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Chapter 1

Introduction

1.1 Background

Recall that a Banach space has the approximation property if its identity
operator can be approximated, uniformly on compact sets, by �nite-rank
operators. If in addition the �nite-rank operators can be chosen with norms
less than or equal to λ for some 1 ≤ λ < ∞, then the Banach space is said
to have the bounded approximation property, more precisely, the λ-bounded
approximation property. The 1-bounded approximation property is called
the metric approximation property. From the de�nitions, it is clear that the
metric approximation property implies the bounded approximation property,
which in its turn implies the approximation property. In our brief survey
below, we rely on [O3, Section 1].

Systematic studies of the approximation properties started mid 1950s when
the terms of the approximation property and the metric approximation prop-
erty were introduced by Grothendieck as la condition d'approximation and
la condition d'approximation métrique (see [G, Chapter I, pp. 167, 178]),
and deeply studied in his famous Memoir [G]. The bounded approximation
property was also occasionally introduced in [G] as la variante a�aiblie de la

propriété d'approximation métrique (see [G, Chapter I, p. 182]). However,
the origin of the bounded approximation property dates back to 1930s � the
notion was essentially considered already in Banach's book [B, p. 237], in a
more general setting of the bounded compact approximation property (where
��nite-rank operators� are replaced by �compact operators� in the de�nition
of bounded approximation property).

Grothendieck proved (see [G, �Proposition� 37, pp. 170�171]) that the ques-
tion whether all Banach spaces have the approximation property is equiva-

9



10 1. INTRODUCTION

lent to the following two famous problems: the Mazur's Problem 153 in the
Scottish Book and the approximation problem.

Problem 153 was posed on November 6, 1936, had a live goose as a prize
(see, e.g., [Scot, p. 231]), and was as follows. Given a continuous function
f = f(s, t) de�ned on [0, 1] × [0, 1] and any number ε > 0; do there exist
numbers a1, . . . , an; b1, . . . , bn; c1, . . . , cn such that∣∣∣∣f(s, t)−

n∑
k=1

akf(s, bk)f(ck, t)

∣∣∣∣ < ε

for all s, t ∈ [0, 1]?

According to Peªczy«ski [P, p. 68], Mazur knew that the positive answer to
Problem 153 would imply the positive answer to the approximation problem:
can all compact operators between arbitrary Banach spaces be approximated,
in the norm topology of operators, by �nite-rank operators? It was considered
to be one of the central open problems of functional analysis.

It was not until 1970s, when the �rst example of a Banach space failing
the approximation property was produced: in 1972, En�o [En] discovered
a separable re�exive Banach space, which does not have the approximation
property. A year later, in 1973, Figiel and Johnson [FJ1] constructed the
�rst counterexamples showing that the approximation property, the bounded
approximation property, and the metric approximation property are, in gen-
eral, di�erent notions. However, it is not known whether these notions are
di�erent for dual spaces. One of the most famous open problems is as fol-
lows (see, e.g., [C, Problem 3.8]; for an overview see [O3, Section 3]). Does

the approximation property of a dual space imply the metric approximation

property?

While approaching the problem, some new versions of the bounded approx-
imation properties have emerged in the recent years. Two of these are the
bounded approximation property for the pairs, consisting of a Banach space
and its closed subspace, introduced in the seminal paper [FJP] in 2011, and
its extension � the bounded nest approximation property considered in [FJ3]
in 2016.

1.2 Summary of the thesis

The aim of the thesis is to systematically study the bounded approximation
property of pairs, the bounded nest approximation property, and even more
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general version of the bounded approximation properties from [LisO] � the
bounded convex approximation property. The latter concept also includes
the bounded positive approximation property of Banach lattices.

The thesis has been organized as follows.

Chapter 1 brie�y introduces the historic background of the approximation
properties, contains a summary of the thesis, and describes notation used in
the thesis.

Chapter 2 contains an overview of the notions and results needed in the
following chapters. These include polar sets, nests in Banach spaces, the
link between the space of �nite-rank operators and tensor products, and
Grothendieck's descriptions of its dual space as integral operators. A pre-
liminary knowledge of some of the most important locally convex topologies
de�ned on the space of bounded linear operators is given. Some preliminaries
are due to [OV2].

In Chapter 3, we consider and describe various bounded approximation prop-
erties and their duality versions. The characterization of the bounded approx-
imation properties de�ned by arbitrary operator ideals from [O2] is extended
to bounded convex approximation properties. We prove that the bounded
approximation property of the pair (X∗, Y ⊥), where X is a Banach space
and Y is its closed subspace, implies the bounded duality approximation
property of (X, Y ). This result extends an important theorem from [J1] on
classical approximation properties to the approximation properties of pairs.
The chapter is based on [OT, OV1, V].

In Chapter 4, we establish versions of the principle of local re�exivity which
respect nests of subspaces. We prove a rather far-reaching extension of the
Ringrose theorem on nests. We also extend a duality result on approximation
properties of pairs from [LisO] and its bounded version from Chapter 3 to
the context of nest approximation properties. Criteria of the nest approx-
imation properties from [FJ3] are applied to obtain criteria of the duality
nest approximation properties in the spirit of Grothendieck. This chapter is
based on [OV2].

In Chapter 5, we study the lifting of bounded convex approximation proper-
ties from a Banach space to its dual space in some special cases. We show
that for such a lifting rather weak forms of the principle of local re�exiv-
ity and the extendable local re�exivity are su�cient. It is also shown that
such a lifting is possible whenever the dual space already enjoys a weaker
bounded convex approximation property. We also complement and extend
some results from [GS2, O2]. This chapter relies on [OV1, OV2, V].
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The main results of the thesis are contained in [OT, OV1, OV2, V].

1.3 Notation

Our notation is standard.

Let X and Y be Banach spaces, both real or both complex. We denote by
L(X, Y ) the Banach space of all bounded linear operators fromX to Y and by
W(X, Y ), K(X, Y ), and F(X, Y ) its subspaces of weakly compact, compact
and �nite-rank operators, respectively. We write L(X) for L(X,X) and,
similarly, W(X) for W(X,X), K(X) for K(X,X), and F(X) for F(X,X).
The range of an operator S : X → Y is denoted by ranS := {Sx : x ∈ X}.
The identity operator on X is denoted by IX . If A and B are subsets of L(X)
and L(X∗∗), respectively, then {S∗∗ : S ∈ A}◦B := {S∗∗T : S ∈ A, T ∈ B}.

A Banach space X will be regarded as a subspace of its bidual X∗∗ under
the canonical embedding jX : X → X∗∗. Occasionally, we write x ∈ X∗∗ for
x ∈ X, rather than jXx ∈ X∗∗. The closed unit ball and the unit sphere of
X are denoted by BX and SX , respectively. For a subset M of X, its closure
is denoted by M , its linear span by spanM , and its convex hull by convM .
If Z is a subspace of X, then Z⊥ is its annihilator in the dual space X∗, i.e.,
Z⊥ := {x∗ ∈ X∗ : x∗(z) = 0 ∀z ∈ Z}. For a subspace W of X∗, we denote
by W⊥ its annihilator in X, i.e., W⊥ := {x ∈ X : w(x) = 0 ∀w ∈ W}.

We consider Banach lattices over R. If X is a Banach lattice and A is a
subset of L(X), then A+ := A∩L(X)+ denotes the set of positive operators
belonging to A.

We assume that the reader is familiar with well-known basic notions and
theorems from the theory of Banach spaces and topological vector spaces
(such as dual pairs, the Hausdor� theorem, the Hahn�Banach theorem, the
Goldstine theorem, etc.) and we shall often use these without proper refer-
ences.



Chapter 2

Preliminaries

This chapter contains an overview of the notions and results needed
in the following chapters. These include polar sets, nests in Banach
spaces, the link between the space of �nite-rank operators and tensor
products, and Grothendieck's descriptions of its dual space as integral
operators. A preliminary knowledge of some of the most important
locally convex topologies de�ned on the space of bounded linear op-
erators is given. Some results are due to [OV2].

2.1 Polar sets

Let 〈X, Y 〉 be a duality and let M be a subset of X. Recall that the polar

of M is the set

M◦ := {y ∈ Y : Re 〈x, y〉 ≤ 1 ∀x ∈M},

where Re 〈x, y〉 denotes the real part of 〈x, y〉. The polar of M◦ is a subset
of X, called the bipolar of M , and is denoted by M◦◦.

If X is a normed space, then for a subset Z ⊂ X, we have

Z◦ = {x∗ ∈ X∗ : Re x∗(z) ≤ 1 ∀z ∈ Z}

with respect to 〈X,X∗〉 and also with respect to 〈X∗∗, X∗〉.

By the de�nition, the following facts hold:

(a) if µ 6= 0 and µM ⊂ N , then N◦ ⊂ µ−1M◦;

13



14 2. PRELIMINARIES

(b) if X is a normed space, then B◦X = BX∗ with respect to 〈X,X∗〉 and
also with respect to 〈X∗∗, X∗〉.

Proposition 2.1. Let X be a normed space. The following properties hold

for the dual pair 〈X,X∗〉.

1. If Z is a subset of X, then
(
Z
)◦

= Z◦.

2. If Z is a subspace of X, then Z⊥ = Z◦.

Proof. 1. Since Z ⊂ Z, we have
(
Z
)◦ ⊂ Z◦. Let us show that Z◦ ⊂

(
Z
)◦
.

Let x∗ ∈ Z◦ be arbitrary. Then x∗ ∈
(
Z
)◦

whenever Re x∗(x) ≤ 1 for all
x ∈ Z. But this is the case. Indeed, for any x ∈ Z, there is (zn) ⊂ Z such
that limn zn = x. Hence, we have

Re x∗(x) = Re x∗(lim
n
zn) = lim

n
Re x∗(zn) ≤ 1.

2. Clearly, Z⊥ ⊂ Z◦. For Z◦ ⊂ Z⊥, assume that Z◦ 6⊂ Z⊥. Then there is
x∗ ∈ X∗ such that Re x∗(z) ≤ 1 for all z ∈ Z, but there exists z0 ∈ Z such
that |x∗(z0)| = r > 1. Indeed, clearly there is x ∈ Z such that |x∗(x)| = α >
0. Put z0 = (1 + 1/α)x. Then z0 ∈ Z (because Z is a subspace) and we have

|x∗(z0)| = |x∗((1 + 1/α)x)| = (1 + 1/α) |x∗(x)| = α + 1 > 1.

Now pick φ ∈ R such that x∗(z0) = reiφ. Notice that then r = x∗(e−iφz0),
e−iφz0 ∈ Z and we have

Re x∗(e−iφz0) = Re r = r > 1,

which is a contradiction with Re x∗(z) ≤ 1 for all z ∈ Z.

Remark 2.2. Notice that in the literature the absolute polar of M , i.e., the
set {y ∈ Y : |〈x, y〉| ≤ 1 ∀x ∈ M}, is occasionally referred to as �the polar�
of M . The notions are distinguished, e.g., in [SchW].

2.2 Nests in Banach spaces

This section is based on [OV2].

Let X be a Banach space. Recall that a family of subspaces N of X is a nest

if it is linearly ordered by inclusion, i.e., if Y, Z ∈ N , then Y ⊂ Z or Z ⊂ Y .
By the de�nition, the following holds.
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Proposition 2.3. Let X be a Banach space. A �nite nest {Y1, Y2, . . . , Yn}
of subspaces of X is nested, e.g., Y1 ⊂ Y2 ⊂ · · · ⊂ Yn.

A nest N of closed subspaces of X is said to be complete if N contains {0}
andX, andN is closed under arbitrary intersections and closures of arbitrary
unions (meaning that ⋂

Y ∈N ′
Y ∈ N and

⋃
Y ∈N ′

Y ∈ N

whenever N ′ is a non-empty subfamily of N ).

Example 2.4. By Proposition 2.3, every �nite nest of closed subspaces of a
Banach space containing {0} and the whole space is a complete nest.

Let X and Y be Banach spaces. Let G be a nest of subspaces of X∗ and
let NG = {VG : G ∈ G} be a nest of subspaces of Y . We say that NG is
increasing on G if VG ⊂ VH and VG 6= VH whenever G ⊂ H and G 6= H in
G. Notice that in this case, G is also increasing on NG. Indeed, if VG ⊂ VH ,
VG 6= VH , then G 6= H. We have either G ⊂ H or H ⊂ G. If H ⊂ G,
then VH ⊂ VG, which is a contradiction with VG ⊂ VH , VG 6= VH . Therefore,
G ⊂ H, G 6= H.

We shall use the following easy observation.

Lemma 2.5. Let X be a Banach space. Let Y and Z be closed subspaces of

X. If S ∈ L(X), then S(Y ) ⊂ Z if and only if S∗(Z⊥) ⊂ Y ⊥.

Proof. We shall include a proof for completeness. The �only if� part is clear.
For the �if� part, assume that there exists S ∈ L(X) such that S∗(Z⊥) ⊂ Y ⊥,
but there is y0 ∈ Y such that Sy0 6∈ Z. Using the Hahn�Banach theorem, we
can �nd x∗ ∈ X∗ such that x∗(Sy0) = 1 and x∗(z) = 0 for all z ∈ Z. Then
x∗ ∈ Z⊥. Hence, S∗x∗ ∈ Y ⊥ and we have

x∗(Sy0) = (S∗x∗)(y0) = 0,

which is a contradiction with x∗(Sy0) = 1.

Notice that in the case when S = IX in Lemma 2.5, it reduces to Lemma 2.6
below.

Lemma 2.6. Let X be a Banach space. Let Y and Z be closed subspaces of

X. Then Y ⊂ Z if and only if Z⊥ ⊂ Y ⊥. Consequently, Y = Z if and only

if Z⊥ = Y ⊥.
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If N is a nest of subspaces of a Banach space X, then we shall denote

N⊥ := {Y ⊥ : Y ∈ N}

and N⊥⊥ := (N⊥)⊥.

The following simple result clari�es some interrelations between the nests N ,
N⊥, and N⊥⊥.

Proposition 2.7. Let X be a Banach space and let N be a nest of closed

subspaces of X.

1. The following assertions are equivalent:

(a) N⊥ is closed under arbitrary intersections,

(b) N is closed under closures of arbitrary unions.

2. The following assertions are equivalent:

(a) N⊥⊥ is closed under arbitrary intersections,

(b) N⊥ is closed under closures of arbitrary unions,

(c) N is closed under arbitrary intersections and( ⋂
Y ∈N ′

Y
)⊥⊥

=
⋂
Y ∈N ′

Y ⊥⊥ for every non-empty subfamily N ′ of N . (∗)

Proof. Let N ′ be an arbitrary non-empty subfamily of N .

1. First notice that, since
⋃
Y ∈N ′ Y is a subspace of X and the polar of a

union coincides with the intersection of the polars (see, e.g., [SchW, p. 126]),
by Proposition 2.1, we have( ⋃

Y ∈N ′
Y

)⊥
=

( ⋃
Y ∈N ′

Y

)⊥
=
⋂
Y ∈N ′

Y ⊥.

Therefore, by Lemma 2.6, the statement

�there exists Z ∈ N such that Z⊥ =
⋂
Y ∈N ′

Y ⊥ �

is equivalent to

�there exists Z ∈ N such that Z =
⋃
Y ∈N ′

Y �.
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Hence, (a) and (b) are equivalent.

2. The equivalence of (a) and (b) is clear from part 1. Also, (c) clearly implies
(a).

To prove (b) ⇒ (c), assume that (b) holds. Then there exists Z ∈ N such
that

Z⊥ =
⋃
Y ∈N ′

Y ⊥.

Therefore,

⋂
Y ∈N ′

Y =
⋂
Y ∈N ′

(Y ⊥)⊥ =

( ⋃
Y ∈N ′

Y ⊥
)
⊥

=

( ⋃
Y ∈N ′

Y ⊥
)
⊥

= Z

and

⋂
Y ∈N ′

Y ⊥⊥ =

( ⋃
Y ∈N ′

Y ⊥
)⊥

=

( ⋃
Y ∈N ′

Y ⊥
)⊥

= Z⊥⊥ =

( ⋂
Y ∈N ′

Y

)⊥⊥
.

Hence, (c) holds.

Remark 2.8. Notice that a nest N of subspaces of a Banach space satis�es
condition (∗) if and only if

( ⋂
Y ∈N ′

Y
)⊥

=
⋃
Y ∈N ′

Y ⊥ for every non-empty subfamily N ′ of N .

Indeed, by the proof of part 2 of Proposition 2.7, the equality

⋂
Y ∈N ′

Y ⊥⊥ =

( ⋃
Y ∈N ′

Y ⊥
)⊥

,

holds for every non-empty subfamily N ′ of N . Therefore, the �if� and �only
if� parts are clear by taking ( · )⊥ and ( · )⊥, respectively.

We have the following immediate consequence of Proposition 2.7.

Corollary 2.9. Let X be a Banach space and let N be a nest of closed

subspaces of X. Then the nest N⊥ is complete if and only if N is complete

and satis�es condition (∗).
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2.3 The dual space of the space of �nite-rank

operators

Let X and Y be Banach spaces.

Recall that, for a functional x∗ ∈ X∗ and an element y ∈ Y , the operator
x∗⊗ y : X → Y is de�ned by (x∗⊗ y)x = x∗(x)y, x ∈ X. Clearly, x∗⊗ y has
rank one if and only if x∗ 6= 0 and y 6= 0.

It is well known that a mapping S : X → Y belongs to F(X, Y ) if and only
if S can be represented as a �nite sum of rank one operators

S =
n∑
k=1

x∗k ⊗ yk,

where x∗1, . . . , x
∗
n ∈ X∗ and y1, . . . , yn ∈ Y . In this case, the conjugate

operator of S has the representation

S∗ =
n∑
k=1

yk ⊗ x∗k.

An operator T ∈ L(X, Y ) is an integral operator if there exists a probability
measure space (with the measure µ) and operators a ∈ L(X,L∞(µ)) and
b ∈ L(L1(µ), Y ∗∗) such that jY T = bj1a, where j1 : L∞(µ) → L1(µ) is the
identity embedding, meaning that the diagram

X
T //

a
��

Y
jY // Y ∗∗

L∞(µ)
j1

// L1(µ)

b

OO

commutes. The integral norm ‖T‖I of an integral operator T ∈ L(X, Y ) is
de�ned by the equality

‖T‖I = inf ‖a‖ ‖b‖ ,

where the in�mum is taken over all possible factorizations of T as above. The
space of all integral operators fromX to Y equipped with their integral norms
will be denoted by I(X, Y ). It is straightforward to verify that I(X, Y ) is a
Banach space (see, e.g., [DiJT, Theorem 5.2]).

Notice that since we have

‖jY T‖I = ‖T‖I ∀T ∈ I(X, Y )
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(see, e.g., [Ry, Proposition 3.21] or [DiJT, Theorem 5.14]), there exists a
natural isometric embedding J : I(X, Y )→ I(X, Y ∗∗) de�ned by JT = jY T
for T ∈ I(X, Y ).

Integral operators were introduced by Grothendieck in [G, Chapter I, Propo-
sition 27, pp. 124�127] (see, e.g., [DiU, pp. 231�232] or [Ry, p. 58]) with
the aim to describe the dual space of an injective tensor product. With-
out entering into the theory of tensor products, we may reformulate this
very important Grothendieck's description in the following way (cf. [O4, pp.
202�203]).

Theorem 2.10 (Grothendieck). Let X and Y be Banach spaces. Then the

dual space (F(X, Y ), ‖ · ‖)∗ is linearly isometric with I(Y,X∗∗) under the

duality 〈 n∑
k=1

x∗k ⊗ yk, T
〉

=
n∑
k=1

(Tyk)(x
∗
k)

and also with I(X∗, Y ∗) under the duality〈 n∑
k=1

x∗k ⊗ yk, T
〉

=
n∑
k=1

(Tx∗k)(yk).

We shall express Theorem 2.10 by writing (F(X, Y ))∗ = I(Y,X∗∗) and
(F(X, Y ))∗ = I(X∗, Y ∗).

The link with tensor products of Banach spaces is that, in fact, F(X, Y )
is algebraically the same as the algebraic tensor product X∗ ⊗ Y , with the
rank one operator x∗ ⊗ y corresponding to the elementary tensor x∗ ⊗ y.
The link with the injective tensor norm ε = ‖ · ‖ε is that, in fact, ‖S‖ =
‖
∑n

k=1 x
∗
k ⊗ yk‖ε for all S ∈ F(X, Y ), S =

∑n
k=1 x

∗
k ⊗ yk.

By the above mentioned description due to Grothendieck, the dual of the
algebraic tensor product X ⊗ Y ⊂ F(X∗, Y ) (where X ⊗ Y is equipped with
the usual operator norm) can be identi�ed with I(X, Y ∗), i.e., (X ⊗ Y )∗ =
I(X, Y ∗). This identi�cation is realized via the duality〈 n∑

k=1

xk ⊗ yk, T
〉

=
n∑
k=1

(Txk)(yk).

Let us recall the de�nition of the projective tensor norm π = ‖ · ‖π using
�nite-rank operators (cf. [O4, p. 203]): if T ∈ F(X, Y ), then ‖T‖π is de�ned
by

‖T‖π = inf

{ n∑
k=1

‖x∗k‖ ‖yk‖ : T =
n∑
k=1

x∗k ⊗ yk
}
,
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where the in�mum is taken over all possible representations of T . A straight-
forward veri�cation shows that (F(X, Y ), ‖ · ‖π) is a normed space (see, e.g.,
[Ry, Proposition 2.1]). In fact, (F(X, Y ), ‖ · ‖π) = X∗⊗πY := (X∗⊗Y, ‖ · ‖π).
The completion ofX∗⊗πY is called the projective tensor product and denoted
by X∗⊗̂πY . Its elements have the following useful representation.

Proposition 2.11 (see, e.g., [Ry, Proposition 2.8]). For every u ∈ X∗⊗̂πY
and ε > 0, there exist bounded sequences (x∗k) ⊂ X∗ and (yk) ⊂ Y such that

the series
∑∞

k=1 x
∗
k ⊗ yk converges to u and

∑∞
k=1 ‖x∗k‖ ‖yk‖ < ‖u‖π + ε.

The next well-known lemma shows that every element of projective tensor
product de�nes a bounded linear operator. We shall include a simple proof
for completeness.

Lemma 2.12. Let X and Y be Banach spaces. For every u ∈ X∗⊗̂πY , with
a representation

u =
∞∑
k=1

x∗k ⊗ yk,

where (x∗k) ⊂ X∗, (yk) ⊂ Y , and
∑∞

k=1 ‖x∗k‖ ‖yk‖ < ∞, there exists an

operator ũ ∈ L(X, Y ) with ‖ũ‖ ≤ ‖u‖π such that

ũx =
∞∑
k=1

x∗k(x)yk, x ∈ X.

Proof. Since, algebraically, X∗ ⊗ Y = F(X, Y ), there exists a natural em-
bedding j : X∗ ⊗π Y → L(X, Y ) de�ned by

(ju)x =
n∑
k=1

x∗k(x)yk, x ∈ X,

where u =
∑n

k=1 x
∗
k⊗yk ∈ X∗⊗πY . Notice that j is a bounded linear operator

with ‖j‖ = 1. Indeed, clearly, j is linear. For u =
∑n

k=1 x
∗
k ⊗ yk ∈ X∗ ⊗π Y ,

we have

‖(ju)x‖ ≤
( n∑
k=1

‖x∗k‖ ‖yk‖
)
‖x‖ ∀x ∈ X,

and, since this holds for any representation of u, it follows that

‖(ju)x‖ ≤ inf

{ n∑
k=1

‖x∗k‖ ‖yk‖ : u =
n∑
k=1

x∗k ⊗ yk
}
‖x‖ = ‖u‖π ‖x‖ ∀x ∈ X.
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Hence, ‖ju‖ ≤ ‖u‖π for all u ∈ X∗ ⊗π Y and thus ‖j‖ ≤ 1. On the other
hand, if x∗ ⊗ y ∈ X∗ ⊗π Y is an elementary tensor, then

‖j(x∗ ⊗ y)‖ = sup
‖x‖≤1

‖(j(x∗ ⊗ y))x‖ = sup
‖x‖≤1

|x∗(x)| ‖y‖ = ‖x∗‖ ‖y‖

= ‖x∗ ⊗ y‖π ,

implying that

‖x∗ ⊗ y‖π ≤ ‖j‖ ‖x
∗ ⊗ y‖π .

Therefore, ‖j‖ = 1.

Now, since j ∈ L(X∗ ⊗π Y,L(X, Y )), it can be uniquely extended to a
bounded linear operator from X∗⊗̂πY to L(X, Y ). After passing to the
unique extension, we shall denote

ũ = ju, u ∈ X∗⊗̂πY.

Then ũ ∈ L(X, Y ) and ‖ũ‖ ≤ ‖u‖π for all u ∈ X∗⊗̂πY .

Hence, for

u =
∞∑
k=1

x∗k ⊗ yk,

where (x∗k) ⊂ X∗, (yk) ⊂ Y , and
∑∞

k=1 ‖x∗k‖ ‖yk‖ <∞, we have

ũx =
∞∑
k=1

x∗k(x)yk, x ∈ X.

