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1. INTRODUCTION 

Semi-natural grasslands are communities of natural biota, which emerged from 
forest through pastoralism and arable farming approximately 7500–6800 years 
ago in Europe (Hejcman et al. 2013; Dengler et al. 2014). They harbour a large 
part of Europe’s biodiversity and hold the world records for small-scale (e.g. 
10×10 cm) plant species richness (Quétier et al. 2007; Wilson et al. 2012; 
Chytrý et al. 2015). There are several types of semi-natural grasslands varying 
in levels of soil pH and moisture (e.g. dry calcareous grasslands, heaths, coastal 
meadows, flooded meadows). Most species-rich are dry and semi-dry basiphi-
lous grasslands due to their large species pool (Pärtel 2002; Dengler et al. 
2014). In addition to high plant diversity, they are important habitats for a large 
variety of bird and invertebrate species (Newton 2004; Öckinger & Smith 
2006). Semi-natural grasslands offer also multiple ecosystem services (e.g. 
carbon sequestration, pollination, livestock provision and tourism; Gallai et al. 
2009; Hönigová et al. 2012). 

Moderate and continuous human influence has played a major role in the 
development and maintenance of extensive grassland areas in Europe (Poschlod 
& WallisDeVries 2002; Pärtel et al. 2007; Dengler et al. 2014). Historical 
continuous management (i.e. grazing or mowing) favoured the connectivity and 
seed dispersal among grassland patches, resulting in viable species-rich plant 
communities (Lindborg & Eriksson 2004; Helm et al. 2006). In addition to 
landscape-scale factors, the diversity of semi-natural grasslands is influenced by 
local abiotic conditions and biotic interactions. For example, grazing or mowing 
reduces the light competition between herbaceous species due to biomass 
removal (Bakker et al. 2006; Jacquemyn et al. 2011), allowing a high number of 
species to coexist (Pärtel et al. 1999; Dengler et al. 2014). Continuous manage-
ment is also needed for preventing the encroachment of shrubs as they compete 
with herbaceous plants for light, nutrients and space (Limb et al. 2010; Miwa & 
Reuter 2010). At the same time, moderate cover of shrubs can increase species 
diversity, for instance by offering shade from the sun, or by serving as a grazing 
refuge (Pihlgren & Lennartsson 2008). For example, in Estonia, low shrub 
cover of up to 30% is recommended as desirable state for species-rich dry 
calcareous grassland habitats (Helm 2011), however, its effect on species rich-
ness and composition is not yet thoroughly studied. Moreover, shrubs are found 
to increase the above- and below-ground habitat environmental heterogeneity 
(Pärtel & Helm 2007). Also, the variability of soil depth can change the 
temporal availability of soil nutrients and water (Fridley et al. 2011). The 
influence of environmental heterogeneity on plant diversity is presumed to be 
positive according to niche theory (Tilman 1982; Clark et al. 1998), however 
heterogeneity at the plant neighbourhood scale (i.e. centimetres) can have a 
negative effect on species richness (Pausas & Austin 2001; Tamme et al. 2010; 
Laanisto et al. 2013). Consequently, landscape- and local-scale factors are often 
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intertwined, but their direct and indirect influences on local plant species rich-
ness have rarely been explored in semi-natural grasslands. 

Semi-natural grasslands prevailed in Europe until the end of 19th century 
(Luoto et al. 2003), but during the last hundred years there has been a drastic 
reduction in grassland area around 90% and in some regions even more, 
depending on their land-use history (WallisDeVries et al. 2002; Pärtel et al. 
2005; Dengler et al. 2014). Former extensive areas of semi-natural grasslands 
have been lost due to the cessation of traditional management, conversion to 
arable fields, afforestation and urbanization (Eriksson et al. 2002; Poschlod & 
WallisDeVries 2002; Adriaens et al. 2006). In most of Europe only small 
isolated habitat patches have preserved within a matrix of mainly forest and 
agricultural land. Remaining fragments are often characterized by poor habitat 
quality due to the lack of grazing and influx of nutrients from direct fertilization 
or indirect nutrient deposition through atmosphere and from nearby arable fields 
(Bobbink et al. 2010). Present-day small and degraded grassland fragments do 
not support the dispersal between habitat patches and can lead to extinction of 
the remaining populations without effective restoration and conservation 
practices (Ovaskainen & Hanski 2002). It has become more evident that resto-
ration and conservation efforts based on ecological theories are needed for 
successful biodiversity protection (Perring et al. 2015; Török & Helm 2017). 
Firstly, it is important to know exactly which factors influence the development 
and maintenance of semi-natural grasslands. 

In biodiversity restoration and conservation it is also essential to consider 
that species extinction might not occur immediately after rapid environmental 
perturbations due to the slow intrinsic dynamics of populations. This creates an 
‘extinction debt’ in the community, i.e. a number of extant specialist species of 
the focal habitat are expected to eventually become extinct as the community 
reaches a new equilibrium after environmental disturbance (Tilman et al. 1994; 
Kuussaari et al. 2009). Therefore, one has a risk to overestimate the status and 
conservation value of habitats when disregarding the possible occurrence of 
extinction debt. Extinction debt has been usually deduced from the relationship 
between specialist species number and habitat area/connectivity: there is an 
extinction debt in the community when current species richness of specialists is 
significantly related to historical but not to current habitat area/connectivity. 
The extinction debt occurs more probably in landscapes characterised by area 
loss up to 90% (Cousins 2009). In landscapes where land-use and habitat loss 
has been more intensive, and extinction debt is probably already paid (i.e. 
species have gone extinct), significant relationship between current species rich-
ness of specialists and current habitat area is expected (Helm et al. 2006; 
Cousins et al. 2007; Kuussaari et al. 2009). For instance, a study from Estonia, 
where 30% of the grassland area had remained, estimated that approximately 
40% of calcareous grassland specialist species are yet to go extinct due to the 
onset of habitat loss in the 1930s (Helm et al. 2006). At the same time, Adriaens 
et al. (2006) could not identify the extinction debt in calcareous grasslands in 
Belgium, as only 2% of the original habitat area had preserved. 
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All species are not equally susceptible to land-use changes. Generalist 
species are expected to be less affected by loss of semi-natural grasslands than 
species specialised to a particular habitat type (Warren et al. 2001). Suscepti-
bility depends also on species functional traits related to their dispersal, es-
tablishment, persistence and reproduction abilities (Aguilar et al. 2006; Walker 
& Preston 2006; Lindborg 2007; Saar et al. 2012). For example, good dispersal 
ability can be a disadvantage in highly fragmented landscape, as there is a 
higher chance to disperse into an unsuitable matrix (Lindborg et al. 2012). 
Therefore, long life-span and clonal reproduction are considered to be beneficial 
for long-term persistence (Lindborg et al. 2012; but see Marini et al. 2012). 
Different susceptibility of species to land-use changes can lead to shifts in 
community mean trait values. Moreover, land-use changes can alter functional 
diversity of semi-natural grasslands (i.e. the variability of functional traits in an 
assemblage of organisms; Suding et al. 2008; Mason & de Bello 2013). Func-
tional diversity has been linked with the maintenance of ecosystem processes 
and properties (Tilman et al. 1997; Girão et al. 2007; Gagic et al. 2015). 
Functional diversity is expected to decline due to a decrease in species richness 
and habitat filtering in altered landscapes (Sonnier et al. 2014), however, some 
studies have shown that it can also be delayed in response to rapid habitat loss 
similarly to taxonomic diversity (Vandewalle et al. 2014). Large-scale com-
parison of taxonomic diversity and functional characteristics in habitats where 
extinction debt is either paid or not can reveal valuable information about future 
changes in community composition and determine which species are most 
susceptible to land-use change. This in turn helps to make better decisions for 
habitat restoration and conservation. 

