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1. INTRODUCTION 

Papillomaviruses (PVs) are highly species-specific viruses that have coevolved 
with their hosts for millions of years and have become well adapted to their 
distinct epithelial niches; in addition, a group of specific subtypes have developed 
oncogenic potential. To date, over 200 human papillomavirus (HPV) types have 
been identified, and infections caused by these types can result in a wide variety 
of outcomes that are mostly asymptomatic or induce the development of benign 
warts and papillomas determined by the HPV type and anatomical region. 
However, the persistent, long-lasting infections of oncogenic HPV types might 
induce genetic instability and cancer development in host cells over many years. 
For instance, mucosal oncogenic HPVs are almost always causative agents of 
cervical cancer and an increasing number of several anogenital and oropharyngeal 
cancers, posing a considerable global health and economic burden. 

To establish persistent infection, the HPV genome must first undergo several 
rounds of DNA replication (called the initial DNA amplification phase) upon 
entry into the host cell and successful partitioning into daughter cells during cell 
division. HPV has a small circular DNA genome that is very compact with 
minimal coding capacity. The virus encodes only two replication proteins, and 
thus, to facilitate its reproduction, it necessarily evolved strategies to hijack the 
host DNA synthesis machinery. Over the past several years, mounting evidence 
has indicated that the HPV replication centers localize close to DNA regions 
that are prone to replication stress and that HPV might hijack and take advantage 
of these cellular DNA damage and repair pathways to replicate its DNA. 
However, the exact viral functions and mechanisms activating these pathways 
remain unknown and need to be elucidated for successful anti-HPV drug develop-
ment that has failed so far. 

The literature overview provided within the current thesis mainly summarizes 
the current knowledge of the HPV DNA replication cycle, its clinical importance, 
cellular DNA damage response pathways together with their involvement in the 
HPV life cycle, and a brief overview of current in vivo animal models for 
studying HPV infection. The original studies on which the current thesis relies 
are focused on the initial replication of the HPV genomes, specifically describe 
the replication intermediates generated during the viral DNA replication phase 
and suggest the DNA replication modes behind these structures. Additionally, 
this research characterizes the gene expression and replication properties of the 
HPV-related cynomolgus macaque papillomavirus genomes as potentially 
valuable in the development of an in vivo animal model for preclinical testing 
of anti-HPV therapeutics. 
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2. LITERATURE OVERVIEW  

2.1 General introduction to human papillomaviruses 

Papillomaviruses are extremely species-specific small DNA viruses that infect 
the mucosal or cutaneous keratinocytes of vertebrates. To date, over three 
hundred PV types have been identified, of which approximately two hundred 
types infect humans [1]. PV research has mostly focused on human papilloma-
viruses because of the clinical importance of these viruses since the discovery 
of the association between cervical cancer and infection with specific HPV 
types [2]. 
 
 

2.1.1 Medical burden of HPVs 

HPVs are widely spread among the human population, and general cutaneous 
HPV types are considered a part of healthy skin microflora; such infections are 
usually asymptomatic (e.g., HPV12, HPV14, HPV19) or cause warts or other 
clinically insignificant lesions (e.g., HPV1, HPV2, HPV4), which tend to be 
cleared by the host immune system [3]. However, some cutaneous HPV types, 
such as HPV5 and HPV8, have been associated with nonmelanoma skin cancer 
lesions in immunosuppressed [4–6] or epidermodysplasia verruciformis (EV) 
patients having a rare hereditary skin disorder [7,8]. 

Clinically, more important mucosal HPV types are the most common 
sexually transmitted viruses and can be divided broadly into two distinct groups 
based on their potential to induce malignancy progression in the host or not. 
The nononcogenic, called low-risk (LR), types, are mainly associated with 
benign lesions, anogenital warts and recurrent respiratory papillomatosis (RRP) 
[9]. RRP is a rare disorder in which recurrent benign papillomas arise in the 
respiratory tract; frequent surgical removals are required depending on the 
severity of the disease, and sometimes the number of surgeries may exceed 100 
[10]. The most prevalent LR types are HPV6 and HPV11, which are responsible 
for approx. 90% of the cases of anogenital warts [11,12]. Although anogenital 
warts rarely have the potential to undergo malignant conversion, the recurrence 
rate after treatment is very high, posing substantial healthcare costs [9]. 

Although the productive infection of high-risk (HR) types often causes no or 
minimal cytological abnormalities and these lesions are usually transient and 
clear without intervention within 1–2 years [13], there is still a fraction of onco-
genic HPV infections that persist and cause genetic instability of the host cells, 
promoting cancer development with a considerable worldwide burden. For 
instance, HR HPV types are considered to be the causative agents of virtually 
all cases of cervical cancer, being diagnosed in approx. half a million women 
every year, and nearly half of these women die from the disease [14]. The most 
prevalent types are HPV16 and HPV18, both accounting for approx. 70% of 
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cervical cancer cases worldwide [12]. Additionally, oncogenic HPVs are 
responsible for promoting the development of several other anogenital 
malignancies (e.g., anal, penile, vaginal and vulvar cancers) [15] as well as head 
and neck cancers (particularly oropharyngeal cancers) [16]. In recent decades, 
mounting evidence has shown that HR HPVs are quite frequently related to 
oropharyngeal carcinoma (HPV + OPC), which can account for approx. 60% of 
such cases; HPV16 is the predominant HPV type identified in oropharyngeal 
carcinoma specimens [17]. The significantly increasing incidence rate of HPV + 
OPC and the unavailability of highly effective screening tests (such as Pap 
smears) for detecting precancerous or cancerous lesions constitute serious 
ongoing health concerns. The current prophylactic vaccines are highly effective 
in preventing the infection of certain HPV types (HPV6, 11, 16, 18, 31, 33, 45, 
52 and 58) [18], and a decline in the incidence of HPV infections and cervical 
dysplasias was observed after the introduction of the vaccines [19,20]; however, 
these vaccines do not cure ongoing HPV infections. The development of HPV 
drugs has not been successful. Considering the clinical burden of HPVs, the 
need for anti-HPV therapeutics to treat ongoing viral infections is strong. 

 
 

2.1.2 Genomic organization of HPVs and  
an introduction to the viral proteins  

The HPV genome is an approx. 8 kb long double-stranded circular DNA 
molecule that is divided into three main regions: an early and a late coding 
region separated by the upstream regulatory region (URR) (Fig. 1). In principle, 
the viral proteins expressed from the open reading frames (ORFs) of the early 
coding region are synthesized from the beginning of the viral life cycle, while 
viral late proteins (capsid proteins) are expressed only in the upper layer of an 
infected epithelium before virion assembly. The URR region contains the viral 
DNA replication origin, promoter regions, and a number of binding sites of 
cellular and viral transcriptional regulators. Early proteins are involved in several 
processes during the viral life cycle. 

The E1 and E2 proteins are the only HPV-encoded factors directly involved 
in viral DNA replication. The E1 protein is a multifunctional protein consisting 
of three functional domains, and its ATP-dependent replicative helicase activity 
is facilitated by the C-terminal domain. The E1 protein also interacts with several 
cellular DNA replication proteins necessary for recruiting host DNA replication 
machinery to the viral origin. The N-terminal domain contains several regulatory 
sequences, including the nuclear localization signal and nuclear export sequences. 
The central DNA-binding domain facilitates E1 binding to the viral origin [21]. 
The initiation process of DNA replication mediated by the viral E1 and E2 
proteins is described in more detail in chapter 2.2.1. The viral E2 protein is also 
a multifunctional protein and has a crucial role in the maintenance of viral DNA 
in infected keratinocytes, tethering viral genomes to mitotic chromosomes during 
host cell division. Moreover, the E2 protein acts as a main viral transcriptional 
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regulator through its binding sites within the URR region. In addition to the 
viral E2 full-length protein, HPVs also encode repressor forms of E2 proteins 
that have a C-terminal DNA-binding domain but lack the N-terminal trans-
activation domain. The repression of these truncated E2 proteins is mediated by 
competition for binding to E2 binding sites with the URR (reviewed in [22]). 
For instance, the E8^E2 protein (the E8 peptide is fused in-frame with the  
C-terminal DNA-binding domain of E2) is a major repressor, strongly 
restricting viral DNA replication and transcription [23–26]. 
 

Figure 1. Schematic representation of HPV genome. The viral early open reading 
frames are marked with light orange, the open reading frames expressing viral replication 
proteins are emphasized with dark cyan. The late open reading frames are marked with 
dark orange. URR denotes upstream regulatory region; origin denotes approximate 
position of the origin sequence of viral DNA replication (adapted from [41]).    
 
E5, E6 and E7 are viral oncogenes that reshape the host cell environment to 
ensure conduciveness to DNA replication and resistance to apoptotic signals, 
two important factors for the successful completion of the viral life cycle. E6 
and E7 are the main viral proteins modulating the activity of several cellular 
proteins. The most important and extensively studied target of E6 proteins is the 
cellular tumor suppressor p53. E6 promotes its proteasome-mediated degradation 
and leads to the abolition of p53-mediated growth arrest and apoptosis-
promoting activities [27,28]. E7 is responsible for inducing the dysregulation of 
cellular proliferation by most prominently disrupting the function of the 
retinoblastoma family proteins [29] and several other cellular proteins [30–32]. 
The oncogenic potential of HR HPV types mainly lies in the properties of the 
viral E6 and E7 proteins, in particular the higher binding affinity for their 
cellular targets (p53, pRb) [28,33,34]. The E5 oncoprotein is a transmembrane 
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protein, and its function is poorly defined. It is likely that E5 contributes to 
immune evasion [35] and promotes infectious cell growth by amplifying 
mitogenic signals from the epidermal growth factor receptor [36]. 

As a result of mRNA splicing, the viral E4 protein is expressed as an E1^E4 
fusion protein [37]. Although the E1^E4 protein is defined as a viral early 
protein, its expression level is highest in the upper epithelial layers during 
productive infection. Furthermore, the E1^E4 protein has been shown to have 
the ability to bind and collapse the cytokeratin network, which might be 
necessary for facilitating virion release into the environment [38]. 

L1 and L2 are capsid proteins that are synthesized in terminally differentiated 
keratinocytes during the productive life cycle. L1 is the major capsid protein 
responsible for forming the capsid structure [39], while L2 proteins are crucial 
for the effective encapsulation of viral DNA and ensuring the infectivity of 
HPV virions [40]. 
 
 

2.1.3 HPV life cycle in stratified epithelium 

HPV infects the basal keratinocytes of stratified cutaneous and mucosal epithelia 
and has evolved life cycle strategies tightly linked to the renewal program of 
multilayered epithelial tissue (Fig. 2). The epithelial stem cells attached to the 
basement membrane reside in the basal layer, the innermost layer of the 
epidermis, which is responsible for replenishing the stratified epithelia. When a 
basal keratinocyte divides, the daughter cells have two alternatives: maintain 
stem-cell status or undergo differentiation, leaving the basement membrane and 
start migrating upward to the epithelial surface. Fully differentiated keratinocytes 
(dead, keratinized cells) are constantly sloughed off from the tissue surface as 
part of the constant epithelial regeneration process [42,43]. PVs exploit this 
renewal process and have evolved successful strategies to manipulate many 
cellular signaling pathways to support the effective production of progeny 
virions in keratinocytes undergoing differentiation. Namely, HPV enters the 
epithelium through microabrasions, and the productive viral infection is expected 
to infect the basal keratinocytes where the virus establishes a quiescent, persistent 
infection (i.e., low viral DNA copy number and very limited gene expression). 
When infected keratinocytes undergo the epithelial differentiation program, 
viral oncoproteins promote a cellular environment conducive to high levels of 
viral DNA and protein synthesis during the productive phase of the HPV life 
cycle. Such viral DNA replication strategies with high viral activity mostly 
occur in the upper epithelium, outside of the basement membrane and away 
from the epithelial immune effector cells, allowing HPVs to evade the host 
immune system. The amplified viral DNA is packaged into virions and released 
inside terminally differentiated superficial keratinocytes that are sloughed off 
the epithelial surface. These cells are destined for death and desquamation, and 
no virus-mediated cell death and inflammation occur that would activate the 
host immune response (reviewed in [44,45]). 
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Figure 2. Schematic representation of productive HPV life cycle in a stratified 
epithelium. The schematic shows the differentiated layers of a stratified epithelium and 
the viral life cycle events corresponding to the state of infected keratinocytes. See text 
for details (adapted from [41]).   
 