Finally, let us recall that the trace functional trace : X∗⊗̂πX → K is de�ned
as follows: if u ∈ X∗⊗̂πY has a representation

u =
∞∑
k=1

x∗k ⊗ yk,

where (x∗k) ⊂ X∗, (yk) ⊂ Y , and
∑∞

k=1 ‖x∗k‖ ‖yk‖ <∞, then

traceu =
∞∑
k=1

x∗k(xk).
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2.4 Locally convex topologies on the space of

bounded linear operators

Let X and Y be Banach spaces.

The strong operator topology (SOT or τs) on L(X, Y ) is de�ned by the system
of seminorms {px}x∈X with

px(S) = ‖Sx‖ , S ∈ L(X, Y ).

The SOT on X∗ = L(X,K) is called the weak* topology.

The weak operator topology (WOT or τw) on L(X, Y ) is de�ned by the system
of seminorms {p(y∗,x)}y∗∈Y ∗,x∈X with

p(y∗,x)(S) = |y∗(Sx)| , S ∈ L(X, Y ).

The topology of uniform convergence on compact sets (τc) on L(X, Y ) is
de�ned by the system of seminorms {pK : K is a compact subset of X} with

pK(S) = sup
x∈K
‖Sx‖ , S ∈ L(X, Y ).

Notice that the following statements are true in L(X, Y ).

(a) A net (Sν) converges to S in the SOT if and only if Sνx→ν Sx for all
x ∈ X, i.e., Sν →ν S pointwise.

(b) A net (Sν) converges to S in the WOT if and only if y∗(Sνx)→ν y
∗(Sx)

for all x ∈ X and y∗ ∈ Y ∗.

If τ‖ · ‖ denotes the norm topology on L(X, Y ), then we have

τw ⊂ τs ⊂ τc ⊂ τ‖ · ‖.

Proposition 2.13. Let (Sν) ⊂ L(X, Y ) be a bounded net. Then (Sν) con-

verges to S in the strong operator topology if and only if (Sν) converges to S
in the topology of uniform convergence on compact sets.

Proof. The �if� part is clear.

For the �only if�, letM > 0 be such that ‖Sν‖ ≤M for all ν and assume that
Sν →ν S in the SOT, i.e., pointwise. We may assume that ‖S‖ ≤ M . Let



2.4. LOCALLY CONVEX TOPOLOGIES 23

us show that Sν →ν S uniformly on compact subsets of X. Let K ⊂ X be a
compact set and let ε > 0. Put δ = ε/(2M + 1). By the Hausdor� theorem,
there exists a �nite δ-net {x1, . . . , xn} for K. Then for any x ∈ K there is
k ∈ {1, . . . , n} such that ‖x− xk‖ ≤ δ. Notice that there exists νε such that
if ν ≥ νε, then

‖Sνxk − Sxk‖ ≤ δ, k = 1, . . . , n.

Indeed, since Sνx1 →ν Sx1, we can �nd ν1 such that if ν ≥ ν1, then
‖Sνx1 − Sx1‖ ≤ δ. Also, since Sνx2 →ν Sx2, we can �nd ν2 such that
ν2 ≥ ν1 and if ν ≥ ν2, then ‖Sνx2 − x2‖ ≤ δ. This way we can �nd νn such
that νn ≥ νn−1 ≥ · · · ≥ ν2 ≥ ν1 and if ν ≥ νn, then ‖Sνxn − Sxn‖ ≤ δ. It
su�ces to take νε = νn.

If ν ≥ νε, then for any x ∈ K, we have

‖Sνx− Sx‖ ≤ ‖Sν‖ ‖x− xk‖+ ‖Sνxk − Sxk‖+ ‖S‖ ‖xk − x‖
≤ (2M + 1)δ = ε,

as wished.

Theorem 2.14 (see, e.g., [DuS, Theorem VI.1.4]). The weak and the strong

operator topologies on L(X, Y ) yield the same dual space.

Proposition 2.15. Let (Sν) ⊂ L(X, Y ) be a net converging to S in the

weak operator topology. Then there exists a net (Tµ) consisting of convex

combinations of the elements of (Sν) such that (Tµ) converges to S in the

strong operator topology.

Proof. Let ν0 be an arbitrary index. Denote A := conv{Sν : ν ≥ ν0}. Then
any T ∈ A can be represented as

T =
n∑
k=1

λkSνk , n ∈ N, νk ≥ ν0, λk ≥ 0, and
n∑
k=1

λk = 1.

By assumption, (Sν)ν≥ν0 also converges to S in the WOT on L(X, Y ). Since

{Sν : ν ≥ ν0} ⊂ A ⊂ A
WOT

,

we have S ∈ A
WOT

(because A
WOT

is a closed subset in the WOT on
L(X, Y )).

Recall that the closure of a convex set in a locally convex space is determined
by the dual space (see, e.g., [Day, Corollary 5, p. 25]). Hence, by Theorem

2.14, A
WOT

= A
SOT

.
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Hence, S ∈ ASOT and thus there exists a net (Tµ) ⊂ A converging to S in
the SOT on L(X, Y ).

Recall that Grothendieck's characterization [G] (see, e.g., [LT1, Proposition
1.e.3]) states that, algebraically,

(L(X), τc)
∗ = X∗⊗̂πX,

under the duality

〈T, u〉 =
∞∑
k=1

x∗k(Txk),

where u =
∑∞

k=1 x
∗
k ⊗ xk ∈ X∗⊗̂πX and T ∈ L(X).



Chapter 3

Bounded convex approximation

properties

In this chapter, we consider and describe various bounded approxi-
mation properties and their duality versions. The characterization of
the bounded approximation properties de�ned by arbitrary operator
ideals from [O2] is extended to bounded convex approximation prop-
erties. We prove that the bounded approximation property of the pair
(X∗, Y ⊥), where X is a Banach space and Y is its closed subspace,
implies the bounded duality approximation property of (X, Y ). This
result extends an important theorem from [J1] on classical approxima-
tion properties to the approximation properties of pairs. The chapter
is based on [OT, OV1, V].

3.1 De�nitions

We shall begin with some general de�nitions which provide uni�ed approach
to various approximation properties. Throughout the thesis �approximation
property� is often abbreviated to �AP�.

LetX be a Banach space and let A be an arbitrary subset of L(X). The space
X has the A-approximation property if for every compact subset K of X and
for every ε > 0, there exists S ∈ A such that ‖Sx− x‖ ≤ ε for all x ∈ K.
Let 1 ≤ λ < ∞. The space X has the λ-bounded A-approximation property

if S can be chosen with ‖S‖ ≤ λ (meaning that X has the (A∩λBL(X))-AP).
If λ = 1, then one speaks about the metric A-approximation property. The

25
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dual space X∗ of X is said to have the (λ-bounded) A-approximation property

with conjugate operators if X∗ has the (λ-bounded) {S∗ : S ∈ A}-AP.

It is convenient to extend the well-known notion of λ-bounded duality approx-

imation property (due to [J1]; see, e.g., [C, p. 288] or [S, p. 314]) as follows.
We say that X has the (λ-bounded) duality A-approximation property if for
all compact subsets K of X and L of X∗, there exists an operator S ∈ A
(with ‖S‖ ≤ λ) such that ‖Sx− x‖ ≤ ε for all x ∈ K and ‖S∗x∗ − x∗‖ ≤ ε
for all x∗ ∈ L. If A is convex and contains 0, then the λ-bounded duality
A-AP is equivalent to the λ-bounded A-AP with conjugate operators (see
Proposition 3.11 in Section 3.4).

Remark 3.1. It follows from a theorem by Godefroy and Saphar [GS2, The-
orem 1.5] (see [LisO, Theorem 5.2] for an alternative proof of this theorem)
that if A is a convex subset of K(X) containing 0, then the duality A-AP of
X is always metric whenever X∗ or X∗∗ has the Radon�Nikodým property.

The concept of A-APs has been studied since the early 1980s by Reinov,
Grønb÷k, Willis, and others (see, e.g., [BB1], [BB2], [Lis], [LMO] for refer-
ences and recent results). In the case when the set A is convex and contains
0, we speak about convex approximation properties. The study of convex
APs was launched in [LisO] (these were occasionally introduced already in
[LMO]). The concept includes the following notions (together with their
duality and respective bounded versions, which are de�ned in the standard
way).

(1) The approximation property of a Banach space X (when A = F(X)).

(2) The approximation property of pairs (X, Y ), consisting of a Banach
space X and a closed subspace Y of X (when A = {S ∈ F(X) :
S(Y ) ⊂ Y }).

(3) The nest approximation property or the AP of pairs (X,N ), consisting
of a Banach space X and a nest N of closed subspaces of X (when
A = {S ∈ F(X) : S(Y ) ⊂ Y ∀Y ∈ N}).

(4) The positive approximation property of a Banach lattice X (when A
consists of all the positive �nite-rank operators, i.e., A = F(X)+).

Clearly, the APs for X, (X,X), and (X, {0}) are all equivalent. In their
turn, the APs of pairs (X, Y ) are the nest APs, namely when N = {Y }, or,
equivalently, N = {{0}, Y,X}.
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The APs of pairs were introduced and studied by Figiel, Johnson, and
Peªczy«ski in their seminal paper [FJP] (see also [FJ2]). The nest APs are
useful extensions of the APs of pairs; these were considered by Figiel and
Johnson in [FJ3]. Even versions of the APs of pairs in the context where
the space of �nite-rank operators F(X) is replaced by a linear subspace A
of L(X) have been studied (see [CKZ, ChZ]); these are called the A-APs of
pairs.

The positive APs date back to 1967 (under the name �order approximation
property�; see [Bl] for references and recent results). Szankowski [Sz1] was
�rst to construct a Banach lattice without the AP, and thus without the
positive AP. It is still an open question whether the AP implies the positive
AP (and similar question holds for the bounded versions of these properties).
The last process on this subject was made by Nielsen in [N].

After En�o's construction of the Banach space failing the AP, examples of
Banach spaces without the AP inside classical spaces quickly followed. Ac-
cording to Grothendieck's �Proposition� 37 in [G], there exists a subspace
of c0 failing the AP (see, e.g., [PF] for an explicit construction). Also, the
spaces `p, p 6= 2, have subspaces without the AP. The case of 2 < p < ∞
was shown independently by Davie [Dav] and Figiel [F] in 1973 (see, e.g.,
[LT1, pp. 86�90]). Examples in the case when 1 ≤ p <∞, p 6= 2, were con-
structed by Szankowski [Sz2] in 1978 (see, e.g., [LT2, pp. 107�111]). Relying
on the concept of bounded APs of pairs, Figiel, Johnson, and Peªczy«ski
showed that c0 and `1 have closed subspaces which have the AP, but fail the
bounded AP (see [FJP, Corollary 1.13]).

3.2 Reformulating bounded (duality) approxi-

mation properties

Well-known reformulations of the λ-bounded AP of Banach spaces (see, e.g.,
[C, Theorem 3.3] or [S, Theorem 18.1]) can be extended to the following
conditions (a) − (d) in Theorem 3.2 below, all equivalent to the λ-bounded
A-AP; and also to the conditions (a)−(f) in Theorem 3.5, in the next section,
all equivalent to the λ-bounded AP of pairs.

Theorem 3.2. Let X be a Banach space and let A be a subset of L(X). Let
1 ≤ λ <∞. Then the following properties are equivalent.

(a) For every compact subset K of X and for every ε > 0 there exists

S ∈ A with ‖S‖ ≤ λ such that ‖Sx− x‖ ≤ ε for all x ∈ K.
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(b) There exists a net (Sν) ⊂ A satisfying ‖Sν‖ ≤ λ for all ν such that

Sν →ν IX uniformly on compact subsets of X.

(c) There exists a net (Sν) ⊂ A satisfying ‖Sν‖ ≤ λ for all ν such that

Sν →ν IX pointwise.

(d) For every �nite subset M of X and for every ε > 0 there exists S ∈ A
with ‖S‖ ≤ λ such that ‖Sx− x‖ ≤ ε for all x ∈M .

(e) For every �nite-dimensional subspace E of X and for every ε > 0 there

exists S ∈ A with ‖S‖ ≤ λ such that ‖Sx− x‖ ≤ ε ‖x‖ for all x ∈ E.

Proof. The proof uses standard arguments but we shall include a proof for
completeness.

To prove (a)⇒ (b), consider the set of all couples ν = (K, ε), where K ⊂ X
is a compact subset and ε > 0. Let us de�ne an ordering in the following
way:

(K1, ε1) ≤ (K2, ε2) ⇔ K1 ⊂ K2 and ε1 ≥ ε2.

Let us prove that this is indeed an ordering of directed set.

If ν = (K, ε), then K ⊂ K and ε ≥ ε. Therefore, ν ≤ ν.

Let ν1 = (K1, ε1), ν2 = (K2, ε2), ν3 = (K3, ε3) be such that ν1 ≤ ν2 and ν2 ≤
ν3. In this case K1 ⊂ K2 ⊂ K3 and ε1 ≥ ε2 ≥ ε3. Hence, ν1 ≤ ν3.

Let ν1 = (K1, ε1), ν2 = (K2, ε2). We show that there exists ν3 = (K3, ε3)
such that ν1 ≤ ν3 and ν2 ≤ ν3. Take K3 = K1 ∪K2. Since the union of two
compact sets is compact, K3 is compact. Put ε3 = min{ε1, ε2}. Then for
ν3 := (K3, ε3), we have ν1 ≤ ν3 and ν2 ≤ ν3.

De�ne a net (Sν) in such a way that for every index ν take the corresponding
operator Sν ∈ A from (a). Then ‖Sν‖ ≤ λ for all ν and if ν = (K, ε), then
‖Sνx− x‖ ≤ ε for all x ∈ K.

Let us show that Sν →ν IX uniformly on compact subsets of X. For any
compact subset K0 of X and for any ε0 > 0, take ν0 = (K0, ε0). If ν =
(K, ε) ≥ ν0, then K0 ⊂ K and

‖Sνx− x‖ ≤ ε ≤ ε0 ∀x ∈ K0,

as wished.

The implication (b)⇒ (c) is clear, because every one-element set is compact.

To prove (c) ⇒ (d), consider a �nite subset M := {x1, . . . , xm} ⊂ X and
let ε > 0. Let (Sν) be a net from (c). We can �nd νm such that if ν ≥ νm,
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then ‖Sνxk − xk‖ ≤ ε, k = 1, . . . ,m (cf. the proof of Proposition 2.13). Put
S = Sνm . Then ‖S‖ ≤ λ and ‖Sx− x‖ ≤ ε for all x ∈M .

To prove (d)⇒ (e), let E ⊂ X be a �nite-dimensional subspace with a basis
{e1, . . . , em} and let ε > 0. Then any x ∈ E has a representation

x =
m∑
k=1

λkek.

Since all norms are equivalent in a �nite-dimensional normed space, there
exists c > 0 such that

m∑
k=1

|λk| ≤ c ‖x‖ ∀x ∈ E.

Let S ∈ A with ‖S‖ ≤ λ be an operator from (d) such that

‖Sek − ek‖ ≤ ε/c, k = 1, ...,m.

Then for any x ∈ E, we also have

‖Sx− x‖ =

∥∥∥∥∥S
( m∑
k=1

λkek

)
−

m∑
k=1

λkek

∥∥∥∥∥ =

∥∥∥∥∥
m∑
k=1

λk(Sek − ek)

∥∥∥∥∥
≤

m∑
k=1

|λk| ‖Sek − ek‖ ≤
m∑
k=1

|λk| ε/c ≤ ε ‖x‖ .

To prove (e)⇒ (a), let K ⊂ X be a compact subset and let ε > 0. According
to the Hausdor� theorem there exists a �nite ε/(λ+2)-netM := {x1, . . . , xm}
for K. Then for every x ∈ K there exists xk ∈M such that

‖x− xk‖ ≤ ε/(λ+ 2).

Put E = spanM and δ = ε/maxk ‖xk‖ (λ + 2). By (e), there is S ∈ A with
‖S‖ ≤ λ such that ‖Sx− x‖ ≤ δ ‖x‖ for all x ∈ E. Hence,

‖Sxk − xk‖ ≤ δ ‖xk‖ ≤ ε/(λ+ 2)

for k = 1, . . . ,m. For any x ∈ K, we have

‖Sx− x‖ = ‖Sx− Sxk + Sxk − xk + xk − x‖
≤ ‖S‖ ‖x− xk‖+ ‖Sxk − xk‖+ ‖xk − x‖
≤ λε/(λ+ 2) + 2ε/(λ+ 2) = ε,

as wished.
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To reformulate the λ-bounded duality A-AP, one can apply Theorem 3.3
below.

Theorem 3.3. Let X be a Banach space and let A be a subset of L(X). Let
1 ≤ λ <∞. Then the following properties are equivalent.

(a) For all compact subsets K of X and L of X∗, and for every ε > 0 there

exists S ∈ A with ‖S‖ ≤ λ such that ‖Sx− x‖ ≤ ε for all x ∈ K and

‖S∗x∗ − x∗‖ ≤ ε for all x∗ ∈ L.

(b) There exists a net (Sν) ⊂ A satisfying ‖Sν‖ ≤ λ for all ν such that

Sν →ν IX and S∗ν →ν IX∗ uniformly on compact subsets of X and X∗,
respectively.

(c) There exists a net (Sν) ⊂ A satisfying ‖Sν‖ ≤ λ for all ν such that

Sν →ν IX and S∗ν →ν IX∗ pointwise.

(d) For all �nite subsets M of X and N of X∗, and for every ε > 0 there

exists S ∈ A with ‖S‖ ≤ λ such that ‖Sx− x‖ ≤ ε for all x ∈ M and

‖S∗x∗ − x∗‖ ≤ ε for all x∗ ∈ N .

(e) For all �nite-dimensional subspaces E and F of X and X∗, respec-

tively, and for every ε > 0 there exists S ∈ A with ‖S‖ ≤ λ such

that ‖Sx− x‖ ≤ ε ‖x‖ for all x ∈ E and ‖S∗x∗ − x∗‖ ≤ ε ‖x∗‖ for all

x∗ ∈ F .

Proof. The proofs are similar to the proofs in Theorem 3.2. We shall point
out only the main di�erences.

To prove (a) ⇒ (b), it is su�cient to consider the set of all triples ν =
(K,L, ε) where ε > 0, K ⊂ X and L ⊂ X∗ are compact subsets. A net (Sν)
as in (b) can be constructed using the idea from the proof of the respective
implication in Theorem 3.2.

The implication (b)⇒ (c) is clear.

To prove (c) ⇒ (d), consider �nite subsets M := {x1, . . . , xm} ⊂ X and
N := {x∗1, . . . , x∗n} ⊂ X∗ and let ε > 0. Let (Sν) be a net from (c). We can
�nd νm as in the proof of the corresponding implication in Theorem 3.2 and
νn such that νn ≥ νm and if ν ≥ νn, then ‖S∗νx∗ − x∗‖ ≤ ε for all x∗ ∈ N .
Clearly, then also ‖Sνx− x‖ ≤ ε for all x ∈ M and ν ≥ νn. It su�cies to
put S = Sνn .

To prove (d)⇒ (e), let E ⊂ X and F ⊂ X∗ be �nite-dimensional subspaces
with bases {e1, . . . , em} and {f1, . . . , fn}, respectively. Let ε > 0. Take c > 0
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as in the proof of the corresponding implication in Theorem 3.2 and choose
d ≥ c such that

n∑
k=1

|µk| ≤ d ‖x∗‖ ∀x∗ =
n∑
k=1

µkfk ∈ F.

Let S ∈ A with ‖S‖ ≤ λ be from (d) such that

‖Sek − ek‖ ≤ ε/d, k = 1, ...,m,

and
‖S∗fk − fk‖ ≤ ε/d, k = 1, ..., n.

It is straightforward to verify that ‖Sx− x‖ ≤ ε ‖x‖ for all x ∈ E and
‖S∗x∗ − x∗‖ ≤ ε ‖x∗‖ for all x∗ ∈ F .

To prove (e)⇒ (a), using the Hausdor� theorem, choose �nite ε/(λ+2)-nets
M and N for given compact subsets K ⊂ X and L ⊂ X∗, respectively. Put
E = spanM , F = spanN , and δ = ε/(maxx∈M ‖x‖+ maxx∗∈N ‖x∗‖)(λ+ 2).
Let S ∈ A be a operator from (e) such that ‖S‖ ≤ λ, ‖Sx− x‖ ≤ δ ‖x‖ for all
x ∈ E and ‖S∗x∗ − x∗‖ ≤ δ ‖x∗‖ for all x∗ ∈ F . Then ‖Sx− x‖ ≤ ε/(λ+ 2)
for all x ∈ M , and ‖S∗x∗ − x∗‖ ≤ ε/(λ + 2) for all x∗ ∈ N . It is easy to
verify that S satis�es condition (a).

3.3 Reformulating bounded (duality) approxi-

mation properties of pairs

This section is based on [OT].

We begin with the following auxiliary Lemma 3.4. Its special case when X is
a Banach space was applied in the proof of [FJP, Lemma 1.5]. However, even
in this special case, we have not found its proof in the literature. Therefore,
we include a proof for completeness.

Lemma 3.4. Let X be a locally convex Hausdor� space. Let Y be a closed

subspace and F a �nite-dimensional subspace of X. Then there exists a

continuous linear projection P on X such that ranP = F and P (Y ) ⊂ Y .

Proof. 1. Let us consider �rst a particular case, assuming that F ∩Y = {0}.
Let (xk)

n
k=1 be a basis of F . Denote Fm := span{xk : k 6= m}. Then Y + Fm
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is a closed subspace of X (see, e.g., [Ru, Theorem 1.42]) and xm /∈ Y + Fm.
Indeed, if xm ∈ Y + Fm, then

xm = y +
n∑

k=1, k 6=m

λkxk,

where y ∈ Y . Therefore,

xm −
n∑

k=1, k 6=m

λkxk ∈ F ∩ Y.

Since F ∩ Y = {0}, we have xm =
∑n

k=1, k 6=m λkxk, which is a contradiction
with the linear independence of x1, . . . xn.

According to a separation theorem (see, e.g., [Ru, Theorem 3.5]), there exist
continuous linear functionals fm, m = 1, ..., n, such that fm(xm) = 1 and
fm|Y+Fm = 0, in particular fm|Y = 0 and fk(xm) = δkm, k,m = 1, ..., n.

De�ne P : X → X by

Px =
n∑
k=1

fk(x)xk.

Then, clearly, ranP ⊂ F . We also have F ⊂ ranP because

Pxm =
n∑
k=1

fk(xm)xk = fm(xm)xm = xm, m = 1, . . . , n.

Let us show that P is continuous. For that it is su�cient to show that
for any k ∈ {1, . . . , n}, the rank one operator fk ⊗ xk is continuous. Fix
k ∈ {1, . . . , n}. Let P be a family of semi-norms generating the topology
of X. Recall that fk ⊗ xk is continuous if and only if for each continuous
semi-norm q on X, there exists a �nite subset P ′ of P and a number c > 0
such that q((fk ⊗ xk)x) ≤ cmax{p(x) : p ∈ P ′} for all x ∈ X (see, e.g.,
[SchW, p. 74]). Since fk is continuous, there is a �nite subset Pk of P and
ck > 0 such that |fk(x)| ≤ ck max{p(x) : p ∈ Pk} for all x ∈ X. Let q be any
continuous semi-norm on X. Then for any x ∈ X, we have

q((fk ⊗ xk)x) = q(fk(x)xk) = |fk(x)| q(xk) ≤ ckq(xk) max{p(x) : p ∈ Pk}.

It su�ces to put P ′ = Pk and c = ckq(xk).

Since Pxk = xk, k = 1, ..., n, we have P 2 = P , i.e., P is a projection.
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For any y ∈ Y , we also have

Py =
n∑
k=1

fk(y)xk =
n∑
k=1

0xk = 0,

implying that P (Y ) = {0} ⊂ Y .

2. Let us show that the general case can be reduced to the particular case
above.

We start by decomposing F = (F ∩ Y ) ⊕ G. Then (F ∩ Y ) ∩ G = {0} and
G ∩ Y = {0}. Hence, by the above, there exist continuous linear projections
Q and R on X such that ranQ = F ∩ Y , Q(G) ⊂ G, and ranR = G,
R(Y ) ⊂ Y . De�ne P = Q+ R− RQ. Then P is continuous and linear, and
P (Y ) ⊂ Y (because ranQ,R(Y ) ⊂ Y ).

Clearly, ranP ⊂ F . Let us show that F ⊂ ranP . Notice that every f ∈ F
has a unique representation f = y + g, where y ∈ F ∩ Y and g ∈ G. Since
Qy = y and Rg = g, we have

Pf = (Q+R−RQ)(y + g) = y +Ry −Ry +Qg + g −RQg
= y +QRg + g −RQRg.

Notice also that QR = 0 (because Q(G) ⊂ (F ∩ Y ) ∩ G = {0}), implying
that

Pf = y + g = f.

Therefore, ranP = F and P 2 = P . Hence, P is a continuous linear projection
on X, as desired.

Let X be a Banach space and let Y be a closed subspace of X. Let 1 ≤ λ <
∞. The λ-bounded AP of the pair (X, Y ) and its duality version may be
equivalently expressed using Theorems 3.5 and 3.6 below. The original notion
of λ-bounded AP of the pair (X, Y ) in [FJP] was de�ned as condition (f) of
Theorem 3.5. The λ-bounded duality AP of the pair (X, Y ) was introduced
in [OT] as property (c) of Theorem 3.6. Note that we preferred to de�ne the
notions through conditions (a).