Although many species characteristic to European semi-natural grasslands 
are threatened and declining, there are a number of exotic and invasive species, 
but also native species from other habitat types, i.e. native ‘aliens’ (Valéry et al. 
2009; Jackson & Sax 2010; Helm et al. 2015) that can benefit from altered con-
ditions. Therefore, total species richness may not change or can even increase 
despite of the vast habitat loss and degradation, but at the same time, the habitat 
integrity (i.e. how characteristic is the habitat compared to its historical state 
prior extensive area and habitat quality loss) and conservation value decrease 
(Helm et al. 2015). Due to the ongoing degradation of European traditional 
landscapes, some ecosystems have diverged so much from their original en-
vironmental conditions and species composition that they can be considered 
hybrid (i.e. likely reversible to historical state) or novel (i.e. irreversible to 
historical state) ecosystems (Hobbs et al. 2014). A thorough evaluation of the 
level of degradation is needed to understand whether and how to intervene 
when faced with such highly altered habitats: should one try to restore them, 
abandon them or value them as they are. 

In this thesis I firstly covered the shortcomings in the knowledge of which 
factors determine the high small-scale plant species richness in semi-natural dry 
calcareous grasslands. I quantified the direct and indirect influence of historical 
landscape-scale factors and local environmental conditions on plant species 
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richness, and the effect of low-cover shrub encroachment (i.e. up to 30%) on 
specialist and generalist species of dry calcareous grasslands in Estonia (I, II). 
Secondly, I assessed the status of dry to mesic grasslands in central and 
northern Europe in the light of vast land-use changes during past century (III, 
IV). I detected in which regions the habitat specialists have already gone extinct 
and where they temporarily persist despite of the unfavourable environmental 
conditions, creating an extinction debt in the community (III). I identified 
which functional traits and environmental requirements characterise specialist 
species that are most likely to disappear from European grasslands following 
the payment of extinction debt. I also found out how the functional diversity of 
these grasslands responds to habitat loss, and whether the total species richness 
and composition differs in regions where extinction debt is ‘paid’ or ‘unpaid’ 
(III). In addition, I used a unique dataset compiled in 1920s to compare the 
historical and current taxonomic and functional diversity in northern Estonian 
semi-natural dry calcareous grasslands. I also identified which species can sur-
vive in these highly altered communities and assessed the habitat integrity of 
current grassland patches compared to their historical state prior to extensive 
area and habitat quality loss (IV). Finally, based on my study results, I gave 
implications for habitat restoration and conservation. I provided new perspec-
tives on how to manage habitats (a) where the extinction debt is unpaid, and (b) 
where extinction debt is already paid and environmental conditions highly 
altered (I, II, III, IV). 
 
 
The objectives of this doctoral thesis were: 
 
(1) To determine the drivers of small-scale plant species richness in semi-

natural dry calcareous grasslands (I, II). More precisely I aimed to clarify: 
 

 How small-scale species richness in dry calcareous grasslands is 
related to landscape conditions, and local environmental variables and 
their heterogeneity (I)? 

 
 How does low shrub cover affect the small-scale specialist and gene-

ralist plant species richness in visually well-preserved dry calcareous 
grassland patches (II)? 

 
(2) To assess the current status of semi-natural dry to mesic grasslands in 

central and northern Europe (III, IV). More precisely I asked: 
 
 In which dry to mesic grassland systems in central and northern Euro-

pe the extinction debt is already paid and where it still exists (III)? 
 



11 

 Which functional traits and environmental requirements characterise 
specialist species that are most likely to disappear from European 
grasslands following the payment of extinction (III)? 

 
 How functional diversity responds to habitat loss and how taxonomic 

diversity differs between regions where extinction debt is paid or 
unpaid (III)? 

 
 How does the taxonomic and functional diversity, and habitat integrity 

of current highly degraded dry calcareous grassland remnants in 
northern Estonia differs from their historical status (IV)? 

 
 Which functional traits and environmental requirements characterise 

species that can survive (‘winners’) in highly altered dry calcareous 
grassland remnants (IV)? 

 
(3) To give implications for the restoration and conservation of semi-natural 

dry to mesic grasslands with different level of degradation (I, II, III, IV). 
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2. MATERIALS AND METHODS 

2.1. Study sites and data collection 
For testing the direct and indirect relationships between environmental variables 
and small-scale species richness semi-natural dry calcareous grasslands were 
studied. Thirty-three individual grasslands, representing almost all ungrazed but 
yet well-preserved habitat patches currently present on the Estonian islands of 
Saaremaa and Muhu were selected (Fig. 1C, Fig. 2). In Estonia, dry calcareous 
grasslands, also called alvar grasslands, are located on Ordovician and Silurian 
limestone bedrock, and characterised by thin soil, low-biomass herbaceous 
layer, and sparsely distributed Juniperus communis shrubs. For describing the 
small-scale species richness and environmental parameters, a single transect of 
0.1×10 m in each grassland was established. Each transect was divided into 100 
plots of 10×10 cm (Fig. 2C). In each plot vascular plants, soil pH, soil tem-
perature, soil moisture, soil electrical conductivity, relative light availability and 
soil depth were recorded. Shrub cover was measured in a 1 m (II) and 2 m (I) 
buffer zones around each transect. Landscape-scale variables, past human 
population density and historical habitat availability, were estimated for a 5 km 
radius around each grassland site (for details see Table 1 in I). 

To estimate the current status of semi-natural dry to mesic grassland systems 
in central and northern Europe, data collected from Belgium, Denmark Jutland 
and Zealand regions, Estonia, Finland, Germany, Latvia Abava and Zemgale 
regions, and Swedish mainland and Gotland were used (Fig. 1A). The habitat 
loss in those regions has been around 90% or more. In total, 493 grassland sites 
were included from 10 different regions (see Table 1 in III). For each grassland 
site the habitat area (ha) and total plant species richness were obtained. Species 
richness was divided into specialist and generalist plant species by local data 
contributors according to their expert knowledge and locally available infor-
mation. Detailed information about the studied regions can be found in Table 1 
in III. 

For comparing the taxonomic and functional diversity as well as habitat 
integrity in historical and current highly degraded dry calcareous grassland rem-
nants a unique historical dataset collected during 1918–1923 by Estonian 
botanist Gustav Vilbaste (Vilberg 1927) was used. Historical data were avail-
able for eight dry calcareous grassland stands located in northern Estonia (Fig. 
1B). The data included maps (scale 1:84 000), descriptions of sampling loca-
tions, grassland descriptions and detailed vegetation surveys. The presence/ 
absence data of current plant species from exactly the same locations were 
gathered during five summers in 2008–2012. For compiling the historical and 
current species lists the species found from whole habitat area in each site were 
included. At present these grasslands are highly degraded due to eutrophication, 
cessation of traditional management and urbanisation, and have lost ~90% of 
their habitat area. 
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Figure 2. (A) Currently ungrazed but yet well-preserved dry calcareous grassland on 
Saaremaa island, Estonia. (B) Fieldwork in Võiküla dry calcareous grassland, Muhu 
island, Estonia for describing the small-scale (10×10 cm) species richness and environ-
mental parameters. (C) Example of a 10×10 cm plot in a transect of 0.1×10 m. (I, II) 
 
 

2.2. Small-scale species richness and  
environmental heterogeneity 

Small-scale species richness was quantified as the mean total species number of 
the 10×10 cm plots per transect (I, II). In paper II, the total richness was 
divided into specialist and generalist species. Specialist species were defined as 
species that grow preferably on calcareous alvar grasslands and are rarely pre-
sent in other communities. All other species were designated as generalists. 

For studying the effect of local environmental heterogeneity on species rich-
ness the coefficient of variation (standard deviation divided by the mean; CV) 
was calculated, for each measured environmental variable. In paper I, the CV of 
soil moisture, temperature, electrical conductivity and pH were combined 
together into one measurement by using a principal component analysis (PCA). 
The scores of the first axis of the PCA were used as indicators of soil environ-
mental heterogeneity in each site (for details see Table 1 in I). CV of relative 
light availability was used separately. In paper II, soil moisture, temperature, 
pH and relative light heterogeneity were used separately. Electrical conductivity 
data were left out from the analysis as it was strongly correlated with soil 
moisture. 

