

UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Ostap Maliuvanchuk

Performance optimization of a Java instru-

mentation agent for calling context encoding

Master’s Thesis (30 ECTS)

Supervisor(s): Vesal Vojdani

Nikita Salnikov-Tarnovski

Tartu 2016

2

Performance optimization of a Java instrumentation agent for calling con-

text encoding

Abstract:

The idea behind calling context encoding algorithms is to efficiently build a call graph of

an application in order to be able to give developers a call stack trace of any event at any

point of the program execution. Having the information that calling context provides enables

developers to better interpret results of monitoring and profiling tools. In this paper, we

discuss in greater detail the benefits of calling context encoding and the problems with cur-

rent algorithms that are trying to construct calling context. We take an algorithm imple-

mented as Java instrumentation agent - Lucce - and explain its promising possibilities, ben-

efits over other similar algorithms, as well as its main performance problem. This thesis

contributes to this field firstly by presenting an analysis of different methods of performance

optimization and their applications to a Java agent, and secondly by applying these methods

to the performance optimization of the Lucce algorithm and its Java implementation.

Keywords:

Performance optimization, calling context encoding, Java agent, profiling, instrumentation

CERCS: P170 Computer science, numerical analysis, systems, control

Funktsioonikutsete ajalugu kodeeriva Java agendi jõudluse tõstmine

Lühikokkuvõte:

Funktsioonikutsete ajalugu, mida kasutajale trükitakse pinujäljena, on suureks abiks prog-

rammis toimuva vea täpse asukoha leidmiseks lähtekoodis. Sügavamate probleemide puhul

on vaja programmi täitmist pikemalt jälgida ja oluliste sündmuste toimumisel nende funkt-

sioonikutsete ajalugu salvestada. Kuna terve ajalugu on väga pikk, siis on mõistlik seda

kodeerida. Antud magistritöös uuritakse ühte konkreetset kodeerimise algoritmi Lucce.

Välja on toodud selle eeliseid teiste algoritmidega võrreldes ning on näidatud probleeme

jõudlusega. Eesmärgiks on selle algoritmi jõudlust tõsta ja selle näite varal tutvustada üldisi

Java agentidega seotud jõudluse tõstmise võtteid.

Võtmesõnad:

Jõudluse optimeerimine, kutsekonteksti kodeering, Java agent, profileerimine, instrument-

eerimine

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

3

Table of Contents

 Introduction 4

 Related work 6

2.1 Efficient path profiling ... 6

2.2 PCCE .. 8

2.3 DeltaPath .. 10

 Background 12

3.1 Algorithm ... 12

3.2 Instrumentation ... 14

 Validation methodology 16

4.1 Testing .. 16

4.2 Benchmarking ... 16

4.2.1 Black box benchmarking .. 16

4.2.2 Micro benchmarking ... 18

4.3 Continuous integration ... 19

 Preliminary benchmarking 21

 Java performance tuning 23

6.1 Finding a bottleneck ... 23

6.2 Performance optimization techniques .. 25

 Instrumentation improvements 31

7.1 Instrumentation with ASM ... 31

7.2 Attempted optimizations .. 36

 Results 50

 Conclusions 52

 References 54

 Appendix 56

11.1 Bash script to run DaCapo benchmarks ... 56

11.2 Glossary .. 57

11.3 License .. 58

4

 Introduction

Java is a language with automatic garbage collection, which makes it easier for regular

developers to work with objects and memory. Nevertheless, it does not fully prevent

memory leaks, other nested bugs or human mistakes. If developers receive an error during

the program execution, they can easily get a call stack trace that shows how, when and where

the error occurred. However, for most complicated cases just knowing place of the error in

the code is not enough as the error might have nothing to do with the actual problem. There-

fore, we need a tool that would allow us to see the call stack trace at any time or point during

the program execution. This would allow us to have a deeper understanding of the program

flow and help us to find the existing hidden problems described above. The implementation,

in the simplest form, would require storing the full stack alongside each event. However, in

terms of memory taken to store all the stacks, this is not an acceptable solution. Therefore,

ideally, it would be good to store just one number with every call, from which it would be

possible to recover the full call stack trace.

There are several algorithms that attempting to deal with this problem by building a

calling context graph. One of them is “Lazy and Unintrusive Calling Context Encoding” or

Lucce [1]. It is an algorithm that builds a calling context graph during the program execution

in such a way, that at any time you can trace back the event or method that occurred. It has

many benefits over other similar algorithms and has demonstrated good performance on

small projects. However, the current version is unfortunately not suitable for production

applications [1]. On a big project the overhead it produces is too high, with the result that

the execution time of the instrumented program increases dramatically. Compared to other

algorithms, Lucce has a lot of potential since it works in runtime, does not need to analyze

code beforehand and can show the exact stack trace of an occurred event. Decreasing the

overhead related to the execution of Lucce alongside with an application would make it

possible to use the algorithm as a tool in production environments for many IT projects that

use Java. This would be helpful for many developers in both computer software and aca-

demic industries in their day-to-day work and will lead to faster development process and

lower debugging time. For example, it can be used as a memory leak detection tool.

The author of Lucce, Salnikov-Tarnovski, have tried the most obvious optimizations

such as caching values and offloading work into parallel threads. Nevertheless, there is still

a room for improvement [3]. Thus, this thesis will analyze existing algorithms, compare

them with Lucce and investigate the problem with current implementation in order to find

5

out how we can improve the algorithms and decrease the overhead. After finding a method

to optimize it, the solution will be implemented. To validate the results we will use the

benchmarks suits on a new version and compare them to the results of the original version

of the algorithm.

Performance optimization of Java agent has many stages that has to be done in order to

see any kind of the improvement. On an example of Lucce we gathered and discussed prac-

tices, methodologies and techniques that help to save time during the optimization process

and ensure the efficiency and correctness of the changes being made. The process of opti-

mization used in this theses is applicable to any regular a Java agent as well as to perfor-

mance optimization in general.

The structure of the thesis is as follows. Chapter 2 explains the state of the art algorithms

that were trying to solve the same problems of path or calling context encoding. The bench-

marks, as well as advantages and disadvantages of every algorithm, are discussed as well.

In chapter 3, the workings of the Lucce algorithm are explained in detail, along with the

implementation of instrumentation in Java. Chapter 4 presents the validation methodology

and the preparation done in order to make the optimization process easier. In Chapter 5, the

preliminary benchmarks techniques and their results are described. This is followed by the

actual optimization techniques and methods used to make the algorithm faster in Chapters

6 and 7. In Chapter 8 we validate our achievements by doing benchmarks of the original and

improved algorithm implementations on different versions of Java. Finally, in the Conclu-

sion we summarized received results and discussed the further work.

6

 Related work

The following section presents a review of the algorithms that are based on the similar

main idea or principle as Lucce. That is to mark the calling context with an integer number

and to have a possibility to decode this number back to a stack trace. The algorithms are

discussed in the chronological order of the time they were published. In this way, it is pos-

sible to see the evolution and development of the algorithms. The review and description of

the algorithms is based on the criteria listed below:

 Idea and possibilities of an algorithm

 Implementation

 Execution overhead

 Benchmarks

 Limitations

2.1 Efficient path profiling

The idea of representing a path as a single number with the possibility to decode it back

was originally introduced by Ball and Larus [2]. They created an algorithm which is usually

referred to as BL encoding, based on the first letter of authors’ names. The algorithm is an

alternative to the previously used methods of block and edge encoding. Edge encoding is

based on finding the most frequent paths using a heuristic approach, thus it cannot actually

identify all the most frequent paths. Although the algorithm was not perfect, such inaccura-

cies were omitted in favor of the low overhead of the algorithm. Ball and Larus decided to

improve the accuracy of the algorithm while still keeping the overhead relatively small. The

BL algorithm provides users with a way to get results that are more accurate and it still

works with a comparable overhead. For example, on SPEC95 benchmarks the BL overhead

is 31%, while the edge profiling is 16% [2]. There are a few possible usages of the BL

algorithm, for example, as a tool for optimization and performance improvement or as a test

coverage tool that needs path profiling to discover the program’s test coverage. The algo-

rithms works with intra-procedural calls and identifies paths from the START to END node.

Nodes in between do not count.

The BL algorithms performs the following functions:

7

 For every edge the algorithm assigns a value, so that the sum of them in any path

from START to END is different. This sum also should be minimal, in order that the

final encoding contains a number from 0 to n-1, where n is the number of paths. The

algorithm for creating and assigning the value is displayed in Listing 1, and the result

graph can be seen in Figure 1. As you can see every possible path from A to B has

a different sum of edge values.

foreach vertex v in reverse topological order {

if v is a leaf vertex {

NumPaths(v) = 1;

} else {

NumPaths(v) = 0;

for each edge e = v->w {

Val(e) = NumPaths(v);

NumPaths(v) = NumPaths(v) + NumPaths(w);

}

}

}

 The algorithm finds the minimal cost set of chord edges, with respect to edge

weighting

 Then the algorithms places the appropriate instrumentation on chords

 At the end the algorithm has to map the paths to a correspondent integer represen-

tation, in order to be able to decode the number back to the path

The algorithm was implemented as a proof of concept in a tool called PP using C++ and

EEL library to handle the instrumentation. Nowadays, it is widely used by many tools to

provide better debugging experience. The benchmarks were run on the SPEC95 [4] test suit

and show that the BL algorithm had an average overhead of 30.9%, compared to the edge

profiling algorithm which on the same machine had an average overhead of 16%. These are

good results and proved that path profiling can be used instead of edge profiling, since it is

more accurate and gives longer paths.

