system (fa-

miliarity condition).

The conditions of maintainability relate to different sides of software develop-
ment. For example, integrity, usability, and familiarity are conditions of soft-
ware development’s organisational (administrative) side while simplicity,
extensibility, and stability relate to software design (compatibility condition
relates to both sides). Both of these sides are considered in this dissertation,
however, a more suitable concept of forward compatibility is used as a basis for
developing guidelines for achieving better maintainability of XML transfor-
mations.

1.1.4. Forward Compatibility

Forward compatibility is the system’s ability to gracefully accept input intended
for later versions of itself. The idea behind forward compatibility is that evolu-
tionary changes to software should be avoided and their extent minimised (the
changes should be simple to implement). In 1999 Chris Armbruster outlined
three properties of forward compatibility of software systems and components
[26]: extensibility, abstraction, and componentisation.

4

14

Extensibility is the system’s ability to be extended to handle methods, proto-
cols, content, etc. that were not considered (e.g. did not exist) when the system
was designed or re-designed. This can be achieved by updating the system
whenever a change in the environment is made or by allowing the systems to
negotiate the usage-level details needed to handle the extended data. This means
creating systems that can either ignore the optional extended input or apply gen-
eral non-feature-specific rules when handling new features.

Abstraction separates actual implementations from contracts. This can be
used to simplify the contracts and allow gradual upgrading of the system
(abstraction layer by layer). This also allows systems to evolve faster in
response to changes in data representation.

Componentisation is similar to abstraction as it breaks up the system into
components that can evolve independently. However, componentisation also
deals with the choice of components used, allowing systems to choose the com-
ponents used for input processing depending on the components the system is
subscribed to.

By comparing the conditions of maintainability with the conditions of for-
ward compatibility, it is clear that maintainability is a broader term as it also
covers integrity, usability, stability, and familiarity. On the other hand, the most
visible condition of extensibility is common to both. The condition of simplicity
in maintainability maps to componentisation (modularisation condition) and
abstraction (composition condition) in forward compatibility. As such, forward
compatibility covers the part of maintainability that is associated with the de-
sign of software.

In this dissertation, we are concerned with formulating guidelines for
achieving forward compatibility, and thus reducing the maintenance effort in
the context of software projects that make use of XML and XML transfor-
mations. In order to test and quantify whether or not the proposed guidelines
indeed lead to greater maintainability, a way of measuring maintainability has to
be established. We could achieve this by assessing the “ease of performing
maintenance tasks” but this property is largely subjective and does not lend
itself to quantitative measurement. We can, however, quantify software main-
tenance effort and we can objectively assess the fulfilment of the conditions
associated to maintainability or forward compatibility. In this way, we can de-
termine if software projects that follow the proposed guidelines lead to systems
that have a lower maintenance effort and/or to systems that fulfil the conditions
associated with maintainability or forward compatibility.

Software maintenance effort is closely related to software development
effort. The difference is that software development effort does generally also
include effort made before the software is in production (released). This dis-
tinction is insignificant in case of managed software source code in open source
software development as every commit to the source code management system
is effectively a new release. Thus, development effort of open source software is
indicative of maintenance effort of open source software.

15

1.1.5. Measures of Development Effort

There are many ways of estimating development effort [27,28,29,30,31,32].
Common measures used for effort estimation are code churn, code delta, and
change rate (relative code churn) [33]. Code churn can also be successfully used
to estimate the impact of a change in a project [34], making it preferable metric
for our research.

Code churn is defined as the sum of code added, code removed, and code
modified. This metric can be applied at different levels of granularity (i.e.
method, class, line, file, module). As this research focuses on XML, it would
not make sense to use granularity levels “method” or “class”, however, line or
file level churn can be measured on all text-based files. In our case only lines of
code (LOC) churn was considered. LOC churn has been widely studied and has
been shown to be useful in many estimation scenarios (e.g. defect estimation
[35] or impact of change [34]).

In this dissertation two different timeframes are used for churn estimation:
next revision churn (commit churn), and yearly cumulative code churn. As a
commit to a source code repository signifies a completion of a task or change
worth distributing, it can be considered an indicator of forward compatibility
and maintainability of the code (less churn means less coding is needed to make
a meaningful change). In contrast, yearly cumulative code churn (sum of revi-
sion code churns for all files in a project in a year) is more meaningful for cod-
ing effort estimation. Churn in a year long period is considered long-term churn
and is well explored by previous studies of code churn [36,37].

It is important to note that better maintainability and lower maintenance (or
development) effort do not always go hand-in-hand. Specifically, maintain-
ability ignores maintenance effort in project planning and system design tasks.
This difference is explored in [25]. The contributions of this thesis ought to be
seen in light of the fact that we only measure coding effort, and not analysis,
design or project management effort.

1.2. Problem Statement

The fact that XML is commonly a non-primal language in software projects
[17], combined with the simplicity of XML, has caused the maintainability of
XML and XML manipulations to be largely overlooked within the software
engineering community. The research presented in this dissertation aims to ful-
fil that void by studying the role of XML and XML transformations in software
projects and developing useful guidelines and models that can be used to
improve the effectiveness of XML intensive software development.

As stated earlier, XML is used for numerous different purposes. This calls
for a need to transform XML documents from one concrete representation to
another. These transformations pose an additional development and main-
tenance effort.

16

This dissertation studies the usage of XML in software projects and looks for
means to reduce the need and complexity of changes to XML transformations.
The solutions discussed in this dissertation include offloading the task to other
parties (working around the problem not solving it) and creating more main-
tainable transformations in terms of coding effort.

1.2.1. Specifying Requirements on XML Transformations

One way of reducing the development costs of XML transformations is to trans-
fer the task of writing the transformations to third parties by exposing raw XML
interfaces only. In other word, the XML data provider offloads the respon-
sibility of writing XML transformations to third parties. The problem with this
approach is that the third parties can generally do anything they wish with the
data, in some cases against the interests of the data provider.

In order to allow the XML data providers to offload the maintenance effort
of XML transformations, we used a language for specifying requirements on
XML transformations, namely xslt-req [38]. This language extends XML
Schema [39] – a standard language for specifying XML document structure.
This language allows XML data providers to specify policies that a given XSL
transformation must fulfil. The idea is that XML data providers will provide
public-facing XML web services together with an associated schema extended
with xslt-req rules. Third parties wishing to use this public-facing web service
may provide their own XML transformations, which will be applied to the XML
data produced by the web service, in order to produce (for example) HTML
code. Importantly, the XML transformations registered by the third-parties in
the XML data provider’s system are automatically conformance-checked
against the specified xslt-req rules. This automatic conformance checking
makes the approach much more cost-effective than manual quality assurance of
the XML transformations by the XML data provider [40]. This approach is akin
to checking the validity of XML documents against XML Schemas, insofar as
XSL transformation are additionally checked against xslt-req rules before they
are accepted by the data provider’s system.

In respect to specifying requirements on transformations, this dissertation
investigates the following questions:

RQ1.1 What are the measurable benefits of using xslt-req as a language for
specifying requirements of XML transformations in order to enforce
the policies of XML data providers?

RQ1.2 What are the benefits of different techniques for enforcing guide-
lines on XML transformations?

17

1.2.2. Achieving Forward Compatibility
of XML Transformations

It is not always possible to offload the maintenance effort of XML transfor-
mations. Also, by offloading the responsibility, we do not solve the problem in
general – we only solve it for one interested party. Thus a closer look into re-
ducing maintenance effort is needed. In this dissertation, we followed two
tracks: 1) we tried to avoid the need for changes by improving the forward
compatibility of XML transformations; and 2) we created models to estimate
coding effort and to identify the drivers of maintainability effort.

With respect to the goal of achieving forward compatibility of XML trans-
formations, the dissertation aims to answer the following questions:

RQ2.1 How is XML used in software projects?
RQ2.2 How do XML artefacts co-evolve with other artefacts in software

projects?
RQ2.3 What guidelines can be given to XML transformation developers in

order to promote the forward compatibility of XML transfor-
mations?

RQ2.4 Do the proposed forward compatibility guidelines affect the per-
formance of the resulting XML transformations, and if so, to what
extent?

1.2.3. Building Code Churn Estimation Models

As stated in Section 1.1.5, code churn is used to measure coding effort. Code
churn can be associated with maintainability and be used in maintenance plan-
ning; hence, code churn estimation models can be used to improve main-
tainability of software source code.

Code churn estimation is well studied in the domain of procedural and
object-oriented languages. Most of these models base their estimations on fea-
tures like amount of code, number of classes, number of functions, complexity
and other similar metrics related to the structure or program execution flow
[41,36,42,43]. In this dissertation, metrics similar to those defined for object-
oriented code are proposed for XML and XSLT code [44,22] and these metrics
are used to investigate the role that XML and XSLT code play in relation to
code churn. More specifically, the research presented in this dissertation aims to
find answers to the following questions:

RQ3.1 Can we estimate XSL code churn of the next revision?
RQ3.2 What is the predictive power of metrics associated with XML for

code churn estimation?
RQ3.3 Which factors influence code churn of the next revision of an XSL

transformation?
RQ3.4 Which factors influence the total cumulative code churn of a project

in the long term?

5

18

1.3. Approach

The problems outlined in the previous section require different approaches.
When going in the direction of offloading development effort, we are met with
problems related to the specification and enforcement of policies set by the pro-
vider of XML data. The enforcement of these policies can be difficult. In this
dissertation we evaluate some mechanisms for enforcing policies on XSL trans-
formations on a case study. Based on the experiences of the case study, devel-
opment of guidelines for designing maintainable XML transformations is put
forth.