B

C

A
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2.3. Extinction debt and species susceptible to habitat loss 
The existence of extinction debt was tested by studying the relationship between 
current species richness of specialists and current habitat area. The extinction 
debt likely occurs in regions where habitat specialist species richness is not 
related to current habitat area, whereas in regions without extinction debt the 
relationship between the number of specialist species and current habitat area is 
significant (Cousins et al. 2007; Kuussaari et al. 2009). Only specialist species 
were used for detecting the extinction debt, as generalists are expected to be less 
affected by grassland area and quality loss (Warren et al. 2001; Krauss et al. 
2010; III). 

To identify which specialist species are most likely to disappear after the 
payment of extinction debt the following ten functional traits and species’ en-
vironmental requirements (hereafter species characteristics) were used, which 
describe species dispersal, establishment, competitive, persistence and repro-
duction abilities, and their habitat preferences: (1) maximum potential dispersal 
distance (m), (2) seed weight (mg), (3) plant height (cm), (4) specific leaf area 
(SLA; mm²/mg), (5) life span (annual-biennial, perennial), (6) mode of repro-
duction (vegetative reproduction absent or rare, vegetative reproduction pre-
sent), (7) flowering duration (months), (8) pollination vector (insect/other), (9) 
species light requirement (Ellenberg L), and (10) species preference for nutrient 
conditions (Ellenberg N). Three categorical traits, life span, mode of repro-
duction and pollination vector, were employed as binary 0/1 variables. Maxi-
mum potential dispersal distance (m) values for each species were acquired via 
predictive modelling using the dispeRsal function (Tamme et al. 2014). All 
other species characteristics were extracted from databases (for detailed infor-
mation see Material and methods in III, IV). Species characteristics community 
mean values (i.e. average trait or environmental requirement value of all species 
found at one site, not weighted by species abundance as we only had species 
presence/absence data available; Dias et al. 2013) were compared between 
grassland systems where extinction debt is paid or unpaid. Community mean 
values were calculated for each site with the ‘FD’ package (Laliberté et al. 
2014) in R, version 3.1.3 (R Development Core Team 2015; III). 
 
 

2.4. Taxonomic and functional diversity 
Species richness, i.e. the total number of vascular plant species from each grass-
land site was used, to compare taxonomic diversity between regions where 
extinction debt is paid or unpaid (III), and between historical and current highly 
degraded grassland communities (IV). Also log-ratio of generalist to specialist 
species was used for characterizing the differences in species composition in 
regions where extinction debt is paid or unpaid (III). Grassland specialists were 
defined as species that are characteristic to studied grassland type and for which 
the grasslands are main habitat types. 
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To study how functional diversity is related to habitat area in regions where 
extinction debt is paid or unpaid the same species characteristics were used as 
described above. Functional diversity was calculated as a mean pair-wise 
distance of all possible species pairs (MPD; Pavoine & Bonsall 2011) based on 
the Gower distance (Gower 1971; modified by Podani 1999). MPD was chosen 
as it is shown to be intrinsically independent of species richness (e.g. de Bello et 
al. 2016). Functional diversity values were computed separately within each 
studied region in central and northern Europe and for each species characteristic 
individually (III). Same method was used also for comparing the historical and 
current functional diversity in northern Estonian dry calcareous grasslands (IV). 
Most of the species characteristics were the same as described above, except 
dispersal distance and pollination vector. Instead of these two species charac-
teristics dispersal vector (animal/other), seed number per shoot and terminal 
velocity (m/s²) were used in paper IV. 
 
 

2.5. Change in habitat integrity and species that can 
survive in degraded grassland remnants 

To assess the habitat integrity of historical and current highly altered dry calca-
reous grassland patches in northern Estonia an Index of Favourable Conserva-
tion Status (FCSi) was used, which is a log-ratio of characteristic to derived 
diversity (Helm et al. 2015). ‘Characteristic diversity’ is defined as the number 
of species that are typical to a given community and belong to its historically 
developed habitat-specific species pool. ‘Derived diversity’ consists native 
and/or non-native species not typical to a given community and whose presence 
is driven by adverse human impact. Therefore, the more derived and less 
characteristic is the diversity, the lower is the habitat integrity. 

To find out which species can colonise and survive in present-day highly 
altered grassland patches in northern Estonia historical and current species 
presence/absence data were compared (IV). Firstly, species were divided into 
five groups: (1) new species – i.e. species that were not listed in historical 
dataset in any of the sampled grasslands, (2) increasing species – species whose 
occurrence increased by at least two sites, (3) stable species – species whose 
occurrence has remained the same or increased/decreased by one site, (4) 
decreasing species – species whose occurrence has decreased by at least two 
sites, and (5) locally extinct species – species that were listed in historical 
dataset, but are currently absent. For groups 2 and 4, threshold of two sites was 
selected as species colonization to or extinction from only one site could be 
random event or a failure to detect species that are actually present. Further, two 
groups were compiled: ‘winners’, consisting new and increasing species (i.e. 
species considered to have benefited from recent environmental changes), and 
‘losers’, consisting of all decreasing and locally extinct species (see Fig. 3 in 
IV). After that the species characteristics community mean values of winners 
and losers described above were compared. 
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2.6. Statistical analysis 
Structural equation modelling (SEM) was used to test the direct and indirect 
influence of landscape conditions and local environmental factors on total 
species richness, and low shrub cover on specialist and generalist species. SEM 
was performed using the IBM SPSS Amos ver. 19 statistical software (Arbuckle 
2010; I, II). Only variables with significant relationships are shown. Overall 
model fit was assessed using the chi-square statistic (χ²). A model can be 
accepted when the P-value associated with a χ² is insignificant (Grace 2006). 

In order to detect the existence of extinction debt the relationship between 
the richness of specialist species and current habitat area was analysed with 
simple regression models. After that linear mixed effect models for regions 
where extinction debt is paid or unpaid were used to link specialist species 
richness, and functional diversity to habitat area (III). Specifically, a random 
intercept model was used, where region was included as a random effect. Also, 
the random intercept and slope model was tested, where both region and habitat 
area were included as random effects to allow regions to differ in the slopes of 
their responses and to account for the non-independence of data points that 
otherwise might pseudoreplicate slope information (Schielzeth & Forstmeier 
2009). Models were estimated using the lme function in package nlme (Pinheiro 
et al. 2013) in R (R Development Core Team 2015). Further, the models AIC 
values were compared with the analysis of variance (anova) and only the results 
of the best models are shown. Random intercept model was chosen when the 
difference between the two models was insignificant. Random intercept and 
slope model was chosen when the difference between the two models was signi-
ficant. Specialist species characteristics community mean values, total species 
richness and log-ratio of generalist to specialist species between regions where 
extinction debt is paid or unpaid were also compared with mixed effect model. 
Region was included as a random effect (III). 

The total species richness, functional diversity and FCSi values of current 
and historical communities were compared with paired t-test. Same method was 
used to compare the species characteristics community mean values of winners 
and losers. Analyses were conducted with R, version 3.1.3 (R Development 
Core Team 2015; IV). 

Prior to all the analyses species richness, landscape- and local-scale vari-
ables, habitat area and functional traits were log transformed, inverted, or 
square root transformed if deemed necessary to meet the normality criteria. 
Paired t-tests and linear mixed effect models were considered significant at  
P < 0.05. 
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3. RESULTS 

3.1. Drivers of small-scale species richness 
The structural equation model incorporating landscape conditions (past human 
population density and historical habitat availability) and the local environ-
mental factors explained 49% of the variation in small-scale total species rich-
ness (Fig. 3A). Historical landscape habitat availability had a direct positive 
effect on total species richness. Past human population density had an indirect 
positive effect on total species richness by increasing historical landscape habi-
tat availability (Fig. 3A; see Table 3 in I). At local-scale, light heterogeneity 
and shrub cover (up to 40%) had a direct positive influence on total species 
richness, whereas soil environmental heterogeneity decreased species richness. 
Shrub cover also increased species richness indirectly via its effects on light 
heterogeneity, and at the same time decreased species richness indirectly by 
increasing soil environmental heterogeneity. Soil depth heterogeneity had also 
indirect negative effect on species richness by strongly increasing the soil en-
vironmental heterogeneity (Fig. 3A; see Table 3 in I). 