Listing 1. Algorithm for assigning values to edges [2].

8

Nevertheless, the algorithm has several limitations. The algorithm works just for intra-

procedural acyclic paths which means that back edges have to be removed. All the encoding

is done for paths from the START to END node, and intermediate paths are not encoded.

Despite these limitations, the BL algorithm continues to be widely used in many profiling

tools.

2.2 PCCE

As described above, one of the problems with the BL encoding is that it worked just for

intra-procedural paths. Sumner et al., based on path encoding, created new algorithm that

works not only with intra-procedural calls. He introduced a Precise Calling Context Encod-

ing or PCCE algorithm [5], which forms the basis for Lucce algorithms. The main goal of

the algorithm is to uniquely identify every calling context from the start of execution by

integer number, so that it can be easily decoded back to the stack trace, as the usual back

tracing stack of calls is too expensive. Sumner et al. have discovered that the context encod-

ing scheme has to satisfy slightly different criteria than the BL algorithm: ‘context encoding

has a different criterion, that is, all unique paths leading from the root to a specific node

have unique encodings, because we only need to distinguish the different contexts with re-

spect to that node’ [5]. This observation allowed their algorithm to handle recursive methods

and function pointers.

The algorithm has two stages:

Figure 1. Result of assigning values to edges

9

1) Annotation – for every node, the algorithm computes a total number of calling contexts.

2) Instrumentation – in runtime the algorithm calculates an identifier for each calling con-

text for a specific node, see Listing 2.

for n ∈ N {

s ← (n has a dummy edge in E) ? 1 : 0

}

for each edge e = <p, n, ℓ> in E {

 if e is not a back edge {

 insert id = id + s before ℓ

 insert id = id − s after ℓ

 s ← s+numCC(p)

 } else {

 insert push(<id, ℓ>) before ℓ

 insert id = 0 before ℓ

 insert id = pop().first after ℓ

}

}

Where N is a set of nodes(functions), < 𝑛, 𝑚, ℓ > is a triple that represents an edge in which

ℓ represents a call site where n calls m and 𝑛, 𝑚 ∈ 𝑁 represent a caller and callee, respec-

tively m.

The algorithm was implemented in OCalm using CIL as an instrumentation library.

Since CIL only supports C language, thus it can instrument C programs. Although the algo-

rithm works on the source code level, rather than on the compile level, it still shows impres-

sive results. Sumner et al. claim that their algorithm adds an overhead of on average between

2% and 4% [5], which is really good result for calling context encoding. There is no memory

overhead since the algorithm does not use any runtime data structure.

Nevertheless, this algorithm also has several limitations. It uses the analysis of a source

code in advance, which makes it not applicable to some applications. This is especially the

case with languages such as Java, where it would not work correctly. Even though Java

compiles to a byte code, it still interprets the command using Java Virtual Machine, thus it

has a lot of dynamic class loading and virtual functions that are major obstacles for PCCE.

Listing 2. PCCE encoding algorithm

10

2.3 DeltaPath

The DeltaPath algorithm [6] was developed to address the problem of calling context

encoding for Object oriented languages with dynamic class loading and polyphormism. The

main idea of Zeng et al. algorithm is to ensure invariant that for any given node, its encoding

space is divided into disjoint sub-ranges, with each sub-range encoding calling contexts

along one incoming edge of the node [6]. Zeng et al. proposed a new encoding scheme that

has the possibility to recalculate the addition value when a new incoming call comes into

the function.

The algorithm works as follows. Let us say that we have the situation presented in Fig-

ure 2. Where p is a virtual function call that can dispatch into multiple methods n1…nk. At

the beginning, each node has a CAV – candidate additional value associated with it that

equals 0.

If new incoming edge comes in, three following steps are happening:

1) Calculate a as 𝑚𝑎𝑥(𝐶𝐴𝑉[𝑛1] … 𝐶𝐴𝑉[𝑛𝑘]), where a is the additional value

2) Update candidate values to 𝐶𝐴𝑉[𝑛1] … 𝐶𝐴𝑉[𝑛𝑝] = 𝐼𝐶𝐶[𝑝] + 𝑎

3) After that the additional value for the last edge is calculated => 𝐼𝐶𝐶[𝑛] = 𝐶𝐴𝑉[𝑛]

The implementation of the algorithms is divided into two parts. The first is a static

analysis, which builds a call graph based on Java byte code. It is implemented with the help

of WALA [7] to generate the graph. The runtime part is implemented in Java and Javaassist

[8]. It hooks onto every method discovered with the static analysis and instruments it.

p

Figure 2. Situation where p is a virtual function that can be dispatched to any of

ni

nkn2n1

11

SPECjvm2008 benchmark suits was used to evaluate the algorithm. The authors com-

pared DeltaPath with the PCC (Probalistic Calling Context) algorithm, and their results have

shown that DeltaPath is on average 32.51% slower [6]. This is a good trade-off as the algo-

rithm provides reliable and precise decoding capabilities. Nevertheless, the algorithm still

needs to do static analysis, which adds some startup time and increases the complexity of

tools built with this algorithm.

Figure 3 contains a table with a summary of all the algorithms described above. As you

can see, some of them does not work with JVM and all of them requires static code analysis

in order to work. Next chapter describes the Lucce algorithms that addresses these problems.

Algorithm Requires static analysis Precise Works with JVM Overhead

PCCE Yes Yes No 2-4%

DeltaPath Yes Yes Yes 32%

BL Yes No No 30.9%

Figure 3. Results overview from algorithms described above

12

 Background

The Lucce algorithm consists of essentially two main pars. The first part is the actual

implementation of Lucce algorithm. The second important part is the instrumentation of the

third party code. These two parts are connected via the Java instrumentation mechanism,

which we describe in more detail later.

3.1 Algorithm

Lucce is an algorithm designed specifically for Java to deal with dynamic class loading.

The main idea of the algorithm is to build the calling context graph in runtime, while also

storing some information as local variables in class methods. The detailed workings of the

algorithm is described in the tech report on Lucce [1]. We are going to use the same notation

to briefly explain the most important parts of the algorithm that are necessary for under-

standing the following chapters.

A call graph is a pair 〈𝑁, 𝐸〉, where 𝑁 is a set of nodes and 𝐸 is a set of edges. Each

node represents a class method. Each edge represents a method call and consists of three

values 〈𝑝, 𝑛, 𝑙〉, where 𝑝, 𝑛 ∈ 𝑁 are caller and callee, respectively, 𝑙 represents a call site of

a method call from 𝑝 to 𝑛. Every call to a new method adds a new node. Every new call

from a different call site adds a new edge. On any of these updates the algorithm has to

calculate next three values:

1. 𝑛𝑢𝑚𝐶𝐶 – is a value calculated for every node and depends on incoming edges and

caller nodes.

2. Additional value or 𝑎𝑣 – is a value calculated for each edge and depends on numCC

values of neighbor edges, meaning edges that go to the same node.

3. 𝑐𝑎𝑙𝑙𝐼𝑑 – is the encoded number, having which allows the algorithm to decode it and

get the whole stack trace. It is a sum of all the additional values from the root node

to the currently processed node.

Below is a more formal definition of the same values:

𝑛𝑢𝑚𝐶𝐶(𝑛) = {

1, 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑟𝑜𝑜𝑡 𝑛𝑜𝑑𝑒 𝑜𝑓 𝐺𝐶

∑ 𝑛𝑢𝑚𝐶𝐶(𝑒∆)

𝑒∈𝑛−

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

13

where 𝑛− is a set of incoming edges of node 𝑛, 𝑒∆ is a caller of edge 𝑒. Here, the numCC

values are dynamically updated as new call edges are visited during the program execution.

Using these values the additional values can be computes as follows:

𝑎𝑣(𝑒𝑖) = ∑ 𝑛𝑢𝑚𝐶𝐶(𝑒𝑗
∆)

𝑗<𝑖

having that all the node incoming edges are ordered or 𝑛− = {𝑒1, 𝑒2, … , 𝑒|𝑛−|}. We can

then define the encoding of the call path as follows:

𝑐𝑎𝑙𝑙𝐼𝑑(𝑛, 𝑒: 𝑡) = {
0, 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐺𝐶

𝑎𝑣(𝑒) + 𝑐𝑎𝑙𝑙𝐼𝑑(𝑒∆, 𝑡)

where 𝑒: 𝑡 denotes a path to node 𝑛, 𝑒 is an edge that leeds to 𝑛 and is preceded by path 𝑡.