 

2.2 HPV DNA replication cycles 

The complex differentiation-dependent viral life cycle involves three separate 
phases of viral DNA replication. The first HPV DNA replication phase occurs 
soon after entry into the host cell to establish persistent viral infection. It is 
followed by the stable maintenance phase, during which the viral genomes are 
maintained at a low, constant copy number. The final stage, vegetative ampli-
fication, is a differentiation-dependent DNA replication phase wherein the HPV 
genomes are amplified to a high copy number prior to virion assembly [46]. 
Mimicking this viral life cycle that is tightly linked to the host differentiation 
program under laboratory conditions is quite time consuming and complicated. 
 
 

2.2.1 The early stages of the HPV life cycle.  
The initial DNA amplification  

Most PVs use the clathrin-mediated endocytosis pathway to enter the host cell 
[47–49]. During the host cell mitosis, where the nuclear membrane is dis-
assembled and the cellular mitotic chromosomes are available, the L2-mediated 
binding of the viral genome to the mitotic chromosomes assures the efficient 
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delivery of the L2-viral genome complex along with a subset of L1 to the host 
nucleus after cell division [50]. In the nucleus, the viral DNA is localized 
adjacent to distinct nuclear regions known as nuclear domain 10 (ND10) [51]. 
These organized nuclear structures consist of proteins that have IFN-inducible 
antiviral activity and are associated with several cellular processes, including 
DNA replication, transcription, and DNA repair [52]. However, HPVs, like 
numerous other viruses, have evolved means to circumvent this antiviral defense 
mechanism and likely take advantage of these subnuclear sites for effective 
viral genome replication [53,54]. For instance, the viral L2 reorganizes the 
Sp100 and Daxx proteins of the ND10 bodies to promote early viral 
transcription and replication of HPV genomes [55–57]. The L2 protein has been 
observed to mediate the recruitment of the E2 protein to the ND10 bodies, 
which would be necessary to initiate the early viral DNA replication and 
transcription [58]. 

The initiation of PV DNA replication is determined by the levels of the E1 
and E2 proteins; both factors are sufficient and required for the initiation process 
at the viral origin of replication [59]. DNA replication initiation at the viral 
origin is an extensively described process. First, the dimeric E1 protein is 
recruited to the viral origin by viral E2, forming the E1-E2 complex [60] (Fig. 3). 
E2 is responsible for the specific binding of E1 to the viral origin, interacting 
with the E1 helicase domain [61,62]. Then, the E2 proteins are displaced from 
the complex, followed by the loading of additional E1 molecules that results in 
the formation of a double-trimer complex at the viral origin. This functional 
complex has activity that induces the local melting of the double-stranded viral 
origin using ATP hydrolysis energy [62,63]. The generated single-stranded 
DNA (ssDNA) serves as the subsequent assembly of additional E1 molecules, 
after which the active double-hexameric helicase complex is formed and loaded 
onto the single DNA strands to unwind the viral dsDNA (ATP hydrolysis-
dependent process) [64,65], making DNA accessible to DNA replication factors. 
PVs exploit the cellular replicative machinery for viral DNA synthesis, and 
these factors are recruited to the PV origin by viral proteins. E1 has been 
demonstrated to interact with several host replication factors, such as DNA 
polymerase α-primase [66,67], topoisomerase I [68] and replication protein A 
(RPA) [69] (reviewed in [21]). 

Upon formation of the replication initiation complex, the HPV genome 
undergoes a number of rounds of DNA synthesis to amplify viral DNA to a low 
copy number (approx. 50–200 copies) [70] for establishing effective viral 
infection. During the initial DNA replication phase, HPV genomic oligomers 
(containing several copies of the viral genome) appear, becoming predominant 
viral DNA forms over time [71–74]. Furthermore, the replication of these 
oligomeric genomes may initiate at only one active replication origin, ensuring 
the efficient replication of a large number of the HPV genomes despite the 
limited availability of viral replication factors [72,75]. This phenomenon would 
be a very beneficial strategy for the virus to maintain a high genomic copy 
number with minimal viral biological activity in the lower layer of the infected 
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epithelium where host immune effector cells reside. The oligomerization process 
is thought to be an important step for switching to the stable maintenance phase 
[71]. Hence, the first DNA amplification phase is more like a short-term burst 
that must be tempered to enter the quiescent, stable maintenance phase and 
remain undetectable to the host immune surveillance. The E8^E2 repressor 
protein could have an important role in preventing this runaway replication 
[26,76,77]. 

 
Figure 3. Assembly of the DNA replication initiation complex. The initiation of DNA 
replication form viral origin is an E1/E2-dependent process. See text for details. E1BS 
denotes E1 binding site; E2BS denotes E2 binding site (adapted from [79]). 

 
It is generally assumed that viruses replicate via bidirectional theta structures 
during the initial DNA amplification. The initiation of the theta replication 
mode involves the formation of two replication forks at the replication origin of 
the circular genome that progress in opposite directions until they converge 
approximately 180 degrees from the origin (Fig. 4A). DNA replication is 
completed by the separation of the replicated DNA molecules. However, this 
DNA replication mode has not been confirmed experimentally, and currently, 
accumulating evidence has also indicated that DNA damage response and repair 
pathways are engaged in the initial replication of the HPV genomes [71,78]. To 
determine the DNA replication mechanism involved in the initial amplification, 
the replication intermediates (RIs) that arise during viral genome replication 
should be analyzed. It is technically challenging to study the HPV DNA repli-
cation occurring soon after viral entry into the host cell since the copy number 
of replicating viral genomes is low in the basal keratinocytes, and therefore, the 
viral RIs derived from patient tissue samples cannot be detected using standard 
molecular analysis techniques. Under laboratory conditions, the first ampli-
fication phase of PV replication is mimicked by transferring naked viral genomes 
into eukaryotic cells. The lack of a suitable eukaryotic cell line that readily 
supports the efficient replication of a full-length HPV genome has hampered the 
progress in determining the replication mechanism behind the initial viral 
amplification. Alternatively, short-term HPV replication can be reconstituted 
transiently in several cell lines by cotransfecting PV origin-containing plasmids 
and heterologous expression vectors encoding the viral replication proteins E1 
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and E2, which has extensively enabled the description of the viral DNA repli-
cation initiation steps and the viral/host replication factors required for the 
E1/E2-dependent replication of PV genomes. 

 
Figure 4. Schematic representation of the replication intermediates of bidirectional 
theta replication (A) and sigma type rolling cycle replication mode (B). Bidirectional 
theta replication and sigma type rolling cycle replication are the suggested replication 
modes of HPV genomes. See text for details. Origin denotes the approximate position of 
the origin sequence of viral DNA replication (adapted from [93]) 
 
 

2.2.2 Stable maintenance replication 

After the initial amplification when a small number of viral genomes have been 
synthesized, the virus enters a quiescent, stable maintenance phase during 
which the viral DNA is stably maintained at a near constant level in subsequent 
divisions of the basal keratinocytes, and the viral infection can last for decades. 
To sustain a persistent infection, localization of the viral genomes adjacent to 
the active regions of host chromatin is crucial for continuous viral genome 
replication and for the effective partitioning of viral episomal genomes to 
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daughter cells during mitosis. The faithful partitioning of viral genomes to 
daughter cells is facilitated by the E2 activity of tethering the viral episomal 
genomes (through E2BSs in the viral genome) to the host mitotic chromosomes, 
which guarantees that viral episomes are retained in the nucleus of daughter 
cells after cell division [80,81]. 

The level of viral DNA replication must be tightly regulated during the stable 
viral maintenance phase to prevent the runaway DNA replication characteristic of 
the initial and vegetative amplification phases. Study of the HPV DNA 
replication of the stable maintenance stage has mainly taken advantage of the 
W12 (HPV16-positive) [82] and the CIN612 cell lines (HPV-31b-positive) [83], 
which are derived from low-grade cervical lesions harboring replicating HPV 
episomes or keratinocytes transfected with the HPV genomes [84–86]. Notably, 
HPV encodes repressors, including the E8^E2 protein necessary for regulating 
the level of stable maintenance DNA replication [24,76]. Additionally, the viral 
replication protein E1 has been demonstrated to be retained in the cytoplasm if 
the host cell is not in the S-phase of the cell cycle [87]. Furthermore, in certain 
circumstances, viral DNA replication might even proceed in the absence of the 
E1 protein [88,89]. However, this result contradicts the findings obtained when 
analyzing replication intermediates generated during the stable maintenance 
phase. Two-dimensional agarose gel electrophoresis (2D AGE) analysis revealed 
that viral DNA replication during stable maintenance phase occurs bidirectionally 
via theta structures and that the viral DNA replication origin is located within 
the URR where also the initial E1/E2 dependent viral DNA replication is 
initiated, thus reducing the likelihood that the E1 protein is dispensable for the 
initiation of stable maintenance DNA replication [75,90,91]. 

The maintenance replication of viral genomes occurs in S-phase along with 
that of cellular DNA. Two different modes have been reported for how HPV 
maintains the viral copy number at a near constant level in proliferating basal 
keratinocytes. Namely, in the W12 cell line (HPV16-positive), HPV DNA repli-
cation occurred via a strictly controlled once-per-cell cycle mechanism proposed 
to rely entirely on cellular DNA replication factors, while the random-choice 
mode was characteristic of the CIN612 cell line (HPV31b-positive), in which 
some DNA molecules underwent a few rounds of replication during S-phase, 
some only one, and some did not undergo any. Both modes result in a statistically 
constant viral DNA copy number per cell throughout the proliferative phase of 
the basal cell [92]. However, when HPV31b or HPV16 DNA was transferred 
into the immortalized keratinocyte cell line NIKS, a random-choice mechanism 
was observed for both HPV types. Moreover, overexpression of the viral E1 
protein promoted the random-choice replication mode in W12 cells, indicating 
that HPV genomes are inherently capable of both replication modes [92]. 
Collectively, these results reflect that two different DNA replication mechanisms 
might be deployed for viral DNA replication during the stable maintenance 
phase, with the choice determined by the availability of viral replication factors 
in the host cell nucleus. 
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2.2.3 Vegetative viral DNA replication 

When the HPV-infected basal keratinocyte starts moving upwards through the 
stratified epithelium and undergoes a differentiation program, the viral productive 
life cycle stage is initiated. The virus must transition out of the stable maintenance 
phase to promote extensive viral DNA synthesis and late gene expression, 
ensuring the effective production of infectious viral particles. The considerably 
increased levels of the viral replication factors, especially E1 protein, in the 
nucleus of the differentiating keratinocyte promotes the replication mode switch 
from strictly regulated stable maintenance DNA replication to unscheduled 
extensive vegetative DNA replication, resulting in thousands of copies of the 
viral genome per cell [94,95]. The E1 transcripts are transcribed from both early 
and late promoters during the vegetative phase; however, only the expression 
from the late promoter is not suppressed by the E2 protein, enabling the high 
expression levels of the E1 protein. Therefore, the expression of E1 at high 
levels would be regulated by the differentiation processes of the host cell (the 
activation of the viral late promoter) and guarantees that expression of the E1 
proteins from the viral genomes stably maintained in basal keratinocytes is 
limited [46]. Additionally, for the effective vegetative amplification of the HPV 
genomes, the processed E1 protein is required. Namely, upon differentiation, 
HPV infection activates caspases, which mediate the cleavage of the N-terminus 
of the E1 protein at a conserved caspase cleavage motif. The caspase-mediated 
cleavage of E1 appeared to be nonessential for viral genome maintenance in 
basal cells, implying that E1 cleavage would also be crucial for regulating 
differentiation-dependent viral DNA replication [96,97]. 