The approach used in the dissertation for development of such guidelines is
to adapt and refine existing maintainability-related guidelines in software de-
velopment. As part of this approach a set of 4 guidelines is put to test on dif-
ferent XML transformations. The guidelines developed using this approach are
complemented by rules found by code churn estimation models.

The approach used for building code churn estimation models makes use of
machine learning algorithms and descriptive analysis techniques. The approach
used in the estimation-related studies (publications 4 and 5) can be summarised
as follows:

1. Collect data about projects’ history.
2. Choose, develop, and compute metrics to base estimations on.
3. Use machine learning algorithms to build code churn estimation models.
4. Validate the performance of the models built in previous step.
5. Use descriptive analysis to study the models validated in previous step.

This approach results in development of code churn estimation models and
identification of rules for managing code churn. The allocation of research
questions to the approaches and solutions described above is shown on Figure 2.

The following subsections give an overview of the machine learning algo-
rithms used in the dissertation and give a brief introduction to descriptive
analysis.

1.3.1. Machine Learning

Machine learning is the study and application of algorithms that allow com-
puters to learn from experience. Some of the more popular algorithm classes
used by machine learning are regression algorithms, Neural Networks, Decision
Trees, and Support Vector Machines [45,46,47]. The main classes of tasks
solved by these algorithms are estimation (approximation of numeric values)
and classification (systematic placement of items into categories). In this dis-
sertation, both classification and estimation tasks are addressed. On one hand
we consider the task of classifying XSLT files into those that will have low
churn, medium churn and high churn in their next revision [22]. On the other
hand, we are interested in estimating the code churn of an entire project during a
period of time [44].

19

Figure 2. Outline of the solutions and approaches discussed in the dissertation.

For classification we use Expectation Maximisation [48] (clustering) and Deci-
sion Trees (with constant values on the leaves). For estimation we use Single
Layer Neural Networks and Decision Trees (with linear formulas on the nodes –
also known as regression trees). In one article we also make use of Linear
Regression and Logistic Regression algorithms, which are special cases of
Decision Trees and Neural Networks algorithms. An introductory overview of
these algorithms is given in the next subsections.

20

1.3.1.1.Expectation Maximisation

Expectation Maximisation is a data clustering technique similar to k-means and
fuzzy c-means algorithms. The algorithm tries to minimise the differences
between data points in a cluster by maximising the likelihood estimate. The
algorithm results in a set of functions to indicate whether a data point belongs to
a certain cluster or not (the data point is considered to belong to the cluster for
which the function value is the highest). Details of Expectation Maximisation
algorithm are described in [48].

1.3.1.2. Decision Trees

Decision Trees algorithms construct trees of formulas for the output features
where each non-leaf node is a decision point based on the value of an input
feature. An example of a simple three node Decision Tree is shown on Figure 3.
In this tree the root node is a decision point based on “Number of Files” feature
and the leaf nodes have linear formulas for calculating output feature named
“Modified LOC”.

Figure 3. An example of a three node linear regression decision tree.

Decision Trees with linear regression nodes are highly suitable for identifying
linear or multi-linear relations. The algorithm has limited ability for learning
non-linear relations; however, it can approximate these with decision point
nodes (splits in the tree). Building a Decision Tree with only one node and
linear formula on that node is equivalent to building a model using Linear
Regression algorithm.

1.3.1.3. Neural Networks

Neural Networks is a large class of biologically inspired learning algorithms. In
our studies, we used three layer perceptron networks (Back-Propagated Delta
Rule network) [49] as implemented by Microsoft SQL Server.

The Neural Networks algorithm used in our studies is, in principal, com-
bining different logistic regression models, which offers improved performance
for more complex relations than Decision Trees algorithm. On the other side, it
is less suitable for identifying linear or multi-linear relations.

21

1.3.2. Descriptive analysis

Data mining algorithms produce models for solving given tasks; however, they
do not provide insights into the mechanics discovered. Thus, descriptive analy-
sis needs to be conducted on the models built by machine learning algorithms in
order to unveil the mechanics involved.

For example, the following “black-box” descriptive analysis method can be
used to identify features which influence the output value(s) of the models (also
known as “influencers”):

1. Fixate the model’s input features.
2. Calculate model’s output O0 for the selected set of features.
3. Choose one input feature Fi and modify its value.
4. Calculate model’s output Oi for the modified set of features.
5. If O0 and Oi differ, then Fi influences the model’s output (and is an

influencer).
6. Repeat steps 2-4 with different Fi-s to test whether these are influencers.

These steps allow us to identify influencers with possibility of false negatives.
In other words, these steps might not identify all influencers. This “black box”
approach can be modified to indicate the strength of influence and is often the
only means of studying the relations between the input and output features.

Another method to analyze the models produced by machine learning algo-
rithms is by inspecting their internal structure. In the case of Neural Networks,
the formulas derived from the models are rather complex and difficult to
explain. On the other hand, the design of Decision Trees is simpler, making the
derived models easier to understand, for example in order to identify influen-
cers. This fact is put into practice by the Decision Trees library used in this
study, namely SQL Server Analysis Services Decision Trees library, which
ranks input features by their influence toward the estimated value, meaning the
dependency of the estimated value on the input feature. This ranking of input
features is done by analyzing the tree, taking into account the regression coeffi-
cients of each feature and the decision points that are based on each feature.

In this dissertation, analysis of the internal structure of the estimation models
is preferred over “black box” descriptive analysis. The “black box” approach is
used only in cases where the model is too complex (e.g. in case of models
trained using the Neural Networks algorithm).

1.4. Publications and Contributions

This dissertation is structured in the form of five complementary studies, which
have been reported in separate research papers. The contributions and their
mapping to research papers are as follows:

 Publication 1: A Study of Language Usage Evolution in Open Source
Software [17]

6

22

o Exploratory study of application and (co-)evolution of program-
ming language usage in open-source software projects.

 Publication 2: Enforcing Policies and Guidelines in Web Portals: A Case
Study [40]

o Validation of the language for specifying the requirements to XML
transformations.

o Study of impact of different methods of reducing maintainability
effort of XSLT.

 Publication 3: Designing Maintainable XML Transformations [21]
o Development of detailed guidelines that help reduce maintain-

ability effort of XSLT.
o Verification of these guidelines and testing their impact on

transformations’ performance.
o Analysis of the compatibility of changes to XSLT by change types.

 Publication 4: Predicting the maintainability of XSL transformations [22]
o Predictive models of next revision code churn based on XSLT met-

rics.
o Further exploratory development of guidelines that help reduce

maintainability effort of XSLT.
o Identification of influencers of XSLT code churn in software pro-

jects.
 Publication 5: Predicting Code Churn from XML Metrics [44]

o Predictive models of yearly code churn based on XML and or-
ganisational metrics.

o Identification of influencers of code churn in software projects.

1.5. Organisation of the Thesis

The dissertation is organized according to the five contributing studies as out-
lined above.

Chapter 2 summarizes the study of 22 open source software projects aiming
at unveiling the role of XML in software development.

Next, Chapter 3 summarises a case study designed to test xslt-req and some
general guidelines based on the components of forward compatibility. The case
study is extended for evaluation and development of more detailed guidelines
for XSLT by studying different scenarios of transforming XML. The summary
of that study is presented in Chapter 4.

Having established that there is no performance penalty when following
guidelines and having proposed a set of potential indicators of guidelines con-
formance and, thus, the coding effort; larger sets of projects were studied to
unveil the relations between XSLT metrics and XSLT code churn for the next
commit. The study, summarised in Chapter 5, confirmed the existence of such
relation and helped to specify even more detailed guidelines for the design of

23

maintainable XSL transformations. The last publication is summarised in
Chapter 6 and takes a broader view by comparing yearly churn estimation mod-
els built on three different types of metrics: XML/XSL metrics, proce-
dural/object-oriented programming language metrics, and organisational met-
rics.

The summary of each publication contains the aim of the study, the approach
used in the study, the results of the study and related and future work related to
the publication. The dissertation is concluded in Chapter 7, followed by bibliog-
raphy (Chapter 8), acknowledgements (Chapter 9), and summary of the work in
Estonian (Chapter 10). The original publications are in the Annex.

24

2. A STUDY OF LANGUAGE USAGE
EVOLUTION IN OPEN SOURCE SOFTWARE

The first publication [17] studies the evolution of programming language usage
in open source software (OSS) projects. By studying the code repository histo-
ries of 22 OSS projects over twelve years, the study answers the following
questions:

 Which languages are used in OSS projects?
 How often different file types co-evolve?
 Which language combinations are used by the developers?
 How many artefact types do developers work with?
 Which artefact types are used by the new developers?
 Which artefact types are used by the more experienced developers?
 How have the answers to these questions changed during a decade?

Answers to these questions help software engineers understand the current state
and trends in open source software development as well as the habits of open
source software developers. This new understanding provides answers to re-
search questions RQ2.1 and RQ2.2 presented in this dissertation.

2.1. Results

The study shows that the amount of code written in different languages differs
substantially. Some of the other findings were:

 The most popular (i.e. widely used) language in OSS software projects is
XML followed by Java and C.

 XML has increased its popularity steadily over the last decade while C
has lost its high share to various other languages of which Java has been
among the more popular ones. Despite becoming popular in just a few
years, Java has not been able to grow its share significantly after 2007.

 Most Java developers work with XML, while only every second C/C++
developer works with XML.

 A significant increase of usage of XML and XSL was observed during re-
cent years.

 The most commonly co-evolving files are usually of the same type.
 Most common co-evolving file types are: Java and XML; C and plaintext

files; and C and Makefiles.
 Java and XML files (especially those of project specific types) are more

likely than Java files and project definition files to be edited by the same
person.