Theorem 3.5 (cf. [FJP, Lemma 1.5]). Let X be a Banach space and let Y
be a closed subspace of X. Let 1 ≤ λ <∞. Then the following properties of

the pair (X, Y ) are equivalent.

(a) For every compact subset K of X and for every ε > 0 there exists

S ∈ F(X) with ‖S‖ ≤ λ such that S(Y ) ⊂ Y and ‖Sx− x‖ ≤ ε for all
x ∈ K.
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(b) There exists a net (Sν) ⊂ F(X) such that ‖Sν‖ ≤ λ and Sν(Y ) ⊂ Y
for all ν, and Sν →ν IX uniformly on compact subsets of X.

(c) There exists a net (Sν) ⊂ F(X) such that ‖Sν‖ ≤ λ and Sν(Y ) ⊂ Y
for all ν, and Sν →ν IX pointwise.

(d) For every �nite subset M of X and for every ε > 0 there exists S ∈
F(X) with ‖S‖ ≤ λ such that S(Y ) ⊂ Y and ‖Sx− x‖ ≤ ε for all

x ∈M .

(e) For every �nite-dimensional subspace E of X and for every ε > 0 there

exists S ∈ F(X) with ‖S‖ ≤ λ such that S(Y ) ⊂ Y and ‖Sx− x‖ ≤
ε ‖x‖ for all x ∈ E.

(f) For every �nite-dimensional subspace E of X and for every ε > 0 there

exists S ∈ F(X) with ‖S‖ ≤ λ + ε such that S(Y ) ⊂ Y and Sx = x
for all x ∈ E.

Proof. Let A = {S ∈ F(X) : S(Y ) ⊂ Y }. The equivalence of (a) − (e) is
immediate from Theorem 3.2.

The implication (e)⇒ (f) is proved in [FJP, Lemma 1.5]. We shall include a
proof for completeness. Let E ⊂ X be a �nite-dimensional subspace and let
ε > 0. Using Lemma 3.4, choose a projection P ∈ F(X) such that ranP = E
and P (Y ) ⊂ Y .

Let δ > 0 be such that δ ‖P‖ < ε. By (e), there is T ∈ F(X) with ‖T‖ ≤ λ
such that T (Y ) ⊂ Y and ‖Tx− x‖ ≤ δ ‖x‖ for all x ∈ E.

Put
S = P + T − TP = P + T (IX − P ).

Then, clearly, S ∈ F(X) and S is the identity on E. Also, S(Y ) ⊂ Y because
Py, Ty ∈ Y for all y ∈ Y .

Finally, let us observe that

‖S − T‖ = ‖TP − P‖ = sup
x∈BX

‖TPx− Px‖ ≤ sup
x∈BX

δ ‖Px‖ = δ ‖P‖ ≤ ε.

Hence, we have
‖S‖ ≤ ‖T‖+ ‖S − T‖ ≤ λ+ ε.

To prove (f)⇒ (e), let E ⊂ X be a �nite-dimensional subspace and let ε > 0.
By (f), there is T ∈ F(X) with ‖T‖ ≤ λ+ε such that T (Y ) ⊂ Y and Tx = x
for all x ∈ E.
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Put S = λT/(λ+ ε). Then S ∈ F(X), S(Y ) ⊂ Y and

‖S‖ = λ ‖T‖ /(λ+ ε) ≤ λ.

Notice that Sx = λx/(λ+ ε) for all x ∈ E. Hence, for any x ∈ E, we have

‖Sx− x‖ = |λ/(λ+ ε)− 1| ‖x‖ = ε/(λ+ ε) ‖x‖ < ε ‖x‖ ,

as wished.

Theorem 3.6. Let X be a Banach space and let Y be a closed subspace of

X. Let 1 ≤ λ < ∞. Then the following properties of the pair (X, Y ) are

equivalent.

(a) For all compact subsets K of X and L of X∗, and for every ε > 0 there

exists S ∈ F(X) with ‖S‖ ≤ λ such that S(Y ) ⊂ Y , ‖Sx− x‖ ≤ ε for

all x ∈ K and ‖S∗x∗ − x∗‖ ≤ ε for all x∗ ∈ L.

(b) There exists a net (Sν) ⊂ F(X) such that ‖Sν‖ ≤ λ and Sν(Y ) ⊂ Y
for all ν, and Sν →ν IX and S∗ν →ν IX∗ uniformly on compact subsets

of X and X∗, respectively.

(c) There exists a net (Sν) ⊂ F(X) such that ‖Sν‖ ≤ λ and Sν(Y ) ⊂ Y
for all ν, and Sν →ν IX and S∗ν →ν IX∗ pointwise.

(d) For all �nite subsets M of X and N of X∗, and for every ε > 0 there

exists S ∈ F(X) with ‖S‖ ≤ λ such that S(Y ) ⊂ Y , ‖Sx− x‖ ≤ ε for

all x ∈M and ‖S∗x∗ − x∗‖ ≤ ε for all x∗ ∈ N .

(e) For all �nite-dimensional subspaces E of X and F of X∗, and for

every ε > 0 there exists S ∈ F(X) with ‖S‖ ≤ λ such that S(Y ) ⊂ Y ,
‖Sx− x‖ ≤ ε ‖x‖ for all x ∈ E and ‖S∗x∗ − x∗‖ ≤ ε ‖x∗‖ for all

x∗ ∈ F .

(f) For all �nite-dimensional subspaces E of X and F of X∗, and for every

ε > 0 there exists S ∈ F(X) with ‖S‖ ≤ λ + ε such that S(Y ) ⊂ Y ,
Sx = x for all x ∈ E and S∗x∗ = x∗ for all x∗ ∈ F .

Proof. The equivalence of (a) − (e) is immediate from Theorem 3.3 (in the
special case when A = {S ∈ F(X) : S(Y ) ⊂ Y }).

To prove (e)⇒ (f), let E ⊂ X and F ⊂ X∗ be �nite-dimensional subspaces
and let ε > 0. Using Lemma 3.4, choose a projection P ∈ L(X) such that
ranP = E and P (Y ) ⊂ Y . Look at X∗ endowed with its weak* topology.
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Notice that Y ⊥ is weak* closed. Indeed, let f ∈ X∗ and let (fν) ⊂ Y ⊥ be
a net converging to f in the weak* topology of X∗, i.e., fν →ν f pointwise.
Then, for any y ∈ Y , f(y) = limν fν(y) = 0. Hence, f ∈ Y ⊥.

Using Lemma 3.4 again, choose a weak*-to-weak* continuous linear projec-
tion R on X∗ such that ranR = F and R(Y ⊥) ⊂ Y ⊥. Then there exists
Q ∈ L(X) such that R = Q∗ (see, e.g., [M, Theorem 3.1.11]).

Since Q∗(Y ⊥) ⊂ Y ⊥, we have, by Lemma 2.5, Q(Y ) ⊂ Y .

Let δ > 0 satisfy
δ(‖P‖+ ‖IX − P‖ ‖Q‖) < ε.

According to (e), there is T ∈ F(X) with ‖T‖ ≤ λ such that T (Y ) ⊂ Y ,
‖Tx− x‖ ≤ δ ‖x‖ for all x ∈ E and ‖T ∗x∗ − x∗‖ ≤ δ ‖x∗‖ for all x∗ ∈ F .

Applying a perturbation argument inspired by [OP, proof of Lemma 1.2], we
denote

S := IX + (IX −Q)(T − IX)(IX − P ),

i.e.,
S = T + P − TP +Q−QT +QTP −QP.

Then, clearly, S ∈ F(X). Since Px = x, i.e., (IX − P )x = 0, for all x ∈ E =
ranP and Q∗x∗ = x∗, i.e., (IX∗ − Q∗)x∗ = 0 , for all x∗ ∈ F = ranQ∗, S
is the identity on E and S∗ = IX∗ + (IX∗ − P ∗)(T ∗ − IX∗)(IX∗ − Q∗) is the
identity on F . Also, S(Y ) ⊂ Y because Py, Ty, Qy ∈ Y for all y ∈ Y .

Finally, let us observe that

S = T + (IX − T )P −Q(T − IX)(IX − P ).

Let us also observe that

‖(IX − T )P‖ = sup
x∈BX

‖TPx− Px‖ ≤ sup
x∈BX

δ ‖Px‖ = δ ‖P‖

and

‖Q(T − IX)(IX − P )‖ ≤ ‖IX − P‖ ‖Q(T − IX)‖
= ‖IX − P‖ ‖(T ∗ − IX∗)Q∗‖

with

‖(T ∗ − IX∗)Q∗‖ = sup
x∗∈BX∗

‖T ∗Q∗x∗ −Q∗x∗‖ ≤ sup
x∗∈BX∗

δ ‖Q∗x∗‖

= δ ‖Q∗‖ = δ ‖Q‖ .
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Hence, we have

‖S − T‖ ≤ ‖(IX − T )P‖+ ‖Q(T − IX)(IX − P )‖
≤ δ(‖P‖+ ‖IX − P‖ ‖Q‖) ≤ ε

and
‖S‖ ≤ ‖T‖+ ‖S − T‖ ≤ λ+ ε.

To prove (f) ⇒ (e), it is easy to verify that it su�ces to take S as in the
corresponding implication in Theorem 3.5.

Remark 3.7. The λ-bounded duality AP of a Banach space X is usually
de�ned as the special case of either property (c) or (e) in Theorem 3.6 when
Y = {0} (equivalently, Y = X). The equivalence of (e) and (f) in the context
of the λ-bounded duality AP of a Banach space X has been established in
[J1, Lemma 3] (see also, e.g., [S, Lemma 9.2]).

3.4 Describing bounded convex approximation

properties

This section is based on [OV1, V].

Let X be a Banach space. In [O2, Theorem 2.1], Oja characterizes bounded
A-APs, in the special case when A is a component of an arbitrary operator
ideal (i.e., A = A(X,X), where A is an operator ideal), via elementary
functionals de�ned on A. However, by the proof of this theorem, A could
also be assumed to be a linear subspace of L(X) (see Theorem 3.8 below).

Recall that if A is a linear subspace of L(X), x∗∗ ∈ X∗∗, and x∗ ∈ X∗, then
an elementary functional x∗ ⊗ x∗∗ : A→ K is de�ned by the equality

(x∗ ⊗ x∗∗)(T ) = x∗∗(T ∗x∗), T ∈ A.

Clearly, x∗ ⊗ x∗∗ ∈ A∗ and ‖x∗ ⊗ x∗∗‖ ≤ ‖x∗‖ ‖x∗∗‖.

Theorem 3.8 (cf. [O2, Theorem 2.1]). Let X be a Banach space and let A
be a linear subspace of L(X). Let 1 ≤ λ <∞. Then

(a) X has the λ-bounded A-approximation property if and only if there

exists Φ ∈ A∗∗ such that ‖Φ‖ ≤ λ and

Φ(x∗ ⊗ jXx) = x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X;
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(b) X∗ has the λ-bounded A-approximation property with conjugate opera-

tors if and only if there exists Φ ∈ A∗∗ such that ‖Φ‖ ≤ λ and

Φ(x∗ ⊗ x∗∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

The following Theorem 3.9 extends Theorem 3.8 to bounded convex APs.
Its proof is inspired by the proof of [O2, Theorem 2.1]. In Theorem
3.9 we consider elementary functionals de�ned on L(X) and the duality
〈(L(X))∗∗, (L(X))∗〉.

Theorem 3.9. Let X be a Banach space and let A be a bounded convex

subset of L(X) containing 0. Then

(a) X has the A-approximation property if and only if there exists Φ ∈
A◦◦ ⊂ (L(X))∗∗ such that

Φ(x∗ ⊗ jXx) = x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X;

(b) X∗ has the A-approximation property with conjugate operators if and

only if there exists Φ ∈ A◦◦ ⊂ (L(X))∗∗ such that

Φ(x∗ ⊗ x∗∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

Proof. First, notice that jL(X)A
w∗

is bounded whenever A is. In fact,

jL(X)A
w∗ ⊂ λB(L(X))∗∗ whenever A ⊂ λBL(X). Indeed, take S ∈ jL(X)A

w∗

,
then there exists a net (Sν) ⊂ jL(X)A ⊂ λB(L(X))∗∗ such that Sν →ν S in the
weak* topology of (L(X))∗∗, i.e., pointwise. Therefore, for any f ∈ (L(X))∗,
we have

|Sf | =
∣∣∣lim
ν
Sνf

∣∣∣ = lim
ν
|Sνf | ≤ sup

ν
‖Sν‖ ‖f‖ ≤ λ ‖f‖ .

Hence, ‖S‖ ≤ λ, i.e., S ∈ λB(L(X))∗∗ , as needed.

For the �only if� part, consider a net (Sν) ⊂ A. For (a) assume that Sν →ν IX
pointwise, and for (b) assume that S∗ν →ν IX∗ pointwise.

Since jL(X)A
w∗

is bounded and weak* closed, by the Banach�Alaoglu theo-
rem (see, e.g., [DuS, Corollary V.4.3]), it is weak* compact. We also have

(jL(X)Sν) ⊂ jL(X)A ⊂ jL(X)A
w∗

. After passing to a weak* converging subnet,
we may assume that there exists a weak* limit of (Sν). Take Φ to be equal
to that weak* limit. Then we have

Φf = lim
α
f(Sν), f ∈ (L(X))∗,
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Φ ∈ (L(X))∗∗, and Φ ∈ jL(X)A
w∗

. By the bipolar theorem (see, e.g., [SchW,
Theorem 1.5]),

A◦◦ = conv(jL(X)A ∪ {0})
w∗

.

Since A is convex and contains 0,

A◦◦ = jL(X)A
w∗

.

Therefore, Φ ∈ A◦◦.

In the case (a), we have

Φ(x∗ ⊗ jXx) = lim
ν

(x∗ ⊗ jXx)(Sν) = lim
ν

(jXx)(S∗νx
∗) = lim

ν
(S∗νx

∗)(x)

= lim
ν
x∗(Sνx) = x∗(lim

ν
Sνx) = x∗(x),

for all x∗ ∈ X∗ and x ∈ X. In the case (b), we have

Φ(x∗ ⊗ x∗∗) = lim
ν

(x∗ ⊗ x∗∗)(Sν) = lim
ν
x∗∗(S∗νx

∗) = x∗∗(lim
ν
S∗νx

∗)

= x∗∗(x∗),

for all x∗ ∈ X∗ and x∗∗ ∈ X∗∗.

For the �if� part, let Φ ∈ A◦◦. Then, by the bipolar theorem, Φ ∈ jL(X)A
w∗

.
Hence, there exists a net (Sν) ⊂ A such that jL(X)Sν →ν Φ in the weak*
topology of (L(X))∗∗. In particular, for any x∗ ⊗ x∗∗ ∈ (L(X))∗,

lim
ν
x∗∗(S∗νx

∗) = lim
ν

(x∗ ⊗ x∗∗)(Sν) = Φ(x∗ ⊗ x∗∗),

and for any x∗ ⊗ jXx ∈ (L(X))∗,

lim
ν

(S∗νx
∗)(x) = lim

ν
(x∗ ⊗ jXx)(Sν) = Φ(x∗ ⊗ jXx).

In case Φ(x∗ ⊗ jXx) = x∗(x), as in (a), we have

lim
ν
x∗(Sνx) = lim

ν
(S∗νx

∗)(x) = Φ(x∗ ⊗ jXx) = x∗(x),

meaning that Sν →ν IX in the WOT on L(X). By passing to convex combi-
nations, we may assume that Sν →ν IX in the SOT on L(X), i.e., pointwise.

Hence, by Theorem 3.2, X has the A-AP.

In case Φ(x∗ ⊗ x∗∗) = x∗∗(x∗), as in (b), we have

lim
α
x∗∗(S∗νx

∗) = Φ(x∗ ⊗ x∗∗) = x∗∗(x∗),
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meaning that S∗ν →ν IX∗ in the WOT on L(X∗). By passing to convex
combinations, we may assume that S∗ν →ν IX∗ pointwise. Hence, by Theorem
3.2, X∗ has the {S∗ : S ∈ A}-AP, i.e., X∗ has the A-AP with conjugate
operators.

Remark 3.10. Notice that if A is a linear subspace of L(X) and A ∩ λBL(X)

is considered in the place of A in Theorem 3.9, then it reduces to Theorem
3.8. Indeed, in this case, by the Goldstine theorem, jL(X)A is weak* dense
in A∗∗. Thus, by the bipolar theorem, A◦◦ = A∗∗. We have Φ ∈ (A ∩
λBL(X))

◦◦ ⊂ A◦◦ = A∗∗. On the other hand, (A ∩ λBL(X))
◦◦ ⊂ λ(BL(X))

◦◦

and λ(BL(X))
◦◦ = λB(L(X))∗∗ . Therefore, ‖Φ‖ ≤ λ.

Application of Theorem 3.9 is a lifting result for metric convex approximation
properties from a Banach space, with the unique extension property, to its
dual space (see Section 5.5).

In the case of bounded convex approximation properties, the following result
is useful. For instance, it shows that �X∗ has the A-AP with conjugate
operators� in Theorem 3.9 (b) can be replaced with �X has the duality A-AP�.

Proposition 3.11. Let X be a Banach space and let A be a convex subset

of L(X) containing 0. Let 1 ≤ λ < ∞. Then the following properties are

equivalent.

(a) X has the λ-bounded duality A-approximation property.

(b) X∗ has the λ-bounded A-approximation property with conjugate opera-

tors.

(c) There exists a net (Sν) ⊂ A such that

lim sup
ν
‖Sν‖ ≤ λ

and

x∗∗(S∗νx
∗)→ν x

∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

In the proof of this proposition, we shall need the following simple lemma.

Lemma 3.12. Let X be a Banach space and let A be a convex subset of

L(X) containing 0. Let 1 ≤ λ < ∞. Then X has the λ-bounded duality

A-approximation property if and only if X has the (λ + ε)-bounded duality

A-approximation property for all ε > 0.
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Proof. The �only if� part is obvious and holds for any subset A ⊂ L(X).

For the �if� part, let us show that condition (d) of Theorem 3.3 holds. For
that, let M ⊂ X and N ⊂ X∗ be �nite subsets. Let ε > 0. Put δ =
ε/(λ + maxx∈M ‖x‖ + maxx∗∈N ‖x∗‖). Then δ(λ + ‖x‖) ≤ ε for all x ∈ M
and δ(λ + ‖x∗‖) ≤ ε for all x∗ ∈ N . By assumption (and Theorem 3.3 (d)),
there is T ∈ A with ‖T‖ ≤ λ+ δ such that ‖Tx− x‖ ≤ δ for all x ∈M and
‖T ∗x∗ − x∗‖ ≤ δ for all x∗ ∈ N .

Put S = (λ/(λ + δ))T . Then S ∈ A because A is convex and contains 0.
Clearly, ‖S‖ ≤ λ. For any x ∈M ,

‖Sx− x‖ = ‖(λ/(λ+ δ))Tx− x‖ = ‖λ(Tx− x)− δx‖ /(λ+ δ)

≤ λ ‖Tx− x‖+ δ ‖x‖ ≤ δ(λ+ ‖x‖) ≤ ε.

Similarly, for x∗ ∈ N , we have

‖S∗x∗ − x∗‖ = ‖(λ/(λ+ δ))T ∗x∗ − x∗‖ ≤ δ(λ+ ‖x∗‖) ≤ ε,

as wished.

Proof of Proposition 3.11. The implications (a) ⇒ (b) ⇒ (c) are obvious
((b)⇒ (c) holds thanks to Theorem 3.2 (c)). Notice that these hold for any
subset A ⊂ L(X).

To prove (c) ⇒ (a), we shall show that X has the (λ + ε)-bounded duality
A-AP for all ε > 0. Then, by Lemma 3.12, condition (a) holds.

Let (Sν) ⊂ A be a net from (c). Notice that

lim sup
ν
‖Sν‖ ≤ λ

is equivalent to the fact that for every ε > 0 there exists νε such that if
ν ≥ νε, then ‖Sν‖ ≤ λ+ ε. By assumption, (Sν)ν≥νε converges to IX∗ in the
WOT on L(X∗). By passing to convex combinations, we may assume that
S∗ν →ν IX∗ in the SOT on L(X∗), i.e. pointwise. In such a case, Sν →ν IX
in the WOT. By passing to convex combinations again, we may assume that
Sν →ν IX pointwise. By Theorem 3.3, X has the (λ + ε)-bounded duality
A-AP.

Hence, X has the (λ+ ε)-bounded duality A-AP for all ε > 0.

Remark 3.13. Let A be a convex subset of L(X) containing 0. Consider the
following statements.
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(a) X has the duality A-approximation property.

(b) X∗ has the A-approximation property with conjugate operators.

(c) There exists a net (Sν) ⊂ A such that

x∗∗(S∗νx
∗)→ν x

∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

Notice that then the implications (a) ⇒ (b) ⇒ (c) hold (even when A ⊂
L(X) is just a subset). However, the implication (c)⇒ (a) does not hold in
general. Indeed, in the particular case when A = F(X), condition (c) holds
in every Banach space (see Proposition 3.14 below), but there exist Banach
spaces without the AP and for these spaces the statement in (a) is false.

Proposition 3.14. Let X be a Banach space. Then there exists a net (Sν) ⊂
F(X) such that

x∗∗(S∗νx
∗)→ν x

∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

Proof. Consider a set of all couples ν = (F, ε), where F ⊂ X∗ is a �nite-
dimensional subspace and ε > 0, directed in the natural way. Fix ν = (F, ε).
By the Auerbach lemma (see, e.g., [Pi, B.4.9]), there exists a projection
Pν ∈ F(X∗) such that ranPν = F . Using the version of the principle of
local re�exivity, according to which �nite-rank operators on a dual space are
�locally conjugate�, (see, e.g., [OP, Theorem 2.5]), we can �nd Sν ∈ F(X)
such that ranS∗ν = ranPν and S∗νx

∗ = Pνx
∗ for all x∗ ∈ F . Notice that then

S∗ν →ν IX∗ pointwise. Indeed, let x∗ ∈ X∗ be arbitrary. For ε0 > 0, put
ν0 = (span{x∗}, ε0). Now, if ν = (F, ε) ≥ ν0, then x∗ ∈ span{x∗} ⊂ F and
ε ≤ ε0. We have S∗νx

∗ = Pνx
∗ = x∗, implying that ‖S∗νx∗ − x∗‖ = 0 < ε0, as

wished.

3.5 Duality of bounded approximation proper-

ties of pairs

This section is based on [OT].

Let X be a Banach space. Let 1 ≤ λ <∞. By the well-known En�o�James�
Lindenstrauss result (see, e.g., [LT1, p. 34]), the metric AP of X does not
imply the AP of the dual space X∗. However, if X∗ has the λ-bounded
AP, then also X has the same property. This result is essentially due to
Grothendieck (proved in [G, Chapter I, p. 180] for the metric AP), but its
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essence resides in the following important result due to Johnson [J1] (see,
e.g., [C, Proposition 3.5] or [S, Proposition 9.8]).

Theorem 3.15 (Johnson). Let X be a Banach space. Let 1 ≤ λ < ∞. If

X∗ has the λ-bounded approximation property, then X∗ has the λ-bounded
approximation property with conjugate operators.

Theorem 3.15 follows easily from the version of the principle of local re�exiv-
ity (see, e.g., [C, Proposition 3.5]), according to which �nite-rank operators
on a dual space are �locally conjugate� (see, e.g., [OP, Theorem 2.5]). We
shall include a proof.

Proof. Let F ⊂ X∗ be a �nite-dimensional subspace and let ε > 0. By
Theorem 3.5 (f), it is su�cient to show that there is S ∈ F(X) with ‖S‖ ≤
λ + ε such that S∗x∗ = x∗ for all x∗ ∈ F . By assumption (and Theorem
3.5 (f)), there is T ∈ F(X∗) with ‖T‖ ≤ λ + ε/2 such that Tx∗ = x∗ for
all x∗ ∈ F . Then, by [OP, Theorem 2.5], there exists S ∈ F(X) such that
|‖S‖ − ‖T‖| < ε/2 and S∗x∗ = Tx∗ for all x∗ ∈ F . Hence, ‖S‖ < ‖T‖+ε/2 ≤
λ+ ε and S∗x∗ = x∗ for all x∗ ∈ F , as wished.

Remark 3.16. Already in the special case when A = K(X), the notions �A-AP
with conjugate operators� and �A-AP� for the dual space di�er. Grønb÷k
and Willis showed in [GW, Example 4.3] that there exists a Banach space
with its dual space having the bounded K(X)-AP, but failing the K(X)-AP
with conjugate operators. Therefore, in general, Theorem 3.15 cannot be
extended to A-APs.

Consider the following duality conditions.

(a) (X, Y ) has the λ-bounded AP.

(a∗) (X∗, Y ⊥) has the λ-bounded AP.

According to the discussion in the beginning of this section, the implication
(a) ⇒ (a∗) does not hold in general. But the implication (a∗) ⇒ (a) holds
for an arbitrary X in the particular case when Y = {0} (or Y = X).