There has long been evidence that upon differentiation, there is a shift in the 
viral DNA replication mode. To mimic viral vegetative DNA replication under 
laboratory conditions, HPV-positive keratinocyte lines that are induced to 
differentiate in high-calcium medium suspended in methylcellulose are mainly 
utilized [96,98]. 2D AGE analysis of RIs arising in the W12 and CIN612 cell 
lines revealed that the bidirectional theta replication structures were preset in 
undifferentiated keratinocytes, and upon differentiation, only the alternative 
replication structures were detectable [90]. When analyzing the in vivo DNA 
replication structures extracted from HPV11-positive vocal cord papilloma 
tissue (expected to represent vegetative amplification phase due to the high viral 
DNA copy number), there were also indications of an alternative DNA replication 
mode, although the bidirectional theta structures were predominant [99]. These 
additional RIs are consistent with the unidirectional DNA replication mode with 
the absence of specific initiation and termination sites, and therefore, a rolling 
circle mode of DNA replication has been proposed to be involved in the 
vegetative viral DNA replication [90] in which nicking of one strand generates 
the 3’ end, enabling leading strand synthesis, which together with lagging strand 
synthesis on the displaced strand template generates linear tails of concatemeric 
genomes [100] (Fig. 4B). However, these alternative DNA replication inter-
mediates identified during the vegetative amplification phase are also compatible 
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with recombination-dependent replication (RDR) mode, which is in line with 
the accumulating evidence of the localization of the cellular DNA damage 
response and repair pathway proteins in the HPV replication foci. 

 
 

2.3 DNA damage response  

The integrity of the cellular genome is constantly challenged by environmental 
agents or lesions arising spontaneously during DNA metabolism. To counteract 
genomic insults to retain genome functionality, cells have evolved DNA repair 
and genome surveillance mechanisms, collectively forming the DNA damage 
response (DDR) network. In principle, when DNA lesions are discovered by 
DDR sensor proteins, transducer kinases are recruited to the site of damage. 
Then, together with mediator proteins, the signal is amplified and mediated, and 
through the effector kinases, the signaling pathways are activated. This process 
results in arrested cell cycle progression induced by activated cell cycle 
checkpoints to prevent cells with damaged or incompletely replicated DNA 
undergoing mitosis and ultimately, the influx of DNA repair proteins to the 
DNA lesions. For counteracting genomic insults, two major signaling pathways 
are utilized, depending on the nature of the DNA lesion [101]. 
 
 

2.3.1 DNA double-stranded breaks 

dsDNA breaks (DSBs), mainly induced by exogenous chemicals, reactive 
metabolic intermediates, ionizing radiation, or replication stress, are considered 
one of the most deleterious types of DNA damage with the potential to induce 
chromosomal rearrangements. DSBs can be repaired through two major distinct 
repair mechanisms: the error-prone nonhomologous end joining (NHEJ) or the 
error-free homologous recombination pathway. The occurrence of homologous 
recombination is limited to late S to G2 phases, while NHEJ acts primarily in 
G1 phase, although it can function throughout the cell cycle [102]. Thus, 
depending on the cellular context, DSBs could be recognized by two main 
sensors, the Mre11-Rad50-Nbs1 (MRN) or the Ku70/Ku80 complexes, which 
determines the choice of repair pathway. The binding of the Ku70/Ku80 
heterodimer leads to the engagement of DNA-PKcs to promote the repair of DNA 
damage via the NHEJ pathway (i.e., the ligation of two broken DNA ends 
together) [103], whereas the MRN complex (in particular the activity of Nbs1) 
has an important role in recruiting the ATM (Ataxia telangiectasia mutated) 
kinase that, through autophosphorylation, triggers the repair mechanism via 
homologous recombination. The checkpoint kinase 2 (Chk2), a crucial down-
stream effector in the ATM signaling cascade, amplifies the DNA damage 
signal throughout the nucleus and promotes cell cycle arrest in response to 
DNA damage [103]. Homologous recombination-mediated repair proceeds in 
several distinct steps: upon detection of DSBs, the MRN complex, in particular 
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the nuclease activity of Mre11, is responsible for processing the DNA to 
generate the 3′ ssDNA free end. BRCA2 mediates the recruitment of the 
recombinase RAD51 to DSBs, and subsequently, a RAD51-ssDNA nucleoprotein 
filament is formed that invades the undamaged homologous DNA region, 
forming the displacement loop (D-loop) structure. Subsequent to D-loop 
formation, DNA synthesis is initiated, and the homologous DNA region serves 
as a template to faithfully repair the damaged DNA sequence (reviewed in [104]). 
 
 

2.3.2 DNA replication stress 

The DDR response is also stimulated in response to DNA replication stress 
manifested as stalled DNA replication forks. It may arise from different sources, 
including secondary DNA structures, collision with transcription complexes, 
common fragile sites, interstrand crosslinks (ICL), or a shortage of nucleotides 
[105]. Replication stress is recognized by ATR (ataxia telangiectasia and Rad3 
related) kinase in the presence of DNA structures that contain ssDNA bound by 
RPA. The DDR response is advanced upon the localization of ATR, and its 
obligate partner, the ATRIP (ATR interacting protein), to the site of DNA 
damage, which is followed by the loading of the ring-shaped 9-1-1 complex 
(Rad9-Rad1-Hus1) onto the collapsed DNA replication forks. Finally, the 9-1-1 
complex brings TopBP1 (topoisomerase II-binding protein 1) in close proximity 
to the ATR-ATRIP complex, unleashing the ATR kinase activity [106]. The 
activated ATR kinase, the key protein in the pathway, transduces the signal 
through phosphorylation of the checkpoint kinase Chk1 that induces cell cycle 
arrest at the G2/M checkpoint. Additionally, the ATR signaling cascade plays 
an important role in regulating the stability of stalled replication forks and 
recruiting DNA repair proteins, such as BRCA1 and Bloom syndrome protein 
(BLM), to the damaged sites [107,108]. Moreover, Chk1 has been shown to 
induce homologous recombination through the phosphorylation of Rad51 [109], 
and the role of ATR in promoting homologous recombination has been pro-
posed to be restricted to replication-born DSBs [106]. 

The ATR and ATM signaling pathways have been thought to operate in 
parallel as two distinct kinase signaling cascades activated in response to DSBs 
and replication stress, respectively; however, more recently, accumulating 
evidence has shown that these two pathways might be interdependent. Namely, 
the MRN complex is necessary for promoting strand resection and the activation 
of ATR-Chk1 in response to DSBs [110]. For instance, although the MRN 
complex is a key component in the ATM-mediated repair of DSBs through the 
homologous recombination, it has been suggested to be necessary for the 
activation of ATR in response to stalled DNA replication forks and is also 
involved in activation of ATR for repairing the replication-associated DSBs 
[111–113]. Moreover, the MRN complex protein of Nbs1 likely has an essential 
role in the resolution of stalled replication forks through homologous recom-
bination [114]. Additionally, the ATR and ATM signaling cascades intersect 
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with the Fanconi anemia (FA) pathway to respond to DNA interstrand crosslink 
(ICL) lesions. FA patients are hypersensitive to all DNA cross-linking agents 
due to the dysfunctional FA repair pathway. This pathway comprises at least 
twenty-two FA proteins and many associated factors [115] classified into 
groups according to their function. Stalled replication forks at the ICLs are 
recognized by the FA targeting components (the FANCM-FAAP24-MHF 
complex), which in turn recruit the FA core complex at sites of DNA damage 
[116,117]. The FANCM protein is responsible for the activation of ATR kinase 
in response to replication stress [118], resulting in the ATR-mediated phos-
phorylation of numerous FA proteins, including the key complex FANCI-
FANCD2 (FA ID), which is necessary for its ubiquitination by the FA core 
complex [119]. This ubiquitination leads to the recruitment of the FA effector 
and other repair proteins (e.g., BRCA2, RAD51) to the lesion site to remove the 
ICLs and restore stalled replication forks [120–122]. The ATM kinase also 
mediates the phosphorylation of FANCD2, which is important for activating the 
intra-S-phase checkpoint [123]. Recently, FANCM has been suggested to 
interact with the BLM complex in stalled forks to promote both repair and 
replication traverse of ICLs [124]. Several studies have shown that BLM plays a 
role in resolving replication stress by stimulating broken DNA end resection 
and homologous recombination processes [125–130]. 

 
 

2.3.3 HPV manipulation of the DDR 

HPVs encode only two replication proteins, and therefore, their DNA-repro-
duction mechanism is highly dependent on host factors. HPVs must have evolved 
strategies that enable viral DNA replication in differentiated keratinocytes that 
have completed S-phase. Over the past several years, an accumulation of 
evidence has indicated that HPV infection activates DNA damage and repair 
pathways. However, the DDR cascade is not activated as an indirect response to 
viral infection, but instead, it is a critical part of effective viral genome 
replication. In principle, the virus recruits DDR proteins to the specific viral 
nuclear foci [78,97,131,132] and likely takes advantage of the activated DNA 
repair factors for its genome replication; however, the exact mechanism remains 
to be elucidated. The knowledge of the involvement of DDR in HPV DNA 
replication has been mainly elucidated from studying vegetative viral DNA 
replication. Although the activated ATM pathway components localize in the 
viral replication foci throughout the viral life cycle, the ATM is necessary for 
HPV genome replication only in differentiated keratinocytes [78,97]. Addi-
tionally, the cellular repair factors Rad51 and BRCA1 associated with homo-
logous recombination are localized to viral DNA foci and are required for HPV 
genome replication. This fact raises the possibility that recombination might be 
involved in HPV DNA amplification and that homologous recombination might 
be induced by ATM-Chk2 signaling [132,133]. However, the function of the 
ATM-Chk2 pathway in HPV vegetative DNA replication is somewhat 
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controversial. Namely, the absence of Nbs1 (a direct upstream activator of ATM 
kinase) blocks vegetative viral DNA replication and limits the localization of 
Rad51 to viral foci; however, the ATM kinase and its substrate Chk2 maintain 
activation upon depletion of Nbs1 in differentiating keratinocytes, indicating 
that Nbs1 might not contribute to vegetative viral DNA replication as an 
upstream regulator of ATM kinase [134]. In addition to ATM signaling, the 
ATR pathway components are also localized and activated at viral replication 
centers during the HPV life cycle [74,78], and these factors are required for 
HPV genome replication in both undifferentiated and differentiated keratinocytes 
[74]. Recently, there have been suggestions that the ATM and ATR pathways 
are likely interlinked [110–114]. For instance, the MRN complex (a key 
component in the ATM-mediated repair of DSBs through the homologous 
recombination) is also crucial in ATR activation in response to stalled DNA 
replication forks and to the replication-associated DSBs (e.g., a consequence of 
replication fork collapse) [111–113]. Additionally, the MRN complex protein 
Nbs1 is involved in the ATR-mediated resolution of stalled replication forks via 
homologous recombination [114]. Thus, ATR signaling may be a vital component 
in HPV DNA replication. For instance, ATR signaling would be activated in 
response to replication stress to restart stalled replication forks through homo-
logous recombination; ATM might regulate HPV genome replication upon 
differentiation via different pathways than those associated with homologous 
recombination. For instance, ATM-Chk2-mediated E1 protein processing by 
caspases upon differentiation has been shown to be crucial for viral productive 
DNA replication but is not essential for viral genome maintenance in the basal 
cells [96,97]. However, these are merely speculations, and the exact mechanisms 
of the involvement of these interdependent DDR pathways in HPV DNA 
replication need further investigation, similar to the recently reported FA 
pathway factors. 