Figure 4 depicts the context encoding results and a constructed call graph. Every node and

edge is annotated with 𝑛𝑢𝑚𝐶𝐶 and additional value, respectively. CallId is essentially the

sum of the additional values of the edges that build the path from the root to the required

node. Having a current call graph and 𝑐𝑎𝑙𝑙𝐼𝑑 allows the algorithm to decode it back to a

path by doing a reverse version of encoding scheme.

 Compare to other algorithms described before all the calculations and graph updates

are done dynamically during program execution, which makes the algorithm easy to use.

0

0

0

1

0

AB 0

ABC 0

ABCD 0

ABCDB 1

ABCDBE 1

𝒄𝒐𝒏𝒕𝒆𝒙𝒕: 𝒄𝒂𝒍𝒍𝑰𝒅:

Figure 4. Example of call graph encoding

14

Unfortunately, the original implementation produces the overhead, which is too big to use

Lucce in production environments (see Figure 5)

3.2 Instrumentation

Another important part is the instrumentation of the third party code. This is done with

a help of Java Instrumentation Mechanism1. The idea behind it is that before each class is

loaded by JVM, we can inject additional hooks to the code in order to execute our methods.

Those changes cannot modify the application state and behavior, but they give us the nec-

essary information to build the calling context graph.

Below is a list of hooks and variables that the algorithm injects into the third party code with

the original agent [1]:

1 https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html [Accessed 15 May

2016]

Figure 5. Benchmark result of Lucce conducted in [1] using DaCapo benchmark

suit [9].

https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html

15

 Every method now has two additional local integer variables: callId and graphVer-

sion

 At the very beginning of each method entered hook is added

 Before any method call calling hook is added to notify transition to another method

 At the end of each method returned hook is added

private Order createOrder(User user, Order order) {

//int callId;

// int graphVersion;

//[callId, graphVersion] = Lucce.entered(methodId);

//Lucce.calling(methodId, someCallSite);

order.setUser(user);

//Lucce.calling(methodId, someCallSite + 1);

order = repo.save(order);

//Lucce.returned(methodId)

 return order;

}

Listing 4 shows the code of Java combined with pseudo code and the changes that are being

made to every method. These three hooks allows the algorithm to track all the required

method calls. Calling and entered are designed to create a bridge between method call site

and an actual execution. The reason for this is that it is hard to know beforehand what

method is going to be executed in runtime as Java has polymorphism, inheritance and sup-

ports virtual methods.

An analysis of this part of the algorithm gives us some ideas on how it might be im-

proved and whether it is possible to do the instrumentation in a more efficient way.

Listing 4. Example of a method after the instrumentation where commented lines repre-

sent injected byte code instructions

16

 Validation methodology

In order to be able to optimize the algorithm and validate the result we had to do two

things. Firstly, we had to make sure that every change that we make to the code does not

break the functionality and the algorithms still works as it is supposed to. To ensure this, a

set of unit tests were introduced. Secondly, we needed to measure the overhead and the

algorithm execution time. This is also important for the validation of the optimization. This

chapter outlines the three measures we have taken to insure the correctness of the algorithms

and validation of the performance optimizations.

4.1 Testing

The initial optimization is planned to be performed on the algorithms itself and not on

other parts, such as instrumentation. It is sufficient to test the algorithm using the “Unit test”

technique [10], which is widely used among software engineers. This method involves test-

ing different parts of the system as units. A unit can be a separate method or class. Running

the unit tests usually does not take much time, usually less than 1 minute.

Since Java does not support unit tests out of the box, we have used popular libraries

called TestNG2 and HamcRest3, which allowed us to write structured unit tests more easily

using Java Annotations.

4.2 Benchmarking

There were two types of benchmarking conducted in this project. The following two

paragraphs describe these types in more detail and explain how we have used them.

4.2.1 Black box benchmarking

This is a type of benchmarking when we treat the whole algorithm as a black box. We are

not interested in algorithm details here. We want to see the big picture and know the perfor-

mance of the algorithm as of one single system. The algorithm just gets some inputs and

produces some outputs, while we or some libraries track the time. This gives us the possi-

bility to easily see the improvement or regression of the algorithm speed.

2 http://testng.org/doc/index.html [Accessed 15 May 2016]
3 http://hamcrest.org/JavaHamcrest [Accessed 15 May 2016]

http://testng.org/doc/index.html

17

To perform such benchmarking we used the same method that the author of the algorithm,

Salnikov-Tarnovski, used – DaCapo benchmarking suit released in 2009. It contains a list

benchmarks with non-trivial memory load based on open source, real world projects. On

Figure 6 is a list of benchmarks from the official DaCapo website [11]:

avrora simulates a number of programs run on a grid of AVR microcontrollers

batik produces a number of Scalable Vector Graphics (SVG) images based

on the unit tests in Apache Batik

eclipse executes some of the (non-gui) jdt performance tests for the Eclipse

IDE

fop takes an XSL-FO file, parses and formats it, generating a PDF file.

h2 executes a JDBCbench-like in-memory benchmark, executing a num-

ber of transactions against a model of a banking application, replacing

the hsqldb benchmark

jython interprets a the pybench Python benchmark

luindex uses lucene to indexes a set of documents; the works of Shakespeare

and the King James Bible

lusearch uses lucene to do a text search of keywords over a corpus of data com-

prising the works of Shakespeare and the King James Bible

pmd analyzes a set of Java classes for a range of source code problems

sunflow renders a set of images using ray tracing

tomcat runs a set of queries against a Tomcat server retrieving and verifying

the resulting webpages

xalan transforms XML documents into HTML

Figure 6. DaCapo benchmark types

18

This set of benchmarks should be sufficient to validate the optimization of the algo-

rithm. One disadvantage of it is the long time of execution. It might take up to 30 minutes

to conduct this kind of benchmarking. To perform benchmarking more effectively, we im-

plemented a special class that is hooked to DaCapo project during the execution of the

benchmarks. This class called DacapoCallback4 and allows us to do a summary of the bench-

marks from several projects. In our case, it helps us to calculate an average time for a specific

benchmark. It also writes the result to a file and names it with a current date. If our Lucce is

used during the benchmarking, the name will have “LUCCE” prefix as well. This will help

us to track any improvements and makes it easier to do a performance comparison.

4.2.2 Micro benchmarking

This is a benchmarking on a level of method or classes. This method makes it easier to

find and identify local problems in the algorithm. It allows us to find bottlenecks in the

algorithm, try different solutions and validate the results. In this way, we are able to work

on different parts of the system and see the results much faster compared to Black box

benchmarking.

To implement micro benchmarking for the algorithm we used a library called JMH5. It

is a tool provided by the OpenJDK community for creating, executing, and analyzing micro

benchmarks written in Java. JMH allows us to create high tuned micro benchmarks by using

Java annotation. The tool is very configurable and has many useful features, for example

warm-up of the program. Below is a snippet from one of our benchmarks (Listing 3):

Here @Benchmark annotation tells JMH which method is a benchmark that has to be run.

JMH also passes a state object, which we have defined before and it holds information re-

quired for the test. JMH makes it easier to write benchmarks for your code, however it still

4 https://github.com/ostap0207/dacapo-callback [Accessed 15 May 2016]
5 http://openjdk.java.net/projects/code-tools/jmh/ [Accessed 15 May 2016]

@Benchmark

public Node CallGraphGetOrCreate(CallGraphState state) {

 return state.graph.getOrCreate(1, 1);

}

Listing 3. Example of a JMH benchmark

https://github.com/ostap0207/dacapo-callback
http://openjdk.java.net/projects/code-tools/jmh/

19

can be tricky and there are many things to consider. JVM itself does a lot of code optimiza-

tion, which has an impact on the benchmark results. As default, Oracle JVM HotSpot has

Just-In-Time compilation. This means that it does many optimizations such as inlining, con-

stant folding, loop unrolling, and false sharing. Therefore, to avoid dead code elimination,

for example, we have to return some value from the method so that JVM sees that it might

be used by a caller method.

4.3 Continuous integration

In order to compare the results of the benchmarking overtime, we needed to run the

tests on a machine that has the same conditions each time. In this way, we can be sure that

the results are reliable and are not corrupted by some other running processes. It is also

important to keep the history of the results, so that we can, for example, go back to the

previous method if needed. To satisfy these two conditions, we created a continuous inte-

gration environment using the popular tool called Jenkins6. It runs on a virtual private server

dedicated just to benchmarking. It can also run benchmarks on several branches of source

code to make comparison easier. We created three Jenkins jobs for the project (see Figure

7):

 Unit tests – builds the project and runs whenever a code change is made

 JMH benchmarks – runs on demand

 DaCapo benchmarks – runs on demand

In this way, we were able to see the results and track the progress from different environ-

ments.