Proposition 3.17. If X is a re�exive Banach space, then conditions (a) and
(a∗) are equivalent.

Proof. We shall describe the λ-bounded APs of pairs using the criterion (c)
in Theorem 3.5.
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To prove (a)⇒ (a∗), let (Sν) ⊂ F(X) be such that ‖Sν‖ ≤ λ and Sν(Y ) ⊂ Y
for all ν, and Sν →ν IX in the SOT on L(X). We have S∗∗ν = Sν for
all ν (because X is re�exive), implying that S∗∗ν →ν IX∗∗ in the SOT on
L(X∗∗). In that case S∗ν →ν IX∗ in the WOT on L(X∗). By passing to
convex combinations, we may assume that S∗ν →ν I

∗
X in the SOT on L(X∗),

i.e., pointwise. Clearly, (S∗ν) ⊂ F(X∗) and ‖S∗ν‖ = ‖Sν‖ ≤ λ for all ν. Also
for any ν, S∗ν(Y

⊥) ⊂ Y ⊥ (because Sν(Y ) ⊂ (Y )). Therefore, (X∗, Y ⊥) has
the λ-bounded AP.

For (a∗) ⇒ (a), notice that if (X∗, Y ⊥) has the λ-bounded AP, then, by
the implication (a) ⇒ (a∗), (X∗∗, Y ⊥⊥) has the λ-bounded AP. Since X is
re�exive, we have X∗∗ = X and Y ⊥⊥ = (Y ⊥)⊥ = Y . Hence, (X, Y ) has the
λ-bounded AP.

Concerning Proposition 3.17, it may be added that, by [LisO, Corollary 5.3],
the AP of a pair (X, Y ) is always metric whenever X is re�exive.

It is natural to say that the pair (X∗, Y ⊥) has the λ-bounded approximation

property with conjugate operators if X∗ has the λ-bounded {S ∈ F(X) :
S(Y ) ⊂ Y }-AP with conjugate operators. The principal result of this section
is as follows (see also Theorem 3.21).

Theorem 3.18. Let X be a Banach space and let Y be a closed subspace of

X. Let 1 ≤ λ < ∞. The pair (X∗, Y ⊥) has the λ-bounded approximation

property if and only if (X∗, Y ⊥) has the λ-bounded approximation property

with conjugate operators.

Theorem 3.18 extends Theorem 3.15 from X∗ to (X∗, Y ⊥), showing that the
implication (a∗)⇒ (a) holds in full generality.

Let X and Y be Banach spaces. The following Lemma 3.19 will concern
some structure of Banach spaces of integral operators considered as dual
spaces of the space F(X, Y ) of �nite-rank operators. We shall use Lemma
3.19 (or, more precisely, its Corollary 3.20) in the proof of the �only if� part
of Theorem 3.18. It uses the canonical identi�cations (F(X))∗ = I(X∗, X∗)
and (F(X∗))∗ = I(X∗, X∗∗∗) from Theorem 2.10.

Lemma 3.19. Let X be a Banach space and let Y be a closed subspace of

X. Denote

R = {R ∈ F(X) : R(Y ) ⊂ Y }

and

S = {S ∈ F(X∗) : S(Y ⊥) ⊂ Y ⊥},
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and consider R⊥ and S⊥ as subspaces of I(X∗, X∗) and I(X∗, X∗∗∗), respec-
tively. If T ∈ I(X∗, X∗) is such that T ∈ R⊥, then jX∗T ∈ S⊥.

Proof. Let T ∈ R⊥, i.e., 〈R, T 〉 = 0 for every R ∈ R. We have to show that
〈S, jX∗T 〉 = 0 for every S ∈ S. Suppose that S ∈ S, i.e., S ∈ F(X∗) and
S(Y ⊥) ⊂ Y ⊥. Consider a representation of S

S =
n∑
k=1

x∗∗k ⊗ x∗k,

where (x∗k)
n
i=k ⊂ X∗ and (x∗∗k )nk=1 ⊂ X∗∗.

Since Y ⊥ is a linear subspace of X∗, Y ⊥ is algebraically complemented. This
means that there is a linear subspace W of X∗ such that X∗ = W ⊕ Y ⊥,
i.e., X∗ = W + Y ⊥ and W ∩ Y ⊥ = {0}. Thus, for every x∗ ∈ X∗ there is
a unique representation x∗ = w + y⊥, where w ∈ W and y⊥ ∈ Y ⊥. Since
x∗k = wk + y⊥k , where wk ∈ W and y⊥k ∈ Y ⊥, we have S = S1 + S2, where

S1 =
n∑
k=1

x∗∗k ⊗ wk and S2 =
n∑
k=1

x∗∗k ⊗ y⊥k .

Note that ranS1 ⊂ W . Let (w̄k)
m
k=1 ⊂ W be an algebraic basis of ranS1.

Then there is a system (x̄∗∗k )mk=1 ⊂ X∗∗ such that

S1 =
m∑
k=1

x̄∗∗k ⊗ w̄k

(see, e.g., [FHH+, p. 203]). Let x∗ ∈ Y ⊥ be arbitrary. Since S(Y ⊥) ⊂ Y ⊥,

Sx∗ = S1x
∗ + S2x

∗ =
m∑
k=1

x̄∗∗k (x∗)w̄k +
n∑
k=1

x∗∗k (x∗)y⊥k ∈ Y ⊥,

implying that
m∑
k=1

x̄∗∗k (x∗)w̄k ∈ W ∩ Y ⊥ = {0}.

Since w̄1, . . . , w̄m are linearly independent, it follows that x̄∗∗k (x∗) = 0 for all
k = 1, . . . ,m and for all x∗ ∈ Y ⊥, i.e., (x̄∗∗i )ki=1 ⊂ Y ⊥⊥.

Let us consider the canonical isometry I : Y ⊥⊥ → Y ∗∗, de�ned by
(Iy⊥⊥)(y∗) = y⊥⊥(x∗), where y∗ ∈ Y ∗, y⊥⊥ ∈ Y ⊥⊥, and x∗ ∈ X∗ is
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an arbitrary extension of y∗ (see, e.g., [M, Proposition 1.11.14]). Then
(Ix̄∗∗k )mk=1 ⊂ Y ∗∗ and, by Theorem 2.10, we get

〈S, jX∗T 〉 = 〈S1, jX∗T 〉+ 〈S2, jX∗T 〉

=
m∑
k=1

(jX∗T )(w̄k)(x̄
∗∗
k ) +

n∑
k=1

(jX∗T )(y⊥k )(x∗∗k )

=
m∑
k=1

x̄∗∗k (Tw̄k) +
n∑
k=1

x∗∗k (Ty⊥k )

=
m∑
k=1

(Ix̄∗∗k )(Tw̄k|Y ) +
n∑
k=1

x∗∗k (Ty⊥k ).

Denote y∗∗k := Ix̄∗∗k ∈ Y ∗∗ and y∗k := Tw̄k|Y ∈ Y ∗, and choose elements
yk ∈ Y , k = 1, ...,m, such that y∗∗k (y∗k) = y∗k(yk). Also choose xk ∈ X,
k = 1, ..., n, such that x∗∗k (Ty⊥k ) = (Ty⊥k )(xk). (Such elements exist. Indeed,
let Z be a normed space, z∗ ∈ Z∗, z∗∗ ∈ Z∗∗, and denote a := z∗∗(z∗). If
a = 0, then a = z∗(z) for z = 0. If a 6= 0, then there is w ∈ Z such that
b := z∗(w) 6= 0. Take z = ab−1w. Then a = ab−1b = ab−1z∗(w) = z∗(z).)
Using elements yk and xk, de�ne

R :=
m∑
k=1

w̄k ⊗ yk +
n∑
k=1

y⊥k ⊗ xk ∈ F(X).

Then R(Y ) ⊂ Y , because for every y ∈ Y ,

Ry =
m∑
k=1

w̄k(y)yk +
n∑
k=1

y⊥k (y)xk =
m∑
k=1

w̄k(y)yk ∈ Y.

Hence, R ∈ R and therefore 〈R, T 〉 = 0. On the other hand,

〈R, T 〉 =
m∑
k=1

(Tw̄k)(yk) +
n∑
k=1

(Ty⊥k )(xk) =
m∑
k=1

y∗k(yk) +
n∑
k=1

x∗∗k (Ty⊥k )

=
m∑
k=1

y∗∗k (y∗k) +
n∑
k=1

x∗∗k (Ty⊥k ) =
m∑
k=1

(Ix̄∗∗k )(Tw̄k|Y ) +
n∑
k=1

x∗∗k (Ty⊥k )

= 〈S, jX∗T 〉.

Hence 〈S, jX∗T 〉 = 0, as desired.

Recall from Section 2.3 that there exists a natural isometric embedding J :
I(X∗, X∗)→ I(X∗, X∗∗∗) de�ned by JT = jX∗T for T ∈ I(X∗, X∗).
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Corollary 3.20. Let R and S be as in Lemma 3.19, and let

J̄ : I(X∗, X∗)/R⊥ → I(X∗, X∗∗∗)/S⊥

be de�ned by

J̄(T +R⊥) = JT + S⊥, T ∈ I(X∗, X∗),

where J : I(X∗, X∗) → I(X∗, X∗∗∗) is the natural isometric embedding.

Then J̄ is a well-de�ned operator,
∥∥J̄∥∥ ≤ 1, and J̄q1 = q2J , where

q1 : I(X∗, X∗) → I(X∗, X∗)/R⊥ and q2 : I(X∗, X∗∗∗) → I(X∗, X∗∗∗)/S⊥
denote the quotient mappings.

Proof. Notice that since, by Lemma 3.19, J(R⊥) ⊂ S⊥, the de�nition of J̄ is
correct. Indeed, if T1, T2 ∈ I(X∗, X∗) are such that T1 +R⊥ = T2 +R⊥, then
T1 − T2 ∈ R⊥. It follows that J(T1 − T2) ∈ S⊥, i.e., JT1 + S⊥ = JT2 + S⊥.

Clearly, J̄ is linear. Also, we have q2J = J̄q1. Indeed, for any T ∈ I(X∗, X∗),

(q2J)(T ) = q2(JT ) = JT + S⊥ = J̄(T +R⊥) = J̄(q1T ) = (J̄q1)(T ).

It follows that ∥∥J̄∥∥ =
∥∥J̄q1

∥∥ = ‖q2J‖ ≤ ‖J‖ = 1,

as wished.

Proof of Theorem 3.18. The �if� part of Theorem 3.18 is clear because if
S(Y ) ⊂ Y , then S∗(Y ⊥) ⊂ Y ⊥.

To prove the �only if� part, let R = {R ∈ F(X) : R(Y ) ⊂ Y } and S = {S ∈
F(X∗) : S(Y ⊥) ⊂ Y ⊥} be as in Lemma 3.19.

Assume that the pair (X∗, Y ⊥) has the λ-bounded AP. This is the same
as the λ-bounded S-AP of X∗. According to Theorem 3.8 (a), there exists
Φ ∈ S∗∗ such that ‖Φ‖ ≤ λ and

Φ(x∗∗ ⊗ jX∗x∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

Since R ⊂ F(X) and S ⊂ F(X∗), R∗ and S∗ are isometrically isomor-
phic to (F(X))∗/R⊥ and (F(X∗))∗/S⊥, respectively (see, e.g., [M, Theorem
1.10.16]). Hence, under the canonical identi�cations (see Theorem 2.10), R∗
and S∗ are isometrically isomorphic to I(X∗, X∗)/R⊥ and I(X∗, X∗∗∗)/S⊥,
respectively. Let r : R∗ → I(X∗, X∗)/R⊥ and s : I(X∗, X∗∗∗)/S⊥ → S∗
denote the corresponding isometric isomorphisms.

Let i1 : R → F(X) and i2 : S → F(X∗) be the identity embeddings and let
q1 : I(X∗, X∗) → I(X∗, X∗)/R⊥ and q2 : I(X∗, X∗∗∗) → I(X∗, X∗∗∗)/S⊥
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denote the quotient mappings (as in Corollary 3.20). Then, under canonical
identi�cations (see Theorem 2.10), we have i∗1 = r−1q1 and i∗2 = sq2.

De�ne Ψ : R∗ → K by Ψ = ΦsJ̄r, where J̄ is the operator from Corollary
3.20. Then the diagrams

R∗

r

��

Ψ // K S∗Φoo

I(X∗, X∗)/R⊥ J̄ // I(X∗, X∗∗∗)/S⊥

s

OO

I(X∗, X∗)

q1

OO

J // I(X∗, X∗∗∗)

q2

OO

commute, Ψ ∈ R∗∗ and ‖Ψ‖ ≤ ‖Φ‖ ≤ λ.

Let x∗ ∈ X∗ and x∗∗ ∈ X∗∗. We shall show that Ψ(x∗ ⊗ x∗∗) = x∗∗(x∗).

Denote f := x∗ ⊗ x∗∗ ∈ R∗. Then f(R) = x∗∗(R∗x∗) for all R ∈ R. Notice
that if f̄ := x∗∗ ⊗ x∗ ∈ I(X∗, X∗) is a rank one operator, then 〈R, f̄〉 =
x∗∗(R∗x∗) for all R ∈ F(X). Indeed, let R =

∑n
k=1 x

∗
k ⊗ xk ∈ F(X) be

arbitrary. Then R∗ =
∑n

k=1 xk ⊗ x∗k and we have

〈R, f̄〉 =
n∑
k=1

(f̄x∗k)(xk) =
n∑
k=1

x∗∗(x∗k)x
∗(xk) = x∗∗

( n∑
k=1

x∗(xk)x
∗
k

)
= x∗∗(R∗x∗).

Hence, f(R) = f̄(i1R) = i∗1f̄(R) for all R ∈ R, implying that f = i∗1f̄ =
r−1q1f̄ .

Now denote g := x∗∗ ⊗ jX∗x
∗ ∈ S∗ and consider the rank one operator

ḡ := x∗∗ ⊗ jX∗x∗ ∈ I(X∗, X∗∗∗). In this case, we have g(S) = (S∗x∗∗)(x∗) =
x∗∗(Sx∗) for all S ∈ S and 〈S, ḡ〉 = x∗∗(Sx∗) for all S ∈ F(X∗). Hence,
g(S) = ḡ(i2S) = i∗2ḡ(S) for all S ∈ S, implying that g = i∗2ḡ = sq2ḡ.

Therefore, since ḡ = jX∗ f̄ and Φ(g) = x∗∗(x∗), we get

Ψ(x∗ ⊗ x∗∗) = Ψ(f) = Ψ(r−1q1f̄) = Φ(sJ̄rr−1q1f̄) = Φ(sJ̄q1f̄)

= Φ(sq2Jf̄) = Φ(sq2jX∗ f̄) = Φ(sq2ḡ) = Φ(g)

= x∗∗(x∗).
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According to Theorem 3.8 (b), X∗ has the λ-bounded S-AP with conjugate
operators, i.e., (X∗, Y ⊥) has the λ-bounded AP with conjugate operators.

Using Proposition 3.11, we may reformulate Theorem 3.18 as follows.

Theorem 3.21. Let X be a Banach space and let Y be a closed subspace of

X. Let 1 ≤ λ < ∞. The pair (X∗, Y ⊥) has the λ-bounded approximation

property if and only if the pair (X, Y ) has the λ-bounded duality approxima-

tion property.

Remark 3.22. The version of Theorem 3.21, stating that the pair (X∗, Y ⊥)
has the AP if and only if the pair (X, Y ) has the duality AP, was essentially
established in [LisO, Proposition 5.11]. The proof in [LisO] uses the principle
of local re�exivity (see Theorem 4.1). Also the special case of Theorem
3.21, when Y is of �nite codimension, can be proved using the principle of
local re�exivity. We could not �gure out how to use the principle of local
re�exivity, even in its most sophisticated form (see [Beh1] or, e.g., [OP,
Theorem 2.4]), to prove Theorem 3.18. In [O5, Corollary 4.2], an alternative
proof was given to Theorem 3.18. The proof is based on a new version of the
principle of local re�exivity, also established in [O5].

Remark 3.23. If X∗ or X∗∗ has the Radon�Nikodým property, then [LisO,
Proposition 5.11] states the following: if (X∗, Y ⊥) has the AP, then (X, Y )
has the metric duality AP (cf. Remark 3.1).

Let us conclude this section with applications to the lifting of the λ-bounded
AP from (X, Y ) to (X∗, Y ⊥) in some special cases.

In [FJP, Corollary 1.3], Figiel, Johnson, and Peªczy«ski proved that if X is

a Banach space, q : X → Z is a quotient map, and dim ker q <∞, then the

λ-bounded AP of X implies the same property of Z. Note, that their proof (a
straightforward one, which only uses condition (f) of Theorem 3.5) actually
yields the following auxiliary result.

Lemma 3.24 (see the proof of [FJP, Corollary 1.3]). Let X be a Banach

space and let Y be a �nite-dimensional subspace of X. Let 1 ≤ λ <∞. If X
has the λ-bounded approximation property, then also the pair (X, Y ) has the

λ-bounded approximation property.

Proof. We shall present a proof for completeness. Let F ⊂ X be a �nite-
dimensional subspace. Then E := Y +F is also a �nite-dimensional subspace
of X. By assumption, the pair (X,X) has the λ-bounded AP. Hence, by
Theorem 3.5 (f), for every ε > 0 there exists S ∈ F(X) such that ‖S‖ ≤
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λ + ε and Sx = x for all x ∈ E. Hence, we also have S(Y ) ⊂ Y (because
Y ⊂ E). Therefore, by Theorem 3.5, the pair (X, Y ) has the λ-bounded AP,
as wished.

The equivalence of conditions (a) and (c) below was established in [FJP,
Proposition 1.6]. We can complement this result as follows, providing also
an alternative proof for the implication (a)⇒ (c).

Theorem 3.25 (cf. [FJP, Proposition 1.6]). Let X be a Banach space and

let 1 ≤ λ <∞. Then the following conditions are equivalent.

(a) The dual space X∗ has the λ-bounded approximation property.

(b) The pair (X∗, Y ⊥) has the λ-bounded approximation property for every

�nite-codimensional closed subspace Y of X.

(c) The pair (X, Y ) has the λ-bounded approximation property for every

�nite-codimensional closed subspace Y of X.

Proof. Since Y ⊥ is a �nite-dimensional subspace ofX∗, the implication (a)⇒
(b) is immediate from Lemma 3.24. The implication (b) ⇒ (c) is clear
from Theorem 3.21 because, obviously, the λ-bounded duality AP of the pair
(X, Y ) implies its λ-bounded AP. The implication (c) ⇒ (a) is proved in
[FJP, Proposition 1.6].

Finally, let us mention that, as a by-product, we have the following slight
complement to [FJP, Corollary 1.4 (i)], asserting that if the dual space X∗

has the λ-bounded AP, then all �nite-codimensional closed subspaces Y of X
and their dual spaces Y ∗ have the λ-bounded AP.

Proposition 3.26. Let X be a Banach space and let Y be a �nite-codimen-

sional closed subspace of X. Let 1 ≤ λ < ∞. If X∗ has the λ-bounded
approximation property, then all spaces Y ⊥, X∗/Y ⊥, Y ∗, (X/Y )∗, X, Y and

X/Y have the λ-bounded approximation property.

Proof. By [FJP, Corollary 1.2], the λ-bounded AP of a pair (Z,W ) implies
that Z, W and Z/W all have the same property. According to Theorem
3.25, both pairs (X∗, Y ⊥) and (X, Y ) have the λ-bounded AP. Hence, Y ⊥,
X∗/Y ⊥, X, Y , and X/Y all have the λ-bounded AP. Since the dual spaces
Y ∗ and (X/Y )∗ are naturally isometric to X∗/Y ⊥ and Y ⊥, respectively, Y ∗

and (X/Y )∗ also have the λ-bounded AP.
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In general, the bounded AP cannot be lifted from a closed subspace Y of X
to the pair (X, Y ). Indeed, let X be a Banach space without the AP and
Y a �nite-dimensional subspace of X. Then Y has the metric AP (because
IY ∈ F(Y )), but (X,X) does not have the AP. Hence, the pair (X, Y ) also
cannot have the AP, in particular, it fails the metric AP.

In [FJP, Proposition 1.8], it was shown that in the special case when the
closed subspace Y of X has �nite codimension, then the λ-bounded AP of Y
implies that (X, Y ) has the 3λ-bounded AP.

Also, in general, the bounded AP cannot be lifted from the quotient space
X/Y to (X, Y ). Indeed, let X be a Banach space without the AP. Let
f ∈ X∗ be any non-zero functional. Put Y = ker f . Notice that then
dimX/Y = 1. Indeed, since (X/Y )∗ is isometrically isomorphic to Y ⊥ (see,
e.g., [M, Theorem 1.10.17]) and ran f ∗ = (ker f)⊥, we have dim(X/Y )∗ =
dim(ker f)⊥ = 1. Hence, dimX/Y = 1. It follows that X/Y has the metric
AP. By the discussion above, the pair (X, Y ) fails the metric AP.

The following question is still open (see [FJP, Problem 6.1]). If X, Y , and
X/Y all have the bounded AP, then does the pair (X, Y ) have the bounded

AP?





Chapter 4

Principle of local re�exivity

respecting nests of subspaces and

the nest approximation properties

In this chapter, we establish versions of the principle of local re�exiv-
ity which respect nests of subspaces. We prove a rather far-reaching
extension of the Ringrose theorem on nests. We also extend a du-
ality result on approximation properties of pairs from [LisO] and its
bounded version from Chapter 3 to the context of nest approximation
properties. Criteria of the nest approximation properties from [FJ3]
are applied to obtain criteria of the duality nest approximation prop-
erties in the spirit of Grothendieck. This chapter is based on [OV2].

4.1 The principle of local re�exivity

The principle of local re�exivity (PLR) states that the bidualX∗∗ of a Banach
space X and the space X itself are �locally almost the same�. Theorem 4.1
below seems to be the most well-known and widely used version of the PLR.

Theorem 4.1 (PLR in [JRZ]). Let X be a Banach space. For all �nite-

dimensional subspaces E of X∗∗ and F of X∗, and for every ε > 0 there

exists a one-to-one operator T ∈ F(E,X) such that ‖T‖ , ‖T−1‖ < 1 + ε,

53
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Tx = x for all x ∈ X ∩ E, and x∗(Tx∗∗) = x∗∗(x∗) for all x∗∗ ∈ E and

x∗ ∈ F .

The PLR was discovered by Lindenstrauss and Rosenthal [LR] in 1969. It
was improved by Johnson, Rosenthal, and Zippin [JRZ] in 1971. Since then,
many new proofs, re�nements, and generalizations of the PLR have been
given in the literature (see, e.g., [Beh2] and [OP] for results and references).
For instance, there is a version of the PLR for Banach lattices due to Conroy
and Moore [CoM], and Bernau [Ber], revisited in [LisO]. Recently, with the
aim to study the APs of pairs, a PLR respecting subspaces was established
by Oja in [O5].

We shall propose some versions of the PLR that respect given nests of sub-
spaces so that these could be applied to the nest APs; see Theorems 4.10,
4.11, and 4.13 in Section 4.4. These theorems will be based on Lemma
4.7, our main PLR lemma, which we shall prove in Section 4.3. The main
PLR lemma, in its turn, will essentially use (through Lemma 4.8) a rather
far-reaching extension of the Ringrose theorem (see Theorem 4.3), which is
established in the following section.

4.2 Extension of the Ringrose theorem on nests

Let X be a Banach space. Let N be a nest of subspaces of X containing {0}.
For Y ∈ N , we de�ne the subspace Y− of X as follows. If Y 6= {0}, then

Y− =
⋃
{H ∈ N : H ⊂ Y, H 6= Y },

and if Y = {0}, then Y− = {0}.

We start by recalling the Ringrose theorem on nests from the 1960s (see [Er,
Lemma 2 (this is Lemma 3.3 in [Ri]) and Theorem 1]).

Theorem 4.2 (Ringrose). Let N be a complete nest of closed subspaces of

a Hilbert space H. Denote R = {R ∈ H ⊗H : R(G) ⊂ G ∀G ∈ N}.

(a) Let R = x⊗ y be a rank one operator. Then R ∈ R if and only if there

is a subspace G in N such that x ∈ (G−)⊥, the orthogonal complement

of G−, and y ∈ G.

(b) Let R ∈ H ⊗H be an operator of rank n > 0. If R ∈ R, then R can be

written as the sum of n operators of rank one, each belonging to R.
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Theorem 4.2 has been extended from the Hilbert space case to more general
settings of Banach spaces (see [FJ3] for related references) and even of topo-
logical vector spaces (see [Sp, Lemma 1 and Theorem 2]). To prove our main
PLR lemma (Lemma 4.7), we need the following far-reaching extension of
the Ringrose theorem.

Theorem 4.3. Let X and Y be Banach spaces. Let G be a nest of subspaces

of X∗ containing {0} and let NG = {VG : G ∈ G} be a nest of closed subspaces
of Y containing Y . Assume that NG is closed under arbitrary intersections

and NG is increasing on G. Denote R = {R ∈ X⊗Y : R(G) ⊂ VG ∀G ∈ G}.

(a) Let R = x⊗ y be a rank one operator. Then R ∈ R if and only if there

is a subspace G in G such that x ∈ (G−)⊥ and y ∈ VG.