HPV infection was identified in over 80% of squamous cell carcinomas 
(SSCs) from Fanconi anemia patients compared to 36% from the control group 
[135], implying a possibility that there could be a link between the FA repair 
pathway and HPV DNA replication. A number of other studies have provided 
additional evidence that the FA repair pathway might be implicated in HPV 
DNA replication strategies. The FA pathway key regulator protein FANCD2, 
which activates ATR-mediated phosphorylation [119], appears to play an 
important role in viral DNA replication. For instance, activated FANCD2 
accumulates in replication foci, binds to several sites along the HPV31 episome, 
and is necessary for episomal maintenance in undifferentiated keratinocytes 
[136–138]. On the other hand, the loss of FANCD2 in differentiated keratinocytes 
leads to enhanced vegetative DNA replication, suggesting that the FA pathway 
may limit HPV genome replication upon differentiation [139]. Hence, further 
investigations are needed to clarify the role of the FA repair pathway in HPV 
DNA replication mechanisms. 

Although cellular DDR pathways are clearly necessary for HPV DNA 
replication, the exact viral functions and mechanisms that activate DDR remain 
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unknown. The viral oncoprotein E7 has been implicated in the induction of 
DDR signaling during viral infection. E7 expression from heterologous vectors 
leads to the upregulation and accumulation of homologous recombination and 
MRN complex proteins and enhances ATM-Chk2 signaling activity through the 
activation of transcriptional regulator STAT5 [74,133,134]. In addition, the E1 
protein has been shown to induce DDR by directly generating DSBs in host 
DNA, and when expressed together with E2, both viral factors form distinct 
nuclear foci where DDR markers are also recruited [78,87,140]. However, it 
appears that the E1-mediated large-scale cellular DNA damage occurs only 
under overexpression conditions because it was not observed during transient 
viral DNA replication assays (i.e., the E1 protein is expressed from the HPV 
genome) [78]. The E1/E2-dependent viral initial DNA amplification has also 
been speculated to be initiated repeatedly from the viral origin. This rapid DNA 
replication potentially generates onion skin-like aberrant DNA structures that 
activate DNA damage and repair mechanisms to resolve these DNA structures 
[141]. Collectively, the triggering factors and processes of DDR are only 
partially understood, and future investigations are needed to define the exact 
mechanisms. 

 
 

2.4 DDR and HPV genome integration 

In normal, healthy cells, DDR activation also results in the accumulation of 
downstream signaling factors that ordinarily trigger cell cycle arrest to enable 
the repair of damaged DNA, and restart occurs only if DNA lesions are 
eliminated. However, during HPV infection, the DDR is turned on, but the cell 
cycle progresses along with viral DNA replication [142]. This viral DNA 
replication-conductive environment and resistance to apoptotic signals are 
mainly mediated by the activity of the viral oncoproteins E6 and E7. However, 
this thoroughly reshaped cellular environment makes the host extremely 
susceptible to mutations and genetic instability. Additionally, the minimal 
coding capacity makes HPVs reliant on cellular factors with the result that viral 
DNA replication centers are frequently formed adjacent to common fragile sites 
(CFSs) [143]. Likewise, the HPV16 E1/E2/Brd4 complex has been shown to 
bind to host chromatin at CFSs [143]. CFSs are hypersensitive to replication 
stress that can be caused by a paucity of replication origins, leading to late or 
incomplete replication, or contain difficult-to-replicate sequences, resulting in 
stalled DNA replication forks [144]. Notably, CFSs are still undergoing DNA 
replication in the G2 phase, and DNA damage and repair factors in CFSs are 
engaged to maintain the stability of these regions [145,146]. ATR signaling has 
been demonstrated to be critical for sustaining CFS stability [147], while ATM 
signaling plays a role only in the absence of ATR [148]. Thus, localization close 
to these regions is potentially favorable for HPV genome replication. However, 
the close vicinity of viral and cellular DNA replication at the regions undergoing 
replication stress could promote accidental integration into the host genome. 
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This idea is in line with the notion that the integration loci of high-risk HPVs 
are frequently associated with CFSs in HPV-induced cancer cells [143,149,150], 
and in most cases, the expression of the viral oncogenes E6 and E7 is deregulated, 
leading to abrogative cell cycle checkpoints and continuous cellular proliferation. 
This reshaped cellular environment ensures a growth advantage that potentially 
promotes genetic instability and oncogenesis over time, which is a dead-end for 
virus production [151]. 

HPV genomes are commonly integrated into host DNA as either a single 
genome or tandemly in a head-to-tail orientation [152]. The dysregulation of E6 
and E7 can be a result of the disruption of the E2 ORF during the integration 
event [153] or by methylation of the E2BSs within the URR [154]. Tandemly 
integrated HPV16 genomes have also been reported to generate a Brd4-
dependent superenhancer-like element composed of interspersed tandem repeats 
of the viral URR and a cellular enhancer, facilitating abundant expression of 
viral oncogenes [155,156]. 

Although the integrated state of HPV DNA is predominant in cervical cancer 
cells (approx. 80%) [157,158], tumors with merely episomal viral DNA or with 
a mixture of both are also noted [157,159]. When biopsy specimens of precan-
cerous lesions (CIN 1–3) were analyzed, the HPV DNA was almost always 
extrachromosomal [157]. In contrast to cervical cancer, in most cases (up to 
three-quarters) of HPV-associated oropharyngeal carcinoma, the viral genomes 
retained the extrachromosomal state and replicated in an E1/E2-dependent 
manner [160]. The substantially increasing incidence rate of HPV + OPC in 
developed countries over the past two decades constitutes an ongoing health 
concern, and unlike cervical cancer, there is currently no highly effective 
screening test (such as a Pap smear) for identifying potentially precancerous or 
cancerous lesions in this case [161]. Hence, there is a clear unmet medical need 
for efficient treatment solutions regarding HPV-related diseases. Since virtually 
all precancerous HPV-positive lesions and a significant number of malignancies 
contain exclusively episomal DNA, targeting E1/E2-dependent viral DNA 
replication might be a potential therapeutic strategy [141].  

 
 

2.5 Animal models of papillomavirus infection 

Model systems that precisely mimic PV infections in humans are required to 
evaluate the preclinical safety and efficacy of potential prophylactic or thera-
peutic antiviral agents. Although the availability of in vitro model systems has 
increased our understanding of HPV differentiation-dependent reproductive 
mechanisms and the interactions between viral and host proteins involved in 
these processes, it is evident that in vitro systems are generally unable to mimic 
significant aspects of natural PV infection, including interactions with the 
immune system that control infection, the lesion formation process, the study of 
viral latency, and the synergy between virus and host genetic and environmental 
factors. To date, several animal papillomaviruses and their hosts have been used 
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as models for studying the basic aspects of PV infection in humans as well as 
for the development of prophylactic vaccines. However, the current animal 
models of HPV-associated diseases have several drawbacks related to the key 
aspect that HPVs propagate themselves only in humans and that HPV-induced 
precancerous lesions arise at specific epithelial sites, which are not straight-
forward to model using current animal models [162].  

Cottontail rabbit papillomavirus (CRPV) model has been extensively used 
for the development of prophylactic vaccines and has given more insights into 
the function of viral gene products during productive and latent infection and 
malignancy progression [163–169]. CRPV causes cutaneous papillomas in its 
natural host, whereas in domestic rabbits (New Zealand White rabbits), CRPV 
fails to properly finish the productive viral life cycle, producing only a small 
number of infectious virions or none at all [165,168,170,171]. These lesions 
have the potential risk for malignant transformation, and therefore, CRPV 
infection in domestic rabbits has been studied as a model for HR HPV-induced 
carcinogenesis. Although the life cycle deregulation by the E6 and E7 proteins 
is necessary for the development of the cancer phenotype [171–174], the 
malignancy still progresses to CRPV-induced skin warts, whereas the HR 
alpha-HPV-induced cancers most frequently arise at discrete mucosal sites 
[175]. HPV vaccination studies have also been conducted using canine oral 
papillomavirus (COPV), which is considered a mucosal model of HPV infection, 
although unlike HPVs, it is unable to infect genital mucosal tissue [176–179]. 
At the sequence level, COPV exhibits the greatest sequence homology with the 
HPV types causing plantar and palmar warts (e.g., HPV types 1, 63, and 65) 
rather than mucosal HPV types [180]. Likewise, the differences between COPV 
and mucosal HPV types are also mirrored in the timing of life cycle events. 
Namely, the late events of COPV life cycle are already triggered (i.e., the 
abundant expression of E4 protein) in the lowest epithelial layers, which is also 
a characteristic feature of related cutaneous virus types (e.g., HPV types 1, 63, 
and 65) [181]. In contrast, mucosal alpha-HPVs (e.g., HPV11 and 16) generally 
express their late proteins at high levels only in the upper half of the epithelium, 
which is part of complex immune evasion strategies [182–184]. In recent years, 
the COPV model has been superseded by rabbit oral papillomavirus (ROPV), 
which has played an important role in assessing natural host immunity to 
infections [185]. The ROPV tissue tropism and infection in New Zealand White 
rabbits likely resembles LR mucosal HPV11 infection in humans [181,186–
188]. The life cycle organization of ROPV is closer to those of the human 
mucosal types, and productive viral genome amplification is induced in 
keratinocytes undergoing differentiation, not in the basal layer [181]. 