Low shrub cover (up to 30%) had no effect on the richness of specialist spe-
cies (Fig. 3B; see Table 1 in II). At the same time shrub cover increased gene-
ralist species richness both directly and indirectly via light heterogeneity (Fig. 
3C; see Table 1 in II). Other environmental factors such as soil moisture, pH, 
and temperature were not significantly related to shrub cover nor generalist 
richness. 
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Figure 3. Structural equation models relating landscape conditions and local environ-
mental factors with (A) total species richness, (B) specialist species richness, and (C) 
generalist species richness (I, II). Single-headed arrows indicate direct causal effects 
and double-headed arrows indicate partial correlations. The non-standardized and stan-
dardized coefficients associated with each path are shown only for the significant 
relationships; also marked with asterisks (*). The width of the arrow is proportional to 
the effect of the variable. Solid lines indicate positive, dashed lines negative relation-
ships. The models were statistically significant (A) χ² = 9.484, P = 0.487, (B) and (C)  
χ² = 0.54, P = 0.46. Modified from Fig. 3 in I and Fig. 5 in II. 
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3.2. Occurrence of extinction debt and  
species susceptible to habitat loss 

The richness of specialist species was significantly related to current grassland 
area in Belgium, Denmark Jutland and Zealand regions, Finland, Germany and 
Latvia Zemgale region (Fig. 4A; see Appendix S1 in III). In Estonia, Latvia 
Abava, Swedish mainland and Gotland current habitat area proved to be poor 
predictor of grassland specialist richness (Fig. 4B; see Appendix S1 in III), 
indicating the existence of extinction debt in those regions. Specialist species 
appeared to have shorter dispersal distance in the regions where extinction debt 
is paid (mean 18.33 m) than in regions with extinction debt (mean 29.95 m; t =  
-3.33, P = 0.009; see Fig. 3 in III). All other community mean values of tested 
species characteristics showed no differences between regions (Appendix S2 in 
III). 
 

 
Figure 4. Relationship between habitat area and (A) specialist species richness in Euro-
pean calcareous grasslands where extinction debt is paid, (B) specialist species richness 
in regions where extinction debt is unpaid (III). Tested with linear mixed effect models, 
where region was included as a random effect. For illustration, regression lines are fitted 
based on separate linear regressions for each region. Modified from Fig. 2 in III. 
 
 

3.3. Functional and taxonomic diversity in regions where 
extinction debt is paid or unpaid 

The diversity of specialist species specific leaf area, flowering duration and 
Ellenberg N were positively related to habitat area in regions where extinction 
debt was paid (t = 3.22, P = 0.001; t = 2.30, P = 0.02; t = 3.93, P = 0.0001 
accordingly) and insignificant in regions where extinction debt is unpaid, in-
dicating their possible delayed response to habitat loss. Other functional 
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diversity values of specialist species were not related to habitat area in any of 
the regions (see Table 2 in III). 

Total species richness per site did not differ between regions where the 
extinction debt is paid or unpaid (t = -0.54, P = 0.60). There were on average 55 
species in regions where the debt is already paid and 47 species in regions 
where extinction debt still exists. However, the ratio of generalists to specialists 
was higher in regions where extinction debt is paid, indicating that there are 
relatively more generalist species and less specialists in those regions, compared 
to grasslands where extinction debt is unpaid (t = 2.35, P = 0.04; III). 
 
 

3.4. Comparison of historical and current highly  
degraded grasslands in northern Estonia 

Species richness per site in northern Estonian dry calcareous grasslands was 
significantly greater in current than in historical records (t = 3.99, df = 7, P = 
0.005; Fig. 5). Four traits (seed weight, dispersal type, SLA, terminal velocity) 
showed increased functional diversity in current communities, whereas functio-
nal diversity of plant height had decreased (Table 1). There was no change in 
the functional diversity of other studied species characteristics. Compared to the 
losers, winners had a shorter life span, longer flowering duration, heavier seeds, 
more seeds per shoot, higher terminal velocity, taller height, lower light require-
ment and higher soil fertility requirement (Table 1). There were 66 increasing 
and 104 new species among winners. All new colonisers were native to Esto-
nian flora (IV). 
 

 
 
Figure 5. Differences between current and historical plant communities SR – species 
richness and FCSi – index of Favourable Conservation Status at the study sites (IV). The 
dotted line indicates no difference, results > 0 indicate current higher values and < 0 
current lower values. SR was higher in current grasslands (P = 0.005) and FCSi was 
lower in current grasslands (P = 0.004). Modified from Fig. 4 in IV. 
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Index of Favourable Conservation Status (FCSi; i.e. log-ratio of characteristic to 
derived diversity) is today significantly smaller than 90 years ago (t = -4.098,  
df = 7, P = 0.004; Fig. 5), indicating a considerable decline in habitat integrity 
and conservation value despite the increase in total number of species. Histo-
rically there were on average 35 derived species per site, whereas in current 
communities the average number of derived diversity is 75. The mean number 
of characteristic species had not changed significantly in time; both historical 
and current communities contain about 60 characteristic species per site (IV). 
 
 
Table 1. Results of paired t-tests comparing current and historical functional diversity 
(calculated as mean pairwise distance), and winners and losers’ community mean trait 
values (IV). Statistically significant tests (P < 0.05) are marked in bold. Three cate-
gorical traits were coded 0/1 for binary representation. Modified from Table 1 in IV. 
 

Species characteristics 
Current vs. historical 
functional diversity 

Winners vs. losers 
community mean values 

t df P t df P 

Dispersal vector (animal/other) 3.10 7 0.01 1.52 7 0.17 
Seed number per shoot (log) 1.84 7 0.10 15.14 7 <0.0001 
Terminal velocity (log) (m/s²) 3.25 7 0.01 6.59 7 0.0003 
Seed weight (log) (mg) 2.48 7 0.04 7.19 7 0.0001 
Flowering duration (months) 1.76 7 0.12 4.34 7 0.003 
Mode of reproduction (vegetative 
reproduction absent or 
rare/vegetative reproduction 
present) 

0.09 7 0.92 -1.57 7 0.15 

Life span (annual-
biennial/perennial) 1.98 7 0.08 -3.02 7 0.01 

Plant height (log) (cm) -3.05 7 0.01 12.35 7 <0.0001 
Specific leaf area (log) (mm²/mg) 3.09 7 0.01 0.21 7 0.83 

Ellenberg L 2.19 7 0.06 -5.96 7 0.0005 
Ellenberg N 1.50 7 0.17 9.85 7 <0.0001 
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4. DISCUSSION 

4.1. Drivers of semi-natural dry calcareous  
grasslands diversity 

The high small-scale plant diversity of semi-natural dry calcareous grasslands is 
driven by a combination of landscape- and local-scale factors. Structural equa-
tion modelling revealed their direct and indirect effects on species richness and 
confirmed that the effect of regional and local factors is complementary rather 
than mutually exclusive (I). Also, low shrub cover (up to 30%) was already 
found to increase the number of generalist species, but it did not yet hinder the 
richness of habitat specialist species (II). 

At the landscape scale, current species richness was significantly related to 
historical habitat availability, which in turn was highly dependent on past 
human population density (I). Previous studies have also shown that patterns of 
land-use intensity from the Iron Age (1200 BC–1 BC) and onwards have 
contributed significantly to the diversity of local species pools, and thereby to 
the species richness of grassland communities (Bruun et al. 2001; Pärtel et al. 
2007). Therefore, the long-lasting sustainable management and extensive grass-
land areas are essential for the development and maintenance of species-rich 
grassland communities. 