6 https://jenkins.io/ [Accessed 15 May 2016]

https://jenkins.io/

20

Figure 7. Jenkins dashboard

21

 Preliminary benchmarking

In order to be able to validate any optimization, we need to have a snapshot of bench-

mark results run on our hardware. Below is a list of our benchmarks and results for un-

changed version of the algorithm (Figure 8):

Benchmark Mode Samples Score(ops/ms) Error(ops/ms)

arrayContextHolderRecursion thrpt 10 15108.158 1884.729

arrayContextHolderSequence thrpt 10 9802.311 2589.939

GetNode.CallGraphGetOrCreate thrpt 10 267530.500 41653.684

GraphTest.baseline thrpt 10 756338.100 179034.223

GraphTest.createUn-

safeGraphWithNodes

thrpt 10 763174.012 131408.000

GraphTest.runCallGraph thrpt 10 14844.987 229.537

GraphTest.runGraphWithNodes thrpt 10 85204.500 1299.930

GraphTest.runNoopGraph thrpt 10 291639.807 15438.995

GraphTest.runUn-

safeGraphWithNodes

thrpt 10 28788.708 3575.757

Traverse.traverseCallGraph thrpt 10 6194.120 629.056

AddEdge.addEdge thrpt 10 8866.718 1750.591

NodeTest.createNode thrpt 10 36.729 5.817

Traverse.addEdge thrpt 10 212034.354 17233.830

Figure 8. Preliminary JMH benchmark results

22

Below is an overview of the most important columns:

 Benchmark – name of a benchmark ins a format <package>.<class>.<method>

 Mode – defines a mode in which to show the result. Throughput mode shows number

of operations per unit time. In future, some more convenient mode might be chosen.

 Samples – number of iterations per each test. At the end, an average value is calcu-

lated.

 Score – the actual result in number of operations per millisecond

We used this results as well as results of new benchmarks in order to validate the effect of

changes that are made to the original implementation of Lucce.

23

 Java performance tuning

At the first stage or round of optimizations, we decided to go with language and syntax

specific optimization techniques. These techniques are more local and usually do not require

changing the algorithm or the data flow itself. They also do not touch the instrumentation

part of the algorithm. This approach was based on ideas taken from the Java Performance

Tuning book [13]. While the book was published in 2000, it nonetheless has some principles

that continue to be useful even now. In this chapter, we will outline which techniques were

tried, which of them were successful and which failed.

6.1 Finding a bottleneck

One of the most important parts before we start any optimizations is to find a perfor-

mance bottleneck. In other words, what is the part of the algorithm that JVM spends the

most time on? It does not make much sense to optimize something that is already working

fast or is not executed that often. For example, if a particular function takes 10% of the

algorithm execution time, then a 50% optimization of this part would yield just a 5% opti-

mization in overall. When a 50% optimization of part that takes 80% of execution time is

achieved, it would result in a 40% optimization overall.

One of the ways to find the bottleneck of the whole system is to use a profiler or sam-

pler. A profiler is a program which is attached to a Java process and injects methods, similar

to what the Lucce implementation does. In this way, it can be used to see what method is

executed and how long is it running. A sampler on the other hand takes snapshots of the

running process in intervals and summarizes them. Standard Java 8 SDK already includes

two tools that helped us to find some bottlenecks. The first one is JVisualVM7. It includes

both a sampler and a profiler. The profiler did not work well in this instance and caused

some errors during execution, possibly because the program is instrumented with our agent.

The sampler, on the other hand, worked better and showed that the most busy method is

entered (see Figure 9). This is the result we were expecting. The method entered, as methods

calling and returned, is injected in almost every third party method and has the most code

inside, compared to other injected methods. However, the JVisualVM sampler was not pre-

cise enough to provide us with sufficiently detailed information about the entered method.

Other methods, shown in Figure 9, are from the benchmark itself.

7 http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html [Accessed 15 May 2016]

http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html

24

Figure 9. JVisualVM hot methods view

The second tool we used is Java Mission Control8 or JMC. JMC is a commercial tool

that can be used for free in the development mode. In order to be able to run it alongside the

application, one has to start the observed program with two JVM flags:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

These flags enable a feature called FlightRecorder that we are going to use. FlightRecorder

observes the application, similar to the sampling for some small configurable time. In our

case, we set the time to one minute. FlightRecorder allows configuring sampling with many

parameters to make it less or more intensive. We decided to go with more intensive sam-

pling, which gave us some more insights (see Figure 10).

In addition to the entered method, we found three other hot methods, which need closer

look. First, CallGraph#getOrCreate was used to get an old node from the graph or to create

a new one if the node does not exist yet. Second, CallGraph#traverse traverses the graph

and updates all the needed values. The third method, ArrayContexHolder#get, tries to get

the right context for the instrumented at current moment thread. The last method is a list

iterator, which the Lucce agent uses to go over all the nodes in the graph. We have tried to

address this problem as well (see Chapter 6.2.4).

8http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-

1998576.html [Accessed 15 May 2016]

Figure 10. Java Control Mission Flight Recorder results

http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html

25

To find some more information about which part of the algorithm to look at more

closely, we have run a small experiment. We removed the code from all the injected by the

Lucce agent methods, entered, calling and returned, to see what portion of the overhead is

actually taken by finding the right context for the thread and by the time of method calls.

The results showed that the time of the benchmark was smaller just by about 50 – 40 %.

This suggested that the instrumentation part itself is quite heavy in terms of computation

and that we needed to find a way to optimize it as well.

6.2 Performance optimization techniques

Preallocating Objects

During the process of building the call graph, the algorithm has to create many objects

to represent nodes and edges. The book [13] suggests that to improve the speed of creating

such objects, the agent can create them in advance using an object pool. When the object is

no longer needed, it can be returned back to the pool.

In our case, we created a NodePool. NodePool is a class that holds many nodes ready

to be used by an agent. Its constructor accepts an initial capacity of the pool. When the pool

is empty, the program populates it again. There are two ways to populate the pool: synchro-

nous and asynchronous. NodePoolSync blocks the execution until the pool is full again.

NodePoolAsync starts a separate thread to refill the pool when the pool is almost empty. In

Figure 11 you can see the result of the JMH benchmarks for two types of pool and previous

creating method.

The performance of all three methods is relatively similar. Therefore, unless we find a way

to return nodes to the pool (see more in Chapter 6), it does not make sense to use any of the

pools.

The benchmarks look like the one in Listing 5:

Benchmark name Description Result (ops/ms)

testAsyncPool Get a node from an asynchronous node pool 0.004 ± 0.001

testCreate Create a node with constructor 0.005 ± 0.001

testSyncPool Get a node from a synchronous node pool 0.003 ± 0.001

Figure 11. Node creating JMH benchmark results

26

@Benchmark

public ArrayList<Node> testAsyncPool (AsyncState state,Blackhole bh) throws

InterruptedException {

 NodePool nodePool = state.nodePool;

 ArrayList<Node> nodes = new ArrayList<>();

 for (int i = 0; i < 1000; i++) {

 bh.consume(nodePool.get());

 Blackhole.consumeCPU(50000);

 }

 return nodes;

}

We use the Blackhole#consume method provided by JMH framework to return the result of

every node creation. This prevents deadcode elimination by HotSpot JVM. The Black-

hole#consumeCPU method burns some CPU cycles. It allows us to simulate real life condi-

tions, as the real algorithm does some other processing in between creating the nodes.

Use circuit breaker

Imagine the following ‘if’ statement (Listing 6):

if (condition1 || condition2) {}

In the case that condition1 is always false, JVM always has to evaluate condition2. On the

other hand, if condition1 is true most of the time, then JVM does not have to evaluate con-

dition2. Therefore, we can manipulate the position of the conditions to reduce the amount

of evaluations of unnecessary conditions. For example, in Listing 7 you can see a snippet of

code from the Lucce agent that has a similar conditional statement:

Listing 5. Asynchronous node pool JMH benchmark

Listing 6. If statement with two conditions and operator `OR`

27

 if (lastVersion == graph.getVersion() || lastVersion >= caller.lastVersion) {

 int w = pathWeights[callSite];

 if (w != -1) {

 edgeWeight.weight = w;

 edgeWeight.graphVersion = lastVersion;

 return;

 }

 }

At the top level ‘if’ statement we have two conditions. By simply counting during the exe-

cution of the benchmarks, we were able to determine that the second condition is more likely

to be true than the first one. Here are some specific numbers (Figure 12):

Condition Amount

conditions1 is true, condition2 is false 0

conditions2 is true, condition1 is false ~ 2 000 000 000

As you can see, condition2 is never false when contition1 is true. On the other hand,

condition1 is false many times when condition2 is true. Therefore, it makes more sense to

put the condition2 at the beginning of the ‘if’ statement, so that the JVM does not even have

to evaluate condition1.

Array creation

In the algorithm implementation, each of the created Node objects has an array of path

weights to hold the additional values of the paths. The array size is predefined and each cell

is filled with ‘-1’ at the Node creation time. We have tried to find and implement other

methods to generate this array in a more efficient way (see Figure 13):

Listing 7. Example of condition path optimization

Figure 12. Results of condition evaluation count

28

Method Description

System.arraycopy This is a native static method to copy one array into another.

Array.clone

Creates a shallow clone of an array. As our array is an array of ‘int’

(which is a primitive type), then shallow copy is good for us.