 JavaScript and CSS files most often co-evolve with XSL.

25

 A developer works with more than 5 different artefact types (or 4 dif-
ferent languages) in a project on average.

 New developers used fewer file types their first commits, even though
most developers began with experience with multiple file types.

From the characteristics of developer language usage, we saw that not just
knowing multiple languages is required from the developers, but developers
must also understand different coding paradigms (e.g. procedural and object-
oriented languages are often used side-by-side with rule and template based
extensible languages). While in the 1990s they needed to know how to code in
C and write Makefiles, the increased variety of languages used in newer pro-
jects and lack of distinct leaders in languages introduced the need to be familiar
with multi-language development. These trends can be observed in Figure 4,
which shows, how many developers use different languages across different
years.

The high popularity of XML shown by the study highlights the need to
understand and manage the evolution of XML in software projects. The fact that
XML is mostly used in a supportive role suggests the possibility that high
volume of non-XML (e.g. Java) code is written for manipulating XML. This
possibility is further confirmed by the increasing popularity of XSL. Thus, the
findings in this study support the need for studying means of reducing the
maintainability of XML transformations (research questions RQ1.2 and RQ2.3
to RQ3.3). The high rate of co-evolution between XML artefacts and non-XML
artefacts is a sign that evolution of XML and coding effort in a project are
strongly related. This supports the motivation of building code churn estimation
models based on features of XML code (research questions RQ3.1 to RQ3.4).

Figure 4. Proportion of developers generating different types of artefacts during dif-
ferent years.

7

26

2.2. Related Work

The idea of studying cross-file co-changes has been addressed by some research
so far. However, these studies have often been language-specific and rarely look
at different file types. Even studies encompassing multiple file types have been
limited to specific file types. For example, Zimmerman et al. studied how lines
of different files evolve in a project [50]. Their study is limited to textual files
and focused on visualisation and clustering of blocks of lines based on their
change history.

Weißgerber et al. have built a plug-in for Eclipse to show how likely dif-
ferent files are to be changed together [51]. Their tool does not exclude any
files. However, they aim to visualise patterns emerging in specific projects re-
garding the co-evolution of files. They do not try to describe co-evolution on
file type or artefact type level. As such their tool is useful for monitoring soft-
ware development processes. In contrast, our study looked for more general
patterns spanning through OSS software projects.

Dattero et al. conducted a survey during 2000–2001 and looked into dif-
ferences by the developer gender [52]. They discovered that female developers
are more likely to work with deprecated technologies. They also found that fe-
male developers tend to be less experienced and are familiar with only 2.53
languages as opposed to 3.25 languages male developers were familiar with.
These numbers are similar to our findings, however, we also saw that the aver-
age number of different file types (usually representing different technologies)
used by developers has decreased since the 1990s.

The different patterns of evolution of OSS have been outlined by Nakakoji et
al. [53], who determined that there are three main types of OSS: exploration-
oriented, utility-oriented, and service-oriented. These types determine how the
software evolves and how the developers behave. In particular, their study
shows that when projects move from one type of OSS to another, their de-
velopment speed – which is related to the churn rate – is affected. The 22 OSS
projects included in our study cover all three types of OSS identified by Naka-
koji et al.

Open-source software repositories have been used for studying various
aspects of software development like developer role identification (core or asso-
ciate) [54], framework hotspot detection [55] and other. These works are com-
plementary and help developing a better understanding of software development
process and open-source software. It has also been shown that the number and
size of open-source projects are growing at an exponential rate and open-source
projects are becoming more diverse by expanding into new domains [56].

27

2.3. Future Work

The study reported above was made on the basis of 22 OSS projects. The repre-
sentativeness of this set can be improved. For example, it was found that the
amount of HTML code in these projects is smaller than the overall average
reported by ohloh.net2 – the largest analysed listing of open source projects.
Also, the data extraction was made in 2009 and hence does not reflect more
recent trends. Accordingly, a direction for future work is to perform a more
comprehensive and up-to-date study. The characteristics of the ideal dataset
would mirror those observed in ohloh.net. Since it is not feasible to incorporate
all projects listed by ohloh.net (nor a large percentage of them), a sufficiently
representative dataset should be extracted by means of appropriate statistical
sampling techniques.

2 http://www.ohloh.net

28

3. ENFORCING POLICIES AND GUIDELINES
IN WEB PORTALS: A CASE STUDY

The second publication [40] evaluates a set of XML transformation and XML
design guidelines on a web portal VabaVaraVeeb3. During the development of
this web portal, the guidelines in question along with other policies set by the
web portal’s administrators were enforced both manually via developer docu-
mentation, API and code review, and semi-automatically via a policy4 definition
language called xslt-req. The study suggests that a combination of automatic
verification and semantics extraction techniques can reduce the amount of man-
ual checks required to enforce policies and guidelines for web presentation
components.

The study was conducted as an analysis of a case study of efforts made to
offload the effort of developing XML transformations to other parties in case of
a public web service. In the case study, the quality of the transformations built
by the independent parties was measured against the policies of the web service
and a set of broadly defined guidelines for design of forward compatible XML
and XML transformations. The two main focus points in the study were:

 The ratio of deviations from the service provider’s policies detected auto-
matically by the application of xslt-req language to all detected devia-
tions from the service provider’s policies.

 The changes in maintenance effort as the guidelines for forward com-
patible design were introduced to developers of transformation.

The study provides answers to dissertation research questions RQ1.1 and
RQ1.2. The main contributions of the paper are:

 Validation of the xslt-req language for specifying policies on XML trans-
formations.

 Study of impact of different methods of reducing maintainability effort of
XSLT.

3.1. Results

The benefit of automatic verification techniques was found to be on the same
level as the benefit of suggestive means (e.g. API changes and developer docu-
mentation with focus on guidelines). Therefore, suggestive means should not be
undervalued. The automatic verification techniques were costlier than sugges-
tive techniques to the portal’s maintenance team as these techniques usually

3 http://vabavara.eu
4 Here, the term policy refers to a rule that must be followed and for which violation can be
objectively defined, while the term guideline refers to a rule that should generally be
followed, but for violations can not always be objectively asserted.

29

required human proofing or dealing with unforeseen issues. Even if the output
of automatic verification were presented directly to the authors of the XML
transformations, he or she might not be able to understand and solve the prob-
lems reported without the help from portals developers.

Less than half of deviations detected by automatic verification techniques
were false positives (verification against xslt-req does not allow false negatives
by virtue of its design). Automatic verification techniques detected less than
30% of all identified types deviations from policies. However, this 30% of types
of deviations contained the most common deviations observed.

3.2. Related Work

There is extensive literature dealing with the enforcement of access control
policies on XML content [57]. Policy definition languages proposed in this area
allow one to attach access control policies to an XML document node and its
descendants. In this sense, these policy definition languages share com-
monalities with xslt-req. However, they differ in several respects: First, access
control policy languages focus on capturing the conditions under which a given
XML node can be read or updated by a user. In contrast, they do not allow one
to capture obligations such as “a given element must be displayed” or “an ele-
ment must be displayed only in certain formats”, both of which are key features
of xslt-req. Nevertheless, xslt-req may benefit from ideas in [57] and in similar
work, to improve its ability to capture access control requirements.

There is also significant literature related to enforcing accessibility and us-
ability guidelines on web sites. For example, Vanderdonckt and Beirekdar [58]
propose the Guideline Definition Language (GDL) which supports the defi-
nition of rules composed of two parts. The structural part designates the HTML
elements and attributes relevant to a guideline. This part is expressed in a lan-
guage corresponding to a limited subset of XPath. The second part (the evalua-
tion logic) is a Boolean expression over the content extracted by the structural
part. In contrast, xslt-req operates over XML documents representing the inter-
nal data managed by the portal, so that policies and guidelines are checked be-
fore the HTML code is generated.

The work presented in this paper is also related to the integration of services
(possibly from multiple providers) at the presentation layer. This integration is
supported by various portal frameworks based on standard specifications such
as Java Portlets or WSRP [59]. More recently, Yu et al. [60] have proposed an
event-based model for presentation components and a presentation integration
“middleware” that enables the integration of services from multiple providers at
the presentation layer without relying on specific platforms or APIs. However,
these frameworks do not consider the enforcement of policies and guidelines as
addressed in this paper.

8

30

3.3. Limitations of the Study and Future Work

The techniques presented in the paper have room for improvement along several
directions. For example xslt-req could be extended to support the specification
of rules based on patterns or XPath expressions. This way, xslt-req could be
applied to more than just the static core structure. This would make it possible
to allow all business layer services to have mandatory content or hidden con-
tent. In addition to extending xslt-req, the verification methods that use xslt-req
need to be reviewed, as they currently assume that the document base structure
is rigid.

The results showed that templates which automatically extract semantics
from XML element names and values have been successfully used to achieve
forward-compatible stylesheets and to enhance reuse, despite the fact that these
techniques are not fail-proof. Making these techniques more robust and study-
ing their applicability in a wider setting is an avenue for future work.

A limitation of this study is that it is based on a single scenario, which com-
bined both semi-automatically-enforced and suggestive guidelines and policies.
The study summarized in the next Chapter addresses this limitation in the con-
text of the guidelines.

31

4. DESIGNING MAINTAINABLE
XML TRANSFORMATIONS

The study reported in the third publication [21] is a step towards a more thor-
ough and empirically-tested understanding of what is the impact of the appli-
cation of the guidelines. The experimental evaluation on three scenarios shows
that the proposed guidelines have a positive effect on the conciseness and
extendibility of the transformations, while having no visible effect on the per-
formance of the transformations (i.e. execution time).