At the local scale, the shrub cover (up to 40%) had a direct positive effect on 
total plant diversity, supporting the previous findings that moderate shrub cover 
can promote plant species coexistence at small spatial scales (Pykälä et al. 2005; 
Pihlgren & Lennartsson 2008; I). Shrubs can have facilitative abilities, especial-
ly in habitats with harsh environmental conditions, by creating suitable micro-
habitats for germination; by changing nutrient quantity, availability, and 
variability; by transforming soil chemical composition, offering wind shelter, 
protecting from herbivores, or changing the composition of soil microorganisms 
(Callaway 2007; Franco & Nobel 1989). Shrubs also influenced species rich-
ness indirectly by increasing light variability and soil environmental hetero-
geneity, although the latter was mostly determined by the soil depth variability. 

Light heterogeneity in turn had a significant positive influence on species 
richness (I), probably because it allows the coexistence of light- and shade-
demanding species (Valladares 2003; Rūsiņa et al. 2013). At the same time 
belowground small-scale environmental heterogeneity lowered species richness 
(I). Novel explanations such as microfragmentation theory, have been proposed 
to explain the counterintuitive negative diversity-heterogeneity relationship 
(Tamme et al. 2010). Microfragmentation is a community influencing process 
of changing habitat into a more heterogeneous environment that can have nega-
tive effects on the diversity through habitat loss and subsequent isolation, oc-
curring at the plant neighbourhood scale (Tamme et al. 2010; Laanisto et al. 
2013). Soil heterogeneity can also alter competitive hierarchies among co-
existing species since plants with large root systems can forage among soil 
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patches, increasing resource competition and lowering species richness (hetero-
geneity as a separate niche axis, sensu Tamme et al. 2010).  

Generalist species richness was influenced by shrub cover (up to 30%) simi-
lar to total species number – directly and indirectly by increasing light hetero-
geneity. Species richness of grassland specialists, however, showed no direct or 
indirect relationship with shrub cover (II). Many species, characteristic to dry 
calcareous grasslands originate from steppe and tundra regions, and are adapted 
to open habitats with good light availability and stressful conditions (Laasimer 
1965), hence do not benefit from the occurrence of shrubs. Previously, Rej-
mánek & Rosén (1992) have found that a juniper cover exceeding 10% already 
decreased the number of habitat-characteristic species in Swedish alvar grass-
lands. However, my results indicate that a shrub cover of 30% can be con-
sidered suitable for the coexistence of habitat specialist and generalist species. 
 
 

4.2. Current status of semi-natural dry to  
mesic grasslands in Europe 

In most of Europe, there are only small and isolated semi-natural grassland frag-
ments left due to considerable land-use changes during the last hundred years. 
We found that in several of the studied regions in central and northern Europe, 
species susceptible to grassland area and quality loss have already gone extinct, 
but in some regions species still persist temporally despite of the unfavourable 
habitat conditions, creating an extinction debt in the community. Although 
many species are threatened, the total species richness did not change after the 
payment of extinction debt and in northern Estonian highly degraded grass-
lands, the diversity had even increased after 90 years. At the same time, integri-
ty of current communities had considerably declined due to the relative decrease 
in the number of habitat characteristic species. 

The extinction debt occurred in four out of ten regions in central and 
northern Europe. In regions where extinction debt is already paid specialist 
species had considerably lower dispersal ability (III). It shows that the hindered 
movement between habitat patches due to unsuitable matrix area and lack of 
dispersal vectors (i.e. domestic and wild animals) in the landscape have led to 
the disappearance of good dispersers (Ozinga et al. 2009; Öckinger et al. 2012). 
Better dispersers may disappear also because of the trade-off between dispersal 
and competitive ability as in current small and low-quality grassland patches 
competitive ability is more advantageous (Westoby et al. 1996; Saar et al. 
2012). 

Similar to species richness, the diversity of specialist species’ specific leaf 
area, flowering duration and Ellenberg N showed possible delayed response to 
habitat loss in central and northern European grasslands, being positively 
related to habitat area in regions where extinction debt is paid and having no 
relationship in regions with a debt (III). Comparison of historical and current 
highly degraded dry calcareous grasslands in northern Estonia also revealed 
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probable delayed response of functional traits related to species establishment 
and competitive abilities (IV). Current diversity of seed weight and SLA were 
higher compared to the historical values, although they are expected to decrease 
after the abandonment of grazing management (de Bello et al. 2006; Vande-
walle et al. 2014). Previously, Vandewalle et al. (2014) also found that current 
functional diversity of dry calcareous grasslands in Öland, Sweden is partly a 
legacy from past habitat conditions. At the same time, higher diversity of dis-
persal type may indicate that species with certain dispersal type were histori-
cally favoured, but this limitation has disappeared by now, allowing species 
with differing dispersal type to co-exist. Presumably, dispersal ability does not 
determine species survival in the current highly degraded environment. Only the 
functional diversity of plant height had already decreased in response to ceased 
grazing (IV). 

Despite the loss of habitat area and quality, the total species richness did not 
decrease after the payment of extinction debt in central and northern Europe 
(III), indicating that although some species disappear, others can find a suitable 
habitat in altered communities. In northern Estonian highly degraded grasslands 
the total richness per site had even increased after 90 years as they still contain a 
number of specialists, but also due to the colonization of 104 new species (IV). 
Similar trends have been found in other studies, mostly influenced by the in-
vasion of exotic species exceeding the loss of native species during the ob-
served time period (Abbott et al. 2000; Stohlgren et al. 2008; Ellis et al. 2012). 
However, northern Estonian degraded grasslands were not colonized by exotic 
invaders but by native species from other open habitat types in the sur-
roundings, such as road verges, nutrient-rich cultural grasslands and fallows. 
Species that benefitted from current conditions (i.e. ‘winners’) were characte-
rized by better establishment and competitive abilities, such as heavier seeds, 
more seeds per shoot, higher terminal velocity, longer flowering duration, taller 
height, shorter life-span, higher soil nitrogen preference and lower light require-
ment, which is in accordance with previous findings (e.g. Lindborg et al. 2012; 
Saar et al. 2012; Timmermann et al. 2015). 

Functional traits of winners refer to a change towards less disturbed and 
more fertile habitat conditions during 90 years, which are likely the reasons of 
current higher biodiversity (IV). Historically, the grasslands were relatively 
intensively grazed, limiting community composition to a specific set of species 
i.e. those with high tolerance to continuous high disturbance (Vilberg 1927; 
Petit & Elbersen 2006). This effect is especially pronounced in low productivity 
ecosystems, such as dry calcareous grasslands, where harsh conditions (e.g. thin 
soil and related summer droughts and spring floods) additionally limit the 
number of species able to inhabit these communities (Proulx & Mazumder 
1998; Schultz et al. 2011). Cessation of grazing and influx of nutrients from 
nearby arable fields, through atmospheric nitrogen deposition and/or possible 
direct addition of fertilizers during the agricultural intensification in the 1950s 
has led to increased soil fertility, higher grass layer and litter accumulation, 
which in turn helps to retain soil moisture during summer droughts. This is one 



26 

of the possible explanations why the species richness, which is mostly found to 
decrease in response to nitrogen deposition (Payne et al. 2013), has increased in 
studied grassland patches. The absence of a negative effect of increasing pro-
ductivity may be also related to the fact that in calcareous grasslands the soil 
phosphorous is more limiting factors for plant growth than nitrogen availability 
(Carrol et al. 2003; Diekmann et al. 2014). Consequently, more productive, less 
stressful (i.e. with more optimal moisture conditions) and less disturbed condi-
tions may be conducive to more species in the region, resulting in a shift 
towards more mesotrophic grassland communities (Newton et al. 2012). 