Arrays.copyOf It is just a wrapper method around System.arraycopy

Arrays.fill It is just a wrapper method around filling in a loop

Fill array in a loop Method which was used originally

Here are the benchmark results for all the methods:

Benchmark name Method Result(ops/ms)

clonePathWeightArray
Array.clone 32.009 ± 10.891

copy2PathWeightArray System.arraycopy 27.555 ± 11.484

copyPathWeightArray Arrays.copyOf 33.732 ± 14.010

createEmptyPathWeightArray Baseline 38.263 ± 16.505

createPathWeightArray fill in loop 27.935 ± 11.679

fillPathWeightArray Arrays.fill 26.598 ± 9.303

As you can see in Figure 14, the best result is the Arrays.copyOf. It shows a better

performance than ‘fill in loop’ or Array.fill. Even System.arraycopy is slower than Ar-

rays.copyOf. We discovered that the method Arrays.copyOf is an intrinsic method in Java,

which means that it is specifically handled by JVM [14]. Therefore, we replaced the original

‘for loop’ implementation with the faster and more readable ‘Arrays.copyOf’ method.

Figure 13. Different ways of filling an array with some default value

Figure 14. Array filling benchmark results

29

Array iteration

Since the algorithm also has to iterate over the many arrays and collections to find the

right edge or node, we tried to optimize the different ways of the iteration and compare

them with the help of micro benchmarking. In order to be able to add more edges to the

context graph in future, the original version of the algorithm was using ArrayList as a

collection for the edges. The iteration was done using ‘for each loop’. We have researched

some other potentially faster ways of iteration over a collection in Java (see Figure 15).

Loop type Example Description

For Each loop for (Edge edge : state.edges)

{…}

It is a standard Java for each loop, which

was used in the original algorithm

For Loop
for (int i = 0; i < size; i++)

{…}

For loop with an index

For Back Loop
for (int i = size; i > 0 ; --i)

{…}

As the Java Performance Tuning [13]

book suggested, the back loop might be

faster as comparing to 0 is faster than to

any other number.

For + try catch

try {

 for (i = 0; ; i++)

 bh.con-

sume(edges.get(i));

}

catch (IndexOutOf-

BoundsException e) {}

Here we do not have a condition at all,

so we do not evaluate it. When the array

ends, we get an exception.

For loop over

EdgeList

EdgeList<Edge> edges =

state.edges;

int size = edges.size();

for (int i = 0; i < size; i++)

{

 bh.con-

sume(edges.get(i));

}

EdgeList it is our own implementation

of an ArrayList. The only difference is

that it does not make a rage check in the

get method.

 The benchmarks showed us some good results in this case as well (Figure 16):

Figure 15. Different ways of array iteration

30

Benchmark name Result(ops/ms)

forBackLoop 275.427 ± 71.310

forEachLoop 181.645 ± 61.658

forLoop
275.150 ± 56.239

forLoopEdgeList 276.808 ± 85.714

forTryCatchLoop 198.788 ± 47.268

As you can see, forBackLoop, forLoop and our own ArrayList implementation, without

the range check, have shown the best results. ForEachLoop, which was used originally,

shows the worst results of any of the other iteration variants. Therefore, faced with three

options with almost identical performances, we decided to go with the normal for loop ver-

sion, as it is the most readable of all the options.

In this chapter, we have found a place for four different optimization techniques, some

of which developers discovered a long time. This project shows how they are still applicable

to modern algorithms and for use with modern languages. Unfortunately, we did not find a

usage for other techniques such as strength reduction9 or loop unrolling10 in the case of this

algorithm.

9 https://en.wikipedia.org/wiki/Strength_reduction [Accessed 15 May 2016]
10 https://en.wikipedia.org/wiki/Loop_unrolling [Accessed 15 May 2016]

Figure 16. Benchmark results of iteration over an ArrayList

https://en.wikipedia.org/wiki/Strength_reduction
https://en.wikipedia.org/wiki/Loop_unrolling

31

 Instrumentation improvements

7.1 Instrumentation with ASM

One of the most important parts of the algorithm implementation is the instrumentation

of third party code in runtime. Instrumentation is a mechanism that allows the inclusion of

almost any custom code or byte code instructions in order to gather useful information about

the running program. In our case, we wanted to build the calling context graph based on

method invocations. Java provides a mechanism to implement such instrumentation. One

has to do the following steps:

1) Implement the transform method of the ClassFileTransformer interface

ClassFileTransformer11 is an interface provided by Java, method transform of which

is invoked by the JVM for each new class during the class loading. This method is a

place to change the initial class byte code. Listing 8 contains an example. The vari-

able classfileBuffer contains all the class byte code, available for reading and chang-

ing. At the end JVM expects the transform method to return a new version of the

loaded class.

2) Create a class with ‘premain’ method. We have to add our implemented transformer

to the Instrumentation instance inside this method. In this way, we are telling JVM

what classes to use for instrumentation. It is possible to add more than one trans-

former.

11 https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/ClassFileTransformer.html [Accessed 15

May 2016]

public interface ClassFileTransformer {

 byte[] transform(ClassLoader loader, String className, Class<?> classBeingRedefined,

ProtectionDomain protectionDomain, byte[] classfileBuffer) throws

IllegalClassFormatException;

}

Listing 8. Signature of ClassFileTransformet interface

https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/ClassFileTransformer.html

32

public static void premain(String agentArgs, Instrumentation inst) {

 inst.addTransformer(new MethodEnteredAlert());

}

3) One then has to build it into the JAR file and run it with any program as a Java agent

with: java –javaagent:agent.jar –jar Program.jar

Such flexibility enables us to do almost any byte code manipulations we might need or

want. However, it is still not a simple task to change byte code in runtime, as the human

brain does not understand byte code that well. Therefore, there are libraries that provide

more comprehensible Java syntax. One of the tools that helps with instrumentation is ASM

[15]. It has been chosen by the author of the algorithm and makes instrumentation easier.

ASM is an all-purpose Java byte code manipulation and analysis framework [15]. It

provides an API that helps to change byte code during the process of class loading. Figure

17 illustrates how it works. ASM uses a Visitor pattern [18] to go through all the class and

its method. First, it visits class specific sections such as class attributes, annotations or fields.

After that, it visits the methods using the same principle. All the developer has to do is to

implement the required Visitor interface. For example, if you want to modify a method you

have to implement the MethodVisitor class, if you need to instrument class annotations you

have to implement the AnnotationVisitor class and so on. If some of the interfaces are not

implemented, ASM simply skips them and keeps the corresponding code untouched.

Listing 9. Example of `premain` method implementation

33

Figure 17. ASM visiting sequence diagram [15]

34

Here are few example from the actual implementation (Listing 10):

public class MethodEnteredAlertMethodVisitor extends MethodVisitor {

. . .

 public MethodEnteredAlertMethodVisitor(GeneratorAdapter mv,

 String sourceClassName,

 String sourceMethodName,

 String sourceMethodSignature,

 ClassPredicate classPredicate) {

 super(Opcodes.ASM4, mv);

 this.mv = mv;

 this.classPredicate = classPredicate;

 this.methodCode = ConcurrentMethodEncoder.encode(sourceClassName + "." +

sourceMethodName + sourceMethodSignature);

 }

 @Override

 public void visitCode() {

 super.visitCode();

 mv.visitLdcInsn(methodCode);

 mv.visitMethodInsn(INVOKESTATIC, trackerClassName, "entered", "(I)[J");

 currentContext = mv.newLocal(Type.getObjectType("[J"));

 mv.storeLocal(currentContext);

 }

. . .

}

As you can see, the ‘MethodEnteredAlertMethodVisitor’ constructor takes the following ar-

guments:

Argument Description

GeneratorAdapter mv
It is a convenient class that implements the MethodVis-

itor interface. It allows us to generate the most common

code more easily. For example, the newLocal and

storeLocal methods allow us to create a local variable.

String sourceClassName It is an owner class of the method we are visiting.

Listing 10. Example of MethodVisitor implementation

35

String sourceMethodName The actual name of the method we are visiting. It is

used to build a unique method identifier.

String sourceMethodSignature Describes the input and output types of the method. It

is also needed to generate the unique method id, as Java

allows method overloading.

ClassPredicate It is used to identify a class that we do not want to in-

strument. For example, internal Java classed are not in-

strumented as we are interested just in the third party

code.

Below the constructor, you can see overridden method visitCode. This method is called at

the beginning of every method and is a good place to call our `entered` method.

mv.visitLdcInsn(methodCode); Load the constant (method-

Code) on the stack.

mv.visitMethodInsn(INVOKESTATIC,

trackerClassName, "entered", "(I)[J");

Invokes the method.

In Figure 19 you can see how injected and invoked Lucce method entered. The first param-

eter of visitMethodInsn is a method type and could be one of INVOKEVIRTUAL, INVOKES-

PECIAL, INVOKESTATIC or INVOKEINTERFACE. In our case, we call a static method.