(b) Let R ∈ X ⊗ Y be an operator of rank n > 0. If R ∈ R, then R can be

written as the sum of n operators of rank one, each belonging to R.

Proof. The proof will be modelled after the proof of [FJ3, Lemma 1].

(a) For the �only if� part, assume that x⊗ y ∈ R. Denote

VG :=
⋂
H∈G

{VH : y ∈ VH} ∈ NG.

(Such a G ∈ G exists because NG is closed under intersections.) Clearly,
y ∈ VG.

If G = {0}, then G− = {0} and (G−)⊥ = X. Hence, x ∈ (G−)⊥. Let
G 6= {0}. If x 6∈ (G−)⊥, then there is H ∈ G such that H ⊂ G, H 6= G,
together with h ∈ H such that h(x) 6= 0. Therefore, as NG is increasing, we
have VH ⊂ VG and VG 6= VH . Since x ⊗ y ∈ R, (x ⊗ y)h = h(x)y ∈ VH ,
implying that y ∈ VH , because h(x) 6= 0. Hence, VG ⊂ VH , which is a
contradiction with VH ⊂ VG and VG 6= VH . Therefore, x ∈ (G−)⊥.

For the �if� part, assume that there exists G ∈ G such that x ∈ (G−)⊥ and
y ∈ VG. Let us show that then x ⊗ y ∈ R, i.e., (x ⊗ y)(H) ⊂ VH for every
H ∈ G. Let H ∈ G. If G ⊂ H, then y ∈ VH . Hence, (x⊗ y)h = h(x)y ∈ VH
for every h ∈ H. If H ⊂ G, H 6= G, then H ⊂ G− and, as x ∈ (G−)⊥, we
have h(x) = 0 for every h ∈ H.

(b) We shall proceed by induction on the rank of operators. The rank one
case is clear. Suppose that the claim is true for operators of rank n− 1 ≥ 1.

Let R ∈ R and let dim ranR = n. Denote

FH := SranR ∩ VH , H ∈ G,
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and
VG :=

⋂
H∈G

{VH : FH 6= ∅}.

(Such a G ∈ G exists, because NG is closed under intersections.) Let us show
that FG 6= ∅. Observe that

FG =
⋂
{FH : FH 6= ∅, H ∈ G}.

Observe also that the family {FH : FH 6= ∅, H ∈ G} of closed subsets of
SranR has the �nite intersection property, because, by Proposition 2.3, its
�nite subfamilies are nested. Therefore, since SranR is compact, FG 6= ∅.

Let y1 ∈ FG. Extend {y1} to a basis {y1, . . . , yn} for ranR. Then there exist
x1, . . . , xn ∈ X such that

R =
n∑
k=1

xk ⊗ yk.

Let us show that x1 ∈ (G−)⊥. If G = {0}, then (G−)⊥ = X and x1 ∈ (G−)⊥.
Let G 6= {0}. If x1 6∈ (G−)⊥, then there is H ∈ G such that H ⊂ G, H 6= G,
together with h ∈ H such that h(x1) 6= 0. We have VH ⊂ VG, VH 6= VG,
because NG is increasing. On the other hand, as R ∈ R, Rh ∈ VH . And
since h(x1) 6= 0, by the linear independence of y1, . . . , yn, we have

Rh =
n∑
k=1

h(xk)yk 6= 0.

Hence, FH 6= ∅ implying that VG ⊂ VH , which is a contradiction with VH ⊂
VG and VG 6= VH . Therefore, x1 ∈ (G−)⊥.

Since x1 ∈ (G−)⊥ and y1 ∈ VG, by (a), x1 ⊗ y1 ∈ R. Therefore, we see that
the rank n− 1 operator

n∑
k=2

xk ⊗ yk = R− x1 ⊗ y1 ∈ R.

By the induction hypothesis, xk⊗yk ∈ R also for all k = 2, . . . , n, as wished.

Corollary 4.4. Let X and Y be Banach spaces. Let G be a nest of subspaces

of X containing {0} and let NG = {VG : G ∈ G} be a nest of closed subspaces

of Y as in Theorem 4.3. Denote R = {R ∈ F(X, Y ) : R(G) ⊂ VG ∀G ∈ G}.

(a) Let R = x∗ ⊗ y be a rank one operator. Then R ∈ R if and only if

there is a subspace G in G such that x∗ ∈ (G−)⊥ and y ∈ VG.
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(b) Let R ∈ F(X, Y ) be an operator of rank n > 0. If R ∈ R, then R can

be written as the sum of n operators of rank one, each belonging to R.

Proof. Recall that, algebraically F(X, Y ) = X∗ ⊗ Y . Hence, we have R =
{R ∈ X∗⊗Y : R(G) ⊂ VG ∀G ∈ G}. Notice that if we consider G as a nest of
subspaces of X∗∗ = (X∗)∗, then the assumptions of Theorem 4.3 are satis�ed.
We also have (G−)⊥ = {x∗ ∈ X∗ : x∗(x) = 0 ∀x ∈ G−} = (G−)⊥ ⊂ X∗ for
any G in G. The assertions (a) and (b) immediately follow from Theorem
4.3.

Corollary 4.5 below is a well-known Banach space version of the Ringrose
Theorem 4.2. It is immediate from Corollary 4.4.

Corollary 4.5 (cf. [FJ3, Lemma 1]). Let X be a Banach space. Let N be

a nest of closed subspaces of X containing {0} and X. Assume that N is

closed under arbitrary intersections. Denote R = {R ∈ F(X) : R(Y ) ⊂
Y ∀Y ∈ N}.

(a) Let R = x∗ ⊗ x be a rank one operator. Then R ∈ R if and only if

there is a subspace Y in N such that x∗ ∈ (Y−)⊥ and x ∈ Y .

(b) Let R ∈ F(X) be an operator of rank n > 0. If R ∈ R, then R can be

written as the sum of n operators of rank one, each belonging to R.

If we specify Corollary 4.5 for the nests containing only one non-trivial ele-
ment, then we have the following result.

Corollary 4.6 (see [FJ2, Lemma 2.1]). Let X be a Banach space and Y a

closed subspace of X. Denote R = {R ∈ F(X) : R(Y ) ⊂ Y }.

(a) Let R = x∗ ⊗ x be a rank one operator. Then R ∈ R if and only if

either x∗ ∈ Y ⊥ or x ∈ Y .

(b) Let R ∈ F(X) be an operator of rank n > 0. If R ∈ R, then R can be

written as the sum of n operators of rank one, each belonging to R.

Proof. Denote N := {{0}, Y,X}. Then the nest N clearly satis�es the as-
sumptions of Corollary 4.5 and R = {R ∈ F(X) : R(Z) ⊂ Z ∀Z ∈ N}.

(a) For the �only if� part, let R = x∗ ⊗ x be a rank one operator such that
R ∈ R. By Corollary 4.5,

(1) x∗ ∈ ({0}−)⊥ = {0}⊥ = X∗ and x ∈ {0},
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or

(2) x∗ ∈ (Y−)⊥ = {0}⊥ = X∗ and x ∈ Y ,

or

(3) x∗ ∈ (X−)⊥ = Y ⊥ and x ∈ X.

Condition (1) cannot hold because R has rank one. Therefore, we have either
x∗ ∈ Y ⊥ or x ∈ Y , as wished.

For the �if� part, let R = x∗ ⊗ x be a rank one operator such that either
x∗ ∈ Y ⊥ or x ∈ Y . First, let us consider the case when x∗ ∈ Y ⊥ and x ∈ X
is arbitrary. Then x∗ ∈ (X−)⊥ (cf. condition (3)). Since X ∈ N , it follows
from Corollary 4.5 (a) that R ∈ R. Now, let us consider the case when x ∈ Y
and x∗ ∈ X∗ is arbitrary. Then we have x∗ ∈ (Y−)⊥ (cf. condition (2)) and
thus, by Corollary 4.5 (a), R ∈ R. The assertion (b) immediately follows
from Corollary 4.5 (b).

4.3 The Main PLR Lemma

LetN be a nest of closed subspaces of a Banach spaceX. Recall the following
condition (from Proposition 2.7):( ⋂

Y ∈N ′
Y
)⊥⊥

=
⋂
Y ∈N ′

Y ⊥⊥ for every non-empty subfamily N ′ of N . (∗)

Lemma 4.7 (Main PLR Lemma). Let X and Y be Banach spaces. Let G be

a nest of subspaces of X∗ containing {0} and let NG = {VG : G ∈ G} be a

nest of closed subspaces of Y containing Y . Assume that NG is closed under

arbitrary intersections, NG is increasing on G, and NG satis�es condition (∗).
Let T ∈ X ⊗ Y ∗∗ be such that T (G) ⊂ V ⊥⊥G for all G ∈ G. Then there exists

a net (Tν) ⊂ X ⊗ Y satisfying Tν(G) ⊂ VG for all ν and for all G ∈ G such

that

1◦ ‖Tν‖ →ν ‖T‖,

2◦ T ∗ν y
∗ →ν T

∗y∗ for all y∗ ∈ Y ∗,

3◦ Tνx
∗ →ν Tx

∗ for all those x∗ ∈ X∗ for which Tx∗ ∈ Y .
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The proof of Lemma 4.7 will use Lemma 4.8 below (this is an extension of
Lemma 3.19 for nests), which in its turn uses Theorem 4.3, the extension of
the Ringrose theorem.

Lemma 4.8 will use the canonical identi�cations (X ⊗ Y )∗ = I(X, Y ∗) and
(X ⊗ Y ∗∗)∗ = I(X, Y ∗∗∗) due to Grothendieck (see Theorem 2.10).

Lemma 4.8. Let X and Y be Banach spaces. Let G and NG = {VG : G ∈ G}
be nests of subspaces of X∗ and of closed subspaces of Y , respectively, as in

Lemma 4.7. Denote

R = {R ∈ X ⊗ Y : R(G) ⊂ VG ∀G ∈ G}

and

S = {S ∈ X ⊗ Y ∗∗ : S(G) ⊂ V ⊥⊥G ∀G ∈ G},
and consider R⊥ and S⊥ as subspaces of I(X, Y ∗) and I(X, Y ∗∗∗), respec-
tively. If T ∈ I(X, Y ∗) is such that T ∈ R⊥, then jY ∗T ∈ S⊥.

Proof. We start by showing that Theorem 4.3 is applicable to the pair of
nests G and N⊥⊥G = {V ⊥⊥G : G ∈ G}. Since NG is a nest that contains Y and
is increasing on G, by Lemma 2.6, N⊥⊥G is a nest of closed subspaces of Y ∗∗

that contains Y ∗∗ and is increasing on G. By Proposition 2.7, N⊥⊥G is also
closed under arbitrary intersections.

Let T ∈ R⊥, i.e., 〈R, T 〉 = 0 for every R ∈ R. We have to show that
〈S, jY ∗T 〉 = 0 for every S ∈ S. By Theorem 4.3 (b), it is enough to show
that 〈x⊗ y∗∗, jY ∗T 〉 = 0 for every x⊗ y∗∗ ∈ S.

Let x⊗y∗∗ ∈ S be arbitrary. Then, by Theorem 4.3 (a), there is a subspace G
in G such that x ∈ (G−)⊥ and y∗∗ ∈ V ⊥⊥G . Consider the canonical isometry
I : V ⊥⊥G → V ∗∗G de�ned by (Iv⊥⊥)(v∗) = v⊥⊥(y∗), where v⊥⊥ ∈ V ⊥⊥G and
y∗ ∈ Y ∗ is an arbitrary extension of v∗ ∈ V ∗G. Then Iy∗∗ ∈ V ∗∗G and we have
y∗∗(Tx) = (Iy∗∗)(Tx|VG).

Choose v ∈ VG such that (Iy∗∗)(Tx|VG) = (Tx|VG)(v). (Such an element v
exists. Indeed, let Z be a normed space, z∗ ∈ Z, z∗∗ ∈ Z∗∗, and denote
a := z∗∗(z∗). If a = 0, then a = z∗(v) for v = 0. If a 6= 0, then there is w ∈ Z
such that b := z∗(w) 6= 0. Take v = ab−1w; then a = z∗(v).)

Put R = x⊗ v. Then, by Theorem 4.3 (a), R ∈ R and therefore 〈R, T 〉 = 0.
On the other hand,

〈R, T 〉 = (Tx)(v) = (Iy∗∗)(Tx|VG) = y∗∗(Tx) = 〈x⊗ y∗∗, jY ∗T 〉.

Hence, 〈x⊗ y∗∗, jY ∗T 〉 = 0, as desired.
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Let Y be a closed subspace of a Banach space X. In the special case when
G = NG := {{0}, Y,X} in Lemma 4.8, it reduces to the following.

Corollary 4.9. Let X be a Banach space and let Y be a closed subspace of

X. Denote

R = {R ∈ F(X) : R(Y ) ⊂ Y }

and

S = {S ∈ F(X,X∗∗) : S(Y ) ⊂ Y ⊥⊥},

and consider R⊥ and S⊥ as subspaces of I(X∗, X∗) and I(X∗, X∗∗∗), respec-
tively. If T ∈ I(X∗, X∗) is such that T ∈ R⊥, then jX∗T ∈ S⊥.

Proof. Notice that since algebraically F(X) = X∗ ⊗ X and F(X,X∗∗) =
X∗ ⊗ X∗∗, we have R = {R ∈ X∗ ⊗ X : R(G) ⊂ VG ∀G ∈ G} and S =
{S ∈ X∗ ⊗ X∗∗ : S(G) ⊂ V ⊥⊥G ∀G ∈ G}, where G = NG(= {VG : G ∈
G}) := {{0}, Y,X} (because {0}⊥⊥ = {0} and X⊥⊥ = X∗∗). Clearly, N⊥G
is a complete nest (because it is �nite and contains {0} (= X⊥) and X∗

(= {0}⊥)). Hence, by Corollary 2.9, NG satis�es (∗). If we consider G as a
nest of subspaces of X∗∗, then the assumptions of Lemma 4.8 are satis�ed.
The assertion is immediate from Lemma 4.8.

Proof of Lemma 4.7. Thanks to Lemma 4.8, the proof is close to part (a) of
the proof of [O5, Lemma 2.1]. We shall include a proof for completeness.

Let J : I(X, Y ∗) → I(X, Y ∗∗∗) be the natural embedding de�ned by JA =
jY ∗A for A ∈ I(X, Y ∗) (see Section 2.3). Let R and S be as in Lemma 4.8.
Then, by Lemma 4.8, J(R⊥) ⊂ S⊥. This implies that the operator

J̄ : I(X, Y ∗)/R⊥ → I(X, Y ∗∗∗)/S⊥,

given by
J̄(A+R⊥) = JA+ S⊥, A ∈ I(X, Y ∗),

is well de�ned. Moreover, (similarly to the proof of Corollary 3.20) it is easy
to verify that

∥∥J̄∥∥ ≤ 1, and J̄q1 = q2J , where q1 : I(X, Y ∗)→ I(X, Y ∗)/R⊥
and q2 : I(X, Y ∗∗∗)→ I(X, Y ∗∗∗)/S⊥ denote the quotient mappings.

Since R and S are linear subspaces of X ⊗ Y and X ⊗ Y ∗∗, respectively, the
duals R∗ and S∗ are canonically isometrically isomorphic to (X ⊗ Y )∗/R⊥
and (X⊗Y ∗∗)∗/S⊥, respectively. Hence, under the canonical identi�cations,
R∗ and S∗ are isometrically isomorphic to I(X, Y ∗)/R⊥ and I(X, Y ∗∗∗)/S⊥,
respectively. Let r : R∗ → I(X, Y ∗)/R⊥ and s : I(X, Y ∗∗∗)/S⊥ → S∗ denote
the corresponding isometries.
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De�ne Φ : R∗ → S∗ by Φ = sJ̄r. Then the diagrams

R∗

r

��

Φ // S∗

I(X, Y ∗)/R⊥ J̄ // I(X, Y ∗∗∗)/S⊥

s

OO

I(X, Y ∗)

q1

OO

J // I(X, Y ∗∗∗)

q2

OO

commute and, clearly, ‖Φ‖ ≤ 1.

Let T be the given operator. Then T ∈ S ⊂ S∗∗ and Φ∗(T ) ∈ ‖T‖BR∗∗ . By
the Goldstine theorem, there exists a net (Tν) ⊂ ‖T‖BR converging weak*
to Φ∗(T ). Therefore, (Tν) ⊂ X ⊗ Y is a net such that, for every ν, we have
‖Tν‖ ≤ ‖T‖ and Tν(G) ⊂ VG for all G ∈ G. Moreover, if for every x∗ ∈ X∗
and y∗ ∈ Y ∗, we consider x∗ ⊗ y∗ ∈ R∗ and x∗ ⊗ jY ∗y∗ ∈ S∗, then

x∗(T ∗ν y
∗) = 〈Tν , x∗ ⊗ y∗〉 →ν 〈x∗ ⊗ y∗,Φ∗(T )〉 = 〈T,Φ(x∗ ⊗ y∗)〉

= 〈T, x∗ ⊗ jY ∗y∗〉 = x∗(T ∗y∗).

This means that T ∗ν → T ∗|Y ∗ in the WOT on L(Y ∗, X).

For 1◦ − 3◦, we shall use a convex combination argument as in the proof of
[OP, Lemma 1.1]. After passing to convex combinations, we may assume that
T ∗ν → T ∗|Y ∗ in the SOT on L(Y ∗, X) (see Proposition 2.15), i.e., T ∗ν y

∗ →ν

T ∗y∗ for all y∗ ∈ Y ∗. Hence, Tν converges to T in the WOT on L(T−1(Y ), Y ).
After passing to new convex combinations, we may assume that Tνx∗ →ν Tx

∗

for all x∗ ∈ T−1(Y ). Therefore, we have 2◦ and 3◦. Since lim supν ‖Tν‖ ≤ ‖T‖
and, by 2◦,

‖T ∗y∗‖ = lim
ν
‖T ∗ν y∗‖ ≤ lim inf

ν
‖T ∗ν ‖ ‖y∗‖ ∀y∗ ∈ Y ∗,

we have ‖T‖ ≤ lim infν ‖Tν‖, implying 1◦.

4.4 Versions of the principle of local re�exivity

respecting nests of subspaces

It was proved in [O5] by Oja (see [O5, Theorems 1.3 and 3.1]) that �nite-rank
operators between dual spaces are �locally conjugate� and respect a given pair
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of subspaces. Theorems 4.10 and 4.11 below are versions of this result for a
pair of nests of subspaces.

Theorem 4.10. Let X and Y be Banach spaces. Let U be a nest of closed

subspaces of X containing {0} and let NU = {VU : U ∈ U} be a nest

of closed subspaces of Y containing Y . Assume that NU is closed under

arbitrary intersections, NU is increasing on U , and NU satis�es condition

(∗). Let S ∈ F(Y ∗, X∗) satisfy S(V ⊥U ) ⊂ U⊥ for all U ∈ U . Then there

exists a net (Tν) ⊂ F(X, Y ) satisfying Tν(U) ⊂ VU for all ν and for all

U ∈ U such that

1◦ ‖Tν‖ →ν ‖S‖,

2◦ T ∗ν y
∗ →ν Sy

∗ for all y∗ ∈ Y ∗,

3◦ T ∗∗ν x
∗∗ →ν S

∗x∗∗ for all those x∗∗ ∈ X∗∗ for which S∗x∗∗ ∈ Y .

Proof. Since F(Y ∗, X∗) is algebraically the same as Y ∗∗ ⊗X∗, we have S ∈
Y ∗∗ ⊗ X∗ and thus S∗ ∈ X∗ ⊗ Y ∗∗. We also have S∗(U⊥⊥) ⊂ V ⊥⊥U for all
U ∈ U .

We shall apply Lemma 4.7 to S∗. For that take G = U⊥⊥ := {U⊥⊥ : U ∈ U}.
Then G is a nest of closed subspaces of X∗∗ and {0} = {0}⊥⊥ is in G. Take
NG = NU . By Lemma 2.6, there is a bijective correspondence between U and
U⊥⊥, where U corresponds to U⊥⊥. Therefore, we may assume that NU is
indexed by U⊥⊥, i.e.,

NG = {VU : U⊥⊥ ∈ G}.

Then NG is a nest of closed subspaces of Y containing Y , NG is closed under
arbitrary intersections, and NG satis�es condition (∗). Also, NG is increasing
on G.

Lemma 4.7 produces a net (Sν) ⊂ X∗ ⊗ Y which, considered as a net in
F(X∗∗, Y ), satis�es the following: Sν(U⊥⊥) ⊂ VU for all ν and for all U ∈ U ,
‖Sν‖ →ν ‖S∗‖ = ‖S‖, S∗νy∗ →ν S

∗∗y∗ = Sy∗ for all y∗ ∈ Y ∗, and Sνx∗∗ →ν

S∗x∗∗ for all those x∗∗ ∈ X∗∗ for which S∗x∗∗ ∈ Y . On the other hand,
X∗ ⊗ Y = F(X, Y ), so that if we take Tν = Sν |X ∈ F(X, Y ), then T ∗∗ν = Sν
for all ν. Therefore, 1◦ − 3◦ hold and Tν(U) ⊂ VU for all ν and for all
U ∈ U .

Theorem 4.11. Let X and Y be Banach spaces. Let U and NU = {VU :
U ∈ U} be nests of closed subspaces of X and Y , respectively, as in Theorem

4.10. Let S ∈ F(Y ∗, X∗) satisfy S(V ⊥U ) ⊂ U⊥ for all U ∈ U . If K and L are
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compact subsets of X∗∗ and Y ∗, respectively, and ε > 0, then there exists an

operator T ∈ F(X, Y ) satisfying T (U) ⊂ VU for all U ∈ U such that

1◦ |‖T‖ − ‖S‖| < ε,

2◦ ‖T ∗y∗ − Sy∗‖ < ε for all y∗ ∈ L,

3◦ ‖T ∗∗x∗∗ − S∗x∗∗‖ < ε for all those x∗∗ ∈ K for which S∗x∗∗ ∈ Y .

Proof. Let (Tν) be the net from Theorem 4.10. Since ‖Tν‖ →ν ‖S‖, we
can choose ν0 such that |‖Tν‖ − ‖S‖| < ε whenever ν ≥ ν0. Hence, the
net (Tν)ν≥ν0 is bounded. Since the pointwise convergence of bounded nets of
operators is uniform on compact sets (see Proposition 2.13), we have (T ∗ν )ν≥ν0
and (T ∗∗ν )ν≥ν0 converging uniformly on L and K, respectively. Therefore, we
can �nd ν ≥ ν0 such that 1◦ − 3◦ hold for T := Tν .

Remark 4.12. If the nests in Theorems 4.10 and 4.11 contain only one non-
trivial element (i.e., U = {{0}, U,X} and NU = {{0}, V, Y }, where U and
V are closed subspaces of X and Y , respectively), then these special cases
of Theorems 4.10 and 4.11 are contained in [O5, Theorem 3.1] and in [O5,
Theorem 1.3], respectively.

In [O5, Theorem 1.2], it was proved that �nite-rank operators between bidual
spaces are �locally biconjugate� and respect a given pair of subspaces. A
version of this result for a given pair of nests of subspaces is as follows. Its
special case, when the nests contain only one non-trivial element, is contained
in [O5, Theorem 1.2].

Theorem 4.13. Let X and Y be Banach spaces. Let U be a nest of closed

subspaces of X containing {0} and let NU = {VU : U ∈ U} be a nest

of closed subspaces of Y containing Y . Assume that NU is increasing on U ,
N⊥⊥U is closed under arbitrary intersections, and U⊥⊥ is closed under closures

of arbitrary unions. Let S ∈ F(X∗∗, Y ∗∗) be such that S(U⊥⊥) ⊂ V ⊥⊥U for

all U ∈ U . If K and L are compact subsets of X∗∗ and Y ∗, respectively, and
ε > 0, then there exists an operator T ∈ F(X, Y ) satisfying T (U) ⊂ VU for

all U ∈ U such that

1◦ |‖T‖ − ‖S‖| < ε,

2◦ |x∗∗(T ∗y∗)− (Sx∗∗)(y∗)| < ε for all x∗∗ ∈ K and y∗ ∈ L.

Proof. To prove the theorem, we shall apply Theorem 4.11 twice.
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First of all, notice that there is clearly no loss of generality to assume that
K ⊂ BX∗∗ and L ⊂ BY ∗ . Indeed, assume that Theorem 4.13 holds for all
compact subsets K0 ⊂ BX∗∗ and L0 ⊂ BY ∗ , and for all ε0 > 0. Let us show
that then the assertion of Theorem 4.13 holds for any compact subsets K ⊂
X∗∗ and L ⊂ Y ∗, and for any ε ∈ (0, 1). Put ε0 = ε/(1 + maxx∗∗∈K ‖x∗∗‖ +
maxy∗∈L ‖y∗‖). Then ε0 < 1, ε0 ‖x‖ < 1 for all x ∈ K, and ε0 ‖y∗‖ < 1 for
all y∗ ∈ L. There exists an operator T ∈ F(X, Y ) satisfying T (U) ⊂ VU for
all U ∈ U such that |‖T‖ − ‖S‖| < ε3

0 and |x∗∗(T ∗y∗)− (Sx∗∗)(y∗)| < ε3
0 for

all x∗∗ ∈ ε0K ⊂ BK and y∗ ∈ ε0L ⊂ BL. Clearly, 1◦ holds. Also, for any
x∗∗ ∈ K and y∗ ∈ L, we have

ε2
0 |x∗∗(T ∗y∗)− (Sx∗∗)(y∗)| = |ε0x

∗∗(T ∗(ε0y
∗))− (S(ε0x

∗∗))(ε0y
∗)| < ε3

0,

implying that
|x∗∗(T ∗y∗)− (Sx∗∗)(y∗)| < ε0 < ε.