Despite the current range of animal models, a need for a preclinical model 
that properly mirrors medically important HR mucosal HPV infection still 
exists since previously described animal models mimic the infection of 
cutaneous or LR mucosal HPV types. The HR mucosal HPVs have different life 
cycle characteristics and disease associations compared to the LR types, and the 
current animal models mimic these aspects of the life cycle imprecisely. The 
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HR mucosal HPVs have different life cycle characteristics and disease 
associations compared to the LR types, and the current animal models mimic 
these aspects of the life cycle imprecisely. For instance, they have different life 
cycle strategies, which is reflected in the poor ability of LR to promote the 
development of malignancy. This capacity mainly lies in the oncogenic properties 
of the viral E6 and E7 proteins facilitated by differences in transcriptional 
regulation and viral protein function (in particular, binding affinity for tumor 
suppressor proteins p53 and Rb). The oncoproteins of LR types do not have the 
ability to stimulate extensive cell proliferation in the basal cell layers, as it is 
characteristic of HR HPV infections [189]. Although viral oncoproteins are 
required for completion of a productive life cycle, the deregulated expression of 
these proteins would cause the accumulation of DNA mutations and chromo-
some rearrangements, leading to neoplasia and over time, malignancy [190,191]. 
The capability of HR HPVs to undergo a productive life cycle is believed to be 
most influenced by the site of infection. The most common sites where HR 
HPV-induced cancer most frequently arise are the anal and cervical 
squamocolumnar junction (in case of the cervix, the region where the ectocervix 
transitions into the columnar cells of the endocervix), and the crypts of the 
oropharynx [175,192,193]. Therefore, HR HPVs appear to have different gene 
expression patterns at the transformation zone and the adjacent ectocervix, and 
thus, the frequency of cancer occurrence [162]. The current disease models 
mimic these specific mucosal sites inaccurately, and due to the considerable 
evolutionary distance between several animal PVs and the medically relevant 
HPV types, general conclusions can often be made only about PV-host inter-
actions, rather than observations about distinct HPV types [192]. Therefore, 
there is a considerable need for a relevant in vivo model for preclinical testing 
designed to evaluate therapeutic strategies against clinically relevant HPV-
associated lesions. 
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3. OBJECTIVES OF STUDY 

Persistent HR HPV infection is considered to be a strong risk factor in the 
development of several anogenital as well as head and neck cancers. Although 
HPV-induced cancers are among the leading causes of cancer mortality 
worldwide, no effective therapeutics for ongoing HPV infection currently exist. 
The progress in drug development has been mainly hampered by the incomplete 
understanding of viral DNA replication mechanisms and the lack of relevant 
animal models accurately mimicking HR HPV infection in humans, which are 
crucial prerequisites for developing effective therapeutic strategies. Furthermore, 
the complex and differentiation-dependent viral life cycle has hindered studying 
HPV DNA replication mechanisms under laboratory conditions. For that reason, 
our research group has developed a human U2OS cell line-based assay system 
that has proven to be a useful and efficient tool for studying HPV genome 
replication [72]. 

The general objectives of the research summarized in the present thesis were 
to investigate the initial amplification of HPV genomes and characterize the 
molecular mechanisms of HPV-related cynomolgus macaque papillomaviruses 
(MfPVs) as attractive targets for the development of novel animal model 
systems for HPV drug testing. We specifically focused on the following aims: 
• To analyze the DNA replication intermediates arising during the initial ampli-

fication of the HPV18 genomes using 2D and 3D agarose gel electrophoresis 
techniques and determine the mechanism(s) behind them. 

• To establish the U2OS cell line-based model system for studying the mole-
cular biology of the cynomolgus macaque cutaneous papillomavirus MfPV1 
as well as the mucosal types MfPV5 and MfPV8. 

• To study the viral DNA replication and gene expression properties of MfPV1, 
MfPV5 and MfPV8 and juxtapose the obtained results with their closest HPV 
types. 

• To characterize the sensitivity of the MfPV genome replication to HR HPV-
specific inhibitors. 

 

  



29 

4. MATERIALS AND METHODS 

In the present study, the U2OS cell line-based in vitro model system was 
implemented to analyze the HPV episomal genome replication structures as 
well as the replication and transcription properties of the MfPV genomes. The 
U2OS cell line, derived from the bone tissue of a 15-year-old human female 
suffering from osteosarcoma, has an adherent epithelial cell-like morphology 
and carries wild-type p53 and pRb genes [194]. Although U2OS cells are not 
the natural host cells of PVs, they provide an adequate cellular environment for 
studying the replication of HPV episomal genomes. It has been demonstrated 
that the HPV18, HPV11 and HPV5 gene expression profile and oligomeric 
replication end products generated during the initial amplification truly reflect 
the situation previously described in keratinocytes [71,195–197]. The develop-
ment of U2OS-based cellular assay system supporting all three viral DNA 
replication phases of cutaneous as well as LR and HR mucosal HPV types has 
been extensively described in the publication by Geimanen and colleagues [72].  

All the conducted experiments of the present thesis describe processes 
occurring during the initial amplification phase of viral episomal genomes and 
detailed experimental procedures have been described in the Materials and 
Methods sections of publications I, II and III. In principle the viral DNA 
replication assay consisted of the following steps: bacterial backbone-free 
covalently closed circular viral DNA molecules (Ref. III, Basic Protocol 1) 
were transferred to U2OS cells using efficient DNA electroporation method, 
allowed to replicate, and at the indicated time points episomal DNA was 
extracted (Ref. III, Basic Protocol 2). The replicated viral DNA was analyzed 
using agarose gel electrophoresis (AGE) method followed by Southern blotting 
(Ref. III, Basic Protocol 3–5 or 6, respectively). The viral DNA replication end 
products were analyzed using one-dimensional (1D) AGE method. For the 
analysis of viral DNA replication intermediates, different electrophoresis con-
ditions were implemented, such as 2D neutral/neutral (N/N), neutral/alkaline 
(N/A) and three-dimensional (3D) neutral/neutral/alkaline (N/N/A). These 2D 
and 3D AGE methods and related experimental procedures have been described 
extensively in the publication II (Basic Protocol 3–5). For the construction of 
the MfPV early region transcription maps, the RNA was extracted from the 
U2OS cells replicating MfPV genomes and analyzed using 5′ and 3′ RACE 
methods and RT-PCR (for detailed description, see the Materials and Methods 
section of publication III).  

In all described studies, the viral genomes that were introduced into the 
U2OS cells were prepared as bacterial backbone-free covalently closed circular 
DNA molecules. This was conducted by adaption of the recombination-based 
minicircle DNA production technology developed by Kay and colleagues [198]. 
Relevant experimental procedures have been also described in detail in the 
paper II (Basic Protocol 1).   
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5. RESULTS AND DISCUSSION 

5.1 Initial amplification of the HPV genomes proceeds 
through two different replication mechanisms (Ref I, II) 

For determining replication modes of HPV genomes during the initial ampli-
fication phase, multidimensional AGE techniques were implemented to analyze 
the viral DNA replication intermediates. To perform and interpret such highly 
specialized analyses are challenging. Both publications Ref I and Ref II address 
the characterization of the replication structures of HPV genomes. The Ref II 
primary focuses on the technical aspects and the interpretation of the analyses 
while the aim of the Ref I is to determine the replication mechanism(s) behind 
viral initial DNA replication.    

The initial amplification of the HPV genomes initiated by the viral E1 and 
E2 proteins from the viral replication origin within the URR [59,85,152,199–
202] is assumed to proceed bidirectionally through theta-mode replication. 
However, this hypothesis is not confirmed by experimental data because it is 
very complicated to study HPV DNA replication occurring soon after viral 
entry into the host cell. At the same time, there are indications that DDR path-
ways are involved in the initial viral amplification phase. For instance, the HPV 
replication-dependent oligomeric genomes have been shown to be formed 
through homologous recombination [71], and the ATR pathway proteins are 
engaged in HPV replication centers during this replication phase [78]. The 
U2OS cell line-based model system has enabled us to study the initial 
replicative amplification of the HR HPV18 genome. We used two- and three-
dimensional gel electrophoresis techniques to characterize the viral DNA 
replication mode(s) by separating branched DNA replicative intermediates from 
replication products. A replicating DNA molecule progressively doubles in 
mass, acquiring various complex topologies during the synthesis process. The 
2D AGE technique contains subsequent gel electrophoresis steps: first, separating 
DNA molecules mainly in proportion to their extent of replication (molecular 
mass), and the conditions of the following second dimension favor separation 
on the basis of topology (Ref. II, Fig. 14B.10.2) [203]. Furthermore, a sub-
sequent third dimension conducted under alkaline conditions enables the 
characterization of newly synthesized DNA by resolving nascent DNA strands 
from the parental strands (Ref. II, Fig. 14B.10.4) [204,205]. 

Circular DNA molecules typically replicate bidirectionally via theta structures, 
the replication mode proposed for the HPV initial DNA replication. The initiation 
of the theta replication mode involves the formation of two replication forks at 
the replication origin that progress in opposite directions until they converge. 
Such replicating DNA molecules in general give rise to three different types of 
replication intermediates: converging fork (dY), replication bubble and simple 
Y intermediates whose structures are determined by the position of the 
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endonuclease restriction site relative to the DNA replication origin (Ref. II, Fig. 
14B.10.7 E–I) [203,206]. 

When analyzing replication intermediates generated during the initial ampli-
fication of the HPV18 episomal genomes in U2OS cells, we detected replication 
intermediates characteristic of bidirectional theta replication initiating from the 
viral replication origin within the URR and replication forks converging over 
the quite broad area of the viral circular genome (the end of E1 ORF to the 
middle of the L2 ORF) opposite of the viral DNA replication initiation site 
(Ref. I, Fig. 5). This observation was demonstrated by noticing the bubble-
shaped RIs if the viral DNA restriction fragments containing the origin of 
replication were analyzed (Ref. I, Fig. 3, Fig. 5; Ref. II, Fig. 14B.10.7) or the 
presence of dY intermediates within DNA restriction fragments opposite the 
initiation site of viral DNA replication, indicating that the viral DNA replication 
termination occurred within this fragment (Ref. I, Fig. 3, Fig. 5; Ref. II, Fig. 
14B.10.7). During the HPV18 initial DNA amplification, the accumulation of 
extremely branched molecules with large mass was observed, exhibiting a 
typical migration pattern of almost fully replicated bidirectional theta replication 
intermediates (Ref. I, Fig. 2–5, marked by black arrowhead; Ref. II, Fig. 
14B.10.7, marked by gray bold arrow). The accumulation of these late theta 
intermediates proposes that the completion of bidirectional theta replication is 
quite slow and complex step in the initial amplification phase. Also, there might 
be additional populations of RIs from different origin (e.g., complex D-loop 
and/or X structures indicative of hemi-catenates or Holliday junctions) moving 
together with the late theta intermediates because of the large mass and highly 
complex nature of these molecules that limit their identification by agarose gel 
electrophoresis technique. 

We also noted that the initial replication of the HPV18 genomes results in 
RIs from different origins that are not characteristic of bidirectional theta-mode 
replication (Ref. I, Fig. 2–5, marked by white arrows; Ref. II, Fig. 14B.10.7, 
Fig. 14B.10.8, Fig. 14B.10.9, marked by white bold arrows). These additional 
replication intermediates were also present in the immortalized human keratino-
cyte HaCat cell line [207] (Ref. I, Fig. 7) and HPV-31b-positive human cervical 
cell line CIN-612 derived from a CIN1 lesion (data not shown), further con-
firming the authenticity of these RIs and excluding the possibility that these are 
specific to the U2OS cell line alone. Further characterization of the additional 
group of RIs revealed that they are most likely consistent with a unidirectional 
mode of DNA replication that lacks a specific initiation site. The Y-shaped 
nature of the nascent strands of these additional molecules detected via N/A and 
N/N/A AGE techniques provides evidence that the additional replication 
mechanism proceeds unidirectionally (Ref. I, Fig. 3B, Fig. 4; Ref. II, 14B.10.8, 
14B.10.9). This conclusion is also supported by the analysis of the HPV18 
subgenomic fragments, suggesting that the migration pattern of secondary RIs 
shared characteristics with Y-shaped structures (Ref. I, Fig. 5; Ref. II, Fig. 
14B.10.7 A). Furthermore, these additional RIs maintained the same migration 
pattern during 2D N/N and N/A AGE analyses regardless of the position of the 
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endonuclease restriction site in the HPV18 genome (Ref. I, Fig. 3–5; Ref. II, 
Fig. 14B.10.7 B, Fig. 14B.10.8), indicating the absence of a distinct DNA 
replication origin sequence, unlike that for the bidirectional theta mode of rep-
lication. Determining the direction of the viral DNA replication fork movement 
demonstrated that in addition to theta replication forks, DNA replication forks 
moving in opposite directions could also be detected, suggesting that the 
unidirectional mode of DNA replication does not have determined polarity and 
can occur in both directions (Ref. I, Fig. 6). Thus, all these considerably dif-
ferent characteristics of the second group replication intermediates, compared to 
the bidirectional theta replication intermediates, provide evidence that two 
replication mechanisms are involved in the initial DNA replication of the 
HPV18 genomes. There have been observations about different DNA replica-
tion modes within different viral DNA replication phases. Namely, the unidirec-
tional DNA replication mode without a specific origin sequence has been 
previously proposed as the replication mode during the vegetative phase, while 
bidirectional theta replication is characteristic of a stable maintenance phase 
[90]. However, when in vivo viral DNA replication structures isolated from 
HPV11-positive vocal cord papilloma tissue were analyzed (determined as the 
vegetative amplification phase due to the high viral DNA copy number), there 
were indications of both an alternative DNA replication mode and the bidirec-
tional theta structures, which were predominant [99]. 