At the same time habitat integrity (i.e. how characteristic is the habitat com-
pared to its historical state prior extensive area and/or habitat quality loss) of 
northern Estonian grasslands had decreased considerably. Current communities 
contained relatively more species that have not been historically characteristic 
to a given habitat than historical communities (IV). This thorough change in 
species composition, coupled with the change in environmental conditions, has 
led to the development of hybrid communities’ sensu Hobbs et al. (2014). Also 
in central and northern European grasslands the relative amount of generalist 
species increased after the payment of extinction debt (III). Therefore, simply 
the total number of species would lead us to erroneous conclusions concerning 
habitat quality (Pärtel 2014; Helm et al. 2015). 
 
 

4.3. Implications for conservation 
Based on the results of my thesis, I provide new implications for restoration and 
conservation of semi-natural dry to mesic grasslands. I found that species rich-
ness is dependent on historical habitat area and connectivity as well as suitable 
local environmental conditions, indicating the importance of considering both 
landscape- and local-scale factors in habitat restoration and conservation (I). 
Results about the effect of low shrub cover on specialist and generalist species 
confirmed that previously recommended 30% shrub cover can be considered 
suitable for the maintenance of specialist species richness and high plant diver-
sity in semi-natural dry calcareous grasslands (II). The findings of this thesis 
also showed that habitat specialists and generalists or characteristic and derived 
diversity need to be separated while studying species response to land-use 
changes in order not to overestimate the habitat quality and conservation value 
(II, III, IV). In addition, I stress the need to consider that habitat loss and 
degradation might not lead immediately to observable changes in biodiversity 
or community composition due to the extinction debt (III). In regions where 
species predicted to eventually become extinct still persist in the habitat patch 
and its vicinity and there have not been alterations in ecosystem functions yet, 
habitat restoration is urgently needed to prevent the loss of susceptible species, 
infiltration of generalist species and change in functional diversity. First, it is 
important to increase habitat quality by resuming the appropriate management 
regime, which reduces the impact of the loss of past grassland area and inhibits 
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the payment of an extinction debt by providing suitable microhabitats and 
eliminating the competition from generalist species (Hylander & Ehrlén 2013; 
Otsu et al. 2017). Second, the study results showed that good dispersers are 
especially susceptible in declining and degrading grasslands, therefore it is 
essential to increase habitat quantity and restore functional connectivity 
between habitat patches (Lindborg & Eriksson 2004; Auffret et al. 2017; Török 
& Helm 2017). The distance to possible seed sources should not be more than 1 
km as it is highly unlikely that migration or gene flow will occur over larger 
distances (Aavik et al. 2013; Prach et al. 2015). Traditional shepherding and 
landscape-scale grazing networks could help to disperse the seeds over longer 
distances, even in greatly fragmented landscape, but is currently uneconomical 
and therefore mostly replaced by stationary paddocks (Fischer et al. 1996; 
Poschlod & WallisDeVries 2002). Finally, increasing the quality of surrounding 
anthropogenic matrices is found to have a significant effect on the recovery of 
viable species populations (Aguilar et al. 2006; Donald & Evan 2006; Öckinger 
et al. 2012). 

Habitat restoration requires comprehensive approach in grassland systems 
where the extinction debt is already paid, the community includes a consider-
able amount of species that do not belong to their historical habitat specific 
species pool and there have been changes in ecosystem functions. For instance, 
in northern Estonian highly degraded dry calcareous grasslands the current 
biotic and abiotic conditions are potentially reversible to their historical state via 
restoration, but as the remnant small grassland patches have become isolated 
from other grasslands in Estonia by more than 100 km, restoration without 
introduction of propagules of specialist species and without re-creating large 
landscape-scale functional connectivity of habitat patches might fail to create 
conditions necessary for long-term persistence of dry calcareous grassland biota 
(Helm et al. 2006; Auffret et al. 2017; IV). Hence, it would be perhaps worth-
while to consider the alternative of managing and maintaining such habitats as 
hybrid or novel ecosystems given that their remaining species richness contri-
butes to the conservation of local biodiversity. The aim would be to avoid 
further habitat loss and extinction of the remaining specialist species by re-
suming the appropriate management regime, improve functional connectivity 
between habitat patches and if possible then reintroduce the propagules of 
locally missing specialist species rather than attempting complete restoration to 
historical state or continuing their abandonment. 

Current landscapes often consist of an increasing number of hybrid and 
novel communities in varying states of degradation (Hobbs et al. 2014). There-
fore, nature conservation and restoration practices should be broadened and 
transcend traditional approaches, by considering also the role of hybrid and 
novel ecosystems in biodiversity protection. However, the priority must be set 
to restoration and preservation of historically developed habitat patches. 
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5. CONCLUSIONS 

The high diversity of semi-natural grasslands has developed during hundreds of 
years in a combination of landscape-scale historical factors and local environ-
mental conditions. During the past century, ~90% of the grassland area has been 
lost due to the intensive management practices, rendering many species vulner-
able to local extinctions. Effective habitat restoration and conservation, based 
on the knowledge from theoretical ecology, is extremely important for pre-
serving the remaining biodiversity. My thesis helps to understand the mecha-
nisms involved in the maintenance of plant species diversity in semi-natural dry 
calcareous grasslands. I also assessed the status of semi-natural dry to mesic 
grasslands in central and northern Europe after vast land-use changes during the 
past century. Finally, I provided new implications for biodiversity restoration 
and conservation of communities where the extinction debt is unpaid or already 
paid and environmental conditions highly altered. 

The results of my thesis showed that different environmental factors can 
have both positive and negative influence on the small-scale species richness of 
dry calcareous grasslands. At the landscape-scale, historical habitat availability 
had a direct and past human population density indirect (via its positive influen-
ce on historical habitat availability) positive effect on species richness. At the 
local-scale, light heterogeneity and shrub cover had a positive direct influence 
on the species richness (I). My results confirmed that a shrub cover of 30% can 
be considered suitable for the coexistence of habitat specialist and generalist 
species (II). In contrast to the positive heterogeneity–diversity relationship we 
found that small-scale soil environmental heterogeneity decreased species rich-
ness (I). These findings indicate that the development and maintenance of 
species-rich grassland communities in Europe depends on the continuous mode-
rate habitat management, availability of extensive grassland areas in the sur-
rounding and suitable local environmental conditions, which should be taken 
into account in the habitat restoration and conservation. 

I detected that in four out of ten European semi-natural dry to mesic grass-
land regions the species predicted to eventually become extinct still persist in 
the grassland patch and its vicinity, despite of the current unfavourable environ-
mental conditions. In six regions, where the extinction debt could not be de-
tected, specialist species appeared to have considerably lower dispersal ability. 
This suggests that species with better dispersal ability are more prone to dis-
appear from European semi-natural grasslands following the payment of extinc-
tion debt. Therefore, in regions where extinction debt is still unpaid, restoration 
of extensive habitat area and functional connectivity is urgently needed to pre-
vent the loss of susceptible species (III). 

In the grassland system, where the extinction debt is already paid and there 
has been a considerable decline in habitat integrity, complete restoration to 
historical state prior extensive area and habitat quality loss might fail. Hence, 
instead of abandoning them, it would be worthwhile to consider managing and 
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maintaining (e.g. avoiding further habitat area and quality loss, improving func-
tional connectivity) such habitats as hybrid or novel ecosystems (i.e. habitats 
out of their historical range) as they are often still species-rich and can contri-
bute to the local biodiversity protection. In the studied European grassland 
regions the total species richness did not change after the payment of extinction 
debt due to the infiltration of generalist species. In northern Estonian highly 
degraded grasslands the species richness had even increased after 90 years as 
they still contain a number of specialist species, but also due to the colonization 
by more competitive and nutrient-demanding native species (III, IV). 