Hence, 2◦ holds.

We start by applying Theorem 4.11 to S ∈ L((X∗)∗, (Y ∗)∗). Notice that
N⊥U and U⊥ are nests of closed subspaces of Y ∗ and X∗, respectively. Let
us show that we can take N⊥U and U⊥ in the roles of U and NU of Theorem
4.11, respectively.

We have {0} = Y ⊥ ∈ N⊥U and X∗ = {0}⊥ ∈ U⊥. Since NU is increasing
on U , U is increasing on NU . But this, via Lemma 2.6, means that U⊥ is
increasing on N⊥U . Since U⊥⊥ is closed under closures of arbitrary unions,
by Proposition 2.7, U⊥ is closed under arbitrary intersections and satis�es
condition (∗).

An application of Theorem 4.11 to S yields R ∈ F(Y ∗, X∗) such that
R(V ⊥U ) ⊂ U⊥ for all U ∈ U , |‖R‖ − ‖S‖| < ε/2 and ‖R∗x∗∗ − Sx∗∗‖ < ε/2
for all x∗∗ ∈ K.

Notice that U and NU together with R ∈ F(Y ∗, X∗) satisfy the assumptions
of Theorem 4.11. Indeed, since N⊥⊥U is closed under arbitrary intersections,
by Proposition 2.7, NU is closed under arbitrary intersections and satis�es
condition (∗). Now an application of Theorem 4.11 to R yields T ∈ F(X, Y )
such that T (U) ⊂ VU for all U ∈ U , |‖T‖ − ‖R‖| < ε/2 and ‖T ∗y∗ −Ry∗‖ <
ε/2 for all y∗ ∈ L.

Hence, 1◦ and 2◦ hold.

Remark 4.14. The assertions of Theorems 4.10 and 4.11 hold whenever NU =
{VU : U ∈ U} is a nest of closed subspaces of Y , which is increasing on U
and such that the nest N⊥U is complete. If, moreover, U⊥⊥ is complete, then
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also the assertion of Theorem 4.13 holds. These conditions are satis�ed in
the special case when U and NU are �nite nests, having the same number of
elements and both containing {0} and the whole space (see also Corollary
2.9).

4.5 Duality of nest approximation properties

The following result extends Johnson's Theorem 3.15 (see Section 3.5) from
APs to nest APs. Notice that in the special case when N = {Y }, where Y
is a closed subspace of a Banach space X, Theorem 4.15 below reduces to
Theorem 3.21.

Theorem 4.15. Let X be a Banach space and let N be a nest of closed

subspaces of X satisfying condition (∗). Let 1 ≤ λ < ∞. Then (X,N ) has

the λ-bounded duality approximation property if and only if (X∗,N⊥) has the
λ-bounded approximation property.

Proof. The �only if� part is clear, because if S(Y ) ⊂ Y , then S∗(Y ⊥) ⊂ Y ⊥.

For the �if� part, consider the set of all couples ν = (L, ε), where L is a �nite
subset of X∗ and ε > 0, directed in the natural way. Since the pair (X∗,N⊥)
has the λ-bounded AP, there exists a net (Tν) ⊂ F(X∗) with ‖Tν‖ ≤ λ for
all ν such that Tν(Y ⊥) ⊂ Y ⊥ for all ν and for all Y ∈ N , and

‖Tνx∗ − x∗‖ ≤ ε/2 ∀x∗ ∈ L.

By enlarging N , if necessary, we clearly may assume that N contains {0}
and X. We also may assume that N is closed under intersections. Indeed,
let N ′ be a non-empty subfamily of N . Then, using condition (∗) twice, we
have

T ∗ν

(( ⋂
Y ∈N ′

Y

)⊥⊥)
= T ∗ν

( ⋂
Y ∈N ′

Y ⊥⊥
)
⊂
⋂
Y ∈N ′

T ∗ν (Y ⊥⊥) ⊂
⋂
Y ∈N ′

Y ⊥⊥

=

( ⋂
Y ∈N ′

Y

)⊥⊥
.

Hence, by Lemma 2.5,

Tν

(( ⋂
Y ∈N ′

Y

)⊥)
⊂
( ⋂
Y ∈N ′

Y

)⊥
.
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Now, for every operator Tν ∈ F(X∗), by Theorem 4.11, there is an operator
Sν ∈ F(X) such that Sν(Y ) ⊂ Y for all Y ∈ N , ‖Sν‖ ≤ λ+ ε, implying that

lim sup
ν
‖Sν‖ ≤ λ,

and
‖S∗νx∗ − Tνx∗‖ < ε/2 ∀x∗ ∈ L.

Hence,

‖S∗νx∗ − x∗‖ ≤ ‖S∗νx∗ − Tνx∗‖+ ‖Tνx∗ − x∗‖ < ε ∀x∗ ∈ L,

implying that S∗νx
∗ →ν x

∗ for all x∗ ∈ X∗. Indeed, let x∗ ∈ X∗. For a given
ε0 > 0 take ν0 = ({x∗}, ε0). If ν = (L, ε) ≥ ν0, then x∗ ∈ L and ε ≤ ε0, and
we have

‖S∗νx∗ − x∗‖ < ε ≤ ε0,

as needed. Therefore,

x∗∗(S∗νx
∗)→ν x

∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

By Proposition 3.11, X has the λ-bounded duality {S ∈ F(X) : S(Y ) ⊂
Y ∀Y ∈ N}-AP, i.e., the pair (X,N ) has the λ-bounded duality AP.

Next we shall also extend [LisO, Proposition 5.11] from APs of pairs to nest
APs (see Theorem 4.16). In the special case when N = {Y }, where Y
is a closed subspace of X, Theorem 4.16 below reduces to [LisO, Propo-
sition 5.11], providing an alternative proof to it. The original proof of
[LisO, Proposition 5.11] relied on the classical PLR and was quite techni-
cal. Let us mention that we cannot �gure out how the classical PLR could
be used to prove Theorem 4.16. Our proof uses the canonical identi�cation
(L(X), τc)

∗ = X∗⊗̂πX, due to Grothendieck [G], where τc denotes the (lo-
cally convex) topology on L(X) of uniform convergence on compact subsets
of X (see Section 2.4).

Theorem 4.16. Let X be a Banach space and let N be a nest of closed

subspaces of X satisfying condition (∗). Then (X,N ) has the duality approx-

imation property if and only if (X∗,N⊥) has the approximation property.

Proof. Similarly to Theorem 4.15, the �only if� part is clear.

For the �if� part, consider the set of all couples ν = (L, ε), where L is a
compact subset of X∗ and ε > 0, directed in the natural way. As in the
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proof of Theorem 4.15, using Theorem 4.11, we can �nd a net (Sν) ⊂ F(X)
such that Sν(Y ) ⊂ Y for all ν and for all Y ∈ N , and S∗ν →ν IX∗ in the
topology τc. Indeed, since the pair (X∗,N⊥) has the AP, there exists a net
(Tν) ⊂ F(X∗) such that Tν(Y ⊥) ⊂ Y ⊥ for all ν and for all Y ∈ N , and

‖Tνx∗ − x∗‖ ≤ ε/2 ∀x∗ ∈ L.

Enlarging N , if necessary, we may assume (as in the proof of Theorem 4.15)
that N and Tν satisfy the assumptions of Theorem 4.11. Hence, for Tν ∈
F(X∗), by Theorem 4.11, there exists Sν ∈ F(X) such that Sν(Y ) ⊂ Y for
all Y ∈ N , and

‖S∗νx∗ − Tνx∗‖ ≤ ε/2 ∀x∗ ∈ L.

Now, for any compact subset L0 of X∗ and any ε0 > 0, take ν0 = (L0, ε0). If
ν = (L, ε) ≥ ν0, then L0 ⊂ L and ε ≤ ε0, and we have

‖S∗νx∗ − x∗‖ ≤ ‖S∗νx∗ − Tνx∗‖+ ‖Tνx∗ − x∗‖ < ε ≤ ε0 ∀x∗ ∈ L0.

Therefore, S∗ν →ν IX∗ in the topology τc, as wished.

Hence, S∗ν →ν IX∗ = I∗X in the weak topology of the locally convex space
(L(X∗), τc), meaning that

〈S∗ν − I∗X , v〉 =
∞∑
k=1

x∗∗k ((S∗ν − I∗X)x∗k)→ν 0

for all v =
∑∞

k=1 x
∗∗
k ⊗ x∗k ∈ X∗∗⊗̂πX∗ (= (L(X∗), τc)

∗). But then

〈Sν − IX , u〉 =
∞∑
k=1

x∗k((Sν − IX)xk)→ν 0

for all u =
∑∞

k=1 x
∗
k ⊗ xk ∈ X∗⊗̂πX, meaning that Sν →ν IX in the weak

topology of (L(X), τc). After passing to convex combinations, we may assume
that Sν →ν IX in the topology τc (see, e.g., [Day, Theorem 2, p. 46]). Hence,
the pair (X,N ) has the duality AP.

In view of Corollary 2.9, from Theorems 4.15 and 4.16, we immediately get
the following.

Corollary 4.17. Let X be a Banach space and let N be a nest of closed

subspaces of X. If the nest N⊥ is complete, then the assertions of Theorems

4.15 and 4.16 hold.
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Let us also spell out the corresponding result for �nite nests (cf. Remark
4.14).

Corollary 4.18. Let X be a Banach space and let N be a �nite nest of closed

subspaces of X. Then the assertions of Theorems 4.15 and 4.16 hold.

Remark 4.19. IfX∗ orX∗∗ has the Radon�Nikodým property, then Theorems
4.15 and 4.16, and Corollaries 4.17 and 4.18 state that the pair (X,N ) has the
metric duality AP if and only if the pair (X∗,N⊥) has the AP (cf. Remark
3.1).

4.6 Criteria of the nest approximation proper-

ties in the spirit of Grothendieck

Let X be a Banach space. Recall the �condition de biunivocité�, a criterion
of the AP, established by Grothendieck in his memoir [G, Chapter I, p. 165].

(AP). If u ∈ X∗⊗̂πX is such that ũ(X) = {0}, then traceu = 0.

By Grothendieck [G] (see, e.g., [Ry, p. 74] or [LT1, p. 32]), a Banach space
X has the AP if and only if condition (AP) holds.

The main result of the recent paper by Figiel and Johnson [FJ3, Theorem
2.1] provides a criterion of the nest AP. The authors call it �the dual version
of the statement that (X,N ) has the AP� (see [FJ3, p. 569]), and it re�nes
the dual form of the AP for the pair (X, Y ), where Y is a closed subspace of
X, from [FJ2, Theorem 2.2]. The Figiel�Johnson theorems are formulated
in terms of nuclear operators under the hypothesis that X has the AP. The
proof of [FJ3, Theorem 2.1] (using also Corollary 4.5) shows the following
result. We shall include a proof for completeness.

Theorem 4.20 (cf. [FJ3, Theorem 2.1]). Let X be a Banach space. Let N
be a nest of closed subspaces of a Banach space X containing {0} and X.

Assume that N is closed under arbitrary intersections. Then (X,N ) has the

approximation property if and only if the following condition holds.

(APN ). If u ∈ X∗⊗̂πX is such that ũ(Y ) ⊂ Y− for all Y ∈ N , then traceu = 0.
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Proof. For the �only if� part, assume that the condition (APN ) does not hold.
Then there exists u ∈ X∗⊗̂πX,

u =
∞∑
k=1

x∗k ⊗ xk

where (x∗k) ⊂ X∗, (xk) ⊂ X, and
∑∞

k=1 ‖x∗k‖ ‖xk‖ <∞ such that ũ(Y ) ⊂ Y−
for all Y ∈ N , but

traceu =
∞∑
k=1

x∗k(xk) = α 6= 0.

Since, algebraically, (L(X), τc)
∗ = X∗⊗̂πX (see Section 2.4), we have

〈S, u〉 =
∞∑
k=1

x∗k(Sxk), S ∈ L(X).

Hence,
〈IX , u〉 = traceu = α.

By assumption, there exists a net (Sν) ⊂ F(X) such that Sν(Y ) ⊂ Y for all
ν and for all Y ∈ N , and Sν →ν IX in the topology τc. Hence, Sν →ν IX in
the weak topology of the locally convex space (L(X), τc), meaning that

〈Sν − IX , u〉 →ν 0.

Let us show that 〈Sν , u〉 = 0 for every ν. By Corollary 4.5, any Sν can be
written as

Sν =
m∑
k=1

y∗k ⊗ yk,

where m is a rank of Sν , and for each k ∈ {1, . . . ,m} there is Y ∈ N such
that y∗k ∈ (Y−)⊥ and yk ∈ Y . In particular, ũyk ∈ Y− and, by Proposition
2.1, y∗k ∈ (Y−)⊥. It follows that for any k ∈ {1, . . . ,m},

〈y∗k ⊗ yk, u〉 =
∞∑
n=1

x∗n(y∗k ⊗ yk(xn)) = y∗k

( ∞∑
n=1

x∗n(yk)xn

)
= y∗k(ũyk) = 0.

Therefore,

〈Sν , u〉 =
m∑
k=1

〈y∗k ⊗ yk, u〉 = 0,

implying that

〈Sν − IX , u〉 = 〈Sν , u〉 − 〈IX , u〉 →ν −α 6= 0,
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which is a contradiction with

〈Sν − IX , u〉 →ν 0.

For the �if� part, assume that (X,N ) does not have AP. Then

IX 6∈ {R ∈ F(X) : R(Y ) ⊂ Y ∀Y ∈ N}
τc
.

According to a separation theorem, there exists u ∈ (L(X), τc)
∗ = X∗⊗̂πX,

such that 〈IX , u〉 = traceu = 1 and 〈R, u〉 = 0 for every R ∈ F(X) for which
R(Y ) ⊂ Y for all Y ∈ N . In particular, by Corollary 4.5, for any Y ∈ N ,

〈y∗ ⊗ y, u〉 = 0 ∀y∗ ∈ (Y−)⊥, ∀y ∈ Y.

Let us show that ũ(Y ) ⊂ Y− for all Y ∈ N . Consider a representation of u

u =
∞∑
k=1

x∗k ⊗ xk,

where (x∗k) ⊂ X∗, (xk) ⊂ X, and
∑∞

k=1 ‖x∗k‖ ‖xk‖ <∞. For any Y ∈ N , we
have

y∗(ũy) = y∗
( ∞∑

k=1

x∗k(y)xk

)
= 〈y∗ ⊗ y, u〉 = 0 ∀y ∈ Y, ∀y∗ ∈ (Y−)⊥.

Hence, ũy ∈ ((Y−)⊥)⊥ = Y− for all y ∈ Y and Y ∈ N , as wished.

By condition (APN ), traceu = 0, which is a contradiction with traceu =
1.

Clearly, in the special case when N = {{0}, X}, condition (APN ) reduces to
(AP), because X− = {0}.

Let us spell out Theorem 4.20 for the �nite nests.

Corollary 4.21 (cf. [FJ3, Corollary 1]). Let X be a Banach space. Let

N = {Y1, . . . , Yn} be an n-element nest of closed subspaces of X containing

{0} and X. Assume that {0} = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn = X. Then (X,N ) has

the approximation property if and only if the following condition holds.

If u ∈ X∗⊗̂πX is such that ũ(Ym+1) ⊂ Ym for m = 1, . . . , n − 1, then

traceu = 0.

Proof. This is an immediate corollary because (Ym+1)− = Ym = Ym for m =
1, . . . , n− 1 and (Y1)− = {0} = Y1.



4.6. CRITERIA OF THE NEST APS 71

Remark 4.22. In the special case when N = {{0}, Y,X}, where Y is a closed
subspace of X, Corollary 4.21 reduces to [FJ2, Theorem 2.2], stating that
the AP of the pair (X, Y ) is equivalent to the condition: if u ∈ X∗⊗̂πX is

such that ũ(X) ⊂ Y and ũ(Y ) = {0}, then traceu = 0.

Our goal is to present a criterion of the duality nest APs in the same spirit.
We shall rely on Theorems 4.16 and 4.20.

Let N be a nest of subspaces of X containing X. For Y ∈ N , we de�ne the
subspace Y+ of X, the �dual version� of Y−, as follows. If Y 6= X, then

Y+ =
⋂
{H ∈ N : Y ⊂ H, Y 6= H},

and if Y = X, then Y+ = X.

Theorem 4.23. Let X be a Banach space. Let N be a nest of closed sub-

spaces of X containing {0} and X. Assume that N is closed under closures

of arbitrary unions and satis�es condition (∗). Then (X,N ) has the duality

approximation property if and only if the following condition holds.

If u ∈ X∗∗⊗̂πX∗ is such that ũ(Y ⊥) ⊂ (Y+)⊥ for all Y ∈ N , then traceu = 0.

Proof. Since N satis�es condition (∗), by Theorem 4.16, the pair (X,N ) has
the duality AP if and only if the pair (X∗,N⊥) has the AP. By Proposition
2.7, N⊥ is closed under arbitrary intersections because N is closed under
closures of arbitrary unions. Also N⊥ contains {0}(= X⊥) and X∗(= {0}⊥).
Hence, from Theorem 4.20, we see that the AP of (X∗,N⊥) is in its turn
equivalent to the condition in Theorem 4.23 whenever (Y ⊥)− = (Y+)⊥ for all
Y ∈ N . But this is indeed the case. If Y 6= X, then N ′ := {H ∈ N : Y ⊂
H, Y 6= H} is a non-empty subfamily of N (because N contains X). Since
N satis�es condition (∗), by Remark 2.8, we have

(Y ⊥)− =
⋃
H∈N ′

H⊥ =

( ⋂
H∈N ′

H

)⊥
= (Y+)⊥.

If Y = X, then (Y ⊥)− = {0} = X⊥ = (Y+)⊥.

For �nite nests, the corresponding criterion of the duality nest AP is as
follows.

Corollary 4.24. Let X be a Banach space. Let N = {Y1, . . . , Yn} be an

n-element nest of closed subspaces of X containing {0} and X. Assume that

{0} = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn = X. Then (X,N ) has the duality approximation
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property if and only if the following condition holds.

If u ∈ X∗∗⊗̂πX∗ is such that ũ(Y ⊥m ) ⊂ Y ⊥m+1 for m = 1, . . . , n − 1, then

traceu = 0.

Proof. This is an immediate corollary because (Ym)+ = Ym+1 for m =
1, . . . , n− 1 and (Yn)+ = X = Yn.

Taking N = {{0}, Y,X}, where Y is a closed subspace of X, the following
criterion of the duality AP for pairs is immediate from Corollary 4.24.

Corollary 4.25. Let X be a Banach space and let Y be a closed subspace

of X. Then (X, Y ) has the duality approximation property if and only if the

following condition holds.

If u ∈ X∗∗⊗̂πX∗ is such that ũ(X∗) ⊂ Y ⊥ and ũ(Y ⊥) = {0}, then traceu =
0.



Chapter 5

Lifting bounded convex

approximation properties from

Banach spaces to their dual

spaces

In this chapter, we study the lifting of bounded convex approximation
properties from a Banach space to its dual space in some special cases.
We show that for such a lifting rather weak forms of the principle of
local re�exivity and the extendable local re�exivity are su�cient. It
is also shown that such a lifting is possible whenever the dual space
already enjoys a weaker bounded convex approximation property. We
also complement and extend some results from [GS2, O2]. This chap-
ter relies on [OV1, OV2, V].

5.1 Lifting of the bounded convex approxima-

tion property and the related local re�ex-

ivity

LetX be a Banach space. Starting from the seminal paper [JRZ] by Johnson,
Rosenthal, and Zippin, cases when bounded APs can be lifted from X to its
dual space X∗ have been studied, for instance, in [FJ1, GS2, J2, KW, LisO,
O1, O2]. By an important result, due to Johnson and Oikhberg [JO], such a

73



74 5. LIFTING BOUNDED CONVEX APS

lifting is possible when X is extendably locally re�exive (see Theorem 5.2).

De�nition 5.1. A Banach space X is λ-extendably locally re�exive (ELR)
if for all �nite-dimensional subspaces E ⊂ X∗∗ and F ⊂ X∗, and for all
ε > 0, there exists T ∈ L(X∗∗) such that T (E) ⊂ X, ‖T‖ ≤ λ + ε, and
x∗(Tx∗∗) = x∗∗(x∗) for all x∗∗ ∈ E and x∗ ∈ F .

The ELR was discovered by Rosenthal and studied by Johnson, Oikhberg,
and Rosenthal in [JO] and [OR]. The next theorem is proved in [JO, Theorem
3.1 (1)]; for its quantized version, see [OR, Theorem 3.13].

Theorem 5.2 (Johnson�Oikhberg). If a Banach space X is λ-extendably
locally re�exive and has the µ-bounded approximation property, then X∗ has
the λµ-bounded approximation property.

The proof in [JO] relies on the PLR (see [O2, Corollary 3.13] for an alternative
proof which does not use the PLR). The method of the proof in [JO] seems to
suggest that the PLR for Banach lattices and the PLR respecting subspaces
could be used for the lifting of the positive bounded AP and of the bounded
AP of pairs, respectively. Since these APs are special cases of the convex AP,
a question arises about a uni�ed approach to lifting results in the framework
of convex APs.

We introduce the following general forms of the ELR and the PLR. In Theo-
rem 5.6, we shall see that these rather weak forms of the ELR and the PLR
are su�cient for the lifting of di�erent bounded APs from Banach spaces to
their dual spaces.

De�nition 5.3. Let X be a Banach space and let C be a subset of L(X∗∗).
Let 1 ≤ λ <∞. We say that X is λ-extendably locally re�exive of type C if
for all �nite-dimensional subspaces E ⊂ X∗∗ and F ⊂ X∗, and for all ε > 0,
there exists T ∈ C with ‖T‖ ≤ λ+ ε such that T (E) ⊂ X and

|x∗(Tx∗∗)− x∗∗(x∗)| ≤ ε ∀x∗∗ ∈ SE, ∀x∗ ∈ SF .

Notice that if C and D are subsets of L(X∗∗) such that C ⊂ D and X is
λ-ELR of type C, then X is λ-ELR of type D. The λ-ELR of a Banach
space X clearly implies the λ-ELR of type L(X∗∗). More examples will be
presented in the following sections.

De�nition 5.4. Let X be a Banach space, let A and B be subsets of L(X)
and L(X∗∗), respectively. We say that the principle of local re�exivity of type

B → A holds in X if for all T ∈ B, for all �nite-dimensional subspaces E ⊂
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X∗∗ and F ⊂ X∗, and for all ε > 0, there exists S ∈ A with ‖S‖ ≤ ‖T‖ + ε
such that

|(Tx∗∗)(x∗)− x∗∗(S∗x∗)| ≤ ε ∀x∗∗ ∈ SE, ∀x∗ ∈ SF .

The PLR of type B → A means that the operators on X∗∗ of �type B� are
�locally� of �type A� on X.

Examples 5.5. The following assertions are true.

(1) By the PLR (see [JRZ, the proof of Theorem 3.3] or, e.g., [OP, Theorem
2.5]), in every Banach space X, the PLR of type F(X∗∗) → F(X)
holds.

(2) Let X be a Banach space and let Y be a closed subspace of X. By the
PLR respecting subspaces (see [O5, Theorem 1.2]), the PLR of type
{T ∈ F(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥} → {S ∈ F(X) : S(Y ) ⊂ Y } holds in
X.

(3) Let X be a Banach space and let N be a nest of closed subspaces of
X such that the nest N⊥⊥ is complete. By Theorem 4.13, the PLR
of type {T ∈ F(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥ ∀Y ∈ N} → {S ∈ F(X) :
S(Y ) ⊂ Y ∀Y ∈ N} holds in X.

(4) In every Banach lattice X, the PLR of type F(X∗∗)+ → F(X)+ holds
(see Corollary 5.20).

(5) Let A be a subset of L(X). Trivially, in every Banach space X, the
PLR of type {S∗∗ : S ∈ A} → A holds (even for ε = 0).

Theorem 5.6. Let X be a Banach space. Let A be a convex subset of L(X)
containing 0. Let B and C be subsets of L(X∗∗) such that {S∗∗ : S ∈ A}◦C ⊂
B. Let 1 ≤ λ, µ < ∞. Assume that the principle of local re�exivity of type

B → A holds in X. If X is λ-extendably locally re�exive of type C and has

the µ-bounded A-approximation property, then X has the λµ-bounded duality

A-approximation property.

Proof. By Proposition 3.11 (c), it su�ces to construct a net (Rν) ⊂ A such
that lim supν ‖Rν‖ ≤ λµ and

x∗∗(R∗νx
∗)→ν x

∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

Consider the set of all ν = (E,F, ε), where E ⊂ X∗∗ and F ⊂ X∗ are
�nite-dimensional subspaces and ε > 0, directed in the natural way. Since
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X is λ-ELR of type C, for every ν, there exists an operator Tν ∈ C with
‖Tν‖ ≤ λ+ ε such that Tν(E) ⊂ X and

|x∗(Tνx∗∗)− x∗∗(x∗)| ≤ ε ∀x∗∗ ∈ SE, ∀x∗ ∈ SF .