The guidelines developed for the design of maintainable XSL trans-
formations were:

1) Make use of common controls.
2) Make use of generic transformations.
3) Make transformations individually addressable and subscribable.
4) Make use of metadata in source documents.

Guidelines 1 and 3 seek to increase modularity, while guidelines 2 and 4 seek to
increase abstraction, both of which are recognized conditions of forward-com-
patible software [26]. For detailed descriptions and examples of these guide-
lines, please consult the original paper [21].

These guidelines were put to test on three scenarios: a web service, a desktop
application, and a business document transformation. Two versions trans-
formations were created for each scenario: one designed before the introduction
of the guidelines and another designed after the introduction of the guidelines.
Lines of code needed for the transformation and the running time of the trans-
formations were studied.

Additionally, in the web service scenario, the extensibility of the trans-
formation was studied as new modules were introduced to both versions
(guideline conformant and non-conformant version) of the transformations.

The study answers dissertation research questions RQ2.3 and RQ2.4. The
main contributions of the paper are:

 Development of more detailed XSLT specific guidelines for achieving
forward compatibility.

 Performance testing of guidelines conformant and non-conformant trans-
formations.

 Experimental verification of guidelines’ impact on code churn and XSLT
metrics.

4.1. Results

The main results of the study are:
 The size of transformations was smaller when guidelines were applied to

the transformations in all studied cases.

32

Framework

In
it

ia
l/

ch
u

rn
e

d
 L

O
C

Viewing an

article

Viewing a

category

Modifying a

category

Configuration

module

Viewing an

application

Viewing a

news item

Pre-guidelines 273 136 181 85 73 355 49

Guidelines 262 82 103 37 80 253 0

0

50

100

150

200

250

300

350

400

Figure 5. Impact of guidelines on transformation code churn.

 All cases had more complex expressions in guidelines conformant ver-
sions of transformations.

 Code churn for a feature addition was significantly lower when guide-
lines were applied in the case study. In fact, an addition of a new feature
was accomplished with no presentation layer code churn (see Figure 5).

 The execution time for guidelines conformant and non-conformant trans-
formations differed less than 3% without preference.

 The benefits of the application of the guidelines were most notable in the
case of human-oriented output.

The paper also includes analysis of compatibility of different modifications of
XSLT. The classification of the changes was based on a similar study on XML
by Moro et al [61].

4.2. Related Work

Guerrini et al. studied the impact of XML Schema evolution on the validity of
existing instances [62]. Their approach minimises the document fragments that
need to be re-validated when an XML Schema changes. This makes it easier to
identify forward and backward compatibility problems between documents that
use different versions of a schema. This work and similar ones are orthogonal to
our work since they do not deal with document transformations.

The first of our guidelines has similarities with output-driven approaches for
XSL transformation design, such as the approach proposed by Lemmens and
van Houben [63]. However, output-driven XSL transformation approaches do
not have an explicit concept of common control.

There is a large body of research related to mapping-driven transformations,
meaning transformations derived from a mapping between the elements in the
source and the target schemas [64]. These mappings can be derived using auto-
matic schema matching techniques [65] and may be visualized and edited by

33

developers using graphical schema mapping tools. Graphical schema mapping
tools are incorporated in enterprise application development platforms such as
Microsoft BizTalk [16]. While these approaches enhance developer produc-
tivity, they are not designed to achieve change-resilience of the resulting trans-
formations. In this respect, the guidelines studied in this paper are comple-
mentary to this body of work.

McDowell et al. proposed metrics that can be used to evaluate quality and
complexity of XML Schema and conforming documents [66]. The principles
they followed for selecting their metrics can be applied to selecting metrics for
evaluation of other XML documents like XSL transformations. Additionally,
the complexity of source and target documents of XSL transformations can be
used to estimate the required complexity of the corresponding XSL transfor-
mation.

4.3. Future Work

The benefits derived from the guidelines are most notable in the case of trans-
formations with human-oriented output (XHTML). One can therefore hypothe-
size that the benefits derived from the guidelines is greater for human-oriented
output than for application-oriented output. A study of possible correlations
between the purpose of the transformation and the usefulness of the guidelines
is thus a desirable direction for future work.

Another desirable extension of this work is to consider other maintainability
metrics than those based on lines of code or number of elements/templates.
While these metrics provide an indication of maintainability, they do not pro-
vide a full picture. Other factors worth consideration include complexity, e.g.
cyclomatic complexity [43].

Yet another aspect not considered in the study is that of enforcing the con-
formance of XSL transformations with respect to the proposed guidelines. Such
an undertaking would require the definition of metrics for evaluating the degree
of conformance of XSL transformations with respect to the guidelines, and
techniques to pinpoint deviations with respect to the guidelines. This direction
for future work could lead to quality metrics for XSL transformation with
respect to maintainability.

9

34

5. PREDICTING THE MAINTAINABILITY
OF XSL TRANSFORMATIONS

The study reported in the fourth publication [22] is a contribution towards
building up an understanding of the factors affecting the maintainability of
XML transformations – specifically XML transformations encoded using
XSLT. The study was conducted on a dataset of XSLT file revisions from 15
open source software project repositories and answered the following questions:

 Can the code churn of the next revision of a given XSL transformation
estimated from simple count metrics defined on XSLT?

 Are separate estimation models needed for business-oriented and presen-
tation-oriented transformations?

The study used machine learning to build models for estimating next revision
XSLT code churn. XSLT code churn was classified into three ranges: low churn
(0–4 LOC), medium churn (5–16 LOC) and high churn (>16 LOC). Ac-
cordingly, classification models were built using Decision Trees, Clustering
(Expectation Minimisation), Neural Networks, Logistic Regression (classi-
fication applied on testing set estimations), and Linear Regression (classi-
fication applied on testing set estimations) algorithms. The training and testing
set were split randomly in a 70:30 ratio.

The study answers dissertation research questions RQ3.1, RQ3.2, and
RQ3.3. The main contributions of the study are:

 Evidence that code churn of the next revision of a given XSL transfor-
mation can be estimated using models trained using machine learning
algorithms on simple XSLT count metrics. These models can be built for
both for business-oriented and for presentation-oriented transformations.

 Identification of a set of factors that indicate high future churn.
 Development of a set of guidelines for reducing XSLT next revision code

churn.

5.1. Results

The main results of the study are:
 The maintenance effort measured in code churn can be predicted from

simple XSLT metrics. The machine learning models built during the
study were able to reliably identify transformations that are likely to un-
dergo high churn.

 Estimation models based on both business type and presentation type
transformations have higher or similar performance to models specific for
either type.

35

Figure 6. Lift at identifying ‘‘low churn’’ transformations in presentation type projects.

The estimation models proved to be especially good at identifying the most
likely transformations belonging to different churn ranges. In particular, the top
5% of transformations ranked by the model trained using Decision Trees algo-
rithm as “low churn” transformations had almost no false positives. This is
shown by the fact that the models lift was close to the lift of a perfect model at
5% population (see Figure 6).

Descriptive analysis was applied on the models in order to unveil influencers
of code churn. Based on the identified influencers, we formulated the following
guidelines for reducing XSLT code churn:

1. Complex expressions (which were found not to influence code churn)
should be used instead of simple expressions (which were associated with
high churn).

2. Templates with ‘‘match’’ expressions (and if needed, ‘‘mode’’ attribute)
should be preferred over <choose> and <when> constructs as high num-
ber of <when> elements and long <choose> constructs are associated
with high churn.

3. Reoccurring constants should be stored as parameters or variables and
used through these if possible. The study showed that a high number of
text nodes characterise high churn while use of inline expressions and
parameters encourages lower churn.

4. Parameter definitions should be kept short (less than 6 lines of code).
5. XSLT code should be commented. At least 9% of nodes being comments

was identified a preferred ratio as it reduced high churn probability to a
mere 5%.

36

The study also presented an online XSLT code churn estimation web service.
The service estimates the next-revision code churn of a given XSLT trans-
formation based on pre-trained models.

5.2. Related Work

Our work falls under the umbrella of a body of research aiming at mining soft-
ware repositories in order to derive predictive models of software properties
(e.g. predicting and locating defects, predicting changes, etc.). For example, it
has been shown that high relative code churn is a predictor of system defect
density [35]. Despite the rich body of work in this field [67], we are not aware
of any technique that deals specifically with XSLT. In fact, almost none of the
techniques developed in this field deals with XML and related languages.

The techniques we use are reminiscent of those used by Ratzinger, et al. [68]
to mine software repositories in order to identify future refactoring of Java code.
They predict the number of future refactorings of files in Java projects in short
time-frames. However, they do not try to identify maintenance effort of a single
refactoring, which is the case in our study.

There have been other attempts to identify high churn modules based on the
code structure and program control flow. In one study by Khoshgoftaar et al.
[41] code churn due to bug fixes is analyzed. In that study they used Discrimi-
nant Analysis to build accurate models for classification of fault prone modules.
It is worth noting that the error rates they achieved are not directly comparable
to our study as we used three classes instead of just two and we built models on
a set of projects not a single project, which will have more consistent develop-
ment practices.

Graphical schema mapping tools are incorporated in enterprise application
development platforms such as Microsoft BizTalk [16]. While these approaches
enhance developer productivity, they are not designed to achieve change-re-
silience of the resulting XSL transformations. In fact, the idea of these tools is
that the XSL transformations are re-generated whenever a change is made to the
mapping. This approach is not suitable for all applications as evidenced by the
considerable number of manually developed XSL transformations found in
commercial and open-source projects. In this respect, the guidelines unveiled in
our study are complementary to this body of work.