The priority in biodiversity conservation is to restore and preserve the histo-
rical communities as much as possible. However, current landscapes contain an 
increasing number of hybrid and novel communities, more so in light of on-
going land-use and climate change, and not all of them can be restored. In this 
thesis I recommend to consider also the role of highly altered ecosystems (i.e. 
hybrid and novel ecosystems) in biodiversity conservation. I suggest to care-
fully determine the status of the habitat, and to decide whether it is possible and 
reasonable to restore the historical community or manage it as a hybrid/novel 
ecosystem. 
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SUMMARY IN ESTONIAN 

Pool-looduslike niidukoosluste taimede mitmekesisus:  
kõrge liigirikkuse taganud tegurid, praegune seisund ja 

looduskaitselised väljakutsed 

Pool-looduslikeks kooslusteks ehk pärandkooslusteks loetakse loodusliku elus-
tikuga kooslusi, mis on kujunenud kestva niitmise või karjatamise tulemusel 
ning mida pole mõjutatud kündmise, heinaseemne külvamise ega väetamisega. 
Suur osa Euroopa soontaimede liigirikkusest on seotud just pool-looduslike 
maastikega ning väikesel skaalal on nad erakordselt liigirikkad ka kogu maa-
ilma mastaabis. Näiteks Eestist, Laelatu puisniidult on 10×10 cm ruudult leitud 
25 liiki soontaimi, mis on selles skaalas maailmarekord. Pool-looduslikke koos-
lusi on mitut erinevat tüüpi (nt. loo-, ranna-, luha-, nõmme- ja puisniidud), neist 
liigirikkaimad on lubjarikkad niidud, kuna suur osa pool-looduslike koosluste 
liike on pärit Lõuna-Euroopa ja Kaukaasia jääaja refuugiumitest, kus on valda-
vad olnud kõrge lubjasisaldusega aluselised mullad. Lisaks kõrgele taimede 
liigirikkusele on pool-looduslikud niidukooslused elupaigaks ka paljudele linnu 
ja selgrootute liikidele ning pakuvad mitmeid inimkonna heaolu toetavaid loo-
duse hüvesid (nt. tolmeldamise hüve, looduslik kahjuritõrje ja kultuurilised 
hüved). 

Pool-looduslike koosluste ja nende kõrge liigirikkuse kujunemisel ja säili-
msel on olulist rolli mänginud mõõdukas inimmõju niitmise ja karjatamise näol. 
Traditsiooniline majandamine tagas elujõuliste taimepopulatsioonide püsimi-
seks vajaliku suurte ja omavahel seotud elupaigalaikude süsteemi (nn. meta-
populatsioonide võrgustiku), kus taimeseemnete peamisteks levitajateks olid 
kariloomad. Lisaks maastikuskaalal toimuvatele protsessidele mõjutavad pool-
looduslike niidukoosluste väikeseskaalalist liigirikkust kohalikud keskkonnatin-
gimused, näiteks mulla niiskus, põõsaste katvus ning nende ruumiline variee-
ruvus. Ei ole aga täpselt teada, milline on erinevate keskkonnategurite otsene ja 
kaudne mõju pool-looduslike koosluste väikeseskaalalisele taimede mitmekesi-
susele. 

Pool-looduslike niidukoosluste leviku kõrgaeg Euroopas jääb 19. sajandi 
lõppu. Alates 20. sajandi algusest on kogu Euroopas inimasustuse tihenemise, 
põllumajanduse intensiivistumise ning traditsiooniliste majandamisviiside lak-
kamise tõttu nende elupaikade pindala ja kvaliteet drastiliselt vähenenud. Järele 
on enamsti jäänud vaid väikesed, isoleeritud ja kehva kvaliteediga elupaiga-
laigud, mis ei toeta elujõuliste populatsioonide säilimist. Ilma efektiivse elu-
paikade taastamise ja kaitseta on tulevikus oodata mitmete pool-looduslikele 
niitudele iseloomulike liikide väljasuremist. Tänaseks on selge, et elurikkuse 
säilitamiseks on vaja ökoloogilistel teooriatel põhinevat looduskaitset. Selleks 
on vaja täpselt teada, millised ja kuidas erinevad keskkonnategurid mõjutavad 
kooslusele iseloomulike soontaimede mitmekesisust. 
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Lisaks on looduskaitses on oluline arvesse võtta liikide aeglast reageerimist 
keskkonnatingimuste ja maastikustruktuuri muutustele. Paljude taimeliikide 
populatsioonid suudavad veel lühemat või pikemat aega koosluses püsida, isegi 
kui keskkonnatingimused on muutunud neile sobimatuks. Nende tegelik välja-
suremine on aga vaid aja küsimus. Seda nähtust nimetatakse „väljasuremis-
võlaks“. Väljasuremisvõla olemasolule viitab väikeste ja isoleeritud pärand-
koosluste laikude endiselt kõrge liigirikkus ning seotus pigem ajaloolise kui 
tänase maastikustruktuuriga. Jättes võla olemasolu tuvastamata on oht koosluse 
seisundit ülehinnata. Näiteks on leitud, et Eesti läänesaarte igalt loopealse 
laigult võib tulevikus kaduda kuni 40% ehk ligikaudu 20 iseloomulikku soon-
taimeliiki. Tähtis on ka arvestada, et erinevate tunnustega liigid reageerivad 
elupaiga muutustele erinevalt. Näiteks pikema levimiskaugusega liigid võivad 
olla ohustatumad, kuna neil on tänases tugevalt killustunud maastikus suurem 
tõenäosus sattuda ebasobivasse keskkonda. Võrreldes kooslusi kus välja-
suremisvõlg on veel olemas või juba makstud (s.t. liigid kadunud) võib anda 
olulist informatsiooni selle kohta, millised liigid on kõige tundlikumad ning 
kuidas võib koosluse elurikkus tulevikus muutuda. See omakorda võimaldab 
teha õigemaid otsuseid koosluste ning nende mitmekesisuse taastamiseks ja 
säilitamiseks. 

Muutused koosluse keskkonnatingimustes ning liigirikkuses ja koosseisus 
toovad kaasa muutusi ökosüsteemide funktsioonides. Seega on elupaiga 
seisundi ja looduskaitselise väärtuse hindamiseks oluline uurida ka funktsio-
naalset mitmekesisust. Funktsionaalne mitmekesisus on bioloogilise mitmeke-
sisuse mõõde, mis näitab kooslustes esinevate organismide funktsionaalsete tun-
nuste erinevuste hulka. Sarnaselt liigirikkusele võib ka funktsionaalne mitme-
kesisus elupaigakaole hilinemisega reageerida. 

Looduses ei ole aga tühja kohta ning kui ühed liigid kaovad, võivad teised 
liigid leida muutunud keskkonnatingimustes enda jaoks uue elupaiga. Degra-
deerunud kooslusesse võivad siseneda nii invasiivsed tulnukliigid kui ka koha-
likud, teistest kooslusetüüpidest pärit liigid. Seega kogu liigirikkus ei pruugigi 
alati väheneda ning võib teinekord isegi tõusta, kuid samal ajal elupaiga rikku-
matus ehk liigilise koosseisu sarnasus algsele kooslusele väheneb. Sageli on 
tulemuseks hübriidsed või täiesti uudsed kooslused, mida ajalooliselt pole 
esinenud. Hübriidseid kooslusi on võimalik veel algsel kujul taastada, kuid 
uudsed kooslused on juba pöördumatult ajaloolisest seisundist teisenenud. 
Praeguseni ei ole veel jõutud ühisele arvamusele kas ja kuidas oleks mõistlik 
selliseid tugevalt degradeerunud, kuid liigirikkaid kooslusi majandada. 