`trackerClassName` is the name of the class that we are going to call method from, followed

by a method name. The last parameter is a signature. JVM uses special notation to make a

signature more compact.

Below is a mapping of Java types to signature types (Figure 20) [16]:

Java Type Type Signature

boolean Z

byte B

Figure 18. MethodVisitor incoming arguments

Figure 19. Explanation of ASM instructions

36

char C

short S

int I

long J

float F

double D

fully-qualified-class L fully-qualified-class ;

Array of type [type

Based on this table, signature of the method ‘long[] entered(int method)’ transforms to:

‘(I)[J’– same as we have in the example.

‘visitMethodInsn’ loads needed amount of values from the stack, executes the method and

puts the result back to the stack.

After that we created an index for the new local variable and stored it as a local variable

by calling ‘newLocal’ and ‘storeLocal’ respectfully. In such a way, we modified every re-

quired method to invoke entered method of the Lucce agent and stored a result of its execu-

tion as a local variable that the algorithm use later. More information about ASM instru-

mentation you can find in their Official guide12.

The next section shows what ideas we tried to implement in order to improve the algo-

rithm’s implementation. For each idea, we explain what it tries to address, propose an im-

plementation and benchmark results for comparison. Most of the ideas solved the given

problem. However, some of them unfortunately did not work as expected.

7.2 Attempted optimizations

Calling/return wrapping elimination

In the original implementation every method call made inside an instrumented class is

wrapped in a calling / return block, as described earlier in Chapter 3.2. That is not needed

in the case the Lucce agent is not going to instrument the class, the method of which is

called, at all. For example, if a method calls some Java system class, wrapping every method

12 http://download.forge.objectweb.org/asm/asm4-guide.pdf [Accessed 15 May 2016]

Figure 20. Conversions from Java Type to JVM Type Signature [16]

http://download.forge.objectweb.org/asm/asm4-guide.pdf

37

of that class in calling/return block is redundant, because the entered method will not be

called from this system method anyway. The change looks like this:

- if (opcode == INVOKEVIRTUAL || opcode == INVOKESTATIC || opcode ==

INVOKEINTERFACE || opcode == INVOKESPECIAL) {

+ if (classPredicate.accept(owner) && (opcode == INVOKEVIRTUAL

+ || opcode == INVOKESTATIC

+ || opcode == INVOKEINTERFACE

+ || opcode == INVOKESPECIAL)) {

Here is a list of excluded classes:

excludedPackages.add("java");

excludedPackages.add("sun");

excludedPackages.add("oracle");

excludedPackages.add("com/oracle");

excludedPackages.add("com/sun");

excludedPackages.add("eu/plumbr/agent");

excludedPackages.add("ch/qos/logback");

excludedPackages.add("org/objectweb");

excludedPackages.add("org/slf4j");

excludedPackages.add("gnu/trove");

excludedPackages.add("org/codehaus");

excludedPackages.add("org/jctools");

excludedPackages.add("groovy");

excludedPackages.add("org/dacapo/harness");

excludedPackages.add("org/netbeans/lib/profiler");

excludedPackages.add("org/dacapo/harness/TeeOutputStream");

As this change would eliminate all the calling/returned calls for each of this classes, it would

definitely speed up the algorithm.

Listing 11. Using of class predicate

Listing 12. List of Java packages excluded for instrumentation

38

More efficient hash map usage

As discussed earlier in Chapter 3.1, the algorithm has to encode every class method into

a single number. In addition, it supposed to have the possibility to decode a number back to

the class and method name. Originally, the encoding is done by increasing AtomicIteneger

instance to produce the number and storing the result along with the method name in two

maps for forward and reverse index. As this is global for all the threads, any map modifica-

tions have to work correctly in the concurrent environment. To ensure this, the author of the

algorithm used Java keyword synchronized, which blocks a whole object for the time of

modification. A better solution would be to use a special map implementation such as Con-

currentHashMap. It is an optimized for concurrency map which does not block itself for

value retrievals. By using it, we do not need to synchronize the method anymore.

We compared the original and our implementations using the JMH framework. You

can see the results in Figure 21. As expected, the benchmark shows that our new approach

has a better performance.

Benchmark name Result(ops/ms)

concurrentMethodEncoder 2557.974 ± 175.316

syncMethodEncoder 2285.331 ± 203.279

As this change touches just instrumentation part, it might not give a performance boost dur-

ing program execution, but it decreases the startup time of the application with the agent.

Storing thread id as a local variable

Any Java application can have more than one thread running at any point of time, and

the Lucce agent has to deal with this as well. The author of the algorithm chose to address

this by having a separate graph context for each thread. The context for each graph is stored

in an array and identified by thread id. Therefore, the class that manages all Lucce contexts

has the name ArrayContextHolder. The problem with this solution is that every time we call

the entered, calling or returned methods, we have to find the current thread, get its id and

then find the right context by getting it from the array by thread id.

Figure 21. Method encoder benchmarks

39

To partially solve this problem we used a new approach. The idea was to store a thread

id in the local method variable in the instrumented third party code. As the variable is local,

it cannot be shared between the threads, but it can still be passed to other inner methods

inside one thread. The implementation of this idea involves several steps:

1. Return current thread id from entered method together with the other, previously

used, values (call id, graph version)

2. Store current thread id as a local variable using ASM.

3. Pass previously stored thread id to the following calling and return methods using

ASM.

4. Change signature of methods calling and returned to accept current thread id and

use it instead of calculating this id every time.

After introducing this change, getting the current thread graph inside calling and re-

turned methods is as fast as just getting a value from an array.

Benchmark name Description Result(ops/ms)

arrayContextHolderRecursion Recursive calls with the original

context holder

9373.204 ±

3424.306

arrayContextHolderSequence Sequential calls with an original

context holder

10279.200 ±

4150.990

localThreadIdHolderRecursion Recursive calls with storing thread

id locally

15464.941 ±

5674.530

localThreadIdHolderSequence Sequential calls with storing thread

id locally

13928.705 ±

2954.018

The benchmarks in Figure 22 are testing context holders’ entered and calling methods for

recursive and sequential calls. As expected, our approach shows better results than the orig-

inal.

Thread state identification

As we have shown before, for every thread we store call context in the array using

thread id as an index. However, what happens when the thread has finished its execution?

We need to clean that array cell. The threads, we are talking about here, are created by main

Figure 22. JMH benchmark result of different context holder implementations

40

program to which we attach Lucce agent, so we do not have control over it. The only thing

we can do is to check the thread’s state by pooling it in a separate thread. That is the ap-

proach that author of the algorithm went with.

Originally, author used method Thread#isAlive to check if the thread has already

stopped or still running. We have discovered another way of getting thread’s state such as:

Thread#getState() State, where State is an Enum and by Java specification [19] can be one

of values presented in Figure 23:

NEW A thread that has not yet started is in this

state.

RUNNABLE A thread executing in the Java virtual ma-

chine is in this state.

BLOCKED A thread that is blocked waiting for a mon-

itor lock

* is in this state.

WAITING A thread that is waiting indefinitely for an-

other thread to perform a particular action

is in this state.

TIMED_WAITING A thread that is waiting for another thread

to perform an action for up to a specified

waiting time is in this state.

TERMINATED A thread that has exited is in this state.

At any point in time thread can exist exclusively in one of these states.

State.TERMINATED is a state that would allow us to know when the state finished as

well as State#isAlive. To choose the best method we wrote two simple JMH benchmarks

(see Listing 12 and Listing 13):

@Benchmark

public boolean getState() {

 return Thread.currentThread().getState() == Thread.State.TERMINATED;

}

Figure 23. Java Thread possible states

Listing 12. Get Thread state JMH benchmark

41

Benchmark results in Figure 24 show that using `Thread#getState` and checking it with

`Thread.State.TERMINATED` is an order of magnitude faster than using `Thread#isAlive`.

Benchmark name Result(ops/ms)

ThreadBenchmark.getState 631210.341 ± 9065.791

ThreadBenchmark.isAlive 39562.790 ± 4785.081

Graph change checking

During the program execution there are situations where no new nodes or edges are

being added to the call graph. In such cases, the algorithm requires fewer calculations as we

do not need to update the whole graph. In the original implementation the checking, either

graph has changed or not, was deep inside the algorithm and required to know both caller

and callee of a method. During our research, we found a way to do this during the early

stage of the algorithm in a way that required just callee.

Firstly, we restructured the code and moved the checks to a high level taking into ac-

count short-circuit evaluation. Secondly, we found out that the caller graph version is al-

ready being passed in the calling method, which means that we do not need to find the caller

to get the graph version every time to check the graph, unless the graph has actually changed.

Local variable storing optimization

Originally, the entered method would return an array of long values, which would be

stored as local variables in instrumented methods and passed as arguments to calling and

returned methods. We decided not to store them separately, but to store just one array of

@Benchmark

public boolean isAlive() {

 return Thread.currentThread().isAlive();

}

Listing 13. Is Thread alive JMH benchmark

Figure 24. Thread state JMH benchmarks

42

long values and pass it as an argument to other functions. This make instrumentation more

readable and increases performance of the algorithm, since we do not have to create other

local variables for every instrumented method.