There are some interesting research studies that have addressed the question
of whether or not different project types evolve differently. For example,
Vaucher and Sahraoui studied the evolution of software libraries [69]. They
used neural networks and regression trees to build estimation models on soft-
ware projects of two types: libraries and applications. They found that changes
to well structured libraries are more localised than changes to applications. The
machine learning algorithms employed in their study created relative code churn
estimation models with higher predictive power on library-type projects.

37

5.3. Future Work

In this study only simple, mostly count-based metrics were used as input fea-
tures. Thus, it is possible that the predictive power of the classification models
could be improved by defining and including more complex metrics describing
higher level features of XSLT. For example, in mainstream programming lan-
guages, metrics based on control-flow graphs, such as cyclomatic complexity,
have shown to be highly correlated with maintainability [70]. However, it is not
straightforward to adapt metrics based on control-flow graphs to XSLT. Other
metrics worth considering are organizational and project metrics (e.g. size and
experience of the development team, age of the project), which could turn out to
be complementary to the code metrics studied in this paper.

Another avenue for future work is to design automated refactoring tech-
niques in order to improve the maintainability of XSL transformations. To this
end, we plan to identify common types of changes in XSL transformations and
develop techniques to determine which change types can be applied to a given
transformation in order to improve its maintainability.

10

38

6. PREDICTING CODE CHURN
FROM XML METRICS

In the last publication [44] the effect of code and organisational metrics on long
term code churn is studied. The study aims to answer following questions:

 What is the relative performance of models built to estimate the yearly
cumulative code churn of a project based on: 1) XML/XSLT code met-
rics; 2) imperative/object-oriented programming language metrics; 3) or-
ganisational metrics; 4) organisational metrics and code metrics com-
bined?

 What are the main influencers of yearly cumulative code churn in a soft-
ware project?

The study involved applying Decision Trees and Neural Networks algorithms
on 8 open source project repositories. The performance of the models was
cross-validated using 7:1 split of the projects. The aim of the study was to com-
pare the performance of churn estimation models trained on different sets of
code metrics and organisational metrics. Only metrics extracted from revision
control systems were used in the study.

The study addresses dissertation research question RQ3.4. The main contri-
butions of the study are:

 Mapping of 9 common procedural and object-oriented language metrics
to XML or XSL metrics.

 Confirmation that code and organisational metrics can provide for accu-
rate estimations of yearly code churn in software projects.

 Evidence that XML metrics have higher predictive power than proce-
dural and object-oriented language metrics when estimating project’s
yearly code churn.

 Development of highly accurate (mean relative error less than 1%) esti-
mation model for yearly code churn estimations based on organisational
metrics.

 Identification of strong influencers of code churn.

6.1. Results

The main results were:
 Organisational metrics provide for training models for code churn esti-

mation at mean relative error less than 1% and mean normalised absolute
error less than 0.01 and Pearson correlation close to 1.

 Combining organisational metrics with XML metrics improved esti-
mation accuracy (absolute error less than 3400 lines of code) for confi-
dence levels between 0.80 and 0.95. For higher confidence values,
models based on only organisational metrics were superior in higher
confidence ranges. Best models and error ranges at common confidence
levels are shown in Table 1.

39

Table 1. Best models by confidence levels.

Confidence Best Model Error Range

0.70 Decision Trees all features ±300 LOC

0.80 Decision Trees organisational and XML ±600 LOC

0.90 Decision Trees organisational and XML ±1 400 LOC

0.95 Decision Trees organisational and XML ±3 400 LOC

0.99 Decision Trees organisational ±17 200 LOC

0.999 Decision Trees organisational ±83 000 LOC

 The strongest identified churn influencers are number of files of different

types, project revision number, and active historical team size (total and
by experience in the project with different languages).

 XML metrics were ranked as stronger influencers of code churn than
object-oriented or procedural language metrics.

6.2. Related Work

Nagappan et al. used metrics from organisational structure to identify failure-
prone binaries with great success [71]. They used more organisational infor-
mation than available from version control systems. For example, information
about not committing organisation members and organisational hierarchy was
used. Their results also showed that code churn is the second best predictor of
failure-prone binaries.

One of the earliest attempts to estimate code churn was made by Khosh-
goftaar et al. [41]. In their study, they used multiple source code structure and
control-flow metrics to train models for classifying software modules by future
debug churn levels (high or low), which was used to determine whether a
software component is fault-prone or not. In our research we estimate absolute
churn values of projects instead of identifying software modules with high
churn.

Zhou, et al. used linear regression to investigate relations between object-
oriented design metrics and maintainability in open source Java projects [72]. In
their paper, feature selection was done using linear regression. A similar
approach can be used to identify interactions between features for feature con-
struction purposes. Alternatively, the approach outlined by Smith et al. [73],
which uses genetic algorithms to construct and select features, could also be
employed for this purpose.

Our work is to some extent related to a large body of research in the area of
software cost estimation [74]. The main differentiator is that software cost esti-
mation aims at producing an estimate of a software project's cost (e.g. expressed
in person-months) based on characteristics of the project – usually known ex
ante – whereas the aim of our work is to make predictions of future coding

40

effort based on a snapshot of a project, and specifically based on code metrics
associated to file revisions in the project snapshot.

6.3. Future Work

We have shown that even though organisational models are highly accurate,
using XML metrics to complement organisational metrics yields better results
in some scenarios. We do also see a potential to build improved models based
on combined feature sets given even larger training datasets. Building models
on bigger datasets along with developing more sophisticated feature selection
algorithms to reduce the amount of the required training data is an avenue for
future work.

Another perspective for future work is to study the factors that affect the
predictive power of source code metric and how these factors correlate with
organisational metrics. Understanding this question could help us to build more
sophisticated models, for example by employing more complex training algo-
rithms with better feature selection methods.

41

7. CONCLUSION

The research discussed in this dissertation has resulted in (1) a better under-
standing of the usage of different languages in open source software projects,
(2) development and validation of guidelines for the design of XSLT and XML
transformations in general, and (3) short term and long term code churn esti-
mation models. The studies reported in the original publications in the disser-
tation show that XML is the most often used language in software projects and
is increasing in popularity. The most common use of XML is solution and pro-
ject specific (e.g. in the form of domain specific language) – project definitions
and configurations make up less than a third of XML files used in modern soft-
ware development (RQ2.1). XML is not a stand-alone language; instead it co-
evolves with other software development artefacts in about 20% of the cases
(RQ2.2).

The research conducted in this doctoral project used a combination of a case
study, controlled experiments and exploratory data analysis. The early case
studies of application of some of the general guidelines for the design of for-
ward compatible XML transformations and the XML policy language xslt-req
showed almost doubled effectiveness of coding effort (RQ1.1 and RQ1.2). The
following controlled experiment also showed that the performance of guide-
lines-conformant transformations is similar to the performance of transfor-
mations that do not conform to the guidelines (RQ2.4). Thus, there are no per-
formance downsides to the use of the guidelines.

By studying the code churn of XSLT, a relationship between XSLT code
churn and XSLT design was established (RQ3.1). Additionally, estimation
models built by machine learning algorithms applied to data extracted from
software repositories were found to achieve a mean relative error of less than
1% (RQ3.2). The introspection of yearly code churn estimation models showed
that the strongest influencers of yearly code churn are organisational features
(e.g. team size and experience), followed by XML and XSL related features.
Code structure and object-oriented metrics were found to have the lowest influ-
ence on code churn.

The guidelines for designing maintainable XSLT were either identified by
introspection of estimation models or developed by validating guidelines pro-
posed based on the analysis of the properties of forward compatibility in con-
trolled experiments. Some of the guidelines were the independent result of both
of these methods. The resulting guidelines for designing maintainable XML and
XSL transformations include the following (RQ2.3, RQ3.3, and RQ3.4):

 Reoccurring constants should be stored as parameters or variables and
used through these if possible.

 Generic transformations should be preferred over specific transfor-
mations.

 Metadata in source documents should be taken advantage of.

11

42

 Complex (generic) expressions should be used instead of simple expres-
sions when possible.

 Templates with ‘‘match’’ expressions (and if needed, ‘‘mode’’ attribute)
should be preferred over <choose> and <when> constructs.

 Parameter definitions should be kept short (less than 6 lines of code).
 XSLT code should be commented.
 Transformations should be made individually addressable and sub-

scribable.
 Long templates should be split into smaller ones to improve template

reuse, addressability and subscribability.

The application of these guidelines results in slightly smaller files (~4% de-
crease in lines), lowered need and scope for changes needed to the files in the
subsequent development steps (~20% lower code churn), and decreased yearly
code churn in the project. The studies confirmed that these guidelines are appli-
cable on different types of projects and transformation types.

In addition, the studies reported in this dissertation provided better under-
standing of XML and XSLT by linking different features of XML and XSLT
code to features of object-oriented code and describing the effects of schema
changes on transformation compatibility.

43

8. BIBLIOGRAPHY

[1] The World Wide Web Consortium (W3C). (2011, March) Extensible Markup
Language (XML). [Online]. http://www.w3.org/XML/

[2] W3C HTML Working Group. (2002, August) XHTML™ 1.0 The Extensible
HyperText Markup Language (Second Edition). [Online].
http://www.w3.org/TR/xhtml1/

[3] RSS-DEV Working Group. (2008, June) RDF Site Summary (RSS) 1.0. [Online].
http://web.resource.org/rss/1.0/spec

[4] D. Winer. (2003, July) RSS 2.0 Specification (RSS 2.0 at Harvard Law). [Online].
http://cyber.law.harvard.edu/rss/rss.html

[5] M. Jazayeri, “Some Trends in Web Application Development, ” in Proceedings of
the Workshop on the Future of Software Engineering (FOSE 2007), Minneapolis,
MN, USA, 2007, pp. 199–213.