The set Tν(SE) ⊂ X is compact because SE is compact. Since X has the
µ-bounded A-approximation property, there exists Sν ∈ A with ‖Sν‖ ≤ µ
such that

‖SνTνx∗∗ − Tνx∗∗‖ ≤ ε ∀x∗∗ ∈ SE.
Hence, for any x∗∗ ∈ SE,

‖S∗∗ν Tνx∗∗ − Tνx∗∗‖ = ‖S∗∗ν − IX∗∗‖ ‖Tνx∗∗‖ = ‖Sν − IX‖ ‖Tνx∗∗‖
= ‖SνTνx∗∗ − Tνx∗∗‖ ≤ ε.

We have S∗∗ν Tν ∈ {S∗∗ : S ∈ A} ◦C ⊂ B. By the PLR of type B → A, there
exists Rν ∈ A with

‖Rν‖ ≤ ‖S∗∗ν Tν‖+ ε ≤ µ(λ+ ε) + ε,

implying that
lim sup

ν
‖Rν‖ ≤ λµ,

and
|(S∗∗ν Tνx∗∗)(x∗)− x∗∗(R∗νx∗)| ≤ ε ∀x∗∗ ∈ SE, ∀x∗ ∈ SF .

For any x∗∗ ∈ SE and x∗ ∈ SF , we have

|x∗∗(R∗νx∗)− x∗∗(x∗)| ≤ |x∗∗(R∗νx∗)− (S∗∗ν Tνx
∗∗)(x∗)|

+ |(S∗∗ν Tνx∗∗)(x∗)− (Tνx
∗∗)(x∗)|

+ |(x∗)(Tνx∗∗)− x∗∗(x∗)|
≤ 3ε.

Let us show that

lim
ν
x∗∗(R∗νx

∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

Clearly, it is su�cient to show the equality for the elements of unit spheres.
Let x∗ ∈ SX∗ and x∗∗ ∈ SX∗∗ be arbitrary elements. For ε0 > 0, take ν0 =
(span{x∗∗}, span{x∗}, ε0/3). If ν = (E,F, ε) ≥ ν0, then x∗∗ ∈ span{x∗∗} ⊂
E, x∗ ∈ span{x∗} ⊂ F , ε ≤ ε0/3, and we have

|x∗∗(R∗νx∗)− x∗∗(x∗)| ≤ 3ε ≤ ε0,

as needed.
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From Theorem 5.6 and Example 5.5 (5), we have the following immediate
corollary that will be applied in lifting results Theorem 5.28 and Corollary
5.29 in Section 5.3.

Corollary 5.7. Let X be a Banach space. Let A be a convex subset of L(X)
containing 0 and let C be a subset of L(X∗∗) such that {S∗∗ : S ∈ A} ◦ C ⊂
{S∗∗ : S ∈ A}. Let 1 ≤ λ, µ < ∞. If X is λ-extendably locally re�exive

of type C and has the µ-bounded A-approximation property, then X has the

λµ-bounded duality A-approximation property.

Remark 5.8. If X∗ or X∗∗ has the Radon�Nikodým property, then Corollary
5.7 asserts that X has the metric duality A-AP (cf. Remark 3.1).

5.2 Applications of the lifting theorem

LetX be a Banach space. Taking A = F(X), B = F(X∗∗), and C = L(X∗∗),
and noticing that �X has the λµ-bounded duality AP� trivially implies that
�X∗ has the λµ-bounded AP�, the following result, hence also Theorem 5.2,
is immediate from Example 5.5 (1) and Theorem 5.6.

Corollary 5.9 (cf. Theorem 5.2). Let X be a Banach space. Let 1 ≤
λ, µ < ∞. If X is λ-extendably locally re�exive of type L(X∗∗) and has

the µ-bounded approximation property, then X has the λµ-bounded duality

approximation property.

Remark 5.10. The proof of Theorem 5.2 in [JO] uses the PLR, which states
that X∗∗ and X are �locally almost the same�. Our proof uses the version of
the PLR stating that F(X∗∗) and F(X) are �locally almost the same�. This
appropriately chosen version of the PLR considerably shortens and eases the
proof of Theorem 5.2

By Theorem 5.6, even stronger versions of Corollary 5.9 hold (see Theorems
5.12 and 5.15 below). These versions are expressed using APs of pairs and
APs of nests, respectively. It seems natural to de�ne the ELR also for pairs
as follows.

De�nition 5.11. Let X be a Banach space and Y a closed subspace of X.
Let 1 ≤ λ <∞. We say that the pair (X, Y ) is λ-extendably locally re�exive

if X is λ-extendably locally re�exive of type {T ∈ L(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥}.

In the special case of (X, {0}), the following Theorem 5.12 coincides with
Corollary 5.9.
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Theorem 5.12. Let X be a Banach space and let Y be a closed subspace

of X. Let 1 ≤ λ, µ < ∞. If the pair (X, Y ) is λ-extendably locally re�exive

and has the µ-bounded approximation property, then the pair (X, Y ) has the

λµ-bounded duality approximation property.

Proof. Let A = {S ∈ F(X) : S(Y ) ⊂ Y }, B = {T ∈ F(X∗∗) : T (Y ⊥⊥) ⊂
Y ⊥⊥}, and C = {T ∈ L(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥}. Then {S∗∗ : S ∈ A} ◦ C ⊂
B, because if S(Y ) ⊂ Y for S ∈ L(X), then clearly S∗(Y ⊥) ⊂ Y ⊥, hence
also S∗∗(Y ⊥⊥) ⊂ Y ⊥⊥. Therefore, the claim is immediate from Example 5.5
(2) and Theorem 5.6.

Remark 5.13. If, in Theorem 5.12, X∗ or X∗∗ has the Radon�Nikodým prop-
erty, then the pair (X, Y ) has the metric duality AP (cf. Remark 3.1).

It is convenient to de�ne the ELR also for pairs (X,N ) extending De�nition
5.11 as follows.

De�nition 5.14. Let X be a Banach space and let N be a nest of closed
subspaces of X. Let 1 ≤ λ <∞. We say that the pair (X,N ) is λ-extendably
locally re�exive if X is λ-ELR of type {T ∈ L(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥ ∀Y ∈
N}.

Taking A = {S ∈ F(X) : S(Y ) ⊂ Y ∀Y ∈ N}, B = {T ∈ F(X∗∗) :
T (Y ⊥⊥) ⊂ Y ⊥⊥ ∀Y ∈ N} and C = {T ∈ L(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥ ∀Y ∈
N}, Example 5.5 (3) and Theorem 5.6 immediately yield the following lifting
result for bounded nest APs.

Theorem 5.15. Let X be a Banach space and let N be a nest of closed

subspaces of X such that the nest N⊥⊥ is complete. Let 1 ≤ λ, µ < ∞.

If the pair (X,N ) is λ-extendably locally re�exive and has the µ-bounded
approximation property, then the pair (X,N ) has the λµ-bounded duality

approximation property.

For �nite nests, Theorem 5.15 reads as follows.

Corollary 5.16. Let X be a Banach space and let N be a �nite nest of closed

subspaces of X. Then the assertion of Theorem 5.15 holds.

Proof. Notice that (X,N ) is λ-ELR if and only if (X,N ∪{0}∪X) is λ-ELR.
Also notice that the bounded AP and its duality version of (X,N ) are equiv-
alent to the bounded AP and its duality version of (X,N ∪{0}∪X), respec-
tively. Therefore, the assertion is immediate from Theorem 5.15.
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Remark 5.17. Theorem 5.15 and Corollary 5.16 are nest versions of Theorem
5.12. In the special case when N = {Y }, where Y is a closed subspace of X,
Corollary 5.16 reduces to Theorem 5.12.

Remark 5.18. If, in Theorem 5.15 (or Corollary 5.16), X∗ or X∗∗ has the
Radon�Nikodým property, then (X,N ) has the metric duality AP (cf. Re-
mark 3.1).

In [LisO, Theorem 5.6], it was established that positive �nite-rank operators
between dual Banach lattices are �locally conjugate�. From this theorem, the
following result about �locally biconjugate� operators can be obtained.

Theorem 5.19. Let X and Y be Banach lattices. If T ∈ F(X∗∗, Y ∗∗)+,

E ⊂ X∗∗ and F ⊂ Y ∗ are �nite-dimensional subspaces, and ε > 0, then

there exists S ∈ F(X, Y )+ with ‖S‖ ≤ ‖T‖+ ε such that

|(Tx∗∗)(y∗)− x∗∗(S∗y∗)| ≤ ε ∀x∗∗ ∈ SE, ∀y∗ ∈ SF .

Proof. Let E and F be �nite-dimensional subspaces of X∗∗ and Y ∗, re-
spectively, and T ∈ F(X∗∗, Y ∗∗)+. Let ε > 0. Take δ > 0 such that
δ(2 + δ) ≤ ε/(1 + ‖T‖).

We shall apply [LisO, Theorem 5.6 and Remark 5.3] twice. On the �rst
application, there exists R ∈ F(Y ∗, X∗)+ such that ‖R‖ ≤ (1 + δ) ‖T‖, and
‖R∗x∗∗ − Tx∗∗‖ ≤ δ ‖x∗∗‖ for all x∗∗ ∈ E. On the second application, we have
an operator S ∈ F(X, Y )+ such that ‖S‖ ≤ (1+δ) ‖R‖, and ‖S∗y∗ −Ry∗‖ ≤
δ ‖y∗‖ for all y∗ ∈ F . Hence,

‖S‖ ≤ (1 + δ)2 ‖T‖ = ‖T‖+ δ(2 + δ) ‖T‖ ≤ ‖T‖+ ε.

For any x∗∗ ∈ SE and y∗ ∈ SF , we have

|(Tx∗∗)(y∗)− x∗∗(S∗y∗)| ≤ |(Tx∗∗)(y∗)− (R∗x∗∗)(y∗)|
+ |(R∗x∗∗)(y∗)− x∗∗(S∗y∗)|
= |(R∗x∗∗)(y∗)− (Tx∗∗)(y∗)|
+ |x∗∗(Ry∗)− x∗∗(S∗y∗)|
≤ δ ‖x∗∗‖ ‖y∗‖+ ‖x∗∗‖ δ ‖y∗‖ = 2δ

< δ(2 + δ) ≤ ε,

as desired.

We shall need the immediate consequence.
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Corollary 5.20. In every Banach lattice X, the principle of local re�exivity

of type F(X∗∗)+ → F(X)+ holds.

It is convenient to introduce a positive version of the ELR in Banach lattices
as follows.

De�nition 5.21. Let X be a Banach lattice. Let 1 ≤ λ < ∞. We say
that X is positively λ-extendably locally re�exive if it is λ-extendably locally
re�exive of type L(X∗∗)+.

It is natural to call the λ-bounded duality F(X)+-AP of a Banach lattice X
the λ-bounded duality positive approximation property. This property triv-
ially implies the λ-bounded positive AP both for X and its dual lattice X∗.
Thus, taking A = F(X)+, B = F(X∗∗)+, and C = L(X∗∗)+, we immediately
get from Corollary 5.20 and Theorem 5.6 the following version of Theorem
5.2 (or Corollary 5.9) for positive APs.

Theorem 5.22. Let X be a Banach lattice. Let 1 ≤ λ, µ <∞. If X is pos-

itively λ-extendably locally re�exive and has the µ-bounded positive approxi-

mation property, then X has the λµ-bounded duality positive approximation

property.

Remark 5.23. If, in Theorem 5.22, X∗ or X∗∗ has the Radon�Nikodým prop-
erty, then X has the metric duality positive approximation property (cf.
Remark 3.1).

Remark 5.24. It is well known that abstract L-spaces and M -spaces have
the metric positive AP. Since the dual of an M -space is an L-space and vice
versa, by Theorem 5.27 below, abstract L-spaces andM -spaces are positively
1-ELR. On the other hand, Peªczy«ski's universal space U for unconditional
bases, considered as a Banach lattice, has the metric positive AP, but U∗

fails the AP (see, e.g., [LisO, Remark 3.2]); hence, by Theorem 5.22, U is
not positively ELR. We do not know any example of a non-re�exive Banach
lattice without the (metric positive) AP which is positively ELR. Neither do
we know of a Banach lattice which is ELR, but not positively ELR.

5.3 Extendable local re�exivity implied by

bounded convex approximation properties

The lifting Theorem 5.2 by Johnson and Oikhberg has a strong converse, due
to Rosenthal (see [JO, Theorem 3.1 (2)]).
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Theorem 5.25 (Rosenthal). Let X be a Banach space. Let 1 ≤ λ < ∞. If

X∗ has the λ-bounded approximation property, then X is λ-extendably locally

re�exive.

Recall that, by Johnson's Theorem 3.15 (see Section 3.5), the assumption �X∗

has the λ-bounded AP� is equivalent to �X∗ has the λ-bounded AP with
conjugate operators�. Keeping this in mind, we shall see that Rosenthal's
Theorem 5.25 can be extended as follows, providing a general converse to
Theorem 5.6.

Proposition 5.26. Let X be a Banach space. Let A be a subset of W(X).
Let 1 ≤ λ < ∞. If X∗ has the λ-bounded A-approximation property with

conjugate operators, then X is λ-extendably locally re�exive of type {S∗∗ :
S ∈ A}.

Proof. Let F ⊂ X∗ be a �nite-dimensional subspace and let ε > 0. Since SF
is compact and X∗ has the λ-bounded {S∗ : S ∈ A}-AP, there exists S ∈ A
with ‖S‖ ≤ λ such that

‖S∗x∗ − x∗‖ ≤ ε ∀x∗ ∈ SF .

Then S∗∗ ∈ {S∗∗ : S ∈ A} and ‖S∗∗‖ ≤ λ. Since S ∈ W(X), we have that
S∗∗(X∗∗) ⊂ X (see, e.g., [DuS, Theorem VI.4.2]). For any x∗∗ ∈ SX∗∗ and
x∗ ∈ SF , we have

|x∗(S∗∗x∗∗)− x∗∗(x∗)| = |x∗∗(S∗x∗)− x∗∗(x∗)| ≤ ‖x∗∗‖ ‖S∗x∗ − x∗‖ ≤ ε.

Hence, for any �nite-dimensional subspace E of X∗∗, the conditions of the
λ-ELR of type {S∗∗ : S ∈ A} for X are satis�ed.

In the case of Banach lattices, we have the following version of Rosenthal's
Theorem 5.25.

Theorem 5.27. Let X be a Banach lattice. Let 1 ≤ λ < ∞. If the dual

lattice X∗ has the λ-bounded positive approximation property, then X is pos-

itively λ-extendably locally re�exive.

Proof. Since X∗ has the λ-bounded positive AP, it has the λ-bounded
positive AP with conjugate operators (see [LisO, Proposition 5.7]). Let
A = F(X)+. Then A ⊂ W(X) and {S∗∗ : S ∈ A} ⊂ F(X∗∗)+ ⊂ L(X∗∗)+.
The claim is immediate from Proposition 5.26.
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The following result shows that the lifting of convex APs from a Banach
space to its dual space is possible whenever the dual space already enjoys a
weaker AP.

Theorem 5.28. Let X be a Banach space. Let A be a convex subset of

L(X) containing 0 and let B be a subset of W(X) such that A ◦ B ⊂ A.
Let 1 ≤ λ, µ < ∞. If X∗ has the λ-bounded B-approximation property with

conjugate operators and X has the µ-bounded A-approximation property, then

X has the λµ-bounded duality A-approximation property.

Proof. The result is immediate from Proposition 5.26 and Corollary 5.7. In-
deed, it follows from Proposition 5.26 thatX is λ-ELR of type {T ∗∗ : T ∈ B}.
Notice that {S∗∗ : S ∈ A} ◦ {T ∗∗ : T ∈ B} ⊂ {S∗∗ : S ∈ A} (because
A ◦ B ⊂ A). Now, since X is λ-ELR of type {T ∗∗ : T ∈ B} and has the
µ-bounded A-AP, by Corollary 5.7, X has the λµ-bounded duality A-AP.

If, in Theorem 5.28, A ⊂ K(X) and X∗ or X∗∗ has the Radon�Nikodým
property, then X has the metric duality A-AP (cf. Remark 3.1).

Let us spell out an immediate general application of Theorem 5.28 to (posi-
tive) approximation properties of pairs.

Corollary 5.29. Let X be a Banach space and Y a closed subspace of X.

Let A be an operator ideal. Denote A = {S ∈ A(X) : S(Y ) ⊂ Y } and

B = {T ∈ W(X) : T (Y ) ⊂ Y }. Let 1 ≤ λ, µ < ∞. Then the assertion of

Theorem 5.28 holds. In the special case when X is a Banach lattice, A and

B may be replaced by A+ := A ∩ L(X)+ and B+ := B ∩ L(X)+.

The classical cases when Corollary 5.29 applies areA = F(X) andA = K(X).
For instance, it follows that the dual lattice X∗ has the bounded (metric if
X∗ has the Radon�Nikodým property) positive AP whenever X has the
bounded positive AP and X∗ has the bounded positive weakly compact AP
with conjugate operators.

Let A be an operator ideal. It is natural to consider weaker versions of nest
APs by replacing �F(X)� in the de�nitions of the nest APs with �A(X)�,
the component of A. We say that the pair (X,N ) has the (λ-bounded)
A-approximation property if X has the (λ-bounded) {S ∈ A(X) : S(Y ) ⊂
Y ∀Y ∈ N}-AP. The (λ-bounded) duality A-AP of a pair (X,N ) is de�ned
in a standard way, as the (λ-bounded) duality {S ∈ A(X) : S(Y ) ⊂ Y ∀Y ∈
N}-AP of X. Clearly, the nest A-APs coincide with the nest APs whenever
A = F .

Proposition 5.26, specialized to nest A-APs, yields the following.
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Proposition 5.30. Let X be a Banach space and let N be a nest of closed

subspaces of X. Let A ⊂ W be an operator ideal. Let 1 ≤ λ < ∞. If the

pair (X,N ) has the λ-bounded duality A-approximation property, then X is

λ-extendably locally re�exive of type {S∗∗ : S ∈ A(X), S(Y ) ⊂ Y ∀Y ∈ N}.

Let us spell out the special case of Proposition 5.30 for the nest APs, because
this provides a strong converse to Theorem 5.15. The �moreover� part below
follows from Theorem 4.15.

Theorem 5.31. Let X be a Banach space and let N be a nest of closed

subspaces of X. Let 1 ≤ λ < ∞. If the pair (X,N ) has the λ-bounded
duality approximation property, then X is λ-extendably locally re�exive of

type {S∗∗ : S ∈ F(X), S(Y ) ⊂ Y ∀Y ∈ N}; hence, the pair (X,N ) is

λ-extendably locally re�exive.

Moreover, if the nest N satis�es condition (∗), then the claim holds under the

hypothesis that the pair (X∗,N⊥) has the λ-bounded approximation property.

The next Theorem 5.32 complements Theorem 5.15, showing that the lifting
of bounded nest APs from a Banach space to its dual space is possible when-
ever the dual space already enjoys a weaker nest AP. Important cases when
Theorem 5.32 applies are A = F and A = K. For instance, it follows that
(X,N ) has the bounded duality AP whenever (X,N ) has the bounded AP
and the bounded duality weakly compact AP.

Theorem 5.32. Let X be a Banach space and let N be a nest of closed sub-

spaces of X. Let A be an operator ideal. Let 1 ≤ λ, µ <∞. If the pair (X,N )
has the λ-bounded duality W-approximation property and the µ-bounded
A-approximation property, then the pair (X,N ) has the λµ-bounded dual-

ity A-approximation property.

Proof. Since (X,N ) has the λ-bounded duality W-AP, by Proposition 5.30,
X is λ-ELR of type C := {S∗∗ : S ∈ W(X), S(Y ) ⊂ Y ∀Y ∈ N}. Clearly,
the PLR of type B := {S∗∗ : S ∈ A(X), S(Y ) ⊂ Y ∀Y ∈ N} → {S ∈
A(X) : S(Y ) ⊂ Y ∀Y ∈ N} =: A holds in X (cf. Example 5.5 (5)).

Moreover, we have the inclusion {S∗∗T : S ∈ A, T ∈ C} ⊂ B. Indeed, let
S ∈ A and T ∈ C. Then there is R ∈ W(X) such that R(Y ) ⊂ Y for all
Y ∈ N and R∗∗ = T . Hence, SR ∈ A(X) (because A is an operator ideal)
and (SR)(Y ) ⊂ S(Y ) ⊂ Y for all Y ∈ N , implying that S∗∗T = S∗∗R∗∗ =
(SR)∗∗ ∈ B.

An immediate application of Theorem 5.6 concludes the proof.
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Remark 5.33. In the special case when N = {Y }, where Y is a closed sub-
space of X, Theorem 5.32 is contained in Corollary 5.29.

5.4 The strong extendable local re�exivity

Let X be a Banach space. If one adds in the de�nition of the λ-ELR (see
De�nition 5.1) the requirement that the operator T ∈ L(X∗∗) also satis�es
T ∗(X∗) ⊂ X∗, then one obtains the notion of the strong λ-extendable local

re�exivity. The strong λ-ELR was introduced and studied in [O2]. Among
others, Rosenthal's Theorem 5.25 was strengthened and extended in [O2,
Theorem 3.4] as follows.

Theorem 5.34 (Oja). Let A be an operator ideal and let X be a Banach

space. Let 1 ≤ λ < ∞. If A(X) ⊂ W(X) and X∗ has the λ-bounded
A(X)-approximation property with conjugate operators, then X is strongly

λ-extendably locally re�exive.

It was also observed in [O2, Proposition 3.2] that Rosenthal's Theorem 5.25
fails already for the bounded compact AP, i.e., F(X) cannot be replaced by
K(X) in Theorem 5.25. This also means that the assumption �X has the
λ-bounded A(X)-AP with conjugate operators� is essential in Theorem 5.34.
A �strong� example of this phenomenon was presented in [O2, Theorem 3.6]:
there exists a strongly 1-ELR Banach space X with a monotone shrinking
basis such that:

(a) its even duals X∗∗, X∗∗∗∗, . . . are strongly 1-ELR, have the metric com-
pact AP, but do not have the bounded weakly compact AP with con-
jugate operators;

(b) its odd duals X∗, X∗∗∗, . . . are not ELR, but have the metric compact
AP with conjugate operators.

Inspired by the idea of the proof of Theorem 5.34 (see [O2, Lemma 3.3]),
we shall extend Theorem 5.34 to convex APs of pairs as follows (see also
Theorem 5.38).

Theorem 5.35. Let X be a Banach space and Y a closed subspace of X.

Let A be a linear subspace of L(X) containing F(X). Let 1 ≤ λ < ∞. If

X∗ has the λ-bounded {S ∈ A : S(Y ) ⊂ Y }-approximation property with

conjugate operators, then for every �nite-dimensional subspace F ⊂ X∗ and
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for every ε > 0, there exists S ∈ A with S(Y ) ⊂ Y such that ‖S‖ ≤ λ + ε
and S∗x∗ = x∗ for all x∗ ∈ F .
Moreover, if A ⊂ W(X), then the operator T := S∗∗ has the following prop-

erties: T (X∗∗) ⊂ X, T (Y ⊥⊥) ⊂ Y , ‖T‖ ≤ λ + ε, x∗(Tx∗∗) = x∗∗(x∗) for all

x∗∗ ∈ X∗∗ and x∗ ∈ F , and T ∗(X∗) ⊂ X∗.

Proof. Let F ⊂ X∗ be a �nite-dimensional subspace and let ε > 0. Look
at X∗ endowed with its weak* topology and, using Lemma 3.4, choose a
weak*-to-weak* continuous linear projection R on X∗ such that ranR = F
and R(Y ⊥) ⊂ Y ⊥. Then there exists Q ∈ F(X) such that R = Q∗. Hence,
F = ranQ∗ and, by Lemma 2.5, Q(Y ) ⊂ Y .

Since X∗ has the λ-bounded {S∗ : S ∈ A, S(Y ) ⊂ Y }-AP, by condition (e)
of Theorem 3.2, there exists P ∈ A with P (Y ) ⊂ Y and ‖P‖ ≤ λ such that
‖P ∗x∗ − x∗‖ ≤ (ε/ ‖Q‖) ‖x∗‖ for all x∗ ∈ F .

Put S = P + Q(IX − P ). Then, clearly, S ∈ A (because F(X) ⊂ A) and
S(Y ) ⊂ Y . Let us observe that

‖(IX∗ − P ∗)Q∗‖ = sup
x∗∈BX∗

‖P ∗(Q∗x∗)−Q∗x∗‖ ≤ sup
x∗∈BX∗

(ε/ ‖Q‖) ‖Q∗x∗‖

= (ε/ ‖Q‖) ‖Q∗‖ = ε.

Hence, we have

‖S‖ = ‖S∗‖ = ‖P ∗ + (IX∗ − P ∗)Q∗‖ ≤ ‖P ∗‖+ ‖(IX∗ − P ∗)Q∗‖ ≤ λ+ ε.