Java Native calls

One of our ideas was to implement some parts of the algorithms as native operation

system functions. This is possible with Java Native Interface or JNI. JNI is a mechanism

that allows calling functions in C or C++ from Java program and the vice versa. Next we

will next describe the process of writing a native implementation based on one of algorithms

functions. A good candidate for a native call was graph traversal. It has the most intensive

functionality and depends just on the input parameters and instance variables. To call a na-

tive function from Java code, one has to define a method as a native, without the method

body as following:

public native void traverse(Node caller, int callSite, CallGraph graph, EdgeWeight edge-

Weight);

The most difficult part is to implement the desire functionality in C or C++. First, you have

to generate a header class by running the following commands:

javac Node.java – generates Node.class

javah Node – generates Node.h

Node.h contains something similar to:

Listing 13. Declaration of native method in Java

Listing 14. Generation of C/C++ header file for the native method

43

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class eu_plumbr_agent_stack_Node */

#ifndef _Included_eu_plumbr_agent_stack_Node

#define _Included_eu_plumbr_agent_stack_Node

#ifdef __cplusplus

extern "C" {

#endif

/*

 * Class: eu_plumbr_agent_stack_Node

 * Method: traverse

 * Signature: (Leu/plumbr/agent/stack/Node;ILeu/plumbr/agent/graph/Call-

Graph;Leu/plumbr/agent/stack/EdgeWeight;)V

 */

JNIEXPORT void JNICALL Java_eu_plumbr_agent_stack_Node_traverse

 (JNIEnv *, jobject, jobject, jint, jobject, jobject);

#ifdef __cplusplus

}

#endif

#endif

Here you can see the declaration for our future function. The first parameter ‘env’ is an

object that allows interaction with Java. The second parameter is our Node instance, an

object the native method of which is invoked. The other four parameters are the same as in

our original Java method. Any parameter can have just one of the predefined types that

correspond to Java primitive types. For example, if a Java function accepts int, then a native

function would accept jint. Below is a full list of available types (Figure 25):

Java type Native type

Custom Complex Type jobject

<primitive_type> j<primitive_type>, Example: jint

< primitive _type>[] j<primitive_type>Array, Example: jintArray

String jstring

Listing 15. Generated header file

Figure 25. Java types to JNI types conversion table

44

After that, you have to create a cpp file and write an implementation for the method. Here

we show how it looks at the beginning:

#include <jni.h>

#include <stdio.h>

#include "eu_plumbr_agent_stack_Node.h"

JNIEXPORT void JNICALL Java_eu_plumbr_agent_stack_Node_traverse(JNIEnv * env,

jobject node, jobject caller, jint callSite, jobject graph, jobject edgeWeight) {

}

Using JNIEnv we can get any field’s data or call any method we need. It requires several

method calls to do that, for example to get ‘node.lastVersion’ requires following actions:

 jclass NodeClass = env->GetObjectClass(node);

 jfieldID fidLastVersion = env->GetFieldID(NodeClass, "lastVersion", "I");

 jint lastVersion = env->GetIntField(node, fidLastVersion);

First, we get a class of the object. Then, using env we get a field id specifying the field name

and type using Java type signature. Finally, we can get the field’s value using the type spe-

cific method GetIntField of env.

To implement all the functionality in native would require a lot of work. Therefore, we

decided first to implement just a small part of it and check the benchmark results to see if it

gives any improvements. Unfortunately, our partial native implementation did not improve

the performance in a significant way, therefore we decided to put this idea aside.

Node pool

Previously, in Chapter 6.2, we described how we tried to eliminate node creation with

a node pool. We found a way to get nodes from the pool, but we could not return them back.

In this section, we will describe how we were actually able to release nodes and put them

back to the pool and what performance improvements it gave us.

Listing 15. Example of C/C++ body file

Listing 16. Native code for getting `node.lastVersion` value

45

The first step was to implement the cleaning mechanism. This can be done by imple-

menting the Composite pattern [20]. Our original class structure is well suited for this. All

we had to do is to add a method clear to all the three main classes, such as Context, Graph

and Node, and to implement these method according to the Composite pattern. Our final

class diagram looks like this (Figure 26):

‘Context#clear’ calls ‘Graph#clear’ which calls ‘Node#clear’, which can potentially clear

the edges as well.

The next was to decide where and when to clear the graph. The right direction would

be when the thread has finished its execution. Originally, to find out when the thread has

been terminated, it was monitored by another thread that checks all the running threads and

frees resources for dead threads. Another good implementation would be if we did not have

to monitor the threads at all and every graph knew itself when the thread has finished.

Since there were many ideas, which we wanted to try here, some of which worked to-

gether and some of which did not, we decided to run trials between different implementa-

tions and decide the winner at the end based on the results. Here are all the ideas that took

part in the trials:

1. Monitor cleaning – this is the improvement with the least changes after introducing

context cleaning. The only change is that instead of deleting old contexts in the mon-

itor thread, this version would clean them and put nodes back to the node pool, where

they can be reused.

2. Context pre-initialization – every context is stored in the array by threadId. Origi-

nally, to get a context every time, the algorithm had to check if the context had al-

ready been created and if not, create it. To eliminate this check we could just create

a context for every array cell and use the same Monitor cleaning idea.

Figure 26. Implementation of ‘Composite pattern’

46

3. Edge pool utilization – this is the same as Monitor cleaning, but with a change that

every node would not delete the edges, but put them back to the Edge pool.

4. Depth analysis – we found a way to remove the monitor by checking the depth of

the graph in the returned method. When depth is zero it means that the program

execution came to the root of the thread, which means that all the previous nodes are

not needed and can be recycled.

5. Returned redesign – this is a redesign of the way the return method is invoked. We

will describe in greater detail in the next section.

Trial 1

Candidates\Benchmark Batik Avrora

Monitor cleaning 1745 14014

Context pre-initialization 1801 13912

Winner Monitor cleaning Monitor cleaning

Trial 2

Candidates\Benchmark Batik Avrora

Monitor cleaning 1770 12587

Edge pool utilization 1805 13847

Winner Monitor cleaning Monitor cleaning

Figure 27. Trial 1 results

Figure 28. Trial 2 results

47

Trial 3

Candidates\Benchmark Batik Avrora

Monitor cleaning 1815 12626

Depth analysis 2079 13786

Winner Monitor cleaning Monitor cleaning

Trial 4

Candidates\Benchmark Batik Avrora

Monitor cleaning 1849 12645

Returned redesign 2072 13754

Winner Monitor cleaning Monitor cleaning

The results among the trials can vary a great deal because of the different system load be-

tween the runs. Nevertheless, the winner of the trials is Monitor cleaning. It is the first and

the easiest improvement, which has given us the best results.

Returned redesign

In the previous chapter we described how we wanted to clear the call contexts with

Depth analysis and Returned redesign. The reason why Depth analysis has not shown better

results might be that we clean the graph too often. This is happening because, in fact, every

method is wrapped in calling/return block, except the first ever called method of the thread

or program. In addition, because of that, we do not know when the first method has finished

its execution. To fix that we decided to make a small redesign of the instrumentation. Using

the ASM library we moved return to the end of every method, similar to entered (see Listing

4 and Listing 17). In this way, we were able to know when the first method finished the

Figure 29. Trial 3 results

Figure 30. Trial 4 results

48

execution. Unfortunately, even with this change it still could not beat the Monitor cleaning

version.

private Order createOrder(User user, Order order) {

//int callId;

// int graphVersion;

//[callId, graphVersion] = Lucce.entered(methodId);

order.setUser(user);

order = repo.save(order);

//Lucce.returned(methodId);

 return order;

}

Context holder inlining

As we demonstrated earlier, there is an intermediary class between instrumentation and

algorithm called ArrayContextHolder. All the calls from the third party application go

through it. We wanted to remove it by inlining its functionality into instrumentation. Instead

of calling ContextHolder, we would call directly calling and returned methods, which should

have in theory saved us some time. The hardest part was to get the current thread id using

ASM. Below is a snippet, which does this:

Listing 17. Instrumentation after the Returned redesign change

49

mv.visitFieldInsn(GETSTATIC, trackerClassName, "array", "[L" +

defaultCallContextName+";");

int array = mv.newLocal(Type.getObjectType("[" + defaultCallContextName));

mv.storeLocal(array);

mv.loadLocal(currentContext);

mv.visitInsn(ICONST_2);

mv.visitInsn(LALOAD);

mv.visitInsn(L2I);

int currentThreaId = mv.newLocal(Type.INT_TYPE);

mv.storeLocal(currentThreaId);

mv.loadLocal(array);

mv.loadLocal(currentThreaId);

mv.arrayLoad(Type.getObjectType(defaultCallContextName));

callContext = mv.newLocal(Type.getObjectType(defaultCallContextName));

mv.storeLocal(callContext);

First, we get a value of the static variable with the name array and type long[]. After

that we create a new local variable and store it locally. At line number 8, we create a new

local variable currentThreadId and store its value there. Then we get a call context for the

current thread and store it locally, so it could be used by calling and returned methods later.