[6] Microsoft Corporation. (2010, April) Extensible Application Markup Language
(XAML). [Online]. http://www.microsoft.com/downloads/en/

 details.aspx?FamilyID= 52a193d1-d14f-4335-aa86-c53193e1885d
[7] JBoss Community. Hibernate. http://www.hibernate.org/
[8] OASIS Web Services Business Process Execution Language (WSBPEL) TC.

(2007, April) Web Services Business Process Execution Language Version 2.0.
[Online]. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[9] Health Level Seven International. (2010) HL7 V3 Messages Standard. [Online].
http://www.hl7.org/implement/standards/v3messages.cfm

[10] OASIS Open. (2006) ebXML. [Online]. http://www.ebxml.org/
[11] M. Bell, Service-Oriented Modeling (SOA): Service Analysis, Design, and Archi-

tecture.: Wiley, 2008.
[12] World Wide Web Consortium. (1999, November) XSL Transformations. [Online].

http://www.w3.org/TR/xslt
[13] C. Kerer, E. Kirda, M. Jazayeri, and R. Kurmanowytsch, “Building and Managing

XML/XSL-powered Web Sites: an Experience Report,” in Proceedings of the
25th International Computer Software and Applications Conference (COMPSAC
2001), Chicago, IL, USA, 2001, pp. 547–554.

[14] C. Kerer, E. Kirda, and C. Krügel, “XGuide – A Practical Guide to XML-Based
Web Engineering,” in Proceedings of Web Engineering and Peer-to-Peer Com-
puting NETWORKING 2002 Workshops, vol. 2376, Pisa, Italy, 2002, pp. 104–
117.

[15] R. Wang, C. Yang, J. Xu, C. Yang, and X. Meng, “An XML-Based Interface
Customization Model in Digital Museum, ” Transactions on Edutainment III, vol.
5940, pp. 190–202, October 2009.

[16] D. Probert. (2008, February) BizBert. [Online]. http://www.bizbert.com/bizbert/
2008/02/26/Understanding+The+BizTalk+Mapper+Part+12+Performance+And+
Maintainability.aspx

[17] S. Karus and H. Gall, “A Study of Language Usage Evolution in Open Source
Software,” in Proceedings of the 8th Working Conference on Mining Software
Repositories (MSR 2011), Honoulu, Hawaii, U.S.A., 2011, In print.

[18] W3C XSL Working Group. The Extensible Stylesheet Language Family (XSL).
[Online]. http://www.w3.org/Style/XSL/

44

[19] W3C XSL Working Group. (2006, December) Extensible Stylesheet Language
(XSL) Version 1.1. [Online]. http://www.w3.org/TR/xsl/

[20] W3C XSL Working Group and W3C XML Linking Working Group. (1999,
November) XML Path Language (XPath) Verion 1.0. [Online].
http://www.w3.org/TR/xpath/

[21] S. Karus and M. Dumas, “Designing Maintainable XML Transformations,” in
Proceedings of the 14th European Conference on Software Maintenance and
Reengineering (CSMR 2010), Madrid, Spain, 2010, pp. 137–145.

[22] S. Karus and M. Dumas, “Predicting the Maintainability of XSL Transfor-
mations,” Science of Computer Programming, In press.

[23] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std
610.12–1990, 1990.

[24] R. J. Martin and W. M. Osborne, Guidance on Software Maintenance. Washing-
ton, D.C, U.S.A.: U.S. Dept. of Commerce, National Bureau of Standards, 1983.

[25] E. B. Swanson, “IS “Maintainability”: Should It Reduce the Maintenance Effort?,”
SIGMIS Database, vol. 30, no. 1, pp. 65–76, January 1999.

[26] C. Armbruster. (1999) Design For Evolution. [Online].
http://chrisarmbruster.com/documents/D4E/witepapr.htm

[27] J. F. Ramil and M. M. Lehman, “Metrics of Software Evolution as Effort Pre-
dictors – A Case Study,” in Proceedings of the International Conference on Soft-
ware Maintenance (ICSM 2000), Washington, DC, USA, 2000, p. 163.

[28] J. J. Amor, G. Robles, and J. M. Gonzalez-Barahona, “Effort Estimation by Cha-
racterizing Developer Activity,” in Proceedings of the 2006 International Work-
shop on Economics Driven Software Engineering Research (EDSER 2006),
Shanghai, China, 2006, pp. 3–6.

[29] B. W. Boehm et al., Software Cost Estimation with Cocomo II. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2000.

[30] B. Boehm, C. Abts, and S. Chulani, “Software Development Cost Estimation
Approaches – A Survey,” Annals of Software Engineering, vol. 10, no. 1, pp. 177–
205, November 2000.

[31] T. C. Jones, Estimating Software Costs. Hightstown, NJ, USA: McGraw-Hill, Inc.,
1998.

[32] P. C. Pendharkar and J. A. Rodger, “The Relationship Between Software Develop-
ment Team Size and Software Development Cost,” Communications of the ACM,
vol. 52, no. 1, pp. 141–144, January 2009.

[33] G. A. Hall and J. C. Munson, “Software Evolution: Code Delta and Code Churn,”
Journal of Systems and Software, vol. 54, no. 2, pp. 111–118, October 2000.

[34] J. Munson and S. Elbaum, “Code Churn: A Measure for Estimating the Impact of
Code Change,” in Proceedings. International Conference on Software Main-
tenance (ICSM 1998), Bethesda, Maryland, USA, 1998, pp. 24–31.

[35] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures to Predict
System Defect Density,” in Proceedings of the 27th International Conference on
Software engineering (ICSE 2005), St. Louis, MO, USA, 2005, pp. 284–292.

[36] C. v. Koten and A. Gray, “An Application of Bayesian Network for Predicting
Object-oriented Software Maintainability,” Information and Software Technology,
vol. 1, no. 48, pp. 59–67, January 2006.

[37] M. M. T. Thwin and T.-S. Quah, “Application of Neural Networks for Software
Quality Prediction Using Object-Oriented Metrics,” Journal of Systems and
Software, vol. 76, no. 2, pp. 147–156, May 2005.

45

[38] S. Karus, “Kasutajate poolt loodud XSL teisendustele esitavate nõuete spetsifit-
seerimine.,” Faculty of Mathematics and Computer Science, University of Tartu,
Tartu, Bachelor’s Thesis 2005.

[39] W3C XML Schema Working Group. (2001, May) XML Schema. [Online].
http://www.w3.org/XML/Schema

[40] S. Karus and M. Dumas, “Enforcing Policies and Guidelines in Web Portals: A
Case Study,” in Proceedings of Web Information Systems Engineering – WISE
2007 Workshops, Nancy, France, 2007, pp. 154–165.

[41] T. Khoshgoftaar, E. Allen, N. Goel, A. Nandi, and J. McMullan, “Detection of
Software Modules with High Debug Code Churn in a Very Large Legacy
System,” in Proceedings of the 7th International Symposium on Software
Reliability Engineering (ISSRE 1996), White Plains, New York, 1996, pp. 364–
371.

[42] T. Khoshgoftaar and R. Szabo, “Improving Code Churn Predictions During the
System Test and Maintenance Phases,” in Proceedings of the International
Conference on Software Maintenance (ICSM 1994), Victoria, BC, Canada, 1994,
pp. 58–67.

[43] H. Hayes, J. Liming, and Z. Liming, “Maintainability Prediction: A Regression
Analysis of Measures of Evolving Systems,” in Proceedings of the 21st IEEE
International Conference on Software Maintanance (ICSM 2005), Budapest,
Hungary, 2005, pp. 601–604.

[44] S. Karus and M. Dumas. (2010) Predicting Code Churn from XML Metrics.
[Online]. http://arxiv.org/abs/1010.2354

[45] T. M. Mitchell, Machine Learning, 1th ed. New York, NY, USA: McGraw-Hill
Book Co, 1997.

[46] C. M. Bishop, Pattern Recognition and Machine Learning, 1th ed.: Springer,
2007.

[47] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2th ed., J. Gray,
Ed. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2006.

[48] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, 2th ed. New
York, NY, USA: John Wiley & Sons, Inc., 2008.

[49] R. Hecht-Nielsen, “Theory of the Backpropagation Neural Network,” in Inter-
national Joint Conference on Neural Networks (IJCNN 1989) , Washington, DC,
USA, 1989, pp. 593–605.

[50] T. Zimmermann, S. Kim, A. Zeller, and J. E. J. Whitehead, “Mining Version
Archives for Co-changed Lines,” in Proceedings of the 2006 International
Workshop on Mining Software Repositories (MSR 2006), Shanghai, China, 2006,
pp. 72–75.

[51] P. Weißgerber, L. von Klenze, M. Burch, and S. Diehl, “Exploring Evolutionary
Coupling in Eclipse,” in Proceedings of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange (ETX 2005), San Diego, California, USA, 2005, pp. 31–34.

[52] R. Dattero and S. D. Galup, “Programming Languages and Gender,” Commu-
nications of the ACM, vol. 47, no. 1, pp. 99–102, January 2004.

[53] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, “Evolution
Patterns of Open-Source Software Systems and Communities,” in Proceedings of
the International Workshop on Principles of Software Evolution (IWPSE 2002),
Orlando, Florida, USA, 2002, pp. 76–85.