The initial replication of HPV genomes has been reported to be initiated 
during S-phase and extended to the G2-phase of the host cell cycle [208]. The 
same indication has been described for viral vegetative DNA amplification that 
occurs in the G2-like phase of the cell cycle [209,210]. Although PVs encode 
two replication factors, E1 and E2, the synthesis and processing of viral DNA 
relies entirely on the cellular replication machinery [66–68]. Therefore, HPV 
must have evolved strategies for rapid DNA amplification during G2 phase 
when the cellular DNA is already replicated. Accumulating evidence shows that 
HPV induces the cellular DDR in the viral replication foci, and the resulting 
repair pathways are usurped for viral vegetative DNA amplification. DDR 
induction in HPV replication foci might be facilitated by viral proteins. Further-
more, the E1 protein has been demonstrated to have DNA-damaging activity, 
generating DNA DSBs in the host DNA [78,140]. However, it appears that the 
E1-mediated large-scale cellular DNA damage occurs only under over-
expression conditions because it was not observed during transient viral DNA 
replication assays (i.e., the E1 protein is expressed from the HPV genome) 
[78,211]. Additionally, the viral oncoproteins E6 and E7 modulate many cellular 
pathways associated with checkpoint control and DNA repair [97,212,213], 
including E7-mediated upregulation and activation of several DNA damage and 
repair factors. However, DDR factors are recruited to the replication foci of the 
HPV18 E6 or E7 mutant genomes during the initial DNA amplification, 
indicating that the viral oncoproteins are not absolutely necessary for engage-
ment of the DDR pathways to the HPV DNA replication centers [78] and are 
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more likely involved in the upregulation of DNA damage and repair factors to 
amplify the DDR signal [141].  

There are indications that replication stress occurs during viral initial DNA 
replication, for instance, the engagement of the ATR pathway (e.g., ATRIP, 
TopBP1) in the HPV replication foci [78], implying the possibility that the viral 
DNA replication process itself is directly related to DDR activation. The 
notable accumulation of late theta structures indicates difficulties with the 
processing and separation of converged late theta RIs (Ref. I, Fig. 2–5, marked 
by black arrowhead; Ref. II, Fig. 14B.10.7, marked by gray bold arrow); these 
stalled theta DNA replication forks are a possible trigger of ATR-mediated 
rescue. This phenomenon is also an intrinsic part of the replication of the SV40 
small circular dsDNA genomes. The converging theta replication forks also 
accumulate, and the ATR pathway is crucial for completing SV40 (simian virus 
40) genome replication; without ATR activity, the converging replication forks 
stall and eventually collapse, leading to aberrant viral replication products 
[214]. Strikingly, a temporal difference occurs when two different populations 
of replicating viral DNA molecules arise during the initial amplification of the 
HPV18 genomes. Bidirectional theta DNA replication seems to be responsible 
for the early amplification of viral DNA, since bidirectional theta structures 
were predominant at first. However, the additional DNA replication inter-
mediates arose over time, becoming as prevalent as theta structures (Ref. I, 
Fig. 2). Therefore, we propose that two different replication mechanisms are 
involved in the initial amplification of the HPV genomes: soon after E1/E2-
mediated viral DNA replication is initiated, supposedly in the S-phase of the 
cell cycle [208], the second replication mechanism is initiated. The exact 
mechanism by which HPVs manipulate and employ cellular repair pathways 
needs to be clarified. However, the stalled theta replication forks most likely 
induce a DDR signaling cascade that triggers an influx of repair factors to the 
viral replication foci, and viral replication is likely restarted by recombination-
dependent replication (RDR) mode, which couples the homologous recom-
bination event to DNA synthesis. This replication mode is initiated when the 
free 3’ ssDNA end (which may arise when the stalled replication forks collapse) 
invades a homologous DNA molecule, and a processive replication fork is 
formed that proceeds in a unidirectional manner, enabling the synthesis of 
extensive DNA sequences well beyond the DNA lesion [215]. Such a replica-
tion mode would be quite beneficial for a virus since the initiation site of DNA 
replication is dictated by the invading DNA sequence, the origin licensing 
factors are not required for restarting DNA replication [216], and enabling of a 
rapid and high-fidelity genome amplification in the G2 phase when there is no 
competition for the resources is also required for cellular DNA synthesis. 
Several characteristics of the additional DNA replication intermediates revealed 
using 2D and 3D AGE techniques are compatible with RDR (i.e., a unidirec-
tional mode without fixed polarity, the absence of a specific origin sequence), 
and the homologous recombination involvement in the generation of oligomeric 
HPV genomes during the initial amplification has been reported [71]. 
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Remarkably, the initiation structures of the additional replication mechanism 
never originate from 8 kb (1n) nonreplicating molecules, but instead, RIs with a 
molecular mass of approximately 1.2–1.4n are first detectable (Ref. I, Fig. 2–4; 
Ref. II, Fig. 14B.10.7 B, Fig. 14B.10.9). This finding would be due to the 
extremely labile nature of these structures (as strand invasion structures could 
be), and therefore, we are not able to detect the initiation structures of the addi-
tional replication mechanism. Alternatively, the initiation intermediates are 
more complex structures with larger molecular masses compared to 1n mole-
cules, indicating that in addition to a unidirectional DNA replication fork, uni-
dentified complex structures may be present whose nature remains to be 
elucidated.  

Recently, Orav et al. shed more light on the HPV DNA replication 
mechanisms during the initial amplification phase. They provided evidence that 
the FA DNA repair pathway, mainly modulated by ATR kinase activity 
[116,217], is involved in the processing of late bidirectional theta RIs and is 
required for the initiation of the unidirectional replication mechanism [218]. 
Namely, the viral E1 protein has been demonstrated to form a complex with the 
FA DNA repair pathway proteins UAF1 and USP1 [219–221], and the activity 
of this protein complex is necessary for the processing of late bidirectional theta 
RIs, which are structurally similar to ICLs. After the separation of almost fully 
replicated viral genomes, unidirectional DNA replication starts from the 
reinitiated theta replication forks, wherein Bloom helicase likely plays an 
important role [218]. 

Collectively, we propose that the initial amplification of the HPV genomes is 
initiated from viral DNA replication origin within the URR where two repli-
cation forks are formed and subsequently progress in opposite directions until 
they converge. The accumulation of late theta intermediates suggests that the 
completion of theta replication is complicated and rate-limiting process, thereby 
the replication forks stall and leading to the subsequent induction of DDR 
pathways. It is probably that without DDR activation, HPV could not achieve 
the resolution of its almost fully replicated circular genomes and efficient high-
fidelity viral DNA synthesis in the G2 phase that proceeds via a unidirectional 
replication mode without specific origin sequence, most likely via a recombi-
nation-dependent replication mechanism. 

 
 

5.2 Cynomolgus macaque papillomaviruses  
may serve as a highly relevant model  

for preclinical anti-HPV drug testing (Ref III) 

Mucosal HR HPV-related cancers pose a considerable global health and 
economic burden; for instance, cervical cancer is among the leading causes of 
cancer mortality in women worldwide, and in terms of oropharyngeal cancers, 
the substantially increasing incidence rate (especially among men) is alarming. 
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Nevertheless, no relevant animal models exist that closely mimic the specific 
characteristics of HR HPV infection and have anatomic, genetic, and immuno-
logical similarities with humans. The current animal models have provided an 
essential basic knowledge of PV biology; however, principal differences among 
existing animal models and mucosal HR HPV infection (e.g., viral transcription 
regulation, life cycle organization, mucosal tropism, specific biologic context) 
restrict their use in developing antiviral therapeutic strategies. 

The genus Alphapapillomavirus contains HPV types with oncogenic potential 
that are responsible for nearly all cases of human cervical cancer and a number 
of penile, anal, and head and neck carcinomas [16,222]. Notably, this clinically 
important genus also includes alpha-PV types identified in nonhuman primates 
[223–228]. For instance, several cynomolgus macaque (Macaca fascicularis) 
PVs (MfPVs) isolated from the cervicovaginal area (including MfPV3 and 
MfPV5 characterized in this study) exhibit a close phylogenetic relationship 
with HR HPVs (e.g., HPV16) and have the potential to induce obvious clinical 
symptoms similar to PV-related lesions noticed in humans [223,226,228]. The 
cutaneous type MfPV1 associated with aggressive papillomas on the hands and 
feet has also been characterized and clustered with HPV5 into the genus β-PVs, 
where EV-related types belong [224]. Additionally, a notable homology exists 
at the sequence level and in genome organization between specific MfPV and 
HPV types. Accordingly, these arguments strongly support the idea that MfPV 
genome replication in nonhuman primates could be utilized for the development 
of reliable animal models for HPV-related therapies. However, all of the above-
mentioned conclusions have been made based on sequence analysis [224,226] 
because of the absence of a suitable model system. Thus, according to the 
previously described close phylogenetic relationship, we wondered whether the 
human-derived U2OS cell line could support replication of not only HPV 
[71,72,78,195–197,208,229–231] but also the closely related viruses isolated 
from nonhuman primates. Indeed, the cutaneous (MfPV1) and mucosal (MfPV5 
and MfPV8) cynomolgus macaque PV genomes are clearly able to replicate in 
U2OS cells (Ref. III, Fig. 1). The MfPV DNA replication during the initial 
amplification phase is a strictly viral E1/E2-dependent process (Ref. III, Fig. 2), 
as is described for the HPV genomes in human keratinocytes [230,231], since 
the E1 or E2 mutant genomes of all three studied MfPV types alone failed to 
replicate, while cotransfection of these defective genomes complemented each 
other’s defects and the replication competence of both genomes was restored 
(Ref. III, Fig. 2 A–C, lanes 4–12). Thus, the U2OS cell line-based assay system 
offers a chance to characterize these HPV-related viruses experimentally to shed 
more light on the biology of these viruses at the molecular level to determine 
their adequacy in more physiologically relevant studies for developing in vivo 
animal models. 
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5.2.1 Characterization of MfPV early gene expression  
during the initial DNA amplification 

The fact that MfPV genomes are capable of replicating in U2OS cells provides 
a unique tool for experimental descriptions of MfPV gene expression during 
initial replication. When 5′ and 3′ RACE analyses and RT-PCR were used for 
the construction of the early region transcription maps of MfPV1, MfPV5 and 
MfPV8, it became apparent that similar to other PVs, MfPVs regulate their gene 
expression in a coordinated way that includes the usage of different promoters 
and extensive alternative splicing, enabling the expression of multiple genes from 
a compact viral genome. In terms of the viral transcription pattern during the 
initial amplification phase, the mucosal MfPV types 5 and 8 appear to be similar 
to mucosal oncogenic HPVs, while MfPV1 resembles most HR cutaneous beta 
HPVs, in particular HPV5. This result is consistent with several findings. 
Namely, for early gene expression, both mucosal MfPV5 and MfPV8 pre-
dominantly used the promoter region within the URR, and the transcription start 
site (TSS) mapped immediately upstream of the E6 gene (at nts 7982 and 7996, 
respectively) (Ref. III, S1 and S2 Figs.), which are compatible with those 
reported for several HR HPVs, including P97 for HPV16 [232,233] and P102 
for HPV18 [153,196,234–236]. Additionally, less prominent TSS positioning 
within E6, E7, E1 and E2 ORFs was identified (Ref. III, S1 and S2 Figs.) that 
was also defined for HPV18 [153,196]. In contrast, cutaneous MfPV1 has a 
more characteristic heterogeneous TSS usage since a strong promoter region 
with several TSSs in the E7 ORF (Ref. III, S3 Fig) was identified. This kind of 
TSS usage is also typical of the closely related human Betapapillomavirus 
HPV5 [195]. 