Unfortunately, in reality this change did not show any improvement. One possible reason

for that is that JVM already does some code optimizations or inlining of static methods.

Listing 18. Inlining of entered method using ASM

50

 Results

To do a final validation of the improvements and optimizations made to the algorithm,

we used DaCapo benchmark suit version 9.12 (released in 2009) and a similar process to

the one the author of the algorithm used. Each of the benchmarks has been run with our

improved agent, with the original agent and without an agent at all. The number of iterations

is 31, where the first iteration result is always rejected, as it is a warm-up. All the calcula-

tions were done using two Java versions: Java 7 and Java 8 on a laptop with following

characteristics (Figure 30):

Model MacBook Pro

Processor name Intel Core i7

Processor speed 3,1Ghz

RAM 16 GB

To make all the calculations run automatically, we wrote a small bash script (see Appendix

11.1) that runs all the required benchmarks. At the end, we got a file with a result for every

benchmark. To concatenate all the files we used a UNIX command paste (see Listing 19).

paste –delimeters “\n” * > results.txt

As the benchmark results we received were similar across the two Java versions, in

Figure 31 you can see the results only for Java 8 as it is the most recent version. We nor-

malized every benchmark by its time without the agent. There is a definite performance

improvement on all the benchmarks. However, the improvement differs for the various

benchmarks, as well as differs an actual overhead of the Lucce agent. In Figure 32, there is

a percentage comparison of the optimization. The smallest percentage of improvement of

around 20% is for batik. The reason for this can be that the batik benchmark - as we later

checked - does not support concurrency, which means that our optimizations for multithread

Figure 30. Characteristics of the environment for running the benchmarks

Listing 19. Concatenate all results in one file

51

applications do not have a big effect. The biggest optimization is for the tomcat benchmark

at around 58%.

0

1

2

3

4

5

6

7

8

9

10

batik avrora lusearch jython luindex sunflow xalan h2 tomcat

without the agent with original agent with optimised agent

0

10

20

30

40

50

60

70

batik avrora lusearch jython luindex sunflow xalan h2 tomcat

P
er

ce
n

ta
ge

Benchmark

Series 1

Figure 31. Results of DaCapo 9.12 benchmarks

Figure 32. Lucce performance optimization results

52

 Conclusions

This thesis investigated a promising new algorithm from a family of call context en-

coders called Lucce. The main idea of the algorithm is to store a one number with each

method as a local variable, which can be decoded to a full stack trace at any time. The

advantages of such encoding over other similar algorithms were outlined at the beginning

of the thesis. Unfortunately, the first version of the implementation developed by the author

of the algorithm is not fast enough for the algorithm to be used in the production environ-

ment.

Both the theoretical and practical aspects of implementation were presented in order to

provide some background for further reading. We then proceeded to build a validation meth-

odology, which included unit tests, black box and micro benchmarks, and the continuous

testing environment. This enabled us to be more confident in the validation of our results

and reduced the time required to run the benchmarks.

Prior to start any optimization we tried to find the bottlenecks, as they are the best place

to start the optimization. We researched old and new optimization techniques and applied

them to the implementation. Firstly, we tried to find more local optimizations, without mov-

ing code around with the help of micro benchmarks. Secondly, we came up with several

ideas on the level of instrumentation. We verified them by running both types of bench-

marks. Using a system version control, we were able to develop different ideas in parallel,

compare their results and merge them at the end if needed. This also means that the approach

developed in this thesis is accessible and traceable for other scientists and developers inter-

ested in the Lucce agent.

At the end, we ran all the benchmarks again with different versions of Java and collected

the results. The overall performance improvement ranged from between 20 to 58 percent,

depending on the benchmark and benchmark concurrency usage. The results of the bench-

marks were passed to the author of the algorithm and met with positive feedback. Consid-

ering that the aim of the improvements was not to change the actual logic of the algorithm,

the received results can be considered pretty good. Further work to improve the algorithm

even further might extend to changing the logic of the algorithm and reducing the work that

is done, for example storing edge values in the call sites and detecting graph changes even

earlier in the algorithm process.

53

The whole optimization process proposed and described earlier in this thesis is not at-

tached just to the Lucce agent. The discussed stages of the optimization such as unit testing,

black box and micro benchmarking, finding a bottleneck, local optimization technics and

instrumentation improvements can be used to optimize any Java agent as well as any Java

program in general, by excluding the instrumentation part.

54

 References

1. N. Salnikov-Tarnovski and V. Vojdani. Lazy uninstructive calling context encoding for

Java. 2015. [ONLINE] Available at:

https://bitbucket.org/plas/lucce/downloads/lucce.pdf [Accessed 18 May 2016]

2. T. Ball and J. R. Larus. Efficient path profiling. In MICRO 29, pages

46-57. IEEE Computer Society, 1996.

3. N. Salnikov-Tarnovski and V. Vojdani. Lazy uninstructive calling context encoding for

Java, page 17. 2015. [ONLINE] Available at

https://bitbucket.org/plas/lucce/downloads/lucce.pdf [Accessed 18 May 2016]

4. T. Ball and J. R. Larus. Efficient path profiling. In MICRO 29, page 45. IEEE Computer

Society, 1996.

5. W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling

context encoding. In ICSE '10, pages 525-534. ACM, 2010.

6. Q. Zeng, J. Rhee, H. Zhang, N. Arora, G. Jiang, and P. Liu. DeltaPath: Precise and scal-

able calling context encoding. In CGO '14, pages 109-119. ACM, 2014.

7. T. J. Watson Libraries for Analysis (WALA). [ONLINE] Available at:

http://wala.sourceforge.net/. [Accessed 15 May 2016]

8. S. Chiba. Javassist - a reflection-based programming wizard for java. In Proceedings of

the ACM OOPSLA Workshop on Reflective Programming in C++ and Java, 1998.

9 . S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking development and

analysis. In OOPSLA '06, pages 169-190. ACM, 2006.

10. T. Kaczanowski. Practical Unit Testing. Cracow, 2012.

11. DaCapo Project. The DaCapo Benchmarks, 2009. [ONLINE] Available at

http://www.dacapobench.org [Accessed 15 May 2016]

12. Microsoft. Introduction to Instrumentation and Tracing, 2016. [ONLINE] Available at:

https://msdn.microsoft.com/en-us/library/x5952w0c(v=vs.110).aspx

13. J. Shirazi. Java Performance Tuning. O'Reilly Media, 2000

14. K. Mok. Intrinsic Methods in HotSpot VM, 2013. [ONLINE] Available at:

http://www.slideshare.net/RednaxelaFX/green-teajug-hotspotintrinsics02232013

15. ASM. 1999-2009. [ONLINE] Available at: http://asm.ow2.org/. [Accessed 15 May

2016]

16. Oracle and/or its affiliates. JNI Types and Data Structures. 1993, 2016. [ONLINE]

Available at:

http://dl.acm.org/author_page.cfm?id=81508708319&coll=DL&dl=ACM&trk=0&cfid=745759649&cftoken=48352171

55

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html#wp276 [Ac-

cessed 15 May 2016]

17. E. Bruneton. ASM4.0, A Java bytecode engineering library

18. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional. pages 366-381. 2004

19. Oracle and/or its affiliates. Enum Thread.State. 1993-2016. [ONLINE] Available at:

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html [Accessed 15 May

2016]

20. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. pages 183-195. Addison-Wesley Professional, 2004

56

 Appendix

11.1 Bash script to run DaCapo benchmarks

1. key="$1"

2.

3. case $key in

4. -a|--algorithm)

5. ALGORITHM="$2"

6. ;;

7. esac

8.

9. echo ALGORITHM = "${ALGORITHM}"

10.

11. for benchmark in batik avrora h2 jython luindex luserach sunflow tomcat xalan

12. do

13. echo Running $benchmark

14. java -Xmx4g -javaagent:./agent-${ALGORITHM}.jar -jar ./dacapo-9.12-bach.jar \

15. -n 31 $benchmark -c LucceCallback

16. done

57

11.2 Glossary

Instrumentation

Refers to an ability to monitor or measure the level of a product's performance, to

diagnose errors and to write trace information [12].

Garbage collection

Process of allocation, managing and releasing memory for a program.

Method overloading

Allows us to created several functions with the same name, but with different incom-

ing and out coming arguments.

Short-circuit evaluation

A kind of boolean expressions evaluation in which every next condition is evaluated,

just in case the previous condition could satisfy the expression result.

Hook

A method or API call that is included in the application code to trigger some external

event without changing the actual program flow.

Chord

An edge in the graph that does not belong to the spanning tree of this graph.

58

11.3 License

Non-exclusive licence to reproduce thesis and make thesis public

I, Ostap Maliuvanchuk (date of birth: 02.07.1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Performance optimization of a Java instrumentation agent for calling context encoding,

supervised by Vesal Vojdani and Nikita Salnikov-Tarnovski,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 23.05.2016