[54] L. Yu and S. Ramaswamy, “Mining CVS Repositories to Understand Open-
Source Project Developer Roles,” in Proceedings of the 4th International Work-

12

46

shop on Mining Software Repositories (MSR 2007), Minneapolis, MN, USA,
2007, p. 8.

[55] S. Thummalapenta and T. Xie, “SpotWeb: Detecting Framework Hotspots via
Mining Open Source Repositories on the Web,” in Proceedings of the 2008
International Working Conference on Mining Software Repositories (MSR 2008),
Leipzig, Germany, 2008, pp. 109–112.

[56] A. Deshpande and D. Riehle, “The Total Growth of Open Source,” in Open
Source Development, Communities and Quality, IFIP 20th World Computer
Congress, Working Group 2.3 on Open Source Software (OSS 2008), vol. 275,
Milano, Italy, 2008, pp. 197–209.

[57] I. Fundulaki and M. Marx, “Specifying Access Control Policies for XML
Documents with XPath,” in Proceedings of the 9th ACM Symposium on Access
Control Models and Technologies (SACMAT 2004), Yorktown Heights, New
York, USA, 2004, pp. 61–69.

[58] J. Vanderdonckt and A. Beirekdar, “Automated Web Evaluation by Guideline
Review,” Journal of Web Engineering, vol. 4, no. 2, pp. 102–117, March 2005.

[59] C. Wege, “Portal Server Technology,” IEEE Internet Computing, vol. 6, no. 3, pp.
73–77, May/June 2002.

[60] J. Yu et al., “A Framework for Rapid Integration of Presentation Components,” in
Proceedings of the 16th International Conference on World Wide Web (WWW
2007), New York, NY, USA, 2007, pp. 923–932.

[61] M. M. Moro, S. Malaika, and L. Lim, “Preserving XML Queries During Schema
Evolution,” in Proceedings of the 16th International Conference on World (WWW
2007), Banff, Alberta, Canada, June 2007, pp. 1341–1342.

[62] G. Guerrini, M. Mesiti, and D. Rossi, “Impact of XML Schema Evolution on
Valid Documents,” in Proceedings of the 7th ACM International Workshop on
Web Information and Data Management (WIDM 2005), Bremen, Germany, 2005,
pp. 39–44.

[63] P. Lemmens and G.-J. Houben, “XML to XML Through XML,” in Proceedings of
the World Conference on the WWW and Internet (WebNet 2001), Orlando,
Florida, 2001, pp. 772–777.

[64] H. Jiang, H. Ho, L. Popa, and W.-S. Han, “Mapping-Driven XML Trans-
formation,” in Proceedings of the 16th international Conference on World Wide
Web (WWW 2007), Banff, Alberta, Canada, 2007, pp. 1063–1072.

[65] E. Rahm and P. A.Bernstein, “A Survey of Approaches to Automatic Schema
Matching,” The VLDB Journal, vol. 10, no. 4, pp. 334–350, December 2001.

[66] A. McDowell, C. Schmidt, and K.-b. Yue, “Analysis and Metrics of XML
Schema,” in Proceedings of the International Conference on Software Engi-
neering Research and Practice (SERP 2004), Las Vegas, Nevada, USA, 2004, pp.
538–544.

[67] H. Kagdi, M. L. Collard, and J. I. Maletic, “A Survey and Taxonomy of App-
roaches for Mining Software Repositories in the Context of Software Evolution,”
Journal of Software Maintenance and Evolution: Research and Practice, vol. 19,
no. 2, pp. 77–131, March 2007.

[68] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall, “Mining Software Evolution
to Predict Refactoring,” in Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), Washington,
DC, USA, 2007, pp. 354–363.

47

[69] S. Vaucher and H. Sahraoui, “Do Software Libraries Evolve Differently Than
Applications?: An Empirical Investigation,” in Proceedings of the 2007 Sym-
posium on Library-Centric Software Design (LCSD 2007), Montreal, Canada,
2007, pp. 88–96.

[70] W. Li and S. M. Henry, “Object-Oriented Metrics Which Predict Maintainability,”
The Journal of Systems and Software, vol. 23, no. 2, pp. 111–122, November
1993.

[71] N. Nagappan, B. Murphy, and V. Basili, “The Influence of Organizational Struc-
ture on Software Quality: An Empirical Case Study,” in Proceedings of the 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Ger-
many, 2008, pp. 521–530.

[72] Y. Zhou and B. Xu, “Predicting the Maintainability of Open Source Software
Using Design Metrics,” Wuhan University Journal of Natural Sciences, vol. 13,
no. 1, pp. 14–20, February 2008.

[73] M. G. Smith and L. Bull, “Feature Construction and Selection Using Genetic
Programming and a Genetic Algorithm,” in Proceedings of the 6th European
Conference on Genetic Programming (EuroGP 2003), Essex, UK, 2003, pp. 229–
237.

[74] M. Jorgensen and M. Shepperd, “A Systematic Review of Software Development
Cost Estimation Studies,” IEEE Transactions on Software Engineering, vol. 33,
no. 1, pp. 33 –53, January 2007.

48

9. ACKNOWLEDGEMENTS

I would like to thank everyone who has directly or indirectly helped me during
my PhD studies. I would like to thank the staff and co-students at the Institute
of Computer Science who have supported me in this quest in various ways. My
special thanks go to my supervisors: professor Marlon Dumas, who agreed to
supervise me even before he joined the institute, and docent Helle Hein.

I would also like to acknowledge that the work presented in this dissertation
is partially funded by Swedbank and ERDF through the Estonian Centre of
Excellence in Computer Science. The research was partly conducted during the
visits of the first author to the software evolution and architecture lab at the
University of Zurich. These visits were funded by the ESF DoRa 6 Program and
Estonian Doctoral School in ICT. We thank the members of the lab for their
valuable advice.

49

10. KOKKUVÕTE (SUMMARY IN ESTONIAN)

XML teisenduste hallatavus

Extensible Markup Language (XML) on laia levikuga andmete esitamiseks
kasutatav keel. XMLi kasutatakse nii lõppkasutajatele andmete esitamiseks (nt.
XHTML) kui ka süsteemisisesel suhtlusel ja andmevahetusel (nt. EDI, HL7).
Selline laialdane kasutus erinevatel süsteemi tasemetel on kaasa toonud vaja-
duse teisendada XML dokumente ühelt kujult teisele. Selliste teisenduste hal-
damine võib aga olla väga kulukas. Käesoleva doktoritöö eesmärk on leida viise
XML teisenduste haldamiskulude vähendamiseks, uurida XML-i ja XML tei-
senduste rolli tarkvara arenduses (sh. mõju loodava koodi mahule) ja tuvastada
kodeerimismahtu määravaid indikaatoreid.

XML teisenduste koodi haldamiskulude vähendamisel on uuritud kahte
suunda: 1) koodi haldamise ja arendamise delegeerimine partneritele ja 2) koodi
hallatavuse suurendamine koodi edasiühilduvuse saavutamisega. Esimesel juhul
on peaprobleemiks kõigi huvipoolte huvide kaitsmise tagamise võimalikkus ja
rakendatavus. Selle probleemi lahendamiseks kontrolliti XML teisenduste po-
liitikate kirjeldamise keele xslt-req kasutatavust ja mõju poliitikate poolauto-
maatsel jõustamisel. Uurimuste tulemused näitasid, et xslt-req on kasutatav ning
selle abil on võimalik automaatselt tuvastada ligi 30% poliitikate hälvetest.
Samas on automaatselt tuvastatavad hälbed kõige sagedamini esinevad hälbed,
mis kinnitab automaatsete kontrollide kasumlikkust.

Koodi edasiühilduvuse saavutamiseks kasutati kahte lähenemist: 1) edasi-
ühilduvuse komponentide detailiseerimine ja kontrollimine ning 2) koodikulu
(code churn) hindamise mudelite loomine ja analüüs koodikulu mõjutavate
tegurite tuvastamiseks. Edasiühilduvuse komponentide detailiseerimine ja
koodikulu hindamise mudelite analüüsi põhjal tuvastati järgmised peamised
XSL arendamise juhised/mõjurid koodikulu vähendamiseks:

 Taasesinevad konstandid tuleb säilitada parameetrite (element <param>)
või muutujatena (element <variable>), mitte kasutada kordusi koodis.

 Eelistada tuleb üldisi (erinevaid dokumendifragmente käitlevaid) teisen-
dusi.

 Teisendused peavad kasutama lähtedokumendis olevaid metaandmeid.
 Keerulisi (üldiseid) XPath lauseid tuleb eelistada lihtsatele XPath lause-

tele.
 Elementi <template> atribuudiga „match” (ja atribuudiga „mode”) tuleb

eelistada <choose> <when> konstruktsioonidele.
 Parameetrite definitsioonid peavad olema lühikesed (alla 6 koodirea).
 XSLT koodi tuleb kommenteerida.
 Teisendused tuleb luua eraldiseisvalt adresseeritavateks ja tellitavateks.
 Pikad teisendused tuleb jaotada väiksemateks.

13

50

Loodud juhiste järgimine ei mõjutanud teisenduste rakendamise jõudlust olu-
liselt kummaski suunas (mõju alla 3%), küll aga on juhiseid järgivad teisen-
dused lühemad ja nende laiendamine vajab oluliselt väiksemat koodikulu. Uuri-
mustöö käigus loodud aastase kumulatiivse koodikulu hindamise mudelid
saavutasid suurepärase täpsuse – hinnangu keskmine suhteline viga jäi alla 1%.