Minu doktoritöö eesmärgiks oli esiteks kindlaks määrata, millised tegurid on 
taganud pool-looduslike kuivade lubjarikaste niidukoosluste kõrge soontaimede 
liigirikkuse (I, II). Täpsemalt selgitasin välja (a) kuidas erinevad keskkonna-
tegurid mõjutavad otseselt ja kaudselt lubjarikaste niitude väikeseskaalalist 
(10×10 cm) liigirikkust (I) ning (b) milline mõju on põõsaste madalal katvusel 
(<30%) lubjarikaste niitude spetsialistide ja generalistide liigirikkusele (II). 
Teiseks hindasin Kesk- ja Põhja-Euroopa pool-looduslike kuivade kuni paras-
niiskete niidukoosluste praegust seisundit jätkuvate maakasutuse muutuste 
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valguses, kokku kümnes regioonis (III, IV). Täpsemalt tuvastasin (a) milliste 
regioonide niitudel esineb väljasuremisvõlg ja millistel on võlg juba makstud, 
(b) milliste funktsionaalsete tunnustega niiduliigid kaovad kooslusest pärast 
väljasuremisvõla maksmist, (c) kuidas funktsionaalne mitmekesisus on elupaiga 
pindala vähenemisest mõjutatud ning (d) kas kogu liigirikkus ja liigiline koos-
seis erinevad regioonides kus väljasuremisvõlg maksmata või makstud (III). 
Lisaks oli mul võimalus hinnata muutusi tänaseks tugevalt degradeerunud 
Põhja-Eesti kuivade lubjarikaste niidulaikude taksonoomilises ja funktsionaal-
ses mitmekesisuses ning nende elupaiga rikkumatuses, võrreldes ajaloolise 
seisundiga. Selgitasin välja ka, millised funktsionaalsed tunnused iseloomusta-
vad liike, mis suudavad tugevalt degradeerunud koosluses püsima jääda (IV). 
Viimaseks eesmärgiks oli, uurimustulemustele toetudes, välja pakkuda uusi 
soovitusi koosluste taastamiseks ja nende elurikkuse säilitamiseks, olukorras 
mil väljasuremisvõlg maksmata või võlg juba makstud ja kooslus tugevalt 
degradeerunud (I, II, III, IV). 

Struktuurse võrrandi mudeli tulemused näitasid, et erinevatel keskkonna-
faktoritel on nii positiivseid kui ka negatiivseid mõjusid lubjarikaste niitude 
väikeseskaalalisele rohttaimede kogu liigirikkusele. Ajaloolisel elupaiga suuru-
sel ja elupaikade omavahelisel sidususel oli otsene positiivne mõju liigirikku-
sele ning ajaloolisel inimasustuse tihedusel kaudne positiivne mõju liigirikku-
sele. Kogu liigirikkust suurendasid otseselt ka väikeseskaalaline valguse hetero-
geensus ja mõõdukas põõsaste katvus. Samas väikeseskaalaline mulla hetero-
geensus mõjutas liigirikkust negatiivselt. Antud tulemused näitavad, et liigi-
rikaste niidukoosluste teke ja püsimine sõltub nii suurekaalalistest teguritest 
nagu pidev mõõdukas majandamine, piisava hulga niidulaikude olemasolu ja 
sidusus maastikus kui ka kohalikest keskkonnatingimustest, mida tuleb arvesse 
võtta elupaikade taastamisel ja säilitamisel. Elupaiga spetsialiste ja generaliste 
eraldi analüüsides, selgus, et madalal, kuni 30%, põõsaste katvusel ei ole spet-
sialistide liigirikkusega veel mingit seost. Samas, generalistide arvule oli põõ-
saste katvusel positiivne mõju nii otseselt kui ka kaudselt läbi valguse hetero-
geensuse suurendamise. Seega, minu töö tulemused kinnitavad, et pool-loodus-
likel lubjarikastel niitudel on sobivaks puittaimede katvuseks ligikaudu 30%, 
mis lubab kooseksisteerida nii elupaiga spetsialistidel kui ka generalistidel. 

Väljasuremisvõlg esines neljas uuritud Euroopa piirkonnas – Eestis, Läti 
Abava regioonis, Rootsi maismaa kooslustes ja Gotlandil. Neis neljas piir-
konnas oli spetsialistide liigirikkuse ja elupaiga pindala omavaheline seos eba-
oluline, mis viitabki väljasuremisvõla olemasolule. Ka funktsionaalne mitme-
kesisus näitas neis piirkondades viibega reageerimist. Belgias, Taani Jutlandi ja 
Zealandi regioonides, Soomes, Saksamaal ja Läti Zemgale regioonis oli liigi-
rikkuse ja pindala vahel positiivne seos, mis näitab, et nendel niitudel on võlg 
juba makstud. Piirkondades, kus võlg juba tasutud, oli elupaiga spetsialistidel 
oluliselt lühem levimiskaugus. See näitab, et head levijad on pindalakaole kõige 
tundlikumad. Seega, regioonides, kus väljasuremisvõlg on veel maksmata tuleks 
võimalikult kiiresti alustada elupaiga taastamisega, et takistada hea levimis-
võimega elupaiga spetsialistide kadumist. Kuna liigid on veel koosluselaigus ja 



40 

selle lähiümbruses alles, siis elujõuliste populatsioonide taastumise tõenäosus 
on väga kõrge. Esmalt tuleks tõsta alles oleva elupaiga kvaliteeti alustades taas 
karjatamise/niitmisega ning vajadusel vähendada põõsaste katvust ~30 prot-
sendini. Seejärel tuleks suurendada elupaiga pindala ja sidusust teiste maastikus 
paikenvate niidulaikudega. Varasemad uurimused on näidanud, et vahemaa 
elupaigalaikude vahel ei tohiks olla rohkem kui 1 km, kuna ka kõige paremad 
levijad ei suuda enamasti pikemaid vahemaid läbida. Võla tasumist ennetaks ka 
ümbritseva maastiku muutmine liikidele läbitavamaks, näiteks kasutades öko-
loogilisemaid põllumajandusvõtteid. 

Niidulaikudes, kus võlg juba makstud ja elupaiga rikkumatus oluliselt vähe-
nenud, on täielik koosluse taastamine keerulisem ja ajaloolise seisundi saavu-
tamine vähem tõenäoline. Samas on sellised degradeerunud ja algsest koos-
lusest oluliselt teisenenud elupaigalaigud tihtipeale siiski väga liigirikkad. Uuri-
tud Euroopa regioonides, kus võlg makstud, ei olnud kogu liigirikkus genera-
listide saabumise tõttu kahanenud. Põhja-Eesti lämmastiku saaste ning karjata-
mise lakkamise tõttu degradeerunud niitudel oli kogu liigirikkus isegi oluliselt 
kõrgem kui 90 aastat tagasi, ka mõnede funktsionaalsete tunnuste mitmekesisus 
oli tõusnud. Samal ajal oli elupaiga rikkumatus ehk liigilise koosseisu sarnasus 
ajaloolisele kooslusele oluliselt vähenenud. Osad ajalooliselt esinenud niidu-
liigid on tänaseks juba piirkonnast kadunud ja mõningad kadumas ning koos-
lusesse on sisenenud hulgaliselt uusi teistest elupaigatüüpidest pärit kohalikke 
liike (kokku 104). Samas on need niidud endiselt elupaigaks ka üsna suurele 
hulgale lubjarikastele rohumaadele iseloomulikele liikidele. Seega tuleks võib-
olla kaaluda selliste liigirikaste, samas tugevalt degradeerunud koosluste majan-
damist ja säilitamist hübriidsete või uudsete kooslustena. Tuleks taasalustada 
karjatamise/niitmisega ning parandada elupaigalaikude funktsionaalset sidusust, 
mis hoiaks ära nende edasise degradeerumise ja järelejäänud ajaloolisele koos-
lusele iseloomulike liikide kadumise ning annaks panuse piirkonna elurikkuse 
säilimisele. 

Arvestades hübriidsete ja uudsete ökosüsteemide üha kasvavat hulka jätku-
vate maakasutuse ja kliima muutuse valguses, tuleks neile tähelepanu pöörata 
ka bioloogilise mitmekesisuse kaitses. Selle asemel, et neid ignoreerida ja 
tähtsusetuks pidada, peaksime leidma võimalusi ja perspektiive nende kasuta-
misel elurikkuse ja ökosüsteemide funktsioonide ning teenuste säilitamiseks 
regioonis. Seda muidugi olukorras, mil algne kooslus on tugevalt või lausa 
pöördumatult muutunud. Prioriteediks peab alati siiski seadma looduslike ja 
pool-looduslike koosluste taastamise ja säilitamise. 
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