Additionally, the viral transcripts can undergo extensive alternative splicing, 
for which MfPV5 and MfPV8 utilize several splicing donor (SD) and acceptor 
(SA) sites (Ref. III, S1 and S2 Figs.) that share clear sequence homology with the 
corresponding SD and SA sites of human HR types 16 and 18 [196,232,234,237]. 
The same conclusions can also be made for the SD and SA regions of MfPV1 
(Ref. III, S3 Fig) and closely related HPV5 [195]. The polyadenylation cleavage 
site for early mRNAs of all three characterized MfPVs shows clear sequence 
homology with closely related HPVs [195,196,234] and positions near the 
beginning of the L2 ORF (Ref. III, S1–S3 Figs.) with a conserved upstream 
polyadenylation AAUAAA motif. 

Expressing a shorter form of the E6 protein (termed E6*) is a distinctive 
feature of oncogenic mucosal HPVs (e.g., HPV types 16, 18, 31, 45). This 
expression is the result of an internal splicing event due to the presence of an 
SD and SA pair within the E6 ORF and leads to more effective translation of 
the E7 oncoprotein [238–240]. The transcriptome mapping experiments revealed 
that these spliced short E6* transcripts are also characteristic of MfPV5 (Ref. 
III, S1 Fig, RNAs B–D, G). Notably, although MfPV8 is isolated from pre-
cancerous lesions [226], no internally spliced E6 transcripts were detected (Ref. 
III, S2 Fig, RNAs A–D), most likely due to a mutation in the core motif of the 
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SD sequence (AG^GT → AT^GT) within the E6 ORF (GenBank ID EF558842). 
However, when analyzing the DNA sequence of MfPV8, oncoproteins appear 
to have a number of distinct features characteristic of HR HPVs. For instance, 
the E6 protein has a putative PDZ-binding motif in the carboxy terminus, which 
is unique to oncogenic HPVs (e.g., HPV16, HPV18) but is not found in low-risk 
HPV E6s (e.g., HPV6, HPV11). The PDZ-binding motif has been shown to be 
important for the interaction of several host proteins involved in cell signaling 
and adhesion that leads their degradation (reviewed in [241]). 

Collectively, these findings demonstrate that a remarkable homology exists 
not only at the sequence level but also in the gene expression pattern between 
specific MfPV and HPV types during initial viral DNA amplification. 

 
 

5.2.2 Characterization of MfPV replication properties and  
sensitivity to HR HPV-specific inhibitors 

As mentioned above, the U2OS cell line is evidently capable of supporting 
E1/E2-dependent MfPV DNA replication (Ref. III, Fig. 1 and 2). While the 
MfPV8 genome exhibited a clear DpnI-resistant signal accumulation in U2OS 
cells, indicating that the viral genome copy number increased over time (Ref. 
III, Fig. 1, lines 12–14), the replication signal of MfPV5 slightly decreased at later 
time points (Ref. III, Fig. 1, lines 7–9). Although the replication of beta-PV 
MfPV1 genomes was obvious in U2OS cells, the DNA replication intensity was 
still rather modest (Ref. III, Fig. 1, lines 1–3) compared to that of the alpha 
types (Ref. III, Fig. 1, lines 7–9, 12–14). However, highly efficient time-
dependent viral DNA replication was notable for the E8 mutant genomes of all 
three characterized MfPV genomes (Ref. III, Fig. 2A–C; compare lines 1–3 and 
13–15), and most strikingly for cutaneous MfPV1, indicating that viral DNA 
replication is strongly restricted by the E8^E2 repressor protein. The E8^E2 
mutant genomes of mu and beta HPVs have also been demonstrated to replicate 
readily in human keratinocytes, while wild-type genomes fail [26]. Moreover, 
the viral E8^E2 protein interacts with the cellular NCoR/SMRT-corepressor 
complex and thereby mediates the viral transcriptional repression and inhibition 
of E1/E2-dependent DNA replication [26]. This phenomenon appears to be 
highly conserved and has been previously described in several human and 
animal papillomaviruses [23,25,173,242–245]. Thus, using the E8^E2 defective 
genomes would facilitate studying the HPV types of which DNA replication has 
not been detected in human keratinocytes in vitro so far. 

When the molecular state of MfPV genomes was analyzed in U2OS cells, in 
addition to the episomal circular monomeric viral genomes, dimeric and oligo-
meric forms also appeared over time (Ref. III, Fig. 3). This phenomenon is also 
observed during the initial amplification phase of HPV genomes. HPV genome 
oligomerization has been proven to be a viral DNA replication-dependent 
process, and it also occurs when HPV origin-containing plasmids are cotrans-
fected with heterologous expression vectors for the viral replication proteins E1 
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and E2, indicating that no other viral proteins are absolutely necessary; however, 
homologous recombination proved to be involved in this process [71]. HPV 
multimeric genomes are also detectable in clinical samples obtained from HPV-
associated precancerous lesions or malignancies [71,152,157,159,246,247]. 
This finding implies that viral genome multimerization is a general process 
during HPV infections in vivo, and the results indicate that this is also a distinct 
characteristic of MfPV DNA replication. 

Based on the remarkable similarities between mucosal MfPVs and HR HPVs 
observed in the molecular analyses, we decided to analyze whether the previously 
described HR mucosal HPV-specific drug candidates can also inhibit MfPV 
genome replication. In fact, the MfPV8 genome replication is sensitive to 
compounds that inhibit only the HR HPV but not the LR (HPV11) or cutaneous 
HPV (HPV5) genome replication, suggesting that the molecular mechanisms 
underlying HR mucosal HPV and MfPV genome replication are very similar 
and that the replication processes likely proceed through the same pathways in 
the host cells. All these five HR-specific small molecule inhibitors were 
discovered from high-throughput screening of the NCI Diversity Set IV 
chemical library [230], and two compounds (NSC 305831 and NSC 88915) are 
previously known to inhibit tyrosyl-DNA-phosphodiesterase type 1 (Tdp1) 
activity [248,249]. Tdp1 is involved in the DDR signaling being crucial in 
releasing stalled topoisomerases from DNA lesions [250]. Additionally, the 
HPV-specific compounds that target viral DNA replication by antagonizing E1-
E2 interactions, have been discovered [251,252]. Although these compounds 
are efficient in inhibiting viral DNA replication, the effect is visible only for LR 
HPVs (HPV6b, HPV11), supposedly because of the differences in the E1-E2 
complex formation between LR and HR HPVs. Given that, an in vivo model 
that adequately mirrors the molecular processes characteristic of specific HPV 
types is a crucial prerequisite for the anti-HPV drug development.  

MfPVs are quite common pathogens in cynomolgus macaques associated with 
naturally occurring cervical neoplasia. It has also been proved that the experi-
mental transmission of MfPV3 from a naturally infected female (exfoliated 
cervicovaginal cells were collected) to naïve female macaques induced CIN 
progression [253]. It is noteworthy that CIN lesions in cynomolgus macaques 
exhibit distinctive histopathologic similarities to those observed in women 
[253,254], and the MfPV-induced higher-grade lesions predominantly arise at 
cervical transformation zone as it is also characteristic of cervical cancer in 
women [254]. Therefore, even if the human U2OS cell line-based model system 
has limitations, especially in the terms of viral immortalization or trans-
formation potential, but still, the fact that MfPVs and HPVs share similar 
characteristics in gene expression and DNA replication that is also sensitive to 
HR HPV-specific inhibitors, would justify more physiologically relevant studies 
in cynomolgus macaques in purpose to confirm their HR phenotype. Additio-
nally, the ability of HPV to establish persistent infection in cynomolgus macaque 
merits also investigations. Alternatively, instead of virus particles, naked viral 
genomic DNA transfer, such as epidermal DNA electroporation [255], could be 
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applied to deliver viral genomes into the basal layer keratinocytes. This delivery 
approach could enable the presence of viral genomes and expectantly their 
replication in the target tissue. Since a nonhuman primate model serves as an 
essential resource for developing therapeutic antiviral strategies, it deserves 
further research. 
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6. CONCLUSIONS 

• When the DNA replication structures generated during the initial viral DNA 
amplification phase were analyzed using 2D and 3D AGE techniques, two 
distinct DNA replication mechanisms were revealed to be involved in 
HPV18 genome replication. The first is bidirectional theta-mode replication 
initiated from the viral DNA replication origin within URR, and the RIs of 
the second replication mechanism are consistent with a unidirectional DNA 
replication mode, most likely with RDR. 

• The assembled beta and alpha MfPV genomes evidently replicated in human 
U2OS cells, providing a model system for studying these viruses.  

• The transcription maps of the MfPV1, MfPV5 and MfPV8 genomes during 
the initial amplification phase were constructed. The gene expression 
patterns of the MfPV5 and MfPV8 genomes are considerably similar to 
clinically relevant HR mucosal HPVs (e.g., HPV16 and HPV18) in U2OS 
cells or in human keratinocytes. The transcription pattern of the cutaneous 
MfPV1 genomes is consistent with the gene expression of beta HPV type 5 
genomes in human U2OS cells. 

• The replication of all three MfPV genomes is strictly E1/E2-dependent and 
is strongly restricted by the E8^E2 repressor protein. In addition to monomeric 
genomes, oligomeric forms also appeared during E1/E2-dependent initial 
MfPV DNA amplification. All these observations are also characteristic of 
HPV genome replication. 