Dissertatsioon koosneb sissejuhatavast osast, neljast avaldatud või avalda-
misel oleva ning ühe retsenseerimisfaasis oleva artikli kokkuvõttest, järeldus-
test, kirjanduse loetelust, tänusõnadest ja eestikeelsest dissertatsiooni kokku-
võttest. Sissejuhatavas osas antakse ülevaade:

 peamistest dissertatsioonis kasutatud tehnoloogiatest ja standarditest
(sektsioon 1.1 Background): XMLst, levinud XML teisenduste kirjelda-
mise keelest XSLT (Extensible Stylesheet Language Transformations),
edasiühilduvusest (süsteemi võime käidelda oma tulevikuversioonide tar-
beks loodud sisendit) ja kodeerimiseks kuluva vaeva mõõtmisviisidest.
Viimastest on dissertatsioonis kasutatud koodikulu (code churn), mis on
loodud, eemaldatud ja muudetud koodi mahu summa.

 XML teisendustega seotud problemaatikast ning tuuakse välja disser-
tatsiooni peamised teemad ja uurimisküsimused.

 uurimistöös kasutatud hallatavuse indikaatorite leidmise võtetest, masin-
õppe algoritmidest ja mudelite kirjeldava analüüsi võtetest.

 doktoritöö peamistest panustest.
 dissertatsiooni ülesehitusest.

Järgnevad artiklite kokkuvõtted:

1. Artikkel „A Study of Language Usage Evolution in Open Source Soft-
ware” (avaldamisel) uurib keelte kasutust avatud lähtekoodiga tarkvara-
projektides. Uuritud 22 projekti enim kasutatud keel on XML, milles loo-
dud failid arenevad enamasti koos teiste projekti tehistega (20% mitte-
XML tehiste muudatused on kaasatud muudatusega XML failides). Uuri-
mus lükkas ümber arvamuse, et XML on peamiselt kasutuses projektide
kirjeldamiseks – Ant, Maven, Eclipse ja NetBeans failid moodustasid alla
kolmandiku kõigist projektides esinevatest XML failidest.

2. Artikkel „Enforcing Policies and Guidelines in Web Portals: A Case
Study” uurib XML teisenduste haldamise delegeerimisest tingitud prob-
leeme ühe tarkvaraprojekti raames. See uurimus näitas, et keel xslt-req on
kasutatav XML teisenduste poliitikate kirjeldamiseks ning sellel baseeruv
automaatne poliitikate järgimise kontroll suutis tuvastada 30% erinevatest
poliitika hälvetest. Täiendavalt leidis kinnitust edasiühilduvuse kompo-
nentide põhjal loodud üldsõnaliste XML ja XSL arendamise juhiste posi-
tiivne mõju XML teisenduste hallatavusele.

3. Artikkel „Designing Maintainable XML Transformations” jätkas artiklis
„Enforcing Policies and Guidelines in Web Portals: A Case Study” uuri-
tud XSL arendamise juhiste uurimist spetsialiseerudes detailsemate
juhiste loomisele XSLT hallatavuse parandamiseks. Loodud juhiste jär-

51

gimine vähendas uuritud teisenduste koodi mahtu ning nende laienda-
miseks vajaliku koodi mahtu ilma olulise mõjuta teisenduste jõudlusele.

4. Artikkel „Predicting the maintainability of XSL transformations” (aval-
damisel) uuris XSLT koodi sisulise muudatuse tegemiseks vajaliku
koodimahu hindamise võimalikkust XSLT koodi loendamismõõdikute
põhjal. Loodud mudelid suudavad tuvastada koodimahukaid muudatusi
vajavaid teisendusi ning on eriti tugevad teisenduste hulgast kõige koo-
dimahukamaid muudatusi vajavate teisenduste leidmisel. Mudelite uuriv
analüüs näitas mõningate selgepiiriliste seaduspärasuste esinemist koodi
mõõdikute ja koodikulu vahel. Nende seaduspärasuste alusel loodi juhi-
sed hallatava XSLT koodi arendamiseks.

5. Artikkel „Predicting Code Churn from XML Metrics” (retsenseerimisel)
uurib XML/XSL koodi, objektorienteeritud ja protseduurilise koodi ning
organisatoorsete mõõdikute mõju aastasele kumulatiivsele koodikulule
projektis. Loodud mudelid saavutasid suurepärase täpsuse – keskmine
suhteline viga alla 1% ja 95% tõenäosusega on hinnangu viga väiksem
kui 3400 koodirida. Olulisemad koodikulu mõjutavad tegurid on organi-
satoorsed ning arenduskeelest sõltumatud või seotud XML ja XSL-ga.
Objektorienteeritud mõõdikud ning koodi ehitusel baseeruvad mõõdikud
omavad vähest mõju aastasele kumulatiivsele koodikulule.

PUBLICATIONS

14

CURRICULUM VITAE

Name: Siim Karus
Born: 04.04.1984, Tartu, Estonia
Citizenship: Estonian
E-mail: siim.karus@ut.ee

Education:
2007–2011 (estimated) University of Tartu, doctoral studies in Computer

Sciences
2010 spring University of Zurich, exchange student
2005–2007 University of Tartu, Master of Technical Sciences

(Computer Science), cum laude
2002–2005 University of Tartu, Bachelor of Technical Sciences

(Computer Science), cum laude

Languages:
Estonian (mother tongue), English (excellent), Russian (basic), German (mid-
level)

Main Research Topics:
XML, maintainability of source code

Organisational and Professional Activities:
 Microsoft Certified Trainer 2010–2011
 Microsoft Certified Professional
 Microsoft Certified IT Professional: Database Administrator 2008; Business

Intelligence Developer 2008
 Microsoft Certified Technology Specialist: SQL Server 2008, Implemen-

tation and Maintenance; SQL Server 2008, Business Intelligence Develop-
ment and Maintenance; Biztalk® Server 2006: Custom Applications

137
35

ELULOOKIRJELDUS

Ees- ja perekonnanimi: Siim Karus
Sünniaeg ja koht: 04.04.1984, Tartu, Eesti
Kodakondsus: Eesti
E-post: siim.karus@ut.ee

Haridustee:
2007–2011 (eeldatav) Tartu Ülikool, informaatika doktorantuur
2010 kevad Zürichi Ülikool, külalisüliõpilane
2005–2007 Tartu Ülikool, magistrikraad tehnikateadustes (infor-

maatika), cum laude
2002–2005 Tartu Ülikool, bakalaureusekraad tehnikateadustes

(informaatika), cum laude

Keelteoskus:
Eesti keel (emakeel), inglise keel (kõrgtase), vene keel (algtase), saksa keel
(kesktase)

Peamised uurimisvaldkonnad:
XML, tarkvara lähtekoodi hallatavus

Muu organisatsiooniline ja erialane tegevus:
 Microsoft Certified Trainer 2010–2011
 Microsoft Certified Professional
 Microsoft Certified IT Professional: Database Administrator 2008; Business

Intelligence Developer 2008
 Microsoft Certified Technology Specialist: SQL Server 2008, Implemen-

tation and Maintenance; SQL Server 2008, Business Intelligence Develop-
ment and Maintenance; Biztalk® Server 2006: Custom Applications

138

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

139

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.

140

42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.
43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach

spaces of operators. Tartu 2006, 72 p.
44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra

integral equations. Tartu 2006, 117 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.

137 p.
47. Annemai Raidjõe. Sequence spaces defined by modulus functions and

superposition operators. Tartu 2006, 97 p.
48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.

141
36

63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral
Equations with Singularities. Tartu 2010, 134 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

	KarusS_pub1_msr-v01-hcg-camera_t1.pdf
	KarusS_pub1_msr-v01-hcg-camera_t1.pdf
	1. INTRODUCTION
	2. Dataset
	3. Developers
	3.1 Languages Used
	3.1.1 C/C++ Developers.
	3.1.2 Java Developers.
	3.1.3 XML Developers

	3.2 The First Commit

	4. Co-Changes
	4.1 Business Type Projects
	4.2 Desktop Type Projects

	5. Threats to validity
	6. Related Work
	7. Conclusions and Future Work
	8. Acknowledgments
	9. References

	KarusS_pub2_WISE2007.pdf
	Enforcing Policies and Guidelines in Web Portals: A Case Study
	Introduction
	Case Study: VabaVaraVeeb
	Defining and Enforcing Policies and Guidelines
	The XSLT Requirements Definition Language (xslt-req)
	Exploiting Implicit Metadata
	Additional Techniques
	Outcomes

	Related Work
	Conclusion and Future Work
	References

	KarusS_pub4_SciCo2010.pdf
	Predicting the maintainability of XSL transformations
	Introduction
	Overview of XSLT
	Choice of metrics
	Empirical evaluation
	Understanding the data
	Data pre-processing
	Application of algorithms
	Performance measures

	Results
	Accuracy of predictions
	Classification
	Identification
	Conclusion

	Influencers of churn
	Impact of project type
	Impact of project type on classification accuracy
	Impact of project type on identification

	Limitations of the study
	Churn prediction service

	Related work
	Conclusion and future work
	Main findings
	Guidelines
	Future work

	Acknowledgements
	References

	KarusS_pub5_Mining Predictors of Code Churn XML.pdf
	Introduction
	Dataset
	Features And Training Algorithms
	Object-oriented metrics
	XML Metrics
	XSL Metrics
	Organisational Metrics
	Training Algorithms

	Results
	Models from Code Metrics
	Models from Organisational Metrics
	Combined Feature Set Models
	Comparison of Models
	Analysis of Influencers
	Organisational Decision Trees Model
	Organisational and XML Decision Trees Model
	All-Metrics Decision Trees Model

	Limitations of the Study

	Related Work
	Conclusions and Future Work
	Acknowledgements