Let us also observe that

S∗ = IX∗ + (IX∗ − P ∗)(Q∗ − IX∗).

Hence, clearly, S∗ is identity on F = ranQ∗.

Assume now that A ⊂ W(X). Then S ∈ W(X) and S∗ ∈ W(X∗). Therefore,
T := S∗∗ ∈ W(X∗∗, X) and T ∗ ∈ W(X∗∗∗, X∗) (see, e.g., [DuS, Theorem
VI.4.2]). Moreover, since S(Y ) ⊂ Y , we get that T (Y ⊥⊥) ⊂ X∩Y ⊥⊥. Notice
that X ∩Y ⊥⊥ ⊂ Y . Indeed, assume that there is x0 such that x0 ∈ X ∩Y ⊥⊥,
but x0 /∈ Y . Using the Hahn�Banach theorem, choose x∗ ∈ X∗ such that
x∗(x0) = 1 and x∗(y) = 0 for all y ∈ Y . Hence, x∗ ∈ Y ⊥. Since x0 ∈ Y ⊥⊥, it
follows that x∗(x0) = 0, which is a contradiction with x∗(x0) = 1. Therefore,
X ∩ Y ⊥⊥ ⊂ Y .

We also have

x∗(Tx∗∗) = x∗∗(S∗x∗) = x∗∗(x∗) ∀x∗∗ ∈ X∗∗, ∀x∗ ∈ F.
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Remark 5.36. Theorem 5.35 without its �moreover� part also follows from
[CKZ, Proposition 2.3], the equivalent conditions to the bounded A-APs of
pairs. In [CKZ], the observation was made by extending the proof of [FJP,
Lemma 1.5]. The converse of the statement in Theorem 5.35 also holds and
is standard to deduce (see, e.g., the proof of Theorem 3.5 (f)⇒ (e)).

It is appropriate to extend the strong ELR to pairs as follows.

De�nition 5.37. Let X be a Banach space and let Y be a closed subspace
of X. Let 1 ≤ λ <∞. We say that the pair (X, Y ) is strongly λ-extendably
locally re�exive if for all �nite-dimensional subspaces E ⊂ X∗∗ and F ⊂ X∗,
and for all ε > 0, there exists T ∈ L(X∗∗) such that T (E) ⊂ X, T (Y ⊥⊥) ⊂ Y ,
‖T‖ ≤ λ+ ε, x∗(Tx∗∗) = x∗∗(x∗) for all x∗∗ ∈ E and x∗ ∈ F , and T ∗(X∗) ⊂
X∗.

Let A be a linear subspace of L(X). It is natural to say that the pair (X∗, Y ⊥)
has the λ-bounded A-approximation property with conjugate operators if X∗

has the λ-bounded {S ∈ A : S(Y ) ⊂ Y }-AP with conjugate operators.
Thus, the �moreover� part of Theorem 5.35 may be reformulated as follows.

Theorem 5.38. Let X be a Banach space and Y a closed subspace of X. Let

A be a linear subspace of W(X) containing F(X). Let 1 ≤ λ < ∞. If the

pair (X∗, Y ⊥) has the λ-bounded A-approximation property with conjugate

operators, then the pair (X, Y ) is strongly λ-extendably locally re�exive.

Theorem 5.38 contains Theorem 5.34 as the special case when Y = {0} and
A is the component of an arbitrary operator ideal, since the strong ELR of
X coincides with the strong ELR of the pair (X, {0}).

Recall that by Theorem 3.18, the λ-bounded AP of the pair (X∗, Y ⊥) implies
that it has the λ-bounded AP with conjugate operators. Therefore, taking
A = F(X), we immediately get from Theorem 5.38 the following version of
Rosenthal's Theorem 5.25 for pairs.

Corollary 5.39. Let X be a Banach space and let Y be a closed subspace of

X. Let 1 ≤ λ < ∞. If the pair (X∗, Y ⊥) has the λ-bounded approximation

property, then the pair (X, Y ) is strongly λ-extendably locally re�exive.

Remark 5.40. Theorem 5.25 is a special case of Corollary 5.39 when Y = {0}.
Notice that the proof of our result, unlike the proof of Theorem 4.1 in [JO],
does not use any kind of PLR.
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5.5 The unique extension property

Finally, let us mention the important case of lifting the metric APs from a
Banach space X to its dual space X∗ which was discovered by Godefroy and
Saphar in [GS2]. This is the case when X has the unique extension property
(UEP), a useful concept studied by Godefroy and Saphar in [GS1] (using the
term �X is uniquely decomposed�) and [GS2]. Recall that a Banach space
X has the unique extension property (UEP) if the only operator T ∈ L(X∗∗)
such that ‖T‖ ≤ 1 and T |X = IX is the identity operator on X∗∗, i.e.,
T = IX∗∗ .

For instance (see [GS2]), the following Banach spaces have the unique exten-
sion property: Hahn�Banach smooth spaces, in particular, spaces which are
M -ideals in their biduals (for example, closed subspaces of c0); spaces with
a Fréchet-di�erentiable norm; separable polyhedral Lindenstrauss spaces;
spaces of compact operators K(X, Y ) for re�exive Banach spaces X and Y .

By [GS2, Theorem 2.2], the UEP permits to lift the metric A-AP from X
to X∗ in the special case when A = F(X) or A = K(X). In [O2, Corollary
2.5], the result was extended to components of an arbitrary operator ideal.
However, the proof in [O2] holds for any linear subspace of L(X) (see Propo-
sition 5.41 below) and we shall show that, thanks to Theorem 3.9, it can be
modi�ed even for convex subsets of L(X) (see Proposition 5.43 below).

Proposition 5.41 (cf. [O2, Corollary 2.5]). Let X be a Banach space hav-

ing the unique extension property. Let A be a linear subspace of L(X).
If X has the metric A-approximation property, then X∗ has the metric

A-approximation property with conjugate operators.

Proof. The proof is essentially the same as in [O2, Corollary 2.5]. We present
it for completeness. Since X has the metric A-AP, by Theorem 3.8 (a), there
exists Φ ∈ A∗∗ such that ‖Φ‖ ≤ 1 and

Φ(x∗ ⊗ jXx) = x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X.

De�ne T ∈ L(X∗∗) by

(Tx∗∗)(x∗) = Φ(x∗ ⊗ x∗∗), x∗∗ ∈ X∗∗, x∗ ∈ X∗.

Then clearly ‖T‖ ≤ 1, and T |X = IX because

(Tx)(x∗) = Φ(x∗ ⊗ jXx) = x∗(x) ∀x ∈ X, ∀x∗ ∈ X∗.
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By the UEP, T = IX∗∗ . Hence,

Φ(x∗ ⊗ x∗∗) = (IX∗∗x
∗∗)(x∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗,

meaning thatX∗ has the metricA-AP with conjugate operators (see Theorem
3.8 (b)).

Since the metric AP of the pair (X, Y ) is precisely the metric A-AP of X,
where A = {S ∈ F(X) : S(Y ) ⊂ Y }, by Proposition 5.41, X∗ has the
metric A-AP with conjugate operators. But the latter is, by Proposition 3.11,
equivalent to the metric duality A-AP of X, which in its turn is precisely the
metric duality AP of the pair (X, Y ). Thus, looking also at Lemma 2.5 (or
Theorem 3.21), we have obtained the following lifting result.

Theorem 5.42. Let X be a Banach space having the unique extension prop-

erty and let Y be a closed subspace of X. If the pair (X, Y ) has the metric

approximation property, then the pair (X, Y ) has the metric duality approx-

imation property; hence, the pair (X∗, Y ⊥) has the metric approximation

property.

However, Proposition 5.41 is not applicable in the case of the metric positive
AP or its version for pairs. The use of the idea of the proof of [O2, Corollary
2.5] and Theorem 3.9 yield the following general lifting result for the metric
convex APs.

Proposition 5.43. Let X be a Banach space having the unique extension

property. Let A be a convex subset of L(X) containing 0. If X has the metric

A-approximation property, then X∗ has the metric A-approximation property

with conjugate operators.

Proof. The proof is similar to the proof of Proposition 5.41.

Let Φ ∈ (A∩BL(X))
◦◦ ⊂ (L(X))∗∗ be from Theorem 3.9 (a). Then ‖Φ‖ ≤ 1.

Indeed, we have (BL(X))
◦ ⊂ (A∩BL(X))

◦, and thus, (A∩BL(X))
◦◦ ⊂ (BL(X))

◦◦,
where (BL(X))

◦◦ = B(L(X))∗∗ . As in the proof of Proposition 5.41, one can
verify that Φ satis�es Theorem 3.9 (b), which completes the proof.

Let us spell out an immediate application of Proposition 5.43 to the positive
approximation properties of pairs.

Corollary 5.44. Let X be a Banach lattice having the unique exten-

sion proerty and let Y be a closed subspace of X. Let A be an opera-

tor ideal. Denote A = {S ∈ A(X,X)+ : S(Y ) ⊂ Y }. If X has the

metric A-approximation property, then the dual lattice X∗ has the metric

A-approximation property with conjugate operators.
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The classical cases where Corollary 5.44 applies are A = F , A = K, and
A = W . For instance, taking A = F and Y = {0}, we have the following
version of Corollary 5.44 for positive approximation properties.

Corollary 5.45. Let X be a Banach lattice. If X has the unique extension

property and the metric positive approximation property, then the dual lattice

X∗ has the metric positive approximation property with conjugate operators.

Remark 5.46. If X is a Banach lattice, then the metric positive approxima-
tion property and the metric positive approximation property with conjugate
operators coincide for the dual lattice X∗ (see [LisO, Proposition 5.7]).

We also have the following immediate result from Propositions 5.26 and 5.43.

Proposition 5.47. Let X be a Banach space having the unique extension

property. Let A be a convex subset of W(X) containing 0. If X has the

metric A-approximation property, then X is 1-extendably locally re�exive of

type {S∗∗ : S ∈ A}.

Recall that if A is a convex subset of L(X) containing 0 (as in Proposition
5.43), then �X∗ has the metric A-AP with conjugate operators� is equiva-
lent to �X has the metric duality A-AP� (see Proposition 3.11). Therefore,
we immediately have the following Theorem 5.48 for metric nest APs from
Propositions 5.43 and 5.47.

Theorem 5.48. Let X be a Banach space having the unique extension prop-

erty and let N be nest of closed subspaces of X. Let A be an operator ideal. If

(X,N ) has the metric A-approximation property, then (X,N ) has the metric

duality A-approximation property.

Moreover, if A ⊂ W, then X is 1-extendably locally re�exive of type

{S∗∗ : S ∈ A(X), S(Y ) ⊂ Y ∀Y ∈ N}.

Remark 5.49. In the special case, when A = F and N = {Y }, where Y
is a closed subspace of X, Theorem 5.48 reduces to Theorem 5.42, a lifting
theorem of the metric APs for pairs.

Applying Theorem 5.48 toA = F yields the following metric nest AP version.

Corollary 5.50. Let X be a Banach space having the unique extension prop-

erty and let N be a nest of closed subspaces of X. If the pair (X,N ) has the

metric approximation property, then (X,N ) is 1-extendably locally re�exive.
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Proof. By Theorem 5.48, X is 1-ELR of type {S∗∗ : S ∈ F(X), S(Y ) ⊂
Y ∀Y ∈ N}. Since

{S∗∗ : S ∈ F(X), S(Y ) ⊂ Y ∀Y ∈ N} ⊂
{T ∈ F(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥ ∀Y ∈ N} ⊂
{T ∈ L(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥ ∀Y ∈ N},

we see that X is 1-ELR of type {T ∈ L(X∗∗) : T (Y ⊥⊥) ⊂ Y ⊥⊥ ∀Y ∈ N},
i.e., (X,N ) is 1-ELR.

In general, the UEP does not guarantee lifting of the λ-bounded AP from
a Banach space to its dual space, at least when λ ≥ 6. Indeed, let XJS be
the closed subspace of c0 constructed by Johnson and Schechtman (see [JO,
Corollary JS]). Then XJS has the UEP (all closed subspaces of c0 have, as
was already mentioned) and XJS has the 6-bounded AP (see [Z]), but X∗JS
does not have the AP, in particular, it does not have the λ-bounded AP for
any λ ≥ 1.

We conclude with the following rather surprising result, showing that the
UEP permits to lift the λ-bounded convex APs from a Banach space to its
dual space, 1 ≤ λ <∞, whenever the space already enjoys a weaker convex
AP.

Theorem 5.51. Let X be a Banach space having the unique extension prop-

erty. Let A and B be a convex subsets of L(X) and W(X), respectively, such
that A ◦ B ⊂ A and both contain 0. Let 1 ≤ λ < ∞. If X has the met-

ric B-approximation property and the λ-bounded A-approximation property,

then X has the λ-bounded duality A-approximation property.

Proof. By Proposition 5.43, the dual space X∗ has the metric B-AP with
conjugate operators. It follows from Theorem 5.28 that X has the λ-bounded
duality A-AP.

Let A be an operator ideal. Taking A = {S ∈ A(X) : S(Y ) ⊂ Y ∀Y ∈ N}
and B = {T ∈ W(X) : T (Y ) ⊂ Y ∀Y ∈ N}, we get from Theorem 5.51 the
following version for nest APs.

Theorem 5.52. Let X be a Banach space having the unique extension prop-

erty and let N be a nest of closed subspaces of X. Let A be an operator ideal

and let 1 ≤ λ < ∞. If the pair (X,N ) has the metric W-approximation

property and the λ-bounded A-approximation property, then the pair (X,N )
has the λ-bounded duality A-approximation property.
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For instance, it follows from Theorem 5.52 that if X has the UEP, then the
pair (X,N ) has the bounded duality AP whenever (X,N ) has the bounded
AP and the metric weakly compact AP.
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Tõkestatud aproksimatsiooniomaduste

ülekandumine Banachi ruumide

kaasruumidesse

Kokkuvõte

Aproksimatsiooniomadusi on uuritud alates 1930. aastatest. Tõkestatud ap-
roksimatsiooniomadust vaadeldi esmakordselt juba Banach raamatus [B]
(seda küll üldisemas, kompaktse aproksimatsiooniomaduse kontekstis). Süs-
temaatilised ja aktiivsed uuringud algasid 1955. aastal, mil Grothendieck
[G] aproksimatsiooniomaduse ja meetrilise aproksimatsiooniomaduse mõisted
kasutusele võttis. Aproksimatsiooniomadustega on seotud mitmeid siiani la-
hendamata probleeme. Kuulsaim neist on järgmine: kas Banachi ruumi kaas-
ruumi puhul on aproksimatsiooniomaduse ning meetrilise aproksimatsiooni-
omaduse mõisted erinevad? Seoses antud probleemi võimalike lahendusteede
uurimisega on võetud kasutusele mitmeid uusi tõkestatud aproksimatsiooni-
omaduse versioone. Aastal 2011 toodi artiklis [FJP] sisse tõkestatud aprok-
simatsiooniomaduse versioon paaride jaoks, mis koosnevad Banachi ruumist
ja tema kinnisest alamruumist. Erijuhul, kui alamruumiks on nullalamruum
(või terve ruum), ühtib antud versioon klassikalise tõkestatud aproksimat-
siooniomaduse mõistega. Hiljuti vaadeldi artiklis [FJ3] selle omaduse üldis-
tust � Banachi ruumi kinniste alamruumide ahela tõkestatud aproksimat-
siooniomadust.

Käesoleva väitekirja põhieesmärk on süstemaatiliselt uurida paaride ja ahela
tõkestatud aproksimatsiooniomadusi ning nende üldisemat versiooni artik-
list [LisO] � tõkestatud kumerat aproksimatsiooniomadust. Viimane hõlmab
erijuhul ka Banachi võrede positiivse aproksimatsiooniomaduse mõiste.

Käesolev väitekiri koosneb viiest peatükist. Väitekirja esimene sissejuhatav
peatükk sisaldab aproksimatsiooniomaduste ajaloolise tausta tutvustust, väi-
tekirja kokkuvõtet ning väitekirjas kasutatavate tähistuste kirjeldust.

Teises peatükis tuuakse ära töö ülejäänud osade jaoks vajalikud mõisted ja
tulemused. Vaatluse all on polaarid, ahelad Banachi ruumides, lõplikumõõt-
meliste operaatorite ruumi seos tensorkorrutistega ning selle ruumi kaasruu-
mi kirjeldus integraalsete operaatorite kaudu, mis on antud Grothendiecki [G]
poolt. Tutvustatakse ka pidevate lineaarsete operaatorite ruumi olulisemaid
lokaalselt kumeraid topoloogiaid. Tulemused Banachi ruumi alamruumide
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ahelate kohta pärinevad artiklist [OV2].

Väitekirja kolmandas peatükis de�neeritakse üldised aproksimatsioonioma-
dusega seotud mõisted, nende hulgas ka artiklitest [FJP, FJ3, LisO] pärinevad
aproksimatsiooniomaduste versioonid. Kirjeldatakse tõkestatud aproksimat-
siooniomaduste erinevaid versioone ning nende duaalseid vorme. Seejuures
tõestatakse paaride tõkestatud (duaalse) aproksimatsiooniomadusega viis sa-
maväärset tingimust, millest neli tõestatakse üldisemas tõkestatud (duaalse)
A-aproksimatsiooniomaduse kontekstis, kus A on pidevate lineaarsete ope-
raatorite ruumi alamhulk. Töötatakse välja järgmine tõkestatud kumera ap-
roksimatsiooniomaduse kriteerium, mis laiendab artiklis [O2] saadud operaa-
torideaali poolt de�neeritud tõkestatud aproksimatsiooniomaduse kirjeldust.

Teoreem 3.9. Olgu X Banach ruum ja olgu A ruumi L(X) tõkestatud kumer

alamhulk, mis sisaldab nulloperaatorit. Siis

(a) ruumil X on A-aproksimatsiooniomadus parajasti siis, kui leidub Φ ∈
A◦◦ ⊂ (L(X))∗∗ nii, et

Φ(x∗ ⊗ jXx) = x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X;

(b) kaasruumil X∗ on kaasoperaatoritega A-aproksimatsiooniomadus para-

jasti siis, kui leidub Φ ∈ A◦◦ ⊂ (L(X))∗∗ nii, et

Φ(x∗ ⊗ x∗∗) = x∗∗(x∗) ∀x∗ ∈ X∗, ∀x∗∗ ∈ X∗∗.

Lisaks tõestatakse, et paari, mis koosneb Banachi ruumi kaasruumist ja kinni-
se alamruumi annulaatorist, tõkestatud aproksimatsiooniomadus toob enda-
ga kaasa lähtepaari vastava omaduse. See tulemus üldistab järgmist Johnsoni
[J1] klassikalise aproksimatsiooniomaduse kohta käivat olulist teoreemi kaas-
ruumilt X∗ paarile (X∗, Y ⊥).

Teoreem 3.15 (Johnson). Olgu X Banachi ruum. Olgu 1 ≤ λ < ∞. Kui

kaasruumil X∗ on λ-tõkestatud aproksimatsiooniomadus, siis tal on kaasope-

raatoritega λ-tõkestatud aproksimatsiooniomadus.

See peatükk tugineb artiklitele [OT, OV1, V].

Neljandas peatükis töötatakse välja lokaalse re�eksiivsuse printsiibi ver-
sioonid, mis on kooskõlas Banachi ruumide kinniste alamruumide ahelate-
ga. Muuhulgas üldistatakse 1960. aastatest pärinev Ringrose'i ahelateoreem
Hilberti ruumi ja selle kinniste alamruumide täieliku ahela juhult allolevale
kahe Banachi ruumi ning kahe ahela juhule.
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Teoreem 4.3. Olgu X ja Y Banachi ruumid. Olgu G kaasruumi X∗ selline
alamruumide ahel, et {0} ∈ G, ning olgu NG = {VG : G ∈ G} ruumi Y
selline kinniste alamruumide ahel, et Y ∈ NG. Eeldame, et NG on kinnine

ühisosade moodustamise suhtes ja kasvav ahelal G. Tähistame R = {R ∈
X ⊗ Y : R(G) ⊂ VG ∀G ∈ G}.

(a) Olgu R = x ⊗ y ühemõõtmeline operaator. Siis R ∈ R parajasti siis,

kui leidub alamruum G ∈ G nii, et x ∈ (G−)⊥ ja y ∈ VG.

(b) Olgu R ∈ X ⊗ Y n-mõõtmeline operaator, kus n > 0. Kui R ∈ R,
siis R on avaldatav summana n-st ühemõõtmelisest operaatorist, mis

kuuluvad hulka R.

Uute lokaalse relfeksiivsuse printsiibi versioonide rakendusena laiendatakse
paari aproksimatsiooniomaduse ning selle tõkestatud versiooni duaalsustule-
mused (mis on vastavalt tõestatud artiklis [LisO] ning väitekirja kolmandas
peatükis) vastavalt ahela aproksimatsiooniomaduse ning selle tõkestatud ver-
siooni juhule. Seejuures üldistatakse Johnsoni [J1] teoreem 3.15 kaasruumilt
X∗ paarile (X∗,N⊥), kus N⊥ on teatud ahel, mis koosneb ruumi X kinniste
alamruumide annulaatoritest. Näidatakse, et ahela aproksimatsiooniomadus-
te kirjeldused artiklist [FJ3] on rakendatavad analoogiliste Gorthendiecki [G]
tüüpi kriteeriumite saamiseks duaalsete omaduste jaoks. See peatükk põhi-
neb artiklil [OV2].

Väitekirja viiendas peatükis vaadeldakse, millistel tingimustel saab tõkes-
tatud kumerat aproksimatsiooniomadust üle kanda Banachi ruumilt tema
kaasruumile. Näidatakse, et seda saab teha kahel põhilisel juhul. Esiteks eel-
dusel, et lähteruum rahuldab laiendatava lokaalse re�eksiivsuse ning lokaal-
se re�eksiivsuse printsiibi teatavaid nõrgendatud vorme. Teiseks eeldusel, et
kaasruumil on olemas tõkestatud kumera aproksimatsiooniomaduse nõrgem
versioon.

Teoreem 5.28. Olgu X Banachi ruum. Olgu A ruumi L(X) kumer alam-

hulk, mis sisaldab nulloperaatorit ning B ruumi W(X) selline alamhulk, et

A ◦ B ⊂ A. Olgu 1 ≤ λ, µ < ∞. Kui kaasruumil X∗ on kaasoperaatori-

tega λ-tõkestatud B-aproksimatsiooniomadus ja ruumil X on µ-tõkestatud
A-aproksimatsiooniomadus, siis on ruumil X λµ-tõkestatud duaalne A-ap-
roksimatsiooniomadus.

Need tulemused annavad üldise meetodi erisuguste tõkestatud aproksimat-
siooniomaduste ülekandmiseks lähteruumilt kaasruumile ning üldistavad ja
parendavad teadaolevaid tulemusi klassikalise tõkestatud aproksimatsioo-
niomaduse kohta. Esimesest üldisest tulemusest järeldatakse muuhulgas
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Johnson�Oikhbergi [JO] tõkestatud aproksimatsiooniomaduse kohta käiv
teoreem, mida seejärel laiendatakse paari ja ahela tõkestatud aproksimat-
siooniomaduste juhule. Väitekirja kolmandast peatükist pärineva tõkesta-
tud kumera aproksimatsiooniomaduse kriteeriumi, teoreemi 4.3, rakendusena
tõestatakse järgmine üldistus Godefroy�Saphari teoreemile meetrilise aprok-
simatsiooniomaduse ülekandumiseks Banachi ruumi kaasruumile, mis raken-
dub ka Banachi võredes.

Lause 5.43. Olgu X Banachi ruum, millel on ühese jätkamise omadus. Olgu

A ruumi L(X) kumer alamhulk, mis sisaldab nulloperaatorit. Kui ruumil X
on meetriline A-aproksimatsiooniomadus, siis on kaasruumil X∗ kaasoperaa-
toritega meetriline A-aproksimatsiooniomadus.

Teatavasti üldjuhul ei võimalda ühese jätkamise omadus tõkestatud aproksi-
matsiooniomadust üle kanda Banachi ruumilt tema kaasruumile, kuid lausest
5.43 ning teoreemist 5.28 selgub, et see on võimalik juhul, kui lähteruumil on
olemas meetrilise aproksimatsiooniomaduse nõrgem versioon.

Teoreem 5.51. Olgu X Banachi ruum, millel on ühese jätkamise omadus.

Olgu A ja B vastavalt ruumide L(X) ja W(X) sellised kumerad alamhul-

gad, et A ◦ B ⊂ A ning mõlemad sisaldavad nulloperaatorit. Olgu 1 ≤ λ <
∞. Kui ruumil X on meetriline B-aproksimatsiooniomadus ja λ-tõkestatud
A-aproksimatsiooniomadus, siis on ruumil X λ-tõkestatud duaalne A-ap-
roksimatsiooniomadus.

Antud peatükis on mõningad tulemused tõestatud paaride ja ahela aproksi-
matsioonomaduste üldisemates kontekstides, milleks on paaride kumer ap-
roksimatsiooniomadus ning operaatorideaali poolt de�neeritud ahela aprok-
simatsiooniomadus. See peatükk põhineb artiklitel [OV1, OV2, V].

Väitekirja olulisemad tulemused on ilmunud/ilmumas artiklites [OT, OV1,
OV2, V].
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