• The mucosal MfPV8 genome replication is sensitive to HR HPV-specific 
small molecule inhibitors, suggesting that the molecular mechanisms 
underlying HR mucosal HPV and MfPV genome replication are very similar 
and that the replication processes likely proceed through the same pathways 
in the host cell. 
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SUMMARY IN ESTONIAN 

Uurimistöö inimese papilloomiviiruse ja evolutsiooniliselt lähedase 
Macaca fascicularis papilloomiviiruse genoomi paljundamisest 

viirusnakkuse varajastes etappides 

Inimese papilloomiviirused (HPV-d) on laialt levinud viirused ning tihti arves-
tatakse neid normaalse mikrofloora osana ning üldjuhul viirusnakkus tervetel 
inimestel märkimisväärseid kaebusi ei põhjusta. Siiski on mitmetel HPV tüüpidel 
väga oluline kliiniline tähtsus. Nakkuse kliiniliste ilmingute järgi, vastavalt 
viirusnakkuse potentsiaalile põhjustada pahaloomuliste kasvajate arengut või 
mitte, jagatakse viirustüübid kaheks rühmaks: kõrge ja madala riskiga tüüpideks. 
Madala riskiga HPV tüüpidega nakatumisele on iseloomulikud peamiselt hea-
loomulised vohandid ehk papilloomid (nt soolatüükad, genitaalpiirkonna kondü-
loomid), mis aja möödudes organismi immuunvastuse mõjul taanduvad. See-
tõttu on madala riskiga HPV-d suhteliselt ohutud ning nende mõju piirdub pigem 
kosmeetiliste probleemidega. Seevastu kõrge riskiga viirustüüpide elutsükli 
käigus võib leida aset nakatunud raku muutumine kontrollimatu paljunemis-
võimega kasvajarakuks, mis omakorda võib aastate jooksul viia vähkkasvaja 
tekkeni. Kõige enam on HPV-nakkus seostatav emakakaelavähiga (99% kartsi-
noomi juhtudest on HPV-seoselised), mis naistel on sageduselt teine vähisurma 
põhjustaja maailmas. Meeste seas on kõige levinum HPV-seoseline (85% 
juhtudest) pahaloomuline kasvaja anaalvähk. Lisaks on kõrge riskiga HPV-de 
nakkus oluliseks riskiteguriks ka teiste anogenitaal- ning pea- ja kaelapiirkonna 
kartsinoomide puhul. Seega on tegemist kliiniliselt väga oluliste viirustega ning 
HPV-seoseliste haiguste puhul on selgelt määratletav täitmata ravivajadus, kuna 
tänaseni ei ole õnnestunud välja arendada spetsiifilisi ravimeid väljakujunenud 
HPV nakkuse kõrvaldamiseks. Senini on kasutusel ainult ennetava toimega 
vaktsiinid, mis kaitsevad teatud HPV tüüpide nakkuse eest, kuid ei oma mõju 
juba eelnevalt tekkinud viirusinfektsiooni tõkestamiseks.  

HPV-d nakatavad limaskestade või naha epiteelkoe keratinotsüüte. Epiteel-
koe kõige alumises kihis (basaalkihis) paiknevad jagunemisvõimlised keratino-
tsüüdid, mis tagavad koe pideva uuenemise. Raku jagunemisel tekib kaks 
tütarrakku, millest üks säilitab jagunemisvõime ning jääb basaalkihi koosseisu, 
teine tütarrakk aga eraldub basaalkihist ning migreerudes epiteelkoe ülemistesse 
kihtidesse toimub keratinotsüüdi diferentseerumine. Selle protsessi käigus rakud 
kaotavad jagunemisvõime ning lõpuks koe pindmistes kihtides rakud surevad, 
moodustades peamiselt sarvainest ehk keratiinist koosneva lameda pindmise 
kihi, mis eraldub keskkonda surnud epiteelina. Et tekiks produktiivne viirus-
nakkus, peab HPV nakatama basaalkihis paiknevaid jagunemisvõimelisi kera-
tinotsüüte, milleni viirus pääseb epiteelkoe mikrovigastuste kaudu. Pärast viirus-
osakese rakku sisenemist ning viiruse genoomi sattumist raku tuuma toimub 
esmane lühiajaline viiruse genoomse DNA paljundamine (DNA replikatsioon) 
suhteliselt madala koopiaarvuni (50–200 viiruse DNA molekuli raku kohta). 
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Sellele järgneb viiruse DNA stabiilne säilimine epiteelkoe basaalkihi jagunemis-
võimelistes rakkudes, mille jooksul viiruse DNA molekulide arv püsib naka-
tunud rakus üsna konstantsena. Selline stabiilne faas, millele on iseloomulik 
viiruse genoomi madal koopiaarv ning viiruse elutegevuse minimaalne avaldu-
mine, võib kesta aastaid. See on viiruse strateegia paljuneda ja levida aktiivselt 
jagunevas rakupopulatsioonis, jäädes samas võimalikult märkamatuks peremees-
organismi immuunsüsteemile. Kui nakatunud rakk alustab diferentseerumist 
ning migreerumist epiteelkoe ülemistesse kihtidesse, korraldab viirus raku elu-
tegevuse ümber, luues nakatunud rakus keskkonna, kus säilivad viiruse DNA 
paljundamiseks vajalikud tingimused. Selline rakukeskkond tagab HPV DNA 
kiire ja jõulise paljundamise (nn vegetatiivne DNA replikatsioon) epiteelkoe 
ülemistes kihtides, kus immuunsüsteemi rakke ei ole. Vegetatiivse DNA 
replikatsiooni käigus viiruse DNA molekulide koopiaarv raku kohta mitme-
kordistub, mis on oluline eeltingimus viiruse DNA pakkimiseks rakus moodus-
tuvatesse nakatamisvõimelistesse valgulistesse struktuuridesse – viirusosa-
kestesse ehk virionidesse, mis vabanevad väliskeskkonda koos koest eralduva 
pindmise epiteeliga. Seega võib HPV elutsüklis eristada kolme viiruse genoomse 
DNA replikatsioonifaasi: esmane lühiajaline DNA paljundamine viirusnakkuse 
tekkimiseks rakus, stabiilne säilimine jagunevates keratinotsüütides ning vege-
tatiivne DNA replikatsioon uute viirusosakeste moodustamiseks. Sellise 
epiteelkoe diferentseerumisest sõltuva HPV elutsükli jäljendamine laboritingi-
mustes on keeruline ning see on oluliselt pärssinud HPV DNA replikatsiooni 
uurimist, mille mehhanismide mõistmine molekulaarsel tasandil on ülioluline 
HPV-vastaste spetsiifiliste ravimite arendamisel. 

Sellistele probleemidele lahendusi otsides on meie uurimisrühm välja tööta-
nud lihtsasti käsitletava robustse mudelsüsteemi HPV DNA replikatsiooni uuri-
miseks. Antud mudelsüsteem põhineb avastusel, et erinevate kõrge ja madala 
riskiga HPV DNA molekulide sisestamisel inimese luukasvajast pärinevatesse 
U2OS rakkudesse toimub viiruse DNA paljundamine, mis võimaldab uurida 
kõiki kolme viiruse DNA replikatsioonifaasi. Kogutud andmestik lubab väita, et 
antud mudelsüsteem peegeldab täpselt viirusega asetleidvaid protsesse epiteel-
koes ning seega võimaldab paremini mõista, kuidas viirus paljundab oma DNA-d 
peremeesrakus, millised viiruse ja raku komponendid on selleks vajalikud ning 
millised on DNA replikatsiooni limiteerivad etapid molekulaarsel tasandil. Sellise 
teabe alusel on võimalik suunata ravimiarendust teadlikult, näiteks viiruse DNA 
paljundamise pärssimiseks. 

 Antud uurimistöö üks osa keskendubki viiruse esmase lühiajalise DNA 
replikatsioonifaasi molekulaarsel tasemel kirjeldamisele. Täpsemalt analüüsiti 
viiruse genoomi paljundamisel tekkivaid DNA vaheprodukte, mille struktuurne 
kirjeldamine võimaldab saada rohkem teavet viiruse DNA replikatsiooni moleku-
laarsetest mehhanismidest. Kasutades erinevaid analüüsimeetodeid tuvastati, et 
HPV esmasesse lühiajalisse DNA paljundamise faasi on kaasatud kaks erinevat 
replikatsiooni viisi. Esmalt toimub HPV DNA paljundamine nn teeta-replikat-
siooni mehhanismi kaudu, mis on oma nime saanud kreeka tähestiku tähe teeta 
(θ) järgi, kuna antud DNA paljundamisviisi käigus tekivad sellele sarnase 
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struktuuriga vaheproduktid. Lisaks esineb esmases DNA paljundamisfaasis rep-
likatsiooni vaheprodukte, mille struktuur ei ole omane teeta-mehhanismile, 
viidates et viiruse paljundamisel kasutatakse ka teist, erinevat DNA replikat-
sioonimehhanismi. Käesolevas uurimistöös saadud tulemused ei anna küll 
lõplikke vastuseid tuvastatud lisastruktuuride taga oleva replikatsioonimehha-
nismi üksikasjade kohta, kuid meie ning teiste HPV uurimisrühmade avaldatud 
tulemused viitavad sellele, et suure tõenäosusega on tegu rekombinatsioonist 
sõltuva replikatsiooniga, mis on seotud peremeesraku DNA-s tekkivate kahjus-
tuste parandamiseks vajalike protsessidega. 

Uurimistöö teises osas analüüsiti detailsemalt HPVga evolutsiooniliselt lähe-
dase jaava makaagi (Macaca fascicularis) papilloomiviiruse (MfPV) DNA 
paljundamise ja geenide avaldumisega seotud molekulaarseid mehhanisme, kuna 
tõenäoliselt on tegemist sobivaimate viirustega HPV-vastaste ravimite testi-
miseks kasutatava loommudeli välja arendamiseks. Seni kasutatavad loom-
mudelid, milleks on koera ja küüliku papilloomiviirused, on küll toonud märga-
tavat kasu ennetavate vaktsiinide väljaarendamisel ja alusteadmiste kogumisel 
HPV elutsükli kohta, kuid siiski on tegemist evolutsiooniliselt küllaltki kaugete 
organismidega. Seetõttu ei jäljenda nende papilloomiviiruste nakkus piisavalt 
täpselt kõrge riskiga HPV-de nakkust inimeses, mille abil saaks loomkatsetes 
testida HPV-vastaste ravimikandidaatide tõhusust ja ohutust enne kliinilisi 
katseid inimestel.  

DNA järjestuse andmete põhjal on MfPV-d ja HPV-d väga sarnased, kuid 
seni puudus sobiv eksperimentaalne süsteem MfPV DNA replikatsiooni ja 
geenide avaldumise uurimiseks. Antud uurimistöö raames selgus, et HPV-de 
uurimiseks kasutatav U2OS-põhine mudelsüsteem on sobiv ka erinevat tüüpi 
MfPV-de molekulaarbioloogiliseks uurimiseks. Tulemuste põhjal võib järel-
dada, et kõrge riskiga MfPV ja HPV DNA paljundamine ja geenide avaldumine 
on molekulaarsete protsesside poolest väga sarnane. Lisaks näidati, et spetsiifi-
liselt kõrge riskiga HPV replikatsiooni takistavad ravimikandidaadid pärsivad 
sarnaselt ka jaava makaagi papilloomiviiruste DNA paljundamist. Lisaks on 
teada, et jaava makaakidel esineb looduses MfPV-seoselisi emakakaela düs-
plaasiaid (vähieelseid seisundeid) samas anatoomilises piirkonnas, kus on ka 
kõrge HPV tekitatud emakakaelavähi esinemissagedus naistel. Samuti esineb 
makaakidel nahka nakatavaid papilloomiviirusi ning antud uurimistöös näidati, 
et ka sellist tüüpi viiruse molekulaarsel tasemel toimuvad protsessid on väga 
sarnased inimesel esineva vastava evolutsiooniliselt lähedase nahka nakatava 
HPV-ga. Seega on antud uurimistöö raames saadud tulemused esimene samm 
arendustegevuses, mille eesmärgiks on välja töötada HPV-vastaste ravimite 
eelkliinilisteks testimisteks kasutatav uudne loommudel, mis jäljendaks erine-
vate kliiniliselt oluliste HPV tüüpide nakkust inimesel. 
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